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Abstract

RNA modifications have recently emerged as an important regulatory layer of gene
expression. The most prevalent and reversible modification on messenger RNA
(mRNA), N6-methyladenosine, regulates most steps of RNA metabolism and its dys-
regulation has been associated with numerous diseases. Other modifications such as 5-
methylcytosine and N1-methyladenosine have also been detected on mRNA but their
abundance is lower and still debated. Adenosine to inosine RNA editing is widespread
on coding and non-coding RNA and can alter mRNA decoding as well as protect
against autoimmune diseases. 2’-O-methylation of the ribose and pseudouridine are
widespread on ribosomal and transfer RNA and contribute to proper RNA folding and
stability. While the understanding of the individual role of RNA modifications has now
reached an unprecedented stage, still little is known about their interplay in the con-
trol of gene expression. In this review we discuss the examples where such interplay
has been observed and speculate that with the progress of mapping technologies more

of those will rapidly accumulate.
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decorated mainly by two modification types, pseudouridine and 2’-O-
methylation (Nm),[?~12] and only a few additional modifications on the

RNA modifications, the so-called epitranscriptome, have emerged as an
important regulatory layer of gene expression. Thus far, more than 170
distinct RNA modifications have been identified, distributed among the
three kingdoms of life and on all classes of RNA.I'l RNA modifications
can control every aspect of RNA metabolism and their dysregulations
have been associated with a wide range of physiological alterations
and numerous diseases, including neurological diseases, metabolic dis-
orders, and cancer.[2-%] The dynamic nature of some modifications is
important to control gene expression upon developmental and envi-
ronmental changes.[6-8]

tRNAs are the most modified RNA species with up to 25% of all
nucleotides carrying a chemical adduct. They are also the RNA species

with the largest variety of modifications, in contrast to rRNAs that are

nucleotide base. Modifications on tRNA are important to stabilize its
structure, as well to faithfully convey the genetic information carried
by the mRNA.L13] In particular, the nature of the modifications present
at the anticodon loop can influence the recognition of the mRNA codon
and thereby the identity and abundance of the final product. Like tRNA,
modifications on rRNA also serve to stabilize RNA-RNA as well as RNA-
proteins interactions. These modifications are enriched at the active
sites that catalyze peptide bond formation and peptide release, high-
lighting their importance.l12]

In addition to abundant non-coding RNA, a couple of modifi-
cations were also found on mRNA. The most abundant are Né-
methyladenosine (m®A) and inosine (I), whereas others such as 5-

methylcytidine (m>C), pseudouridine, N1-methyladenosine (m*A) and
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ribose methylations (Nm) are less represented.l24] Their precise abun-
dance is still under debate as the tools used to quantitate and locate
them on transcripts are imperfect. For instance, it is virtually impos-
sible to purify a pure population of poly(A) RNA completely devoid
of rRNA. Therefore, measuring the level of a particular modification
on mRNA by mass spectrometry must take into account this draw-
back. Furthermore, potential artefacts can result from antibody cross
reactions or partial chemical treatment (e.g., insufficient deamination
by bisulfite sequencing can overestimate the abundance of m>C). One
way to confirm potential modification sites is to identify the enzymes
responsible for their catalysis and perform mapping in knock out con-
ditions. Alternatively, when available, an orthogonal mapping approach
could be used for site validation.

méA on mRNA is mainly installed by a large methyltransferase com-
plex of which METTLS3 carries the catalytic activity. In mammals the
deposition occurs at the short-degenerated sequence DRACH (D =
G/A/U, R = G/A, H = A/U/C), and is enriched near stop codons and
on long internal exons.[1>~17] A combination of cis-acting elements, 18!
epigenetic marks!'?! and other transactivating factors(2°! helps to
ensure the recognition of the target sites by the methyltrans-
ferase complex. Other m®A methyltransferases such as METTL16 and
METTL4 catalyze méA on small non-coding RNAs while METTL5 and
ZCCHC4 are specific to ribosomal RNAs.!21 In the cytoplasm, méA
plays a preponderant role in mRNA decayl?223] and translation,!24]
while in the nucleus it can regulate DNA repair,l2°! chromatin
structure,[26-28] transcription,[2:30] alternative splicing,[31-34] alter-
native polyadenylation!3>], and mRNA export.[3¢! The best studied
effectors of m®A function, also known as méA readers, are the mem-
bers of the YTH protein family, which specifically recognize the modi-
fication and trigger the downstream RNA processes.4°] Other identi-
fied readers include IGF2BPs and FMR1.137:38] Given the widespread
role of méA in mRNA metabolism it is not surprising that its alteration
has been linked to numerous developmental and physiological defects
in human.[237]

