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Abstract

RNA modifications have recently emerged as an important regulatory layer of gene

expression. The most prevalent and reversible modification on messenger RNA

(mRNA), N6-methyladenosine, regulates most steps of RNA metabolism and its dys-

regulationhas beenassociatedwith numerousdiseases.Othermodifications such as5-

methylcytosine and N1-methyladenosine have also been detected on mRNA but their

abundance is lower and still debated. Adenosine to inosine RNA editing is widespread

on coding and non-coding RNA and can alter mRNA decoding as well as protect

against autoimmune diseases. 2′-O-methylation of the ribose and pseudouridine are

widespread on ribosomal and transfer RNA and contribute to proper RNA folding and

stability. While the understanding of the individual role of RNAmodifications has now

reached an unprecedented stage, still little is known about their interplay in the con-

trol of gene expression. In this review we discuss the examples where such interplay

has been observed and speculate thatwith the progress ofmapping technologiesmore

of those will rapidly accumulate.
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INTRODUCTION

RNAmodifications, the so-calledepitranscriptome, haveemergedasan

important regulatory layer of gene expression. Thus far, more than 170

distinct RNAmodifications havebeen identified, distributed among the

three kingdoms of life and on all classes of RNA.[1] RNA modifications

can control every aspect of RNA metabolism and their dysregulations

have been associated with a wide range of physiological alterations

and numerous diseases, including neurological diseases, metabolic dis-

orders, and cancer.[2–5] The dynamic nature of some modifications is

important to control gene expression upon developmental and envi-

ronmental changes.[6–8]

tRNAs are the most modified RNA species with up to 25% of all

nucleotides carrying a chemical adduct. They are also the RNA species

with the largest variety of modifications, in contrast to rRNAs that are
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decorated mainly by two modification types, pseudouridine and 2′-O-

methylation (Nm),[9–12] and only a few additional modifications on the

nucleotide base. Modifications on tRNA are important to stabilize its

structure, as well to faithfully convey the genetic information carried

by the mRNA.[13] In particular, the nature of the modifications present

at the anticodon loop can influence the recognition of themRNAcodon

and thereby the identity and abundanceof the final product. Like tRNA,

modificationson rRNAalso serve to stabilizeRNA-RNAaswell asRNA-

proteins interactions. These modifications are enriched at the active

sites that catalyze peptide bond formation and peptide release, high-

lighting their importance.[12]

In addition to abundant non-coding RNA, a couple of modifi-

cations were also found on mRNA. The most abundant are N6-

methyladenosine (m6A) and inosine (I), whereas others such as 5-

methylcytidine (m5C), pseudouridine, N1-methyladenosine (m1A) and
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ribose methylations (Nm) are less represented.[14] Their precise abun-

dance is still under debate as the tools used to quantitate and locate

them on transcripts are imperfect. For instance, it is virtually impos-

sible to purify a pure population of poly(A) RNA completely devoid

of rRNA. Therefore, measuring the level of a particular modification

on mRNA by mass spectrometry must take into account this draw-

back. Furthermore, potential artefacts can result from antibody cross

reactions or partial chemical treatment (e.g., insufficient deamination

by bisulfite sequencing can overestimate the abundance of m5C). One

way to confirm potential modification sites is to identify the enzymes

responsible for their catalysis and perform mapping in knock out con-

ditions. Alternatively, when available, an orthogonalmapping approach

could be used for site validation.

m6A onmRNA is mainly installed by a largemethyltransferase com-

plex of which METTL3 carries the catalytic activity. In mammals the

deposition occurs at the short-degenerated sequence DRACH (D =

G/A/U, R = G/A, H = A/U/C), and is enriched near stop codons and

on long internal exons.[15–17] A combination of cis-acting elements,[18]

epigenetic marks[19] and other transactivating factors[20] helps to

ensure the recognition of the target sites by the methyltrans-

ferase complex. Other m6A methyltransferases such as METTL16 and

METTL4 catalyze m6A on small non-coding RNAs while METTL5 and

ZCCHC4 are specific to ribosomal RNAs.[21] In the cytoplasm, m6A

plays a preponderant role in mRNA decay[22,23] and translation,[24]

