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Abstract
In the framework of classical risk theory we investigate a model that allows
for dividend payments according to a time-dependent linear barrier strategy.
Partial integro-differential equations for Gerber and Shiu’s discounted penalty
function and for the moment generating function of the discounted sum of div-
idend payments are derived, which generalizes several recent results. Explicit
expressions for the nth moment of the discounted sum of dividend payments
and for the joint Laplace transform of the time to ruin and the surplus prior
to ruin are derived for exponentially distributed claim amounts.

Keywords: Classical Risk Theory; Collective Model; Linear Dividend Barrier; Time
of Ruin; Deficit at Ruin; Surplus prior to Ruin

1 Introduction

The classical collective risk model describing the surplus process of an insurance
portfolio assumes independent and identically distributed claims Xi, i = 1, 2, . . . ,
(with distribution function F ), which occur according to a homogeneous Poisson
process Nt with intensity λ. The premium income is modelled by a constant premium
density c and the net profit condition is then c > λµ, where the expected value of
the individual claim amounts µ = E[Xi] is assumed to be finite (cf. [5]).
Let us consider the following extension of the classical model: Whenever the surplus
Rt reaches a time-dependent barrier of type

bt = b0 + at, (0 ≤ a < c),

dividends are paid out to the shareholders with intensity c − a and the surplus
remains on the barrier until the next claim occurs. The dynamics of Rt are thus
given by

dRt = cdt− dSt if Rt < b0 + at

dRt = adt− dSt if Rt = b0 + at,
(1)

where St =
∑N(t)

i=1 Xi (cf. Figure 1).
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Figure 1: A sample path of the surplus process Rt

Dividend barrier models allow for a certain type of profit participation for the share-
holders of an insurance company and have a long history within risk theory going
back to de Finetti [7]. The linear barrier model (1) was introduced by Gerber [10]
to overcome the deficiency of horizontal barrier models that they lead to ruin with
probability 1. More general barrier models were recently investigated in [2, 3]. Some
optimality results of dividend payment schemes can e.g. be found in [9, 15] (for re-
lated results with a surplus process modelled by a Brownian motion, see [6, 14, 16]).
For a general overview of dividend models, we refer to [8].

For 0 ≤ u ≤ b, define Tu,b = inf{t : Rt < 0 |R0 = u, b0 = b} to be the time of ruin of
the surplus process Rt and let Du,b denote the present value of the discounted sum
of dividend payments until ruin occurs (discount factor δ ≥ 0). Among the crucial
quantities in risk theory are the probability of ruin ψ(u, b) = P(Tu,b < ∞) and the
expected value of discounted dividend payments V1(u, b) = E[Du,b]. In [12], Gerber
derived exact formulae for ψ(u, b) and V1(u, b) for the model (1) in the case of expo-
nentially distributed claim amounts. This solution algorithm was generalized to the
case of Erlang distributed claims by Siegl and Tichy [19] and Albrecher and Tichy [4].

Although the quantities ψ(u, b) and V1(u, b) provide some rough insight into the
risk and the effectiveness of a dividend barrier strategy, there is a need for more
refined measures of the inherent risk such as the time and the severity of ruin given
ruin occurs, or higher-order moments of the discounted dividend payments until
ruin. This paper focuses on some of these extensions. For a horizontal dividend
barrier, Dickson and Waters [9] have recently derived an equation for the nth mo-
ment Vn(u, b) = E[Dn

u,b]. In Section 2 we will derive a partial integro-differential
equation for the moment generating function of Du,b in the linear dividend barrier
model, thereby simplifying and generalizing the corresponding result in [9]. The
used technique is related to Gerber and Shiu [14]. For the case of exponential claim
amounts we provide an explicit solution for Vn(u, b) in terms of an infinite series and
prove its convergence.
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The discounted penalty function introduced by Gerber and Shiu [13] allows to study
properties of the time of ruin, the severity of ruin and the surplus prior to ruin at the
same time (for a detailed discussion in the classical risk model without barriers, see
[17] and the references therein). In a model with a horizontal dividend barrier, this
penalty function was recently studied in detail by Lin et al. [18]. In Section 3, we
derive a partial integro-differential equation for this penalty function for the linear
barrier model and use it to derive explicit formulae for the time of ruin, the surplus
prior to ruin and the discounted nth moment of the deficit at ruin for exponen-
tial claim amounts, which generalizes corresponding results for horizontal barriers
in [9]. Numerical illustrations of these explicit solutions in comparison with values
obtained by stochastic simulation are given in Section 4.

2 The moments of the discounted dividends

2.1 Dividend payments continued after ruin

For later use, let us first consider a slightly modified situation, where the dividend
payments according to the linear barrier strategy are not stopped at the event of
ruin (this model may be of independent interest, since ruin is only a technical term
useful for risk management and does not necessarily imply bankruptcy). Clearly,
in this model the discounted sum of dividend payments D̃u,b depends on u and b
only through the difference x = b − u (i.e. the difference between the initial value
b0 = b of the barrier and the initial capital R0 = u, see also [19]). This observation

simplifies the analysis considerably. Let Zn(x) := E
[
D̃n

u,b | b− u = x
]

and denote

by Z(x, y) the moment-generating function

Z(x, y) := E
[
eyD̃u,b

∣∣∣ b− u = x
]

(2)

for suitable values of y. One can now derive an integro-differential equation for
Z(x, y) by conditioning on the occurrence of a claim. For x > 0, we have

Z(x, y) = (1− λdt) Z(x− (c− a)dt, y e−δdt)

+ λdt

∫ ∞

0

Z(x− (c− a)dt + v, ye−δdt) dF (v) + o(dt).