In contrast to méA, the deamination of adenosine into inosine is cat-
alyzed by a single family of enzymes called ADAR. ADAR proteins pref-
erentially edit strong double-stranded RNA (dsRNA) structures that
are present on coding and non-coding RNA, including the inverted Alu
repetitive elements.[*0-42] The principle of the RNA editing code has
been unlocked recently for ADAR1 using a massively parallel synthetic
approach.[43] Certain local sequence motifs and minor structural dis-
ruption can be favorably edited, which can further propagate the edit-
ing events along the dsRNA in a recursive manner. RNA editing is crit-
ical to disrupt the structure of endogenous dsRNA and hence to pre-
vent their recognition as foreign nucleic acids by the host immune
system.[4445] The absence of ADAR1 causes the autoimmune disease
Aicardi-Goutieres syndrome in children, which result in severe neuro-
logical alterations.[4¢]

The knowledge on individual modifications has expanded rapidly
in the last decade owing in part to major improvement in genomic
approaches and the motivation to unravel their role in regulating the
RNA fate. The specific deposition of certain RNA modifications, as well

as their molecular and biological functions have now been thoroughly

characterized. While there is still much more to be learned about their
function—especially the low abundant ones—several recent reports
have suggested an interplay among different RNA marks (Table 1).
While this interplay has best been studied for tRNA modifications,
some are slowly being uncovered for mRNA modifications. Such inter-
play does not necessarily imply a close interaction between the marks
on same transcripts but any circumstances wherein one mark impacts
the level or function of another mark. Here we describe the current
methods used to detect RNA modifications and their limitations. We
next discuss the potential crosstalk between different RNA modifica-
tions, their regulatory players and their participation in similar biolog-
ical processes. The interplay between tRNA modifications will be only
briefly mentioned as this topic has recently been covered in a compre-

hensive review.[47]

CURRENT CHALLENGES FOR THE SIMULTANEOUS
DETECTION OF MULTIPLE RNA MODIFICATIONS

In the last years, technological advances enabled major improvements
in the detection of RNA modifications.[847] Most of the current meth-
ods rely either on the particular reverse transcription signatures left by
RNA modifications in cDNA, which are naturally occurring or induced
by chemical/enzyme-based treatment or to an antibody-based pull-
down approach followed by short read sequencing. For a subset of
RNA modifications, it is possible to create transcriptome wide maps
in a nucleotide-resolution manner and even obtain the stoichiomet-
ric quantification of single sites. However, these techniques are lim-
ited to detect modifications for which highly specific antibodies or
reactive chemical compounds and enzymes are available or so called
“hard-stop” modifications, which lead naturally to RT-arrest or other
mutation signatures during the reverse transcription.[>%] In addition,
they often require laborious protocols and most of these approaches
enable the detection of only one modification at a time, and there-
fore rely on the correlation of different datasets to study the inter-
play among different modifications. Certain methods can be adapted
and combined to directly measure several modifications in the same
sample 1511 but the rather complex protocols, the need for high amount
of input material and the loss of information about their relative dis-
tribution to each other make it highly inconvenient. Thus, a need for
novel methods to simultaneously measure and identify multiple RNA
modifications is imperative. To date, such methods are still in their
infancy, but rapid progress in the development of mass spectrometry
(MS) approaches, native RNA long read sequencing and nuclear mag-
netic resonance (NMR) spectroscopy hold great promises.