while in the nucleus it can regulate DNA repair,[25] chromatin

structure,[26–28] transcription,[29,30] alternative splicing,[31–34] alter-

native polyadenylation[35], and mRNA export.[36] The best studied

effectors of m6A function, also known as m6A readers, are the mem-

bers of the YTH protein family, which specifically recognize the modi-

fication and trigger the downstream RNA processes.[4,5] Other identi-

fied readers include IGF2BPs and FMR1.[37,38] Given the widespread

role of m6A in mRNAmetabolism it is not surprising that its alteration

has been linked to numerous developmental and physiological defects

in human.[2,39]

In contrast tom6A, the deamination of adenosine into inosine is cat-

alyzed by a single family of enzymes called ADAR. ADAR proteins pref-

erentially edit strong double-stranded RNA (dsRNA) structures that

are present on coding and non-coding RNA, including the inverted Alu

repetitive elements.[40–42] The principle of the RNA editing code has

been unlocked recently for ADAR1 using amassively parallel synthetic

approach.[43] Certain local sequence motifs and minor structural dis-

ruption can be favorably edited, which can further propagate the edit-

ing events along the dsRNA in a recursive manner. RNA editing is crit-

ical to disrupt the structure of endogenous dsRNA and hence to pre-

vent their recognition as foreign nucleic acids by the host immune

system.[44,45] The absence of ADAR1 causes the autoimmune disease

Aicardi-Goutières syndrome in children, which result in severe neuro-

logical alterations.[46]

The knowledge on individual modifications has expanded rapidly

in the last decade owing in part to major improvement in genomic

approaches and the motivation to unravel their role in regulating the

RNA fate. The specific deposition of certain RNAmodifications, as well

as their molecular and biological functions have now been thoroughly

characterized. While there is still much more to be learned about their

function—especially the low abundant ones—several recent reports

have suggested an interplay among different RNA marks (Table 1).

While this interplay has best been studied for tRNA modifications,

some are slowly being uncovered for mRNAmodifications. Such inter-

play does not necessarily imply a close interaction between the marks

on same transcripts but any circumstances wherein one mark impacts

the level or function of another mark. Here we describe the current

methods used to detect RNA modifications and their limitations. We

next discuss the potential crosstalk between different RNA modifica-

tions, their regulatory players and their participation in similar biolog-

ical processes. The interplay between tRNA modifications will be only

briefly mentioned as this topic has recently been covered in a compre-

hensive review.[47]

CURRENT CHALLENGES FOR THE SIMULTANEOUS
DETECTION OF MULTIPLE RNA MODIFICATIONS

In the last years, technological advances enabled major improvements

in the detection of RNAmodifications.[48,49] Most of the currentmeth-

ods rely either on the particular reverse transcription signatures left by

RNA modifications in cDNA, which are naturally occurring or induced

by chemical/enzyme-based treatment or to an antibody-based pull-

down approach followed by short read sequencing. For a subset of

RNA modifications, it is possible to create transcriptome wide maps

in a nucleotide-resolution manner and even obtain the stoichiomet-

ric quantification of single sites. However, these techniques are lim-

ited to detect modifications for which highly specific antibodies or

reactive chemical compounds and enzymes are available or so called

“hard-stop” modifications, which lead naturally to RT-arrest or other

mutation signatures during the reverse transcription.[50] In addition,

they often require laborious protocols and most of these approaches

enable the detection of only one modification at a time, and there-

fore rely on the correlation of different datasets to study the inter-

play among different modifications. Certain methods can be adapted

and combined to directly measure several modifications in the same

sample,[51] but the rather complex protocols, the need for high amount

of input material and the loss of information about their relative dis-

tribution to each other make it highly inconvenient. Thus, a need for

novel methods to simultaneously measure and identify multiple RNA

modifications is imperative. To date, such methods are still in their

infancy, but rapid progress in the development of mass spectrometry

(MS) approaches, native RNA long read sequencing and nuclear mag-

netic resonance (NMR) spectroscopy hold great promises.

