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Summary

Many three-dimensional (3-D) structures in rock, which formed during the deformation of the

Earth’s crust and lithosphere, are controlled by a difference in mechanical strength between rock

units and are often the result of a geometrical instability. Such structures are, for example, folds,

pinch-and-swell structures (due to necking) or cuspate-lobate structures (mullions). These struc-

tures occur from the centimeter to the kilometer scale and the related deformation processes con-

trol the formation of, for example, fold-and-thrust belts and extensional sedimentary basins or

the deformation of the basement-cover interface. The 2-D deformation processes causing these

structures are relatively well studied, however, several processes during large-strain 3-D defor-

mation are still incompletely understood. One of these 3-D processes is the lateral propagation

of these structures, such as fold and cusp propagation in a direction orthogonal to the shortening

direction or neck propagation in direction orthogonal to the extension direction. Especially, we

are interested in fold nappes which are recumbent folds with amplitudes usually exceeding 10

km and they have been presumably formed by ductile shearing. They often exhibit a constant

sense of shearing and a non-linear increase of shear strain towards their overturned limb. The

fold axes of the Morcles fold nappe in western Switzerland plunges to the ENE whereas the fold

axes in the more eastern Doldenhorn nappe plunges to the WSW. These opposite plunge direc-

tions characterize the Rawil depression (Wildstrubel depression). The Morcles nappe is mainly

the result of layer parallel contraction and shearing. During the compression the massive lime-

stones were more competent than the surrounding marls and shales, which led to the buckling

characteristics of the Morcles nappe, especially in the north-dipping normal limb. The Dolden-

horn nappe exhibits only a minor overturned fold limb. There are still no 3-D numerical studies

which investigate the fundamental dynamics of the formation of the large-scale 3-D structure

including the Morcles and Doldenhorn nappes and the related Rawil depression. We study the

3-D evolution of geometrical instabilities and fold nappe formation with numerical simulations

based on the finite element method (FEM). Simulating geometrical instabilities caused by sharp

variations of mechanical strength between rock units requires a numerical algorithm that can

accurately resolve material interfaces for large differences in material properties (e.g. between

limestone and shale) and for large deformations. Therefore, our FE algorithm combines a nu-

merical contour-line technique and a deformable Lagrangian mesh with re-meshing. With this
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combined method it is possible to accurately follow the initial material contours with the FE

mesh and to accurately resolve the geometrical instabilities. The algorithm can simulate 3-D de-

formation for a visco-elastic rheology. The viscous rheology is described by a power-law flow

law. The code is used to study the 3-D fold nappe formation, the lateral propagation of folding

and also the lateral propagation of cusps due to initial half graben geometry. Thereby, the small

initial geometrical perturbations for folding and necking are exactly followed by the FE mesh,

whereas the initial large perturbation describing a half graben is defined by a contour line inter-

secting the finite elements. Further, the 3-D algorithm is applied to 3-D viscous nacking during

slab detachment. The results from various simulations are compared with 2-D resulats and a 1-D

analytical solution.
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Résumé

On retrouve beaucoup de structures en 3 dimensions (3-D) dans les roches qui ont pour origines

une déformation de la lithosphère terrestre. Ces structures sont par exemple des plis, des boudins

(pinch-and-swell) ou des mullions (cuspate-lobate) et sont présentés de l’échelle centimétrique

à kilométrique. Mécaniquement, ces structures peuvent être expliquées par une différence de

résistance entre les différentes unités de roches et sont généralement le fruit d’une instabilité

géométrique. Ces différences mécaniques entre les unités contrôlent non seulement les types de

structures rencontrées, mais également le type de déformation (thick skin, thin skin) et le style

tectonique (bassin d’avant pays, chaîne d’avant pays). Les processus de la déformation en deux

dimensions (2-D) formant ces structures sont relativement bien compris. Cependant, lorsque l’on

ajoute la troisiéme dimension, plusieurs processus ne sont pas complètement compris lors de la

déformation à large échelle. L’un de ces processus est la propagation latérale des structures, par

exemple la propagation de plis ou de mullions dans la direction perpendiculaire à l’axe de com-

pression, ou la propagation des zones d’amincissement des boudins perpendiculairement à la

direction d’extension. Nous sommes particulièrement intéressés les nappes de plis qui sont des

nappes de charriage en forme de plis couché d’une amplitude plurikilométrique et étant formées

par cisaillement ductile. La plupart du temps, elles exposent un sens de cisaillement constant

et une augmentation non linéaire de la déformation vers la base du flanc inverse. Un exemple

connu de nappes de plis est le domaine Helvétique dans les Alpes de l’ouest. Une de ces nap-

pes est la Nappe de Morcles dont l’axe de pli plonge E-NE tandis que de l’autre cÃ´té de la

dépression du Rawil (ou dépression du Wildstrubel), la nappe du Doldenhorn (équivalent de la

nappe de Morcles) possède un axe de pli plongeant O-SO. La forme particulière de ces nappes

est due à l’alternance de couches calcaires mécaniquement résistantes et de couches mécanique-

ment faibles constituées de schistes et de marnes. Ces différences mécaniques dans les couches

permettent d’expliquer les plissements internes à la nappe, particulièrement dans le flanc inver-

se de la nappe de Morcles. Il faut également noter que le développement du flanc inverse des

nappes n’est pas le même des deux côtés de la dépression de Rawil. Ainsi la nappe de Morcles

possède un important flanc inverse alors que la nappe du Doldenhorn en est presque dépour-

vue. A l’heure actuelle, aucune étude numérique en 3-D n’a été menée afin de comprendre la

dynamique fondamentale de la formation des nappes de Morcles et du Doldenhorn ainsi que la
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formation de la dépression de Rawil. Ce travail propose la première analyse de l’évolution 3-D

des instabilités géométriques et de la formation des nappes de plis en utilisant des simulations

numériques. Notre modèle est basé sur la méthode des éléments finis (FEM) qui permet de ré-

soudre avec précision les interfaces entre deux matériaux ayant des propriétés mécaniques très

différentes (par exemple entre les couches calcaires et les couches marneuses). De plus nous

utilisons un maillage lagrangien déformable avec une fonction de re-meshing (production d’un

nouveau maillage). Grâce à cette méthode combinée il nous est possible de suivre avec précisi-

on les interfaces matérielles et de résoudre avec précision les instabilités géométriques lors de la

déformation de matériaux visco-élastiques décrit par une rhéologie non linéaire (n>1). Nous uti-

lisons cet algorithme afin de comprendre la formation des nappes de plis, la propagation latérale

du plissement ainsi que la propagation latérale des structures de type mullions causé par une va-

riation latérale de la géométrie (p.ex graben). De plus l’algorithme est utilisé pour comprendre la

dynamique 3-D de l’amincissement visqueux et de la rupture de la plaque descendante en zone

de subduction. Les résultats obtenus sont comparés à des modèles 2-D et à la solution analytique

1-D.

XII



Zusammenfassung

Viele drei dimensionale (3-D) Strukturen, die in Gesteinen vorkommen und durch die Verfor-

mung der Erdkruste und Litosphäre entstanden sind werden von den unterschiedlichen mechani-

schen Eigenschaften der Gesteinseinheiten kontrolliert und sind häufig das Resulat von geome-

trischen Istabilitäten. Zu diesen strukturen zählen zum Beispiel Falten, Pich-and-swell Struktu-

ren oder sogenannte Cusbate-Lobate Strukturen (auch Mullions). Diese Strukturen kommen in

verschiedenen Grössenordungen vor und können Masse von einigen Zentimeter bis zu einigen

Kilometer aufweisen. Die mit der Entstehung dieser Strukturen verbundenen Prozesse kontrol-

lieren die Entstehung von Gerbirgen und Sediment-Becken sowie die Verformung des Kontaktes

zwischen Grundgebirge und Stedimenten. Die zwei dimensionalen (2-D) Verformungs-Prozesse

die zu den genannten Strukturen führen sind bereits sehr gut untersucht. Einige Prozesse wäh-

rend starker 3-D Verformung sind hingegen noch unvollständig verstanden. Einer dieser 3-D

Prozesse ist die seitliche Fortpflanzung der beschriebenen Strukturen, so wie die seitliche Fort-

pflanzung von Falten und Cusbate-Lobate Strukturen senkrecht zur Verkürzungsrichtung und

die seitliche Fortpflanzung von Pinch-and-Swell Strukturen othogonal zur Streckungsrichtung.

Insbesondere interessieren wir uns für Faltendecken, liegende Falten mit Amplituden von mehr

als 10 km. Faltendecken entstehen vermutlich durch duktile Verscherung. Sie zeigen oft einen

konstanten Scherungssinn und eine nicht-lineare zunahme der Scherverformung am überkipp-

ten Schenkel. Die Faltenachsen der Morcles Decke in der Westschweiz fallen Richtung ONO

während die Faltenachsen der östicher gelegenen Doldenhorn Decke gegen WSW einfallen.

Diese entgegengesetzten Einfallrichtungen charakterisieren die Rawil Depression (Wildstrubel

Depression). Die Morcles Decke ist überwiegend das Resultat von Verkürzung und Scherung

parallel zu den Sedimentlagen. Während der Verkürzung verhielt sich der massive Kalkstein

kompetenter als der Umliegende Mergel und Schiefer, was zur Verfaltetung Morcles Decke führ-

te, vorallem in gegen Norden eifallenden überkippten Schenkel. Die Doldenhorn Decke weist

dagegen einen viel kleineren überkippten Schenkel und eine stärkere Lokalisierung der Verfor-

mung auf. Bis heute gibt es keine 3-D numerischen Studien, die die fundamentale Dynamik

der Entstehung von grossen stark verformten 3-D Strukturen wie den Morcles und Doldenhorn

Decken sowie der damit verbudenen Rawil Depression untersuchen. Wir betrachten die 3-D Ent-

wicklung von geometrischen Instabilitäten sowie die Entstehung fon Faltendecken mit Hilfe von
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numerischen Simulationen basiert auf der Finite Elemente Methode (FEM). Die Simulation von

geometrischen Instabilitäten, die aufgrund von Änderungen der Materialeigenschaften zwischen

verschiedenen Gesteinseinheiten entstehen, erfortert einen numerischen Algorithmus, der in der

Lage ist die Materialgrenzen mit starkem Kontrast der Materialeigenschaften (zum Beispiel zwi-

schen Kalksteineinheiten und Mergel) für starke Verfomung genau aufzulösen. Um dem gerecht

zu werden kombiniert unser FE Algorithmus eine numerische Contour-Linien-Technik und ein

deformierbares Lagranges Netz mit Re-meshing. Mit dieser kombinierten Methode ist es mög-

lich den anfänglichen Materialgrenzen mit dem FE Netz genau zu folgen und die geometrischen

Instabilitäten genügend aufzulösen. Der Algorithmus ist in der Lage visko-elastische 3-D Ver-

formung zu rechnen, wobei die viskose Rheologie mit Hilfe eines power-law Fliessgesetzes

beschrieben wird. Mit dem numerischen Algorithmus untersuchen wir die Entstehung von 3-D

Faltendecken, die seitliche Fortpflanzung der Faltung sowie der Cusbate-Lobate Strukturen die

sich durch die Verkürzung eines mit Sediment gefüllten Halbgraben bilden. Dabei werden die

anfänglichen geometrischen Instabilitäten der Faltung exakt mit dem FE Netz aufgelöst wäh-

rend die Materialgranzen des Halbgrabens die Finiten Elemente durchschneidet. Desweiteren

wird der 3-D Algorithmus auf die Einschnürung während der 3-D viskosen Plattenablösung und

Subduktion angewandt. Die 3-D Resultate werden mit 2-D Ergebnissen und einer 1-D analyti-

schen Lösung verglichen.

XIV



1 Introduction

Generally, the presented thesis consists of two parts. In the first part the focus lies on the im-

plementation and the technical details of the numerical algorithm. The numerical algorithm is

realized in Matlab (TheMathWorks) and is developed to study 3-D large strain evotution of hy-

drodynamic instabilities, such as folding and necking with a power-law visco-elastic rheology.

In the second part of the presented thesis the numerical algorithm is applied to diffentent pro-

cesses in geoscience. Once the algorithm is applied to viscous necking during slab detachment

unsing a significantly simplified model configuration to identify and quantify the first order 3-D

deformation processes during slab detachment. In contrast, the numerical algorithm is used to

study the effect of initially laterally varying geometry on folding and basement-cover deforma-

tion during the compression of a sediment filled half graben. These simulations are applied to

the formation of the Morcles and Doldenhorn nappes in western Switzerland. For the third ap-

plication of the algortithm to the formation of the Rawil depression in the Helvetic nappe system

in western Switzerland we use a simple model configuration to study the first order impact of an

oblique graben (representing a weak zone) on the updomung of the basement during shortening

and perpedicular extension. Therefore, these simulations combine folding with perpendicular

necking.

1.1. Geological overview on the Helvetic nappe

system

The study area is located at the border between the canton of Bern and Vallais in the Swiss

Alps. In this region the Helvetic nappesystem is made up of different nappes which lie on top

of each other. The lowermost nappes in the Helvetic nappe stack are autochthonous and paraau-

tochthonous. In the western part of the study area this lowermost nappe is the Morcles nappe

wheareas in the eastern part it is the Doldenhorn nappe. On top of the Morcles nappe in the west

follow the Diablerets nappe, the Mt. Gond nappe and the Sublage nappe. The estern equivalents

are the Jägerchrüz nappe, the Gellihorn nappe and the Wildhorn nappe. Figure 1.1 shows two

cross sections through the Helvetic nappe stack in the Western Swiss Alps and a 3-D block dia-
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gram of the geometry around the Rawil depression. The cross section through the western part of

the study area showing the Morcles nappe and the overlying Diablerets nappe, Mt. Gond nappe

and the Sublage nappe was reproduced after Escher et al. (1993) (Fig. 1.1a). The cross section

through the area on the east side of the Rawil depression displaying the Doldenhorn nappe as

well as the overlying Jägerchrüz nappe, Gellihorn nappe and Wildhorn nappe was reproduced af-

ter Kirschner et al. (1999) (Fig. 1.1b) and the block diagram showing the 3-D geometry around

the Rawil depression was reproduced after Ramsay (1981) (Fig. 1.1c). The Helvetic nappes

consit of sediments which are generally a repetition of limestones, marls, shales and sandstones.

These sediments were deposited from late Triassic to Early Oligocene at the European margin

north of the Valais domain (Furrer, 1938; Ramsay, 1989; Escher et al., 1993; Pfiffner, 1993). Af-

ter the last sedimentation the Helvetic nappes were formed due to compression by folding and

overthrusting. The Morcles nappe represents a typical fold nappe with a prominent overturned

limb (Fig. 4.1a). Fold nappes are recumbent folds with amplitudes usually exceeding 10 km,

and they have been formed presumably by ductile shearing (Bauville et al., 2013; Dietrich and

Casey, 1989; Epard and Escher, 1996; Ramsay et al., 1983). Fold nappes often exhibit a constant

sense of shearing and a non-linear increase of shear strain from their normal to their overturned

limb which has been observed across the Morcles nappe (Ramsay, 1981). The Morcles fold

nappe and the Doldenhorn nappe are mainly the result of layer parallel compression and shear-

ing (Ramsay, 1981). During this compression the massive limestone were more competent than

the surrounding marls and shales. This led to the buckling characteristics of the Morcles nappe,

especially in the north-dipping normal limb (Fig. 1.1a). The Doldenhorn nappe shows only

a minor overturned fold limb and significantely more localized deformation at it’s base (Steck

et al., 1999). A possible explanation for this higher deformation at the base of the Doldenhorn

nappe is that the weak basal sediments in the half graben forming now the Doldenhorn nappe

have been thinner than the sediments of the Morcles nappe (Pfiffner, 2011).

The Morcles nappe is geologically separated from the Doldenhorn nappe by the Rawil depres-

sion (Fig. 1.1c). The Rawil or Wildstrubel depression is characterized by an opposite plunge

of the fold axis in the Helvetic nappe stack and was first described by Argand (1902-1911) and

Heim (1921). The fold axis of the Morcles nappe in the west of the Rawil depression plunges to

the ENE whereas the fold axis of the Doldenhorn nappe plunges to the WSW.
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Figure 1.1: a) Cross section in the western part showing the Morcles nappe as well as the overlying

Diablerets nappe, Mt. Gond nappe and Sublage nappe (reproduced after Escher et al., 1993). b) Cross

section in the eastern part of the study area shows the Doldenhorn nappe as well as the overlying Dia-

blerets nappe and Wildorn nappe (reproduced after Kirschner at al., 1999). c) Schematic 3-D geometry

of the axial Rawil depression between the Morcles nappe in the west and the Doldenhorn nappe in the

east (reproduced after Ramsay, 1981).

3



INTRODUCTION 1.1. GEOLOGICAL OVERVIEW ON THE HELVETIC NAPPE SYSTEM

Figure 1.2 shows the isohypses of the crystalline basement in the region of the Central Alps

(Pfiffner, 2009). The Rawil depression separates the Aiguilles Rouges and Mt. Blanc massifs in

the west for the Aar and Gotthard massifs in the east. The amplitude of the crystalline massif

culminations reaches up to 5 km. The two pairs of basement massifs are arranged en échelon

(Dietrich, 1989; Pfiffner et al., 1997; Pfiffner, 2009).

Figure 1.2: Isohypses of the crystalline basement topography in the region of the Central Alps showing

the Aiguilles Rouges / Mt. Blanc and Aar massif culminations as well as the Rawil depression.From

Pfiffner, 2009.

Due to continuous compression the Helvetic nappe stack was folded and updomed after the

nappe stacking (Lugeon, 1914-1918; Masson et al., 1980; Ramsay, 1981; Ramsay et al., 1983;

Burkhard, 1988; Ramsay, 1989; Herwegh and Pfiffner, 2005) which led to the exhumation of the

external massifs. In the Rawil depression the Helvetic nappe stack is overprinted by a dextral

transtension zone (Lugeon, 1914-1918; Ramsay et al., 1983; Ramsay, 1989; Burkhard, 1988;

Dietrich, 1989; Gasser and Mancktelow, 2010). In the deepest part of the depression, where the

highest nappes of the Helvetic nappe stack are preserved, oblique normal faults with significant
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displacement are observed (Gasser and Mancktelow, 2010). In this area ductile folding led to

the axial depression as well as the dipping of the fold nappe axis and brittle faulting led to

the normal faults. This documents the evolution from ductile to brittle deformation during the

exhumation and cooling. The normal faults in the Rawil depression suggest that there is orogen

parallel extension whereas the exhumation of the external massifs took place due to orogen

perpendicular compression.

The Rawil depression has been explained with different tectonic scenarios. For example, ac-

cording to Burkhard (1988) the Aiguilles Rouges massif and the Aar massif were updomed and

exhumed on oblique thrusts in the underlying basement. The Rawil depression formed due to

a dextral offset in the thrust plane in the crystalline basement. In contrast, Dietrich (1989) and

Ramsay (1989) suggested that the Rawil depression formed due to changing thrusting directions.

The change in thrusting direction from top to the N to top to the W in the early to late stages of

the Alpine collision led to significant fold axis parallel extension and the formation of the axial

Rawil depression as well as the culmination of the Aiguilles Rouges and Aar massifs.

1.2. Modelling in geoscience

1.2.1. Analogue modelling

Dynamic modelling in geoscience started with analogue models in the early 19th century. Prob-

ably the first analogue model was presented by Sir James Hall who modeld folds which are

observed in geological strata (Hall, 1815). In the first experiment he used different pieces of

cloth of different fabric (e.g. linen and wool) to model the geological layers. The layers were

loaded with a flat door and two other boards were applied to the sides. These two boards on

the sides were then forced towards each other to generate layer parallel shortening and folding

in the cloth layers. Another experiment was built using beds of clay in a box. The layers were

then subjected to compression with movable ends which were driven by screw jacks. This is ba-

sically the same model configuration which is used today for fold and thrust experiments. After

these pioneering experiments several other modellers followed and used analogue experiments

to study fractures, thrusts, folds, pinch-and-swell structures, boudins and salt domes (Daubree,

1878; Favre, 1878; Cadell, 1890; Willis, 1893; Escher and Kuenen, 1929; Ramberg, 1955). The
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analogue models became a quantitative technique when Hubbert (1937) provided a well-founded

scaling theory. In the 1980’s realistic models were built using different types of materials (vis-

cous and brittle) to simulate crustal and lithosphere scale processes (Faugere and Brun, 1984;

Davy and Cobbold, 1988).

One of the limitations of analogue models is the reproducibility and the elaborateness. Further,

it is difficult to measure the deformation, deformation rates and stresses in 3-D.

1.2.2. Computational science, geodynamics and numerical

methods

The development of the theory of numerical methods and techniques which were designed by

matematicians (numerical mathematics) is closely related to the development of computers it-

self. The use of mathematics in the field of geodynamics started with simple analytical models

to explain the first order behaviour of the Earth as well as plate tectonics. In order to get more

realistic models scientists started to develop numerical simulations. The first 2-D model for a

downgoing slab was presented in 1970 (Minear and Toksoz, 1970). Other 2-D models, devel-

oped to simulate mantle convection, salt domes and continental collision followed (Torrance and

Turcotte, 1971; Berner et al., 1972; Woidt, 1978; Daigneres et al., 1978; Bird, 1978). Since then,

there was a large improval of computational power and numerical methods. The first 3-D models

were designed for mantle convection in the 80’s (Baumgardner, 1985; Houseman, 1988). The

numerical modelling community in geodynamics has been improving very rapidely and vari-

ous numerical techniques have been presented for various applications. These studies include

2-D models (Weinberg and Schmeling, 1992; Fullsack, 1995; van Keken et al., 1997; Schmal-

holz et al., 2001; Babeyko et al., 2002; Gerya and Yuen, 2003; Moresi et al., 2003; Gerya and

Yuen, 2007) as well as a few studies using 3-D models (Kaus and Podlatchikov, 2001; Kaus and

Schmalholz, 2006; Moresi et al., 2007; Popov and Sobolev, 2008; Lechmann et al., 2011; Thieu-

lot, 2011; Grasemann and Schmalholz, 2012). Recently, two books came out about numerical

modelling in geodynamics (Gerya, 2010; Ismail-Zadeh and Tackley, 2010).

In this thesis we use the Finite Element (FE) Method to simulate large strain deformation of

power-law visco-elastic material. The finite element (FE) method is a numerical technique to

solve partial differential equations. The first Book dealing with the finite element method was
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publisched in 1967 (Zienkewicz and Cheung, 1967). The research and field of applications ex-

panded and therefore many developments occurred since then. The finite element (FE) method

is based on continuum mechanics which deals with the motion of materials which are modeled

as continuous mass, i.e. materials which fill the space continuously. The concepts of contin-

uum mechanics is highly suited to model geological processes because geo-materials can often

be approximated by fluids with certain material properties (Turcotte and Schubert, 2002). The

motion of the deformable materials is described by basic physical equations as the conservation

of mass, the conservation of linear momentum (i.e. force balance), the conservation of angular

momentum, the conservation of energy and the rheological equations (i.e. constitutive equa-

tions). The rheological equations describe the behaviour of the material under a certain stress

and therfore for example relate the stress with the strain rate. The mentioned equations provide a

closed system of equations which means that there are as many equations as unknown variables

(i.e. velocity, pressure, temperature,...).

1.3. Motivation and open questions

There exist a few tectonic models for the formation of fold nappes (e.g. Ramsay et al. (1983)

or Gillcrist et al. (1987)). Ramsay et al. (1983) presented a model where the movement of

each Helvetic nappe between its roof thrust and its basal floor thrust led to the simple shear

deformation within the fold nappes (Fig. 1.3). According to them the nappes formed during the

overthrusting on thrust ramps (Fig. 1.3a). During the simple shear deformation competent rock

units which are oblique to the shearing are compressed and folded, especially in the frontal part

of the nappes (Fig. 1.3b and c). The amount of simple shear deformation increases towards the

base of the fold nappe where the layers become intensively elongated and thinned.
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Figure 1.3: Model for for the formation of the Morcles and Diablerets fold nappes presented by Ramsay

et al. (1983).

Based on this model by Ramsay et al. (1983) Dietrich and Casey (1989) presented a tectonic

model using large and small scale geometrical information of the Helvetic nappes. They used

accurate profiles as well as the strain states and the metamorphism of the nappes. The model

presented for the Diablerets nappe is based on the finite element method and uses a combination

of simple shear and pure shear. The initial model configuration consits of an oblique layer of

Urgonian limestone in a shear zone. The results obtained by Dietrich and Casey (1989) are

shown in figure 1.4.
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Figure 1.4: Model for for the formation of the Diablerets nappe presented by Dietrich and Casey (1989).

Another model presented by Gillcrist et al. (1987) describes the formation of the Helvetic fold

nappes as basin inversions where sediment filled half grabens are compressed. Figure 1.5 shows

a schematic scetch of the basement where first a graben is formed due to extension and after the

basement is folded and overtrusted due to cmpression.

