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Abstract This paper presents a dynamic model of talent investments in a team sports
league with an infinite time horizon. We show that the clubs’ investment decisions and
the effects of revenue sharing on competitive balance depend on the following three
factors: (i) the cost function of talent investments, (ii) the clubs’ market sizes, and (iii)
the initial endowments of talent stock. We analyze how these factors interact in the
transition to the steady state as well as in the steady state itself.

Keywords Competitive balance · Contests · Revenue sharing · Sports economics

1 Introduction

The uncertainty of outcome hypothesis pertains to probably the most interesting
(and unique) characteristic of the professional team sports industry. According to
this hypothesis, fans prefer to attend contests with an uncertain outcome and enjoy
close championship races.1 Unlike Wal-Mart, Sony, and BMW who benefit from weak
competitors in their industries, FC Barcelona and the New York Yankees need strong
competitors to fill their stadiums. Since weak teams produce negative externalities
on strong teams, many professional sports leagues have introduced revenue-sharing

1 See, e.g., Lee and Fort (2008).
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18 M. Grossmann et al.

arrangements to, at least partly, internalize these externalities and increase competitive
balance.

The effect of revenue sharing on competitive balance, however, has been challenged
by the so-called “invariance proposition,” which states that revenue sharing does not
affect the distribution of playing talent among profit-maximizing clubs.2 Whether the
invariance proposition actually holds or not is probably the most disputed question in
the sports economics literature, and no consensus has emerged so far. This paper tries
to shed light on this controversy in a dynamic framework.

Talent investments in professional sports clubs are a dynamic phenomenon. Since
the majority of players sign multiple-year contracts, most of the talent acquired in
this season will also be available in the next season. Thus, today’s talent investments
determine tomorrow’s talent stock and expected future profits. From our point of
view, a major shortcoming of the sports economic literature is the disregard of this
inter-temporal investment effect.

Almost all contributions consider static models that focus on one period only (see,
e.g., Atkinson et al. 1988; Cyrenne 2009; Dietl and Lang 2008; Fort and Quirk 1995;
Szymanski and Késenne 2004; Vrooman 1995, 2008). Static models, however, do
not analyze the dynamics that lead to convergence or divergence of clubs’ playing
strengths, and therefore, they cannot differentiate between the short- and long-run
effects of revenue sharing on competitive balance.

One exception is El-Hodiri and Quirk (1971), who develop a dynamic decision-
making model of a professional sports league. They confirm the “invariance propo-
sition” and show that revenue sharing does not influence competitive balance. Their
model, however, is based on some critical assumptions: First, they assume a fixed sup-
ply of talent because the total amount of talent is exogenously given in their model.3

Second, the specification of the club’s cost function is restrictive since they assume
constant marginal costs. Our analysis shows that the cost function has a significant
effect on the transitional dynamics in the model.

Grossmann and Dietl (2009) analyze the effect of revenue sharing in the context
of a two-period model. They focus on the effect of different equilibrium concepts
(open-loop and closed-loop equilibria) on clubs’ optimal investment decisions. This
two-period model, however, does not allow any conclusions regarding the possible
convergence of clubs’ playing strengths. An infinite period model is required to ana-
lyze these dynamics aspects.

In this paper, we account for the dynamic perspective of clubs’ talent investments by
developing a dynamic model with an infinite time horizon. In each period, two profit-
maximizing clubs invest in playing talent in order to accumulate their respective talent
stock, which depreciates over time. The available stock of playing talent determines
the clubs’ winning percentages in each period, which ultimately, determine clubs’
revenues. We show that the clubs’ investment decisions and the effect of revenue

2 The invariance proposition goes back to Rottenberg (1956) and can be considered as a predecessor of the
famous Coase theorem.
3 As Szymanski (2004) has shown, the assumption of a fixed talent supply is often used to justify Walrasian
fixed-supply instead of contest-Nash conjectures. Under Walrasian fixed-supply conjectures, the quantity
of talent hired by at least one club owner is determined by the choices of all other club owners.
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A Dynamic Contest Model 19

sharing on competitive balance depend on a combination of the following three fac-
tors: (i) the cost function of talent investments, (ii) the clubs’ market sizes, and (iii)
the initial endowments of talent stock. We analyze how these factors interact in the
transition to the steady state (short run) as well as in the steady state itself (long run).

The remainder of this paper is organized as follows: In Sect. 2, we explain the
model. The results are presented in Sect. 3. In Sect. 3.1, we solve the dynamic prob-
lem and analyze the efficiency conditions. In Sect. 3.2, we compute the steady states
and derive comparative statics. In Sect. 3.3, we analyze the transitional dynamics of
the model for symmetric initial endowments, and in Sect. 3.4 for asymmetric initial
endowments. Finally, Sect. 4 concludes.

2 Model Specification

The following dynamic model describes the investment behavior of two profit-maxi-
mizing clubs that compete in a professional team sports league. The investment horizon
comprises an infinite number of periods in discrete time. We interpret one period as
one season, where expected profits in period t ∈ {0, . . . ,∞} are discounted by β t

with β ∈ (0, 1).
In each period t , club i ∈ {1, 2} invests a certain amount τi,t � 0 in playing talent

in order to accumulate a stock of playing talent, Ti,t ≥ 0, which depreciates over
time. We assume that playing talent is measured in perfectly divisible units that can be
hired in a competitive market for talent, generating strictly convex costs c(τi,t ). Thus,
c′(τi,t ) > 0 and c′′(τi,t ) > 0 for τi,t > 0, t ∈ {0, . . . ,∞}.4

The stock of playing talent Ti,t linearly increases (ceteris paribus) through talent
investments τi,t in period t . Thus, Ti,t is a state variable and is given by the talent
accumulation equation:

Ti,t = (1 − δ)Ti,t−1 + τi,t , i ∈ {1, 2}, t ∈ {0, . . . ,∞}, (1)

where δ ∈ (0, 1) represents the depreciation factor. Equation (1) shows that replace-
ments are necessary in order to maintain the existing stock of playing talent. Before
the competition starts, i.e., in period t = −1, each club i is assumed to have initial
endowments of talent stock given by Ti,−1 ≥ 0.

