STABILIZED MIXED APPROXIMATION OF AXISYMMETRIC BRINKMAN FLOWS∗, ∗∗

VERÓNICA ANAYA1, DAVID MORA2, CARLOS REALES3 AND RICARDO RUIZ-BAIER4

Abstract. This paper is devoted to the numerical analysis of an augmented finite element approximation of the axisymmetric Brinkman equations. Stabilization of the variational formulation is achieved by adding suitable Galerkin least-squares terms, allowing us to transform the original problem into a formulation better suited for performing its stability analysis. The sought quantities (here velocity, vorticity, and pressure) are approximated by Raviart–Thomas elements of arbitrary order \(k \geq 0 \), piecewise continuous polynomials of degree \(k + 1 \), and piecewise polynomials of degree \(k \), respectively. The well-posedness of the resulting continuous and discrete variational problems is rigorously derived by virtue of the classical Babuška–Brezzi theory. We further establish \textit{a priori} error estimates in the natural norms, and we provide a few numerical tests illustrating the behavior of the proposed augmented scheme and confirming our theoretical findings regarding optimal convergence of the approximate solutions.

Mathematics Subject Classification. 65N30, 65N12, 76D07, 65N15, 65J20.

1. Introduction

Cylindrical symmetry of both the data and the domain very often allows transforming an initially three-dimensional flow problem into a two-dimensional one, typically implying a substantial reduction in computational complexity. Apart from the advantages of considering an intrinsically axisymmetric problem in its natural configuration, such a reduction is particularly appealing in case of mixed approximations where additional...
unknowns are introduced in order to accurately recover other fields of physical interest. The attached difficulty usually resides in the analysis and derivation of proper schemes to discretize axisymmetric formulations, due to the presence of singularities associated to weighted functional spaces and their respective finite dimensional counterparts, which can eventually translate into numerical singularity near the rotation axis (considered as \((r = 0, z)\)), since a factor of \(1/r\) appears in all volume integrals.

The main purpose here is to propose and analyze an augmented mixed finite element method for the accurate discretization of the axisymmetric Brinkman problem in its vorticity-velocity-pressure formulation. This system stands as a prototype model for the study of Stokes and Darcy flow regimes (see e.g. [43]), and it can also be employed to study semi-discretizations of transient Stokes equations. The vorticity (which is a scalar field in the axisymmetric case) is a sought quantity of key importance in e.g. subsurface flow, blood flow, and other applications where the patterns of rotational flow are of interest [42,44], and it can be directly obtained from the present formulation, without resorting to numerical postprocessing (typically prone to accuracy loss unless high order methods are employed). Moreover, for external flows vorticity boundary data are more natural than e.g. pressure conditions, and velocity-vorticity formulations are more advantageous in problems defined in non-inertial frames of reference [46]. Also, in many regimes the vorticity gives much clearer insight about flow instabilities and it is typically concentrated in a specific region of the domain, where enough accuracy is mandatory. Augmentation of the variational formulation with penalized residual-based terms, usually allows to recast the saddle point problem as a strongly elliptic system, and it also provides a way of bypassing the so-called kernel property, or to yield inf-sup stable continuous and discrete formulations (see for instance, [27]).

Our choice for the discretization of the governing equations consists in Raviart–Thomas elements of order \(k\) for the velocity field, piecewise continuous polynomials of degree \(k + 1\) for the vorticity, and piecewise discontinuous polynomials of degree \(k\) for the pressure field, for \(k \geq 0\).

1.1. Related work and specifics of this contribution

There exist several references dealing with the mathematical and numerical analysis of axisymmetric problems. For instance, the strategy of reducing the spatial dimension in finite element methods was applied to the axisymmetric Laplace problem in the early work [41]. Later on, numerous studies have been dedicated to different axisymmetric formulations of the Stokes equations employing finite differences [32,39], and spectral, Mortar, Taylor–Hood, and stabilized finite elements (see [7,10,13,14,17,22,37,38,45]). Raviart–Thomas and Brezzi–Douglas–Marini mixed approximations for axisymmetric Darcy, and Stokes–Darcy flows were analyzed in [25,26] using a generalization of the so-called Stenberg criterion. Recent contributions focusing on the design of numerical methods for axisymmetric formulations of coupled flow and transport problems can be found in e.g. [3,20,21,33]. On the other hand, time-dependent and static Maxwell equations in axisymmetric singular domains were studied in [8,9] by introducing a method based on a splitting of the space of solutions into a regular subspace and a singular one. In [36], a method was introduced to solve a time-harmonic Maxwell equation in axisymmetric domains using a Fourier decomposition. Such a technique was also employed in [41] for the axisymmetric Laplace equation. The development of multigrid schemes and rigorous estimates in weighted spaces was carried out in [24] for related problems. More recently, transient axisymmetric formulations with more general Ohm’s laws including velocity terms and being relevant in some industrial applications have been studied in [15,16].

Up to our knowledge, the numerical analysis of finite element approximations of the generalized Stokes (or Brinkman) problem for the axisymmetric case has not been carried out yet. Nevertheless, in the Cartesian setting, there exist several methods including fully mixed, augmented, and stabilized formulations [11,12,29], also incorporating robust estimates with respect to viscosity [34,40], whereas only a few recent contributions include formulations in terms of velocity, vorticity and pressure [5,6,48].

In this regard, we stress that the present study represents an extension to the vorticity-based Stokes problem analyzed in [4] in the sense that here we include the zeroth-order velocity component and introduce an axisymmetric formulation. On the other hand, the vorticity-based formulations for Brinkman equations analyzed in [5,6,48] are restricted to Cartesian two-dimensional domains, and therefore many practical applications
remain out of reach. An axisymmetric flow model was derived from a three-dimensional scenario in [1,2], where the proposed numerical method was based on spectral finite elements. Here we have chosen a different discretization that retains optimal accuracy in complex domains and in the presence of coefficients with high gradients, and which requires reasonable regularity assumptions for the exact solutions and the data.

Our analysis of existence and uniqueness of solution to the continuous axisymmetric problem is carried out by introducing an augmented formulation that arises from including penalized least-squares terms to the original variational formulation. We point out that this step is not necessary in the continuous case, but (as we will address in full detail) the presence of the term $1/r$ in the volume integrals requires some sort of stabilizing terms in the discrete formulation that would further allow us to relax constraints related to e.g. discrete inf-sup conditions. Thus, we opt for augmenting both continuous and discrete problems so that the same arguments can be applied for their solvability analysis. The tools employed to establish the convergence of our scheme consist in a Céa estimate combined with properties of the global Raviart–Thomas and Lagrange interpolation operators.

1.2. Outline

We have structured the contents of this paper as follows. The remainder of this Section introduces the classical Brinkman problem in Cartesian coordinates, along with its reduction to the axisymmetric case. We also present a mixed formulation for this problem, and summarize some preliminary results needed for its analysis. Section 2, is devoted to the statement of a least-squares-based augmented formulation to the axisymmetric generalized Stokes problem, and we perform the solvability analysis employing standard arguments from the Babuška–Brezzi theory. The mixed finite element formulation is presented in Section 3, where we also rigorously derive the stability analysis and optimal error estimates. We continue with a few illustrative numerical examples collected in Section 4, which confirm the robustness and expected convergence properties of the proposed stabilized method, and we finally summarize the main aspects of this contribution in Section 5.