MS is one of the current approaches used for the determination
and quantification of co-occurring RNA modifications.[253] One of the
main advantages of the MS-based approach is that it is applicable to
all types of modifications. It relies on the property that most modified
nucleotides have a unique mass that can be distinguished from each
other and with the unmodified counterpart. Therefore, MS allows the
analysis of multiple RNA modifications in parallel, including the detec-

tion and discovery of previously unknown marks. Nevertheless, the
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major disadvantage is that crucial information about the location of
specific transcripts and the sequence context are lost. A way to over-
come these limitations consists in partially digesting the RNA in smaller
oligonucleotides to map modified nucleotides to RNA sequences or the
direct sequencing of intact, full-length RNAs to compare their mass
spectra with sequence databases.[>#] This allows to gain insights into
the modification landscape of specific RNA at nucleotide resolution.
However, this method is not applicable for transcriptome-wide detec-
tion and requires the isolation of pure RNA species. More details on
these issues can be found in Lauman and Garcia.l>3!

An alternative approach is the use of a platform for direct sequenc-
ing of RNA molecules without the need for cDNA synthesis or PCR
to preserve the information of modified nucleotides. Such native long
RNA sequencing is commercially available by Oxford Nanopore Tech-
nologies (ONT). In this approach, specific motor proteins actively
ensure the transport of a nucleic acid molecule through each pore,
which results in a sequence-specific perturbation of the measured cur-
rent. This change in the current signal can be converted to the corre-
sponding sequence of nucleotides. The presence of RNA modifications
can further modify the current and therefore leave a specific footprint.
This has been reported for instance for méA, m>C, 7-Methylguanosine
(m”G) and pseudouridine. In certain cases, the modified current is lead-
ing to base miscalling and can be recognized as reproducible frameshift,
deletion or insertion patterns by adapted base calling methods, as
used for A-to-1, m’G and pseudouridine sites.[>575] Nevertheless, the
identification of the current change depends on the sequence context,
which means that base calling algorithms should be trained with all pos-
sible motifs containing known modifications. In addition, the current
change induced by modified nucleotides in comparison to the unmodi-
fied counterpart can be very subtle. Therefore, to detect modified sites
with high confidence, a knock out condition for the modifying enzyme
to measure relative changes of RNA modifications at individual or set
of sites can be used.1°658] These issues still need to be overcome for
most modifications, which is just starting to be explored.

An additionally promising technique to gain more information
about the dynamics of RNA modifications is NMR spectroscopy. NMR
has been widely used to study the dynamic and structural effects
of modification on RNA, however, it can also be used for their
identification.[69-66] Recently, a novel time-resolved NMR monitoring
of RNA maturation has been proposed.[¢”] Taking advantage of the
non-disruptive nature of NMR, the de novo synthesis of modifications
on unmodified RNA has been monitored to study the consecutive gen-
eration of RNA modifications on tRNAP"® in a continuous- and time-
resolved way. Using this method, a mutual interplay in the generation of
W55 m5U54, and mA58 on tRNAPhe has been identified. While NMR
has the advantage to allow a strong assessment of structural features
of tRNA at atomic resolution and, therefore, preserve the information
about the location of different RNA modifications, it relies on the use of
high quantities of isotope labelled RNA. In addition, it is extremely chal-
lenging to measure intact, high molecular weight RNAs as so far only
a few NMR-based studies could investigate RNA that exceeds a 100-
nucleotide length.[8-70] This currently clearly limits the usage of NMR
for the investigation of longer RNAs such as mMRNA or rRNA.

INTERPLAY IN THE DEPOSITION OF RNA
MODIFICATIONS

The understanding of the regulation and function of individual RNA
modifications is constantly increasing. Novel enzymes involved in the
deposition of different modifications keep being discovered and their
mechanisms elucidated. Despite this increasing knowledge about the
enzymes essential for the generation of RNA modifications, the mutual
influence of RNA modifications remains poorly understood. However,
some indications suggest that these influences may in fact not be
negligible.