Taylor expansion and collecting all terms of order dt yields

λZ(x, y) + (c− a)
∂Z

∂x
(x, y) + δ y

∂Z

∂y
(x, y)− λ

∫ ∞

0

Z(x + v, y) dF (v) = 0. (3)

One obvious boundary condition is given by

lim
x→∞

Z(x, y) = 1. (4)

A second boundary condition follows from x = 0:

Z(0, y) = (1−λdt)ey(c−a)dtZ(0, ye−δdt)+λ dt ey(c−a)dt

∫ ∞

0

Z(v, ye−δdt) dF (v)+o(dt),
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which leads to

(λ− y(c− a))Z(0, y) + δ y
∂Z

∂y

∣∣∣∣
x=0

− λ

∫ ∞

0

Z(v, y) dF (v) = 0. (5)

Now, assuming continuity at x = 0, a comparison of (3) and (5) yields

∂Z

∂x

∣∣∣
x=0

= −yZ(0, y). (6)

Using the representation

Z(x, y) = 1 +
∞∑

n=1

yn

n!
Zn(x), (7)

and equating the coefficients of yn in (3), one obtains the integro-differential equa-
tions

(c− a)Z ′
n(x) + (λ + nδ)Zn(x)− λ

∫ ∞

0

Zn(x + v)dF (v) = 0 (8)

with boundary conditions

Z ′
n(0) = −n Zn−1(0) and lim

x→∞
Zn(x) = 0. (9)

Note that (8) and (9) generalize equations (7) and (8) of [19], where only Z1(x) had
been considered.

Example 2.1. For exponential claim amounts (F (v) = 1 − e−αv), (8) together
with (9) can be solved in a straight-forward way: differentiating (8) yields the linear
homogeneous second-order differential equation

(c− a)Z ′′
n(x) + (λ + nδ − α(c− a))Z ′

n(x)− αnδZn(x) = 0,

the solution of which is of the form

Zn(x) = An,1e
rn,1x + An,2e

rn,2x,

where rn,1, rn,2 denote the solutions in R of the equation

R2 +

(
λ + nδ

c− a
− α

)
R− αnδ

c− a
= 0. (10)

Since n ≥ 1, α, δ > 0 and c > a, (10) has exactly one positive and one negative
solution. The boundary condition lim

x→∞
Zn(x) = 0 then implies that the coefficient

corresponding to the positive solution equals zero. Let −ρn denote the negative
solution of (10) and An the corresponding non-zero coefficient, i.e.

Zn(x) = Ane−ρnx.
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The condition Z ′
n(0) = −nZn−1(0) then imposes

An =
n An−1

ρn

and together with A1 = 1/ρ1 (which follows from Z ′
1(0) = −1), we thus obtain the

solution

Zn(x) =
n!

ρ1ρ2 · · · ρn

e−ρnx. (11)

Along the same line of arguments, one can determine the solution of (8) together
with (9) for Γ(β, α)-distributed claim sizes with density f(v) = αβvβ−1e−αv/Γ(β)
(β ∈ N). It is again of the form (11), but now −ρn is the unique negative real
solution in R of

(c− a)R(1−R/α)β + (λ + nδ)(1−R/α)β − λ = 0.

From (11) and (7) it follows that the moment-generating function of D̃u,b for Γ(β, α)-
distributed claim sizes (β ∈ N) is given by

E
[
eyD̃u,b

]
= 1 +

∞∑
n=1

yn

∏n
j=1 ρj

e−ρn(b−u).

2.2 Dividend payments stopped at ruin

Let us now turn to the original problem of deriving a partial integro-differential
equation for the moments Vn(u, b) of the sum of the discounted dividend payments
until ruin for arbitrary n ∈ N. More generally, let us consider the moment-generating
function

M(u, y, b) = E
[
eyD

∣∣R0 = u, b0 = b
]
,

for those values of y where it exists. Again, we condition on the occurrence of a
claim. For 0 < u < b, we have

M(u, y, b) = (1− λdt)M(u + cdt, ye−δdt, b + adt)

+ λdt

∫ u+cdt

0

M(u + cdt− v, ye−δdt, b + adt) dF (v) + λdt

∫ ∞

u+cdt

dF (v) + o(dt),

which, by Taylor expansion and collection of terms of order dt, yields

c
∂M

∂u
(u, y, b) + a

∂M

∂b
(u, y, b)− λM(u, y, b)− δy

∂M

∂y
(u, y, b)

+ λ

∫ u

0

M(u− v, y, b) dF (v) + λ(1− F (u)) = 0. (12)

For this equation, we have the two boundary conditions

lim
b→∞

M(u, y, b) = 1 (13)
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and
lim

u→∞
M(u, y, u + x) = Z(x, y), (14)

where Z(x, y) is defined by (2). A third boundary condition can be found at u = b:

M(b, y, b) = (1− λdt) ey(c−a)dt M(b + adt, ye−δdt, b + adt)

+ λdt

∫ b+adt

0

ey(c−a)dtM(b + adt− v, ye−δdt, b + adt) dF (v)

+ λdt ey(c−a)dt

∫ ∞

b+adt

dF (v) + o(dt),

which implies

a
∂M

∂u

∣∣∣
u=b

+ a
∂M

∂b

∣∣∣
u=b

+ (y(c− a)− λ)M(b, y, b)− δy
∂M

∂y

∣∣∣
u=b

+ λ

∫ b

0

M(b− v, y, b) dF (v) + λ(1− F (b)) = 0. (15)

Setting u = b in (12), we obtain by continuity

∂M

∂u

∣∣∣
u=b

= y M(b, y, b). (16)

Using the representation

M(u, y, b) = 1 +
∞∑

n=1

yn

n!
Vn(u, b)

and equating the coefficients of yn in (12) leads to the following partial integro-
differential equation for Vn(u, b) :

c
∂Vn

∂u
(u, b) + a

∂Vn

∂b
(u, b)− (λ + nδ)Vn(u, b) + λ

∫ u

0

Vn(u− v, b)dF (v) = 0, (17)

with boundary conditions
∂Vn

∂u

∣∣∣
u=b

= nVn−1(b, b), (18)

lim
b→∞

Vn(u, b) = 0, (19)

and
lim

u→∞
Vn(u, u + x) = Zn(x). (20)

Remark 2.1. Note that this at the same time simplifies and generalizes a corre-
sponding derivation for horizontal dividend barriers by Dickson and Waters [9]. For
n = 1, due to V0(b, b) = 1, (17) together with boundary conditions (18)-(20) reduce
to the well-known integro-differential equation for the expected value of discounted
dividend payments in the presence of a linear barrier (cf. [12, 19]).
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Remark 2.2. One might wonder, whether there is an intuitive reason for the fact
that Vn depends on lower moments only through the (n − 1)th moment. This can
actually be understood by a direct derivation of Vn(u, b) using the differential argu-
ment and the binomial formula (see Albrecher [1], where this aspect was worked out
in detail for a horizontal barrier).