1.3. Linear Brinkman equations in Cartesian coordinates

The linear Brinkman equations governing the motion of an incompressible fluid can be written as the following boundary value problem:

\begin{align*}
\dot{\sigma} \mathbf{u} - \nu \Delta \mathbf{u} + \nabla \hat{p} &= \mathbf{f} \quad \text{in } \Omega, \\
\text{div } \mathbf{u} &= 0 \quad \text{in } \Omega, \\
\mathbf{u} \cdot \mathbf{n} &= 0 \quad \text{on } \partial \Omega, \\
\text{curl } \mathbf{u} \wedge \mathbf{n} &= 0 \quad \text{on } \partial \Omega,
\end{align*}

where $\Omega \subset \mathbb{R}^3$ is a given spatial domain. In this formulation, the sought quantities are the local volume-average velocity \mathbf{u} and the pressure field \hat{p}. The positive model coefficients are the inverse permeability field $\bar{\sigma} \in L^\infty(\Omega)$, with $0 < \bar{\sigma}_{\min} \leq \bar{\sigma}(x, y, z) \leq \bar{\sigma}_{\max}$ a.e. in Ω, and the fluid viscosity $\nu > 0$. For constant permeability, the above system is also known as the generalized Stokes equations, and it allows in particular, to study spatial properties of the solutions to the time-dependent Stokes problem. In fact, the transient Stokes equations read

\begin{align*}
\partial_t \mathbf{u} - \frac{1}{\text{Re}} \Delta \mathbf{u} + \nabla \hat{p} &= \mathbf{f} \quad \text{in } \Omega, \\
\text{div } \mathbf{u} &= 0 \quad \text{in } \Omega,
\end{align*}

which, after applying a backward Euler time discretization of the acceleration term, yield to the following system

\begin{align*}
\frac{1}{\Delta t} \mathbf{u}^{n+1} - \frac{1}{\text{Re}} \Delta \mathbf{u}^{n+1} + \nabla \hat{p}^{n+1} &= \mathbf{f}^{n+1} + \frac{1}{\Delta t} \mathbf{u}^{n} \quad \text{in } \Omega, \\
\text{div } \mathbf{u}^{n+1} &= 0 \quad \text{in } \Omega.
\end{align*}

That is, the solution of (1.2) requires to solve (1.3) at each time step.
Figure 1. Sketch of a full three dimensional domain Ω with boundary Γ and the axisymmetric meridional domain Ω with boundary Γ (left and right, respectively). Here Γ_s stands for the symmetry axis.

When the forcing term and the inverse permeability are axisymmetric, they can be replaced by f and σ, respectively, with $0 < \sigma_{\text{min}} \leq \sigma(r,z) \leq \sigma_{\text{max}}$ a.e. in Ω, and system (1.1a)–(1.1d) can be recast as two uncoupled problems in the so-called meridional domain Ω (see Fig. 1): a problem involving only the unknown u_θ, and a problem with unknowns u_r, u_z and p. Here, we focus on the second case.

1.4. Preliminaries and axisymmetric formulation

In this section, we define appropriate weighted Sobolev spaces that will be used in the sequel and establish some of their properties; the corresponding proofs can be found in [13, 31, 41] (see also [24, 30, 35] for further general results on weighted Sobolev spaces, and some applications, respectively).

For an integer $\ell \geq 0$ and a real $1 \leq q \leq \infty$, $L^q(\Omega)$ is the set of measurable functions φ such that $(\int_\Omega \varphi^q \, dx)^{1/q} < \infty$ and $W^{\ell,q}(\Omega)$ denotes the usual Sobolev space of functions whose derivatives up to order ℓ are in $L^q(\Omega)$. Unless otherwise specified, we denote vector variables and spaces in bold.

In general, we will denote with \cdot a quantity associated to the three-dimensional domain Ω, whereas vector fields associated to the axisymmetric restriction will be denoted by $v = (v_r, v_z)$. Let us also recall that the axisymmetric counterparts of the usual differential operators acting on vectors and scalars read

$$\text{div}_v v := \partial_z v_z + \frac{1}{r} \partial_r (rv_r) = \partial_r v_r + r^{-1} v_r + \partial_z v_z, \quad \text{rot } v := \partial_r v_z - \partial_z v_r,$$

$$\nabla \varphi := (\partial_r \varphi, \partial_z \varphi)^T, \quad \text{curl}_v \varphi := (\partial_z \varphi, -r^{-1} \partial_r (r \varphi))^T.$$

After introducing the (scaled) vorticity field $\omega = \sqrt{\nu} \text{rot } u$, we notice that system (1.1a)–(1.1d) is equivalent to

$$\begin{align*}
\sigma u + \sqrt{\nu} \text{curl}_v \omega + \nabla p &= f \quad \text{in } \Omega, \\
\omega - \sqrt{\nu} \text{rot } u &= 0 \quad \text{in } \Omega, \\
\text{div}_v u &= 0 \quad \text{in } \Omega, \\
u_u \cdot n &= 0 \quad \text{on } \Gamma, \\
\omega &= 0 \quad \text{on } \Gamma.
\end{align*}$$

(1.4a)–(1.4e)
At times, we will need appropriate weighted Sobolev spaces which we introduce in what follows, along with some of their main properties; the corresponding proofs and further general results about weighted Sobolev spaces can be found in e.g. [13, 35, 41]. To alleviate the notation, we will denote the partial derivatives by \(\partial_r \) and \(\partial_z \).

Let \(L^2_\alpha(\Omega) \) denote the weighted Lebesgue space of all measurable functions \(\varphi \) defined in \(\Omega \) for which

\[
\| \varphi \|^2_{L^2_\alpha(\Omega)} := \int_\Omega |\varphi|^2 r^\alpha \, drdz < \infty.
\]

The subspace \(L^2_{1,0}(\Omega) \) of \(L^2_1(\Omega) \) contains functions \(q \) with zero weighted integral:

\[
\int_\Omega qr \, drdz = 0.
\]