MS is one of the current approaches used for the determination

andquantification of co-occurringRNAmodifications.[52,53] Oneof the

main advantages of the MS-based approach is that it is applicable to

all types of modifications. It relies on the property that most modified

nucleotides have a unique mass that can be distinguished from each

other and with the unmodified counterpart. Therefore, MS allows the

analysis of multiple RNA modifications in parallel, including the detec-

tion and discovery of previously unknown marks. Nevertheless, the
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major disadvantage is that crucial information about the location of

specific transcripts and the sequence context are lost. A way to over-

come these limitations consists in partially digesting theRNA in smaller

oligonucleotides tomapmodified nucleotides to RNA sequences or the

direct sequencing of intact, full-length RNAs to compare their mass

spectra with sequence databases.[54] This allows to gain insights into

the modification landscape of specific RNA at nucleotide resolution.

However, this method is not applicable for transcriptome-wide detec-

tion and requires the isolation of pure RNA species. More details on

these issues can be found in Lauman andGarcia.[53]

An alternative approach is the use of a platform for direct sequenc-

ing of RNA molecules without the need for cDNA synthesis or PCR

to preserve the information of modified nucleotides. Such native long

RNA sequencing is commercially available by Oxford Nanopore Tech-

nologies (ONT). In this approach, specific motor proteins actively

ensure the transport of a nucleic acid molecule through each pore,

which results in a sequence-specific perturbation of themeasured cur-

rent. This change in the current signal can be converted to the corre-

sponding sequence of nucleotides. The presence of RNAmodifications

can further modify the current and therefore leave a specific footprint.

This has been reported for instance for m6A, m5C, 7-Methylguanosine

(m7G) and pseudouridine. In certain cases, themodified current is lead-

ing tobasemiscalling and canbe recognizedas reproducible frameshift,

deletion or insertion patterns by adapted base calling methods, as

used for A-to-I, m7G and pseudouridine sites.[55–59] Nevertheless, the

identification of the current change depends on the sequence context,

whichmeans that base calling algorithms shouldbe trainedwith all pos-

sible motifs containing known modifications. In addition, the current

change induced by modified nucleotides in comparison to the unmodi-

fied counterpart can be very subtle. Therefore, to detectmodified sites

with high confidence, a knock out condition for the modifying enzyme

to measure relative changes of RNA modifications at individual or set

of sites can be used.[56,58] These issues still need to be overcome for

most modifications, which is just starting to be explored.

An additionally promising technique to gain more information

about the dynamics of RNA modifications is NMR spectroscopy. NMR

has been widely used to study the dynamic and structural effects

of modification on RNA, however, it can also be used for their

identification.[60–66] Recently, a novel time-resolved NMR monitoring

of RNA maturation has been proposed.[67] Taking advantage of the

non-disruptive nature of NMR, the de novo synthesis of modifications

on unmodified RNA has been monitored to study the consecutive gen-

eration of RNA modifications on tRNAPhe in a continuous- and time-

resolvedway.Using thismethod, amutual interplay in thegenerationof

Ψ55, m5U54, and m1A58 on tRNAPhe has been identified. While NMR

has the advantage to allow a strong assessment of structural features

of tRNA at atomic resolution and, therefore, preserve the information

about the location of differentRNAmodifications, it relies on the use of

high quantities of isotope labelledRNA. In addition, it is extremely chal-

lenging to measure intact, high molecular weight RNAs as so far only

a few NMR-based studies could investigate RNA that exceeds a 100-

nucleotide length.[68–70] This currently clearly limits the usage of NMR

for the investigation of longer RNAs such asmRNA or rRNA.

INTERPLAY IN THE DEPOSITION OF RNA
MODIFICATIONS

The understanding of the regulation and function of individual RNA

modifications is constantly increasing. Novel enzymes involved in the

deposition of different modifications keep being discovered and their

mechanisms elucidated. Despite this increasing knowledge about the

enzymes essential for the generation of RNAmodifications, themutual

influence of RNA modifications remains poorly understood. However,

some indications suggest that these influences may in fact not be

negligible.

