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ABSTRACT
Estimation of muscle forces in over-actuated musculoskeletal models involves optimal distribu-
tions of net joint moments among muscles by a standard load-sharing scheme (SLS). Given that
co-contractions of antagonistic muscles are counterproductive in the net joints moments, SLS
might underestimate the co-contractions. Muscle co-contractions play crucial roles in stability of
the glenohumeral (GH) joint. The aim of this study was to improve estimations of muscle co-
contractions by incorporating electromyography (EMG) data into an upper limb musculoskeletal
model. To this end, the model SLS was modified to develop an EMG-assisted load-sharing
scheme (EALS). EMG of fifteen muscles were measured during arm flexion and abduction on a
healthy subject and fed into the model. EALS was compared to SLS in terms of muscle forces,
GH joint reaction force, and a stability ratio defined to quantify the GH joint stability. The results
confirmed that EALS estimated higher muscle co-contractions compared to the SLS (e.g., above
50N higher forces for both triceps long and biceps long during arm flexion).
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1. Introduction

Noninvasive measurement of muscle forces remains
an elusive goal (Dennerlein 2005). However, estima-
tions of these forces can be obtained using musculo-
skeletal models. In the available musculoskeletal
models, equilibrium equations are obtained for net
joint moments using inverse dynamics (Garner and
Pandy 2001; Arnold et al. 2010; Ingram et al. 2016).
There are more muscles than the number of equilib-
rium equations (over-actuation). Therefore, a stand-
ard load-sharing scheme (SLS) is used to distribute
the net joint moments among muscles (Herzog 1996;
Erdemir et al. 2007; Terrier et al. 2010). The SLS esti-
mates muscle forces by optimizing a physiological
cost function subject to constraints. The constraints
are associated with the equilibrium equations, muscle
force upper/lower bounds, and joint stability (Van der
Helm 1994). Antagonistic muscles are counterpro-
ductive in the net joint moments. Therefore, SLS
might underestimate forces produced by antagonistic
muscles (co-contractions) (Cholewicki et al. 1995;
Collins 1995; Gagnon et al. 2011; Engelhardt et al.

2015), consequently underestimating joint reaction
forces (Favre et al. 2005; 2009; Nikooyan et al. 2012).
Estimations of muscle and joint forces could be
improved by considering co-contractions (Labriola
et al. 2005; Yanagawa et al. 2008; Sarshari et al. 2017).

For the upper extremity, few studies investigated
muscle co-contractions. Co-contractions were
enforced either by tailoring the optimization of SLS
(Van der Helm 1994; Raikova 1999; Forster et al.
2004) or by explicit use of measured EMG data
(Laursen et al. 1998; Brookham et al. 2011; Nikooyan
et al. 2012; Engelhardt et al. 2015).

Negative weighting factors were introduced to
enforce co-contraction by alleviating the SLS cost
function growth (Raikova 1999; Forster et al. 2004).
The choice of weighting factors required a priori
knowledge of antagonistic muscles. However, this was
not straightforward to achieve, given that muscles
could act simultaneously as agonistic and antagonistic.
A stability constraint replicating the stabilizing and
proprioceptive effects of musculotendinous structures
was introduced for the GH joint (Van der Helm
1994; Garner and Pandy 2001; Ingram et al. 2016). It
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constrained SLS solutions such that the resulting GH
joint reaction force (JRF) always pointed toward the
inside of the glenoid fossa.

On the other hand, explicit use of measured EMG
data could provide rather straightforward estimations
of co-contractions (Laursen et al. 1998; Brookham
et al. 2011; Nikooyan et al. 2012; Engelhardt et al.
2015). The relationship between EMG data and
muscle forces was crucial to ensure reliable EMG-
based muscle force estimation. However, the EMG-
force relationship was often over-simplified (Laursen
et al. 1998; Brookham et al. 2011; Engelhardt et al.
2015) deviating from nonlinear dynamical behavior of
musculotendon units (Zajac 1989). Besides, there was
no guarantee that the net moments reproduced by
EMG-based muscle forces would satisfy the equilib-
rium equations (Laursen et al. 1998; Langenderfer
et al. 2005; Engelhardt et al. 2015). Therefore, the
estimated co-contractions might lack a physiological
correspondence. EMG-based muscle forces could
shrink feasible sets of SLS. Therefore, co-contractions
would be better estimated, if EMG data were meas-
ured for more muscles. EMG data were measured for
fourteen muscles (Nikooyan et al. 2012), but only a
subset of the measurements could be used simultan-
eously, otherwise “the model crashed”.