Figure 1.5: Basin inversion model presented by Gillcrist et al. (1987).
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Figure 1.6 shows the evolution of the Morcles nappe suggested by Gillcrist et al. (1987). The half

graben is filled with Jurassic to Cretaceous sediments. The competent sedimentary layers are

folded and sheared over the basement due to overall compression (Fig. 1.6b). Further shortening

and the development of a thrust emplaced the fold on the Aiguilles-Rouges massif (Fig 1.6c).

Figure 1.6: Evolution of the Morcles fold nappe suggested by Gillcrist et al. (1987). a) Geometry before

thrust deformation. b) and c) Stages of thrust inversion.
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The geometry and structures around the Rawil depression are well documented and described in

detail (Argand, 1902-1911; Heim, 1921; Ramsay, 1981, 1989; Gasser and Mancktelow, 2010;

Cardello, 2013). There are also few conceptual and kinematic models (e.g. Burkhard (1988)).

The model presented by Burkhard (1988) assumes a curved thrust ramp in the basement which

led to the the depression in the overthrusted Helvetic nappes (Fig. 1.7). In contrast, Dietrich

(1989) and Ramsay (1989) suggested that the Rawil depression formed due to changing thrusting

directions. The change in thrusting direction from top to the N to top to the W in the early to late

stages of the Alpine collision led to significant fold axis parallel extension and the formation of

the axial Rawil depression as well as the culmination of the Aiguilles Rouges and Aar massifs.

Figure 1.7: Model for the Rawil depression presented by Burkhard (1988). In order to have a good

overviwe the upper part is lifted to see the structure of the basement below. The model assumes a curved

thrust ramp in the basement which led to the depression in the basement and the Helvetic nappes above.

However, there are still no 3-D numerical studies which investigate the fundamental dynamics

of the formation of the large-scale 3-D structure including the Morcles and Doldenhorn nappes
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and the related Rawil depression. Such studies require a numerical algorithm that can accurately

track material interfaces for large differences in material properties (e.g. between limestone and

shale) and for large deformations. Further, the numerical algorithm should be able to accurately

resolve geometrical instabilities, especially at the beginning of the deformation.

1.4. Thesis Organization

We use the Finite Element (FE) Method to simulate large strain deformation of power-law visco-

elastic material. The simulations are applied to the formation of tectonic fold nappes as the

Morcles and Doldenhorn nappe and the later formation of the Rawil depression as well as the

simulation of 3-D necking during viscous slab detachment.

The numerical algorithm is described in chapter 2 which was submitted to Geochemistry, Geo-

physics, Geosystems. The 3-D algorithm PINK-3D is realized in Matlab (TheMathWorks) and

a large part of it was written during this doctoral thesis. We present the numerical algorithm

based on the finite element method (FEM) and apply it to investigate the 3-D large strain evolu-

tion of hydrodynamic instabilities, such as folding and necking. Simulating these instabilities,

that are caused by sharp contrasts in mechanical strength, requires a numerical algorithm that

can accurately resolve the initial low-amplitude material interfaces between model units with

different strength (e.g. representing limestone and shale), and that can also accurately follow

these interfaces during large strain deformation. Therefore, our FE code PINK-3D combines a

deformable Lagrangian mesh with a contour-line technique in 3-D (i.e. material interfaces) and

re-meshing. The algorithm is designed to simulate continuous 3-D deformation and employs a

power-law viscoelastic rheology. The 3-D FE code is tested with various analytical solutions

for the low-amplitude growth rates of folding, necking and Rayleigh-Taylor instabilities, and for

stress fields around circular inclusions. The code is further applied to 3-D viscoelastic folding,

to power-law viscous necking during slab detachment and to fold nappe formation with laterally

varying initial geometry.

In chapter 3 we show the results of a few simulations of viscous necking during 3-D slab detach-

ment, one of them with laterally varying initial geometry and compare the results with the 1-D

analytical solution as well as with 2-D numerical results (Schmalholz, 2011). This chapter was

written in collaboration with Thibault Duretz and is published in Geophysical Research Letters
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(von Tscharner et al., 2014). Here, we study an idealized slab detachment configuration that

focuses on the necking instability of lithospheric plates subjected to gravity. This study builds

upon the 1-D and 2-D studies of Schmalholz (2011) and Duretz et al. (2012). Our aim is to

better understand the deformation patterns that arise during purely mechanical 3-D necking, and

to quantify the 3-D necking during slab detachment.

In the last chapter 4 we apply the 3-D algorithm PINK-3D to the formation of fold nappes

and to the formation of the Rawil depression. Simulating fold nappes, we go into the todays

geometrical and structural differences between the Morcles nappe in the western part of the study

area and the more eastern Doldenhorn nappe. The differences are explained with the different

thickness of the weak basal sediments deposited in the half grabens forming now the Morcles

and Doldenhorn nappes. The formation of the Rawil depression which is believed to take place

after the formation of the Helvetic nappe system is simulated using another model configuration

which consist of orogen parallel extension and orogen perpendicular compression. The corogen

perpendicular compression leads to the updoming of the external massifs whereas the orogen

parallel extesion leads to the formation of the axial Rawil depression. During the formation of

the Rawil depression a graben which initially cuts through the basement acts as a weak zone.

1.5. Related work

This thesis is part of a research project on the formation of fold nappes and the related Rawil

depression in Western Switzerland. The aims of this research project are to improove the un-

derstanding of (1) the dynamics of fold nappes in general and (2) the tectonic evolution of the

fold nappes in the Western Swiss Alps. As a part of this research project Bauville et al. (2013)

presented a one demensional thermo-meshanical shear zone model applied to the Morcles fold

nappe. The one dimensional shear zone model which considers a dislocation creep flow law

with temperature dependent viscosity is further applied to several kilometer-sclae shear zones

worldwide in Bauville and Schmalholz (2013).
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2 A 3-D Lagrangian finite element algorithm with

re-meshing for simulating large-strain hydrodynamic

instabilities in power-law viscoelastic fluids

Abstract

We present a three-dimensional (3-D) numerical algorithm (PINK-3D) that is based on the finite

element method. The algorithm is designed to simulate hydrodynamic instabilities in power-

law viscoelastic fluids under gravity. These instabilities are caused by large and sharp con-

trasts in mechanical strength and/or density between different materials (e.g. folding, necking or

Rayleigh-Taylor diapirism). The instabilities are controlled by the geometry of the material in-

terfaces and the related intra-layer stress distribution when amplitudes of the material interfaces

are still low. The presented algorithm combines a deformable Lagrangian mesh with re-meshing

in order to accurately simulate the low-amplitude stages of the emerging instabilities, and also

to simulate the large strain evolution of the structures emerging from these instabilities. The re-

meshing is based on material interfaces that accurately track the boundaries between materials

with strongly varying material properties (e.g. effective viscosity or power-law stress exponent).

We describe here the main technical details of the 3-D algorithm. The accuracy of the 3-D

algorithm is demonstrated with comparisons between the numerical results and 2-D and 3-D

analytical solutions for folding, necking, Rayleigh-Taylor diapirism and circular inclusions in

viscous medium. We also benchmark the 3-D algorithm with results of a different 2-D finite

element algorithm to test the accuracy of the large strain results with re-meshing. Furthermore,

two tests are presented that show the accuracy of the viscoelasticity implementation. PINK-3D

is also used to study 3-D necking applied to lithospheric slab detachment, and 2-D and 3-D

folding applied to fold nappe formation. In particular, we apply the 3-D code to quantify and

visualize the evolution of the 3-D finite strain ellipsoid for the developing 3-D structures.
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3-D FE ALGORITHM 2.1. INTRODUCTION

2.1. Introduction

Many geological structures such as folds, boudins, mullions or domes which formed during the

deformation of the Earth′s crust and lithosphere have been caused by a contrast in mechanical

strength and/or density between rock units (Johnson and Fletcher, 1994; Pollard and Fletcher,

2005; Ramsay, 1967). Therefore, these structures are often the result of a hydrodynamic insta-

bility, such as folding (buckling), necking or Rayleigh-Taylor diapirism (Pollard and Fletcher,

2005; Turcotte and Schubert, 2002). Many of these structures occur from the centimeter to the

kilometer scale, and the related dominantly ductile deformation processes have a strong impact

on the formation of, for example, fold-and-thrust belts, mountain ranges, extensional sedimen-

tary basins or detached lithospheric slabs. Hence, a thorough quantitative understanding of the

above mentioned instabilities is essential to better understand geodynamic processes.

The hydrodynamic instabilities that cause the above mentioned structures are relatively well

studied theoretically with analytical and numerical methods in two dimensions (2-D) (Biot,

1961; Fletcher, 1974; Smith, 1977; Schmalholz et al., 2008). For example, the mathematical

analysis of low-amplitude Rayleigh-Taylor, necking and folding instabilities yields the growth

rates of the amplitudes of sinusoidal (geometrical) perturbations on the material interfaces.

These growth rates depend on the ratio of perturbation wavelength to layer thickness (i.e. ge-

ometry) and on the ratio of effective viscosities and densities (i.e. material properties) (Fletcher,

1974; Smith, 1977; Turcotte and Schubert, 2002). The strongest amplification of the interface

occurs for a specific perturbation wavelength that is often termed the dominant wavelength (Biot,

1961). Structures that result from hydrodynamic instabilities are strongly controlled by this dom-

inant wavelength. Analytical dominant wavelength solutions exist for various instabilities in 2-D

and also in 3-D (Fletcher, 1991, 1995; Gosh, 1970; Kaus and Schmalholz, 2006; Muhlhaus et al.,

1998). Several studies showed that the deformation process is sensitive to the initial geometrical

perturbation of the material interfaces and the related intra-layer stress distribution, and also that

numerical solutions agree with analytical solutions only when the initial perturbation is small

and well resolved numerically (Mancktelow, 1999; Schmalholz et al., 2008). Generally, the

analytical solutions are valid only for small amplitudes of the interface perturbations. Some ap-

proximate analytical solutions exist that are valid also for, for example, finite amplitude folding

in 2-D (Adamuszek et al., 2013; Schmalholz and Podladchikov, 2000; Schmalholz, 2006) and

3-D (Kaus and Schmalholz, 2006), or for finite amplitude necking in 2-D (Schmalholz et al.,
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2008; Schmalholz, 2011). However, all the analytical solutions are valid only for relatively

simple model configurations. Therefore, numerical solutions are essential to study the large

amplitude (or large-strain) evolution of mechanical instabilities, and also to study the evolution

of instabilities for more complex deformation scenarios (e.g. lateral fold propagation in 3-D;

Grasemann and Schmalholz (2012); Schmid et al. (2008)). A thorough understanding of the

large strain evolution of mechanical instabilities in rock is important, for example, to estimate

the flow laws and material properties of rocks from the geometry of observed rock structures,

such as folds and mullions (sometimes referred to as palaeo-rheology estimation; Kenis et al.

(2004); Schmalholz and Podladchikov (2001)). Furthermore, accurate predictions of the finite

strain, stress and pressure distribution on deformed material interfaces in 3-D are essential to

quantify, for example, the fluid transfer between rock units or the fracture patterns in deformed

rock units (Reber et al., 2010).

Diffferent numerical methods applied for geodynamic modelling with different rheologies have

been presented in the last decades. These studies include 2-D models (Weinberg and Schmel-

ing, 1992; Fullsack, 1995; van Keken et al., 1997; Schmalholz et al., 2001; Babeyko et al., 2002;

Gerya and Yuen, 2003; Moresi et al., 2003; Gerya and Yuen, 2007) as well as 3-D models (Tack-

ley et al., 1993; Moresi et al., 2007; Popov and Sobolev, 2008; Lechmann et al., 2011; Thieulot,

2011). The algorithms that are presented in these studies are based on different methods such

as the marker-in-cell finite difference (FD) method (Weinberg and Schmeling, 1992; Gerya and

Yuen, 2007), an arbritrary Lagrangian Eulerian finite element method (ALE-FEM) (Fullsack,

1995; Popov and Sobolev, 2008), the finite element method with particles-in-cell (FEM-PIC)

(Moresi et al., 2003, 2007; Thielmann et al., 2014) or a combined finite difference and finite

element method (Babeyko et al., 2002).

Here, we present a numerical algorithm based on the finite element method (FEM) and apply

it to investigate the 3-D large strain evolution of hydrodynamic instabilities. Simulating these

instabilities requires a numerical algorithm that can accurately resolve the initial low-amplitude

material interfaces between model units with different strength (e.g. representing limestone

and shale), and that can also accuratley follow these interfaces during large strain deformation.

Therefore, our FE code combines a deformable Lagrangian mesh with a contour-line technique

in 3-D (i.e. material interfaces) and re-meshing. The algorithm PINK-3D is designed to simu-

late continuous 3-D deformation and employs a power-law viscoelastic rheology. The 3-D FE

code is tested with various analytical solutions for the low-amplitude growth rates of folding,
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necking and Rayleigh-Taylor instabilities, and for stress fields around circular inclusions. The

3-D code is also benchmarked with results of a different 2-D code, and tests are presented for

the elasticity implementation. The code is further applied to 3-D viscoelastic folding, to power-

law viscous necking during slab detachment and to fold nappe formation with laterally varying

initial geometry.

2.2. Governing equations

The applied mathematical model is based on continuum mechanics. We assume that the ductile

deformation of rocks can be described by the deformation of linear or power-law viscoelastic

fluids. Continuum mechanics provides a system of partial differential equations that describes

the deformation of materials. This system is solved here numerically with the FEM. The nota-

tion, meaning and units of the main quantities is given in Table 2.1. The governing equations

describing the conservation of mass (i.e. continuity equation) and the conservation of linear

momentum (i.e. force balance) for slow, incompressible flow in three dimensions with gravity

acting in the vertical z-direction are:

∂vi

∂xi

= 0 (2.1)

∂σi j

∂x j

= ρgi (2.2)

where i = 1,2,3 represent the three spatial directions, xi are the two horizontal and the vertical

Cartesian coordinates, vi are the components of the three-dimensional velocity vector, ∂/∂xi are

the partial derivatives with respect to the xi -direction, σi j are the components of the stress tensor,

ρ is the density and gi are the components of the gravitational acceleration vector (g = (0,0,g)T
;

superscript T indicates the transpose of a vector, i.e. g is a column vector). Repeated indices are

summed according to the Einstein summation convention. The total stress tensor σi j is split into

its deviatoric and mean parts:
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σi j =−pδi j + τi j (2.3)

where p = −σii/3 is the pressure (i.e. mean stress), δi j is the Kronecker delta and τi j are the

components of the deviatoric stress tensor (i.e. the stress deviation from the mean stress). The

compliance relationship for the viscous rheology is defined as:

1

2ηe f f

τi j = ε̇i j (2.4)

where ηe f f is the effective viscosity and ε̇i j are the components of the strain rate tensor:

ε̇i j =
1

2

(

∂vi

∂x j

+
∂v j

∂xi

)

(2.5)

For a power-law viscous fluid the effective viscosity is defined as:

ηe f f = ηE
1
n
−1

II (2.6)

where η is the viscosity coefficient, n is the power-law stress exponent and EII is the second

invariant of the tensor ε̇i j:

EII(ε̇i j) =

√

1

2
ε̇i jε̇i j (2.7)

Since the effective viscosity is dependent on EII and hence on vi, the rheological equation be-

comes non-linear. The non-linearity is treated with Picard-iterations which are described further

below in section 2.3.3. For the viscoelastic formulation equation (2.4) is extended with an elas-

tic part. It is assumed that the viscoelastic deformation is also incompressible. In the Maxwell

model an elastic element and a viscous element are connected in series. Therefore, the strain

rate tensor components are the sum of elastic strain rates, ε̇e
i j, and viscous strain rates, ε̇v

i j, and

the compliance relation for the viscoelastic deviatoric strain rate is:
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ε̇e
i j + ε̇v

i j =
1

2G
τ̊i j +

1

2ηe f f

τi j = ε̇i j (2.8)

where G is the elastic shear modulus and τ̊i j are the Jaumann derivatives (objective time deriva-

tive) of the deviatoric stress tensor components (see definition further below). The effective

viscosity of a power-law fluid is only dependent on viscous strain rates but not on strain rates

resulting from an elastic deformation. Therefore, to calculate the effective viscosity for a power-

law viscoelastic fluid a strain rate invariant must be used that only depends on viscous strain

rates. The effective viscosity for the viscoelastic model is hence defined different than for the

viscous model:

ηe f f = ηE
1
n
−1

IIv (2.9)

where EIIv is the second invariant of the viscous component of the strain rate tensor, that is, EIIv

is a function of ε̇i j − ε̇e
i j or ε̇v

i j. EIIv is defined as:

EIIv =
τII

2ηe f f

(2.10)

where τII is the second invariant of the deviatoric stress tensor:

τII =

√

1

2
τi jτi j (2.11)

The calculation of the stress tensor components τi j is explained further below in equation (2.18).

Since EIIv is dependent on the effective viscosity, the rheological equation is also non-linear.

This non-linearity is also treated with Picard-iterations. We used different formulas to calculate

the second invariant of the strain rate tensor (equations 2.7 and 2.10), because for the viscous

model the second invariant can be calculated directly from the resulting strain rates and it is not

necessary to calculate first the stresses. For the viscoelastic model, it is necessary to calculate

the second strain rate invariant from the stresses.

The Jaumann derivatives (e.g. Altenbach (2012)) are defined as:
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τ̊i j =
Dτi j

Dt
+ τikWk j −Wikτk j (2.12)

where D/Dt is the material derivative, t is the time and Wi j is the spin tensor:

Wi j =
1

2

(

∂vi

∂x j

− ∂v j

∂xi

)

(2.13)

For an infinitely high value for G the rheological equation (2.8) reduces to the viscous equation

(2.4) (i.e. 1/2G tends to zero). To obtain an effectively viscous behaviour for the viscoelastic

model we use values of G that are 10 orders of magnitude larger than the viscosity of the cor-

responding material. In the numerical algorithm we use an if-else-condition to run simulations

either for viscoelastic or viscous fluids. We further assume that the material parameters do not

change with time.
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Symbol Meaning Unit

σi j stress tensor components Pa

τi j, τk
i j deviatoric stress tensor components Pa

τII second invariant of deviatoric stress tensor Pa

x, x̃, xi Cartesian coordinates m

ξi local coordinates within the element m

v, vi velocity, velocity in xi-direction m.s−1

ρ density kg.m−3

g, gz gravity ms−2

ηe f f effective viscosity Pa.s

η viscosity coefficient Pa.s1/n

ε̇i j strain rate tensor components s−1

EII , EIIv second invariant of the strain rate tensor s−1

n power-law stress exponent

G elastic shear modulus Pa

τ̊i j Jaumann derivatives Pa.s−1

Ci j Jaumann correction terms due to elasticity Pa.s−1

∆t time step s

K incompressibility or penalty parameter Pa

Wi j components of the spin tensor s−1

δi j Kronecker delta

Nk
v , Nv velocity shape functions

Nk
p, Np pressure shape functions

Table 2.1: Nomenclature, notation, meaning and units of the used quantities.

2.3. Numerical Method

PINK-3D is written in MATLAB (TheMathWorks) using the FEM. The MATLAB code is avail-

able online as supplementary material. Here, we summarize the main features of the numerical

algorithm.

2.3.1. Temporal discretisation

The mass balance equation can be written as:
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∇T ·v = 0 (2.14)

where ∇ is the Nabla operator and v= (vx,vy,vz)
T is the velocity vector (the subscripts x, y and z

are used here instead of indices 1, 2 and 3, respectively). The incompressibility (i.e. conservation

of mass) is not directly implemented in the FE algorithm. The mass balance equation is modified

to:

Dp

Dt
=−K(∇T ·v) (2.15)

where K is the incompressibility or the penalty parameter. The material derivative of the pressure

is approximated with the finite difference method (FD method):

Dp

Dt
≈ pk+1 − pk

∆t
=−K(∇T ·v) (2.16)

where pk and pk+1 are the pressures for the time t and t +∆t, respectively and ∆t is the time

increment. The time in equation (2.15) and equation (2.16) is an ′′artificial time′′ used only for

preconditioning. The partial time derivative of the deviatoric stress tensor is also defined using

the FD method:

Dτi j

Dt
≈

τk+1
i j − τk

i j

∆t
(2.17)

where τk
i j and τk+1

i j are the components of the deviatoric stress tensor for the time t and t +∆t,

respectively. We use a Lagrangian method and therefore do not have to consider the advective

terms.

In order to implement the rheological equation into the algorithm, equation (2.4) and equation

(2.8) are solved for τi j. This is trivial for the power-law viscous rheology and leads to τi j =

2ηe f f ε̇i j. In the viscoelastic case we use the FD derivative approximation for Dτi j/Dt and

resolve the equation for τk+1
i j :
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τk+1
i j = 2µε̇i j +S(τk

i j −∆tCi j) (2.18)

µ =
1

1
G∆t

+ 1
ηe f f

(2.19)

S =
1

1+ G∆t
ηe f f

(2.20)

Ci j = τk
ikWk j −Wikτk

k j (2.21)

Equation (2.18) reduces to the viscous flow law when G → ∞ (µ → ηe f f and S → 0) and to the

elastic one for ηe f f → ∞ (µ → G∆t and S → 1).

2.3.2. Spatial discretisation

We use the FEM because with this method we are able to follow the initial geometrical perturba-

tions with the FE mesh. In the applied FE algorithm we use a structured hexahedral mesh with

tri-quadratic shape functions for the velocity (Q2), and piece-wise discontinous linear shape

functions for the pressure (P1) (Bathe, 1996) (see appendix 2.8). The advantage of the FEM and

the hexahedral elements is the uniform data structure and the possibility to locally generate a

finer mesh (sometimes referred to as “Swiss cross”). The derivations of the finite element dis-

cretization of the governing equations is presented in several textbooks (Bathe, 1990; Zienkewicz

and Taylor, 2000). The finite element approximation is given by:

v(x)≈ ∑
k

Nk
v (x)ṽk (2.22)

p(x)≈ ∑
k

Nk
p(x)p̃k (2.23)
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where v(x) and p(x) are the velocities and the pressure, respectively, Nk
v (x) and Nk

p(x) are the

velocity and pressure shape functions, where k is the node index and ṽk and p̃k are the velocities

and the pressure at the nodes, respectively. The shape functions are given in Bathe (1996). A

summary of the finite element discretization, the weak form, the matrix assembly and the Voigt

notation is given in appendix 2.8.

2.3.3. Non-linear solver

We introduce a penalty term in the continuity equation and solve for each time step the penalised

system by applying a Richardson iteration to the reduced velocity Schur complement system

(Dabrowski et al., 2008). For this we use an incompressibility or penalty parameter of K = 1012

Pa and an initial guess for the pressure of p0 = 0. The stopping condition is reached when the

maximum divergence of the dimensionless velocity is smaller than 10−10. The non-linearities

due to a power-law viscosity are treated with Picard iterations. For each time step the viscosities

are calculated iteratively. In the case of a viscoelastic rheology the initial guess for the stress

is τ0
i j = 0. The stopping condition is reached when the velocity error, which is defined as the

maximum relative difference between the new velocity and the velocity of the previous iteration

step, is smaller than 10−5.

The time step ∆t is chosen so that the convergence criteria is fullfilled within the first time steps

within 5 Picard iteration steps. The total number of Picard iterations is limited to 10 because

for some occasional time steps it is possible that the convergence criterion is just not reached.

The accuracy of the applied iteration scheme was tested for low-amplitude diapirism, necking,

large-strain power-law folding and slab detachment with re-meshing (see section ??).

An overview of the algorithm is given as a flow chart in the appendix (figure 2.1).

2.3.4. Interface tracking

Within our 3-D numerical model, we represent all material interfaces (e.g. between mechani-

cally strong and weak units) as iso-surfaces that are described by a set of interface points. The

interface points form a regular grid with a resolution that is 3 to 10 times higher than the one

of the FE mesh, depending on the model configuration. Interface points can be located within
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a FE and it is necessary to calculate the corresponding local coordinates. To calculate the local

coordinates of an interface point it is necessary to determine this element that contains the in-

terface point. We use a regular hexahedral FE mesh and calculate the local coordinates for each

interface point only once for the initial configuration or directly after re-meshing. For the initial

configuration or directly after re-meshing all vertical lines in the FE mesh are straight, and it is

straight forward to find the element that contains the interface point using the global coordinates

of the element nodes. The global coordinates of the interface points are known and to calculate

the local coordinates of the interface points we use the FE approximation:

x ≈ ∑
k

Nk
v (ξ )x̃ (2.24)

where x and ξ are vectors containing the global and local coordinates of the interface point,

respectively, and x̃ are the global coordinates of the elements nodes. Since we use tri-quadratic

shape functions for the velocity this is a non-linear system of equations which we solve with

Newton-Raphson iterations. Therefore, we define the following function for which we want to

find the zeros:

F(ξ ) = x−∑
k

Nk
v (ξ )x̃ (2.25)

i.e. we search for ξ such that F(ξ ) = 0. F(ξ ) can be split in three functions with respect to the

three cartesian directions in space:

F(ξ ) =







F1(ξ )

F2(ξ )

F3(ξ )






=







x−∑k Nk
v (ξ )x̃

y−∑k Nk
v (ξ )ỹ

z−∑k Nk
v (ξ )z̃






(2.26)

The Newton-Raphson iteration uses the Jacobian J of the function F(ξ ip) to iteratively find the

zeros:

ξi+1 = ξi −J−1F(ξi) (2.27)
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where i and i+1 are the iteration steps and the Jacobian is defined using the split version of the

function F(ξ ):

Ji j =
∂Fi

∂ξ j

(2.28)

where ξ j are the local coordinates of the interface point. The iteration is done until the relative

change of the local coordinates (L2-Norm)

R =
||J−1F(ξi)||2

||ξi||2
(2.29)

is smaller than 1e-3. The initial guess for the local coordinates is ξ0 = (0,0,0) which is the

center of the element.