In each period t , the talent stock determines the clubs’ win percentages. The win
percentage of club i is characterized by the contest-success function (CSF), which
maps club i’s and club j’s talent stock (Ti,t , Tj,t ) into probabilities for each club.5 We
apply the logit approach, which is the most widely used functional form of a CSF in
sporting contests.6 The win percentage of club i in period t is then given by:

4 Note that in Sect. 3.4.1 we consider linear costs c(τi,t ) = θτi,t with a constant marginal cost parameter
θ such that c′(τi,t ) = θ > 0 and c′′(τi,t ) = 0.

5 In the subsequent analysis i, j ∈ {1, 2}, j �= i and t ∈ {0, . . . , ∞}, if not otherwise stated.
6 The logit CSF was generally introduced by Tullock (1980) and subsequently axiomatized by Skaperdas
(1996) and Clark and Riis (1998). An alternative functional form would be the probit CSF (e.g., Lazear and
Rosen 1981; Dixit 1987) and the difference-form CSF (e.g., Hirshleifer 1989).
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wi (Ti,t , Tj,t ) = T γ

i,t

T γ

i,t + T γ

j,t

. (2)

Note that club i’s win percentage is an increasing function of its own talent stock. We
define wi (Ti,t , Tj,t ) := 1/2, if Ti,t = Tj,t = 0. Given that the win percentages must
sum up to unity, we obtain the adding-up constraint: w j = 1 − wi .

Moreover, we assume that the supply of talent is elastic. As a consequence, we
consider the so-called Nash equilibrium model rather than the Walrasian equilibrium
model, and we thus adopt the “contest-Nash conjectures” ∂τi,t

∂τ j,t
= 0.7

The parameter γ > 0 is called the “discriminatory power” of the CSF and reflects
the degree to which talent affects the win percentage.8 As γ increases, the win per-
centage for the club with the higher talent stock increases, and differences in the talent
stock affect the win percentage in a stronger way. In the limiting case where γ goes
to infinity, we would have a so-called “all-pay auction”: a perfectly discriminating
contest.

The revenue function of club i is given by Ri (wi , mi ) and is assumed to have the
following properties:9 either ∂ Ri/∂wi > 0 and ∂2 Ri/∂w2

i ≤ 0 for all wi ∈ [0, 1]
or ∃w∗

i ∈ [0, 1] such that if wi ≥ w∗
i , then ∂ Ri/∂wi < 0, otherwise ∂ Ri/∂wi > 0,

and ∂2 Ri/∂w2
i ≤ 0 everywhere. In order to guarantee an equilibrium, we assume that

w∗
i ≥ 0.5 for at least one club. The parameter mi > 0 represents the market size

of club i . To make further progress and to derive closed form solutions, we have to
simplify the model. We assume that the revenue function of club i is linear in its own
win percentage and is specified by

Ri (wi (Ti,t , Tj,t ), mi ) = mi · wi (Ti,t , Tj,t ).

This revenue function has the desired properties and is consistent with the revenue
function used, e.g., by Dietl et al. (2009), Hoehn and Szymanski (1999), Szymanski
(2003), and Vrooman (2007, 2008).10 Note that Szymanski and Késenne (2004, p. 171)
also use an identical revenue function.

Further, we introduce a gate revenue-sharing arrangement into our model. In its
simplest form, gate revenue sharing allows the visiting club to retain a share of the

7 According to Szymanski (2004), only the contest-Nash conjectures are consistent with the concept of
Nash equilibrium (see also Szymanski and Késenne 2004 and Késenne 2007). However, the disagree-
ment regarding “Nash conjectures” versus “Walrasian conjectures” remains an open area for research. For
instance, Fort and Quirk (2007) describe a competitive talent market model, which is consistent with a
unique rational expectation equilibrium (see also Fort 2006).
8 We are grateful to an anonymous referee who suggested that we integrate this parameter into our model.
See also Dietl et al. (2008) and Fort and Winfree (2009) for an analysis of the parameter γ in a static model.
9 See Szymanski and Késenne (2004, p 168).
10 Even though the revenue function is quadratic in own win percentages in the mentioned articles, only the
part where ∂ Ri /∂wi > 0 is relevant for their analysis. It is obvious that equilibria in which ∂ Ri /∂wi < 0
holds do not exist. Moreover, the following proofs hold for all γ ∈ (0, ∞). If, however, γ > 1, the revenue
function has both convex and concave parts. Therefore, the existence of a maximum is only guaranteed, if
0 < γ ≤ 1.
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home club’s gate revenues.11 The after-sharing revenues of club i , denoted by ̂Ri , can
be written as:

̂Ri = αRi + (1 − α)R j = α
mi T

γ

i,t

T γ

i,t + T γ

j,t

+ (1 − α)
m j T

γ

j,t

T γ

i,t + T γ

j,t

,

with α ∈ ( 1
2 , 1]. From the home match, club i obtains share α of its own revenues Ri ,

and from the away match, it obtains share (1 − α) of club j’s revenues R j . Note that
a higher parameter α represents a league with a lower degree of redistribution. Thus,
the limiting case of α = 1 describes a league without revenue sharing.

Club i’s expected profits E[πi,t ] in period t are given by after-sharing revenues
minus costs, i.e.,

E[πi,t ] = ̂Ri (Ti,t , Tj,t ) − c(τi,t ).

Club i maximizes its expected discounted profits
∑∞

t=0 β t E[πi,t ] with respect to the
stream {τi,t }∞t=0 and subject to Ti,t = (1 − δ)Ti,t−1 + τi,t . We assume that both clubs
have an outside option of zero profits before the competition starts.