The influence of queuosine on the generation of m>C on tRNA in
S. pombe is among the best conserved evidence of a mutual regula-
tion of RNA modifications.”!! Queuosine is a complex modification
known to be present on several tRNAs at position 34. It cannot be syn-
thesized de novo by eukaryotes. Therefore, the eukaryotic organism
relies on external environmental sources of the queuine base, which
is used to synthesize queuosine. Interestingly, the growth of S. pombe
cells in the presence of queuine not only increased the queuosine level,
but also strongly stimulated the in vivo m°C level at position C38 in
tRNAASP_In the absence of TGT, the specific enzyme responsible for the
insertion of queuosine into tRNAs, no increase in the methylation was
detectable, indicating that not only the presence, but also the incorpo-
ration of queuosine into tRNA is required for m>C deposition. These
results were confirmed in mammalian HelLa and human colon carci-
noma (HCT116) cells, as well as in vivo by analyzing different tissues
of mice fed with a queuine free synthetic diet. A specific decrease of
the m>C level at C38in tRNAASP but not in other tRNAs, was observed,
which could be restored by the addition of synthetic queuine.l”2] While
these experiments clearly demonstrate an interplay of these two RNA
modifications the precise underlying mechanism still remains to be dis-
covered.

Additional examples of such crosstalk for the deposition of tRNA
modifications have been demonstrated, mostly in E. coli and yeast.
Importantly most of these crosstalks occurs between modifications
present at the anti-codon loop region. Archaea are the exception where
several examples of interplay between modifications at the main body
of tRNA were detected.l”73-7¢] It is currently unclear whether organ-
isms that live at extreme thermophilic conditions are more dependent
on step wise deposition than others, or whether this simply reflects a
gap in our understanding in the other organisms.

While the generation of m>C on tRNA can be influenced by queuo-
sine, its presence on mRNA can be determined by another mark. p21
functions as a regulator of cell cycle progression and can act both
as tumor suppressor and oncogene.l’”] p21 mRNA is modified in its
3’ untranslated region (UTR) by both NSUN2 and METTL3/METTL14
catalyzing m5C and méA, respectively.78] In vitro methylation assays
using a p21 3'UTR reporter construct in HCT116 cells demonstrated
that the pre-methylation by NSUN2 increases méA deposition by
METTL3/METTL14 and vice versa, which ultimately enhances the
translation of p21 mRNA. The underlying mechanism of this interplay is
currently unclear. Also, whether other mRNAs benefit from the coop-

erative regulation by m°C and méA awaits future investigations.
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FIGURE 1 Potential mechanisms of the mutual interplay of A-
editing and méA. The deposition of méA in double-stranded RNA
regions can alter the local structure by destabilization of RNA
duplexes (méA-switch) and, therefore, disfavor the binding of ADAR
leading to a suppression of A-1 editing (A). A decrease of the A-l editing
might also be caused by m®A reader proteins that sterically block Adar
binding sites upon binding to méA (B). Contrary, m®A readers might
increase the A-l editing at specific sites by recruiting Adar (C)

Another interplay involving méA has recently been suggested with
Inosine (I), another abundant modification on mRNA. In human embry-
onic stem cells (ESCs), the editing level of known A-to-| editing sites
was shown to differ between méA-positive and -negative mRNA
populations,7?! being the editing rate higher in the latter. In line with
this, depletion of METTL3 in HEK293T and mouse 3T3 cells increased
the editing level at certain A-to-l sites, while the knockdown of the
méA eraser FTO caused general A-to-I editing downregulation. By con-
trast, another study conducted in glioma stem-like cells described an
opposing effect wherein a general downregulation of the A-l editing
level was observed upon depletion of METTLS3, albeit the C-U RNA
editing catalyzed by APOBEC was increased.!8%] These experiments
suggest that these two marks influence the deposition of each other,
even though the precise mechanism and the basis for the differential
regulation in different systems are currently not understood. Potential
models for a direct interplay involve the so-called m®A switch mech-
anism. The generation of m®A in double-stranded regions, as that is
hairpin loops, alters the local RNA secondary structure by destabiliza-
tion of RNA duplexes. Because ADAR binding relies on the presence of
double-stranded RNA regions, the presence of méA could lead to a loss
of ADAR binding sites and, therefore, a modulation of the A-l editing
(Figure 1A). In addition, the modulation of the A-I editing by m®A could
involve proteins binding specifically to m®A, leading to a sterically block
of nearby ADAR binding or A-l editing sites (Figure 1B), or opposingly,

