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Abstract. We propose a framework for an unsupervised analysis of electroen-
cephalography (EEG) data based on possibilistic clustering, including a prelim-
inary noise and artefact rejection. The proposed data flow identifies the existing
similarities in a set of segments of EEG signals and their grouping according to
relevant experimental conditions. The analysis is applied to a set of event-related
potentials (ERPs) recorded during the performance of an emotional Go/NoGo
task. We show that the clusterization rate of trials in two experimental condi-
tions is able to characterize the participants. The extension of the method and its
generalization is discussed.
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1 Introduction

The recording of human brain activity is generally performed by electroencephalogra-
phy (EEG), which has the advantage of being a non invasive technique using external
electrodes placed over many standard locations determined by skull landmarks. It is
recognized that brain circuits that are activated at any occurrence of the same mental
or physical stimulation generate transient electric potentials than can be averaged over
repeated trials [19]. Such brain signals recorded by EEG and triggered by a specific
event are referred to as event-related potentials (ERPs).

The conventional analysis of ERPs rely on a supervised approach, mainly on the
experimenter’s experience in order to discard outliers and detect wave components that
are associated with different neural processes. In order to decrease the impact of the
bias due to the human supervision, machine learning techniques have been recently
presented [15]. Techniques using Echo State Networks [2], or interval features [13],
or statistical techniques such as Independent Component Analysis [17, 24] have been
successfully applied to tackle a specific classification problem following a phase of
feature extraction. However, these techniques bear the disadvantage of depending on
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a careful choice of the feature extraction technique which captures a pre-determined
aspect of the variability. In a way the bias of human supervision is moved to another
step of the analysis, but the pre-selection of specific features might be prone to learning
biases or over-fitting of the training data.

It has been recognized for a long time the value of single-trial analysis [5] and the
importance of analyzing all time points to reveal the complete time course of the effect
of a triggering event, either mental or physicial [22]. In order to reduce the bias of an
a priori criteria for a supervised classification we propose an unsupervised data pro-
cessing flow based on a probabilistic clustering aimed to capture similarities between
different trials in the data set, without previously extracting features. Our approach is
not intended to provide a direct answer to a specific classification problem. It is rather
thought as a general tool to clusterize ERPs based on their internal structure. We present
the application of this technique to a set of ERPs recorded during the performance of
an emotional Go/NoGo task.

2 Methods

2.1 Graded Possibilistic Clustering

The Graded Possibilistic Clustering approach [16] is a central clustering model able to
achieve fast convergence and low outliers rejection of fuzzy clustering methods with
probabilistc constraint (as in Fuzzy C-Means [1, 6], and Deterministic Annealing [21,
20]), while at the same time avoiding the difficult convergence and high outliers re-
jection of fuzzy clustering methods with possibilistic constraint (such as Possibilistic
C-Means [11, 12]).

In the current work we propose a new version of the Graded Possibilistic Cluster-
ing model (GPC-II). Let us consider a set X of k observations (or instances) xl , for
l ∈ {1, . . . ,n}, and a set C of c fuzzy clusters denoted C1, . . . ,Cc . The clusters are rep-
resented via their centroids y j , for j ∈ {1, . . . ,c}. To an observation xl , each cluster
associates a fuzzy cluster indicator (or membership) function

ul j ∈ [0,1] ⊂ R. (1)

The total membership mass of an observation xl is defined as:

ζl =

c∑
j=1

ul j . (2)

The membership of the observation xl to the cluster u j can be expressed as:

ul j =
vl j

Zl
, (3)

where
vl j = e−dl j /β j (4)
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is the free membership, and

Zl = ζαl =




c∑
j=1

vl j



α

, α ∈ [0,1] ⊂ R (5)

is the generalized partition function.
In the last two equations, dl j is the distance between the j-th centroid and the ob-

servation xl , coefficients β j are model parameters playing a role in the representation
of data as cluster widths, and the parameter α controls the “possibility level” of the
GPC-II, from a totally probabilistic (α = 1) to a totally possibilistic (α = 0) model,
with all intermediate cases for 0 < α < 1.

In GPC-II the clusters’ centroids are related to the membership vectors via the equa-
tion:

y j =

∑n
l=1 ul jxl∑n
l=1 ul j

. (6)

The implementation of the GPC-II is based on a a Picard iteration of Eq.s 3 and 6
after a random initialization of centroids.