In order to solve the model in an infinite horizon model, we use the open-loop
equilibrium concept, which facilitates computations.12

3 Results

3.1 Dynamic Program

We solve the dynamic program for club i by Bellman:13

v(Ti,t−1) = max
τi,t ,Ti,t

{

̂Ri (Ti,t , Tj,t )−c(τi,t )+βv(Ti,t )
}

s.t. Ti,t = (1 − δ)Ti,t−1 + τi,t .

Note that v(·) represents the club’s value function. Moreover, club i takes Tj,t as
given in period t ∈ {0, . . . ,∞} according to the open-loop concept. The associated
Lagrangian L with multiplier λt has the following form:

11 The sharing of gate revenues plays an important role in the redistribution of revenues and has long
been accepted as an exemption from antitrust law. The basic idea of such a cross-subsidization policy is
to guarantee a reasonable competitive balance in the league by redistributing revenues from large-market
clubs to small-market clubs because large-market clubs have a higher revenue-generating potential than do
small-market clubs.
12 See, for instance, Fudenberg and Tirole (1991) who discuss the differences between the two concepts.
Generally, they argue that in the case of many agents the differences between the closed-loop and open-loop
equilibria are negligible. Moreover, Grossmann and Dietl (2009) show that the open-loop and closed-loop
equilibria coincide in a similar two-period model if costs are linear.
13 In order to solve the model, we follow King et al. (1988): In a first step, we solve the dynamic problem
and analyze the efficiency conditions (Euler equations). Then we compute the steady states (long run),
and afterwards we analyze the transitional dynamics (short run). Note that, henceforth, the results are only
presented for club i . The corresponding results for club j can be found by changing subscripts i and j .
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L = α
mi T

γ

i,t

T γ

i,t + T γ

j,t

+ (1 − α)
m j T

γ

j,t

T γ

i,t + T γ

j,t

− c(τi,t ) + βv(Ti,t )

+ λt [(1 − δ)Ti,t−1 + τi,t − Ti,t ].

The corresponding first order conditions are given by:

∂L
∂τi,t

= −c′(τi,t ) + λt = 0,

∂L
∂Ti,t

= α
γ mi T

γ−1
i,t T γ

j,t
(

T γ

i,t + T γ

j,t

)2 − (1 − α)
γ m j T

γ−1
i,t T γ

j,t
(

T γ

i,t + T γ

j,t

)2 + β
∂v(Ti,t )

∂Ti,t
− λt = 0,

∂L
∂λt

= (1 − δ)Ti,t−1 + τi,t − Ti,t = 0. (3)

The envelope theorem gives us ∂L/∂Ti,t−1 = ∂v(Ti,t−1)/∂Ti,t−1 = λt (1 − δ). Using
the first order conditions and the updated envelope theorem, and assuming that clubs
have identical market sizes, i.e., mi = m j = m,14 we get the following Euler equation
for club i :

(2α − 1)
γ mT γ−1

i,t T γ

j,t

(T γ

i,t + T γ

j,t )
2

= c′(τi,t ) − β(1 − δ)c′(τi,t+1). (4)

Equation 4 reflects the well-known inter-temporal trade-off: the marginal benefit of
an investment into talent (left hand side) must equal the marginal cost of talent (right
hand side) in an optimum. Note that the marginal benefit of an investment is increas-
ing in α and m. The first term on the r.h.s of the equation indicates the instantaneous
marginal cost of an investment, whereas the second term on the r.h.s. represents the
inter-temporal effect of today’s investment. That is, an investment of one unit today
reduces marginal costs tomorrow, which has to be discounted by β(1 − δ).

Moreover, we can solve the Euler equation (4) recursively forward and get the
following result for club i :

(2α − 1)γ m
T

∑

k=0

⎧

⎪

⎨

⎪

⎩

[β(1 − δ)]k
T γ−1

i,t+k T γ

j,t+k
(

T γ

i,t+k + T γ

j,t+k

)2

⎫

⎪

⎬

⎪

⎭

= c′(τi,t ) − [β(1 − δ)]T +1 c′(τi,t+T +1)
︸ ︷︷ ︸

T →∞= 0

.

Note that the second term on the right hand side vanishes as T converges to infinity
since β(1 − δ) ∈ (0, 1) such that:

14 In Sect. 3.4.1, we extend our model and allow for clubs that have different market sizes. For this purpose,
we simultaneously have to simplify the cost function by assuming linear costs.
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(2α − 1)γ m
∞
∑

k=0

⎧

⎪

⎨

⎪

⎩

[β(1 − δ)]k
T γ−1

i,t+k T γ

j,t+k
(

T γ

i,t+k + T γ

j,t+k

)2

⎫

⎪

⎬

⎪

⎭

= c′(τi,t ).

Today’s marginal cost of an investment (r.h.s.) equals the sum of today’s and (all)
discounted future expected marginal benefits (l.h.s.).

3.2 Steady States

Generally, in a steady state all variables grow with a constant rate. In this model,
however, we have a stationary economy such that the growth rate is zero. Thus, Ti,t =
Ti,t+1 ≡ Ti in a steady state. Equation 1 implies that τi = δTi in a steady state: i.e.,
the amount of playing talent that is lost through depreciation is replaced by newly
recruited players.

By neglecting the time subscript t , we rewrite the Euler equation (4) for club i as
follows:15

(2α − 1)
γ mT γ−1

i T γ

j

(T γ

i + T γ

j )2
= (1 − β(1 − δ))c′(τi ). (5)

Dividing Eq. 5 by the corresponding Euler equation for the other club j , we derive
Tj/Ti = c′(τi )/c′(τ j ) and can establish the following proposition:

Proposition 1 If mi = m j , then Ti = Tj ≡ T and τi = τ j ≡ τ in the steady state
(independent of the distribution of initial endowments). As a consequence, revenue
sharing has no effect on competitive balance in the long run.

Proof See Appendix “Proof of Proposition 1”. ��
Proposition 1 implies that talent investments and the talent stock are identical for

both clubs in the steady state: i.e., there is not only relative convergence but also abso-
lute convergence of talent stocks in the long run as long as clubs have identical market
sizes. This result holds even if clubs started with different initial endowments Ti,−1
and Tj,−1. It follows that revenue sharing has no effect on competitive balance in the
steady state, and therefore, the invariance proposition holds in the long run.