The FE mesh is deformed during the simulations and after each time step the element nodes are

moved with the calculated velocities (explicit Euler step):

xk+1 = xk +v∆t (2.30)

where xk+1 and xk are the new and old coordinates of the element nodes, respectively, and k

and k+ 1 are the time steps. The global coordinates of the interface points can be determined

by the element shape functions using equation (2.24). There is hence no need to interpolate the

velocities to the interface points in order to move the material interfaces. The global coordinates

of the interface points are updated during the Lagrangian deformation of the FE mesh whereas

the local coordinates remain constant (see Poliakov and Podladchikov (1992) for details). The

interface points are "frozen" within the deforming elements. During the simulations it was not

necessary to resample the material interfaces.
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2.3.5. Re-meshing

During the deformation the elements get distorted and thus the FE mesh quality degenerates. At

each re-meshing step a new structured FE mesh is generated. Depending on the geometry the

new mesh is generated using the material interfaces to define areas with higher resolution. In a

first step three vectors containing x-, y- and z-coordinates of the FE nodes are defined. Using

these three vectors the mesh is generated in 3-D. If we use a free surface the initial z-vector is

defined using the mean height of the model. The columns with vertical nodal coordinates are

then strechted or shortened to the actual height corresponding to each horizontal coordinate. The

new height is interpolated using the coordinates of the top surface just before the re-meshing.

The material interfaces can cross individual elements. The material phase (material properties)

for each quadrature point is defined using a self-made algorithm which finds all quadrature points

which are within the volume of a specific material phase defined by the material interfaces. The

algorithm determines all intersections of the material interface with a vertical line located at the

horizontal coordinates of the corresponding quadrature point. The material interface is defined

as a set of interface points which are initially laid out on a regular grid. Therefore, the material

interfaces can be divided in triangles connecting three neighbouring interface points. First, the

triangles are projected to the horizontal plane with z=0. Then we search for all triangles that

contain the projection of the quadrature point on the same horizontal plane. Next we deter-

mine the actual height of the determined triangle at the horizontal position of the corresponding

quadrature point. We are hence able to determine whether the quadrature point is located above

or below a triangle of the material interface and consequently whether the quadrature point is

located inside or outside the volume which is defined by a material interface. During the re-

meshing the new local coordinates of the material interfaces are determined as described in

section 2.3.4.

Initially, the faces of the FEs conform to the initial material interfaces (whenever possible) and

can hence resolve accurately any small intial geometrical perturbation on the material interfaces.

However, once re-meshing has occurred the material interfaces will intersect the FEs. This

intersection leads to a sharp contrast in material properties inside these elements (Fig. 2.1).

The FE algorithm PINK-3D hence combines a numerical contour-line technique in 3-D and a

deformable Lagrangian mesh with re-meshing, similar to the 2-D FE code described by Poliakov

and Podladchikov (1992). After the re-meshing the FE mesh is deformed again in a Lagrangian
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way until the next re-meshing. An inclusion test described in a following section shows that the

nodal velocities are accurate also when material interfaces cross the FE. Therefore, the element

nodes (and hence the material interfaces) are moved with accurate velocities during the entire

large strain deformation. We did not use a specific metric to determine if re-meshing is necessary

for all the different simulations. Each simulation was run from the beginning until the time step

for which the mesh became too distorted (i.e. the solver would crash). This number of time steps

(different for the different simulations) was then chosen as the constant re-meshing interval.

Further, we did not yet implement an interpolation of the stored elastic stresses between the old

and new meshes. Therefore, the viscoelastic simulations were used without re-meshing. In the

case of single-layer folding it was possible to run the simulations without re-meshing up to very

high amplitudes where the limbs of the single-layer fold are almost vertical and parallel (see

section 2.5.1).

Figure 2.1: 2-D sketch of a nine-node finite element with nine integration points. a) undeformed reference

geometry in local coordinate system (ξ and η) and deformed geometry in global ccordinate system (x

and y). Local coordinates are also displayed. A material interface with contour points crosses the element

and separates the integration points which belong to material phase 1 from the integration points which

belong to material phase 2. During the deformation the contour points on the material interface keep their

local coordinates and are deformed accurately together with the element.

2.4. Benchmark

The 3-D numerical algorithm PINK-3D has been tested with 2-D analytical solutions for

Rayleigh-Taylor diapirism, folding and necking of power-law viscous layers, and with 3-D ana-
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lytical solutions for folding and Rayleigh-Taylor diapirism in linear viscous (Newtonian) fluids.

The results from the 3-D code have also been compared with the 2-D analytical solution for a

viscous inclusion under pure shear for the case of material interfaces that cross a rectangular FE

mesh (referred to here as viscous inclusion test). Furthermore, results from the 3-D code have

been compared with results from 2-D FE simulations for large strain Rayleigh-Taylor diapirism

and power-law viscous folding to test the re-meshing technique during large strain deformation

(referred to here as re-meshing test). In the following sections we only present the results for

the viscous inclusion and the re-meshing test, and all other test results and the applied analytical

solutions are described in appendix 2.9.

2.4.1. Viscous inclusion test - convergence test

In order to test the numerical results for a material interface that crosses through individual rect-

angular FEs we use the analytical solution for a two-dimensional viscous inclusion under pure

shear (Schmid, 2003). A similar inclusion test is presented by ?. The inclusion has a linear vis-

cosity that is 1000 times larger than the linear viscosity of the surrounding matrix. The results

are presented in figures 2.2-2.4, where we show the spatial distribution of numerically calcu-

lated pressure and velocity magnitudes (Fig. 2.2a and b), the spatial distribution of the error in

pressure and velocity magnitudes on the integration points and on the nodal points, respectively

(Fig. 2.2c and d). The total error in pressure and velocity magnitudes integrated over the whole

model domain versus the nodal FE resolution and the number of integration points per element

is displayed in figure 2.3. The matrial interfaces that cross FEs are responsible for numerical

errors in the pressure and velocity magnitude. However, the numerical solutions for the velocity

magnitude and pressure are relatively smooth, and the total error in pressure and velocity mag-

nitudes (etot
p and etot

v , see Appendix 2.9 for the definition) decreases with increasing numerical

resolution (Fig. 2.3a and b). In a log-log plot the pressure error decreases with increasing res-

olution with a slope of approximately 0.5, and the velocity error with a slope of approximately

2. If the viscosity structure is smooth, or discontinuous but aligned with the element faces, the

theoretical lower bounds on the order of accuracy (in the L2 norm) are 2 and 3 for the pressure

error and the velocity error, respectively (Elman et al., 2005). Our results are consistent with

previous numerical simulations which utilised FEs that possessed discontinuous inter-element

viscosity structures (Kronbichler et al., 2012; Thielmann et al., 2014). Increasing the number of

integration points per element (higher order quadrature) causes a slightly larger error in pressure
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and velocity magnitudes (Fig. 2.3c and d). The likely reason for this error increase is that nu-

merical Gauss quadrature assumes that the function to integrate is a polynomial, and therefore

higher order quadrature tries to fit a higher order polynomial through the discontinuous function

across the material interface. However, discontinuous functions are not accurately described by

high order polynomials (e.g. Gibbs phenomena). Hence, increasing the polynomial order will

increase the interpolation error as the polynomials at the discontinuity tend to overshoot and un-

dershoot the correct function (Fig. 2.4). Therefore, the slightly larger errors due to using higher

order quadrature are expected. Increasing the number of integration points in the elements does

hence not increase the accuracy of the numerical solution, but could be of interest to spatially

better resolve and visualize the velocity and pressure field around the interface.
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Figure 2.2: Results for a viscous inclusion in a viscous matrix under pure shear. The origin of the circular

inclusion with a radius of r = 0.5 is located at (0,0). We use dimensionless viscosities of η1 = 103 and

η2 = 1 for the inclusion and the surrounding material, respectively. a) and b) Spatial pressure and velocity

distribution within and around the viscous inclusion. c) and d) Spatial distribution of the error in pressure

and velocity, respectively.
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Figure 2.3: Convergence test for a viscous inclusion in a viscous matrix under pure shear. Integrated

error in pressure and velocity over the model domain versus the nodal FE resolution (a and b) and versus

the number of integration points per element (c and d). We us either 27 = 33, 125 = 53 or 343 = 73

integration points.

Figure 2.4 shows the pressure and the velocity magnitudes along a section through the inclusion

model using different numbers of integration points per element. The pressure shows a sharp dis-

continuity at the inclusion boundary. The numerical results deviate from the analytical solution
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where the higher order quadrature shows a higher divergence around the pressure discontinuity.

In contrast, the total velocity is smooth, accurate and independent on the number of quadrature

points per element.

Figure 2.4: Pressure and velocity along a section through the inclusion model for y = 0 for the analytical

solution and the 3-D results using different numbers of integration points per element.

2.4.2. Re-meshing test

For large strain folding and diapirism the 3-D code has been benchmarked with the results of a

2-D FE code (see Burg and Schmalholz (2008); Schmalholz et al. (2008); Schmalholz (2011) for

details). For these benchmarks the 3-D code was applied with only one FE in the third, lateral

direction (i.e. orthogonal to the coordinate directions of the 2-D simulation). For Rayleigh-

Taylor diapirism and single-layer folding 2-D and 3-D cylindrical simulations were performed

with the same initial geometry, material parameters and boundary conditions, but with different

re-meshing scenarios (Table 4.1). For example, for the first simulation of the Rayleigh-Taylor

diapirism (RT_01) the first re-meshing was performed after 40 time steps and after that at every

tenth time step.
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Rayleigh-Taylor instability

simulation first re-meshing re-meshing step

RT_01 40 10

RT_02 20 10

RT_03 3 3

RT_04 1 1

Power-law single-layer folding

simulation first re-meshing re-meshing step

SF_01 20 10

SF_03 3 3

SF_04 1 1

Table 2.2: Re-meshing parameters used in the high-amplitude simulations in order to compare 2-D results

with our 3-D FE code with re-meshing.

Therefore, the simulation is Lagrangian with a deforming mesh until the 40th time step, at

which the re-meshing generates a new rectangular mesh in which the material interface crosses

individual FEs. Figure 2.5 shows the amplitude to wavelength ratio, A/λ , calculated for the

2-D and 3-D numerical results versus the time steps for power-law viscous single-layer folding

and Rayleigh-Taylor diapirism. In the case of single-layer folding we used an initial effective

viscosity contrast of R = ηL/ηM = 100, and power-law stress exponents of nL = 5 and nM = 3

for the layer and matrix, respectively. The dimensionless initial perturbation amplitude is A0 =

0.04, the dimensionless layer thickness is H = 1 (with the dimensional layer thickness being the

characteristic length scale), the dimensionless model width is λ = 11.8 (dominant wavelength)

and the total dimensionless model height is HModel = 11. The boundary conditions are free slip

for the left and bottom boundary (x = 0, z = 0), pure shear shortening for the right boundary (x =

λ ) and the top boundary (z = HModel) is a free surface. For the non-dimensionalization the layer

thickness H, the matrix viscosity ηM and the background strain rate were taken as characteristic

length, viscosity and strain rate, respectively. For the Rayleigh-Taylor instability we used a

density difference of ∆ρ = ρ2 −ρ1 = 1000, a contrast of linear viscosities of R = η2/η1 = 10,

an initial perturbation amplitude of A0 = 0.005, a layer thickness of H = 1, a total model height

of 2H = 2 and a model width of λ = 2.56 (dominant wavelength). The boundary conditions are

free slip for the vertical boundaries (x = 0, x= λ ) and no slip for the horizontal boundaries (z

= 0, z = 2H). For the non-dimensionalization we used the layer thickness H and the viscosity

η1 as characteristic length and viscosity. The model configuration and the material properties
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are shown in the appendix in figure 2.1a and 2.1b for the Rayleigh-Taylor instability and for

the single-layer folding, respectively. The numerical resolution (number of elements in every

direction) used for the 3-D cylindrical simulations in the re-meshing test was 24×1×28 and

37×1×28 for the single-layer folding and the Rayleigh-Taylor instability, respectively. In both

cases the solid black lines represent the 2-D solution whereas the different markers represent the

3-D results with different re-meshing scenarios (Fig. 2.5). The black markers denote the time

step where the re-meshing was performed.

Figure 2.5: Finite amplitude results of the two-dimensional and different three-dimensional FE simula-

tions for cylindrical Rayleigh-Taylor diapirism (a) and cylindrical single layer folding (b). In both cases

the solid black lines represent the 2-D solution whereas the different markers represent the 3-D results.

The black markers denote the time step where the re-meshing was performed.

If the first re-meshing in the 3-D simulations is performed too early, then the error (deviation of

3-D from 2-D solution) becomes larger, especially, in the case of the Rayleigh-Taylor diapirism.

However, this error is highly dependent on the initial perturbation amplitude, the resolution of

the FE mesh and the time step. Therefore, it is very important to carefully choose the time step of

the first re-meshing. The first re-meshing should be generally performed when the exponential

amplification starts to slow down, but before the FE mesh becomes unsatisfactory. In other

words, the first re-meshing should be done as late as possible. If the re-meshing is performed
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after each time step the method would be similar to the FEM using a particle-in-cell scheme

(FE-PIC, for example Thielmann et al. (2014)).

2.5. Simulations

2.5.1. Single-layer viscoelastic folding

Folds are common structures in the Earth′s deformed lithosphere and occur from the millime-

ter (crenulation cleavage) to the hundreds of kilometer (lithospheric folds) scale. Folds usually

result from a layer-parallel compression of a mechanically layered system for a variety of rhe-

ologies (e.g. linear viscous, power-law viscous, elastic or viscoelastic)(Biot, 1961; Fletcher,

1974; Schmalholz and Podladchikov, 1999; Smith, 1977). Viscoelasticity is likely important

during the folding of the continental and oceanic crust (McAdoo and Sandwell, 1985; Schmal-

holz and Podladchikov, 2001; Schmalholz et al., 2002). Schmalholz and Podladchikov (1999)

showed that the dominant wavelength ratio Rλ = λdv/λde controls viscoelastic folding, where

λdv = 6−1/3(ηL/ηM)1/3 and λde = (GL/P0)
1/2 are the viscous and elastic dominant wavelength,

respectively. ηL, ηM, GL and P0 are the viscosity of the layer, the viscosity of the matrix, the

shear modulus of the layer and the layer parallel stress, respectively. There is a transition from

viscous to elastic dominated folding around Rλ = 1.

To test the algorithm PINK-3D for 3-D viscoelastic folding we use a 3-D model configura-

tion with an initial sinusoidal perturbation as described for the folding benchmark in appendix

2.9. All model dimensions and material parameters are given in dimensionless numbers, where

the non-dimensionalization was done using the layer thickness H, the matrix viscosity ηM and

the background strain rate as characteristic length, viscosity and strain rate, respectively. Two

simulations were performed: One for viscous folding with ηL = 500 and ηM = 1, and one for

viscoelastic folding using a dominant wavelength ratio of Rλ = 1 (viscoelastic layer in viscous

matrix) with ηL = 500, ηM = 1, GL = 8220 and GM = 1010. The boundary conditions are pure

shear shortening in the two horizontal directions (x- and y- direction) and pure shear extension

in the vertical direction (z-direction) with a strain rate ratio of Rε̇ = ε̇x/ε̇z = 0.75. The model

domain is given by Ω = [0,14]× [0,27]× [0,21], the layer thickness is H = 1 and the layer is

vertically located in the middle of the model as shown in appendix 2.9 figure 2.1 e. The value
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for GM is chosen unrealistically high to make the viscoelastic matrix effectively viscous. The

results of these simulations using a numerical resolution of 14× 27× 26 are shown in figure

2.6.

Figure 2.6: Results for 3-D single-layer folding. a) to d) show results for a viscoelastic layer and e) to h)

for a linear viscous layer (see text for details) for different amounts of bulk shortening in the x-direction

(numbers in %). The color indicates the second invariant of the stress tensor of the layer on the top layer

interface. The stress is normalized by the product of the matrix viscosity ηM and the background strain

rate ε̇B.

The colors on the layer surface for 3.7, 8.5, 29 and 44% bulk shortening in the x-direction in-

dicate the dimensionless second invariant of the deviatoric stress tensor. Both simulations were

performed using a Lagrangian FE mesh without re-meshing. The second invariant of the stress

tensor is plotted on the layer interface by using the interpolation points which lie inside the layer

just below the interface. In both cases the stresses within the single-layer are smooth. For vis-

coelastic single-layer folding a stress build up occurs during the inital stages of folding whereas

the viscous layer exhibits the viscous stress from the onset of the deformation. To quantify

the deformation we show in figure 2.7 the finite strain and the normalized strain rate invariant

(EII/ε̇B) on the layer surface for 8.6, 29, 45 and 59% bulk shortening in the x-direction. The col-

ors on the material interface indicate the dimensionless second invariant of the strain rate tensor.

The circles have an initial dimensionless diameter of d/H = 1 and are deformed using interpo-
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lated nodal velocities. These deformed circles allow us to visualize the directions of maximum

extension and shortening on the deformed surface. The correct implementation of elasticity has

been successfully tested by two benchmarks which are described in the appendix.

Figure 2.7: Deformed circles on the layer-matrix interface for 8.6, 29, 45 and 59% bulk shortening in

x-direction for a viscoelastic layer in a viscous matrix. The initial circles are deformed using interpolated

nodal velocities. The color on the material interface indicates the dimensionless second invariant of the

strain rate tensor.

2.5.2. Necking during slab detachment

Necking occurs when a stiff layer with non-linear viscous rheology and its weak matrix are

extended in layer-parallel direction or shortened in layer-normal direction (Kidan and Cosgrove,

1996; Ramberg, 1955; Smith, 1977). Various geological structures on different scales are likely

(at least to some extent) the result of necking (e.g. pinch-and-swell structure, extensional basins,

detached/thinned slabs) (Heuret and Lallemand, 2005; Schmalholz, 2011; Tamaki and Honza,

1991). A necking instability occurs only in layers that exhibit a non-linear viscous rheology, for

example power-law viscous (Smith, 1977).

As an example for necking we show cylindrical and full 3-D simulations for detaching slabs.

Slab detachment implies that the negative bouyancy of a subducting slab can be sufficiently

large to trigger the detachment of slab portions and has been the focus of few numerical studies

(Burkett and Billen, 2011; Capitanio and Replumaz, 2013; van Hunen and Allen, 2011; von

Tscharner et al., 2014).
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We present here 2-D (cylindrical 3-D) and 3-D simulations for the necking of a detaching slab.

Cylindrical necking of a detaching slab

To test the accuracy of the 3-D algorithm PINK-3D, a 3-D cylindrical simulation with only one

element in the lateral direction was performed and compared with the results of a 2-D simu-

lation (Schmalholz, 2011). The results of the 2-D simulations have been successfully bench-

marked with results of several other algorithms (Thieulot et al., 2014). The model domain is a

rectangular box and consists of a vertically oriented rectangular layer (mimicking the slab) of

power-law viscous fluid which is attached to an overlying horizontal layer with identical ma-

terial properties (mimicking the non-subducted lithosphere). The rest of the model is filled by

linear viscous fluid (mimicking the mantle). The boundary conditions are free slip at all bound-

aries. The model configuration used for the cylindrical slab detachment simulations is given in

Schmalholz (2011). We use a density difference of ∆ρ = 150 kg.m−3, a viscosity coefficient of

ηs
0 = 2.37×1011 Pa.s1/n and a power-law stress exponent of ns = 4 for the slab and a viscosity

coefficient of ηm
0 = 1021 Pa.s and a power-law stress exponent of nm = 1 (i.e. linear viscous

flow) for the mantle. The model dimensions are given by 500km x 35km x 670km. The layer

thickness is 80 km. The numerical resolution for the cylindrical 3-D simulation was 19 x 1 x 31

where the mesh is horizontally and vertically finer around the detaching slab (ca. 4.5km around

the slab and 17.5 km node spacing elsewhere). The resolution in x- and y- direction is the same

as we use for the full 3-D simulations. The geometric evolution and the distribution of effective

viscosity for the 2-D and cylindrical 3-D results are given in figure 2.8. The effective viscosity

distribution and the slab geometry agree between the 2-D and cylindrical 3-D simulations. In

Figure 2.9 we also compare the evolution of minimal slab thickness and maximal slab length

with time, and the results of the 2-D and 3-D algorithms also agree. Therefore, the applied 3-D

resolution is sufficient to yield accurate results.
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Figure 2.8: Comparison of the results of a 2-D simulation (a-d) with the results of a lower-resolution 3-D

cylindrical simulation (e-h) for different times (in Ma). For both models we use a density difference of

∆ρ = 150kg.m−1, a viscosity coefficient of η0 = 2.37×1011Pa.s1/n and a power-law stress exponent of

n = 4 for the layer, a viscosity coefficient of η0 = 1021Pa.s and a power-law stress exponent of n = 1 (i.e.

linear viscous flow) for the matrix. The colors show the distribution of the effective viscosity log10ηe f f

in Pas. 2-D and 3-D results agree well.
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Figure 2.9: Comparison of the time evolution of a) the dimensionless slab thickness and b) the dimen-

sionless slab length resulting from a 2-D simulation and from a 3-D cylindrical simulation. The slab

thickness, D, and slab length, L, are normalized by their initial values (D0 and L0, respectively).

3-D necking of a detaching slab

For the 3-D simulation the dimensions of the model box are 250 km x 280 km x 670 km. The

overlying lithosphere has a thickness of 80 km whereas the slab has a thickness of 40 km in x-

and y-direction assuming that only one symmetric quarter of the 3-D simulation is considered

whereby the symmetry planes are perpendicular to the x- and y-direction and cut the slab in

four identical parts (i.e. true slab thickness ist 80 km in both horizontal directions). The slab

has an initial length of 187.5 km. We use a density difference of ∆ρ = 150 kg.m−3, a viscosity

coefficient of ηs
0 = 2.37× 1011 Pa.s1/n and a power-law stress exponent of ns = 4 for the layer

and a viscosity coefficient of ηm
0 = 1021 Pa.s and a power-law stress exponent of nm = 1 (i.e.

linear viscous flow) for the matrix.

Figure 2.10 shows the 3-D geometric evolution where the colors on the material interface indi-

cate the effective viscosity within the slab. The thinning is localized at the top of the slab due

to the occurance of a necking instability in both horizontal directions. The effective viscosity of

the slab is reduced the strongest where it is thinned.
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Figure 2.10: Evolution of the 3-D geometry of a detaching slab after 1.5, 5.55, 9.45 and 13.5 Ma. The

colors on the slab surface indicate the effective viscosity of the slab at its surface.

Figure 2.11 shows the distribution of the second invariant of strain rate tensor on the material

interface after 1.5, 5.55, 9.45 and 13.5 Ma in time as well as deformed circles with an initial

diameter of d = 12 km. The circles where deformed using interpolated nodal velocities.

Figure 2.11: Evolution of the 3-D geometry of a detaching slab after 1.5, 5.55, 9.45 and 13.5 Ma. The

colors on the slab suface indicate the second invariant of the strain rate tensor. The deformed circles

on the slab surface indicate finite strain. The circles had initially a diameter of 12 km and have been

deformed with the interpolated nodal velocities.
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2.5.3. Fold nappe formation

Fold nappes are recumbent folds with amplitudes usually exceeding 10 km, and they have been

formed presumably by ductile shearing (Bauville et al., 2013; Dietrich and Casey, 1989; Epard

and Escher, 1996; Ramsay et al., 1983). Fold nappes often exhibit a constant sense of shearing

and a non-linear increase of shear strain from their normal to their overturned limb. The Mor-

cles nappe is a typical fold nappe, and is located in the Helvetic nappe system of the Western

Swiss Alps. The Morcles nappe is a result of layer-parallel contraction and shearing (Ramsay,

1981). It has been deformed together with its underlying crystalline basement (the Mont Blanc

massif). The cristalline basement also exhibits a significant amount of ductile deformation (Es-

cher et al., 1993). The sediments forming the Morcles nappes can be to first order seperated

into mechanically strong carbonates and mechanically weak shale-rich units (Pfiffner, 1993).