The weighted Sobolev space \(\tilde{H}^k_1(\Omega) \) consists of all functions in \(L^2_1(\Omega) \) whose derivatives up to order \(k \) are also in \(L^2_1(\Omega) \). This space is provided with norms and semi-norms defined in the standard way; in particular,

\[
|\varphi|^2_{\tilde{H}^1_1(\Omega)} := \int_\Omega \left(|\partial_r \varphi|^2 + |\partial_z \varphi|^2 \right) r \, drdz,
\]

and \(\tilde{H}^1_1(\Omega) := H^1_1(\Omega) \cap L^2_{-1}(\Omega) \) endowed with the following \(\nu \)-dependent norm

\[
\| \varphi \|_{\tilde{H}^1_1(\Omega)} := \left(\| \varphi \|^2_{L^2_1(\Omega)} + \nu \| \varphi \|^2_{\tilde{H}^1_1(\Omega)} + \nu \| \varphi \|^2_{L^2_{-1}(\Omega)} \right)^{1/2},
\]

is a Hilbert space. We will also require the following weighted scalar and vectorial functional spaces:

\[
\begin{align*}
H^1_{1,0}(\Omega) &:= \{ \varphi \in H^1_1(\Omega); \varphi = 0 \text{ on } \Gamma \}, \\
\tilde{H}^1_{1,0}(\Omega) &:= \{ \varphi \in \tilde{H}^1_1(\Omega); \varphi = 0 \text{ on } \Gamma \}, \\
H(\text{div}_a, \Omega) &:= \{ v \in L^2_1(\Omega)^2; \text{div}_a v \in L^1_1(\Omega) \}, \\
H_0(\text{div}_a, \Omega) &:= \{ v \in L^2_1(\Omega)^2; \text{div}_a v = 0 \text{ in } \Omega \}, \\
H(\text{curl}_a, \Omega) &:= \{ \varphi \in L^2_1(\Omega); \text{curl}_a \varphi \in L^2_1(\Omega)^2 \}, \\
H(\text{rot}, \Omega) &:= \{ v \in L^2_1(\Omega)^2; \text{rot} v \in L^2_1(\Omega) \}.
\end{align*}
\]

The spaces \(H(\text{div}_a, \Omega) \) and \(H(\text{curl}_a, \Omega) \) are endowed respectively by the norms:

\[
\| v \|_{H(\text{div}_a, \Omega)} := \left(\| v \|^2_{L^2_1(\Omega)^2} + \| \text{div}_a v \|^2_{L^2_1(\Omega)} \right)^{1/2}, \\
\| \varphi \|_{H(\text{curl}_a, \Omega)} := \left(\| \varphi \|^2_{L^2_1(\Omega)} + \nu \| \text{curl}_a \varphi \|^2_{L^2_1(\Omega)^2} \right)^{1/2}.
\]

In addition, notice that the norms \(\| \cdot \|_{H(\text{curl}_a, \Omega)} \) and \(\| \cdot \|_{\tilde{H}^1_1(\Omega)} \) are equivalent, and for any \(\varphi \in \tilde{H}^1_1(\Omega) \) they verify the following relations:

\[
\sqrt{\nu} \| \text{curl}_a \varphi \|^2_{L^2_2(\Omega)^2} \leq \sqrt{2} \| \varphi \|^2_{\tilde{H}^1_1(\Omega)}, \quad (1.5)
\]

\[
\| \varphi \|^2_{\tilde{H}^1_1(\Omega)} \leq \| \varphi \|^2_{H(\text{curl}_a, \Omega)} \leq 2 \| \varphi \|^2_{\tilde{H}^1_1(\Omega)}. \quad (1.6)
\]

We now collect some useful results to be employed in the sequel (see [2]).

Lemma 1.1. Let \(H^{1/2}_1(\Gamma) \) be the trace space of functions in \(H^1_1(\Omega) \). The normal trace operator on \(\Gamma \) is defined by \(v \mapsto v \cdot n|_\Gamma \), and it is continuous from \(H(\text{div}_a, \Omega) \) into the dual space of \(H^{1/2}_1(\Gamma) \).

Lemma 1.2. For any \(v \in H(\text{div}_a, \Omega) \) and \(q \in H^1_1(\Omega) \), the following Green formula holds

\[
\int_\Omega \text{div}_a vqr \, drdz + \int_\Omega v \cdot \nabla qr \, drdz = \int_\Gamma v \cdot nq \, ds.
\]
Lemma 1.3. For any $v \in H(\text{rot}, \Omega)$ and $\varphi \in \tilde{H}_1^1(\Omega)$, we have the following Green formula

$$\int_{\Omega} v \cdot \text{curl}_a \varphi r \, drdz - \int_{\Omega} \varphi \text{rot} vr \, drdz = \int_{\Gamma} v \cdot t\varphi \, ds.$$

Let us now test system (1.4a)-(1.4e) against functions $v \in H_0(\text{div}, \Omega)$, $\varphi \in \tilde{H}_1^1(\Omega)$ and $q \in L^2_{1,0}(\Omega)$:

$$\int_{\Omega} \sigma u \cdot vr \, drdz + \sqrt{\nu} \int_{\Omega} \text{curl}_a \omega \cdot vr \, drdz + \int_{\Omega} \nabla p \cdot vr \, drdz = \int_{\Omega} f \cdot vr \, drdz,$$

$$\int_{\Omega} \omega \varphi r \, drdz - \sqrt{\nu} \int_{\Omega} \text{rot} u \varphi r \, drdz = 0,$$

$$\int_{\Omega} \text{div}_a uqr \, drdz = 0.$$

Combining Lemmas 1.2 and 1.3 with a direct application of the boundary conditions yields

$$\int_{\Omega} \sigma u \cdot vr \, drdz + \sqrt{\nu} \int_{\Omega} \text{curl}_a \omega \cdot vr \, drdz - \int_{\Omega} \text{div}_a vpr \, drdz = \int_{\Omega} f \cdot vr \, drdz,$$

$$\int_{\Omega} \omega \varphi r \, drdz - \sqrt{\nu} \int_{\Omega} u \cdot \text{curl}_a \varphi r \, drdz = 0,$$

$$\int_{\Omega} \text{div}_a uqr \, drdz = 0.$$

This variational problem can be rewritten as follows: Find $(u, \omega, p) \in H_0(\text{div}, \Omega) \times \tilde{H}_1^1(\Omega) \times L^2_{1,0}(\Omega)$ such that

$$a(u, v) + b(v, \omega) + c(v, p) = F(v) \quad \forall v \in H_0(\text{div}, \Omega),$$

$$b(u, \varphi) - d(\omega, \varphi) = 0 \quad \forall \varphi \in \tilde{H}_1^1(\Omega),$$

$$c(u, q) = 0 \quad \forall q \in L^2_{1,0}(\Omega),$$

(1.7)

where the involved bilinear forms and linear functionals are defined as follows

$$a(u, v) := \int_{\Omega} \sigma u \cdot vr \, drdz, \quad b(v, \omega) := \sqrt{\nu} \int_{\Omega} \text{curl}_a \omega \cdot vr \, drdz,$$

$$c(v, p) := -\int_{\Omega} \text{div}_a vpr \, drdz, \quad d(\omega, \varphi) := \int_{\Omega} \omega \varphi r \, drdz, \quad F(v) := \int_{\Omega} f \cdot vr \, drdz.$$

2. A STABILIZED MIXED FORMULATION FOR THE AXISYMMETRIC BRINKMAN PROBLEM

In this section, we introduce and analyze a mixed variational formulation of the problem. As we will address in full detail, an augmented dual-mixed variational formulation will permit us to analyze the problem directly under the classical Babuška–Brezzi theory [19,27].

2.1. Problem statement and preliminary results

Our goal here is to introduce an augmented dual-mixed variational formulation of system (1.4a)-(1.4e), where our strategy is to enrich the mixed variational formulation (1.7) with a residual term arising from equations (1.4a) and (1.4c).