2.3 An explicit formula for Vn(u, b) for exponential claim
amounts

Let us now assume F (v) = 1− e−αv. In this case, (17) can be rewritten as a linear,
homogeneous partial differential equation of second order

c
∂2Vn

∂u2
+ a

∂2Vn

∂u∂b
+ aα

∂Vn

∂b
+ (cα− λ− nδ)

∂Vn

∂u
− nαδ Vn = 0 (21)

with boundary conditions

c
∂Vn

∂u

∣∣∣
u=0

+ a
∂Vn

∂b

∣∣∣
u=0

− (λ + nδ)Vn(0, b) = 0, (22)

and (18)-(20). It is immediately clear that a function of the form

(C1e
r1 u + C2e

r2 u) esb, (C1, C2 . . . constants) (23)

satisfies (21), if r1 and r2 are the two solutions in R of the equation

cR2 + (as + cα− λ− nδ)R + α(as− nδ) = 0. (24)

For s < 0 we have α(as− nδ)/c < 0 and thus (24) has exactly one positive and one
negative solution (the positive solution will always be denoted by r1). Substitution
of (23) into (22) shows that condition (22) is automatically fulfilled, if

(α + r2)C1 = −(α + r1)C2,

which we will assume from now on. Thus the challenge is to find a combination of
functions of type

C(er1 u − α + r2

α + r1

er2 u) esb, (C . . . constant)

that satisfies the boundary conditions (18)-(20).

Remark 2.3. By a renewal argument similar to the one used in [2] and [12], one
can identify the solution of (18)-(22) as the fixed point of a contracting integral
operator in the Banach space of bounded functions, which ensures the existence
and uniqueness of a bounded solution of (18)-(22) (and at the same time gives rise
to efficient number-theoretic simulation techniques as developed in Albrecher and
Kainhofer [2]). It is not a priori clear that the solution is of the above form, but if
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such a solution can be found, we have solved (18)-(22) by uniqueness.

In [12], Gerber solved the case n = 1, the expected value of discounted dividend
payments, in terms of an infinite series:

V1(u, b) =
∞∑

k=0

Cke
sk b

(
er1,k u − α + r2,k

α + r1,k

er2,k u

)
(25)

with coefficients

C0 =
1

ρ1

, s0 = −ρ1, r1,0 = ρ1, r2,0 = −α
aρ1 + δ

cρ1

, (26)

r2,k + sk = r1,k+1 + sk+1, k ≥ 0 (27)

and

Ck = Ck−1
r2,k−1

r1,k

α + r2,k−1

α + r1,k−1

, k ≥ 1. (28)

In the sequel we will show how this approach can be generalized to obtain an ex-
pression for the nth moment of the discounted dividend payments of the following
form:

Vn(u, b) =
∞∑

k1=0

· · ·
∞∑

kn=0

Ck1,...,knesk1,··· ,kn b

(
er1,k1,...,kn u − α + r2,k1,...,kn

α + r1,k1,...,kn

er2,k1,...,kn u

)
.

(29)
For convenience, we restrict ourselves to the case n = 2 (leading to a double series).
The calculation of the nth moment (n ≥ 3) is possible along the same lines.

In accordance with (20) we choose the starting parameters of the double series for
V2(u, b) in the following way:

C0,0 =
2

ρ1ρ2

, s0,0 = −ρ2, and r1,0,0 = ρ2 (30)

(note that Z2(x) = 2
ρ1ρ2

e−ρ2u). By Vieta’s rule and (24) we then get

r2,0,0 = −αa

c
− 2αδ

cρ2

< 0. (31)

Thus, (20) will be fulfilled, if all terms with higher index vanish in the limit
limu→∞ V2(u + x, x), i.e. for k1 + k2 ≥ 1 we have the condition

r1,k1,k2 + sk1,k2 < 0 and r2,k1,k2 + sk1,k2 < 0. (32)

Furthermore, condition (19) will be satisfied, if for all k1 + k2 ≥ 0

sk1,k2 < 0. (33)

8



Now, let us turn to (18), which due to (25) and (27) we can rewrite to

∂Vn

∂u

∣∣∣
u=b

= 2 V1(b, b) =
∞∑

k=0

Dke
zk b (34)

with

Dk = 2 Ck

(
1− r1,k

r2,k−1

)
and zk = sk + r1,k.

From condition (20) for V1(u, b) we have zk < 0 for k ≥ 1.
In order to satisfy condition (18), we now choose Ck1,0, sk1,0 and r1,k1,0 such that

sk1,0 + r1,k1,0 = zk1 , Ck1,0 r1,k1,0 = Dk1 . (35)

By combining (24) and (35) we can fix r1,k1,0 as the unique positive solution of the
equation

R2 +
azk1 + (c− a)α− (λ + 2δ)

c− a
R +

α

c− a
(azk1 − 2δ) = 0. (36)

Then, we construct for every k1 ≥ 0 a series in such a way that all but the term
Ck1,0 r1,k1,0 ezk1

b of the derivative of (29) evaluated at b cancel out. This can be
achieved, if ∀ k1 ≥ 0 we set

Ck1,k2 := Ck1,k2−1
r2,k1,k2−1

r1,k1,k2

α + r2,k1,k2−1

α + r1,k1,k2−1

(k2 ≥ 1) (37)

and
r2,k1,k2 + sk1,k2 = r1,k1,k2+1 + sk1,k2+1 := zk1,k2 (k2 ≥ 0), (38)

where r1,k1,k2+1 is the unique positive solution of

R2 +
azk1,k2 + (c− a)α− (λ + 2δ)

c− a
R +

α

c− a
(azk1,k2 − 2δ) = 0

and r2,k1,k2 is the corresponding negative solution from (24).

From zk1 < 0 and (35) we obtain sk1,0 < 0 and furthermore

sk1,k2+1 = r2,k1,k2 + sk1,k2 − r1,k1,k2+1 < 0

so that indeed (33) holds ∀ k1, k2 ≥ 0. Also, from sk1,k2+1 < 0, r2,k1,k2 < 0 and (38)
we immediately see that (32) is fulfilled ∀ k1 + k2 ≥ 1.