Nonetheless, the question remains whether and how quickly the steady state is
achieved. The transitional dynamics are discussed in the next sections, where we show
how revenue sharing influences competitive balance in the short run—i.e., during the
talent accumulation process. Prior to this, we first derive the comparative statics of the
steady state talent stock and investment.

According to Eq. 5 and the results of Proposition 1, we implicitly get the steady
state values T and τ = δT :

(2α − 1)
γ m

4T
= (1 − β(1 − δ))c′(δT ). (6)

15 Henceforth, variables without a time subscript indicate steady states.
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Comparative statics lead to the following proposition:

Proposition 2 (i) Talent stock T in the steady state is increasing in m, γ, β, and
α, but decreasing in δ.
(ii) Talent investment τ in the steady state is increasing in m, γ, β, α, and δ.

Proof See Appendix “Proof of Proposition 2” . ��
Proposition 2 (i) shows that a larger market size, a higher discriminatory power, a

higher discount rate, and/or a lower degree of revenue sharing (i.e., a higher α) imply
a higher talent stock in the steady state.16 On the other hand, a higher depreciation
rate reduces incentives to accumulate talent in the steady state.

Since higher parameters m, γ, β, and α imply a higher talent stock T in the steady
state, it is necessary to increase the steady state talent investment τ in order to sustain
this higher talent stock T . Thus, τ is increasing in the aforementioned parameters as
stated in Proposition 2 (ii). Furthermore, a higher depreciation factor also increases
the steady state talent investment.17

3.3 Transitional Dynamics with Symmetric Initial Endowments

In this section, we assume that both clubs have identical initial endowments. That is, the
initial talent stock in period t = −1 is the same for both clubs with Ti,−1 = Tj,−1 ≡
T−1.18 This assumption has special implications for the clubs’ optimal investment
behavior. Equation 4 implies

Tj,t

Ti,t
= c′(τi,t ) − β(1 − δ)c′(τi,t+1)

c′(τ j,t ) − β(1 − δ)c′(τ j,t+1)
. (7)

We derive the following results:

Proposition 3 If Ti,−1 = Tj,−1 ≡ T−1, then τi,t = τ j,t ≡ τt for all t ∈ {0, . . . ,∞}.
Therefore, symmetric initial endowments imply that clubs’ talent investment and talent
stock are identical in each period.

16 If the market size and/or the revenue sharing parameter are increasing, then it is quite intuitive that
incentives to invest in talent are also increasing due to higher marginal benefits of talent investments. A
higher discriminatory power implies a higher marginal revenue in the steady state, which also leads to a
higher talent stock. Furthermore, we observe a higher talent stock in the long run for a higher discount rate
β. Hence, as future expected profits get less discounted, clubs invest more in talent accumulation.
17 A higher depreciation factor δ, however, has two effects on the steady state talent investments τ = δT (δ).
First, a higher δ reduces the talent stock T (δ) such that the steady state investment τ is lower in order to
maintain the talent stock. Second, a higher δ also implies that clubs have to invest more in talent in order to
maintain the steady state talent stock. Thus, a higher depreciation factor implies higher talent investments.
The second effect dominates the first effect in the model such that τ is increasing in δ.
18 Note that, even in a perfectly symmetric contest, symmetric club investments are not compulsory ex ante.
We can show in this section, however, that a symmetric investment behaviour is the unique solution in our
model.
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Tt
T

Saddle Path

t

Fig. 1 Saddle path in the phase diagram

Proof See Appendix “Proof of Proposition 3”

Proposition 3 shows that both clubs optimally invest an identical amount in talent
in each period as long as initial endowments of talent stock (Ti,−1 and Tj,−1) are
identical. Thus, we can neglect clubs’ subscripts i and j in this subsection.

The optimal path of talent investments, however, cannot be explicitly determined
in the case of a general cost function. The dynamics are implicitly characterized by
the Euler equation (4), the talent accumulation Eq. 1, the initial endowments, and the
results of Proposition 3. Even though we are not able to solve the model explicitly, we
can plot the dynamics in a phase diagram, where we have to consider the dynamics of
Tt and τt separately.19

For all initial endowments T−1, there is a unique value τ0 such that the dynamic
path leads into the steady state. The unique value τ0 is determined by the saddle
path in Fig. 1.20 This saddle path is consistent with the efficiency conditions and the
accumulation equations. Note that if T−1 < T , then initial talent investments τ0 are
higher than the steady state talent investments τ . Otherwise, if T−1 > T , then initial
investments τ0 are lower than the steady state talent investments τ . In both cases, the
dynamic path leads to the steady state.

3.4 Transitional Dynamics with Asymmetric Initial Endowments

In this section, we assume that both clubs have different initial endowments in period
t = −1, i.e., Ti,−1 �= Tj,−1. Again, the Euler equation, the talent accumulation

19 Note that the dynamics are just approximately true in a phase diagram because the model is based
on discrete time and the phase diagram instead qualifies for continuous time. Nevertheless, we use the
phase diagram to strengthen our intuition. In Appendix “Derivation of the Phase Diagram”, we derive the
computations for this phase diagram.
20 Note that upper central arrows and lower central arrows indicate that values in those quadrants lead to
explosions, rather than to the steady state.
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equation, and the initial endowments represent the dynamics of the model and
characterize the clubs’ optimal investment behavior.