The aim of this study was to improve estimations
of muscle co-contractions by incorporating muscle
EMG data into an upper limb musculoskeletal model.
Three main improvements were considered with
respect to the state-of-the-art. First, a validated non-
linear dynamical model was used for the EMG-force
relationship. Second, the model SLS was modified to
develop an EMG-assisted load-sharing (EALS) guar-
antying that the EMG-based forces would satisfy the
equilibrium equations. Third, EMG data of fifteen
muscles were measured on a healthy subject during
arm flexion and abduction and simultaneously fed
into the EALS. Muscle and joint force estimations by
EALS were compared with those of the SLS.

2. Methods

EMG and motion data were measured (Section 2.1).
A shoulder and elbow musculoskeletal model was
developed (Section 2.2). The measured motions were
reconstructed (Section 2.3). A musculotendon model
was developed (Section 2.4). The EALS was detailed
(Section 2.5). The developed EALS was evaluated and
compared to the SLS (Section 2.6).

2.1. Measurements

EMG and motion data were recorded on a healthy
male subject (29 year, 186 cm, and 85.5 kg) during for-
ward flexion in the sagittal plane and abduction in
the frontal plane, both with 2 kg weight in hand and
with a fully extended elbow (Figure 1). Both activities
were repeated for ten trials.

EMG signals of fifteen superficial muscles were
measured at 1500Hz sampling frequency using AgCl
Kendall surface-button EMG electrodes and recorded
by a 16 channel Desktop DTS system (Noraxon,
Arizona, USA). The muscles were deltoid clavicular/
acromial/scapular, trapezius C7/T1/T2-T7, pectoralis
major sternal, infraspinatus, teres major, triceps bra-
chii long/lateral, biceps brachii short/long, brachialis,
and flexor carpi ulnaris. Maximum EMG values were
also recorded by performing maximum voluntary
contractions (MVC).

A common approach in the literature (Winter
2009; Hug 2011) was used in order to transform the
measured EMG signals to muscle excitations. It con-
sisted of high-pass filtering, rectifying, and conse-
quently low-pass filtering the EMG signals. The
resulting EMG signals were normalized for each
muscle using the maximum of its associated MVC
signal. Means and standard deviations (rEMG) of the

Figure 1. EMG data of fifteen superficial muscles and trajecto-
ries of eleven skin-fixed markers were recorded during arm
flexion and extension with 2 kg weight in hand.
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parted signals associating to the ten trials
were obtained.

Trajectories of eleven palpable bony landmarks
were measured by tracking their associated skin-fixed
markers using an 8 camera VICON videogrammetry
system (VICON, UK) at 100Hz sampling frequency.
The bony landmarks included incisura jugularis (IJ),
processus xiphoideus (PX), 7th cervical vertebra (C7),
8th thoracic vertebra (T8), sternoclavicular (SC), acro-
mioclavicular (AC), angulus acromialis (AA), medial
epicondyle (EM), lateral epicondyle (EL), radial styl-
oid (RS), and ulnar styloid (US).

The recorded trajectories were low-pass filtered.
Then, means of the parted trajectories corresponding
to the ten trials were obtained.

2.2. Upper extremity musculoskeletal model

2.2.1. Kinematic model
A shoulder and elbow musculoskeletal model was
developed from MRI scans of the same subject
(Figure 2(a)) (Ingram 2015; Ingram et al. 2016;
Sarshari 2018). It consisted of six rigid bodies
including thorax, clavicle, scapula, humerus, ulna,

