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Abstract 
 

Gene expression regulation is crucial for every biological process of the cell. In 

eukaryotes, different RNA polymerases (Pol) transcribe different sets of genes, with 

Pol II responsible mainly for protein-coding gene transcription, and Pol III 

transcribing non-coding genes mostly involved in Pol II gene expression. Here we 

studied two aspects of gene expression regulation with specific genomic 

arrangements. First, we studied the function of a MIR-SINE located within the first 

intron of a Pol II-transcribed gene, Polr3e, which encodes a subunit of Pol III. This 

MIR is highly occupied by Pol III, and, strikingly, Pol II accumulates at its 3' region, 

as revealed by chromatin immunoprecipitation (ChIP) assays. CRISPR/Cas9-

mediated removal of the MIR from the genome relieved the accumulation of Pol II at 

the 3' of the MIR and led to increased levels of Polr3e mRNA and POLR3E protein. 

This suggested that antisense transcription of the MIR by Pol III interfered with Pol II 

transcription of the Polr3e gene, slowing down Pol II elongation and thus leading to 

Pol II accumulation, a phenomenon we also observed for several other genes. 

In the second part, we studied the dynamics of Pol III occupancy at Pol III genes 

during mouse liver regeneration by performing ChIPs followed by ultra high 

throughput sequencing (ChIP-seq) with liver samples collected at different times after 

partial hepatectomy (PH). We observed a general increase in Pol III occupancy at Pol 

III genes after PH, with genes lowly occupied before PH more affected. This increase 

was accompanied by an increase in the levels of several pre-tRNAs, as well as of 

mRNAs encoding several Pol III subunits and transcription factors. We investigated 

how Pol III genes are regulated differentially during liver regeneration by taking into 

account the surrounding H3K4me3 and Pol II peaks. We found that Pol II peaks 

surrounding Pol III peaks generally corresponded to Pol II TSSs. We showed that Pol 

III occupancy of tRNA genes surrounded by H3K4me3 and Pol II peaks, which have 

high occupancy levels before PH, tends to change less in liver regeneration than Pol 

III occupancy of tRNA genes with only a Pol III peak, which were more dynamic. 

This study revealed two main classes of tRNA genes: those close to Pol II genes, 

whose Pol III occupancy is relatively stable during liver regeneration, and those 

devoid of surrounding H3K4me3 and Pol II peaks, whose transcription is dynamic 

and responds to the increased need of cells for Pol III products during proliferation. 
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Re ́sume ́ 
 

La régulation de l'expression des gènes est cruciale pour chaque processus biologique 

de la cellule. Chez les eucaryotes, différentes ARN polymérases (Pol) transcrivent 

différents ensembles de gènes; la Pol II étant principalement responsable de la 

transcription des gènes codant les protéines, et la Pol III transcrivant les gènes non 

codants principalement impliqués dans l'expression des gènes Pol II. Nous avons 

étudié deux aspects de la régulation de l'expression des gènes: la régulation d'un gène 

transcript par la Pol II par le biais d'un gène interne transcript par la Pol III, et la 

régulation de la transcription par la Pol III durant la régération du foie.   

Dans un premier temps, nous avons étudié la fonction d'un MIR-SINE situé dans le 

premier intron d'un gène transcrit par la Pol II, Polr3e, qui code pour une sous-unité 

de la Pol III. Ce MIR est fortement occupé par la Pol III et, de façon étonnante, 

plusieurs unités de Pol II s'accumulent dans sa région 3', comme le révèlent les 

analyses d'immunoprécipitation de chromatine (ChIP). L'élimination de ce MIR du 

génome par CRISPR/Cas9 a diminué l'accumulation de la Pol II dans la région 3' du 

MIR et a entraîné une augmentation des taux d'ARNm de Polr3e et de la protéine 

POLR3E. Cela suggère que la transcription antisens du MIR par la Pol III interfère 

avec la transcription par la Pol II du gène Polr3e, ce qui ralentit l'élongation de la Pol 

II et conduit à l'accumulation d'unités de Pol II. Nous avons ensuite montré que ce 

genre de  phénomène peut être  observé pour plusieurs autres gènes. 