The influence of queuosine on the generation of m5C on tRNA in

S. pombe is among the best conserved evidence of a mutual regula-

tion of RNA modifications.[71] Queuosine is a complex modification

known to be present on several tRNAs at position 34. It cannot be syn-

thesized de novo by eukaryotes. Therefore, the eukaryotic organism

relies on external environmental sources of the queuine base, which

is used to synthesize queuosine. Interestingly, the growth of S. pombe

cells in the presence of queuine not only increased the queuosine level,

but also strongly stimulated the in vivo m5C level at position C38 in

tRNAAsp. In the absence of TGT, the specific enzyme responsible for the

insertion of queuosine into tRNAs, no increase in the methylation was

detectable, indicating that not only the presence, but also the incorpo-

ration of queuosine into tRNA is required for m5C deposition. These

results were confirmed in mammalian HeLa and human colon carci-

noma (HCT116) cells, as well as in vivo by analyzing different tissues

of mice fed with a queuine free synthetic diet. A specific decrease of

them5C level at C38 in tRNAAsp, but not in other tRNAs,was observed,

which could be restored by the addition of synthetic queuine.[72] While

these experiments clearly demonstrate an interplay of these two RNA

modifications the precise underlyingmechanism still remains to be dis-

covered.

Additional examples of such crosstalk for the deposition of tRNA

modifications have been demonstrated, mostly in E. coli and yeast.

Importantly most of these crosstalks occurs between modifications

present at the anti-codon loop region.Archaea are theexceptionwhere

several examples of interplay between modifications at the main body

of tRNA were detected.[73–76] It is currently unclear whether organ-

isms that live at extreme thermophilic conditions are more dependent

on step wise deposition than others, or whether this simply reflects a

gap in our understanding in the other organisms.

While the generation of m5C on tRNA can be influenced by queuo-

sine, its presence on mRNA can be determined by another mark. p21

functions as a regulator of cell cycle progression and can act both

as tumor suppressor and oncogene.[77] p21 mRNA is modified in its

3′ untranslated region (UTR) by both NSUN2 and METTL3/METTL14

catalyzing m5C and m6A, respectively.[78] In vitro methylation assays

using a p21 3′UTR reporter construct in HCT116 cells demonstrated

that the pre-methylation by NSUN2 increases m6A deposition by

METTL3/METTL14 and vice versa, which ultimately enhances the

translation of p21mRNA. Theunderlyingmechanismof this interplay is

currently unclear. Also, whether other mRNAs benefit from the coop-

erative regulation bym5C andm6A awaits future investigations.
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F IGURE 1 Potential mechanisms of themutual interplay of A-I
editing andm6A. The deposition of m6A in double-stranded RNA
regions can alter the local structure by destabilization of RNA
duplexes (m6A-switch) and, therefore, disfavor the binding of ADAR
leading to a suppression of A-I editing (A). A decrease of the A-I editing
might also be caused bym6A reader proteins that sterically block Adar
binding sites upon binding tom6A (B). Contrary, m6A readers might
increase the A-I editing at specific sites by recruiting Adar (C)