Figure 2. (a) MRI scans of a healthy subject were used to develop the model. (b) The kinematic model; fifteen bony landmarks
were used, including IJ, PX, C7, T8, SC, AC, AA, TS, AI, GH, EM, EL, and the middle point of EM and EL (HU), RS, and US. The
bone-fixed frames were: thorax frame fIJ, x̂ t , ŷ t , ẑ tg, clavicle frame fSC, x̂ c, ŷ c, ẑcg, scapula frame fAC, x̂ s, ŷ s, ẑ sg, humerus frame
fGH, x̂h, ŷh, ẑhg, ulna frame fHU , x̂ u, ŷu, ẑug, and radius frame fEL, x̂ r , ŷ r , ẑ rg: The generalized coordinates consisted of q1: SC
axial rotation, q2: SC depression/elevation, q3: SC protraction/retroaction, q4: AC posterior/anterior tilt, q5: AC downward/upward
rotation, q6: AC protraction/retroaction, q7: GH axial rotation, q8: GH addcution/abduction, q9: GH flexion/extension, q10: HU exten-
sion/flexion, q11: RU pronation/supination. The humerus frame was shifted for better visualizations.
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and radius. It had nine degrees of freedom (DOF)
attributing to three ball-and-socket joints associating
with sternoclavicular (SC), acromioclavicular (AC),
and glenohumeral (GH) joints and two hinge joints
for humeroulnar (HU) and radioulnar (RU) joints
and two holonomic constraints (Figure 2(b)). Two
constraints namely UTS and UAI restricted trigonum
scapulae (TS) and angulus inferior (AI) respectively
on the scapula medial boarder to glide over two
ellipsoids approximating the thorax and the underly-
ing soft tissues. The ISB recommendations
(International Society of Biomechanics, 2005) were
followed to define six bone-fixed frames. A general-
ized coordinate vector (q ¼ ½q1 . . . q11�T) was con-
sidered to define the upper extremity configuration.
The forward kinematic map (n) was developed to
define the inertial coordinate of the jth bony land-
mark (xj) associated with the generalized coordinates
at time t (Appendix A.1).

2.2.2. Dynamic model
Mass and inertial properties were attributed to the
bone segments according to Garner and Pandy
(Garner and Pandy 2001). The upper extremity equa-
tions of motion were derived using the Lagrange’s
equations (Appendix A.2).

The origins/insertions, via points, and wrapping
objects of 42 muscles spanning the upper extremity
joints were defined from the MRI scans, including
subclavius, serratus anterior upper/middle/lower, tra-
pezius C1-C6/C7/T1/T2-T7, levator scapulae, rhom-
boid minor/major T1-T2/major T3-T4, pectoralis
minor/major clavicular/major sternal/major ribs, lati-
simuss dorsi thoracic/lumbar/Iliac, deltoid clavicular/
acromial/scapular, supraspinatus, infraspinatus, sub-
scapularis, teres minor/major, coracobrachialis, tri-
ceps brachii long/medial/lateral, biceps brachii short/
long, brachialis, brachioradialis, supinator, pronator
Teres, flexor carpi radialis/ulnaris, and extensor carpi
radiali long/radialis bervis/ulnaris (Ingram 2015).
Each muscle group of the model can be represented
by up to 20 strings (Figure 3). Three strings per
muscle were considered for the simulations of
this study.

2.3. Multi-segment optimization

The measured motion was reconstructed in terms of
the generalized coordinates using multi-segment opti-
mization. Given that GH was not a palpable bony
landmark, it was missing from the measurements.
Both TS and AI were also missing, because, TS and

AI were masked with thick layers of soft tissues and
were not effectively trackable (Matsui et al. 2006).
Therefore, a novel method developed in (Sarshari
2018) was applied to estimate GH, TS, and AI trajec-
tories, without requiring an additional scapula track-
ing device. Then, multi-segment optimization was
used to define the generalized coordinates (qi) for
each frame of the measured motions (i), such that the
overall distance between the measured markers (xej)
and their corresponding bony landmarks (xmj) was
minimized, while satisfying the forward kinematics
map

min
qi

:
X
j

ðxmj, iðqiÞ�xej, iÞTWðxmj, iðqiÞ�xej, iÞ

s:t: UTSðqiÞ ¼ 0
UAIðqiÞ ¼ 0

(1)

where W was a weighting matrix.

Figure 3. The developed shoulder and elbow musculoskeletal
model included 42 muscles that each could be replicated by
up to 20 strings (three strings were considred in this
illustration).
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2.4. Musculotendon model

A Hill-type musculotendon model was used to esti-
mate the muscle forces associated with the meas-
ured EMG signals. It provided estimations of
tendon force (FTðtÞ) for given muscle excitations
(u(t)) and muscuoltendon lengths (lMTðtÞ) (Figure
4) (Winters and Stark 1987). It consisted of two
unidirectional coupled dynamics, namely activation
dynamics and contraction dynamics. The activation
dynamics associated u(t) to muscle activation (a(t)).
The contraction dynamics accounted for the force
reproductions for a given a(t) and lMTðtÞ (Appendix
A.3). A novel method developed in (Sarshari 2018)
was used to solve the contraction dynamics so that
the resulting tendon force estimations were devoid
of artificial transients. In addition, the musculoten-
don model was validated by reproducing experimen-

tally measured forces on maximally excited rat
Soleus (Sarshari 2018).