Several geological studies suggest that the sediments that now form the Morcles nappe have

been deposited during the Mesozoic in a half graben that was generated due to extension dur-

ing the formation of the Alpine Tethys (Epard, 1990). During the compression and shortening

the massive limestones were folded, which generated buckle-folds in the limestones especially

in the normal limb. During the shortening the basement deformed to a large extent by ductile

deformation and formed a mullion structure.

The Morcles nappe in the western part of Switzerland is tectonically seperated by the Rawil

depression from the more eastern Doldenhorn nappe, which is also a fold nappe but with signif-

icantly more localized deformation at it′s base (Steck et al., 1999). A possible explanation for

this stronger localization is that the weak basal sediments in the half graben deposits forming

now the Doldenhorn nappe have been thinner than the sediments in the half graben deposits

forming the Morcles nappe (Pfiffner, 2011). There are (to the best of our knowledge) no 3-D

numerical simulations that investigated the dynamics of fold nappe formation and combined

basement-cover deformation with a laterally varying half graben thickness. We study first the

formation of fold nappes during half graben shortening with a 3-D cylindrical simulation and

then with a 3-D simulation with laterally varying half graben thickness.
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Cylindrical fold nappe formation

All geometrical and material parameters are given in dimensionless numbers using the thickness

of the competent sedimentary layers H, the matrix viscosity ηM and background strain rate ε̇B

as characteristic parameters. The model configuration for the cylindrical simulation consists of

a half graben that is formed by material with a viscosity of ηB = 200 and a power-law stress

exponent of n = 1 which mimics the basement. The half graben is filled with layers of different

effective viscosity which mimic the sediments. The competent layers have a viscosity coefficient

of ηL = 100 and a power-law stress exponent of nL = 3. The surrounding material (matrix) has

a viscosity of ηM = 1 and a power-law stress exponent of nM = 3. The mechanically strong

and weak layers represent limestones and shales, respectively. The model box has an initial

length of Lx = 100 and a total height of HModel = 17 whereas the thickness of each of the

competent sedimentary layers is H = 1 and the maximal thickness of the half graben is D = 4.

The cylindrical model consists of only one element in the third direction that is parallel to the

cylindrical axis. The boundary conditions are free slip on the bottom, the left, the front and the

back boundary (z = 0, x = 0, y = 0, y = Ly, where Ly is the model width in y-direction). Boundary

velocities are prescribed at the right boundary (x = Lx) and at the top boundary (z = HModel)

to generate horizontal pure shear shortening and vertical extension. The layers are initially

perfectly horizontal and folding initiates around the contact between layers and basement. With

our numerical method we can accurately follow the layer geometry with the Lagrangian mesh

during the initial stages of folding. This is important because during this initial stage the folding

instability is strongest and the fold wavelength is selected. In contrast, the material interface

that defines the bottom of the half graben crosses the individual finite elements because this

interface does not develop an instability (Fig. 2.12a and c). The re-meshing is perfomed as soon

as the fold amplitude of the competent sedimentary layer has significantly grown. Figure 2.12

shows the distribution of effective viscosity and the FE mesh (elements) for two simulations

with different numerical resolution for the last time step before re-meshing (Fig. 2.12a and c)

and the first time step after re-meshing (Fig. 2.12b and d). The numerical resolution is 62 x 1

x 22 and 180 x 1 x 37 for the low and high resolution simulation, respectively. The resolution

is locally increased in x- direction around the contact point of the competent sedimentary layers

with the basement and in z-direction around the competent layers to accurately resolve the initial

folding process. The distribution of the effective viscosity in the layer for the time step before

re-meshing is smooth and indicates the hinges and limbs of the developing folds, that is, the fold
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wavelength has been selected. For the time step after re-meshing the low resolution simulation

shows a less smooth viscosity distribution, especially inside the competent sedimentary layers

(Fig. 2.12b).

Figure 2.12: Numerical results of two 3-D cylindrical simulations for the fold nappe model configuration

(see text) before and after re-meshing. The two layers have a power-law viscous rheology. The colors

indicate the distribution of the dimensionless effective viscosity. A zoom into the FE mesh and into the

effective viscosity distribution is displayed for two simulations with different resolution (a and c). The

results are displayed for each simulation just before re-meshing (a and c) and directly after re-meshing (b

and d).

Figure 2.13 shows the geometrical evolution of the fold nappe for 13, 22 and 49 % bulk short-

ening. The colors indicate the distribution of the second invariant of stress tensor that is given

in dimensionless form and has been normalized by the product of the matrix viscosity ηM and

the background strain rate ε̇B. Figure 2.13d sshows a zoom of the fold nappe geometry after

49% bulk shortening and the direction of the longest axis of the finite strain ellipsoids (which

is frequently similar to the orientation of the schistosity). Due to the layer parallel compression

51



3-D FE ALGORITHM 2.5. SIMULATIONS

the competent sedimentary layers are first buckled and then sheared over the basement to from

a recumbent fold nappe with an overturned limb.

Figure 2.13: Geometrical evolution for large-strain fold nappe formation for 13, 22 and 49% bulk short-

ening (a-c). Results have been calculated with the 3-D code with only one FE in the third dimension. The

colors indicate the second invariant of the stress tensor (normalized by the product of matrix viscosity

ηM and background strain rate ε̇B). The competent sedimentary layers are first buckeled and then sheared

over the basement to form a recumbent fold nappe. d) Zoom into the fold nappe geometry after 49% bulk

shortening. The black lines indicate the direction (not magnitude) of the longest axis of the finite strain

ellipsoid.
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Fold nappe formation with laterally varying half graben thickness

In order to study fold nappe formation with laterally varying half graben thickness, a 3-D model

was configured in which the thickness of the competent layers is constant laterally, but the thick-

ness of the weak sediments below the layers was varying laterally. This configuration represents

sedimentary layers that rest in a half graben with laterally varying total thickness. The dimen-

sionless size of the model box is 100 x 75 x 25 where the thickness of one competent layer is 1.

The dimensionless viscosity of the basement, the competent layers and the matrix are ηB = 200,

ηL = 100 and ηM = 1, respectively. All materials are characterized by linear viscous flow (n =

1). The half graben depth varies from 3.2 to 12.8. The boundary conditions generate shortening

in the x-direction, extension in the z-direction and no deformation in the y-direction. Free slip

applies to all boundaries that do not move. The numerical resolution is initially 38 x 47 x 10

where the FE mesh is locally refined around the point of contact between the basement and the

competent sedimentary layers and the deepest point of the half graben in x-direction and around

the competent layers in z-direction. Similar as for the cylindrical simulations we follow the ini-

tial layer geometry with the FE mesh to accurately resolve the low amplitude folding, whereas

the material interface between the basement and the matrix crosses individual elements. The

results are given in figure 2.14 where the colors on the sides represent the second invariant of

stress tensor for the basement and the competent layers and the finite strain is visualised by the

blue ellipsoids for the top competent layer for 31% and 44% shortening in x-direction. The finite

strain ellipsoids display the strain field and are calculated from the numerically computed veloc-

ity field using a tensor for the incremental deformation gradient and the Cauchy-Green tensor

to determine the principal strain axes as described for the 2-D case by Frehner and Schmalholz

(2006). For both amounts of shortening three different views of the model are given. The whole

model is shown in figure 2.14a and d, in the subplots b and e the model was cut perpendicular

to the y-direction at y = 30 and for the subplots c and f the model was cut perpendicular to the

x-direction at x = 39 and was rotated. During the shortening in the x-direction the competent

sedimentary layers are sheared over the basement and form a fold nappe with an overturned limb

and a high amplitude where the initial half graben was initially deepest. Towards the shallower

half graben the fold amplitude decreases. In the same time as the formation of the fold takes

place the material interface between the basement and the matrix forms a cusbate-lobate struc-

ture (mullion). The stress in the basement is highest where the tip of the cuspate-lobate structure

is located.
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Figure 2.14: Results for the 3-D fold nappe simulation for 31% shortening in x-direction (a-c) and 44%

shortening in x-direction (d-f). The fold nappe geometry, the finite strain ellipsoides and the second stress

invariant, τII , within the basement and the sedimentary layers are represented by the grey surface, the

blue ellipsoides and the colors, respectively. τII is normalized by the product of matrix viscosity ηM and

background strain rate ε̇B. Subplots a) and d) show the full model whereas the subplots b) and e), and c)

and f) represent the model which is cut perpendicular to the x- and y-direction, respectively.
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Figure 2.15 shows deformed circles on the layer-matrix and basement-matrix interface after 54%

bulk shortening in x-direction. The circles have an initial dimensionless diameter of d/H = 2

and are deformed using interpolated nodal velocities. The colors indicate the dimensionless

topography of the material interfaces. Figure 2.15 shows a significant lateral variation in geom-

etry and strain that is caused by the initial lateral variation of the half graben thickness. The fold

axis of the fold nappe is not horizontal and straight, but undulates and also plunges towards the

side with the initially shallower half graben because there the topography of the fold nappe is

smaller.

Figure 2.15: Deformed circles on the layer-matrix and basement-matrix interface indicate finite strain

after 54% bulk shortening of the fold nappe simulation. The initial circles have been deformed with the

interpolated nodal velocities. The colors on the material interface indicate the dimensionless topography

of the material interfaces (normalised by layer thickness H).
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2.6. Discussion

We showed that the presented algorithm PINK-3D with a deformable Lagrangian mesh can

accurately resolve small geometrical perturbations on material interfaces and reproduce the ana-

lytical solutions for several hydrodynamic instabilities (appendix Fig 2.2 and 2.3). Furthermore,

during large strain deformation the coordinates of the material interface that cross individual

elements are deformed together with the deforming Lagrangian FE mesh, and the material in-

terface deformation is therefore consistent with the applied numerical FE aproximation. It is

hence not necessary to interpolate nodal velocities on the interface coordinates in order to ad-

vect the interface coordinates. Moreover, the velocities around material interfaces with strongly

varying viscosities are accurate also if the interfaces cross individual finite elements (Fig. 2.3).

Because of the before mentioned features, the presented numerical algorithm is suitable to sim-

ulate structures that emerge from hydrodynamic instabilities, and also to model the large strain

deformation of these structures. During the low-amplitude stages of the instability the material

interfaces are accurately resolved and followed by a Lagrangian FE mesh, because during the

low-amplitude stage the deformation is most sensitive to the interface geometry and intra-layer

stress distribution. The high-amplitude stages are less sensitive to interface geometry and large

strain deformation is simulated with re-meshing. The numerical movement of the material inter-

face and nodal coordinates can be made more accurate, if higher order time integration schemes

are applied, such as Runge-Kutta.

With PINK-3D it is possible to use model configurations in which some material interfaces

cross individual elements of the initial FE mesh whereas other material interfaces follow exactly

the initial FE mesh. This feature is useful for the presented fold nappe simulations in which the

more stable basement-sediment interface was crossing individual elements and the unstable (due

to buckling) layer boundaries followed exactly the FE mesh in order to accurately resolve the

initial stages of buckling (Fig. 2.14).

The re-meshing test which was performed with different re-meshing scenarios for Rayleigh-

Taylor diapirism and power-law viscous single-layer folding has shown the importance of an

initial Lagrangian mesh to accurately follow the initial geometrical perturbations on the material

interfaces. The test further shows the importance of the choice for the first re-meshing time step

that should be performed not until the amplitude of the material interface is significant, that is,

not until the wavelength of the emerging structure has been selected (Fig. 2.5). Our method
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is suitable to model the low-amplitude instabilities accurately and the resolution required for a

certain accuracy is presumably considerably smaller than the required resolution for an Eulerian

FEM in combination with a particle-in-cell scheme (FE-PIC) (Moresi et al., 2007; Thielmann

et al., 2014).

The presented 3-D results show that the applied algorithm yields smooth stress fields in folded

material for viscous and viscoelastic fluids (Fig. 2.6). Furthermore, the algorithm provides

smooth viscosity fields within a material after several re-meshing steps (Fig. 2.8). Hence, the

presented algorithm PINK-3D is useful, if certain quantities such as stress, strain or viscosity

have to be calculated on deformed 3-D surfaces.

Since PINK-3D is written in Matlab (i.e. the algorithm is not in parallel) other numerical al-

gorithms may be much faster. Therefore, it may be of interest to translate the presented FE

algorithm to an other programming language as for example C++ or Fortran. Until now, we

did not implement any interpolation of the stored elastic stress between the old and new mesh.

Therefore, the elastic or viscoelastic model can currently only be used without re-meshing.

The numerical algorithm is currently not optimised for memory usage and computational speed.

The advantage of the algorithm is that it can be run on a standard workstation with MATLAB

without the need of installing any additional libraries. Installing the MATLAB-related suit-

sparse package (http://faculty.cse.tamu.edu/davis/suitesparse.html) allows using several faster

functions (e.g. sparse or cholmod). The MATLAB-based code PINK-3D is available online as

supplementary material. The available code is configured to calculate the growth rate for 3-D

single-layer folding (see appendix B, Fig. 2.3).

2.7. Conclusions

The presented 3-D FE algorithm PINK-3D combines a deformable Lagrangian mesh and a mate-

rial interface technique with re-meshing, and can handle a power-law viscoelastic rheology. The

algorithm is suitable to model structures that emerge due to hydrodynamic instabilities caused

by large and sharp contrasts in mechanical strength and density between different rock units.

The Lagrangian formulation is suitable to accurately resolve the small geometrical perturbations
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of the material interfaces that control the instabilities, and the re-meshing is suitable to simulate

the large-strain evolution of the structures which emerge from these instabilities.

The code has been successfully tested with various 2-D and 3-D analytical solutions for hydro-

dynamical instabilities such as 2-D Rayleigh-Taylor diapirism, power-law viscous single-layer

folding and necking, 3-D Rayleigh Taylor diapirism and 3-D single-layer folding. A compari-

son with a 2-D analytical solution for a compressed viscous inclusion shows that the numerical

velocities are accurate also for the case when material interfaces cross individual elements. The

comparison also showed that increasing the number of integration points in elements that are

crossed by a material interface does not increase the numerical accuracy.

The presented algorithm PINK-3D is especially suitable to exactly follow material interfaces

in 3-D for large strains, because (i) the interface-points on the material interface are accurately

moved together with the deforming Lagrangian finite element mesh, and (ii) the numerically

calculated velocities are accurate also for elements that include integration points with strongly

varying material properties, that is, for elements that are crossed by material interfaces after

re-meshing.

The 3-D code is particularly useful to quantify and visualize quantities such as stress, strain rate,

effective viscosity or finite strain on deformed material interfaces. Finite strain can be visualised

either by finite strain ellipsoids or by passively deformed initial circles on the material interfaces.

Such quantification of finite strain is useful to better understand the 3-D evolution of processes

such as necking and folding which control to a large extend the evolution of geodynamic pro-

cesses such as slab detachment or fold nappe formation. In nature, these processes often exhibit

a significant 3-D deformation and the resulting structures often exhibit a complicated 3-D ge-

ometry. Hence, 3-D numerical models are required to better understand these processes and

interpret the observed 3-D data and geometry.

2.8. Appendix A: Numerical methodology

The governing equations are rearranged using some suitable organized matrices and vectors:

∇T ·v = 0 (2.31)
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BT τk+1 = FG (2.32)

τk+1 =−pm+Dε̇ +S(τk +∆tC) (2.33)

ε̇ = Bv (2.34)

where τk, τk+1, ∇, v, ε̇ and C are vectors containing the components of the symmetric deviatoric

stress tensor from the old and current time step (indicated by k and k+ 1), the Nabla operator,

the velocity vector, a vector containing the components of the symmetric strain rate tensor and

a vector containing the Jaumann correction terms. τk, ∇, v, ε̇ , m, FG, B, D and C are defined

using the Voigt notation as:
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


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B =























∂
∂x

0 0

0 ∂
∂y

0

0 0 ∂
∂ z

∂
∂y

∂
∂x

0

0 ∂
∂ z

∂
∂y

∂
∂ z

0 ∂
∂x























,D = ηe f f























4
3

−2
3

−2
3

0 0 0
−2
3

4
3

−2
3

0 0 0
−2
3

−2
3

4
3

0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1























,C =























Cxx

Cyy

Czz

Cxy

Cyz

Cxz























(2.36)

59



3-D FE ALGORITHM 2.8. APPENDIX A: NUMERICAL METHODOLOGY

Combining the equations (2.31) to (2.34) the stress and strain rate vector can be eliminated. This

leads to the mixed velocity-pressure formulation for power-law viscoelastic flow:

BT DBv+BT Sτk −BT S∆tC−BT mp = FG (2.37)

The incompressibility is not directly implemented in the finite element code. Therefore, the

incompressibility equation or mass balance equation is changed to:

Dp

Dt
=

pk+1 − pk

∆t
=−K(∇T ·v) (2.38)

assuming a compressible material and a converging solution towards an incompressible ma-

terial. The incompressibility is reintroduced into the model during the Richardson iterations.

Therefore, we end up with four equations to solve for four unknowns (three components of the

velocity vector and the pressure). Now the equations are discretized using the FE method and

27-node hexahedral Q2P1 elements with linear discontinuous shape functions for pressure and

quadratic shape functions for velocities (Bathe, 1996).

In the first step of the discretization of equation (2.37) the velocity shape functions are applied

as weighting functions (Galerkin approach). At the same time the integration over the whole FE

is carried out to get the weighted residual formulation:

∫

Ω
NT

v BT DBvdV −
∫

Ω
NT

v BT mpk+1dV =
∫

Ω
NT

v FGdV −
∫

Ω
NT

v BT SτkdV +
∫

Ω
NT

v BT S∆tCdV

(2.39)

At this point the physical values v and pk+1 are approximated within the FEs. The FE approxi-

mation which is given in equation (2.22) and equation (2.23) can be written using vectors:

v = Nvṽ (2.40)
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pk+1 = Npp̃k+1 (2.41)

where Nv and Np are vectors containg the velocity and pressure shape functions, respectively,

ṽ = (vx1,vy1,vz1,vx2,vy2, ...vz27)
T contains the velocities at each of the 27 nodes of the element

and p̃k+1 = (p1, p2, p3, p4)
T contains the pressure value as well as three slopes of the linear

dependency on the position in tree dimensional space. Nv and Np are defined as:

Nv =







Nv1 0 0 Nv2 0 0 ... Nv27 0 0

0 Nv1 0 0 Nv2 0 ... 0 Nv27 0

0 0 Nv1 0 0 Nv2 ... 0 0 Nv27






(2.42)

Np =
[

Np1 Np2 Np3 Np4

]

(2.43)

The finite element approximation is subsituted in equation (2.39), where the vectors ṽ and

p̃k+1 are not incorporated into the integration because they are independent on the x-, y- and

z-position:

∫

Ω
NT

v BT DBNvdV ṽ−
∫

Ω
NT

v BT mNpdV p̃k+1 =
∫

Ω
NT

v FGdV −
∫

Ω
NT

v BT SτkdV +
∫

Ω
NT

v BT S∆tCdV

(2.44)

This can be written as:

∫

Ω
B̃T DB̃dV ṽ−

∫

Ω
B̃T mNpdV p̃k+1 =

∫

Ω
NT

v FGdV −
∫

Ω
B̃T SτkdV +

∫

Ω
B̃T S∆tCdV (2.45)

where B̃ = BNv and B̃T = NT
v BT .

The same discretisation can be done for the incompressibility equation (2.16) which is first

rearranged as:

61



3-D FE ALGORITHM 2.8. APPENDIX A: NUMERICAL METHODOLOGY

pk+1 +K∆tmT Bv = pk (2.46)

where the Nabla operator is expressed as ∇ = BT m. The pressure shape functions are applied as

weighting functions and the integration over the whole element is carried out:

∫

Ω
NT

p pk+1dV +K∆t

∫

Ω
NT

p mT BvdV =
∫

Ω
NT

p pkdV (2.47)

Now, the velocities and the pressure are approximated within the FE with the FE approxima-

tion:

∫

Ω
NT

p NpdV p̃k+1 +K∆t

∫

Ω
NT

p mT BNvdV ṽ =
∫

Ω
NT

p NpdV p̃k (2.48)

Equation (2.45) and equation (2.48) can be written in a more compact matrix notation:

[

K Q

−K∆tQT M

](

ṽ

p̃k+1

)

=

(

F̃G

Mp̃k

)

(2.49)

K =
∫

Ω
B̃T DB̃dV (2.50)

Q =−
∫

Ω
B̃T mNpdV (2.51)

M =
∫

Ω
NT

p NpdV (2.52)

F̃G =
∫

Ω
NT

v FGdV −
∫

Ω
B̃T SτkdV +

∫

Ω
B̃T S∆tCdV (2.53)
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where round brackets denote vectors containing the nodal values of the respective variables.

The integrations are performed numerically using either 27 (33), 125 (53) or 343 (73) integration

points per element. Using discontinuous pressure shape functions allows the elimination of the

pressure at the element level. The elimination leads to a system containing only the velocity

unknowns:

Lṽ = FG −Qp̃k

L = K+K∆tQM−1QT
(2.54)

The values of p̃k+1 are computed during the Richardson iteration that is applied to the reduced

velocity Schur complement system (Dabrowski et al., 2008). The Richardson iteration is the in-

nermost loop, nested within the power-law Piccard iteration loop. During the time-stepping

stress and strain rate tensor components, pressure, effective viscosities, velocities and finite

strain are calculated and saved for later visualization in the post-processing.
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Figure 2.1: Structure of the algorithm PINK-3D.

2.9. Appendix B: Benchmarks

The 3-D numerical code has been benchmarked against various 2-D and 3-D analytical solutions

and against 2-D numerical FE solutions. The 2-D FE code without gravity is described in detail
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in Schmalholz et al. (2008) and the implementation of gravity was done as described in Burg and

Schmalholz (2008). The 2-D and 3-D analytical solutions for Rayleigh-Taylor diapirism, folding

and necking yield mathematical formulas for the growth rate, α , of the amplitude of geometrical

perturbations of material interfaces. To compare the analytical growth rates with numerical

solutions, the growth rates are calculated from the numerical results using the equation:

α =
log A

A0

dt
(2.55)

where A0 and A are the initial amplitude and the numerically calculated amplitude of the nu-

merical material interface, respectively, after one numerical time step dt. To compare the 3-D

numerical results with the 2-D analytical solution and the 2-D FE solutions we use a cylindrical

model configuration with only one element in the third direction (along the cylindrical axis).

2.9.1. 2-D Rayleigh-Taylor instability

In order to check the correctness of the 3-D FE code regarding gravity, the code was tested versus

the 2-D analytical solution in Turcotte and Schubert (2002) for the amplitude growth rate of the

Rayleigh-Taylor instability. The Rayleigh-Taylor instability describes the buoyant upwelling of

relatively light material. A diapir is formed as the lighter material rises into the heavier overlying

material. The analytical growth rate is given by:

α =
∆ρgH

4η

(

λ
2πH

)2

tanh 2πH
λ − 1

sinh 2πH
λ cosh 2πH

λ

λ
2πH

+ 1

sinh 2πH
λ cosh 2πH

λ

(2.56)

where λ is the wavelength of the initial sinusoidal layer perturbation, ∆ρ is the density differ-

ence, g is the gravity, b is the layer thickness and η is the viscosity. The model configuration

used for the benchmark versus the analytical solution is shown in figure 2.1a. The benchmark

was performed with a viscosity of η = 1 for both materials, a density difference of ∆ρ = 10,

a layer thickness of H = 1, an initial layer perturbation amplitude of A0 = 1.25× 10−4 and

a varying wavelength. All parameters are given in dimensionless numbers, where the non-
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dimensionalization was done taking the layer thickness H and the viscosity η as characteristic

length and viscosity, respectively.

For the comparison with the 2-D FE solution (re-meshing test) we used a viscosity contrast of

Rη = η2/η1 = 10, a density difference of ∆ρ = 1000 and a power-law stress exponent of n = 1

(i.e. linear viscous flow) for both materials. The model dimensions are given by H = 1 and

λ = 2.56 and we use an initial sinusoidal perturbation of A0 = 0.005. The boundary conditions

are free slip for all vertical boundaries and no slip for the horizontal boundaries. The model is

entirely driven by gravity. The comparison of the numerical results with the analytical solution

is given in figure 2.2a and shows a good agreement between the 3-D algorithm and the analytical

solution.