Another interplay involving m6A has recently been suggested with

Inosine (I), another abundant modification onmRNA. In human embry-

onic stem cells (ESCs), the editing level of known A-to-I editing sites

was shown to differ between m6A-positive and -negative mRNA

populations,[79] being the editing rate higher in the latter. In line with

this, depletion of METTL3 in HEK293T and mouse 3T3 cells increased

the editing level at certain A-to-I sites, while the knockdown of the

m6A eraser FTO caused general A-to-I editing downregulation. By con-

trast, another study conducted in glioma stem-like cells described an

opposing effect wherein a general downregulation of the A-I editing

level was observed upon depletion of METTL3, albeit the C-U RNA

editing catalyzed by APOBEC was increased.[80] These experiments

suggest that these two marks influence the deposition of each other,

even though the precise mechanism and the basis for the differential

regulation in different systems are currently not understood. Potential

models for a direct interplay involve the so-called m6A switch mech-

anism. The generation of m6A in double-stranded regions, as that is

hairpin loops, alters the local RNA secondary structure by destabiliza-

tion of RNA duplexes. Because ADAR binding relies on the presence of

double-stranded RNA regions, the presence ofm6A could lead to a loss

of ADAR binding sites and, therefore, a modulation of the A-I editing

(Figure 1A). In addition, themodulation of the A-I editing bym6A could

involveproteinsbinding specifically tom6A, leading toa sterically block

of nearby ADAR binding or A-I editing sites (Figure 1B), or opposingly,

F IGURE 2 The binding specificities of YTHDF (DF) proteins. Apart
from the binding tom6A, studies indicate the binding of DF2 and
DF1/3 tom5C andm1A. The binding of DF1/3 tom5Cmight be
directed by the interaction with them5C reader protein YBX1. The
weight of the arrow indicates the relative strength of the binding

the recruitment of ADAR to specific target sites (Figure 1C; examples

given below) in the presence of m6A.

The editing level can also be influenced by m6A-dependent expres-

sion control of ADARs. The isoform ADAR1p150 is expressed in

response to interferons (IFN) to prevent the overactivation of the

dsRNA sensing pathway by editing, in order to weaken dsRNA

structures.[81] Recently, it was shown that ADAR transcripts are

m6A modified and bound by the m6A reader proteins YTHDF1 and

YTHDF2.[82] Upon METTL3 and YTHDF1 knockdown, ADAR1p150

showed an attenuated expression in IFNα stimulated cells result-

ing in an increased innate immune response.[81] Therefore, m6A

and YTHDF1 are required to ensure rapid expression response of

ADAR1p150 to prevent excessive immune response.

MOLECULAR INTERPLAY OF READER PROTEINS

The way modifications dictate the fate of RNA depends on the nature

of the chemical adduct. The modification can have a direct impact on

theRNA secondary structure, or act as a scaffold for the recruitment of

specific functional proteins (reader proteins). Several of these reader

proteins have been extensively studied in the context of single RNA

modifications and are assumed to bind to only one modification due

to specific intrinsic features. Though, several studies identified a cou-

ple of reader proteins that show binding to multiple RNA modifica-

tions, which could raise some issues about previous interpretations

that would need to be addressed in future functional analysis.

The best characterized reader proteins for any RNA modification

are the members of the YTH family. In mammals, this protein fam-

ily consists of five members: YTHDF1/2/3 and YTHDC1/2. They all

have in common a YTH domain that can selectively bind to m6A (Fig-

ure 2) by the presence of a hydrophobic binding pocket. Interestingly,

it was recently suggested that YTH proteins may also bind additional

modifications. For instance, YTHDF proteins fromHeLa and HEK cells,
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especially YTHDF2, have been shown to directly bind to a m5C-

carrying probe derived from the human CINP gene.[83] Furthermore,

the overall level of both m5C and m6A was increased in YTHDF2 pull-

down fractions in comparison to the input. Intriguingly, knockout of

YTHDF2 resulted in higher m5C levels in rRNA, leading to the alter-

ation of rRNA processing.[83] The precise mechanism for this effect is

not yet understood. The binding to m5C requires the same amino acid

residue of the YTH domain that was shown to be essential for m6A

recognition, suggesting that the interaction with m5C is direct. How-

ever, it should benoted thatYTHDF1andYTHDF3canphysically inter-

act with YBX1, a validatedm5C reader.[84] This indicates that the bind-

ing of YTHDF proteins might also occur indirectly through interaction

with this protein (Figure 2).

YTHDF proteins were also suggested to bind to the m1A mod-

ification (Figure 2). Two independent studies in human cells found

an enrichment of YTH proteins after pull down with m1A-containing

probes coupled to quantitative proteomics.[85,86] Further in vitro bind-

ing assayswith recombinant proteins could validate these associations.