2.5. EMG-assisted load-sharing (EALS)

The equations of motion (Equation (A.6)) provided
eleven second order differential equations for the
resulting generalized coordinates q obtained from the
multi-segment optimization (Equation (1)). There
were more unknowns (42 muscles times number of
strings per muscle) than the number of equations.
Therefore, we casted the following EALS to find an
augmented muscle-force vector ~f i � ½f Ti kTSi kAIi �T
for each frame of the measured motions i. As per
Appendix A.2, f i was a vector consisting of the mag-
nitudes of all the muscle forces at i. The kTS and kAI
were the Lagrange multipliers associated with the
scapula-thorax constraints.

Figure 4. Markers trajectories were fed into the GH estimator. The resulting completed trajectories (xej ) were used in the multi-
segment optimization to find q. The musculoskeletal model defined the net joints moments, moment arms, and lMT: The muscle
initialization provided ~l

M
t0 for the contraction dynamics. The contraction dynamics reproduced the muscle forces associated to

muscles with measured EMG (fFTk 8k 2 DEMGg) for given ~l
M
t0 , a(t), and lMT: The resulting FTk were used together with the net

joints moments and moment arms in the EALS to estimate ~f :
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min
~f i

~f
T
i P~f i

s:t:
d
dt

oL
o _qi

� �
� oL
oqi

¼ oX
o _qi

B
UTS

oqi

UAI

oqi

� �
~f i

ð1�eÞFTk, i � ~f k � ð1þ eÞFTk, i k 2 DEMG

0 � ~f k � ~f maxk
else

(

wðqi, _qi, €qi, ~f iÞ � 0 (2)

where P was a diagonal matrix including the inverse
squared of muscles physiological cross section areas
(PCSA). The numerical values for PCSAs were set
according to the same data set as for the musculoten-
don parameters (Garner and Pandy 2003). The cost
function (~f

T
i P~f i) was the sum of squared muscle

stresses. The first set of constraints was the equations
of motion (Equation (A.6)) whose right-hand side
was written in a vectorial form. The second set of
constraints was the muscle force upper/lower bounds.
The set DEMG included muscles with measured EMG
signals. If the kth muscle segment belonged to DEMG,
its tendon force estimated by the musculotendon
model (FTk, i) from the measured EMG was used as its
upper/lower bounds. The positive coefficient e defined
the portion of FTk, i that was considered. The smallest
e that resulted in feasible solutions was considered for
both activities (0.05 and 0.07 for flexion and abduc-
tion, respectively). For muscles without measured
EMG signals, 0 and ~f maxk

¼ K PCSAk were used as
their lower and upper bounds, respectively. The Fick
constant K was set to 33.011Nm�2 (Crowninshield
and Brand 1981). The third constraint represented the
stability constraint and denoted by w (Ingram 2015).
The stability constraint w restricted the solution so
that the resulting GH joint reaction force always
pointed toward the inside of an elliptic cone that
approximated the glenoid fossa. Mathematically, w

was defined as the scalar product between the normal
vectors of the cone surface at the cone base and the
GH joint reaction force

w ¼ N:

�X
k

mkðx::k�gÞ�Df

�
� 0,

k ¼ fHumerus, Ulna, Radiusg
(3)

where N was the matrix containing the normal vec-
tors, mk was the mass, x

::
is the linear acceleration of

center of mass, g was the gravitational acceleration,
and D was a matrix containing the muscle force dir-
ection vectors. We considered 40 normal vectors to
adequately discretize the boundaries of the glenoid
fossa, which resulted in 40 inequality constraints rep-
resenting the stability constraint.

Equation (2) was solved to define ~f such that the
sum of squared muscle stresses was minimized, while
the constraints were satisfied. The resulting q from
the multi-segment optimization was fed into the mus-
culoskeletal model to obtain lMT for the full span of
the measured motion. The musculotendon dynamics
(Equations (A.7) and (A.8)) could be then solved
upfront for the full span of the measured motion to
define FTk : Having provided FTk , the net joints
moments, and the moment arms with a given reso-
lution, the optimization problem of Equation (2) was
carried out separately for each frame of the measured
motion (i). The equivalent SLS corresponds
to DEMG ¼ fg:

2.6. Results analysis

The two measured activities were simulated using
both SLS and EALS (Figure 4).