One can now derive a recursion for the values r1,k1,k2 and r2,k1,k2 :

r1,k1,k2+1 =
αa(r2,k1,k2 + sk1,k2)− α2δ

(c− a)r2,k1,k2

=
αa

(c− a)
+

c

c− a
r1,k1,k2 , (39)

r2,k1,k2+1 =
α(ask1,k2+1 − 2δ)

cr1,k1,k2+1

=
−αa

c
+

(c− a)

c
r2,k1,k2 , (40)
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and we have

sk1,k2+1 =
c

αa
r1,k1,k2+1r2,k1,k2+1 +

2δ

a
. (41)

These recursions can be solved explicitly in a straight-forward way:

r1,k1,k2 =

(
c

c− a

)k2

r1,k1,0 + α

((
c

c− a

)k2

− 1

)
(42)

and

r2,k1,k2 = −
(

c− a

c

)k2 2αδ

c r1,k1,0

− α

(
1−

(
c− a

c

)k2+1
)

. (43)

The second moment of the sum of discounted dividends in a linear barrier model
can thus be calculated as a double series of the form (29) with the coefficients
given by (26)-(28), (30), (31), (37) and (41)-(43). In Appendix A, it is shown that
this double series is absolutely convergent, justifying this solution approach. The
series turns out to converge quite fast. Numerical illustrations are given in Section 4.

Remark 2.4. The same idea can in principle be used to derive an explicit expres-
sion for Vn(u, b) for arbitrary hyper-exponential and Erlang distributed claim sizes
(using the technique of [4, 19]), which then consists of several sums of the form (29).

3 The discounted penalty function

For the Cramér-Lundberg model, Gerber and Shiu [13] introduced the by now clas-
sical discounted penalty function at ruin, which adapted to our dividend model is
given by

m(u, b) := E
(
w(RT−u,b

, |RTu,b
|)e−δTu,b1{Tu,b<∞}

)
, (44)

where Tu,b denotes the time of ruin, RT−u,b
is the surplus immediately before ruin,

|RTu,b
| is the deficit at ruin and the penalty w(x1, x2) is an arbitrary non-negative

function on [0,∞)× [0,∞). δ ≥ 0 may be interpreted as a force of interest, but (44)
may also be considered as a Laplace transform with δ as its argument.
The function m(u, b) contains a lot of useful information about the ruin process. For
example, if w ≡ 1, then m(u, b) is the Laplace transform of the time to ruin given
it occurs, and if furthermore δ = 0, then m(u, b) is simply the ruin probability. For
δ = 0 and w(x1, x2) = 1{x1≤x}1{x2≤y}, m(u, b) represents the joint distribution of the
surplus before ruin and the deficit at ruin. Properties of m(u, b) for a horizontal div-
idend barrier were recently studied in detail by Lin et al. [18] using a renewal theory
approach. We will now derive a partial integro-differential equation for m(u, b) in
the presence of a linear dividend barrier.

10



3.1 A partial integro-differential equation for m(u, b)

Conditioning on the occurrence of a claim, we obtain

m(u, b) = (1− λdt)e−δdtm(u + cdt, b + a dt)

+ e−δdtλdt

∫ u+cdt

0

m(u + cdt− v, b + a dt)dF (v)

+ λdt e−δdt

∫ ∞

u+c dt

w(u + c dt, v − u− c dt)dF (v) + o(dt),

from which it follows along the same line of arguments as in Section 2 that

c
∂m

∂u
+a

∂m

∂b
−(λ+δ)m+λ

∫ u

0

m(u−v, b)dF (v)+λ

∫ ∞

u

w(u, v−u)dF (v) = 0. (45)

A boundary condition can be obtained from

m(b, b) = (1− λdt)e−δdtm(b + a dt, b + a dt)

+ e−δdtλdt

∫ b+a dt

0

m(b + a dt− v, b + a dt)dF (v)

+ λdt e−δdt

∫ ∞

b+a dt

w(b + a dt, v − b− a dt)dF (v) + o(dt),

and thus by continuity we have to have

∂m

∂u

∣∣∣
u=b

= 0. (46)

Furthermore,
lim
b→∞

m(u, b) = m(u), (47)

where m(u) is the discounted penalty function without barrier.

Remark 3.1. Again, it is straight-forward to identify m(u, b) as the fixed point
of a contracting integral operator implying existence and uniqueness of a bounded
solution of (45)-(47), cf. Remark 2.3.

Solving (45) together with (46) and (47) is a difficult problem in general. However,
for exponential claim sizes and specific choices of the penalty function w, it is possible
to derive explicit solutions as shown in the sequel:

3.2 Exponential claim amounts

Let F (v) = 1− e−αv, then multiplying (45) with eαu and differentiating w.r.t. u, we
obtain the second-order partial differential equation

c
∂2m

∂u2
+ a

∂2m

∂u ∂b
+ (cα− δ − λ)

∂m

∂u
+ aα

∂m

∂b
− αδm + e−αuλξ′(u) = 0 (48)

11



with boundary conditions (46),(47) and

c
∂m

∂u

∣∣∣
u=0

+ a
∂m

∂b

∣∣∣
u=0

− (λ + δ)m
∣∣∣
u=0

+ λ ξ(0) = 0, (49)

where ξ(u) := α
∫∞
0

w(u, x)e−αxdx.

3.2.1 The distribution of the time to ruin

We will first solve this equation for the case, when the penalty function only de-
pends on its second argument (w(x1, x2) = w(x2)). Then ξ(u) is constant, so that
ξ′(u) = 0 (two particular examples are the choice w ≡ 1 which leads to the Laplace
transform of the time of ruin, and w = xn

2 leading to the (discounted) nth moment
of the deficit at ruin, cf. Examples 3.1 and 3.2).