It seems that in contrast to m6A binding, only YTHDF proteins can

selectively bind m1A while YTHDC1/2 have little affinity for the m1A

probe.More recentwork foundhigher enrichment forYTHDF3 in com-

parison to YTHDF1/2.[87] Such differencesmight stem from the nature

of the m1A probes that were used in each study. Noteworthy, the

determined binding affinities of any of the YTH proteins were weaker

towardsm1A thanm6A andm1A is relatively rare onmRNA, therefore,

the biological relevance of such binding is questionable.[14] This also

hold true for the binding of YTHDFs to m5C. Some correlations were

found between m1A-methylated transcripts and YTHDF targets iden-

tified by crosslinking and immunoprecipitation (CLIP) experiments but

those should be interpretedwith caution asm1A antibody can also rec-

ognize the cap structure leading to a high rate of false positives.[50,88]

FMRP is an RNA-binding protein that is essential for brain function.

A loss of function of the encoding gene is the main cause of the Frag-

ile X syndrome (FXS) in human, a severe neurodevelopmental disorder

characterized by intellectual disability and behavioral alterations.[89] A

couple of recent studies suggested that FMRP acts as a m6A reader

in order to control the export, stability and translation of methy-

lated RNAs.[37,90–95] By contrast to YTH proteins, the binding to m6A

appears to be sequence-dependent, andmay also involve a direct inter-

actionwithYTHDF. Interestingly, FMRPwasalso found in complexwith

ADAR, the enzyme responsible for A-I editing. This association is con-

served in multiple organisms, including Drosophila, zebrafish, mouse

and human.[96–99] In all these organisms, the loss of FMRP leads to

changes in the editing level. However, the changes can be in both direc-

tions and vary between different organisms, suggesting the existence

of multiple mechanisms. Proposed models involve the recruitment of

ADAR to its mRNA targets through the RNA binding activity of FMRP

(Figure 1C), sequestration of ADAR by FMRP for binding to its targets

and modulation in ADAR expression upon FMRP loss. It is likely that a

combination of these effects occurs depending on the sequence con-

text, cell type and organism. So far, it has not been studied whether

these effects are dependent on m6A. As mentioned above, since a cor-

relation betweenm6A andA-I editing events exist, it will be interesting

to investigate if the FMRP control of RNAediting involves itsm6ARNA

binding ability.

In addition to its implications in the m6A and A-I editing pathways,

FMRPhas also been shown to affect and readNm. FMRP interactswith

a subset of small nucleolar RNAs (snoRNAs), namely C/D box snoR-

NAs, that guide the 2’-O-methylation of rRNA.[100] Both the absence

and overexpression of FMRP result in a differential 2’-O-methylation

pattern of rRNA. Interestingly, the differential rRNA methylation pat-

tern can be recognized by FMRP itself. FMRP preferentially binds ribo-

somes with hyper-methylated 18S rRNA and hypo-methylated 28S

rRNA. Another study showed that FMRP forms a complex with BC1

RNA, a brain specific non-coding RNA involved in translational control,

in a 2’-O-methylation manner. In the soma, the presence of Nm on BC1

RNA decreases the binding of FMRP, while at the synapses Nm is vir-

tually absent, enabling the formation of BC1-FMRP-mRNA complexes

and the regulation of local translation.[101] Thus, as shown forYTHpro-

teins, FMRP binding to mRNA can be influenced by several modifica-

tions.

Currently it is unclear how the modifications impact FMRP bind-

ing. In contrast to YTH proteins direct binding of FMRP to m6A

or Nm has not been demonstrated. The sequence context seems to

be important for FMRP to recognize m6A while Nm may impact

the secondary structure and thereby influence FMRP binding. Given

the ability of several modifications to alter the secondary struc-

ture of the RNA, it is likely that the binding of additional pro-

teins might be impacted by the presence or absence of RNA

modifications.

POTENTIAL INTERPLAY IN THE CONTROL OF GENE
EXPRESSION

A multitude of different RNA modifications have been identified

and the mechanisms by which they individually affect the RNA fate

and biological processes, as well as diseases starts to be uncov-

ered. Recent studies reported their involvement in similar molecu-

lar processes, yet a potential cooperativity in driving these processes

still remain to be formally demonstrated for most of these events.

Below we are listing some examples where potential interactions may

exist.