The stability ratio (SR) was defined for the gleno-
humeral joint based on the intersection of the JRF
and an ellipse approximating the fossa (Equation (4)).
It quantified the concentricity of the JRF with respect
to the glenoid fossa. It is well-known that co-contrac-
tions increase the glenohumeral joint stability by cen-
tralizing the JRF within the fossa (Yanagawa et al.
2008). Therefore, the SR was linked to the GH joint
stability obtained by co-contractions.

SRi ¼ 1� dIS i
aIS

� �2

� dPA i

aPA

� �2

(4)

where aPA and aIS were posterior-anterior and infer-
ior-superior radii of an ellipse that approximates the
glenoid fossa. dPA i and dIS i were intersections of JRF
and the glenoid fossa ellipse in posterior-anterior and
inferior-superior directions for the ith of the measured
kinematics, respectively. The stability ratio lied within
[01] with SR ¼ 0 being marginal stability (intersection
occurred on boundaries of the glenoid fossa ellipse),
and SR ¼ 1 being a perfectly centered intersection.

The sensitivities of the resulting muscle forces and
JRF, with respect to 61rEMG variations of the nor-
malized EMG signals around EMG means, were also
defined. To this end, a first-order approximation
(Fiacco 1976) of the sensitivity of Equation (2) with
respect to u(t) was calculated (Sarshari 2018).

Muscle forces, GH joint reaction force, and stabil-
ity ratio were presented for the measured flexion and
abduction. The sensitivities of the muscle forces and
the JRF were also presented. The results were illus-
trated along the arm flexion and abduction angles
corresponding to the flexion and abduction,

142 E. SARSHARI ET AL.



respectively. The associated results from the SLS were
also presented. For the JRF, the corresponding in vivo
measurements from (Bergmann et al. 2011) were also
presented. Due to space limits, the complete set of
muscle force estimations were left for the Appendix B
and only a subset of them were presented.

3. Results

3.1. Muscle forces

3.1.1. Forward flexion in the sagittal plane
While SLS estimated no force for deltoid clavicular
and scapular (except between 60o to 80o flexion),
EALS estimated forces (higher than 52N) for the
entire movement (Figure 5(a)). Deltoid acromial force
followed similar patterns in EALS and SLS, but it was
30% higher initially in EALS. Deltoid acromial had
the highest sensitivity (around 25%) to variations of
the normalized EMG.

The supraspinatus and subscapularis forces were
390% and 90% higher in EALS than SLS, respectively.
The infraspinatus and teres minor forces were similar
in EALS and SLS (less than 10% difference in
their maximums).

EALS estimated more than 50N force for triceps
long and biceps long (Figure B.1). However, SLS esti-
mated only almost zero forces.

3.1.2. Abduction in the fontal plane
EALS estimated above 55N force for deltoid clavicu-
lar, whereas SLS estimated almost zero force (Figure
5(b)). Almost 145% higher force estimated by EALS
for deltoid acromial in the beginning, although SLS
estimation was 60% higher at the end of the motion.
Both methods estimated very similar forces for deltoid

scapular after 50o abduction (normalized root mean
squared error > 0.024 and p< 0.0001). Deltoid acro-
mial as well had the highest sensitivity to variations
of the normalized EMG.

Higher maximum forces estimated by EALS for
supraspinatus, infraspinatus, subscapularis, and teres
minor comparing to SLS. For instance, the maximum
subscapularis force was 22% higher in EALS.

EALS estimated above 90N and 40N forces for tri-
ceps long and biceps long, respectively (Figure B.2).
However, SLS estimated zero forces.

3.2. JRF

The maximum JRF estimations by EALS were 58%
and 46% higher comparing to SLS for both flexion
and abduction motions, respectively (Figure 6(a) and
Figure 6(b)). They were 172% and 167% of body
weight (855N) and occurred at 68o flexion and 98o

abduction, respectively. The resulting JRFs had
around 22% sensitivity to the variations of the nor-
malized EMG signals.

3.3. SR and intersection foci

The SR was higher for EALS than SLS (more stable
GH joint) and reached 0.87 (vs 0.56 for SLS) until the
end of flexion (Figure 7(a)). The maximum SR was
46% less in abduction than in flexion according to
EALS (Figure 7(b)).