Suppose that δ > 0 and ξ(u) ≡ η for some positive constant η. Mimicking the
procedure of Section 2, we try to find a solution of (48) of the form

m(u, b) = m(u) +
∞∑

k=0

esk b (C1,ke
r1,k u + C2,k er2,k u) (50)

where r1,k > 0, r2,k < 0 are the solutions in R of the equation

cR2 + (ask + αc− λ− δ)R + α(ask − δ) = 0 (51)

and sk < 0 for all k ≥ 0. If such a solution exists, then (47) is automatically
satisfied. (50) will now fulfill (48), if the function m(u) (which does not depend on
b) is a solution of

c
∂2m

∂u2
+ (cα− δ − λ)

∂m

∂u
− αδm = 0, (52)

from which it follows that

m(u) = A1e
ρ1u + A2e

−ρ2u,

where ρ1 and −ρ2 denote the positive and negative solution of the equation

cR2 + (αc− (λ + δ))R− δα = 0. (53)

Since limu→∞ m(u) = 0, A1 = 0 so that m(u) = A2 e−ρ2u.
By substituting (50) in (49) and comparing the coefficients of the terms without
factor eskb, we obtain

cm′(0)− (λ + δ)m(0) + λ η = 0,

which determines the constant A2. Using Vieta’s rule we obtain

m(u) = η
λ

c

e−ρ2u

α + ρ1

, (54)

12



which is the discounted penalty function without barrier. Note that ρ1 and −ρ2 are
a function of δ. Comparing coefficients of the terms with factor eskb, we get the
condition

∞∑

k=0

(c (C1,kr1,k + C2,kr2,k) + ask (C1,k + C2,k)− (λ + δ) (Ck1 + Ck,2)) = 0.

This condition is in particular fulfilled if every summand equals zero, i.e.

C1,k(α + r2,k) = −C2,k(α + r1,k). (55)

Now it only remains to satisfy (46) by suitably combining the choices of constants
in (50) for k = 0, 1, . . . (this part works in the same way as developed by Gerber [12]
for the calculation of the ruin probability, which is the special case δ = 0, w ≡ 1).
Setting

r1,0 + s0 = −ρ2 = z0, C1,0 =
1

r1,0

ρ2

α + ρ1

λ

c
η, r2,0 =

αas0 − αδ

cr1,0

(56)

and for k ≥ 0,

r1,k+1 + sk+1 = r2,k + sk = zk+1 and C1,k+1 =
r2,k(α + r2,k)

r1,k(α + r1,k)
C1,k, (57)

(46) is fulfilled. All constants r1,k, r2,k and sk (k ≥ 0) are uniquely determined by
the above relations and can be worked out iteratively. Again, we get the recurrences

r1,k =
αa

c− a
+

c

c− a
r1,k−1 (k > 0)

and

r2,k =
−αa

c
+

(c− a)

c
r2,k−1 (k > 0),

or explicitly

r1,k =

(
c

c− a

)k

r1,0 + α

((
c

c− a

)k

− 1

)
(k > 0) (58)

and

r2,k =

(
c− a

c

)k

r2,0 − α

(
1−

(
c− a

c

)k
)

(k > 0), (59)

from which by similar arguments as in the previous section the absolute convergence
of the series (50) can easily be shown.

Remark 3.2. This solution algorithm can be generalized to hyper-exponential and
Erlang distributed claim sizes in a straight-forward way using the techniques devel-
oped in Siegl and Tichy [19].
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Example 3.1. For the choice ξ(u) ≡ η = 1, we can identify (50) as the Laplace
transform of the time of ruin

E[e−δTu,bI{Tu,b<∞}] (60)

in a ruin model with linear dividend barrier and exponential claims, where the co-
efficients are determined by (56),(57), (58) and (59). The moments E[T n

u,b I{Tu,b<∞}]
may easily be found by evaluating the nth derivative of (60) at δ = 0 (a numerical
example is given in Section 4). Setting δ = 0 in (60) gives back the well-known
expression for the ruin probability derived in [12].

Example 3.2. For the choice w = xn
2 (implying ξ(u) ≡ n!/αn), m(u, b) denotes the

discounted nth moment of the deficit at ruin given ruin occurs (see e.g. [13]). Due
to the lack-of-memory property of the exponential distribution, the deficit at ruin is
exponentially distributed, independent of the time of ruin. From this it follows that

E
[
|RTu,b

|n e−δTu,b 1{Tu,b<∞}
]

=
n!

αn
E

[
e−δTu,b 1{Tu,b<∞}

]
.

A numerical example is given in Section 4.

Remark 3.3. For the special case of a horizontal dividend barrier b (a = 0),
equations (48) and (49) considerably simplify and for the determination of the
Laplace transform of Tu,b it suffices to look for a solution of (48) of the form
A1(b)e

ρ1u + A2(b)e
−ρ2u. A1(b) and A2(b) can then be calculated from the boundary

conditions (46), (47), (49) and (54) to give

E[e−δTu,bI{Tu,b<∞}] =
λ

c

ρ1 eρ1b−ρ2u + ρ2 eρ1u−ρ2b

ρ1(α + ρ1) eρ1b + ρ2(α− ρ2) e−ρ2b
, (61)

see Dickson and Waters [9]. This formula was originally derived by martingale
arguments in Gerber [11]; for yet another derivation, see Lin et al. [17].
Of course, formula (61) can also be identified as the limiting case a = 0 of our above
approach: from (24) it follows that for a = 0 we have r1,k = ρ1 and r2,k = −ρ2 for all
k ≥ 0. But then (56) and (57) imply sk = −(k+1)(ρ1+ρ2), C1,0 = λρ2/(c ρ1(α+ρ1))
and C1,k+1 = −C1,kρ2(α− ρ2)/(ρ1(α + ρ1)) for all k ≥ 0. From (50) we obtain

E[e−δTu,bI{Tu,b<∞}] =
λ

c

(
e−ρ2u

α + ρ1

+
(
eρ1u − α− ρ2

α + ρ1

e−ρ2u
) ∞∑

k=0

C1,k e−(k+1)(ρ1+ρ2)b

)
,

which after a little algebra yields (61).