FIGURE 2 The binding specificities of YTHDF (DF) proteins. Apart
from the binding to méA, studies indicate the binding of DF2 and
DF1/3 to m>C and m*A. The binding of DF1/3 to m°C might be
directed by the interaction with the m>C reader protein YBX1. The
weight of the arrow indicates the relative strength of the binding

the recruitment of ADAR to specific target sites (Figure 1C; examples
given below) in the presence of méA.

The editing level can also be influenced by méA-dependent expres-
sion control of ADARs. The isoform ADAR1p150 is expressed in
response to interferons (IFN) to prevent the overactivation of the
dsRNA sensing pathway by editing, in order to weaken dsRNA
structures.[8] Recently, it was shown that ADAR transcripts are
méA modified and bound by the m®A reader proteins YTHDF1 and
YTHDF2.1821 Upon METTL3 and YTHDF1 knockdown, ADAR1p150
showed an attenuated expression in IFNa stimulated cells result-
ing in an increased innate immune response.l81] Therefore, méA
and YTHDF1 are required to ensure rapid expression response of

ADAR1p150 to prevent excessive immune response.

MOLECULAR INTERPLAY OF READER PROTEINS

The way modifications dictate the fate of RNA depends on the nature
of the chemical adduct. The modification can have a direct impact on
the RNA secondary structure, or act as a scaffold for the recruitment of
specific functional proteins (reader proteins). Several of these reader
proteins have been extensively studied in the context of single RNA
modifications and are assumed to bind to only one modification due
to specific intrinsic features. Though, several studies identified a cou-
ple of reader proteins that show binding to multiple RNA modifica-
tions, which could raise some issues about previous interpretations
that would need to be addressed in future functional analysis.

The best characterized reader proteins for any RNA modification
are the members of the YTH family. In mammals, this protein fam-
ily consists of five members: YTHDF1/2/3 and YTHDC1/2. They all
have in common a YTH domain that can selectively bind to m®A (Fig-
ure 2) by the presence of a hydrophobic binding pocket. Interestingly,
it was recently suggested that YTH proteins may also bind additional

modifications. For instance, YTHDF proteins from HeLa and HEK cells,
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especially YTHDF2, have been shown to directly bind to a m°C-
carrying probe derived from the human CINP gene,[83] Furthermore,
the overall level of both m>C and méA was increased in YTHDF2 pull-
down fractions in comparison to the input. Intriguingly, knockout of
YTHDF2 resulted in higher m>C levels in rRNA, leading to the alter-
ation of rRNA processing.[83] The precise mechanism for this effect is
not yet understood. The binding to m3C requires the same amino acid
residue of the YTH domain that was shown to be essential for m®A
recognition, suggesting that the interaction with m>C is direct. How-
ever, it should be noted that YTHDF 1 and YTHDF3 can physically inter-
act with YBX1, a validated m>C reader.[®4] This indicates that the bind-
ing of YTHDF proteins might also occur indirectly through interaction
with this protein (Figure 2).

YTHDF proteins were also suggested to bind to the m*A mod-
ification (Figure 2). Two independent studies in human cells found
an enrichment of YTH proteins after pull down with m1A-containing
probes coupled to quantitative proteomics.18>8¢] Further in vitro bind-
ing assays with recombinant proteins could validate these associations.
It seems that in contrast to méA binding, only YTHDF proteins can
selectively bind m1A while YTHDC1/2 have little affinity for the m1A
probe. More recent work found higher enrichment for YTHDF3in com-
parison to YTHDF1/2.1871 Such differences might stem from the nature
of the m!A probes that were used in each study. Noteworthy, the
determined binding affinities of any of the YTH proteins were weaker
towards m1A than méA and m*A is relatively rare on mRNA, therefore,
the biological relevance of such binding is questionable.['#! This also
hold true for the binding of YTHDFs to m>C. Some correlations were
found between m1A-methylated transcripts and YTHDF targets iden-
tified by crosslinking and immunoprecipitation (CLIP) experiments but
those should be interpreted with caution as mA antibody can also rec-
ognize the cap structure leading to a high rate of false positives.!>088]