More precisely, we add to the variational problem (1.7) the following Galerkin least-squares terms:

$$\kappa_1 \sqrt{\nu} \int_{\Omega} (\sigma u + \sqrt{\nu} \text{curl}_a \omega + \nabla p - f) \cdot \text{curl}_a \varphi r \, drdz = 0 \quad \forall \varphi \in \tilde{H}_1^1(\Omega),$$

(2.1)
where \(\kappa_1 \) and \(\kappa_2 \) are positive parameters to be specified later. From Lemma 1.3, the fact that \(\text{rot}(\nabla p) = 0 \), and the boundary condition given in (1.4e), we may rewrite (2.1) equivalently as follows:

\[
\kappa_1 \sqrt{\nu} \int_{\Omega} \sigma \mathbf{u} \cdot \mathbf{u} v r \, dr dz + \kappa_2 \int_{\Omega} \mathbf{u} \cdot \mathbf{u} v r \, dr dz = \sqrt{\nu} \int_{\Omega} \mathbf{f} \cdot \mathbf{u} v r \, dr dz,
\]

for all \(\varphi \in \tilde{H}^1_{1,0}(\Omega) \). In this way, and in addition to (1.7), we propose the following augmented variational formulation:

Find \(((\mathbf{u}, \omega), p) \in (H_0(\text{div}, \Omega) \times \tilde{H}^1_{1,0}(\Omega)) \times L^2_{1,0}(\Omega) \) such that

\[
A((\mathbf{u}, \omega), (\mathbf{v}, \varphi)) + B((\mathbf{v}, \varphi), p) = G(\mathbf{v}, \varphi) \quad \forall (\mathbf{v}, \varphi) \in H_0(\text{div}, \Omega) \times \tilde{H}^1_{1,0}(\Omega),
\]

\[
B((\mathbf{u}, \omega), q) = 0 \quad \forall q \in L^2_{1,0}(\Omega),
\]

where the bilinear forms and the linear functional are defined by

\[
A((\mathbf{u}, \omega), (\mathbf{v}, \varphi)) := \int_{\Omega} \sigma \mathbf{u} \cdot \mathbf{v} r \, dr dz + \sqrt{\nu} \int_{\Omega} \mathbf{curl} \mathbf{u} \cdot \mathbf{v} r \, dr dz - \sqrt{\nu} \int_{\Omega} \mathbf{curl} \mathbf{u} \cdot \mathbf{v} r \, dr dz
\]

\[
+ \int_{\Omega} \omega \varphi r \, dr dz + \kappa_1 \sqrt{\nu} \int_{\Omega} \sigma \mathbf{u} \cdot \mathbf{u} \varphi r \, dr dz
\]

\[
+ \kappa_1 \sqrt{\nu} \int_{\Omega} \mathbf{curl} \mathbf{u} \cdot \mathbf{u} \varphi r \, dr dz + \kappa_2 \int_{\Omega} \text{div} \mathbf{u} \text{div} \mathbf{v} r \, dr dz,
\]

\[
B((\mathbf{v}, \varphi), q) := - \int_{\Omega} q \text{div} \mathbf{v} r \, dr dz,
\]

and

\[
G(\mathbf{v}, \varphi) := \kappa_1 \sqrt{\nu} \int_{\Omega} \mathbf{f} \cdot \mathbf{u} \varphi r \, dr dz + \int_{\Omega} \mathbf{f} \cdot \mathbf{v} r \, dr dz,
\]

for all \((\mathbf{u}, \omega), (\mathbf{v}, \varphi) \in H_0(\text{div}, \Omega) \times \tilde{H}^1_{1,0}(\Omega) \), and \(q \in L^2_{1,0}(\Omega) \).

2.2. Unique solvability of the stabilized formulation

Next, we will prove that our stabilized variational formulation (2.3) satisfies the hypotheses of the Babuška–Brezzi theory, which yields the unique solvability and continuous dependence on the data of this variational formulation.

First, we observe that the bilinear forms \(A \) and \(B \), and the linear functional \(G \) are bounded by a constant independent of \(\nu \). More precisely, there exist \(C_1, C_2, C_3 > 0 \) such that

\[
|A((\mathbf{u}, \omega), (\mathbf{v}, \varphi))| \leq C_1 \|(\mathbf{u}, \omega)\|_{H(\text{div}, \Omega) \times \tilde{H}^1_{1,0}(\Omega)} \|(\mathbf{v}, \varphi)\|_{H(\text{div}, \Omega) \times \tilde{H}^1_{1,0}(\Omega)},
\]

\[
|B((\mathbf{v}, \varphi), q)| \leq C_2 \|(\mathbf{v}, \varphi)\|_{H(\text{div}, \Omega) \times \tilde{H}^1_{1,0}(\Omega)} \|q\|_{L^2_{1,0}(\Omega)},
\]

\[
|G(\mathbf{v}, \varphi)| \leq C_3 \|(\mathbf{v}, \varphi)\|_{H(\text{div}, \Omega) \times \tilde{H}^1_{1,0}(\Omega)},
\]

The following lemma shows that the bilinear form \(A \) is elliptic over the whole space \(H_0(\text{div}, \Omega) \times \tilde{H}^1_{1,0}(\Omega) \), provided that the stabilization parameters \(\kappa_1 \) and \(\kappa_2 \) are chosen adequately.

Lemma 2.1. Suppose that \(\kappa_1 \in (0, \frac{1}{\sigma_{\text{min}}}((\omega)) \) and \(\kappa_2 > 0 \). Therefore, there exists \(\alpha > 0 \) independent of \(\nu \), such that

\[
A((\mathbf{v}, \varphi), (\mathbf{v}, \varphi)) \geq \alpha \|(\mathbf{v}, \varphi)\|^2_{H(\text{div}, \Omega) \times \tilde{H}^1_{1,0}(\Omega)} \quad \forall (\mathbf{v}, \varphi) \in H_0(\text{div}, \Omega) \times \tilde{H}^1_{1,0}(\Omega).
\]
Proof. Given \((v, \varphi) \in \mathbf{H}_0(\text{div}, \Omega) \times \bar{H}^1_{1,0}(\Omega)\), a combination of (2.4) with Cauchy–Schwarz inequality readily gives

\[
A((v, \varphi), (v, \varphi)) \geq \sigma_{\text{min}} \|v\|^2_{L^2(\Omega)} + \|\varphi\|^2_{L^2(\Omega)} + \kappa_1 \sqrt{\sigma_{\text{min}}} \int_{\Omega} v \cdot \text{curl}_a \varphi \, d\tau d\zeta
\]

\[
+ \kappa_1 \nu \|\text{curl}_a \varphi\|_{L^2(\Omega)}^2 + \kappa_2 \|\text{div}_a v\|_{L^2(\Omega)}^2,
\]

\[
\geq \sigma_{\text{min}} \|v\|^2_{L^2(\Omega)} + \|\varphi\|^2_{L^2(\Omega)} - \kappa_1 \sqrt{\sigma_{\text{min}}} \|v\|_{L^2(\Omega)}^2 \|\text{curl}_a \varphi\|_{L^2(\Omega)}^2
\]

\[
+ \kappa_1 \nu \|\text{curl}_a \varphi\|_{L^2(\Omega)}^2 + \kappa_2 \|\text{div}_a v\|_{L^2(\Omega)}^2,
\]

\[
\geq \alpha \|v\|^2_{H(\text{div},\Omega) \times H^1(\Omega)} + \|\varphi\|^2_{H^1(\text{div},\Omega) \times H^1(\Omega)},
\]

where we have also employed (1.6). We observe that the constant \(\alpha\) in the above estimate is depending on \(\kappa_1, \kappa_2, \sigma\), but not on the viscosity \(\nu\). The proof is then complete. \(\square\)

The following result establishes the corresponding inf-sup condition for the bilinear form \(B\) (see (2.5)). Its proof is a direct consequence of the three-dimensional corresponding inf-sup condition (see [18], Lem. IX.1). For more details we refer to e.g. ([2], Lem. 2.6).