It is not possible to solve this model explicitly to provide an explicit computation of
the investment path in the transition to the steady state. As a consequence, we further
specify the cost function and consider linear costs in the next subsection. In the case
of linear costs, we are able to compute the steady state variables explicitly and to
determine the clubs’ optimal investment in each period. In Sect. 3.4.2, we consider a
quadratic cost function and derive the optimal investment path through a simulation.21

3.4.1 Linear Cost Function

In this subsection, we consider linear costs c(τi,t ) = θτi,t and, simultaneously, allow
for different market sizes.22 Without loss of generality, we assume that club i has a
larger market size than club j such that mi > m j > 0. Due to the larger market size,
club i generates higher revenues for a given win percentage than club j . We get the
following Euler equation for club i :

(αmi − (1 − α)m j )
γ T γ−1

i,t T γ

j,t

(T γ

i,t + T γ

j,t )
2

= θ [1 − β(1 − δ)].

Hence, club i’s talent stock in each period t ∈ {0, . . . ,∞} is given by:

Ti,t = γ
(

αmi − (1 − α)m j
)γ+1 (

αm j − (1 − α)mi
)γ

θ [1 − β(1 − δ)] [(αm j − (1 − α)mi
)γ + (

αmi − (1 − α)m j
)γ ]2 .

Thus, the steady state is attained immediately in the first period—i.e., in period zero,
regardless of initial endowments of talent stock. Moreover, we derive that club i’s
talent stock is higher than club j’s talent stock in each period because:23

Ti,t

Tj,t
= αmi − (1 − α)m j

αm j − (1 − α)mi
> 1,

for all t ∈ {0, . . . ,∞}. It follows that club i is the dominant team that has a
higher win percentage in each period t ∈ {0, . . . ,∞} compared to club j because
(

wi,t/w j,t
)1/γ = Ti,t/Tj,t > 1 independent of initial endowments. It follows that,

even if club j had higher initial endowments in t = −1, there would be an immediately
leapfrogging by club i such that club i would overtake club j with respect to the talent
stock and win percentage in t = 0 (see Fig. 2).

21 Furthermore, we briefly discuss the main results of an n-club league with n > 2 in Appendix “Extension
n-Club League”.
22 Note that we are able to relax the restrictive assumption of identical market sizes in this subsection since
we have simplified the model by using linear costs.
23 We assume that αm j − (1 − α)mi > 0 in order to guarantee positive equilibrium investments by club
j (see also Szymanski and Késenne 2004).
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0 t1 2 3 n

Ti

Tj

Tj-1

Ti-1

Ti,t

...

Fig. 2 Leapfrogging of talent stocks

These results show that, if costs are linear and mi �= m j , convergence to different
steady states occurs in the first period, i.e., in t = 0, such that the league is character-
ized through a persistent inequality.24

What is the effect of revenue sharing in this case? We derive that the ratio wi,t/w j,t

is decreasing in the revenue sharing parameter α for all t ∈ {0, . . . ,∞}. As a conse-
quence, we get the following proposition:

Proposition 4 If costs are linear and mi �= m j , a higher degree of revenue sharing
(i.e., a lower α) decreases competitive balance (independent of the distribution of
initial endowments).

Proof Straightforward and therefore, omitted. ��
This proposition shows that revenue sharing produces a more unbalanced league

and thus the invariance principle holds neither in the short run nor in the long run.
The result is driven by the so-called “dulling effect” of revenue sharing.25 The dull-
ing effect describes the well-known result in sports economics that revenue sharing
reduces the incentive to invest in playing talent. This result follows from the fact that
the marginal benefits of own investments have to be shared with the other club through
the revenue-sharing arrangement.

Moreover, the dulling effect is stronger for the small-market club than for the large-
market club because, owing to the logit formulation of the CSF, the (positive) marginal

24 In case of identical market sizes, i.e., mi = m j = m, clubs’ talent stocks also converge in t =
0, but the steady states are identical with Tt = (2α − 1)γ m/ [4θ(1 − β(1 − δ))] = Ti,t = Tj,t such
that the league is perfectly balanced in the long run. Initial talent investments are then given by τi,0 =
(2α−1)γ m/ [4θ(1 − β(1 − δ))] − (1 − δ)Ti,−1 . Thus, club i invests more in the first period, the lower
its initial endowments Ti,−1. For t ≥ 1, both clubs exactly replace depreciated talent such that talent
investments are given by τt = δTt = δ(2α − 1)γ m/ [4θ(1 − β(1 − δ))].
25 The notion “dulling effect” was introduced by Szymanski and Késenne (2004).
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impact on the large-market club’s gate revenues of a decrease in talent investments by
the small-market club is greater than the (positive) marginal impact on the small-mar-
ket club’s gate revenues of a decrease in talent investments by the large-market club. As
a consequence, the small-market club will reduce its investment level relatively more
than will the large-market club such that the league becomes less balanced through
revenue sharing. Our result, in a dynamic setting, generalizes this static finding of
Szymanski and Késenne (2004).

3.4.2 Quadratic Cost Function

In this subsection, we consider a strictly convex cost function c(τi ) = (1/2) τ 2
i .

In order to focus on the effect of different initial endowments in the transition, we
have to simplify matters by assuming that clubs have identical market sizes, i.e.,
mi = m j = m, such that the clubs’ talent stocks are identical in the long run. Accord-
ing to Eq. 4, we derive the following Euler equation for club i :

(2α − 1)
γ mT γ−1

i,t T γ

j,t
(

T γ

i,t + T γ

j,t

)2 = τi,t − β (1 − δ) τi,t+1. (8)

Together with the talent accumulation Eq. 1 and the initial endowments of talent stock
Ti,−1, Eq. 8 determines club i’s optimal behavior. In contrast to the previous subsec-
tion with linear costs, it is not possible to solve the model explicitly in the case of
quadratic costs to derive equations for the talent stock and investment in each period.
However, we are able to run three different simulations to get more insights into the
transitional dynamics of the model.