FMRP is an RNA-binding protein that is essential for brain function.
A loss of function of the encoding gene is the main cause of the Frag-
ile X syndrome (FXS) in human, a severe neurodevelopmental disorder
characterized by intellectual disability and behavioral alterations.[8%1 A
couple of recent studies suggested that FMRP acts as a m®A reader
in order to control the export, stability and translation of methy-
lated RNAs.[37:99-951 By contrast to YTH proteins, the binding to m¢A
appears to be sequence-dependent, and may also involve adirect inter-
action with YTHDF. Interestingly, FMRP was also found in complex with
ADAR, the enzyme responsible for A-I editing. This association is con-
served in multiple organisms, including Drosophila, zebrafish, mouse
and human.!?¢-991 |n all these organisms, the loss of FMRP leads to
changes in the editing level. However, the changes can be in both direc-
tions and vary between different organisms, suggesting the existence
of multiple mechanisms. Proposed models involve the recruitment of
ADAR to its mRNA targets through the RNA binding activity of FMRP
(Figure 1C), sequestration of ADAR by FMRP for binding to its targets
and modulation in ADAR expression upon FMRP loss. It is likely that a
combination of these effects occurs depending on the sequence con-
text, cell type and organism. So far, it has not been studied whether
these effects are dependent on m®A. As mentioned above, since a cor-

relation between méA and A-l editing events exist, it will be interesting

toinvestigate if the FMRP control of RNA editing involves its mé A RNA
binding ability.

In addition to its implications in the méA and A-I editing pathways,
FMRP has also been shown to affect and read Nm. FMRP interacts with
a subset of small nucleolar RNAs (snoRNAs), namely C/D box snoR-
NAs, that guide the 2’-O-methylation of rRNA.[190] Both the absence
and overexpression of FMRP result in a differential 2’-O-methylation
pattern of rRNA. Interestingly, the differential rRNA methylation pat-
tern can be recognized by FMRP itself. FMRP preferentially binds ribo-
somes with hyper-methylated 18S rRNA and hypo-methylated 28S
rRNA. Another study showed that FMRP forms a complex with BC1
RNA, a brain specific non-coding RNA involved in translational control,
in a 2’-O-methylation manner. In the soma, the presence of Nm on BC1
RNA decreases the binding of FMRP, while at the synapses Nm is vir-
tually absent, enabling the formation of BC1-FMRP-mRNA complexes
and the regulation of local translation. 20 Thus, as shown for YTH pro-
teins, FMRP binding to mRNA can be influenced by several modifica-
tions.

Currently it is unclear how the modifications impact FMRP bind-
ing. In contrast to YTH proteins direct binding of FMRP to méA
or Nm has not been demonstrated. The sequence context seems to
be important for FMRP to recognize m®A while Nm may impact
the secondary structure and thereby influence FMRP binding. Given
the ability of several modifications to alter the secondary struc-
ture of the RNA, it is likely that the binding of additional pro-
teins might be impacted by the presence or absence of RNA

modifications.

POTENTIAL INTERPLAY IN THE CONTROL OF GENE
EXPRESSION

A multitude of different RNA modifications have been identified
and the mechanisms by which they individually affect the RNA fate
and biological processes, as well as diseases starts to be uncov-
ered. Recent studies reported their involvement in similar molecu-
lar processes, yet a potential cooperativity in driving these processes
still remain to be formally demonstrated for most of these events.
Below we are listing some examples where potential interactions may

exist.