4. Discussion

The aim of this study was to improve estimations of
muscle co-contractions by simultaneously incorporat-
ing EMG data of fifteen muscles into a shoulder

Figure 5. Muscle forces estimated by EALS ( ) and SLS ( ) for (a) flexion and (b) abduction with 2 kg weight in hand. The
sensitivities to variations of normalized EMG signals were depicted by gray shaded areas. Bold fonts were used to distinguish the
muscles with measured EMG data. The muscle force estimations for all the 42 muscles were presented in the Appendix B.
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musculoskeletal model. To this end, the EALS was
developed by modifying the SLS of a shoulder and
elbow musculoskeletal model. The EALS was eval-
uated by comparing its muscles forces, JRF, and SR
with those of the equivalent SLS. The developed
EALS estimated higher muscle co-contractions com-
pared to the SLS. The JRF was consequently higher
compared to SLS.

During forward flexion, the higher force estimated
for deltoid clavicular by EALS coincided with a higher
force from deltoid scapular. This was consistent with
the previous findings regarding the antagonistic role
of deltoid scapular during arm flexion (Jost et al.
2000). Their co-contractions resulted in counterpro-
ductive moments around the GH joint. As well,

higher forces were estimated for triceps long and
biceps long as antagonistic muscles. Their antagonistic
role for the GH joint movements was reported
(Pagnani et al. 1996).

During abduction, similar co-contractions as those
of flexion were estimated by EALS. Furthermore, pec-
toralis major sternal and teres major had higher
forces in EALS, indicating their higher co-contrac-
tions. This co-contraction around the GH joint was
consistent with previous studies (Steenbrink
et al. 2009).

Comparison of the EALS and the SLS muscle force
estimations also illustrated role exchanges among
muscle groups with similar roles. For instance, trapez-
ius and rhomboid muscles contributed in the scapular

Figure 6. JRF estimated by EALS and SLS for (a) flexion, (b) abduction with 2 kg weight in hand along the corresponding in vivo
measurements (IP1, IP2, and IP3) from (Bergmann et al. 2011). The sensitivities to variations of normalized EMG signals were
depicted by the gray shaded areas.

Figure 7. SR from EALS and SLS for (a) flexion and (b) abduction with 2 kg weight in hand. The sensitivities to variations of nor-
malized EMG signals were also depicted by the gray shaded areas.
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upward/downward rotation during flexion. EALS esti-
mated more contributions from rhomboid minor/
major T1-T2 and less from trapezius C7/T2-T7. The
SLS estimations were contrary. Indeed, the use of sub-
ject’s EMG data in terms of upper/lower bounds in
EALS caused these role exchanges. Therefore, this
illustrated the potential of EALS in replicating inter-
individual muscle recruitment patterns.

The JRF of EALS for both flexion and abduction
activities lied within measurements from different
patients with instrumented prosthesis (IP) (Bergmann
et al. 2011). However, SLS in general underestimated
the JRF in both activities. The IP measurements were
averaged per activity among different patients with IP
to draw a quantitative comparison between the JRF of
EALS and SLS, and the IP measurements. Indeed,
more patients with the IP measurements as well as
more patients/activities simulated by the model were
required for the comparison to be statistically rele-
vant. Nevertheless, for flexion motion, the peak JRF
was 3% higher for EALS and 34% lower for SLS com-
pared to the peak JRF of the averaged IP1 and IP3
measurements. For abduction motion, the peak JRF
was 12% higher for EALS and 24% lower for SLS
compared to the peak JRF of the averaged IP1, IP2,
and IP3 measurements. The JRF estimation from
EALS was in general higher for the beginning of
motions compared to the averaged IP measurements
(23% and 69% higher for flexion and abduction,
respectively). The trends of the estimated JRF by
EALS were in general consistent with the IP measure-
ments. It is worth noting that the IP measurements,
as means of validation, should be used with caution.
The post-surgery patients with IP had impaired mus-
culotendons, and their motions were also compro-
mised due to pain (Prinold et al. 2013). Therefore,
their GH joint functions were expected to be different
from our healthy subject.