Lemma 2.2. There exists \(\beta > 0\) independent of \(\kappa_1, \kappa_2, \sigma\) and \(\nu\), such that the following holds

\[
\sup_{(v, \varphi) \in \mathbf{H}_0(\text{div}, \Omega) \times \bar{H}^1_{1,0}(\Omega) \atop (v, \varphi) \neq 0} \frac{|B((v, \varphi), q)|}{\|v\|_{H(\text{div},\Omega) \times H^1(\Omega)} \|\varphi\|_{H(\text{div},\Omega) \times H^1(\Omega)}} \geq \beta \|q\|_{L^2(\Omega)} \quad \forall q \in L^2(\Omega).
\]

We are now in a position to state the main result of this section which yields the solvability of the continuous formulation (2.3).

Theorem 2.3. There exists a unique solution \(((u, \omega), p) \in (\mathbf{H}_0(\text{div}, \Omega) \times \bar{H}^1_{1,0}(\Omega)) \times L^2(\Omega)\) to problem (2.3) and there exists a positive constant \(C > 0\), independent of \(\nu\), such that the following continuous dependence result holds:

\[
\|((u, \omega), p)\|_{(\mathbf{H}_0(\text{div},\Omega) \times \bar{H}^1_{1,0}(\Omega)) \times L^2(\Omega)} \leq C \|f\|_{L^2(\Omega)}^2.
\]

Proof. By virtue of Lemmas 2.1 and 2.2, the proof follows from a straightforward application of ([19], Thm. II.1.1). \(\square\)

3. Mixed finite element approximation

In this section, we construct a finite element scheme associated to (2.3), define explicit finite element subspaces yielding the unique solvability of the discrete scheme, derive the *a priori* error estimates, and provide the rate of convergence of the method.
3.1. Statement of the stabilized discrete scheme

Let \(\{ T_h \}_{h>0} \) be a regular family of triangulations of \(\Omega \) by triangles \(T \) with mesh size \(h \). For \(S \subset \Omega \), we denote by \(\mathbb{P}_k(S) \) and \(\tilde{\mathbb{P}}_k(S), k \in \mathbb{N} \cup \{0\} \), the set of polynomials of degree \(\leq k \), and the set of homogeneous polynomials of degree \(k \) on \(S \), respectively. We begin by introducing some notation and basic definitions presented in [25].

First, we recall the definition of the two-dimensional Raviart–Thomas space, next we focus on the axisymmetric case. Let \(E_h \) be the set of all edges of the triangulation \(T_h \), and let \(E(T) \) be the set of its edges, and we define the space \(R_k(\partial T) := \{ \phi \in L^2(\partial T) : \phi_{\gamma} \in \mathbb{P}_k(\gamma), \gamma \in E(T) \} \).

For \(\Omega \subset \mathbb{R}^2, T \in T_h \), let us denote by \(\mathbf{RT}_k(T) \) the Raviart–Thomas space, which is defined by

\[
\mathbf{RT}_k(T) := \mathbb{P}_k(T)^2 + \left[\frac{r}{\zeta} \right] \tilde{\mathbb{P}}_k(T),
\]

where, for \(\mathbf{v} \in \mathbf{RT}_k(T), \mathbf{n}_T \) the unit outer normal on \(\partial T \), the degrees of freedom are given by

\[
\int_{E(T)} \mathbf{v} \cdot \mathbf{n}_T \phi \quad \forall \phi \in R_k(\partial T),
\]

for \(k \geq 0 \), and

\[
\int_T \mathbf{v} \cdot \phi \quad \forall \phi \in \mathbb{P}_{k-1}(T)^2,
\]

for \(k \geq 1 \). Regarding the axisymmetric case, we define \(E^a(T) \) as the set of edges in the triangulation \(T_h \) contained in \(T \), but which do not lie along the symmetry axis \(\Gamma_s \). Additionally, we introduce the set

\[
E^a(T_h) := \bigcup_{T \in T_h} E^a(T),
\]

and define

\[
\mathbf{RT}^a_k(T) := \{ \mathbf{v} \in \mathbf{RT}_k(T) : \mathbf{v} \cdot \mathbf{n}|_{\Gamma_s} = 0 \}
\]

\[
= \left\{ \begin{bmatrix} v_r \\ v_z \end{bmatrix} \in \mathbf{RT}_k(T) : v_r|_{\Gamma_s} = 0 \right\},
\]

where the degrees of freedom (for \(k \geq 0 \)) are given by

\[
\int_{E(T)} \mathbf{v} \cdot \mathbf{n}_T \phi \, dr \, dz \quad \forall \phi \in R_k(\partial T),
\]

and for \(k \geq 1 \), by

\[
\int_T \mathbf{v} \cdot \phi \, dr \, dz \quad \forall \phi \in \mathbb{P}_{k-1}(T)^2.
\]

Let us now make precise the choice of finite element subspaces, for any \(k \geq 0 \):

\[
H_h := \left\{ \mathbf{v}_h \in \mathbf{H}_0(\text{div}, \Omega) : \mathbf{v}_h|_T \in \mathbf{RT}^a_k(T) \ \forall T \in T_h \right\},
\]

\[
Z_h := \left\{ \varphi_h \in \tilde{H}^1_{1,0}(\Omega) : \varphi_h|_T \in \mathbb{P}_{k+1}(T) \ \forall T \in T_h \right\},
\]

\[
Q_h := \left\{ q_h \in L^2_{1,0}(\Omega) : q_h|_T \in \mathbb{P}_k(T) \ \forall T \in T_h \right\}.
\]

Then, the Galerkin scheme associated with the continuous variational formulation (2.3) reads as follows:

Find \((\mathbf{u}_h, \omega_h, p_h) \in (H_h \times Z_h) \times Q_h \) such that

\[
A((\mathbf{u}_h, \omega_h), (\mathbf{v}_h, \varphi_h)) + B((\mathbf{v}_h, \varphi_h), p_h) = G(\mathbf{v}_h, \varphi_h) \quad \forall (\mathbf{v}_h, \varphi_h) \in H_h \times Z_h,
\]

\[
B((\mathbf{u}_h, \omega_h), q_h) = 0 \quad \forall q_h \in Q_h.
\]

(3.4)
Remark 3.1. Notice that the well-posedness of the continuous variational formulation (1.7) can be readily established using, for instance, the recent results from [28] related to a generalization of the Babuška–Brezzi theory (see also our Thm. 2.3). However, the discrete problem (3.4) does not lie in such a framework since the axisymmetric divergence of any \(\mathbf{v}_h \in H_h \) does not belong to \(Q_h \).