3.2.2 More general penalty functions

The technique of Section 3.2.1 to derive exact solutions can be generalized to non-
constant functions ξ(u) in the following way: Let m(u) be the solution of the ordinary
differential equation

c
∂2m

∂u2
+ (cα− δ − λ)

∂m

∂u
− αδm + e−αuλξ′(u) = 0 (62)
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with boundary conditions

c
∂m

∂u

∣∣∣
u=0

− (λ + δ)m
∣∣∣
u=0

+ λ ξ(0) = 0 (63)

and
lim

u→∞
m(u) = 0. (64)

Then, the solution of (46)-(49) is of the form

m(u, b) = m(u) +
L∑

l=1

∞∑

k=0

es
(l)
k b C

(l)
1,k

(
er

(l)
1,k u − α+r

(l)
2,k

α+r
(l)
1,k

er
(l)
2,k u

)
, (65)

if m(u) is a linear combination of L exponentials in u, since then each of the L series
can control one summand of m(u) with respect to condition (47) in just the same
way as in (50). By construction, the function m(u) is then again the discounted
penalty function in the classical risk model without dividend barrier.
The solution of (62) is given by

m(u) = A1e
ρ1u + A2e

−ρ2u + mp(u), (66)

with the particular solution

mp(u) =
λ

c(ρ1 + ρ2)

(
e−ρ2u

∫ u

e−(α−ρ2)tξ′(t)dt− eρ1u

∫ u

e−(α+ρ1)tξ′(t)dt

)
,

where ρ1 and −ρ2 are again the positive and negative solution of (53). So whenever
the penalty function w(x1, x2) (through ξ′(u)) allows for a solution of (66) together
with (63) and (64) of exponential type, an explicit expression for the discounted
penalty function of the form (65) can be obtained. Condition (47) ensures that

z
(l)
0 < 0, l = 1, . . . , L, from which the absolute convergence of (65) again follows.

As an illustration, we will utilize this approach to derive the joint Laplace transform

of the surplus prior to ruin and the time of ruin m(u, b) := E
(
e−νR(T−u,b) e−δTu,b1{Tu,b<∞}

)
.

Thus we set w(x1, x2) = e−νx1 or equivalently ξ(u) = e−νu from which the solution
of (62)-(64) follows easily:

m(u) =
λ ν e−(ν+α)u + λ (α− ρ2) e−ρ2u

c(ν + α + ρ1)(ν + α− ρ2)
, (67)

(this formula could also have been obtained by calculating the Laplace transform
of the generalized Dickson formulae (6.5) and (6.6) of Gerber and Shiu [13] for the
(discounted) defective density function of the surplus prior to ruin in the classical
risk model without barrier (note that their function ψ(u), which is the joint Laplace
transform of the deficit at ruin and the time of ruin, is in our case, using the results
of Section 3.2.1, given by ψ(u) = λ α e−ρ2u

c (α+ρ1)2
)).
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Indeed, m(u) in (67) is a sum of two exponentials and we can solve (48) by (65) with
L = 2, where each of the two series corrects the deviation from condition (46) for
one of the two summands of m(u). This can be achieved by starting the recursion
for the coefficients with

r
(1)
1,0 + s

(1)
0 = −ρ2 = z

(1)
0 , C

(1)
1,0 = λ ρ2(α−ρ2)

c r
(1)
1,0(ν+α+ρ1)(ν+α−ρ2)

,

r
(2)
1,0 + s

(2)
0 = −(ν + α) = z

(2)
0 , C

(2)
1,0 = λ ν (ν+α)

c r
(2)
1,0(ν+α+ρ1)(ν+α−ρ2)

and (57). The resulting analytic expression for the joint Laplace transform can then
for instance be used to determine the (discounted) moments of the surplus prior to
ruin by calculating the derivatives at ν = 0 (for a numerical example see Section 4).

Remark 3.4. For the special case of a horizontal dividend barrier b (a = 0), we

obtain, analogously to Remark 3.3, r
(l)
1,k = ρ1 and r

(l)
2,k = −ρ2 for all k ≥ 0 and

l = 1, 2. Moreover, s
(1)
k = −(k + 1)(ρ1 + ρ2) and s

(2)
k = −(ν + α + ρ1)− k (ρ1 + ρ2),

from which we obtain

E
(
e−νR(T−u,b) e−δTu,b1{Tu,b<∞}

)
=

λ

c (α + ν + ρ1)(α + ν − ρ2)
·

(
νe−(α+ν)u + (α− ρ2)e

−ρ2u + ((α + ρ1) eρ1u − (α− ρ2) e−ρ2u) ·

( e−(α+ν−ρ2)bν(α + ν)

ρ1(α + ρ1)e(ρ1+ρ2)b − ρ2(α− ρ2)
+

ρ2(α− ρ2)

ρ1(α + ρ1)e(ρ1+ρ2)b + ρ2(α− ρ2)

))
.

For δ = 0 (which implies ρ1 = 0 and ρ2 = α − λ/c), the inverse Laplace transform
of the above expression leads to the density of the surplus prior to ruin in a model
with horizontal dividend barrier

f(x) =





αλ(e−λx/c−e−αx)
cα−λ

0 < x ≤ u,

λ c α e−λx/c−λ2 e−αu+λ(u−y)/c)
c(cα−λ)

u < x ≤ b,

and

P(RTu,b
= b) =

cα e−λb/c − λ e−α u+λ(u−b)/c

cα− λ
,

a result that was recently derived by other techniques in Lin et al. [18, p.562].

The solution approach presented in this section can again be extended to hyper-
exponential and Erlang claim sizes. In the latter cases, the distribution of the
deficit at ruin can also be considered (which for exponential claim sizes is trivially
exponential, independent of the surplus prior to ruin and the time of ruin). For
instance, the joint Laplace transform of RT−u,b

, |RTu,b
| and Tu,b can be obtained in

the above way, since the penalty function w(x1, x2) = e−ν1x1−ν2x2 also leads to an
exponential expression for m(u).
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4 Numerical illustrations

Finally, we briefly illustrate the exact solutions derived in this paper for the fol-
lowing set of parameters: Xi ∼ Exp(1), λ = 1, c = 1.5, a = 1.1 (and δ = 0.1, if
applicable). In each example, the infinite series representation of the explicit solu-
tion is approximated by an appropriate truncation of the series and these results
are then compared with values from stochastic simulation (see e.g. [3]). In order
to achieve a comparable degree of accuracy, each simulation estimate is based on 1
million sample paths. Note that each entry for the exact values in the tables below
can be calculated on a normal PC in less than 0.01 seconds, whereas each simulation
estimate takes several minutes.