The SR illustrated the effects of higher co-contrac-
tions of EALS on the GH joint stability. The higher
co-contractions acted toward stabilizing the GH joint
by centralizing the JRF within the glenoid ellipse. For
the beginning of both activities, the SR was low, indi-
cating that the GH joint stability constraint was
active. This was consistent with the previous studies
regarding stability of the GH joint (Veeger and Van
Der Helm 2007; Yanagawa et al. 2008). In EALS,
however, the SR started increasing at lower flexion
and abduction angles.

In addition, the stability constraint could oscillate
between active and inactive states, even for negligible
deviations of JRF direction from the stability cone.

This was due to the incorporation of the stability con-
straint as a hard constraint into EALS. A soft con-
straint formulation could, however, avoid these
oscillatory behaviors without compromising the
physiological correspondence of the stability con-
straint (Boyd and Vandenberghe 2004).

The positive coefficient e was used to define the
upper/lower bounds from EMG-based muscle forces
in EALS. The choice of e, therefore, altered the opti-
mal force estimation by changing the feasible set.
Smaller values of e further shrank the feasible set of
the EALS compared with larger values of e:

Consequently, higher co-contractions could be esti-
mated. We considered the smallest e that resulted in
feasible solutions for both activities. This provided the
highest estimations of muscle co-contractions using
our model and allowed performing an adequately fare
comparison between the force estimations of the two
simulated activities. A sensitivity analysis could, how-
ever, quantify the effects of e on the force
estimations.

The number of muscle strings considered for each
muscle also affected the optimal force estimation by
changing the dimension (degrees of freedom) of the
EALS. However, small effects were reported for the
variations in muscle-string numbers (Van der Helm
and Veenbaas 1991). We used three strings per
muscle to adequately replicate muscles with large
attachment sites.

A major limitation of this study was that only one
subject was recorded. A larger number of subjects
would be required for a more thorough model evalu-
ation, specially, to evaluate its performance in repli-
cating inter-individual muscle recruitment patterns.
Three patients with instrumented prosthesis were
considered finding the best combination of EMG sig-
nals during forward flexion and abduction (Nikooyan
et al. 2012). The second limitation was about the
musculotendon parameters. The realism of the repro-
duced forces could have been enhanced if these
parameters were personalized to our subject. For the
moment, it is not yet straightforward to obtain these
parameters. The third limitation was that only two
activities were considered. This imposed certain limi-
tations to generalizing our results. Future applications
of the model should consider more activities, includ-
ing activities of daily living.

In conclusion, we verified the potential of EALS in
better estimating muscle co-contractions in a shoulder
and elbow musculoskeletal model compared with SLS.
The EALS estimated co-contractions by incorporating
fifteen EMG-based muscle forces obtained from a
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musculotendon model. The incorporation of the
EMG-based muscle forces shrank the feasible set of
the EALS, and more co-contractions could therefore
be estimated compared to the SLS. The JRF estima-
tions better matched in vivo measurements, although
EALS tended to overestimate JRF. This conclusion
should be confirmed through simulations of more
patients while patients perform more movements
including activities of daily living.
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Appendix A. Mathematical representations

A.1. Forward kinematic map (n)

The forward kinematic map (n) defined the inertial coord-
inate of the jth bony landmark (xj) associated with the gen-
eralized coordinates at time t.

n : Cs � R11 7!Ws � R3

nðqðtÞÞ ¼ xjðtÞ, j ¼ fC7, . . . , RSg1�14

UTSðqðtÞÞ ¼ ðtTSðtÞ�te0ÞTETSðtTSðtÞ�te0Þ�1 ¼ 0
UAIðqðtÞÞ ¼ ðtAIðtÞ�te0ÞTEAIðtAIðtÞ�te0Þ�1 ¼ 0

(A.1)

where Cs and Ws were the coordinate space and work space
of the model (Siciliano and Khatib 2008). Two holonomic
constraints (UTS ¼ 0 and UAI ¼ 0) replicated the kinematic
relationships between the scapula and the thorax (scapulo-
thoracic contact). The left-hand side subscript t specified
that the landmarks were in the thorax (inertial) frame. The
ellipsoids center was te0, and ETS and EAI were the ellip-
soids matrices. The use of two separate ellipsoids to repli-
cate the scapulothoracic contact reduced the computational
complexity of n (Ingram 2015) comparing to the previous
models where only one ellipsoid was used (Van der Helm
1994; Garner and Pandy 2001; Nikooyan et al. 2012). The
use of one ellipsoid required computing the projections of
the TS and AI onto the ellipsoid.