3.2. Solvability and stability analysis of the discrete formulation

In view of Remark 3.1, we now devote ourselves to provide discrete counterparts of Lemmas 2.1 and 2.2, which will eventually conclude the solvability and stability of problem (3.4). With this aim, we first state the following result, which is a direct consequence of Lemma 2.1.

Lemma 3.2. Assuming that \(\kappa_1 \in (0, \kappa_2) \) and \(\kappa_2 > 0 \), then there exists \(\alpha > 0 \) independent of \(\nu \) and \(h \), such that

\[
A((\mathbf{v}_h, \varphi_h), (\mathbf{v}_h, \varphi_h)) \geq \alpha \| (\mathbf{v}_h, \varphi_h) \|^2_{H(\text{div}, \Omega) \times H^1_0(\Omega)} \quad \forall (\mathbf{v}_h, \varphi_h) \in H_h \times Z_h.
\]

Remark 3.3. We recall that the constant \(\alpha \) appearing in Lemma 3.2, depends on \(\kappa_1, \kappa_2 \) and \(\sigma \), but it is independent of the viscosity. Notice also that the optimal value for the first augmentation parameter is the middle point of the relevant interval suggested by the stability analysis of Lemmas 2.1 and 3.2, i.e., \(\kappa_1 = 1/\sigma_{\text{min}} \) (see e.g. [5], Sect. 3).

We continue with the following discrete analogue to Lemma 2.2.

Lemma 3.4. There exists \(\hat{\beta} > 0 \) independent of \(\kappa_1, \kappa_2, \sigma, \nu \) and \(h \), such that

\[
\sup_{(\mathbf{v}_h, \varphi_h) \in H_h \times Z_h} \frac{|B((\mathbf{v}_h, \varphi_h), q_h)|}{\| (\mathbf{v}_h, \varphi_h) \|_{H(\text{div}, \Omega) \times H^1_0(\Omega)}} \geq \hat{\beta} \| q_h \|_{L^2_\gamma(\Gamma)} \quad \forall q_h \in Q_h.
\]

Proof. Let \(k \geq 0 \) and \(q_h \in Q_h \). From Theorem 3.4 and Corollary 3.6 in [25], we know that there exist \(\mathbf{v}_h \in H_h \) and \(\hat{\beta} > 0 \) such that

\[
\int_{\Omega} q_h \text{div} \mathbf{v}_h r \, dr \, dz \geq \hat{\beta} \| q_h \|_{L^2_\gamma(\Gamma)}.
\]

Therefore, from this inequality we can assert that

\[
\sup_{(\mathbf{v}_h, \varphi_h) \in H_h \times Z_h} \frac{|B((\mathbf{v}_h, \varphi_h), q_h)|}{\| (\mathbf{v}_h, \varphi_h) \|_{H(\text{div}, \Omega) \times H^1_0(\Omega)}} \geq \frac{|B((\mathbf{v}_h, 0), q_h)|}{\| (\mathbf{v}_h, 0) \|_{H(\text{div}, \Omega) \times H^1_0(\Omega)}}
\]

\[
= \int_{\Omega} q_h \text{div} \mathbf{v}_h r \, dr \, dz \geq \hat{\beta} \| q_h \|_{L^2_\gamma(\Gamma)}.
\]

We are now in a position to state the main result of this section which yields the solvability of the discrete formulation (3.4).

Theorem 3.5. Let \(k \) be a non-negative integer and let \(H_h, Z_h \) and \(Q_h \) be given by (3.1)–(3.3), respectively. Then, there exists a unique solution \(((\mathbf{u}_h, \omega_h), p_h) \in (H_h \times Z_h) \times Q_h \) to problem (3.4) and there exists a positive constant \(C > 0 \) such that the following continuous dependence result holds:

\[
\| ((\mathbf{u}_h, \omega_h), p_h) \|_{H(\text{div}, \Omega) \times H^1_0(\Omega) \times L^2_\gamma(\Gamma)} \leq C \| \mathbf{f} \|_{L^2_\gamma(\Gamma)}
\]

\[
\leq C \| \mathbf{f} \|_{L^2_\gamma(\Gamma)}^2.
\]
Moreover, there exists a constant $\hat{C} > 0$ such that
\[
\|u - u_h\|_{H({\text{div}}_a, \Omega)} + \|\omega - \omega_h\|_{H^1(\Omega)} + \|p - p_h\|_{L^2(\Omega)} \\
\leq \hat{C} \left\{ \inf_{v_h \in H^1(T)} \|u - v_h\|_{H({\text{div}}_a, \Omega)} + \inf_{\varphi_h \in Z_h} \|\omega - \varphi_h\|_{H^1(\Omega)} + \inf_{q_h \in Q_h} \|p - q_h\|_{L^2(\Omega)} \right\},
\]
(3.5)
where C and \hat{C} are independent of ν and h, and the triplet \((u, \omega, p) \in (H^1(\Omega) \times H^1(\Omega)) \times L^2(\Omega)\) is the unique solution to problem (2.3).

Proof. By virtue of Lemmas 3.2 and 3.4, the proof follows from a straightforward application of ([19], Thm. II.1.1).

3.3. Convergence analysis

According to the theorem above, it only remains to prove that $u, \omega,$ and p can be conveniently approximated by functions in H^1_Z, Z_h, and Q_h, respectively. With this purpose, we introduce the Raviart–Thomas global interpolation operator $R_h : H^1_T(\Omega)^2 \to H^1_h$ (see e.g. [25], Appendix). For this operator, we review some properties to be used in the sequel. The corresponding proofs can be found in ([25], Cor. A.6):

Lemma 3.6. For all $v \in H^1_T(\Omega)^2$, with $\mathcal{D} v \in H^1(\Omega)$, and \((\sum_{T \in T_h} \mathcal{D} R_h v^2_{H^1(\Omega)})^{1/2} < \hat{c}\), there exists $C > 0$, independent of h, such that
\[
\|v - R_h v\|_{H(\mathcal{D}, \Omega)} \leq C h^{k+1} \left(\|v\|_{H^{k+1}(\Omega)} + \|\mathcal{D} v\|_{H^1(\Omega)} + \left(\sum_{T \in T_h} \|v\|_{H^{k+1}(\Omega)} \right)^{1/2} \right).
\]

Let P_h be the orthogonal projection from $L^2(\Omega)$ onto the finite element subspace Q_h. We have that P_h satisfies the following error estimate (see [23]):

Lemma 3.7. There exists $C > 0$, independent of h, such that for all $q \in H^1_H(\Omega)$:
\[
\|q - P_h q\|_{L^2(\Omega)} \leq C h^{k+1} \|q\|_{H^1_H(\Omega)}.
\]

On the other hand, for any φ sufficiently smooth, we are able to employ the Lagrange interpolation operator $I_h : H^1(\Omega) \to H^1_h$. Moreover, there holds the following error estimate, whose proof can be found in ([41], Lem. 6.3).

Lemma 3.8. There exists $C > 0$, independent of h, such that for all $\varphi \in H^2(\Omega)$:
\[
\|\varphi - I_h \varphi\|_{H^1(\Omega)} \leq \begin{cases}
C h^{k+1} \|\varphi\|_{H^2(\Omega)} & \text{for } \nu \in (0, 1], \\
C h^{k+1} \nu^{1/2} \|\varphi\|_{H^{k+1}(\Omega)} & \text{for } \nu > 1.
\end{cases}
\]

We now turn to the statement of convergence properties of the discrete problem (3.4).