Table 1 shows the results for the expected sum of discounted dividends V1(u, b) as
given by (25). Table 2 contains the results for the corresponding standard deviation
of Du,b, i.e.

√
V1(u, b)2 − V2(u, b), where V2(u, b) is given by the double series (29)

together with (26), (30), (31), (37), (41), (42) and (43) (cf. Section 2). Note that
from Tables 1 and 2 one can observe that the standard deviation of Du,b is of about
the same size as its expected value, which indicates that V1(u, b) can be a highly
insufficient measure of the effectiveness of the dividend strategy and the considera-
tion of higher order moments of Du,b is important.

Tables 3, 4 and 5 give the results for the expected value of the time to ruin Tu,b, the
expected value of the surplus prior to ruin and the discounted expectation of the
deficit at ruin, respectively, where the algorithms of Section 3 are used to determine
the exact values.

Appendix A

Lemma A.1. The double series representation of V2(u, b) derived in Section 2.3 is
absolutely convergent.

Proof: In the setting of Section 2.3, define

fzk1
(R) = R2 +

azk1 + (c− a)α− (λ + 2δ)

c− a
R +

α

c− a
(azk1 − 2δ) (68)

and recall that r1,k1,0 is the positive solution of fzk1
(R) = 0. Observe that due to

zk1 ≤ 0 for k1 ≥ 0 we have fzk1
(2δ/(c− a)) < 0 and limR→∞ fzk1

(R) = +∞. Thus

r1,k1,0 > 2δ/(c− a) ∀ k1 ≥ 0. (69)

The sequence (zk)k≥0 is strictly decreasing. Set zk+1 = zk − h (h > 0) to see that
fzk1+1

(r1,k1,0) = −ah(r1,k1,0 + α)/(c− a) < 0. Thus, for every k1 ≥ 0,

r1,k1+1,0 > r1,k1,0. (70)
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From (69) and (42) we get ∀ k1, k2 ≥ 0 a lower bound for r1,k1,k2

r1,k1,k2 >

(
c

c− a

)k2 2δ

c− a
, (71)

and (43) gives ∀ k1, k2 ≥ 0 a bound for r2,k1,k2

−α < r2,k1,k2 < −α + α

(
c− a

c

)k2+1

. (72)

By (37), we now have for every i ≥ 0 and j ≥ 1

|Ci,j| = |Ci,j−1|
∣∣∣∣
r2,i,j−1

r1,i,j

(α + r2,i,j−1)

(α + r1,i,j−1)

∣∣∣∣ ≤ |Ci,j−1|
∣∣∣∣∣
α2(c− a)2

4δ2

(
c− a

c

)3j
∣∣∣∣∣ . (73)

Let L be the smallest number such that

qL :=

∣∣∣∣∣
α2(c− a)2

4δ2

(
c− a

c

)3L
∣∣∣∣∣ < 1.

Then we have for every j ≥ L

|Ci,j| ≤ |Ci,0|
(

α2(c− a)2

4δ2

)L−1

qj−L
L ,

so that ∀ k1 ≥ 0
∞∑

k2=0

|Ck1,k2| ≤ c1 |Ck1,0|, (74)

where c1 is a constant which is independent of k1. Furthermore, from (28), (34) and
estimates from [12] it follows that for sufficiently large k1

|Ck1+1,0| ≤ |Ck1,0| αc

2δ

(
c− a

c

)2k1+1

.

Hence ∞∑

k1=0

∞∑

k2=0

|Ck1,k2| < c1

∞∑

k1=0

|Ck1,0| < ∞.

Observe now that due to (32) and (72), for all 0 ≤ u ≤ b and all k1, k2 ≥ 0

∣∣∣∣ Ck1,k2e
sk1,k2

b

(
er1,k1,k2

u − α + r2,k1,k2

α + r1,k1,k2

er2,k1,k2
u

)∣∣∣∣ < |Ck1,k2| ,

which finally shows that the series (29) for n = 2 is absolutely convergent. 2
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b \ u 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.0 0.485
0.1 0.403 0.495
0.2 0.334 0.412 0.504
0.3 0.277 0.341 0.418 0.510
0.4 0.230 0.283 0.347 0.423 0.515
0.5 0.190 0.234 0.287 0.351 0.427 0.518
0.6 0.157 0.194 0.238 0.290 0.354 0.430 0.521
0.7 0.130 0.161 0.197 0.241 0.293 0.356 0.432 0.523
0.8 0.108 0.133 0.163 0.199 0.243 0.295 0.358 0.434 0.525
0.9 0.090 0.110 0.135 0.165 0.201 0.244 0.296 0.359 0.435 0.526
1.0 0.074 0.091 0.112 0.137 0.166 0.202 0.246 0.298 0.360 0.436 0.528

b \ u 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 0.486

0.1 0.404 0.496
0.2 0.334 0.415 0.505
0.3 0.279 0.340 0.418 0.510
0.4 0.231 0.284 0.346 0.422 0.513
0.5 0.191 0.236 0.287 0.350 0.427 0.519
0.6 0.157 0.194 0.238 0.292 0.353 0.430 0.522
0.7 0.132 0.160 0.198 0.242 0.294 0.356 0.432 0.524
0.8 0.108 0.134 0.164 0.199 0.243 0.295 0.359 0.437 0.526
0.9 0.090 0.109 0.135 0.166 0.201 0.245 0.298 0.358 0.436 0.528
1 0.074 0.092 0.111 0.136 0.166 0.203 0.245 0.298 0.360 0.437 0.527