Translation

As mentioned above, one example for a combinatory regulation in the
translation process involved the p21 mRNA, which is both m®>C- and
méA-modified within its 3'UTR. The combined presence of both types
of methylation enhance p21 translation, leading to increased p21 pro-
tein levels during cellular senescence induced by oxidative stress.[78]
The individual or combined presence of m®A and m>C in the 3'UTR
of p21 leads to a similar increase in p21 translation, suggesting that
the two methylations could affect translation via the same mechanism.

It is unclear how both marks cooperate for this function. The role of
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YTHDF proteins in translation was recently disputed(23192] and no
mechanism has been demonstrated yet for the involvement of m>C in
translation.

Splicing

méA methylation and A-to-l RNA editing events both happen co-
transcriptionally in the nucleus, which implies their potential to reg-
ulate any step of the downstream mRNA processing. Several stud-
ies revealed crosstalk between the méA machinery and the regula-
tion of RNA splicing. In Drosophila and human cells, knockdown of indi-
vidual components of the méA methyltransferase complex results in
alteration of several splicing patterns, such as alternative 5’ss usage
and intron retention.[1>193] The m8A reader protein YTHDC1 was
also found to regulate alternative splicing of a subset of méA mod-
ified sites. It can promote exon inclusion by recruiting the splicing
enhancer SRSF3 while interfering with the binding of the splicing
silencer SRSF10.1194] |n addition, m®A erasers partially co-localize with
splicing factors in the nucleus and both FTO and ALKBH5 depletion
results in alternative splicing defects.[205-107] A-to-] RNA editing and
pre-mRNA splicing also influence each other. Loss of ADAR has been
shown to induce global changes in splicing in various cell types and
model systems.!208-111] A recent genome-wide study in human cells
identified around 500 editing sites that could affect splicing by chang-
ing the invariant AG dinucleotide to GG in the 3’ss or via ADAR bind-
ing to exons located in dsRNA regions.[*12] |nterestingly, m®A was
also shown to be deposited on the 3’ss of the S-adenosylmethionine
(SAM) synthetase pre-mRNA in C. elegans by METT-10, the METTL16
ortholog. Methylation at this site prevents the binding of the splic-
ing factor U2AF65 and thereby alters the proper splicing of SAM
synthetase[113.114] While the sam pre-mRNA is not regulated in this
fashion in mammals, the mechanism of splicing inhibition by 3’ss-m°A
appears conserved. More studies are needed to decipher to which
extent this mechanism participates in splicing regulation in higher
eukaryotes and if an interplay with RNA editing occurs. In Drosophila,
genome-wide characterization of RNA editing events identified sev-
eral editing sites located within or in close proximity to alternatively-
spliced exons.[113] Sex lethal (SxI), one of the major regulators of sex
determination in flies, is found among the transcripts where RNA edit-
ing and alternative splicing might affect each other. Interestingly, méA
modification is known to be required for proper splicing of the Sxl tran-
script and méA writer mutants display decreased levels of the female-
specificisoform together with the appearance of the male-specific exon
in female flies.[32.103.116] |n |ight of this, it would be interesting to inves-
tigate how splicing is affected when different modifications are present
on the same mRNA and whether a “splicing code” based on RNA mod-
ifications could contribute to fine-tune the splicing of modified tran-
scripts.

Apart from the influence of modifications on the mRNA splicing pat-
tern, modifications on the spliceosomal RNA also participate to splicing
regulation. A recent study revealed that the La-related protein LARP7
interacts with the box C/D snoRNP facilitating U6 2’-O-methylation

in mouse male germ cells.[2¥7] U6 snRNA is an essential catalytic
component of the spliceosome and defective ribose methylation in
the absence of LARP7 leads to severe changes in pre-mRNA splicing,
including skipped exons, retained introns as well as alternative 5’ and
3’ss. Similar findings were reported also in human HEK293 cells, indi-
cating that the role of LARP7 in U6 2’'-O-methylation is evolutionarily
conserved in vertebrates.[118] U6 snRNA also contains méA at position
A43. This modification is catalyzed by the methyltransferase METTL16
and lies within a highly conserved region of U6, which base pairs with
the 5’ss during the first step of pre-mRNA splicing.[119-122] This methy-
lation is required for efficient splicing of a subset of introns.! 223! Inter-
estingly METTL16 was shown to specifically interact with LARP7 in
an RNA-dependent manner,! 121l suggesting that this interaction may
be mediated by U6 snRNA and that m®A and 2’-O-methylation of the
snRNA could occur simultaneously and possibly influence each other.
Future research is needed to investigate whether U6 2'-O-methylation
and méA do also functionally interact in spliceosome assembly or

snRNPs biogenesis.