For the three simulations, we fix the exogenous parameters as follows: δ = 0.05,

β = 0.99, γ = 1, and m = 100. For this parameterization, the steady state values,
which are independent of initial endowments, are given by T = 91.670 and τ = 4.583
for each club. Moreover, in the first two simulations, we consider a league without
revenue sharing (i.e., α = 1), whereas in the third simulation we vary α in order to
analyze the effect of revenue sharing on competitive balance.26

Different Initial Endowments and the Speed of Convergence In a first simula-
tion, we concentrate on the effect of different initial endowments of talent stocks. The
results of the simulation are summarized in Table 1. Initial endowments of talent stock
(initial investments) are illustrated in rows 1 and 2 (3 and 4). Note that we only vary
initial endowments Tj,−1 for club j . For the benchmark case, represented in column 4,
we consider clubs with identical initial endowments Ti,−1 = 50 and Tj,−1 = 50. The
variables half(Ti ) and half(Tj ) in rows 5 and 6 measure the speed of convergence and
indicate the period in which the talent stocks Ti,t and Tj,t , respectively, have passed
half of the way to the steady state talent stock.

26 Note that the initial investments and optimal investment paths are computed by the “shooting method”.
We separately choose initial investments for each club in order to undershoot and overshoot the correspond-
ing steady state talent stocks. In this way, we approximately determine the optimal investment paths.
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Table 1 Different initial endowments and the speed of convergence

Simulation 1 2 3 4 5 6 7

Ti,−1 50 50 50 50 50 50 50

Tj,−1 20 30 40 50 60 70 80

τi,0 5.684 5.764 5.803 5.814 5.805 5.782 5.749

τ j,0 7.378 6.767 6.253 5.814 5.434 5.101 4.808

half(Ti ) 8 8 8 8 8 8 8

half(Tj ) 8 8 8 8 8 9 9

Variation Tj,−1 Tj,−1 Tj,−1 Benchmark Tj,−1 Tj,−1 Tj,−1

Table 2 Redistribution and the speed of convergence

Simulation 1 2 3 4 5

Ti,−1 30 35 40 45 50

Tj,−1 70 65 60 55 50

τi,0 6.628 6.425 6.221 6.017 5.814

τ j,0 4.999 5.203 5.407 5.610 5.814

half(Ti ) 8 8 8 8 8

half(Tj ) 9 9 8 8 8

half(wi ) 4 4 4 4 0

half(w j ) 4 4 4 4 0

Variation Ti,−1, Tj,−1 Ti,−1, Tj,−1 Ti,−1, Tj,−1 Ti,−1, Tj,−1 Benchmark

Table 1 shows that the club with lower initial endowments invests more in talent
compared to the other club in t = 0. It also follows that a higher difference in initial
endowments implies an (inversely) higher difference in talent investments in the first
period. The values half(Ti ) and half(Tj ) indicate that heterogeneity with respect to
initial endowments does not have a large impact on the talent stocks’ speed of con-
vergence. Both clubs pass half of the way to the steady state talent stock after eight or
nine periods.27

Moreover, in contrast to linear costs, convergence to the steady state does not occur
in the first period if clubs have quadratic costs. Clubs’ talent stocks smoothly converge
over time.

Redistribution and the Speed of Convergence In a second simulation, we con-
centrate on the effect of redistribution in clubs’ initial endowments on the speed of
convergence. That is, in contrast to the first simulation, we vary not only the initial
endowments of club j but also the initial endowments of club i such that the sum of
initial endowments remains constant. Table 2 summarizes the main results.

The simulation shows that redistribution of initial endowments also does not change
the speed of convergence of the state variables because half(Ti ) and half(Tj ) do not
vary significantly.

27 Even if Tj,−1 = 200 and Ti,−1 = 50, club i (club j) would pass half of the way in period 10 (period 9).
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Table 3 Revenue sharing and the speed of convergence

Simulation α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1

half(wi ) 11 8 6 5 4

half(w j ) 11 8 6 5 4

A league’s policy maker, however, might also be interested in the speed of con-
vergence of the win percentages. Therefore, we additionally consider the variables
half(wi ) and half(w j ), representing the period in which the win percentages of club i
and club j , respectively, have passed half of the way to the steady state win percentage
given by 0.5. In this case also, we derive that redistribution of initial endowments has
no effect on the speed of convergence of the win percentages.28

Revenue Sharing and the Speed of Convergence In a third simulation, we ana-
lyze how revenue sharing affects the speed of convergence of the win percentages.
We consider the same distribution of initial endowments as in the second simulation:
however, now the revenue-sharing parameter α varies. Table 3 summarizes the main
results.

According to the simulation, we derive the following proposition:

Proposition 5 If costs are quadratic and mi = m j , a higher degree of revenue shar-
ing (i.e., a lower α) implies a lower speed of convergence of the win percentages in
the transition (independent of redistribution of initial endowments).

Proof Follows from the simulation. ��
According to this proposition, a league’s policy maker should implement a lower

degree of revenue sharing in order to increase the speed of convergence of the win
percentages in the transition.

Example For initial endowments Ti,−1 = 30 and Tj,−1 = 70, consider Fig. 3. This
figure shows that a lower α implies a lower speed of convergence of the win percent-
ages. Note that the steady state win percentages are given by wi = w j = 0.5 and half
of the way to the steady states is passed at wi = 0.4 and w j = 0.6. The respective
win percentages pass 0.4 and 0.6 in period half (wi ) and half (w j ) according to Table
3.29

4 Conclusion

Investment decisions in professional team sports leagues are a dynamic economic phe-
nomenon. Today’s talent investments determine tomorrow’s talent stock and expected
future profits. We develop an infinite period model of a professional team sports league
to show that, even if clubs have different initial talent endowments, the transitional

28 It is clear that in the benchmark case with identical initial endowments (column 5), half(wi ) and half(w j )

equal zero because the stock of talent for both clubs will be identical in all periods (see also Sect. 3.3).
29 Note that we obtain qualitatively similar figures after a redistribution of initial endowments, e.g., Ti,−1 =
40 and Tj,−1 = 60.
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Fig. 3 The effect of revenue sharing on the speed of convergence

dynamics will lead to a fully balanced league in the long run as long as clubs have the
same market size. In this case, revenue sharing has no effect on competitive balance,
and thus the famous invariance principle holds.