Translation

As mentioned above, one example for a combinatory regulation in the

translation process involved the p21 mRNA, which is both m5C- and

m6A-modified within its 3′UTR. The combined presence of both types

of methylation enhance p21 translation, leading to increased p21 pro-

tein levels during cellular senescence induced by oxidative stress.[78]

The individual or combined presence of m6A and m5C in the 3′UTR
of p21 leads to a similar increase in p21 translation, suggesting that

the twomethylations could affect translation via the samemechanism.

It is unclear how both marks cooperate for this function. The role of
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YTHDF proteins in translation was recently disputed[23,102] and no

mechanism has been demonstrated yet for the involvement of m5C in

translation.

Splicing

m6A methylation and A-to-I RNA editing events both happen co-

transcriptionally in the nucleus, which implies their potential to reg-

ulate any step of the downstream mRNA processing. Several stud-

ies revealed crosstalk between the m6A machinery and the regula-

tion of RNA splicing. InDrosophila and human cells, knockdown of indi-

vidual components of the m6A methyltransferase complex results in

alteration of several splicing patterns, such as alternative 5′ss usage
and intron retention.[15,103] The m6A reader protein YTHDC1 was

also found to regulate alternative splicing of a subset of m6A mod-

ified sites. It can promote exon inclusion by recruiting the splicing

enhancer SRSF3 while interfering with the binding of the splicing

silencer SRSF10.[104] In addition,m6Aerasers partially co-localizewith

splicing factors in the nucleus and both FTO and ALKBH5 depletion

results in alternative splicing defects.[105–107] A-to-I RNA editing and

pre-mRNA splicing also influence each other. Loss of ADAR has been

shown to induce global changes in splicing in various cell types and

model systems.[108–111] A recent genome-wide study in human cells

identified around 500 editing sites that could affect splicing by chang-

ing the invariant AG dinucleotide to GG in the 3′ss or via ADAR bind-

ing to exons located in dsRNA regions.[112] Interestingly, m6A was

also shown to be deposited on the 3′ss of the S-adenosylmethionine

(SAM) synthetase pre-mRNA in C. elegans by METT-10, the METTL16

ortholog. Methylation at this site prevents the binding of the splic-

ing factor U2AF65 and thereby alters the proper splicing of SAM

synthetase.[113,114] While the sam pre-mRNA is not regulated in this

fashion in mammals, the mechanism of splicing inhibition by 3′ss-m6A

appears conserved. More studies are needed to decipher to which

extent this mechanism participates in splicing regulation in higher

eukaryotes and if an interplay with RNA editing occurs. In Drosophila,

genome-wide characterization of RNA editing events identified sev-

eral editing sites located within or in close proximity to alternatively-

spliced exons.[115] Sex lethal (Sxl), one of the major regulators of sex

determination in flies, is found among the transcripts where RNA edit-

ing and alternative splicing might affect each other. Interestingly, m6A

modification is known to be required for proper splicing of the Sxl tran-

script and m6A writer mutants display decreased levels of the female-

specific isoformtogetherwith theappearanceof themale-specific exon

in female flies.[32,103,116] In light of this, it would be interesting to inves-

tigate howsplicing is affectedwhendifferentmodifications are present

on the same mRNA and whether a “splicing code” based on RNA mod-

ifications could contribute to fine-tune the splicing of modified tran-

scripts.

Apart from the influence ofmodifications on themRNA splicing pat-

tern,modifications on the spliceosomal RNAalso participate to splicing

regulation. A recent study revealed that the La-related protein LARP7

interacts with the box C/D snoRNP facilitating U6 2′-O-methylation

in mouse male germ cells.[117] U6 snRNA is an essential catalytic

component of the spliceosome and defective ribose methylation in

the absence of LARP7 leads to severe changes in pre-mRNA splicing,

including skipped exons, retained introns as well as alternative 5′ and
3′ss. Similar findings were reported also in human HEK293 cells, indi-

cating that the role of LARP7 in U6 2′-O-methylation is evolutionarily

conserved in vertebrates.[118] U6 snRNA also containsm6A at position

A43. Thismodification is catalyzed by themethyltransferaseMETTL16

and lies within a highly conserved region of U6, which base pairs with

the5′ss during the first stepof pre-mRNAsplicing.[119–122] Thismethy-

lation is required for efficient splicing of a subset of introns.[123] Inter-

estingly METTL16 was shown to specifically interact with LARP7 in

an RNA-dependent manner,[121] suggesting that this interaction may

be mediated by U6 snRNA and that m6A and 2′-O-methylation of the

snRNA could occur simultaneously and possibly influence each other.