RNA stability

The maternal to zygotic transition (MZT) marks the passage from
embryonic development controlled by maternal gene products to
the activation of the zygotic genome and represents a fundamental
and highly regulated event during early embryogenesis. The decay of
maternal transcripts is a critical step that occurs during this transi-
tion. In zebrafish embryos, more than 30% of maternal mRNAs are
méA-modified and bound by Ythdf2 to facilitate their degradation.!124]
Loss of Ythdf2 causes accumulation of methylated maternal mRNAs
and interferes with the zygotic genome activation (ZGA) leading to
developmentally delayed fishes. Similarly, mouse maternal YTHDF2 is
required for the correct dosage regulation of the oocyte transcriptome
and loss of YTHDF2 leads to the arrest of embryonic development at
the two-cell stage.[125126] Thjs view has been recently challenged by
a new study reporting that, despite the major role of m®A in maternal
mRNA deadenylation, individual Ythdf proteins are not necessary for
proper maternal transcript clearance and ZGA in zebrafish. Conversely,
their findings support a model in which the Ythdf readers act redun-
dantly in the MZT regulation.[127] In contrast with the role of méA
during MZT, m>C genome-wide profiling in zebrafish early embryos
revealed that m®C-modified maternal mRNAs are more stable com-
pared to non-methylated ones.[128] Maternal m>C-modified mRNAs,
mainly involved in intracellular protein transport and cell-cycle reg-
ulation, are preferentially recognized and subsequently stabilized by
YBX1 together with the mRNA stabilizer PABPC1a.l128] Altogether,
RNA methylation can affect MZT and early embryonic development in
both zebrafish and mouse by regulating the decay and stability of the
maternal transcriptome depending on the nature of the methylation.
Future research is needed to investigate what determine the type of
methylation that is installed on a specific transcript, if méA and m°C
can be present on the same maternal MRNAs and what is the final out-
put on RNA stability.
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CONCLUSIONS AND OUTLOOK

The field of RNA modifications has sparked huge interest in recent
years, which has led to major discoveries in the nature, specificity and
functions of these marks. Numerous studies demonstrated that these
marks are essential in all types of RNA and can control most processing
events. By analogy to the epigenetic code we propose that the depo-
sition and activity of RNA modifications might be regulated in concert
so that they converge towards a similar goal. This interplay might be
regulated in a tissue-specific manner, depending on the metabolic need
of the cell. The best way to achieve this goal is through a crosstalk
between the different writers or readers of specific marks, as discussed
above. Note that the presence and precise abundance of most modi-
fications on mRNA still remain to be proven, and therefore a mutual
interplay between different modifications on mRNA may remain lim-
ited. Nevertheless, an interplay could be indirect and does not nec-
essarily involved mRNA only. For instance, 2’-O-methylation level on
rRNA is regulated by MYC, which can ultimately impact translation and
facilitates tumor progression. 1271 Likewise, MYC can reduce the abun-
dance of m®A through transcriptional activation of the méA demethy-
lase ALKBH5,[1391 and also impacts m>C level and cell cycle progres-
sion by upregulating NSUN2.[131] |t is [ikely that this type of regulation
by a common factor is meant to achieve a coordinate cellular response
for gene expression. In conclusion, the few examples described in this
review suggest that to understand the impact of RNA modifications in
a given physiological process or disease conditions one might have to
consider their potential interplay. With the rapid progress of method
detection, we anticipate that this quest will soon enter within the realm

of the possible.
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