Note that for α = 1, the representation properties of the method coincide with those
of Deterministic Annealing [20, 21]). When α = 0, they are equivalent to those of Pos-
sibilistic C-Means [12]). In the intermediate cases, as soon as α > 0, there is a degree of
competition between clusters, as in probabilistic models, but memberships eventually
vanish for points sufficiently far away from the centroids, as in the possibilistic case.

A deterministic annealing version of the Graded Possibilistic Clustering model
(DAGPC-II) can be implemented by decomposing the model parameters β j as β j =

βbj , where β is the optimization parameter for the deterministic annealing procedure
(starting small and enlarging each time the Picard iteration converges) and bj are the
relative cluster scales obtained from some heuristic like those proposed in [12]. In this
way the Graded Possibilistic Clustering can benefit of the powerful optimization tech-
nique proposed in [20, 21] that, after starting from fully overlapped clusters, with the
increasing of β performs a hierarchical clustering (with overlapped clusters splitting),
able to find the "natural" aggregations of observations.

2.2 Overlapping of clusters

The Jaccard index expresses how much two subsets are overlapping. It is defined by the
following expression:

J (A,B) =
|A ∩ B |
|A ∪ B |

. (7)

For fuzzy clusters as the ones we consider, the belonging of an element to a cluster is
expressed via its membership indicator, which is a real value in the interval [0,1]. In
this case we can use following definitions of fuzzy cardinality for the fuzzy clusters to
make sense of Eq. (7).

|Cl ∩ Cm | =

m∑
j=1

min(ul j ,umj ), |Cl ∪ Cm | =

m∑
j=1

max(ul j ,umj ),

The resulting Jaccard index is a real value in the interval [0,1].
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2.3 Experimental data

Nineteen volunteers (5 females, mean age (SD) 28 (6.69)) were fitted with EEG equip-
ment and recorded using 64 scalp active electrodes (ActiveTwo MARK II Biosemi EEG
System) at a sampling frequency of 2048 Hz. We present here an analysis limited to
brain signals recorded on the electrode Fz.

The behavioral task consisted in an emotional Go/NoGo task [7]. The stimulus pre-
sentation and response collection software was programmed using the software EPrime
(Psychology Software Tools, Inc., Sharpsburg, PA 15215-2821, USA). The Go-cues of
the task required participants to look at a picture with a face presented in the center
of a computer screen and respond as fast as possible by pressing a button when a face
expressing neutral emotion was displayed. In the NoGo-cues trials the participants with-
held responses to non-target stimuli. For each trial the stimulus presentation lasted for
a duration of 500 ms, followed by a fixation mark (+) for 1000 ms. The task consisted
of four blocks of 30 pseudo-randomized “Go/NoGo” trials. Each block contained 20
“Go” and 10 “NoGo” trials. A neutral emotional expression of a face was paired with
emotional expressions (happiness, fear, anger, or sadness) of the same face. The neutral
expression served as the “Go” cue, while anyone of the emotional expressions was the
“NoGo” cue.

2.4 Within-participant data processing flow

For each participant the analysis of all Go/NoGo trials is aimed to exclude the trials
that contain artefacts, and then identify clusters of the remaining trials, without any
information whether the stimulus was a “GO” or a “NoGo” cue. The data processing
flow consists of the following phases.

1. EEG Pre-processing. The data of each participant are imported in EEGLAB [4]
and re-referenced with respect to the two mastoidals M1 and M2. Subsequently, the
filter IIR Butterworth (Basic Filter for continuous EEG in the software) is applied,
with Half-Power parameters 0.1 Hz for High-Pass and 27.6 Hz for Low-Pass.