Table 1: Exact (above) and simulated (below) values of V1(u, b).
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b \ u 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.0 0.447
0.1 0.438 0.447
0.2 0.416 0.436 0.447
0.3 0.390 0.417 0.438 0.446
0.4 0.361 0.391 0.417 0.437 0.445
0.5 0.333 0.363 0.392 0.417 0.437 0.444
0.6 0.304 0.334 0.364 0.392 0.417 0.436 0.444
0.7 0.278 0.306 0.335 0.365 0.392 0.417 0.436 0.443
0.8 0.252 0.279 0.307 0.336 0.364 0.393 0.417 0.436 0.443
0.9 0.229 0.254 0.281 0.308 0.337 0.365 0.393 0.417 0.435 0.443
1.0 0.206 0.230 0.255 0.281 0.309 0.337 0.365 0.393 0.417 0.435 0.442

b \ u 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 0.446

0.1 0.437 0.447
0.2 0.416 0.441 0.448
0.3 0.389 0.415 0.436 0.447
0.4 0.361 0.391 0.417 0.437 0.445
0.5 0.335 0.362 0.389 0.417 0.436 0.446
0.6 0.305 0.332 0.363 0.394 0.416 0.437 0.445
0.7 0.279 0.307 0.336 0.366 0.393 0.417 0.434 0.443
0.8 0.252 0.280 0.309 0.336 0.365 0.392 0.419 0.438 0.443
0.9 0.229 0.251 0.281 0.308 0.337 0.365 0.393 0.415 0.436 0.444
1 0.207 0.232 0.253 0.282 0.306 0.336 0.363 0.392 0.415 0.437 0.442

Table 2: Exact (above) and simulated (below) values of the standard deviation√
V1(u, b)2 − V2(u, b).

b \ u 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0 1.372
0.1 1.412 1.427
0.2 1.429 1.463 1.476
0.3 1.430 1.475 1.508 1.521
0.4 1.424 1.476 1.518 1.548 1.560
0.5 1.415 1.468 1.516 1.556 1.584 1.595
0.6 1.404 1.458 1.508 1.552 1.589 1.615 1.625
0.7 1.393 1.447 1.497 1.543 1.584 1.618 1.642 1.652
0.8 1.383 1.436 1.485 1.531 1.574 1.612 1.646 1.666 1.675
0.9 1.374 1.425 1.473 1.519 1.562 1.601 1.636 1.665 1.686 1.694
1.0 1.366 1.416 1.463 1.508 1.549 1.588 1.624 1.657 1.684 1.703 1.710

b \ u 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0 1.371
0.1 1.406 1.429
0.2 1.429 1.460 1.482
0.3 1.430 1.482 1.511 1.523
0.4 1.423 1.482 1.518 1.540 1.552
0.5 1.419 1.469 1.514 1.558 1.590 1.594
0.6 1.406 1.462 1.511 1.546 1.585 1.609 1.624
0.7 1.395 1.442 1.500 1.544 1.586 1.624 1.65 1.654
0.8 1.380 1.437 1.486 1.534 1.573 1.623 1.647 1.668 1.680
0.9 1.373 1.427 1.475 1.521 1.563 1.601 1.636 1.660 1.687 1.694
1.0 1.369 1.420 1.469 1.515 1.551 1.587 1.627 1.658 1.680 1.713 1.714

Table 3: Exact (above) and simulated (below) values of the mean ruin time
E[Tu,bI{Tu,b<∞}].
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b \ u 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 0.488

0.1 0.518 0.534
0.2 0.527 0.557 0.569
0.3 0.526 0.562 0.588 0.598
0.4 0.522 0.560 0.591 0.613 0.622
0.5 0.517 0.554 0.587 0.613 0.632 0.639
0.6 0.512 0.550 0.581 0.608 0.630 0.646 0.652
0.7 0.508 0.545 0.576 0.602 0.624 0.642 0.655 0.660
0.8 0.505 0.541 0.571 0.596 0.618 0.636 0.650 0.660 0.665
0.9 0.503 0.538 0.567 0.591 0.612 0.629 0.643 0.654 0.662 0.666
1 0.502 0.536 0.565 0.588 0.607 0.623 0.636 0.647 0.655 0.662 0.664

b \ u 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 0.487

0.1 0.520 0.533
0.2 0.526 0.557 0.570
0.3 0.526 0.562 0.589 0.599
0.4 0.522 0.559 0.591 0.613 0.622
0.5 0.517 0.555 0.587 0.614 0.632 0.640
0.6 0.512 0.550 0.581 0.609 0.629 0.646 0.649
0.7 0.509 0.546 0.575 0.601 0.625 0.643 0.655 0.659
0.8 0.507 0.540 0.572 0.597 0.618 0.636 0.648 0.660 0.665
0.9 0.506 0.539 0.567 0.592 0.613 0.628 0.644 0.656 0.662 0.667
1 0.503 0.535 0.565 0.587 0.607 0.623 0.636 0.646 0.655 0.662 0.664

Table 4: Exact (above) and simulated (below) values of the expected surplus before
ruin E[RT−u,b

I{Tu,b<∞}]

b \ u 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0 0.646
0.1 0.624 0.621
0.2 0.609 0.599 0.595
0.3 0.599 0.584 0.575 0.571
0.4 0.592 0.574 0.560 0.551 0.548
0.5 0.589 0.567 0.551 0.537 0.528 0.525
0.6 0.583 0.562 0.544 0.578 0.515 0.506 0.503
0.7 0.581 0.559 0.539 0.521 0.506 0.494 0.486 0.482
0.8 0.580 0.557 0.536 0.531 0.500 0.485 0.473 0.465 0.462
0.9 0.578 0.555 0.534 0.514 0.496 0.479 0.465 0.454 0.446 0.443
1.0 0.578 0.554 0.533 0.512 0.493 0.475 0.459 0.446 0.435 0.428 0.425

b \ u 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0 0.646
0.1 0.624 0.621
0.2 0.610 0.600 0.595
0.3 0.600 0.584 0.575 0.571
0.4 0.592 0.574 0.560 0.551 0.548
0.5 0.587 0.568 0.550 0.537 0.528 0.5255
0.6 0.583 0.563 0.544 0.528 0.516 0.506 0.504
0.7 0.581 0.558 0.540 0.521 0.506 0.493 0.485 0.483
0.8 0.579 0.558 0.536 0.517 0.500 0.485 0.473 0.465 0.462
0.9 0.579 0.556 0.533 0.514 0.495 0.479 0.465 0.453 0.446 0.444
1.0 0.578 0.555 0.533 0.512 0.493 0.475 0.460 0.446 0.434 0.428 0.425

Table 5: Exact (above) and simulated (below) values for the discounted expectation
of the deficit at ruin E[e−δTu,b|R(Tu,b)|].
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