A.2. Equations of motion

The upper extremity equations of motion were derived
using the Lagrange’s equations (Equation (A.2)).

d
dt

oL
o _q

� �
� oL

oq
¼ oX

o _q
M þ kTS

UTS

oq
þ kAI

UAI

oq
(A.2)

where L was the Lagrangian of the model obtained by add-
ing all the bone segments Lagrangians (Ingram 2015;
Sarshari 2018). The oX

o _q M was the generalized force vector.
The X was a horizontal matrix including the angular veloc-
ities of all the bone segments. The vertical matrix M con-
sisted of the muscle resultant moments around each one of
the five joints. The kTS and kAI were Lagrange multipliers
associated with the scapula-thorax constraints. The general-
ized moment arms of the constraints were obtained by their
Jacobians (UTS

oq and UAI
oq ) (Baruh 1999).

The matrix M was written as M ¼ Bf , where B was the
moment arm matrix, and f was a vector consisting of the
magnitudes of all the muscle forces. The B was obtained
using its geometric definition based on the obstacle set
method (Garner and Pandy 2000).

A.3. Musculotendon model

The means of normalized EMG signals were used as u(t)
for each muscle. The a(t) represented the relative amount
of calcium release to troponin in muscle fibers. It was
obtained from a first order dynamic as follows (Zajac
1989).
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daðtÞ
dt

¼ uðtÞ�aðtÞ
sðaðtÞ, uðtÞÞ ,

sðaðtÞ, uðtÞÞ ¼
sact

0:5þ 1:5aðtÞ uðtÞ � aðtÞ
sdact

0:5þ 1:5aðtÞ uðtÞ>aðtÞ

8>><
>>:

(A.3)

where sact and sdact were time constants corresponding to
muscle activation and deactivation, respectively. Both u(t)
and a(t) lied within [01].

The contraction dynamics consisted of three elements
replicating the force production of the musculotendon,
including a contractile element (CE), a passive elastic elem-
ent (PE), and an elastic element (EE) (Zajac 1989). The
contraction dynamics were derived from a force equilib-
rium between the muscle fiber and tendon. The following
ordinary differential equation was an implicit form of the
contraction dynamics (Sarshari 2018)

FO aðtÞf Lð~lMÞf V lMO
vMO

_~l
M

 !
þ f Pð~lMÞ

" # ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin aO

~l
M

� �2r

¼ FOf T
lMT�lMO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~l
M2

� sin aO2

q
lTS

0
@

1
A (A.4)

where f Lð:Þ, f Vð:Þ, f Pð:Þ, and f Tð:Þ were normalized func-
tions associated with muscle force-length, muscle force-

velocity, muscle passive force, and tendon force-length rela-
tionships. The normalized functions were obtained by fit-
ting smooth curves (C1) to experimental data (Sarshari
2018). The maximum (optimum) muscle fiber force was
denoted by FO: The normalized muscle fiber length (~l

M
)

was obtained as lM

lMO
in which lM and lMO were the muscle

fiber length and its optimum, respectively. The optimum
muscle fiber velocity and the tendon slack length were
denoted by vMO and lTS , respectively. The lMO and vMO corre-
sponded to the situations when the muscle force-length and
muscle force-velocity relationships were at maximum and
zero force, respectively. Also, aO is the pennation angle
at lMO :

Equation (A.4) could be solved for ~l
M

to consequently
provide the tendon force FTðtÞ ¼ FOf Tð:Þ: To this end,
a(t), lMTðtÞ, the five musculotendon parameters
(FO, lMO , v

M
O , l

T
S , and aO), and an initial condition ~l

Mðt0Þ
were required. The a(t) was readily obtained from
Equation (A.3). The lMTðtÞ was calculated for each muscle
using the musculoskeletal model. More specifically, the
resulting q from the multi-segment optimization was fed
into the model. The model defined the paths and, conse-
quently, the lengths of musculotendons. We set the five
musculotendon parameters according to (Garner and
Pandy 2003).
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Appendix B. Muscle forces

Figure B1: Muscle forces estimated by EALS and SLS for flexion. The sensitivities to variations of normalized EMG signals were
also depicted by the gray shaded areas. Bold fonts were used to distinguish the muscles with measured EMG data.
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Figure B2: Muscle forces estimated by EALS and SLS for abduction. The sensitivities to variations of normalized EMG signals were
also depicted by the gray shaded areas. Bold fonts were used to distinguish the muscles with measured EMG data.
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