Future research is needed to investigatewhetherU62′-O-methylation

and m6A do also functionally interact in spliceosome assembly or

snRNPs biogenesis.

RNA stability

The maternal to zygotic transition (MZT) marks the passage from

embryonic development controlled by maternal gene products to

the activation of the zygotic genome and represents a fundamental

and highly regulated event during early embryogenesis. The decay of

maternal transcripts is a critical step that occurs during this transi-

tion. In zebrafish embryos, more than 30% of maternal mRNAs are

m6A-modified and bound by Ythdf2 to facilitate their degradation.[124]

Loss of Ythdf2 causes accumulation of methylated maternal mRNAs

and interferes with the zygotic genome activation (ZGA) leading to

developmentally delayed fishes. Similarly, mouse maternal YTHDF2 is

required for the correct dosage regulation of the oocyte transcriptome

and loss of YTHDF2 leads to the arrest of embryonic development at

the two-cell stage.[125,126] This view has been recently challenged by

a new study reporting that, despite the major role of m6A in maternal

mRNA deadenylation, individual Ythdf proteins are not necessary for

propermaternal transcript clearance andZGA in zebrafish. Conversely,

their findings support a model in which the Ythdf readers act redun-

dantly in the MZT regulation.[127] In contrast with the role of m6A

during MZT, m5C genome-wide profiling in zebrafish early embryos

revealed that m5C-modified maternal mRNAs are more stable com-

pared to non-methylated ones.[128] Maternal m5C-modified mRNAs,

mainly involved in intracellular protein transport and cell-cycle reg-

ulation, are preferentially recognized and subsequently stabilized by

YBX1 together with the mRNA stabilizer PABPC1a.[128] Altogether,

RNAmethylation can affect MZT and early embryonic development in

both zebrafish and mouse by regulating the decay and stability of the

maternal transcriptome depending on the nature of the methylation.

Future research is needed to investigate what determine the type of

methylation that is installed on a specific transcript, if m6A and m5C

can be present on the samematernal mRNAs and what is the final out-

put on RNA stability.
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CONCLUSIONS AND OUTLOOK

The field of RNA modifications has sparked huge interest in recent

years, which has led to major discoveries in the nature, specificity and

functions of these marks. Numerous studies demonstrated that these

marks are essential in all types of RNAand can controlmost processing

events. By analogy to the epigenetic code we propose that the depo-

sition and activity of RNA modifications might be regulated in concert

so that they converge towards a similar goal. This interplay might be

regulated in a tissue-specificmanner, depending on themetabolic need

of the cell. The best way to achieve this goal is through a crosstalk

between thedifferentwriters or readers of specificmarks, as discussed

above. Note that the presence and precise abundance of most modi-

fications on mRNA still remain to be proven, and therefore a mutual

interplay between different modifications on mRNA may remain lim-

ited. Nevertheless, an interplay could be indirect and does not nec-

essarily involved mRNA only. For instance, 2′-O-methylation level on

rRNA is regulated byMYC,which can ultimately impact translation and

facilitates tumor progression.[129] Likewise,MYC can reduce the abun-

dance of m6A through transcriptional activation of the m6A demethy-

lase ALKBH5,[130] and also impacts m5C level and cell cycle progres-

sion by upregulating NSUN2.[131] It is likely that this type of regulation

by a common factor is meant to achieve a coordinate cellular response

for gene expression. In conclusion, the few examples described in this

review suggest that to understand the impact of RNA modifications in

a given physiological process or disease conditions one might have to

consider their potential interplay. With the rapid progress of method

detection,we anticipate that this questwill soon enterwithin the realm

of the possible.
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