Moreover, we show that the dynamics are influenced mainly by the cost function. In
the case of linear costs, convergence occurs immediately: The steady state is attained
in the first period. Furthermore, if clubs differ in market size, then the steady state vari-
ables also differ, and the league is characterized by a persistent inequality regardless
of the initial endowments. In this case, revenue sharing decreases competitive balance.

In the case of a quadratic cost function, convergence to the steady state does not
occur in the first period. Our simulation further shows that initial endowments affect
initial investments. The club with lower initial endowments invests more in the first
period than does the club with higher initial endowments. Moreover, we derive that
the redistribution of initial endowments affects neither the speed of convergence of the
state variables nor the speed of convergence of the win percentages. In this case, reve-
nue sharing decreases the speed of convergence of the win percentages in the transition.

The current revenue-sharing schemes vary widely among professional sports
leagues all over the world. The most prominent is possibly that operated by the
National Football League (NFL), where the visiting club secures 40% of the locally
earned television and gate receipt revenue. In 1876, Major League Baseball (MLB)
introduced a 50-50 split of gate receipts, which was reduced over time. Since 2003,
all the clubs in the American League have put 34% of their locally generated revenue
(gate, concession, television, etc.) into a central pool, which is then divided equally
among all the clubs. In the Australian Football League (AFL), gate receipts were at
one time split evenly between the home and the visiting team. This 50-50 split was
finally abolished in 2000.

Our analysis suggests that a league policy maker should implement a lower degree
of revenue sharing in order to increase the competitive balance (in the case of linear
costs) or the speed of convergence of clubs’ win percentages (in the case of quadratic
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costs). Whether clubs have linear or quadratic costs remains an empirical question and
is left for further research.
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Appendix

Proof of Proposition 1

First, we prove that Ti = Tj and τi = τ j in a steady state. We provide a proof
by contradiction: Suppose that Tj > Ti ; using Eq. 5 for club i and club j , we get
Tj/Ti = c′(τi )/c′(τ j ). This implies that c′(τi ) > c′(τ j ). Strict convexity of the cost
function yields τi > τ j . Using τi = δTi and τ j = δTj we get Ti > Tj , which is a
contradiction to Tj > Ti . By symmetry, there is a contradiction, if we suppose that
Ti > Tj . Therefore, we conclude that Ti = Tj . Furthermore, we get τi = τ j because
τi = δTi and τ j = δTj .

Note that Ti = Tj holds independent of α. Thus, T γ

i /(T γ

i + T γ

j ) = wi (Ti , Tj ) =
1
2 = w j (Ti , Tj ) = T γ

j /(T γ

i + T γ

j ) is constant, which implies that revenue sharing
has no effect on competitive balance in the long run. ��

Proof of Proposition 2

Here, we prove the comparative statics results. First, we define the function
F(T, δ, β, m, γ, α) ≡ (2α − 1)

[

γ m/(4T )
] − (1 − β(1 − δ))c′(δT ). In a steady

state F(T, δ, β, m, γ, α) = 0. Using the implicit function theorem we get:

∂T

∂m
= −

∂ F(T,δ,β,m,γ,α)
∂m

∂ F(T,δ,β,m,γ,α)
∂T

= − (2α − 1)
γ

4T

−(2α − 1)
γ m
4T 2 − (1 − β(1 − δ))c′′(δT )δ

> 0,

∂T

∂γ
= −

∂ F(T,δ,β,m,γ,α)
∂γ

∂ F(T,δ,β,m,γ,α)
∂T

= − (2α − 1) m
4T

−(2α − 1)
γ m
4T 2 − (1 − β(1 − δ))c′′(δT )δ

> 0,

∂T

∂β
= −

∂ F(T,δ,β,m,γ,α)
∂β

∂ F(T,δ,β,m,γ,α)
∂T

= − (1 − δ)c′(δT )

−(2α − 1)
γ m
4T 2 − (1 − β(1 − δ))c′′(δT )δ

> 0,

∂T

∂α
= −

∂ F(T,δ,β,m,γ,α)
∂α

∂ F(T,δ,β,m,γ,α)
∂T

= −
γ m
2T

−(2α − 1)
γ m
4T 2 − (1 − β(1 − δ))c′′(δT )δ

> 0,

∂T

∂δ
= −

∂ F(T,δ,β,m,γ,α)
∂δ

∂ F(T,δ,β,m,γ,α)
∂T

= − −βc′(δT ) − (1 − β(1 − δ))c′′(δT )T

−(2α − 1)
γ m
4T 2 − (1 − β(1 − δ))c′′(δT )δ

< 0.
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Thus, we conclude that T is increasing in m, γ, β, and α, but it is decreasing in δ, as
stated in Proposition 2(i).

Second, we define the function G(τ, δ, β, m, γ, α) ≡ (2α − 1)
[

γ m/(4τ)
] − (1 −

β(1 − δ))c′(τ ). In a steady state, G(τ, δ, β, m, γ, α) = 0. Using the implicit function
theorem we get:

∂τ

∂m
= −

∂G(τ,δ,β,m,γ,α)
∂m

∂G(τ,δ,β,m,γ,α)
∂τ

= − (2α − 1)
δγ
4τ

−(2α − 1)
δγ m
4τ 2 − (1 − β(1 − δ))c′′(τ )

> 0,

∂τ

∂γ
= −

∂G(τ,δ,β,m,γ,α)
∂γ

∂G(τ,δ,β,m,γ,α)
∂τ

= − (2α − 1) δm
4τ

−(2α − 1)
δγ m
4τ 2 − (1 − β(1 − δ))c′′(τ )

> 0,

∂τ

∂β
= −

∂G(τ,δ,β,m,γ,α)
∂β

∂G(τ,δ,β,m,γ,α)
∂τ

= − (1 − δ)c′(τ )

−(2α − 1)
δγ m
4τ 2 − (1 − β(1 − δ))c′′(τ )

> 0,

∂τ

∂α
= −

∂G(τ,δ,β,m,γ,α)
∂α

∂G(τ,δ,β,m,γ,α)
∂τ

= −
δγ m
2τ

−(2α − 1)
δγ m
4τ 2 − (1 − β(1 − δ))c′′(τ )

> 0,

∂τ

∂δ
= −

∂G(τ,δ,β,m,γ,α)
∂δ

∂G(τ,δ,β,m,γ,α)
∂τ

= − (2α − 1)
γ m
4τ

− βc′(τ )

−(2α − 1)
δγ m
4τ 2 − (1 − β(1 − δ))c′′(τ )

> 0.