Theorem 3.9. Let $k \geq 0$ and let H^1_h, Z_h and Q_h be given by (3.1), (3.2), and (3.3), respectively. Let \(((u, \omega), p) \in (H^1_H(\Omega) \times H^1_H(\Omega)) \times L^2(\Omega)\) and $((u_h, \omega_h, p_h)) \in (H^1_h(\Omega) \times Z_h) \times Q_h$ be the unique solutions to the continuous and discrete problems (2.3) and (3.4), respectively. Assume that $u \in H^{k+1}(\Omega)$, $\mathcal{D} u \in H^{k+1}(\Omega)$, \((\sum_{T \in T_h} \|\mathcal{D} R_h u^2_{H^{k+1}(\Omega)}\)^{1/2} < \bar{c}\), $\omega \in H^{k+2}(\Omega)$, and $p \in H^{k+1}(\Omega)$. Then, the following error estimate holds true
\[
\|u - u_h\|_{H(\mathcal{D}, \Omega)} + \|\omega - \omega_h\|_{H^1(\Omega)} + \|p - p_h\|_{L^2(\Omega)} \\
\leq C h^{k+1} \left(\|u\|_{H^{k+1}(\Omega)} + \|\mathcal{D} u\|_{H^{k+1}(\Omega)} + \left(\sum_{T \in T_h} \|v\|_{H^{k+1}(\Omega)} \right)^{1/2} + \gamma \|\omega\|_{H^{k+2}(\Omega)} + \|p\|_{H^{k+1}(\Omega)} \right),
\]
where $\gamma = 1$ for $\nu \in (0, 1]$ or $\gamma = \nu^{1/2}$ for $\nu > 1$, and where $C > 0$, is independent of ν and h.
Proof. The proof follows from (3.5) and error estimates from Lemmas 3.6, 3.7 and 3.8.

Finally, we stress that our developed framework could be easily adapted to analyze other families of finite elements. For instance, considering BDM-based finite elements.

4. Numerical Tests

In what follows, we present four numerical examples illustrating the performance of the FE method described in Section 3, and which confirm its robustness and the previously derived theoretical error bounds.

4.1. Experimental convergence

We start by studying the accuracy of the proposed augmented formulation. This is carried out by computing errors in different norms, between the finite element approximation on successively refined non-uniform partitions T_h of Ω and the following exact solution to (1.4a)–(1.4e):

$$u(r, z) = \frac{r^3(r-1)z(3z-4)}{-r^2(5r-4)z(2z-2)},$$

$$\omega(r, z) = -z^2(z-2)r(15r-8) - r^3(r-1)(6z-4),$$

$$p(r, z) = r^2 + z^2 - 3,$$

(4.1)
defined on the rectangular meridional domain $\Omega = (0, 1) \times (0, 2)$, and satisfying $\mathbf{u} \cdot \mathbf{n} = 0$ on $\Gamma \cup \Gamma^s$ and $\omega = 0$ on Γ_s. In this case, we impose a non-homogeneous Dirichlet condition for the vorticity on Γ, and the model and stabilization parameters are set as $\sigma = 0.1$, $\nu = 0.01$, $\kappa_1 = 1/\sigma$, $\kappa_2 = 0.01$. The approximate solutions computed with the augmented formulation on a mesh with 263,680 triangular elements are presented in Figure 2.
Table 1. Experimental convergence of the augmented $\text{RT}_k^a - P_{k+1} - P_k$ FE approximation ($k = 0$, top rows, and $k = 1$ bottom rows) of the steady axisymmetric Brinkman flow with respect to exact solutions.

<table>
<thead>
<tr>
<th>d.o.f.</th>
<th>h</th>
<th>$e(u_h)_{H(\text{div},\Omega)}$</th>
<th>$e(\omega_h)_{H^1(\Omega)}$</th>
<th>$e(p_h)_{L^2(\Omega)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>h</td>
<td>h</td>
<td>h</td>
</tr>
<tr>
<td>Augmented $\text{RT}_0^a - P_1 - P_0$ finite elements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1.414210</td>
<td>0.526498</td>
<td>-</td>
<td>0.183847</td>
</tr>
<tr>
<td>61</td>
<td>0.707107</td>
<td>0.364212</td>
<td>0.957705</td>
<td>0.086790</td>
</tr>
<tr>
<td>217</td>
<td>0.353553</td>
<td>0.019496</td>
<td>0.622498</td>
<td>0.040179</td>
</tr>
<tr>
<td>817</td>
<td>0.176777</td>
<td>0.009621</td>
<td>0.622498</td>
<td>0.040179</td>
</tr>
<tr>
<td>3169</td>
<td>0.088388</td>
<td>0.009621</td>
<td>0.622498</td>
<td>0.040179</td>
</tr>
<tr>
<td>12481</td>
<td>0.044194</td>
<td>0.009621</td>
<td>0.622498</td>
<td>0.040179</td>
</tr>
<tr>
<td>49537</td>
<td>0.022097</td>
<td>0.009621</td>
<td>0.622498</td>
<td>0.040179</td>
</tr>
<tr>
<td>197377</td>
<td>0.011048</td>
<td>0.009621</td>
<td>0.622498</td>
<td>0.040179</td>
</tr>
<tr>
<td>789583</td>
<td>0.005235</td>
<td>0.009621</td>
<td>0.622498</td>
<td>0.040179</td>
</tr>
</tbody>
</table>

Augmented $\text{RT}_1^a - P_2 - P_1$ (discontinuous) finite elements				
53	1.414210	0.689210	0.152660	-
185	0.707107	0.204407	1.813379	0.034605
689	0.353553	0.052878	1.950742	0.008639
2657	0.176777	0.013985	1.918736	0.002130
10433	0.088388	0.003552	1.977039	0.000475
41345	0.044194	0.000888	1.998771	0.000104
164609	0.022097	0.000218	2.024992	2.504e-5
656897	0.011048	5.464e-5	1.998801	6.099e-6
2624513	0.005234	1.353e-5	1.996387	1.502e-6

We also compute rates of convergence from one refinement level (associated to a partition of size h) to the next one (with a mesh of size $\hat{h} < h$) as

$$\text{rate}_h = \frac{\log(\text{error}_h/\text{error}_{\hat{h}})}{\log(h/\hat{h})}$$

These values are displayed in Table 1 for two families of finite elements $\text{RT}_k^a - P_{k+1} - P_k$, with $k = 0$ and $k = 1$, where we observe a convergence of order h^{k+1} for all fields in the relevant norms.

4.2. Axisymmetric Brinkman flow on a settling tank

In our next example, we simulate a common scenario in wastewater treatment processes, that is a settling tank, where the accurate rendering of flow is of interest. The geometry depicted in Figure 3 (see also [4, 21]) represents a half cross-section of a cylindrical vessel with the following types of boundaries: inlet Γ_{in}, outlet Γ_{out}, symmetry axis Γ_s, overflow Γ_c, and walls (the remainder of $\partial\Omega$).