2.9.2. 2-D folding and necking

To test the 3-D FE code for instabilities in power-law viscous flow the analytical solution for 2-

D single-layer power-law folding and necking by Fletcher (1974) is used (see also Schmalholz

et al. (2008)):

α =−Sgn(D̄xx)+
2nL

(

1− 1
Rη

)

Sgn(D̄xx)

−1+Q2 ±
√

nL −1
(1+Q)2

eak−(1−Q)2
e−ak

2sinbk

(2.57)

Rη =
ηL

ηM

,q =
1

Rη

√

nL

nM

,a =

√

1− 1

nL

,k =
2πH

λ
(2.58)

Sgn(D̄xx) =

{

1 ,extension

−1 ,shortening

}

(2.59)

where ηL and ηM and nL and nM are the layer and matrix viscosity and power-law stress ex-

ponents, respectively. H is the layer thickness and λ is the wavelength of the initial sinusoidal

layer perturbation. The positive sign in the denominator applies to a pinch-and-swell perturba-

tion (necking) and the negative sign to a fold component. The equation for the analytical solution

can, therefore, be used for all single-layer instabilities (Smith, 1977).
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The model configurations used for the benchmark versus the analytical solution for folding and

necking are given in figure 2.1b and c, respectively. For the benchmark with the 2-D analytical

solution for single-layer power-law folding we use a viscosity contrast of Rη = ηL/ηM = 50

and power-law stress exponents of nL = 5 and nM = 3 for the layer and the matrix material,

respectively. The layer thickness is given by H = 1, the total model height is HModel = 23.4, the

initial layer perturbation amplitude is A0 = 0.001 and the wavelength λ is varied. The boundary

conditions are free slip for the left (x = 0) and bottom (y = 0) boundary and pure shear shortening

and pure shear extension for the right (x = λ ) and top (y = HModel) boundary, respectively (Fig.

2.1b). For the necking benchmark we use a viscosity contrast of Rη = ηL/ηM = 20 and power-

law stress exponents of nL = 10 and nM = 3 for the layer and the matrix material, respectively.

The layer thickness is given by H = 1, the total model height is HModel = 17, the initial layer

perturbation amplitude is A0 = 0.001 and the wavelength λ is varied. The boundary conditions

are free slip for the left (x = 0) and bottom (y = 0) boundary and pure shear extension and pure

shear shortening for the right (x = λ ) and top (y =HModel) boundary, respectively (Fig. 2.1c). The

benchmark results for cylindrical folding and necking versus the analytical solution are given in

figure 2.2b and c, respectively. The numerical results agree with analytical solution.

For the comparison of 3-D cylindrical single-layer folding with the 2-D FE results (re-meshing

test) we use a viscosity contrast of Rη = ηl/ηM = 100 and power-law stress exponents of nL = 5

and nM = 3 for the layer and matrix material, respectively. The layer thickness is given by H = 1,

the total model hight is HModel = 19, the initial layer perturbation amplitude is A0 = 0.05 and the

wavelength is λ = 11.8, which is the dominant wavelength for the given material parameters.
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Figure 2.1: a) Model configuration for cylindrical Rayleigh-Taylor instability. b) Model configuration

for cylindrical power-law single-layer folding. c) Model configuration for cylindrical power-law single-

layer necking. d) Model configuration for the viscous inclusion test. e) Model configuration for 3-D

single-layer folding. The boundary conditions are free slip for the x = 0, y = 0 and z = 0 boundaries

whereas we use prescribed velocities for pure shear shortening for the two vertical boundaries and pure

shear extension for the top boundary with Rε̇ = 0.75. f) Model configuration for 3-D Rayleigh-Taylor

instability. The boundary conditions are free slip for all vertical boundaries and no-silp for the top and

bottom boundary. The deformation is entirely driven by gravity.
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Figure 2.2: The dispersion relation for Rayleigh-Taylor diaprism (a), power-law single-layer folding (b)

and power-law necking (c). The dimensionless growth rate of the initial sinusoidal layer perturbation α ,

is plotted versus the ratio of wavelength to layer thickness, λ/H (see text for details). The dots have been

numerically calculated with the code PINK-3D for the cylindrical cases and agree well with the analytical

solutions (lines).

2.9.3. 3-D single-layer folding

The 3-D FE algorithm PINK-3D has been benchmarked against the 3-D analytical thick-plate

solution for single-layer folding. Fletcher (1991) showed that mechanically strong layer of thick-

ness H with a normal-mode initial perturbation of A(x,y) = ±H/2+A0 coskxxcoskyy grows

exponentially with time:

A(x,y, t) = A0eαt (2.60)

where A0 is the amplitude of the initial sinusoidal layer perturbation and α is the growth rate:

α

−ε̇z

=
q

2

(

k2
x

k2
(Rε̇ −1)−

k2
y

k2
Rε̇ −1

)

(2.61)

q =
−4(1−R−1

η )k

2k(1−R−2
η )− (1−R−1

η )2ek +(1−R−1
η )2e−k

(2.62)
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k =
√

k2
x + k2

y ,Rε̇ =
−ε̇x

ε̇z

,Rη =
ηL

ηM

(2.63)

where k is the total wave-number, kx and ky are the wave-numbers in x- and y-direction, respec-

tively, Rε̇ is the normalized strain rate of the basic-state flow in x-direction (compression positiv)

and Rη = ηL/ηM is the viscosity ratio of the layer material relative to the matrix material. The

model configuration used for the benchmark versus the 3-D analytical solution is given in figure

2.1 e. The boundary conditions are free slip for the boundaries x=0, y=0 and z=0 and prescribed

pure shear shortening in the horizontal directions for x = λx and y = λy and pure shear extension

in the vertical direction for z = HModel with Rε̇ = −ε̇x/ε̇z = 0.75. We use a viscosity contrast

of Rη = ηL/ηM = 50, a layer thickness of H = 1, a total model height of HModel = 21 and an

initial amplitude of A0 = 0.001. The wavelength in x- and y-direction λx and λy are varied. All

model parameters are given in dimensionless numbers using the layer thickness H, the matrix

viscosity ηM and the strain rate of the basic-state flow ε̇B as characteristic parameters. Figure

2.3a shows the dispersion relation for 3-D single -layer folding versus the wavelength to layer

thickness ratio in x- and y-direction. The subplots figure 2.3b and c show the dispersion relation

for a fixed wavelength to layer thickness ratio of λy/H = 27 in y-direction and λx = 13.5 in

x-direction, respectively. The numerical results agree with the analytical solution.
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Figure 2.3: (a-c) Dispersion relation for 3-D Newtonian single-layer folding (see text for details). a)

Surface plot for the 3-D analytical solution. b) Section through the 3-D solution for λy/H = 27. c) Section

through the 3-D solution for λx/H = 13.5. Analytical (lines) and numerical (PINK-3D, dots) growth rates

agree well. (d-e) Dispersion relation for 3-D Rayleigh-Taylor instability (see text for details). d) Surface

plot for the 3-D analytical solution. e) The numerical simulations were performed along a section for

λy/H = 8. Analytical (lines) and numerical (PINK-3D, dots) growth rates agree well.

2.9.4. 3-D Rayleigh-Taylor instability

Our 3-D FE algorithm PINK-3D was further tested versus an analytical solution for 3-D

Rayleigh-Taylor instability. The amplitude growth rate for a given sinusoidal initial perturbation

on the material interface can be analytically calculated using a linear stability analysis (Conrad

and Molnar, 1997; Kaus and Podlatchikov, 2001; Ribe, 1998; Turcotte and Schubert, 2002).

The initial sinusoidal layer perturbation and the analytical solution are given as follows:
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A(x,y) = A0 coskxxcoskyy (2.64)

α =
Hg∆ρ

4η

(k2 +2)e−k − e−2k −1

k(−2e−k + e−2k −1)
(2.65)

k =
√

k2
x + k2

y ,kx =
2πH

λx

,ky =
2πH

λy

(2.66)

where A0 is the initial amplitude, kx and ky are the wave number in x- and y-direction, respec-

tively, α is the analytical growth rate, H is the layer thickness. The model thickness is divided

in two by the material interface so that the total model thickness is HModel = 2H, g is the gravity,

∆ρ = ρ2 −ρ1 is the density difference between the upper and lower fluid, η is the viscosity for

both materials (iso-viscous) and λx and λy are the wavelength of the initial perturbation in x-

and y-direction, respectively. Note that the 2-D analytical solution (e.g. Turcotte and Schubert

(2002)) is included as a special case if ky = 0.

The model configuration for the 3-D Rayleigh-Taylor simulations is shown in figure 2.1f. For

the benchmark we use a density difference of ∆ρ = 10, a viscosity of η = 1 for both material,

a layer thickness of H = 1, a total model height of HModel = 2H = 2 and an initial layer per-

turbation amplitude of A0 = 0.001. All model parameters were made dimensionless using the

layer thickness H, the viscosity η and the background strain rate ε̇B as characteristic parameters.

The wavelength in x-direction is varied whereas the wavelength in y-direction λy/H = 8. The

boundary conditions are free slip for all vertical boundaries (x = 0, x = λx, y = 0 and y = λy) and

no slip for the top and bottom boundaries (z = 0 and z = HModel). The deformation is entirely

driven by gravity. Figure 2.3d shows the dispersion relation for 3-D Rayleigh-Taylor instabil-

ity. The 3-D analytical growth rate surface α is plotted versus the ratio of initial wavelength to

layer thickness in both horizontal directions, that is λx/H and λy/H. Subplot 2.3e shows the

dispersion relation for a fixed wavelength to layer thickness ratio in y-direction of λy/H = 8

which is similar to a fixed wavelength to layer thickness ratio in x-direction of λx/H = 8 due to

symmetry. The numerical results show good agreement with the analytical solution.
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2.9.5. Elasticity - elastic beam and elastic simple shear

In order to test the elasticity implementation in the 3-D FE algorithm PINK-3D, we chose two

model configurations. The first is a cylindrical elastic beam in a viscous matrix under gravity.

The model box has the dimensions of 10×0.25×10. The elastic beam which is vertically located

in the middle of the model box has a thickness of H = 1 and a length of L = 5. The viscosity

is ηm = 1 and ηb = 1013 for the matrix and the beam, respectively. The elastic shear modulus

is Gm = 1010 and Gb = 103 for the matrix and beam, respectively, and the density difference is

ρb −ρm = 300. These parameters provide a beam that is effectively elastic and a matrix that is

effectively viscous. All model dimensions and material parameters are given in dimensionless

numbers using the thickness of the beam H, the matrix viscosity and the background strain rate

as characteristic parameters. The boundary conditions are free slip for all boundaries. The

results of this simulation are shown in figure 2.4 where the colors indicate the second invariant

of the stress tensor. The elastic beam is deflected downward under vertical gravity (Fig. 2.4b).

When the gravity is turned off, the beam deflects upwards due to the stored elastic energy and

recovers the original rectangular shape which is stress free (Fig. 2.4c). A similar test is given in

Gerya (2010). The test shows the reversible elastic deformation. The elastic beam recovers its

original rectangular shape and stress state when the applied load is removed.
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Figure 2.4: Reversible deformation of an elastic beam in a viscous matrix under gravity. a) Unstressed

initial configuration (gravity off). b) Deformation of the elastic beam under gravity. c) Gravity is turned

off. d) The elastic beam recovers the original rectangular shape with zero stress. Colors indicate the

second invariant of the stress tensor τII .

The second model configuration uses a homogeneous cube with the dimensions 1×1×1 which

is deformed by simple shear. The bottom boundary is fixed (i.e. the boundary condition is no

slip), the velocities on the top surface are prescribed in x-direction to generate simple shear and

the top boundary is fixed in z-direction. The boundary conditions are free slip for two vertical

boundaries (y=0 and y=1) and the two remaining vertical boundaries (x=0 and x=1) are free.

The viscosity and the elastic shear modulus are η = 1010 and G = 1, respectively. All model

dimensions and material parameters are given in dimensionless numbers using the model length,

the elastic shear modulus and the background strain rate as characteristic parameters. The results

for two simulations, one with Jaumann correction and one without Jaumann correction, are given

in figure 2.5 where the colors indicate the second invariant of the stress tensor. The results with

the Jaumann correction show a homogeneous distribution of stress (Fig. 2.5 a-d) whereas the

distribution of the second invariant of the stress tensor is inhomogeneous without the Jaumann

correction and the simulation "crashes" for high strain (Fig. 2.5 e-h).
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Figure 2.5: Deformation of a homogeneous cube under simple shear with Jaumann correction (a-d) and

without Jaumann correction (e-h) for different amounts of bulk shear strain γ (i.e. ratio of maximal

horizontal displacement to model thickness). The colors indicate the second invariant of the stress tensor

τII . Without the Jaumann corrections, the stress distribution becomes inhomogeneous and the simulation

crashes for high strain.

2.9.6. Viscous inclusion test - convergence test

In order to test and measure the numerical properties for an Eulerian mesh (material interface

cross the individual FEs) we use the analytical solution for a 2-D viscous inclusion in pure shear

(Schmid, 2003). The model domain of the viscous inclusion test is given by Ω = [0,1]× [0,1].

The origin of the circular viscous inclusion with a radius of r = 0.5 is located at (0,0). This

means that we simulate only one quarter of the inclusion since the model is symmetric (figure

2.1d). The viscosity within the inclusion is defined as η1 = 103 whereas the viscosity of the

surrounding material is η2 = 1. Along the model boundaries we prescribe the velocities vx and

vy based on the analytical solution. All parameters are dimensionless using the viscosity of the

matrix η2, the model width W and the background strain rate ε̇B as characteristic parameters.

The model is entirely driven by the Dirichlet boundary conditions. To model the 2-D viscous

inclusion we use a 3-D model with a cylindrical model configuration and only one element in

the third direction (along the cylindrical axis). The pressure and velocity errors were computed

for each integration point using the analytical solution to verify the results of the 3-D cylindrical

simulation. To calculate the velocity and pressure errors we use L2-norms:
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ep =
∫

Ω
(p− pana)2dV (2.67)

ev =
∫

Ω
(vx − vana

x )2 +(vy − vana
y )2dV (2.68)

etot
p =

√

∑
element

ep (2.69)

etot
v =

√

∑
element

ev (2.70)

Where ep and ev are the pressure error and the velocity error integrated over the element using

the analytical pressure and velocity, pana and vana,respectively given by Schmid (2003) and etot
p

and etot
v are the total error integrated over the entire model domain. The results of the inclusion

test are shown in figures 2.2-2.4.
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3 Three-dimensional necking during viscous slab

detachment

Abstract

Key points: slab detachment, slab breakoff, 3-D mechanical modelling, subduction processes

We study the three-dimensional (3-D) deformation during detachment of a lithospheric slab

with simple numerical models using the finite element method. An initially vertical layer of

power-law viscous fluid mimics the slab, and is surrounded by a linear or power-law viscous

fluid representing asthenospheric mantle. We quantify the impact of slab size and shape (sym-

metric/asymmetric) on slab detachment, and identify two processes that control the lateral (i.e.

along trench) slab deformation: (1) the horizontal deflection of the lateral, vertical slab sides (>
100 km with velocities up to 16 mm/yr), and (2) the propagation of localized thinning (necking)

inside the slab (with velocities > 9 cm/yr). The lateral propagation velocity is approximately

constant during slab detachment. Larger slabs (here wider than approximately 300 km) detach

with rates similar to those predicted by 2-D models whereas smaller slabs detach slower. Impli-

cations for geodynamic processes and interpretations of seismic tomography are discussed.

Index terms: 8170, 8120, 8122, 8162, 4445

This chapter was published in

Geophysical Research Letters 41 (2014)

co–authored by von Tscharner M., Duretz T. and Schmalholz S. M.



3-D NECKING OF DETACHING SLABS 3.1. INTRODUCTION

3.1. Introduction

Slab detachment (or breakoff) implies that the negative buoyancy of subducting slabs can be

sufficiently large to trigger the detachment of slab portions. Detachment hence regulates the

magnitude of the slab pull force and the occurrence of such event has consequences on both

lithospheric and asthenospheric dynamics. For this reason, slab detachment has been proposed

to explain a variety of geological phenomena relative to convergent margins such as exhumation

of metamorphic rocks (Andersen et al., 1991; Kohn and Parkinson, 2002), topographic uplift

(Rogers et al., 2002; Morley and Back, 2008), variations in plate kinematics (Austermann et al.,

2011), or plutonism/volcanism (Davies and von Blanckenburg, 1995; Ferrari, 2004). The slab

detachment model entails the existence of mechanical discontinuities in subducted plates, which

was first hypothesized to explain discontinuous seismicity patterns observed within slabs (Isacks

and Molnar, 1969; Chatelain et al., 1993). Seismic tomography of the mantle allowed for the

detection of potentially detached slab fragments (Wortel and Spakman, 1992; Widiyantoro and

van der Hilst, 1996; van der Meer et al., 2010; Lippitsch et al., 2003; Replumaz et al., 2010),

and further suggested that slabs can exhibit complex deformation patterns (Sperner et al., 2001;

Rosenbaum et al., 2008; Nolet, 2009; Faccenna et al., 2011). The interpretation of tomographic

images and application of the slab detachment model to observed geological phenomena requires

a thorough understanding and quantification of three-dimensional (3-D) deformation during slab

detachment. However, 3-D slab detachment has until now be the focus of few numerical mod-

eling studies (Burkett and Billen, 2011; van Hunen and Allen, 2011; Capitanio and Replumaz,

2013; Li et al., 2013; Duretz et al., 2014), which investigated complex rheologies and initial

plate configurations. In contrast, we study here an idealized slab detachment configuration that

focuses on the necking instability of lithospheric plates subjected to gravity. This study builds

upon the 1-D and 2-D studies of Schmalholz (2011) and Duretz et al. (2012). Our aim is to

better understand the deformation patterns that arise during purely mechanical 3-D necking, and

to quantify the 3-D necking during slab detachment.

3.2. Numerical Model

The 3-D viscous flow is described by the conservation of momentum and mass for an incom-

pressible, highly viscous fluid driven by gravity (often referred to as Stokes equations). The
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flow law is either linear or power-law viscous where for the latter the effective viscosity is con-

trolled by the second invariant of the strain rate tensor and the power-law stress exponent, n

(see Schmalholz and Schmid (2012) for a 2-D version of the applied equations). The system of

governing equations is solved numerically with the finite element method (FEM). In the applied

finite element algorithm a mixed velocity-pressure formulation utilising a structured hexahedral

mesh employing tri-quadratic shape functions for velocity (Q2) and piece-wise discontinous

linear shape functions for pressure (P1) (Bathe, 1996) is used.

In the continuity equation we introduce a penalty term and solve the penalised system by apply-

ing a Richardson iteration to the reduced velocity Schur complement system (Dabrowski et al.,

2008). Non-linearities inherent to the power-law rheology are treated with Picard iterations.

The Stokes problem is solved on a structured hexahedral finite element mesh. The mesh is La-

grangian and thus the nodal coordinates are advected at each time step using the fluid velocity

(explicit Euler step). We use a deformable Lagrangian mesh because the necking instability is

strongly sensitive to small geometrical variations of the material interface (here the slab/mantle

interface) during the initial stages of necking (e.g. Schmalholz et al. (2008)), and the deformable

mesh (that initially conforms to the slab/mantle interface) can accurately follow and resolve these

small geometrical variations. Throughout the deformation of the slab, elements get distorted and

thus the mesh quality degenerates. At each re-meshing step, a new structured finite element mesh

is generated. Within our 3-D numerical model, we represent all material-interfaces (e.g. between

the mantle and the slab) with a set of marker points. The marker points are Lagrangian, and dur-

ing the deformation their coordinates are calculated with the velocity shape functions that are

used for the coordinate transformation in the isoparametric finite elements. Once re-meshing has

occurred the material interface will intersect the element interiors. We use the material-interface

to define the material phase (material properties) on each quadrature point. For a vertical line

located at the horizontal coordinates of the quadrature point we determine all intersections with

the material-interface. Using the vertical coordinates of these intersection points we are able

to determine whether the quadrature point is located inside or outside the volume which is de-

fined by the material-interface. The first re-meshing in the simulations is performed as late as

possible so that during the initial stages of the necking instability the Lagrangian mesh can ac-

curately resolve the slab/mantle interface. After the first re-meshing the following re-meshings

are performed in regular intervals.
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The model domain is a rectangular box and consists of a vertically-oriented rectangular layer

of power-law viscous fluid (the slab) which is attached to a 80 km thick horizontal layer with

identical material parameters (non-subducted lithosphere, Fig. 3.1). The rest of the model is

filled by a linear viscous or power-law viscous fluid representing surrounding asthenospheric

mantle that deforms by diffusion or dislocation creep, respectively. For the majority of the

simulations the boundary conditions are free slip on all sides. We only performed one simulation

with a free surface at the top boundary in order to investigate the impact of a free surface on the

results. The model domain is always 670 km high and 250 km wide (in direction orthogonal to

the trench, x-direction, Fig. 3.1).

The slabs are initially always 40 km thick assuming that only one symmetric half of the 3-D

simulation is modeled whereby the symmetry-plane is vertical and parallel to the longest slab

dimension (y-direction or along-trench direction, Fig.3.1), and cuts the slab in two identical

parts (i.e. true slab thickness is 80 km). Simulations with an initial slab width (along-trench

direction, y-direction, Fig. 3.1) of 80, 320 and 800 km have been performed with an initial slab

length (height) of 187.5 km (labelled sym. 80, sym. 320 and sym. 800 in Fig. 3.3). For these

simulations the mantle adjacent to the lateral slab sides was WM = 100 km on each side (Fig.

3.1). Therefore, the total width of the model box Wtot is varying. A simulation with an initial

slab width of 320 km has been also performed with a mantle width of WM = 300 km to quantify

the impact of varying mantle width on the results (labelled sym. 320 large in Fig. 3.3). Also, a

simulation with an asymmetric slab of 800 km width and a mantle width adjacent to the lateral

slab sides of WM = 100 km on each side has been performed (Fig. 3.1b).
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Figure 3.1: Symmetric (a) and asymmetric (b) model configuration. In the symmetric case we us an

initial vertical slab length of L0 = 187.5 km whereas the initial slab length for the asymmetric simulation

varies such that the total slab volume is identical to the symmetric slab with an initial slab width of W0

= 800 km. The vertical layer has a thickness of 80 km whereas the layer is vertically halved to 40 km

due to symmetry considerations. For all simulations we use a density difference of ∆ρ = 150 kg.m−3

(ρs = 3150 kg.m−3 and ρm = 3000 kg.m−3), a reference viscosity of ηs
0 = 2.37× 1011 Pa.s1/n and a

power-law stress exponent of ns = 4 for the slab and a reverence viscosity of ηm
0 = 1021 Pa.s and a power-

law stress exponent of nm = 1 (i.e. linear viscous flow) or a reverence viscosity of ηm
0 = 4.65× 1010

Pa.s1/n and a power-law stress exponent of nm = 3 for the mantle.
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The initial, different slab lengths have been chosen in such a way that the slab volume and buoy-

ancy of the symmetric slab with 800 km is identical to the one of the asymmetric slab. For the

simulation with a slab width of 80 km we use an adaptive mesh, which has a resolution (i.e.

nodal spacing) of about 3 km within the slab (x- and-z direction) and a resolution of 10 km else-

where (x-, y- and z-direction). For all other simulations we use a resolution of 4.5 km within the

slab and a resolution of 17 km elsewhere. The geometry and the material properties are given in

figure 3.1 and its caption. For all simulations we use a density difference of ∆ρ = 150 kg.m−3,

reference viscosity of ηs
0 = 2.37× 1011 Pa.s1/n and a power-law stress exponent of ns = 4 for

the slab. A reference viscosity of ηm
0 = 1021 Pa.s and a power-law stress exponent of nm = 1

(i.e. linear viscous flow) is used for the mantle. Additionally, two simulations with a power-law

viscous mantle were performed using a reference viscosity of ηm
0 = 4.65× 1010 Pa.s1/n and a

power-law stress exponent of nm = 3, where one of the simulations was performed with a free

surface (labelled sym. 320, nm = 3, sym 320 and nm = 3, free in Fig. 3.3). The viscosity formu-

lation is described in more details in Schmalholz (2011), and the resulting effective viscosities

have typical values corresponding to olivine rheology in both the lithospheric slab and the sur-

rounding mantle. In order to quantify the impact of a 3-D configuration on the deformation, we

also ran corresponding 2-D numerical simulations using the same set of model parameters (i.e.

model configuration, initial slab thickness and height, viscosity and density difference).

3.3. Results

Figure 3.2 shows the 3-D geometric evolution of an initially symmetric and asymmetric slab of

800 km width. The colors on the slab surface indicate the effective viscosity. The thinning is

localized at the top of the slab due to the occurrence of a necking instability (Schmalholz, 2011).

During the initial stages of slab detachment (Fig. 3.2e and f) thinning of the symmetric slab is

more intense in the slab center than at the lateral sides of the slab. The results also show that

there is a significant amount of lateral (horizontal, in y-direction) deflection of the two lateral

sides of the slab at the depth of most intense thinning. The asymmetric slab thinning is, as

expected, most intense at the side where the slab is initially longest, because there the negative

buoyancy is largest (Fig. 3.2a - d). The region of localized thinning (necking) is propagating

laterally inside the slab during slab detachment. Significant lateral deflection of the slab sides

also takes place for the asymmetric slab.
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Figure 3.2: The 3-D geometric evolution of an initially symmetric (a-d) and asymmetric (e-h) slab of 800

km width for different times. The colors on the slab surface indicate the effective viscosity in Pa.s.