Thus, we conclude that the steady state value τ is increasing in m, γ, β, and α, as stated
in Proposition 2(ii). Moreover, τ is increasing in δ iff (2α − 1)

[

γ m/(4τ)
]

> βc′(τ ).
Note that (2α − 1)[γ m/(4τ)] > βc′(τ ) is always satisfied. Using the steady state
condition (2α − 1)[δγ m/(4τ)] = (1 − β(1 − δ))c′(τ ), we get:

(2α − 1)
γ m

4τ
= (1 − β(1 − δ))c′(τ )

δ
> βc′(τ ) ⇔ 1 > β.

Thus, we get ∂τ/∂δ > 0 iff 1 > β, which is true by assumption. ��

Proof of Proposition 3

In a first step, we prove that if Ti,t−1 = Tj,t−1 ≡ Tt−1, then τi,t = τ j,t ≡ τt for all
t ∈ {0, . . . ,∞}. Suppose that Ti,t−1 = Tj,t−1 and τi,t > τ j,t . Equation (4) implies:

κ ≡ Tj,t

Ti,t
= c′(τi,t ) − βc′(τi,t+1)(1 − δ)

c′(τ j,t ) − βc′(τ j,t+1)(1 − δ)
.

Note that κ < 1 because Ti,t > Tj,t . Rewriting the last equation yields:

κ
[

c′(τ j,t ) − βc′(τ j,t+1)(1 − δ)
] = c′(τi,t ) − βc′(τi,t+1)(1 − δ). (9)

Combining Eq. 9 with τi,t > τ j,t , we conclude that τi,t+1 > τ j,t+1. This result implies
that Ti,t+1 > Tj,t+1, which itself implicates divergence of the state variables Ti,t and
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Tj,t . It follows from this divergence of the state variables that the winning probabili-
ties also diverge across clubs such that the transversality condition (positive expected
discounted profits for both clubs) is violated. However, τi,t = τ j,t (t = 0, . . . ,∞)

is consistent both with the combined Euler equation (7) and with the transversality
condition. This result proves that if Ti,t−1 = Tj,t−1 ≡ Tt−1, then τi,t = τ j,t ≡ τt for
all t ∈ {0, . . . ,∞}.

Using this result, we recursively conclude that both clubs invest an identical amount
in each period. It directly follows that the state variables are also identical. Thus, under
the restriction Ti,−1 = Tj,−1 , clubs’ decisions are symmetric. This result is summa-
rized in Proposition 3. ��

Derivation of the Phase Diagram

First, we investigate the dynamics of τt . Combining Eq. 4 with the results of Proposi-
tion 3 yields:

(2α − 1)
γ m

4Tt
= c′(τt ) − β(1 − δ)c′(τt+1).

We note that �τt+1 = τt+1 − τt = 0 if (2α − 1)
[

γ m/(4Tt )
] = (1 − β(1 − δ))c′(τt ).

Therefore, we get a decreasing function in the (τ, T )− space if �τ = 0. This curve is
represented in Fig. 1. To the northeast of this curve, it holds that �τt+1 > 0 such that
τ increases. To the southwest of this curve, it holds that �τt+1 < 0 and τ decreases.
The directions of motion are summarized by the vertical arrows in Fig. 1.

Second, we investigate the dynamics of Tt . The talent accumulation equation com-
bined with Proposition 3 implies that Tt = (1 − δ)Tt−1 + τt ⇔ �Tt = −δTt−1 + τt .
Hence, �Tt = 0 if τt = δTt . Note that τt = δTt is also represented in Fig. 1. To the
southeast of this curve, it holds that �Tt < 0, whereas to the northwest it holds that
�Tt > 0. Once again, the horizontal arrows indicate the directions of motion in the
(τ, T )−space.

Extension: n-Club League

In this extension, we consider a league with n > 2 clubs and show that many results
from the two-club league still hold. We allow for heterogeneous clubs with respect to
initial endowments but assume that clubs have identical market sizes: i.e., mi = m
for all i ∈ {1, . . . , n}. Moreover, we consider a league without revenue sharing, i.e.,
α = 1, because we focus on the effect of more clubs.

The win percentage of club i ∈ {1, . . . , n} is now defined as:

wi = n

2

T γ

i,t
∑n

j=1 T γ

j,t

.
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We derive the following Euler equation for club i ∈ {1, . . . , n}:

n

2

γ mT γ−1
i,t

∑

j �=i T γ

j,t
(

∑n
j=1 T γ

j,t

)2 = c′(τi,t ) − β(1 − δ)c′(τi,t+1),

with t ∈ {0, . . . ,∞}. As in the two-club league, in the steady state it holds that Ti = T
and τi = τ = δT for all i ∈ {1, . . . , n}. Moreover, we obtain the following implicit
function for the talent stock in the steady state:

n − 1

n

γ m

2T
= [1 − β(1 − δ)]c′(δT ).

It is easy to see that the talent stock in the steady state is increasing with the number
of clubs in the league.

In the following, we specify the cost function by assuming linear costs c(τi,t ) =
θτi,t . In this case, we are able to determine the transitional path of the talent stocks.
As in the two-club league, the steady state is immediately attained in the first period,
regardless of initial endowments of talent stock. The steady state is given by:

Tt = n − 1

n

γ m

2[1 − β(1 − δ)]θ = T,

with t ∈ {0, . . . ,∞}. According to the last equation, we derive that a larger number
of clubs in the league also increases the talent stock in each period.
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