Boundary conditions assume the following configuration. On walls and symmetry axis we allow a slip velocity, that is $u \cdot n = 0$; normal velocities are imposed on the inlet, outlet and overflow as $q_{in} = \frac{1}{8}(4r^2 - 1)$, $q_{out} = 0.01125$, $q_c = 0.00125$, respectively. Zero vorticity is imposed on the walls, symmetry axis, outlet and overflow, whereas on the inlet we set $w_{in} = \frac{r^2}{9}$. The external force is assumed to be zero.

An unstructured mesh of 107 882 triangles and 54 420 nodes was constructed, and we employed the following model and stabilization parameters: $\sigma = 0.1$, $\nu = 0.01$, $\kappa_1 = 1/\sigma$, $\kappa_2 = 0.01$. Radial and vertical components of the velocity, vorticity and pressure are approximated with $\text{RT}_0^a - P_1 - P_0$ elements. The numerical results are displayed in Figure 4.
Figure 3. Sketch of a half cross section of a settling tank of maximum radius 8 m, total height of 5 m, inlet disk of 1.5 m of radius, overflow annulus of 0.5 m of edge, and outlet disk with a radius of 0.5 m.

Figure 4. Approximate solutions of the Brinkman axisymmetric problem on a settling tank. The used mesh consists of 107,882 elements.
4.3. Blood flow through an axisymmetric stenosed artery

Next, we present the simulation of a simplified model of arterial blood flow in the presence of a symmetric stenotic region on the vessel wall (see e.g. [42,47]). We are only interested in the laminar regime, so (1.4a)−(1.4c) (with a simple Newtonian model for the blood) will suffice to describe the main components of the flow. The computational domain consists on a half cross-section of a vessel segment of length 5 cm and maximum radius 1 cm (see a sketch in Fig. 5, left). The boundaries are the inlet Γ_{in} ($z = 2, r \in [0,1]$), symmetry axis Γ_s ($z \in [-3,2], r = 0$), and arterial wall ($z \in [-3,2], r = 1 + \delta \exp(-sz^2)(z+3)(z+2)/6$), with $\delta = 0.4$ and $s = 0.8$. Boundary data are set in the following manner: on Γ_{in} we impose a Poiseuille flow of maximum normal velocity with norm $Re = 1/\nu$, and a consistent vorticity $w = 2r/\nu$. On symmetry axis and arterial wall we set zero normal velocity and vorticity, whereas on the outlet we use $u \cdot t = 0$ and $p = 0$. The conditions on Γ_{out} were not covered in our analysis, but we stress that they can be also treated following e.g. [4,5]. The flow regime is characterized by the parameters $\nu = 0.01$, and we set $\sigma = 0.01$, $\kappa_1 = 1/\sigma$, $\kappa_2 = 0.1$. An unstructured mesh of 43 712 elements and 21 857 nodes was built to discretize the axisymmetric domain Ω. Figure 6 displays approximate solutions using $RT_0^d - P_1 - P_0$ approximations for velocity, vorticity and pressure. The narrowing of the vessel at the stenosis yields flow resistance and a rapid pressure drop. For visualization purposes, we also depict a rotational extrusion of 290 degrees of these solutions in Figure 8.

In order to assess the robustness of the method with respect to the fluid viscosity, we have also run the same test taking now $\sigma = 1$ and considering decreasing values of viscosity, from $\nu = 100$ down to $\nu = 1e-30$, the latter...
Figure 6. Augmented mixed finite element approximation of the Brinkman axisymmetric problem on a stenosed artery (from left to right: radial velocity, vertical velocity, vorticity and pressure). Solutions on the half cross-section discretized with 43,712 triangular elements.

Table 2. Norm of the velocity and vorticity fields over the axisymmetric domain representing a stenosed artery, for different values of the viscosity coefficient.

<table>
<thead>
<tr>
<th>ν</th>
<th>100</th>
<th>10</th>
<th>1</th>
<th>0.1</th>
<th>0.01</th>
<th>0.001</th>
<th>1.0e-04</th>
<th>1.0e-05</th>
<th>1.0e-10</th>
<th>1.0e-20</th>
<th>1.0e-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>∥u_h∥_{H(div_a,Ω)}</td>
<td>113.179</td>
<td>100.015</td>
<td>98.6043</td>
<td>98.6043</td>
<td>98.4491</td>
<td>98.4478</td>
<td>98.4477</td>
<td>98.4477</td>
<td>98.4477</td>
<td>98.4477</td>
<td>98.4477</td>
</tr>
<tr>
<td>∥ω_h∥_{H^1(Ω)}</td>
<td>1421.23</td>
<td>451.291</td>
<td>148.461</td>
<td>62.2763</td>
<td>45.4105</td>
<td>43.3643</td>
<td>43.1546</td>
<td>43.1336</td>
<td>43.1313</td>
<td>43.1313</td>
<td>43.1313</td>
</tr>
</tbody>
</table>

corresponding to the pure Darcy limit. The maximal normal Poiseuille velocity and vorticity profiles are fixed to 100 and 200r, respectively. Stabilization parameters are now κ_1 = 1 and κ_2 = 0.1. In all computations the solution remains stable, as evidenced from Table 2, where we display the velocity and vorticity norms for different values of ν, and also from Figure 7, which portrays the field variables over the line r = 0.1, corresponding to an annular section on the extruded domain. For viscosities smaller than 1e-5, the profiles practically coincide.

4.4. Flow in a contracting cylinder containing a porous obstacle

We close this section with a simulation relevant in the modeling of oil filters. We consider a cylindrical domain with a annular porous obstacle, whose half cross-section is depicted in the right panel of Figure 5, and assume that the permeability inside the obstacle Ω_{obstel} is much lower than that of the rest of the domain.
as expected (see a similar study for the Cartesian case in [5]), we can observe velocity patterns avoiding the annular porous obstacle and concentrating on the symmetry axis, and pressure profiles with high gradients near the obstacle boundary.

5. Conclusions

In this work, we have presented a new stabilized mixed finite element method for the discretization of a vorticity-velocity-pressure formulation of the Brinkman problem in axisymmetric coordinates. A rigorous solvability analysis of both continuous and discrete problems was carried out using tools from the Babuška–Brezzi theory, and we derived optimal convergence rates (and robust with respect to viscosity) in the natural norms for the particular case of Raviart–Thomas approximations of order \(k \) for velocities, and piecewise polynomials of degrees \(k + 1 \) and \(k \) approximating the scalar vorticity and pressure, respectively, for \(k \geq 0 \). We provided a few numerical tests confirming our theoretical findings regarding optimal convergence of the approximate
Figure 8. Augmented mixed finite element approximation of the Brinkman axisymmetric problem on a stenosed artery (from left to right: velocity, vorticity and pressure). Rotational extrusion of 290 degrees to the three-dimensional domain.

Figure 9. Augmented mixed finite element approximation of the Brinkman axisymmetric problem on an idealized oil filter. Rotational extrusion of velocity, vorticity, and pressure (left, center, and right, respectively) to the full three-dimensional domain.
Acknowledgements. We gratefully acknowledge the suggestions made by the referees, which have significantly improved the presentation of this paper.

References