Figure 3.3 shows results of all the performed simulations. The evolution of the slab thickness

(D) at the position of most intense thinning, the evolution of the minimal slab width (W, in

y-direction), and the evolution of the horizontal cross-sectional area (A) at the depth of most

intense thinning during slab detachment are displayed. For the symmetric simulations the min-

imum slab thickness D is measured in the middle of the slab at y =Wtot/2. For the asymmetric

simulation we measure the minimum slab thickness for three different sections perpendicular to

the y-axis, i.e. for y =Wtot/2 (asym. 800 mid) and at the short and long end of the slab (labelled

asym. 800 short and asym. 800 long, respectively).

The change of A quantifies the downward out-of-plane flow of slab material during slab detach-

ment, and also the upward flow of mantle material around the slab because the mantle material

must replace the slab material to conserve mass during the incompressible flow. In figure 3.3a-c

the quantities D, W and A are normalized by their respective initial quantities (with subscript 0),

and are plotted versus the ratio slab length to initial slab length (L/L0). The ratio L/L0 indicates

the vertical bulk slab extension. The evolution of D/D0 with increasing L/L0 is similar for all

3-D and the 2-D simulations independent of the initial slab size, slab shape, model size or the

material parameters used for the mantle (i.e. linear or power-law viscous mantle, Fig. 3.3a). In
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contrast, the evolution of W/W0 with increasing L/L0 mainly depends on the initial slab size,

whereby the decrease of W/W0 is largest for the smallest slab. Similar results are obtained for

the evolution of A/A0 where A/A0 decreases strongest for the smallest slab. In figure 3.3d-f

the dimensional quantities are plotted versus the absolute time. The evolution of D with time

is more variable for the 3-D simulations. The thinning is significantly slower at the short side

of the asymmetric slab, because the vertical buoyancy force is smallest at this side due to the

smaller initial slab length. Also, the smallest slab (80 km) thins slower than the larger slabs due

to its smaller buoyancy. However, slabs with 320 and 800 km width thin with the same rate that

is equal to the thinning rate of the corresponding 2-D simulation. The thinning is significantly

faster (i.e. 2-3 times) for the simulations with a power-law viscous mantle in agreement with

results of Schmalholz (2011). The 3-D simulations with a power-law mantle with and without

free surface thin with approximately the same rate. Also, these 3-D simulations are faster than

the corresponding 2-D simulation.
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Figure 3.3: a-c) The evolution of the slab thickness D/D0, the slab width W/W0 and the horizontal cross-

sectional area A/A0 (all at the depth of maximal thinning) are plotted versus the ratio of slab length to

initial slab length L/L0. d-f) Dimensional quantities of slab thickness D [km], slab width W0 −W [km]
and cross-sectional area A0 −A[km2] versus the absolute time [Ma].

The evolution of the absolute horizontal shortening of the slab (W0 −W ) with time is similar for

the larger slabs (800 and 320 km), slowest for the smallest slab and fastest for the simulations

with a power-law viscous mantle. For the symmetric slab of initially 320 km width the values
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of W0 −W increase slightly faster for the simulation with a larger mantle width adjacent to the

lateral slab sides, because the wider model causes a smaller shear resistance for the mantle. The

values of A0 −A quantifying the vertical out-of-plane mass flow increase fastest with time for

larger slabs. The evolution of A0−A with time is similar for the symmetric and asymmetric slab.

For the slabs of initially 320 km width the values of A0 −A increase similar independent on the

width of the mantle adjacent to the lateral slab sides.

Figure 3.4 shows the evolution of the minimum slab thickness along the slab with progressive

time for four selected simulations. The results for the initially symmetric slabs show that thin-

ning is slightly faster in the central part of the slab, and homogeneous in most parts of the slab.

Thinning is slightly slower at both lateral sides of the slabs. The velocity of the lateral deflection

(or the horizontal shortening in the along-trench direction) increases with increasing slab size,

and is in the order of ∼ 1 - 10 mm/yr. For the asymmetric slab the obliqueness of the contours of

thinning indicate the lateral propagation of thinning (necking), that is for the applied parameters

approximately 9 cm/yr. The shape of the thickness contours indicate that the velocity of necking

propagation is approximately constant during slab detachment, that is, no significant accelera-

tion or deceleration of propagation occurs. The velocity of lateral slab deflection at the longer

slab side is approximately 7 mm/yr, that is approximately one order of magnitude slower than

the lateral thinning propagation.
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Figure 3.4: Contour maps showing minimal slab thickness (D) along the slab with time for selected 3-D

simulations with a symmetric slab of 80 km width (a), 320 km width (b) and 800 km width (c), and an

asymmetric slab of 800 km width (d). The black areas represent the gap of the slab due to the lateral

(along trench) deflection (lateral shortening) during slab detachment. Velocities in mm/yr and cm/yr

indicate velocities of lateral slab deflection and lateral propagation of thinning, respectively (see text).
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3.4. Discussion

In our simulations a real detachment, that is a loss of continuity between the sinking slab and

the floating lithosphere, does not occur, because our model does not include processes that cause

discontinuities, such as fracturing. In our model the slab is effectively detached when the slab

thickness is significantly reduced (Fig. 3.3d), because most of the sinking slab is then effectively

mechanically decoupled from the lithosphere at the surface.

The evolution of necking (quantified by D/D0) with progressive vertical bulk slab extension

(quantified by L/L0) is only weakly dependent on the slab size, the slab shape (symmetric or

asymmetric), the width of the mantle adjacent to the lateral slab boundaries and the rheology of

the mantle (i.e. linear or power-law viscous, Fig. 3.3a). This independence allows predicting the

evolution of D/D0 with increasing L/L0 for many other slab configurations without performing

additional 3-D simulations (for the same material parameters). In contrast, the evolution of

thinning (D) with time is significantly different for slabs of different size, shape and mantle

rheology.

In our simulations the 3-D finite slabs that are wider than ∼300 km exhibit similar thinning

rates as the corresponding 2-D slabs for both a linear viscous and a power-law viscous mantle.

Hence, the 1-D analytical solution for slab necking (Schmalholz, 2011) can be applied at first-

order accuracy to both 2-D and 3-D slab necking (Fig. 3.3a, d).

The zone of localized thinning in the asymmetric slab propagates laterally with a constant veloc-

ity. The lateral velocities of thinning of approximately 9 cm/yr for a linear viscous mantle and

of approximately ∼ 30 cm/yr for a power-law viscous mantle are similar to rates reported by van

Hunen and Allen (2011) and Burkett and Billen (2011) who reported rates between 10 and 80

cm/yr. Such velocity is also consistent with the natural rates inferred from the Trans-Mexican

volcanic belt (10-25 cm/yr), which may reflect lateral propagation of slab detachment (Ferrari,

2004).

Complex tomographic patterns around slab edges have been imaged by seismic tomography

(Lallemand et al., 2001; Lin et al., 2004). In particular, slab gaps at slab edges have been

evidenced by several studies in the Kamchatka region (Levin et al., 2002, 2004; Jiang et al.,

2009). Our results show that such slab gaps can be the result of two processes: First, due to
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a true detachment of the slab, and second, due to the lateral deflection of the slab during the

process of slab detachment. Therefore, not every gap in a vertical section of tomographic results

around a slab edge must necessarily indicate a fully detached slab, but could also be due to a

laterally deflected slab that is still attached. Lateral deflection of a slab side can be larger than

100 km (Fig. 3.4c and d) and also affects narrow slabs. This further suggests that small slabs

can also produce "drop-like” shapes of fast seismic velocity anomalies such as observed in the

Hindukush (Koulakov and Sobolev, 2006) or the Vrancea regions (Koulakov et al., 2010).

Natural slab detachment is a complex process controlled by thermal, mechanical and chemical

processes and their coupling (e.g shear heating in Gerya et al. (2004)). Our viscous 3-D models

are significantly simplified in order (1) to identify and quantify fundamental 3-D deformation

processes during slab detachment, (2) to keep the model and the involved parameters compre-

hensible, and (3) to keep the computational costs low. More elaborated 3-D models are required

in the future to model 3-D slab detachment in more detail.

3.5. Conclusions

3-D numerical simulations were performed to quantify the 3-D deformation during the

buoyancy-driven necking of a laterally finite slab of power-law viscous fluid surrounded by a

linear or power-law viscous mantle. The evolution of localized slab thinning (necking) with

increasing vertical bulk extension of the slab is only weakly dependent on the slab size, the slab

shape (symmetric or asymmetric), and the width of the mantle adjacent to the lateral slab side.

2-D simulations with the same model configuration and material parameters as the 3-D simula-

tions indicate that 3-D slab detachment exhibits similar thinning rates as 2-D slab detachment for

3-D slabs with widths >∼ 300 km. Therefore, 2-D simulations can accuratly predict thinning

rates of such finite 3-D slabs.

During necking of the slab the vertical sides of the slab around the depth of necking deflect

significantly in the lateral (along-trench) direction. Absolute values of lateral deflection increase

with increasing slab size. This lateral deflection can be > 100 km, and could explain gaps in

seismic tomography cross sections despite the fact that the slab is still attached.
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For the applied parameters the velocities of lateral slab deflection are 2-7 mm/yr for a linear

viscous mantle (wider slabs are deflecting faster) and 16 mm/yr for a power-law viscous mantle.

These deflection velocities are approximately one order of magnitude smaller than the velocity of

lateral propagation of slab necking which is ∼ 9 cm/yr for a linear viscous mantle and ∼ 30 cm/yr

for a power-law viscous mantle. The velocity of lateral necking propagation is approximately

constant during the slab detachment.
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4 3-D hydrodynamic modelling applied to fold nappes

and the Rawil depression in the Helvetic nappe system

(western Switzerland)

Abstract

The Helvetic nappe system in western Switzerland exhibits distinct three-dimensional (3-D)

structural features such as the lateral variation in geometry and deformation style between the

Morcles and Doldenhorn fold nappes or the Rawil depression that separates the two nappes.

We perform 3-D finite element simulations of viscous flow to investigate the formation of fold

nappes during shortening of a half graben with laterally varying thickness. The results show that

the thickness of the half graben has a significant impact on the fold nappe evolution. Fold nappes

that are generated above a thicker half graben have (i) larger amplitudes, (ii) a less sheared and

less thinned overturned limb, and (iii) a larger nappe thickness than fold nappes that are gen-

erated above a thinner half graben. These fundamental differences are observed between the

Morcles and Doldenhorn nappes, and suggest that the structural differences between the nappes

resulted from different thickness of the corresponding pre-Alpine half graben. The simulations

further show that during the shortening the half graben is closed and forms a mullion-like struc-

ture which also agrees with field observations. We also perform 3-D simulations to study the

impact of an oblique half graben on the basement uplift during shortening accompanied by or-

thogonal extension. The results show that the half graben can cause a laterally varying basement

uplift which generates a depression whose amplitude depends on the initial graben orientation

and the power-law stress exponent of basement and sediments. The maximal axial plunge of

the modelled depression is smaller than the observed plunge of the Rawil depression which

indicates that additional processes are required to explain the observed geometry of the Rawil

depression.

This chapter will be submitted to

Tectonophysics

co–authored by von Tscharner M., Schmalholz S. M. and Epard J.-L.
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4.1. Introduction

4.2. Introduction

The Helvetic nappe system in western Switzerland (W-Switzerland) exhibits distinct three-

dimensional (3-D) structural features such as the variation of the deformation style parallel to

the fold axis between the Morcles and the Doldenhorn nappe or the Rawil depression which

separates geographically the two nappes (Fig. 4.1). Several studies have argued that the Mor-

cles and Doldenhorn nappes have been generated during the Alpine inversion of half grabens

in the European passive continental margin (Pfiffner, 1993; Escher et al., 1993). Also, several

2-D models have been presented that explain the overall formation of the Morcles fold nappe

by ductile heterogeneous simple shear (Ramsay et al., 1983; Casey and Dietrich, 1997; Bauville

et al., 2013). The geometry and deformation style of the Morcles and Doldenhorn nappe are

different (see next section), and this lateral variation in geometry and deformation style has been

explained with a different thickness of mechanically weak sediments in the two nappes (Pfiffner,

1993, 2011). However, there is no 3-D mechanical model that quantified the 3-D deformation

due to such lateral thickness variation.

For the Rawil depression the geometry and structures are well documented and described in high

detail (Argand, 1902-1911; Heim, 1921; Ramsay, 1981, 1989; Gasser and Mancktelow, 2010;

Cardello and Mancktelow, 2014; Cardello, 2013). The Rawil depression has been explained

with different tectonic scenarios such as oblique thrusting, tangential longitudinal strain or late

folding during orogen-parallel shortening (Burkhard, 1988; Dietrich, 1989; Ramsay, 1989). Fur-

thermore, several studies have shown that the Helvetic nappe system in western Switzerland was

affected by SW-NE extension during the NW-SE shortening (Dietrich, 1989). However, there

are no 3-D mechanical models for the formation of the Rawil depression that quantified the

deformation or attempted to test a particular hypotheses for the formation of the Rawil depres-

sion.

We present here 3-D hydrodynamic numerical simulations of viscous flow to quantify the defor-

mation for two tectonic scenarios (see next section) that potentially can explain (i) the combined

formation of the Morcles and Doldenhorn fold nappes, and (ii) the formation of the Rawil de-

pression. The Helvetic nappe system and the external cristalline massifs are characterised by
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sharp and significant changes in mechanical strength between weak shale-rich sediments, strong

limestones and strong basement. Therefore, the simulations require a numerical algorithm that

can accurately track the material interfaces for large differences in material properties, and for

large deformations. We hence apply a finite element (FE) algorithm based on a Lagrangian for-

mulation combined with re-meshing (von Tscharner et al., 2014). We consider here only linear

and power-law viscous flow, and assume therefore that the dominant deformation mechanism

during the formation of the fold nappes and the Rawil depression was ductile.

The aim of the study is to apply hydrodynamic models for 3-D viscous flow in order to test and

quantify a simplified and potential tectonic scenario for the 3-D evolution of the Morcles and

Doldenhorn nappes, and also a scenario for the 3-D formation of the Rawil depression.

4.3. Geological background and potential tectonic

scenarios

Figure 4.1a and b shows two cross sections through the Helvetic nappe stack in the Western

Swiss Alps. The cross section through the western part of the study area shows from bottom to

top the Morcles nappe, the Diablerets nappe, the Mt. Gond nappe and the Sublage nappe (Fig.

4.1a; after Escher et al. (1993)). The cross section through the eastern part displays from bottom

to top the Doldenhorn nappe, the Jägerchrüz nappe, Gellihorn nappe and Wildhorn nappe (Fig.

4.1b; after Kirschner et al. (1999)). The vertical simplified cross sections are perpendicular to

the trend of the fold axis and show the projection of the mapped geological units and structures

of the region. Young strike-slip faults such as the Rhone fault are not shown on the profiles. The

sediments of the Helvetic nappe stack are generally a repetition of limestones, marls, shales and

sandstones which were deposited from late Triassic to Early Oligocene on the Helvetic shelf of

the European passive margin (Furrer, 1938; Trümpy, 1960; Ramsay, 1989; Epard, 1990; Escher

et al., 1993; Pfiffner, 1993). After the last sedimentation the Helvetic nappes were progressively

formed by folding and overthrusting. The lowermost nappes, the Morcles and Doldenhorn nappe

are autochthonous and parautochthonous, wheareas the overlying Diablerets, Mt Gond, Sublage,

Jägerchrüz, Gellihorn and Wildhorn nappes (so called Helvetic nappes) are detached from their

basement (Escher et al., 1993; Pfiffner, 1993).
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Figure 4.1: a) Cross section in the western part showing the Morcles nappe as well as the overlying

Diablerets nappe, Mt. Gond nappe and Wildhorn nappe (reproduced after Escher et al., 1993). b) Cross

section in the eastern part of the study area shows the Doldenhorn nappe as well as the overlying Dia-

blerets nappe and Wildorn nappe (reproduced after Kirschner at al., 1999). c) Schematic 3-D geometry

of the axial Rawil depression between the Morcles nappe in the west and the Doldenhorn nappe in the

east (reproduced after Ramsay, 1981).
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The Morcles nappe represents a typical fold nappe with a prominent overturned limb (Fig. 4.1a).

Fold nappes are recumbent folds with amplitudes usually exceeding 10 km, and they have been

formed presumably by ductile shearing (Bauville et al., 2013; Dietrich and Casey, 1989; Epard

and Escher, 1996; Ramsay et al., 1983). Fold nappes often exhibit a constant sense of shearing

and a non-linear increase of shear strain from their normal to their overturned limb which has

been observed across the Morcles nappe (Ramsay, 1981). It has been suggested that the Morcles

nappe is mainly the result of layer parallel contraction and shearing (Ramsay, 1981), and that

it has been deformed together with its underlying crystalline basement (external Mont-Blanc

massif). The crystalline basement also exhibits a significant amount of ductile deformation

(Escher et al., 1993). The sediments forming the Morcles nappe can be to first order separated

into mechanically strong carbonates and mechanically weak shales (Pfiffner, 1993). During the

compression the massif carbonates were more competent than the surrounding shales, which

led to the buckling characteristics of the Morcles nappe, especially in the normal limb and the

frontal area (Fig. 4.1a). During the shortening, the basement deformed to a large extent by

ductile deformation and formed a mullion structure. The Doldenhorn nappe exhibits (i) a smaller

overall thickness, (ii) a less prominent overturned fold limb that is significantly more sheared

and thinned, and (iii) a smaller amplitude than the Morcles nappe (Steck et al., 1999) (Fig. 4.1b).

The thickness of the Morcles nappe is between 3.5 km and 5 km (Ramsay, 1981; Escher et al.,

1993; Pfiffner, 1993) whereas the thickness of the Doldenhorn nappe is about 2.5 km (Kirschner

et al., 1999; Herwegh and Pfiffner, 2005). A possible explanation for these differences is that the

weak sediments (especially the Aalenian shales) in the half graben deposits that form now the

Doldenhorn nappe have been thinner than the weak sediments in the half graben deposits that

form now the Morcles nappe (Loup, 1992; Pfiffner, 1993, 2011). The larger thickness of weak

sediments in a deeper half graben in the area of the Morcles nappe would have hence favoured the

development of a fold nappe with larger thickness, larger amplitude and less sheared overturned

limb. A dominantly ductile deformation behaviour during the formation of the Morcles and

Doldenhorn nappe is supported by the fold geometries on several scales (e.g. parasitic folds),

the deviation from constant thickness behaviour of the weak shale units, and microstructural

observations in carbonate mylonites observed in the overturned limbs of both nappes which

indicate viscous deformation by diffusion and/or disclocation creep (Ebert et al., 2008).

One possible tectonic scenario to explain the first-order features of the Morcles and Doldenhorn

nappe is that the sediments forming the Morcles and Doldenhorn nappe have been deposited in

one half graben with a laterally varying thickness where the thickness was larger on the side of
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the Morcles nappe. The Morcles-Doldenhorn basin (i.e. North-Helvetic basin) was deepening

towards the SW towards the Dauphinois basin. During the compression, the basin was closed

towards the NE (Epard, 1990). This half graben has then been shortened during the Alpine

orogeny, and the half graben sediments have been folded, squeezed out of the graben and sheared

over the basement. We study here this tectonic scenario with 3-D hydrodynamic simulations.

The Rawil depression, also referred to as the Wildstrubel depression, was first described by Ar-

gand (1902-1911) and Heim (1921). The Rawil depression is an axial depression located in

W-Switzerland around the border between the cantons of Bern and Valais, and separates ge-

ographically the Morcles nappe from the more eastern Doldenhorn nappe (Fig. 4.1c). The

depression is characterized by an opposite plunge of fold axes in the Helvetic nappe system and

the underlying basment. The fold axis of the Morcles fold nappe plunges to the ENE whereas the

fold axes in the more eastern Doldenhorn nappe plunges to the WSW (Fig. 4.1c; after Ramsay

(1981)) (Steck et al., 1999). The maximal plunge of the fold axis in both nappes is approx-

imately 30 degrees (e.g. Steck et al. (1999)). It was suggested that in the Rawil depression

the nappe stack is overprinted by a dexral transtension zone (Cardello and Mancktelow, 2014;

Cardello, 2013). In the deepest part of the depression, where the highest nappes are preserved

(Ultrahelvetics), oblique normal faults with important displacement are observed (Gasser and

Mancktelow, 2010). The evolution during exhumation and cooling from ductile to brittle de-

formation is documented in this area where ductile deformation led to the axial depression and

brittle faulting led to the normal faults (grabens). Due to continuous compression the Helvetic

nappe stack was folded and updomed after the nappe stacking (Lugeon, 1914-1918; Masson

et al., 1980; Ramsay, 1981; Ramsay et al., 1983; Burkhard, 1988; Ramsay, 1989; Herwegh

and Pfiffner, 2005). This led to the exhumation of the external massifs. The normal faults in

the Rawil depression indicate orogen parallel extension whereas the exhumation of the external

massifs took place due to NS compression (Steck, 1984; Cardello and Mancktelow, 2014). The

Rawil depression has been explained with different tectonic scenarios. For example, according

to Burkhard (1988) the Aiguilles Rouges massif and the Aar massif were updomed and exhumed

on oblique thrusts in the underlying basement. The Rawil depression formed due to a dextral

offset in the thrust plane in the crystalline basement. In contrast, Dietrich (1989) and Ramsay

(1989) suggested that the Rawil depression formed due to changing thrusting directions. The

change in thrusting direction from top-to-the-N to top-to-the-W in the early to late stages of the

Alpine collision led to significant fold axis parallel extension (Steck, 1990) and the formation of

the axial Rawil depression as well as the culmination of the Aiguilles-Rouges and Aar massifs.
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Furthermore, Ramsay (1989) suggested that the Rawil depression could have formed (together

with other structures such as the Rhone culmination or the Flaine depression) due to late E-W

shortening superposed across all previously formed structures. Another potential scenario to

form the Rawil depression was presented by Steck et al. (1989) where an oblique Caboniferous

graben in the basement acted as a weak zone and caused the formation of the Rawil depression

due to N-S compression and E-W extension.

Figure 4.2: Simplified tectonic map of Western Switzerland (simplified after the tectonic map of Switzer-

land, 1:500000).

We will investigate here scenario which was presented by Steck et al. (1989) for the formation

of the Rawil depression. Figure 4.2 shows a zoom of the simplified tectonic map of Switzerland

of the area west of the Rawil depression. The map shows the Aiguilles-Rouges massif which

includes a Carboniferous graben. Such Carboniferous grabens are frequent in the European

basement, and in the Helvetic domain their orientation (approximately N-S) may have been

oblique to the Alpine shortening direction (aproximately NW-SE). During the Alpine shortening
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such a Carboniferous graben may have acted as an oblique weak zone in the basement and may

hence have influenced the basement deformation and uplift. Potentially, such a graben exists

below the Rawil depression and could have been responsible for a laterally variable uplift that

might have generated the Rawil depression (Pfiffner et al., 1997). Today, the Carboniferous

graben in the Aguilles-Rouges massif is oriented with a low angle to the strike of the orogen

which suggests the graben was rotated during the NW-SE shortening (Fig. 4.2). We study here

this potential scenario with 3-D hydrodynamic simulations.

4.4. Numerical Method

The 3-D viscous flow is described by the conservation of momentum and mass for an incom-

pressible, highly viscous fluid (often referred to as Stokes equations). The flow law is either

linear or power-law viscous where for the latter the effective viscosity is controlled by the sec-

ond invariant of the strain rate tensor and the power-law stress exponent, n (see Schmalholz and

Schmid (2012) for a 2-D version of the applied equations). The system of governing equations

is solved numerically with the finite element method (FEM). In the applied finite element algo-

rithm (termed PINK-3D) a mixed velocity-pressure formulation utilising a structured hexahedral

mesh employing tri-quadratic shape functions for velocity (Q2) and piece-wise discontinous lin-

ear shape functions for pressure (P1) (Bathe, 1996) is used (see von Tscharner et al. (2014) for

an application of the algorithm to 3-D necking during slab detachment).

In the continuity equation we introduce a penalty term and solve the penalised system by apply-

ing a Richardson iteration to the reduced velocity Schur complement system (Dabrowski et al.,

2008). Non-linearities inherent to the power-law rheology are treated with Picard iterations.

The Stokes problem is solved on a structured hexahedral finite element mesh. The mesh is

Lagrangian and thus the nodal coordinates are advected at each time step using the fluid ve-

locity (explicit Euler step). Throughout the deformation, the elements get distorted and thus

the mesh quality degenerates. At each re-meshing step, a new structured finite element mesh is

generated. Within our 3-D numerical model, we represent all material-interfaces (e.g. between

limestone and shale) with a set of marker points. The marker points on the material interfaces

are Lagrangian and are advected together with the FE mesh. Initially, the faces of the elements

within the mesh conform to the material interface wherever it is possible. However, once re-
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meshing has occurred the material interface will intersect the element interiors. We use the

material-interface to define the material phase (material properties) on each quadrature point.