2. Segments extraction. The resulting signals are read with a Python script using the
EDF reader present in the package eegtools. The relevant segments of the EEG
recording are extracted according to the triggers which identify the experimental tri-
als. We have considered only the correct trials (i.e., the participants either pressed
the button after a “Go” cue, or they did not press the button for a “NoGo” cue),
on average 108 (out of 120) trials per participant. We considered a time course of
600 ms for the ERPs, starting at the beginning of the trial (the instant when the pic-
ture with the face is presented to the participant), in order to avoid the presence of
muscular artifacts produced at the time the participant pressed the button. For each
trial, we apply a baseline correction by subtracting the average value of amplitude
of the signal in the 200ms immediately before the trial onset. With a sampling rate
of 2048 Hz, the segments with a duration of 600 ms correspond to vectors in R1228

and they form a subset ofR1228.
3. Smoothing. We apply the 1-dimensional Anisotropic Diffusion algorithm by Per-

ona & Malik [18] to smooth each signal segment (parameters: 1000 iterations,
delta_t = 1/3, kappa = 3).
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4. Artefact rejection. The peak-to-peak amplitude was computed for each segment.
We rejected those segments characterized by a difference larger than twice the me-
dian absolute deviation (MAD) between the peak-to-peak value of a trial and the
median peak-to-peak value computed over all correct trials. On average this proce-
dure rejected approximately 14 segments per participant. The remaining segments
(n = 94 on average, out of 120 initial trials) for each participant were considered
valid for further analysis. The set of valid data is denoted X ⊂ R1228. An example
is displayed in Figure 1.
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(a) All segments for participant #12721
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(b) Valid segments after removal of 11 trials

Fig. 1: Rejection of the ERP segments tagged as artefacts according to the peak-to-peak
amplitude criterion.

5. Possibilistic clustering. We apply the Graded Possibilistic Clustering algorithm
with deterministic annealing (Section 2.1) with parameter α = 0.85 and initial
number of clusters equal to c0 = 7, which is chosen heuristically to be between 2
and 3 times the actual number of clusters we expect to find in the data, obtaining,
for each cluster Cj , its centroid y j ∈ X and its membership vector u· j ∈ R|X | ,
whose components express how much each of the segments belongs to the cluster.

6. Singleton clusters rejection. Any cluster with its centroid modeling only a single
trial was removed. Such clusters, the singletons, are identified among those with
a total membership differing from the average membership of all clusters by more
than 1.5 standard deviations. In case there is only one segment, among all the seg-
ments, with maximum membership in the cluster, then the segment is removed and
the clustering algorithm of point 5 is applied iteratively. Hence the number of re-
quired clusters is decreasing by one and the procedure is repeated until no more
segments are removed.

7. Merging of overlapping clusters. The Jaccard index, defined in Section 2.2, is
computed to determine the closeness for each pair of clusters. For each partici-
pant we compute independently the distribution of these values, which tends to be
a multimodal distribution that can be decomposed as a mixture of distributions.
The leftmost mode includes the neighbor clusters, very close to each other given
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a Jaccard index towards 1. Different methods used to fit this density show that a
cut-point separating the neighbor from the remaining clusters tended to be close to
a value J0 = 0.7. For this reason we have decided to fix this value for all partici-
pants as the significant threshold value characterizing overlapping clusters. Hence,
two clusters are merged if their index surpasses the threshold value J0. After merg-
ing, the new centroid is computed as the average of the centroids of the previous
clusters weighed by the membership values of their elements and we determine the
new membership vector as done in the clustering algorithm of point 5. Then, new
Jaccard indexes are recomputed and the procedure is applied iteratively until no
neighbor clusters can be merged any more.

Fig. 2: ERP segments for participant participant #12721 (thin grey lines) and the two
clusters (represented by their centroids with thick blue and black lines).

2.5 Clusterization rate

The interest and the validity of the clusters obtained through the procedure described
above is dependent on the specific data set. In this study, we evaluate the outcome of the
analysis by considering whether the “Go” and “NoGo” trials were clusterized accord-
ing to the experimental conditions. For each participant we computed a clusterization
rate of the “Go” trials (respectively, the “NoGo”) trials defined as the number of “Go”
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segments (respectively, “NoGo”) characterized by a high membership to one of the
identified clusters (i.e., signal segments with a membership above the 95-th percentile
of the cluster) divided by the total number of “Go” trials (respectively, “NoGo”).

3 Results

For each participant we observed a number of clusters 2 ≤ C ≤ 4. An example is
displayed in Figure 2.

The confusion matrix of the different experimental conditions (Go/NoGo condition,
type of emotion) vs. the membership to the clusters did not provide relevant differences
between the clusters. This suggests that the ERPs features related to high cognitive
functions such as affective discrimination are not associated with simple wave compo-
nents of the brain signal itself and might require the choice of specific features or a
different metric of the signals to be detected.

Nevertheless, we observed a significant difference of the clusterization rate of the
“Go” and “NoGo” trials for most participants (Figure 3). The probabilistic clustering
is implicitely depending on the random seed used at the begin of the procedure, for
we repeated the same analysis with 20 different random seeds in order to evaluate the
robustness of the result for each participant. We observed that for 13 participants the
average clusterization rates for the Go trials were larger than the corresponding cluster-
ization rates for the NoGo trials (Figure 3a).

For each participant the variability of the clusterization rates depended on the vari-
ability between segments, on the number of correct available trials and on the nonlinear
interaction of these factors with the random initialization of the probabilistic clustering.
The variability for the Go trials was smaller than for the NoGo trials (Figure 3b) The
average values of clusterization of the Go trials for different participants were more
similar to each other, while the average values for the clusterization of the NoGo trials
varied more between participants. Indeed, it was expected that the ERP segments of the
“Go” trials, with a neutral expression of the cue, were more similar and hence would
be associated with a high membership to one of the identified clusters. Conversely, the
NoGo ERPs were associated with different face expressions and tended to be more
scattered and differ more between each other.

4 Discussion and conclusions

The analysis presented here demonstrates a possible approach towards an unsupervised
EEG signal analysis. The choices that we have made in the design of the data processing
flow make it very general and easy to extend to other datasets, since the user is not
required to choose a specific set of features to extract and analyze. The only value used
in our processing flow that was derived from a post-hoc analysis is the threshold value
J0 of the Jaccard index used to merge neighbor clusters. We set this value J0 = 0.7 and
it we can foresee that for other datasets this value might not be optimal. What is the
effect of choosing a value of 0.6, 0.65, or 0.8 is worth to be considered in future work
and with other data sets.



8 Paolo Masulli et al.

●

●

● ●●

●
●

● ●
●●

●●●●

●

●

●

●

0.0

0.1

0.2

0.3

0.0 0.1 0.2 0.3
Clusterization rate among NoGo trials

C
lu

st
er

iz
at

io
n 

ra
te

 a
m

on
g 

G
o 

tr
ia

ls

(a)

●

●

● ● ●
● ● ● ● ● ●

● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Subject

G
o 

cl
us

te
riz

at
io

n 
ra

te
N

oG
o 

cl
us

te
riz

at
io

n 
ra

te

(b)

Fig. 3: Clusterization rate comparison of Go and NoGo trials for all participants. (a)
Scatter plot of the average values over 20 different random seed initializations (each
point corresponds to one participant). For the majority of the participants (n = 13), the
clusterization rate of the Go trials is higher than the one of the NoGo trials. This ex-
presses the fact that the Go trials tend to be more similar to each other, while the NoGo
trials are characterized by higher intrinsic variability which is not necessarily captured
in the clusters. (b) Average value and standard error of the clusterization rate of Go
and NoGo trials for each participant over 20 different random seed initializations. No-
tice that the clusterization rates of the Go trials are characterized by a similar variation
across all the participants, while the NoGo trials have a much broader distribution of
the standard error.
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The trade-off of our approach is that the clustering algorithm compares the signals
directly by computing their distances as vectors, which might lead to the loss of higher
order features and to comparison problems between different trials given by time shifts
and delayed onset of EEG peaks. The complexity of the information processed by the
brain will certainly require a set of techniques able to analyze simultaneously the brain
activity at various time scales [9, 3, 23, 25]. Decoding brain states cannot be expected
to be achieved by totally unsupervised or partially supervised machine learning tech-
niques [15]. For the analysis of specific features of the ERPs a necessary approach will
consider the use of metrics able to detect and compare peaks and wave components
and accounting for time warping [8, 14, 10, 26]. Another future development which we
shall address is the comparison of the EEG signals of different participants with similar
unsupervised techniques, with the aim of grouping the participnts according to their
mutual similarities. This will require the application of normalization to account for
inter-participant variability of the amplitude of the signals.

Beyond brain research and clinical applications, these results will be applicable
to end-user applications of EEG recordings and might be integrated in brain-machine
interfaces featuring EEG sensors, thereby bringing important societal benefits through
applications to the domains of health, wellness and well-being. Additional goals will be
the generalization of the analyses to different types of neurophysiological signals, such
as spike trains recorded by intra-cranial electrodes, and to time-series data coming from
different sources.
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