For a vertical line located at the horizontal coordinates of the quadrature point we determine

all intersections with the material-interface. Using the vertical coordinates of these intersection

points we are able to determine whether the quadrature point is located inside or outside the vol-

ume which is defined by the material-interface. After the re-meshing the finite element mesh is

deformed again in a Lagrangian way until the quality of the mesh becomes unsatisfactory. The

applied method allows to accurately follow the material-interface with the finite element mesh

during the intial development of geometrical instabilities such as folding.

4.5. Simulations

4.5.1. Fold nappe formation

In this section we present a simple 3-D model of fold nappe formation during shortening of

a half-graben with laterally varying thickness. For reference, we also perform 3-D cylindrical

simulations (with only one finite element in the lateral, along graben, direction) with different

half-graben thickness. The models are applied to better understand the formation of the Morcles

and Doldenhorn nappe and particularly the lateral change on nappe geometry (Fig. 4.1). We

assume that the thickness of weak shale-rich sediments in the half-graben decreases from one

side to another, which is in broad agreement with the observed decrease in shale-rich sediments

from the section of the Morcles nappe to the section of the Doldenhorn nappe (Pfiffner, 1993,

2011). The aim of the 3-D simulation is to better understand and quantify the impact of laterally

varying half-graben and weak sediment thickness on the developing fold nappe.

Model configuration

Figure 4.3 shows the model configuration for both the cylindrical 3-D and full 3-D simulations

for fold nappe formation. All geometrical and material parameters are given in dimensionless

numbers using the thickness of the competent sedimentary layers H, the matrix viscosity ηM

and the backround strain rate ε̇B as characteristic parameters with which all parameters are made
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dimensionless. The model consists of a half graben that is formed by material with a viscosity

of ηB = 200 and a power-law stress exponent of n = 1 (i.e. Newtonian fluid) which mimics the

basement. The half graben is filled with sedimentary layers of different viscosity. The competent

layers have a viscosity of ηL = 100 and a power-law stress exponent of nL = 3. The surrounding

sedimentary material (matrix) has a viscosity of ηM = 1 and a power-law stress exponent of nM =

3. Gravity is ignored. The mechnically strong and weak layers represent limestones and shales,

respectively. The model box has an initial length of Lx = 115 and a total height of HModel =

25 whereas the thickness of each of the competent sedimentary layers is H = 1. The maximal

height of the basement is HB = 17 whereas the maximal depth of the half graben is D = 4.2

and D = 13.8 for the shallow and deep part of the half graben, respectively. The cylindrical

models consist of only one element in y-direction that is parallel to the cylindrical axis of the

forming fold nappe wheareas the 3-D model has a width of Ly = 75 in y-direction. The 3-D

model consists of a varying maximum half graben depth in y-direction where the half graben

has a constant maximum depth at the boundaries (y = 0 - 15 and y = 60 - 75) and a linear change

from the deep to the shallow part of the graben in the middle of the model between y = 15 and

y = 60 (Fig. 4.3c and 4.3d). The boundary conditions are free slip on three vertical boundaries

(i.e. x = 0, y = 0 and y = Ly, where Ly is the model with in y-direction) as well as on the bottom

boundary (z = 0). Boundary velocities are prescribed at the fourth vertical boundary (x = Lx) to

generate horizontal pure shear shortening. During shortening the model width in the y-direction

remains constant. The top boundary (z = HModel) acts as a free surface. The layers are initially

perfectly horizontal and folding initiates around the lateral contact between the sedimentary

layers and the basement. With our numerical method we are able to accurately follow the layer

geometry with the initial Lagrangian mesh. This is important because during the initial stages of

folding the instability is strongest and the fold wavelength is selected. In contrast, the material

interface that defines the bottom of the half graben crosses the individual finite elements because

this interface does not develop an instability. The re-meshing is performed as soon as the fold

amplitude of the competent layers has significanetly grown and a fold wavelength has been

selected. The resolution is locally increased in the x-direction around the contact point of the

competent sedimentary layers with the basement and in z-direction around the competent layers

to accurately resolve the folding process.
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Figure 4.3: 2-D and 3-D model configuration. The dimensionless dimensions of the model box are

115×75×25. a) 2-D geometry with a shallow half graben. b) 2-D geometry with a deep halfgraben. c)

3-D geometry with d) laterally varying graben depth where profiles through the shallow and deep graben

are similar to a) and b), repectively. Shortening is applied in x-direction, the boundary condition for

the top boundary is either pure shear extension or free surface and the boundary condition for all other

boundaries is free slip.

3-D cylindrical simulations

We present two simulations for 3-D cylindrical fold nappe formation. The two simulations differ

in the initial half graben depth and represent the two end members with a shallow and deep half

graben of D = 4.2 and D = 13.8, respectively. The simulations were performed with an initial

numerical resolution of 222 × 1 × 59 elements. Figure 4.4 shows the geometrical evolution

for the two simulations, where the colors indicate the distribution of the dimensionless effective

viscosity. For both simulations folding initiates around the contact between the competent sed-

imentary layers and the basement (Fig. 4.4a and 4.4d) where the amplification is much faster

and therefore the fold amplitude is larger for the simulation with a deep initial half graben. The

faster amplification rate of the folds above a thicker weak horizon is in agreement with analytical

results of detachment folding Schmalholz et al. (2002). The layers are first buckeled and then

sheared over the basement to form a recumbent fold nappe with an overturned limb. This over-

turned limb is more dominant for the simulation with a deep sedimentary basement whereas the

deformation is more localized and the fold nappe remains flatter for the shallow half graben. In

the same time as the the formation of the fold nappes takes place, the sediment-basement contact

forms a cusbate-lobate structure (mullion) which is much more dominant for the simulation with
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the deep initial half graben. The stronger localization at the base and the smaller thickness of

the fold nappe that develops above the shallower half graben (after 58% bulk shortening) is in

broad agreement with the observed differences between the geometry of the Morcles nappe and

the Doldenhorn nappe (Fig. 4.1).

Figure 4.4: Evolution of two cylindrical 3-D simulations for the compression of a deep (a-c) and a shallow

(d-f) sediment filled half graben. The colors indicate the dimensionless effective viscosity. Folding

initiates around the contact between the competent sedimentary layers and the basement.
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3-D simulation with laterally varying half graben depth

The 3-D simulations with a laterally varying graben depth were performed with a numerical

resolution of 47 × 23 × 13 elements. The results for this simulation are given in figure 4.5

to 4.7. Figure 4.5 shows the 3-D geometry after 55% bulk shortening. The deformed circles

on the basement-sediment and layer-sediment interfaces as well as on the model boundaries

quantify the finite strain. The circles have an initial dimensionless diameter of d/H = 2 and are

deformed using interpolated nodal velocities. The colors on the material interfaces indicate their

dimensionless topography. The basement shows higher deformation where the initial graben was

shallow. The fold nappe on the side where the initial half graben was deeper shows the highest

amplitude and the fold nappe amplitude laterally decreases towards the shallow half graben.

Figure 4.6 shows 8 selected lines on the basement-sediment interface as well as on the top layer

interface. Five of them are initially parallel to the x-direction and three are initially parallel to

the y-direction. For these lines we show the relative change in length during the deformation.

The lateral fold axis parallel extension of the lines which were initially parallel to the y-direction

versus the bulk shortening is given in figure 4.6a whereas the shortening of the lines which were

initially parallel to the x-direction is given in figure 4.6b. The lateral fold axis parallel extension

for all selected lines is relatively small, i.e. up to 5% and is caused by the difference in the rate

of amplification along the individual folds. The lateral extension is varying with time for the

different lines depending on the formation of other folds in the competent sedimentary layers

which cross the corresponding line. The lateral deformation on line 2 for example indicates first

extension, when the amplitude of the fold is growing faster on the deep graben side. A new fold

which starts to grow later and behind the main fold (where line 4 starts on the deep graben side

in figure 4.6c) is bended towards the main fold and causes shortening of line 2. The shortening

for the lines parallel to the x-direction is higher, i.e. up to 40% and is highest where the graben

is shallow. High values of line shortening indicate thickening of the competent layers during

bulk shortening. The shortening of the line is smaller where the amplification of the folds in the

competent sedimentary layers is faster.
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Figure 4.5: Intersection ellipses between the finite strain ellipsoids and the material interfaces on the

layer-matrix and basement-matrix interface as well as on the box boundaries within the basement quan-

tifing the total deformation after 55% bulk shortening.
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Figure 4.6: Lateral extension in y-direction (a) and shortening in x-direction for five and three selected

lines which were initially parallel to the y-direction and x-direction, respectively. The position of these

selected lines is given in c) for 30% shortening.

Figure 4.7 shows the normal strain rates in x-direction and y-direction on the top basement-

sediment and layer-sediment interfaces. Negative strain rate values (blue) indicate compression

whereas positive values (red) indicate extension. The normal strain rate in x-direction (Fig.

4.7a-d) shows extension on the folds antiformes and compression on the synforms. Further, the

basement is stronger compressed in x-direction on the side where the half graben is shallow. In

this area the normal strain rate in y-direction (Fig. 4.7e-h) indicates extension.
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Figure 4.7: Evolution for the 3-D fold nappe simulation with lateral varying graben depth viewing from

the top. The colors indicate normal strain rates in x-direction (a-d) and y- direction (e-h) on the top

basement-matrix and layer-matrix interfaces. Negative values imply compression.

4.5.2. 3-D formation of the Rawil depression

In this section we test the hypothesis that the Rawil depression was affected by orogen perpendic-

ular compression and orogen parallel extension where a Carboniferous graben in the basement

(Fig. 4.2) is assumed to act as a weak zone.
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Model configuration

Figure 4.8 shows the model configuration for the simulation of the formation of the Rawil de-

pression. The dimensions of the model box are 60 × 30 × 17 km (Lx× Ly× HModel). The

model is charcterised by a competent block which mimics the basement and a sediment filled

graben cutting through this basement (mimicing a Carboniferous graben). The graben has an

initial width of 4 km and a maximal initial depth of 2 km where the graben sides have an an-

gle of 60◦ with respect to the horizontal x-direction. The graben and the rest of the model is

filled with weaker material (matrix) which mimics the overlying sediments and the fold nappes

(i.e. Morcles and Doldenhorn nappe) which we assume are already formed and lie on top of

the basement. We assume here for simplicity that after the formation of the fold nappes the top

of the basment is horizontal. The basement has an initial thickness of 10km. The orientation

of the graben with respect to the x- direction is varied in the different simulations which were

performed. On the top surface of the basement we added an initial sinusoidal perturbation in

y-direction with a wavelength of Ly = 30km and an initial amplitude of A0 = 100m. The base-

ment has an initial viscosity which is exponentially decreasing with increasing depth using the

following expression:

η = η0e−z/nλ E
1/n−1
II (4.1)

where η0 is the viscosity at the top of the basement, z is the depth from the top of the basement,

λ is the e-fold length and EII is the second invariant of the strain rate tensor. We assume an

initial viscosity of η0 = 1023 Pa.s for the top of the basement and an e-fold length of λ = 750m

(Bauville et al., 2013). In order to track the material properties during the re-meshing steps, the

basement is divided in 10 layers of 1km thickness where each of them has a constant initial vis-

cosity. The exponential viscosity profile and the used viscosity profile within the basement are

given in figure 4.8d. The minimum viscosity within the basement is set to 1019 Pa.s and the ma-

trix has an initial viscosity of ηM = 1021 Pa.s. The power-law stress exponent of both materials

is varied in the performed simulations. An overview on the performed 3-D simulations is given

in Table 4.1. The boundary velocities are prescribed for all vertically oriented boundaries (x = 0,

x = Lx, y = 0 and y = Ly) to generate extension in x-direction and shortening in y-direction. The

ratio of the applied strain rates in x- and y-direction is ε̇y/ε̇x = -0.5. The boundary conditions for

the bottom boundary and the top boundary (z = 0, z = HModel) is free slip and free surface, re-
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spectively. The Helvetic nappe stack in the Rawil depression is overprinted by a dextral transten-

sion zone (Ramsay et al., 1983; Burkhard, 1988; Gasser and Mancktelow, 2010; Cardello and

Mancktelow, 2014) which indicates dextral shearing. Therefore, the boundary conditions for all

vertical boundaries (x = 0, x = Lx, y = 0 and y = Ly) are changed after 40% pure shear shortening

in y-direction, such that the whole model domain is dextrally sheared along a vertical plane with

an angle of 45◦ with respect to the x-direction (oblique simple shear). The oblique shearing

is performed for one selected simulation. Ramsay (1989) suggested that the Rawil depression

formed due to late EW compression supperposed on all previously formed structures. In order

to test this hypothesis we performed a simulation where we apply compressional boundary con-

ditions in x-direction (i.e. the velocities on the boundaries x = 0 and x = Lx are prescribed to

generate compression, the top boundary acts as free surface and all other boudaries have free

slip conditions) after the main compression in y-direction and extension in x-direction.

simulation graben orientation nb nm

Rawil_90_1_1 90◦ 1 1

Rawil_90_3_1 90◦ 3 1

Rawil_90_3_3 90◦ 3 3

Rawil_90_6_1 90◦ 6 1

Rawil_90_6_3 90◦ 6 3

Rawil_65_1_1 65◦ 1 1

Rawil_65_3_1 65◦ 3 1

Rawil_65_3_3 65◦ 3 3

Rawil_65_6_1 65◦ 6 1

Rawil_65_6_3 65◦ 6 3

Rawil_45_1_1 45◦ 1 1

Rawil_45_3_1 45◦ 3 1

Rawil_45_3_3 45◦ 3 3

Rawil_45_6_1 45◦ 6 1

Rawil_45_6_3 45◦ 6 3

Table 4.1: Names and varied material parameters for the simulations for the formation of the Rawil

depression.
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Figure 4.8: Model configuration for the simulations of the formation of the Rawil depression. The dimen-

sions of the model box are 60 × 30 × 17 km. a) Top view with bondary conditions. b) Initial viscosity

distribution. c) 3-D geometry. d) Viscosity profile with in the basement where the black line is the true

exponential function and the red line represents the viscosity profile which is used in the simulations.

Results

The simulations for the formation of the Rawil depression were-performed with a numerical res-

olution of 50 × 15 × 20 elements. The basement geometry after 40% shortening in y-direction

for all simulations with linear sediments (i.e. ns = 1) is given in figure 4.9. Due to the compres-

sion in y direction the strong top of the basement is folding upwards on both sides of the graben.

This folding is stronger for high power-law stress exponent in the basement (i.e. nb =6). For

high power-law stress exponents in the basement (i.e. nb = 3 and nb = 6) as well as a graben

which is oriented with a high angle with respect to the x-direction (i.e. 65◦ and 90◦) a depres-

sion is formed along the top of the basement. For the simulations Rawil_45_6_1, Rawil_45_3_1

and Rawil_65_1_1 the basement geometry becomes asymmetric. Due to the vertically free slip

boundary conditions the basement is allowed to rotate around a horizontal axis in x-direction.

Therefore, the basement topography is significanelty lower on one side in y-direction (e.g. Fig.

4.9a). A classification with respect to the basement geometry (i.e. depression in the basement

119



3-D FE MODELLING 4.5. SIMULATIONS

and asymmetry) for all simulations sorted by the power-law stress exponent used for the sedi-

ments is given in figure 4.10.

Figure 4.9: Basement geometry after 40% shortening in x-direction for all performed simulations with

linear sediments (i.e. ns=1) in top view and 3-D view. The basement geometry becomes asymmetric for

the simulations Rawil_45_6_1, Rawil_45_3_1 and Rawil_65_1_1.
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Figure 4.10: Classification of the performed simulations for the formation of the Rawil depression. The

simulations are sorted with respect to the power-law stress exponent in the sediment: a) ns = 1 and b) ns

=3. The criteria for the classification is whether the results show a depression in the basement or not and

the asymmetry of the basement geometry after 40% shortening in x-direction.

Figure 4.11 shows a profile parallel to the x-direction located in the middle of the model box

(i.e. y = Ly/2) for the topography of the basement-sediment interface and a passive plane in the

sediments for all performed simulations after 40% shortening in y-direction. The passive plane

in the sediments is initially perfectly horizontal and located 1km above the basement-sediment

interface. The simulations are sorted with respect to the initial orientation of the graben which

cuts through the basement. Again the results show that there is no depression formed in the

basement if the whole model is Newtonian (i.e. nb = ns = 1). The simulations where the graben

is initially oriented with an angle of 45◦ with respect to the x-direction form shoulder-like hills

on both sides of the Carboniferous graben and no significant depression in the basement. For the

simulations with an initial graben orientation of 65◦ and 90◦ with respect to the x-direction and

non-linear basement material (i.e. nb > 1) a depression in the basement and the passive plane

in the sediments is developed during the deformation. The maximum slope of the depression in

the basement as well as on the passive plane in the sediments is about 10◦.
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Figure 4.11: Profiles at y = 0 for the top basement and a passive plane within the sediment initially located

1km above the basement-sediment interface. The passive plan within the sedimants was initially perfectly

plane (i.e. without any perturbation). The results are sorted with repect to the initial orientation of the

graben for 45◦, 65◦ and 90◦ given in the subplots a) and d), b) and e) and c) and f), for the topography of

the top basement-sediment interface and the passive plane within the sediments, respectively.

From the classification in figure 4.10 and the profiles in figure 4.11 we can see that the simu-

lation Rawil_65_6_1 shows a depression in the basement as well as on the passive plane in the

sediments and no asymmetric geometry. Since the simulation with an initial graben orientation

of 90◦ with respect to the x-direction is unlikely (because of the today’s orientation of the Car-

boniferous graben in the Aiguilles-Rouge massif) we choose the simulation with 65◦ to be the

one which fits best to the geometrical data of the Rawil depression.

After the pure shear deformation of simulation Rawil_65_6_1 (i.e. 40% shortening in y-

direction) we apply compressional boundary conditions in x-direction to test the hypothesis by

Ramsay (1989). After 20% bulk shortening in x-direction we obtain a maximal plunge of the

fold axis of 30◦ on borh sides of the depression. The results of this simulation are shown in figure

4.12d and i. As another additional scenario after the pure shear deformation of the simulation

Rawil_65_6_1 we also apply an oblique dextral simple shear which is oriented with an angle of
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45◦ with respect to the x-direction. The velocities are prescribed on all vertial boundaries (i.e. x

= 0, x = Lx, y = and y = Ly). The bottom boundary condition is free slip and the top boundary is

stress free. Figure 4.12 shows the evolution for the simulation Rawil_65_6_1 for the pure shear

deformation and the oblique dextral simple shear deformation as well as the deformed circles

quantifying the total deformation on the basement-sediment interface and the model boundaries.

The circles have an initial diameter of d = 1.2 km and are deformed using interpolated nodal

velocities. The colors indicate the top basement topography. The basement is strongly deformed

on the base of the model box where it has a low viscosity due to the prescribed decrease of the

viscosity with depth. During the compression in y-direction and the extension in x-direction

the basement is updomed and forms a depression where the graben cuts through the basement.

In the same time the weak graben in the basement is rotated. During the oblique simple shear

the whole model box is further extended parallel to the fold axis in the basement, compressed

perpendicular to the fold axis as well as rotated in clockwise direction. The amplitude of the

developed depression in the basement as well as on the passive plane in the sediments slightly

increases during the simple shear deformation.
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Figure 4.12: Evolution for a simulation for the Rawil depression with an initial graben orientation of 65◦

with respect ro the x-direction, a power-law stress exponent of ns = 1 and nb = 6 for the sediments and the

basement, respectively. The colors on the basement-sediment interface indicate the bastement topography.

The deformed circles on the basement-sediment inteface as well as the model box boundaries quantify the

total deformation. The circles have an initial diameter of d = 1.2 km and are deformed using interpolated

nodal velocities.
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4.6. Discussion

The cylindrical simulations for the formation of the Morcles and Doldenhorn nappes support

the hypothesis that the weak sediments in the half graben deposits forming now the Doldenhorn

nappe have been thinner than the sediments in the half graben deposits forming the Morcles

nappe, and that this different thickness controlled the different deformation style (Pfiffner, 1993,

2011). The deformed geometry of the simulation with the deep initial half graben shows sim-

ilarities with the Morcles nappe. The layers which were first buckled and then sheard over the

basement form a recumbent fold nappe with an overturned limb (Fig. 4.4c). The deforma-

tion is more localized and the entire fold nappe remains thinner for the simulation with thinner

sediments in the half graben. This geometry is similar to the Doldenhorn nappe (Fig. 4.4f).

During fold nappe formation the basement-sediment interface forms a cusbate lobate structure

(mullion). The orientation of this cuspate-lobate structure is opposite to the orientation of the

cuspate-lobate structure in the basement below the Morcles and Doldenhorn nappes (Fig. 4.4c,

f and Fig. 4.1a, b). This problem may be solved with an additional prescribed drag velocity in

the positive x-direction at the bottom model boundary. A smaller initial half graben thickness

can explain (i) the stronger shear deformation in the overturned limb of the Doldenorn nappe

compared to the one of the Morcles nappe, (ii) the smaller overall thickness of the Doldenhorn

nappe compared to the one of the Morcles nappe, and (iii) the smaller fold amplitude of the

Doldenhorn nappe.

The full 3-D simulation with laterally varying graben depth shows small amounts of internal lat-

eral extension in the y-direction in the competent sedimentary layers although the bulk extension

in the y-direction was zero (Fig. 4.6, Fig. 4.7 e to h). The amplitude of the forming fold nappe is

higher for the deeper half graben, whereas the deformation is more localized for the shallow half

graben where the fold nappe remains thinner. Laterally, the fold nappe amplitude is decreasing

towards the shallow half graben (Fig. 4.5). The difference in the amplification rates leads to

lateral fold axis parallel extension of up to 5%. Dietrich (1989) measured fold axis parallel ex-

tension as well as extension which is at high angle to the fold axis in the Helvetic nappes around

the Rawil depression. From pressure shadows and conjugated veins they obtained fold axis par-

allel extension of more than 100%. From fold axis parallel sections Dietrich (1989) calculated

fold axis parallel extension of 60% for the southwestern slope of the Rawil depression and up

to 120% in the northeastern slope. These calculations and measurements significantely exceed
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the lateral fold axis parallel extension which we obtain from the difference in the amplification

rates in our models (up to 5%, Fig. 4.6). Therefore, a bulk fold axis parallel extension, as we

consider in the simulations for the formation of the Rawil depression, is needed to explain these

observed structures and measured extension values around the Rawil depression. However, the

small internal extension of up to 5% is sufficient to generate extensional brittle structures such

as veins and joints.

The performed 3-D simulations for the formation of the Rawil depression show the first order

impact of an oblique graben (representing a weak zone) on the updoming of the basement dur-

ing shortening. The simulations also show that it is possible to form a depression by horizontal

compression and perpendicular extension of a basement with an oblique weak zone. The best

fitting simulation for the formation of the Rawil depression is the simulation Rawil_65_6_1 with

a graben orientation of 65◦ with respect to the x-direction, a power-law stress exponent of nb =

6 in the basement and Newtonian sediments (i.e. ns = 1). The results for this simulation show

a depression in the basement as well as in the sediments and no asymmetric geometry of the

basement. Some of the simulations show a asymmetric basement geometry, especially when

we use a power-law stress exponent of nb > 1 and ns = 3. The asymmetric basement geometry

is characterized by a significantly lower basement topography and significantly steeper plunge

(almost vertical) on one side of the model box. If we compare this geometry with the basement

geometry of the Aiguilles-Rouges / Mt. Blanc massifs and the Aar massif, this asymmetric

basement geometry seems unrealistic (Pfiffner et al., 1997). The formation of the asymmet-

ric basement geometry is likely because of the free slip boundary conditions which allow the

basement to rotate around a horizontal axis in x-direction. When we fix the vertical movement

of the vertical boundaries we prevent the basement from becoming asymmetric. However, the

amplitude of the depression in the basement remains the same. The amplitude of the depression

on the passive plane in the sediments becomes larger with higher power-law stress exponents in

the sediments (i.e. ns > 1). The maximal slope in the depression in x-direction is 10◦ which is

not as high as in the Rawil depression where we have slopes of up to 30◦. The highest depres-

sion amplituedes are obtained with a graben which is oriented with an angle of 65◦ or 90◦ with

respect to the x-direction. However, based on the todays orientation of the Carboniferous graben

in the Aiguilles-Rouges massif (Fig. 4.2), the initial graben orientation of 90◦ with respect to the

x-direction is improbable. The simulation results indicate that shortening of a basmeent with an

oblique graben generates a depression but also that this process alone is not sufficient to gener-

ate the observed local plunge of the fold axis of approximately 30◦. Hence, additional processes
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must have been active to generate the observed plunge of the Rawil depression. One possible

scenario to obtain a larger plunge is a later E-W shortening of the already formed structure. The

simulation showed that it is possible to obtain 30◦ plunge on both sides of the depression after

additional 20% bulk shortening in x-direction. However, there is no evidence in the field for

such late E-W shortening.

The applied models are significantly simplified and effects such as a temperature dependent

viscosity or a plastic yield strength have not been considered. A temperature dependent viscosity

may cause a larger shear localization within the overturned limbs of the modelled fold nappes

as shown by (Bauville et al., 2013). A plastic yield strength may have affected especially the

deformation in the upper part of the model above the fold nappes. Furthermore, during the

Alpine deformation there was likely a significant amount of simple shear with a top-to-the NW

(jl: to the W?) shear sense and also some amount of vertical flattening. Such simple shear and

flattening has also been ignored in our simple models. Such additional deformations will be

investigated in future studies.

4.7. Conclusions

4.8. Conclusions

We performed 3-D numerical simulations of viscous flow to study the formation of fold nappes

during the inversion of a half graben with laterally (i.e. along the graben axis) varying thickness.

The half graben was filled at the top with mechanically competent layers of equal thickness

and below with weak material of correspondingly laterally varying thickness. The simulations

show that the thickness of weak material in the half graben has a significant impact on the

fold nappe evolution. Fold nappes that are generated from a thicker half graben have (i) larger

amplitudes, (ii) a less sheared and thinned overturned limb, and (iii) a larger nappe thickness than

fold nappes that are generated from a thinner half graben. These three differences are observed

between the Morcles and Doldenhorn nappes. Our simulations therefore support the field based

interpretations that the first order structural differences between the two nappes are due to a

differnt pre-Alpine thickness of the half graben in which the sediments that build now the two

nappes have been deposited during mainly the Mesozoic. The simulations also show that during
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the shortening the half graben is closed and forms a mullion-like structure which also agrees

with field observations. The viscous flow simulations can generate many first order features of

the Morcles-Doldenhorn nappe system and suggest that ductile deformation (and not brittle) was

likely the dominant deformation behaviour during fold nappe formation and related basement

deformation. The simulations also show that the laterally varying fold amplification causes a

fold-axis-parallel extension of up to 5% in the layers although the bulk extension is zero. Such

extension could explain brittle extensional structures that are observed in the competent layers

of the fold nappes. However, this internal extension cannot explain the overall orogen-parallel

extension in the Helvetic nappe system which is significantly larger.

We also performed 3-D numerical simulations of viscous flow to quantify the impact of an

oblique graben in the basement on the basement uplift during shortening accompanied by or-

thogonal extension. The results show that the half graben can cause a laterally varying basement

uplift which generates a depression above the half graben. The amplitude of the depression de-

pends on the initial orientation of the graben and the power-law stress exponent of the basement

and sediments. The maximal axial plunge of the modelled depression is only approximately

10 degrees whereas the maximal observed plunge of the Rawil depression is approximately 30

degrees. The results therefore indicate that an oblique graben in the basement may have con-

tributed to the formation of the Rawil depression but that additional processes are required to

generate the observed geometry of the Rawil depression.
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5 Discussion

In chapter 2 we showed that the presented algorithm with a deformable lagrangian mesh can

accurately resolve small geometrical perturbations on material interfaces and reproduce the an-

alytical solutions for several hydrodynamic instabilities. During large strain deformation the

coordinates of the material interface that cross the individual elements are deformed together

with the deforming Lagrangian mesh. The deformation of the material-interface is consistent

with the applied numerical finite element approximation. Therefore, it is not necessary to in-

terpolate nodal velocities on the interface coordinates in order to advect the interface points.

Furthermore, the velocities around material-interfaces with strongly varying viscosities are ac-

curate even if the interfaces cross the individual finite element (Fig. 2.3). Based on this the

presented algorithm is suitable to simulate high strain deformation structures which emerge due

to hydrodynamic instabilities. During the initial stages of the deformation when the instability

amplitudes are still low the material interfaces are accurately resolved and followed with the ini-

tial finite element mesh. During the low amplitude stage the deformation is highly sensitive to

small perturbations on the material interface geometry and on the intra-layer stress distibution.

On the other hand during the high amplitude stages the deformation is less sensitive to the in-

terface geometry and large strain deformation is simulated with re-meshing and element cutting

material interfaces. If higher order time integration schemes such as Runge-Kutta are applied,

the movement of the material interfaces and the FE mesh can be made more accurate. In order

to test the accuracy of the 3-D algorithm for large strain deformation, results for 3-D cylindri-

cal Rayleigh-Taylor diapirism and single layer folding with different re-meshing szenarios were

compared with the results of another 2-D algorithm (Fig. 2.5). In the re-meshing test we showed

the importance of an initial Lagrangian mesh to accurately follow the initial perturbations on the

material interfaces. Further the test showed the importance of the coice of the first re-meshing

time step that should be performed not until the amplitude of the material interface is significant,

that is, not until the wavelength of the emerging structure has been selected. Until now we did

not implement a special metric to determine if re-meshing is necessary or not. When we remesh

after each timestep our method is similar to the Eulerian finite element method in combination

with a particle-in-cell scheme (FE-PIC) (Moresi et al., 2007; Thielmann et al., 2014). The sim-



DISCUSSION

ulations performed for the re-meshing test showed that our method is more suitable to model

large strain deformation of instabilities than the FE-PIC method.

The presented 3-D results in chapter 2 show that the algorithm yields smooth stress fields in

folded material for viscous and visco-elastic fluids (Fig. 2.6). Furthermore, the 3-D results

presented in chaprer 3 and chapter 4 show that algorithm provides smooth viscosity fields (Fig.

2.8, Fig. 2.12) and strain rate fields (Fig. 2.15) within a material after several re-meshing steps.

Hence, the presented algorithm is useful, if certain quantities such as stress, strain or viscosity

have to be calculated on deformed 3-D surfaces.

Since the algorithm is written in Matlab (i.e. the algorithm is not in parallel) other numerical

algorithm may be much faster. Therefore, it may be of interest to translate the presented FE

algorithm to another programming language as for example C++ or Fortran.

Until now, we did not implement any interpolation of the stored elastic stress between the old and

new mesh. Therefore, the elastic or visco-elastic rheology can currently only be used without

re-meshing.

The problem sizes treated with PINK-3D as part of this PhD thesis reached up to 650’000

degrees of freedom. One timestep at the maximum problem size required approximately 19

hours.

Compared to other algorithms the presented method has advantages as well as disadvantages:

Advantages

• Accurate resolution of initial geo-

metrical instabilities

• Accurate tracking of the material in-

terfaces

• Interpolation is only necessary dur-

ing re-meshing

• Free surface boundary conditions

Disadvantages

• Performance, possible degrees of

freedom and speed

• Rheology

(e.g. temperature dependent viscosi-

ties, plasticity or elasticity for large

strain)
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In general, there are several things which can be aproved or added to the presented numerical

algorithm:

• Metric for re-meshing

• Interpolation of the stored elastic stresses and power-law viscosities during the re-meshing

steps

• Performance

• Translation to C++ or Fortran - Parallelization

• Plasticity (visco-elasto-plastic rheology)

• Temperature solver and temperature dependent viscosity

• Adaptive timestep

• Higher order time integration schemes such as Runge-Kutta

The application of the algorithm to viscous necking during slab detachment presented in chap-

ter 3 showed that the evolution of necking with progressive bulk slab extension is only weakly

dependent on the slab size, the slab shape, the width of the mantle adjacent to the lateral slab

boundaries and the rheology of the mantle (i.e. linear or non-linear). Therefore, we are able to

predict the evolution of necking with increasing slab length for many other slab configurations

with the same initial material parameter configurations without performing additional 3-D sim-

ulations. However the evolution of the necking with absolute time is significantly different for

different slab size, shape and mantle rheology.

The 3-D slabs that are wider than ∼ 300 km exhibit similar thinning rates as the corresponding

2-D slabs with the same material properties for both linear viscous and power-law viscous man-

tle. Therefore, the 1-D analytical solution for necking presented by Schmalholz (2011) can be

applied at first-order accuracy to both 2-D and 3-D necking during slab detachment (Fig. 3.3a,

d).

For the asymmetric slab the zone of localized thinning propagates laterally with a constant ve-

locity of approximately 9 cm/yr for a linear viscous mantle and approximately 30 cm/yr for a

power-law viscous mantle. These velocities are similar to the rates which are reported by van

Hunen and Allen (2011) and Burkett and Billen (2011) who reported rates between 10 and 80

cm/yr. The measured velocities are also consistent with the natural rates inferred from the Trans-

Mexican volcanic belt (10-25 cm/yr), which may reflect lateral propagation of slab detachment

(Ferrari, 2004).
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Seismic tomography have been imaging complex tomographic paterns around slab edges (Lalle-

mand et al., 2001; Lin et al., 2004). In particular, slab gaps at slab edges have been evidenced

by several studies in the Kamchatka region (Levin et al., 2002, 2004; Jiang et al., 2009). The

simulations presented in chapter 3 show that such gaps can be the result of two processes: First,

due to a true detachment of the slab, and second, due to the lateral deflection of the slab during

the process of slab detachment. Therefore, not every gap in a vertical section of tomographic

results around a slab edge must necessarily indicate a fully detached slab, but could also be due

to a laterally deflected slab that is still attached. Lateral deflection of a slab side can be larger

than 100 km (Fig. 3.4c and d) and also affects narrow slabs. This further suggests that small

slabs can also produce "drop-like” shapes of fast seismic velocity anomalies such as observed in

the Hindukush (Koulakov and Sobolev, 2006) or the Vrancea regions (Koulakov et al., 2010).

However, natural slab detachment is a very complex process that is controlled by thermal, me-

chanical and chemical processes as well as their coupling (e.g shear heating in Gerya et al.

(2004)). Our simulations for viscous necking suring slab detachment are significantely simpli-

fied in order (1) to identify and quantify fundamental 3-D deformation processes during slab

detachment, (2) to keep the model and the involved parameters comprehensible, and (3) to keep

the computational costs low. More elaborated 3-D models are required in the future to model

3-D slab detachment in more detail.

in chapter 4 the 3-D numerical algorithm PINK-3D is applied to study the formation of fold

nappes as the Morcles and Doldenhorn nappes as well as to the formation of the axial Rawil

Depression. The cylindrical simulations for the formation of the Morcles and Doldenhorn fold

nappes support the hypothesis that the weak basal sediments in the half graben deposits form-

ing now the Doldenhorn nappe are likely to be thinner than the sediment in the half graben

forming the Morcles nappe (Pfiffner, 2011). The different sediment thickness in the half graben

controlled the different deformation style in the fold nappes. The deformed geometry of the

simulation with the deep initial half graben shows similarities with the Morcles nappe. The lay-

ers which were first buckled and then sheared over the basement form a recumbent fold nappe

with an overturned limb (Fig. 4.4c). The deformation is more localized and the fold nappe

remains flatter for the simulation with thinner sediments in the half graben. This geometry is

similar to the Doldenhorn nappe (Fig. 4.4f). In the same time as the fold nappe forms, the

basement-sediment interface forms a cusbate lobate structure (mullion). The orientation of this

cuspate-lobate structure is opposite to the orientation below the Morcles and Doldenhorn nappes
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(Fig. 4.4c, f and Fig. 4.1a, b). This problem may be solved with an additional drag in x-direction

at the bottom model boundary. A smaller initial half graben thickness can explain (i) the stronger

shear deformation in overturned limb of the Doldenorn nappe compared to the one of the Mor-

cles nappe, and (ii) the smaller overall thickness of the Doldenhorn nappe compared to the one

of the Morcles nappe.

The full 3-D simulation with laterally varying graben depth shows small amounts of lateral

extension in y-direction for the competent sedimentary layers (Fig. 4.6, Fig. 4.7 e to h). The

amplitude of the forming fold nappe is higher for the deep sedimentary basement, whereas the

deformation is more localized for the shallow half graben where the fold nappe remains flatter.

Latterally, the fold nappes amplitude is decreasing towards the shallow half graben (Fig. 4.5).

This difference in the amplification rates deads to lateral fold axis parallel extension. In the 3-D

numerical simulations we obtain a fold axis parallel extension of up to 5% which is significantely

smaller than the fold axis parallel extension which was reported by Dietrich (1989) from the

measurements of pressure shadows, en échelon veins and fold axis parallel sections. Therefore,

a bulk fold axis parallel extension , as we use in the simulations for the formation of the Rawil

depression, is needed to explain these observed structures and measured extension values around

the Rawil depression. However, the small internal extension of up to 5% is sufficient to generate

extensional brittle structures such as veins and joints.

The performed 3-D simulation to study the formation of the Rawil depression show that it is pos-

sible to form a depression by horizontal compression and extension of a strong block an oblique

half graben (representing a weak zone). The best fitting simulation for the formation of the Rawil

depression is Rawil_65_6_1 with a graben orientation of 65◦ with respect to the x-direction, a

power-law stress exponent of nb = 6 in the basement and Newtonian sediments (i.e. ns = 1). The

results for this simulation show a depression in the basement as well as in the sediments and no

asymmetric geometry of the basement. Some of the simulations show a asymmetric basement

geometry, especially when we use a power-law stress exponent of nb > 1 and ns = 3 for the

basement and sediments, respectively. The asymmetric basement geometry is characterized by

a significantly lower basement topography and significantly steeper plunge (almost vertical) on

one side of the model box. If we compare this geometry with the basement geometry of the

Aiguilles-Rouges / Mt. Blanc massifs and the Aar massif, this asymmetric basement geometry

seems unrealistic (Pfiffner et al., 1997). The formation of the asymmetric basement geometry is

likely beacuse of the free slip boundary conditions which allow the basement to rotate around a
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horizontal axis in x-direction. When we fix the vertical movement of the vertical boundaries we

prevent the basement from becoming asymmetric. However, the magnitude of the depression

remains more or less the same. The maximal slope of the depression in x-direction is 10◦ which

is not as high as in the Rawil depression where we have slopes of up to 30◦. The highest depres-

sion amplituedes are obtained with a graben which is oriented with an angle of 65◦ or 90◦ with

respect to the x-direction. However, based on the todays orientation of the Carboniferous graben

in the Aiguilles-Rouges massif (Fig. 4.2), the initial graben orientation of 90◦ with respect to

the x-direction is improbable. The simulation results indicate that shortening of a basmeent with

an oblique graben gneerates a depression but also that this process alone is not sufficient to gen-

erate the observed plunge of the fold axis of approximately 30◦. Hence, additional processes

must have been active to generate the observed plunge of the Rawil depression. The applied

models are significantly simplified and effects such as a temperature dependent viscosity or a

plastic yield strength have not been considered. A temperature dependent viscosity may cause

a larger shear localization within the overturned limbs of the modelled fold nappes as shown by

(Bauville et al., 2013). A plastic yield strength may have affected especially the deformation in

the upper part of the model above the fold nappes. Furthermore, during the Alpine deformation

there was likely a significant amount of simple shear with a top-to-the NW shear sense and also

some amount of vertical flattening. Such simple shear and flattening has also been ignored in

our simple models. Such additional deformations will be investigated in future studies.

As part of this doctoral thesis, the presented 3-D algorithm PINK-3D is applied to a variety of

problems in geoscience as slab detachment, fold nappe formation and basement-cover deforma-

tion. However, other possible applications and possible extensions of the presented simulations

would be:

• Fold nappe formation and basement-cover deformation with basal drag boundary condi-

tions.

• Formation of the Rawil depression with simple shear and additional flattening.

• Slab detachment with free surface boundary condition to track the lateral propagation of

the surface response to the detaching slab.

• Lateral propagation of Rayleigh-Taylor diapirism with free surface boundary conditions.
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• Lateral propagation of folding in both horizontal direction.

• Lateral propagation of necking under layer parallel extension in both directions and the

formation of chocolate-tablet structures.

• And many others.
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6 Conclusions

The presented 3-D algorithm that combines a deformable Lagrangian mesh and a material-

interface technique with re-meshing can handle a power-law visco-elastic rheology. The al-

gorithm is therefore suitable to model structures that emerge due to hydrodynamic instabilities

which are caused by large and sharp contrasts in material parameters (e.g. mechanical strength

and density) between different rock units. The Lagrangian FE formulation is suitable to accu-

rately resolve the small initial geometrical instabilities (i.e. geometrical perturbations) of the

material interfaces that control the instability. The Eulerian re-meshing formulation on the other

hand is suitable to simulate the large strain evolution of structures emerging from initial geomet-

rical instabilities.

The presented algorithm is especially suitable to exactly follow material interfaces in 3-D for

large strains, because (i) the interface-points on the material interface are accurately deformed

with the deforming Lagrangian finite element mesh, and (ii) the element velocities are accurate

also for elements that include integration points with strongly varying material properties, that

is, for elements that are crossed by material interfaces due to re-meshing. Further the presented

3-D algorithm is useful to quantify and visualize finite strain either by finite strain ellipsoids

or by passively deformed initial circles on the material interfaces. Such quantification of finite

strain is useful to better understand the 3-D evolution of processes such as necking and folding

which control to a large extend the evolution of geodynamic processes such as slab detachment

or fold nappe formation. In nature, these processes often exhibit a significant 3-D deformation

and the resulting structures often exhibit a complicated 3-D geometry. Hence, 3-D numerical

models are required to better understand these processes and interpret the observed 3-D data and

geometry.

The simulations applied to the viscous necking during slab detachment were performed in order

to quantify the 3-D deformation during the buoyancy-driven necking of a laterally finite slab

of power-law viscous fluid surrounded by a linear or power-law viscous mantle. The evolution

of localized slab thinning (necking) with increasing vertical bulk extension of the slab is only

weakly dependent on the slab size, the slab shape (symmetric or asymmetric), and the width

of the mantle adjacent to the lateral slab side. During necking of the slab the vertical sides of
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the slab around the depth of necking deflect significantly in the lateral (along-trench) direction.

Absolute values of lateral deflection increase with increasing slab size. This lateral deflection

can be > 100 km, and could explain gaps in seismic tomography cross sections despite the fact

that the slab is still attached.

Further, we performed 3-D numerical simulations of viscous flow to study and quantify the for-

mation of fold nappes during the inversion of a half graben with laterally varying thickness. The

half graben was filled with mechanically competent layers of equel thickness and with weak

material of correspondingly lateraly varying thickness. The simulations show that the thick-

ness of weak material in the half graben has a significant impact on the fold nappe evolution.

Fold nappes that are generated from a thicker half graben have (i) larger amplitudes, (ii) a less

sheared and thinned overturned limb, and (iii) a larger nappe thickness than fold nappes that

are generated from a thinner half graben. These three differences are observed between the

Morcles and Doldenhorn nappes. Our simulations therefore support the field based interpre-

tations that the first order structural differences between the two nappes are due to a differnt

pre-Alpine thickness of the half graben in which the sediments that build now the two nappes

have been deposited during mainly the Mesozoic. The simulations also show that during the

shortening the half graben is closed and forms a mullion-like structure which also agrees with

field observations. The viscous flow simulations can generate many first order features of the

Morcles-Doldenhorn nappe system and suggest that ductile deformation (and not brittle) was

likely the dominant deformation behaviour during fold nappe formation and related basement

deformation.

The simulations also show that the laterally varying fold amplification causes a fold-axis-parallel

extension of up to 5% in the layers although the bulk extension is zero. Such extension could

explain brittle extensional structures that are observed in the competent layers of the fold nappes.

However, this internal extension cannot explain the overall orogen-parallel extension in the Hel-

vetic nappe system which is significantly larger.

We also performed 3-D numerical simulations of viscous flow to study and quantify the impact

of an oblique half graben in the basement on the basement uplift during shortening accompanied

by orthogonal extension. The results show that the half graben can cause a laterally varying

basement uplift which generates a depression similar to the Rawil depression. The amplitude of

the depression depends on the initial orientation of the graben and the power-law stress exponent
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of the basement and sediments. The maximal axial plunge of the modelled depression is only

approximately 10 degrees whereas the maximal observed plunge of the Rawil depression is

approximately 30 degrees. The results therefore indicate that an oblique graben in the basement

may have contributed to the formation of the Rawil depression but that additional processes are

required to generate the observed geometry of the Rawil depression.

In general the presented PhD thesis showed the importance of the third dimension for the nu-

merical modelling of geological structures. The 3-D deformation of latterally varying initial ge-

ometries as for example a latteraly varying graben depth in a compressed half graben, a laterally

varying slab length of a detaching slab or an oblique graben (i.e., weak zone) in a compressed

and streched model configuration is not trivial at all. A laterally variyng initial geometry influ-

ences the final geometry significantly. The presented algorithm PINK-3D is suitable to simulate

the deformation of such laterally varying initial geometries as well as to quantify and visualize

quantities as stress, strain rate, effective viscosity or finite strain in three dimensions. The ad-

vantage of the presented 3-D numerical algorithm is that it can be run on a standard workstation

with MATLAB without the need of installing any additional libraries.
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Intersection ellipses

Stress and strain in tree dimensions are described by ellipsoids in 3-D space. However, mea-

surement in the field usually include only two-dimensional data on a plane (e.g. the material in-

terface). Therefore, we are interested in the intersection of an ellipsoid with a plane. There exist

different analytical solutions to solve this problem (Ramsay, 1967; Ferguson, 1979; Gendzwill

and Stauffer, 1981) which calculate the intersection ellipse on a given plane or the ellipsoid

from three intersection ellipses. However, we use a numerical solution which is easier to imple-

ment.

A.1. Calculation of intersection ellipses

The function which calculates the ellipsoid and the intersection ellipses on a plane through the

ellipsoidss center is called: fct_ellipsoid_intersection_hc. The inputs for this function are the

center point of the ellipsoid, the Tensor which describes the ellipsoid (Cauchy-Green tensor)

and the normal vector of the plane. The outputs are the surface coordinates of the ellipsoid,

the coordinates of the intersection ellipse, the indexes of the halfe axis and the half axis of the

ellipsoid as well as the coordinates of the intersection ellipse. The normal vector of a plane can

be easily found using tree points on the plane (A,B,C) and take the crossproduct of two vectors

on the plane (AB,AC). Note, that the normal vector should be normalized by its own length.

Here we give a step by step description of the fuction:

1. Find eigenvalues of tensor T and define the half axis.

2. Rotate ellipsoid coordinates and normal vector such that the half axis are parallel to the

coordinate system.

3. Create ellipsoid using the Matlab function "ellipsoid".
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4. In order to find the intersection points between the ellipsoid and the plane we define a line

on the plane which goes through the center of the ellipsoid. For this line we search for the

intersection points with the ellipsoid. Then we rotate the line in small steps and calculate

the intersection points again. For this we define a vector α which goes in small steps from

0 to π . The line is then defined as:

x = ytanα (A.1)

5. The equation for the plane is given by:

dx+ ey+ f z = 0 (A.2)

where (d, e, f) is the normal vector to the plane which goes through (0,0,0)

6. The equation for the ellipsoid is:

x2

a2
+

y2

b2
+

z2

c2
= 1 (A.3)

where a, b and c are the half axis in x-, y- and z- direction, respectively.

7. The line defined in equation A.1 is part of the plane. Therefore, we substitue equation A.1

into the equation A.2 for the plane:

dytanα + ey+ f z = 0 (A.4)

and solve it for y:

y =
− f

dtanα + e
z (A.5)
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8. In order to find the intersection of this line with the ellipsoit we substitute the equation

A.1 and A.5 into the equation A.3 for the ellipsoid:

B2z2

a2
+

A2z2

b2
+

z2

c2
= 1 (A.6)

where A =− f/(dtanα + e) and B =− f tanα/(dtanα + e) .

9. Now, we solve equation A.6 for z and get:

z2 =
a2b2c2

B2b2c2 +A2a2c2 +a2b2
= E2 (A.7)

which will give us two solutions for z:

z =±E (A.8)

10. Together with equation A.1 and A.5 we end up with:

z =±E (A.9)

y = Az (A.10)

x = Bz (A.11)

11. These two solutions lie on the initially defined line opposite of each other. If we now

calculate the distance between all these pairs of points, take the maximum and minimum

we will find the half axis of the intersection ellipsoid.

12. Save all coordinates of the points of the intersection ellipse as well as indexes for the half

axis for later visualization.

13. Rotate coordinates of the ellipsoid and the intersection ellipse back to the original coordi-

nate system and translate both to the original center point.
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Figure A.1 shows the intersection ellipse and the its half axis of a given general ellipsoid and a

given plane.

Figure A.1: Intersection ellipse (pink) and its half axis (black) for a given ellipsoid (blue) and a given

plane (cyan).

The presented algorithm to calculate and visualize the intersection ellipse of a given ellipsoid

and a given plane can be used to for example visualize the finite strain on material interfaces.

Figure A.2 shows the results for 3-D fold nappe formation with an initial laterally varying geom-

etry. The figure shows the intersection ellipses and the their half axis of the finite strain ellipsoids

with the material interface between the basement and sediments as well as on the material in-
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terface between competent and weak sediments. Note, that the intersection ellipses are oriented

tangentially to the material interfaces.

Figure A.2: Intersection ellipses for fintie strain ellipsoid on the material interfaces. The colors indicate

the didmensionless topography of the material interfaces.
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