Dans la deuxième partie, nous avons étudié la dynamique de l'occupation par la Pol 

III au niveau des gènes Pol III pendant la régénération du foie chez la souris, en 

effectuant des ChIPs suivies d'un séquençage à très haut débit (ChIP-seq) sur des 

échantillons de foie prélevés à différents moments après une hépatectomie partielle 

(HP). Nous avons observé une augmentation générale de l'occupation par la Pol III 

des gènes de Pol III après HP, les gènes peu occupés avant la HP étant plus affectés. 

Cette augmentation s'est accompagnée d'une augmentation des niveaux de plusieurs 

pré-ARNt, ainsi que des ARNm codant spécifiquement pour plusieurs sous-unités de 

la Pol III et pour des facteurs de transcription utilisés par la Pol III. Nous avons étudié 

comment différents gènes Pol III sont régulés dans la régénération hépatique en tenant 

compte des pics H3K4me3 et Pol II environnants. Nous avons constaté que les pics 

Pol II entourant les pics Pol III correspondaient généralement à des TSSs de la Pol II. 
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Nous avons montré que l'occupation par la Pol III des gènes d'ARNt entourés de pics 

H3K4me3 et Pol II, qui ont des niveaux d'occupation élevés avant la HP, tend à être 

plus stable durant la régénération hépatique que celle des gènes d'ARNt avec 

seulement un pic Pol III.  Ces derniers ont des niveaux d'occupation par la Pol III 

relativement bas avant la HP, niveaux qui augmentent fortement pendant la 

régénération hépatique. Cette étude a mis en évidence deux grandes classes de gènes 

ARNt : ceux proches des gènes Pol II, dont l'occupation par la Pol III est relativement 

stable pendant la régénération hépatique, et ceux dépourvus des pics H3K4me3 et Pol 

II environnants, dont la transcription est dynamique et répond au besoin accru des 

cellules en produits de la Pol III pendant leur prolifération. 
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Re ́sume ́ pour le grand public 
 

Arrangements génomiques et régulation des gènes 

 

L'information génétique des cellules est organisée dans leur génome. Cette 

information génétique, constituée de molécules d'ADN, peut être utilisée pour 

fabriquer des protéines qui remplissent des fonctions distinctes. La synthèse de 

différentes protéines à partir de différents gènes comprend la synthèse d'une molécule 

intermédiaire appelée ARN par un processus appelé transcription, processus qui est 

effectué par l'enzyme ARN polymérase (Pol) II. Cependant, certains ARN ne codent 

pas pour les protéines, mais ont des rôles régulateurs divers. La Pol III transcrit de 

nombreux gènes codant pour ces ARN.  

La régulation de l'expression des gènes est cruciale, car sa dérégulation est observée 

dans de nombreuses maladies. Dans cette thèse, nous nous sommes concentrés sur la 

régulation de la transcription de la Pol II et de la Pol III. Dans la première partie, nous 

avons observé que les gènes Pol III qui se trouvent à l'intérieur des gènes Pol II 

peuvent réguler la transcription des gènes Pol II à l'intérieur desquels ils résident; 

nous avons ainsi montré que la transcription de la Pol III pouvait interférer avec la 

transcription de la Pol II. Dans la deuxième partie, nous avons étudié la dynamique de 

la transcription par la Pol III pendant la régénération du foie chez la souris. Dans cette 

étude, nous avons effectué une hépatectomie partielle du foie de souris qui a conduit 

les cellules restantes à entrer en régénération, et étudié les liaisons génomiques par la 

Pol III et la Pol II à différents stades de cette régénération. Nous avons montré que la 

transcription par la Pol III augmente pendant la régénération. Nous avons également 

montré que la transcription des gènes Pol III proches des régions liées à Pol II ne 

changeait pas beaucoup pendant la régénération, alors que la transcription des gènes 

Pol III éloignés des gènes Pol II était plus dynamique. En conclusion, dans ces études, 

nous avons montré certains arrangements génomiques qui sont importants pour la 

régulation de l'expression des gènes. 
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Chapter I – General Introduction 
 

Protein-coding gene expression in eukaryotes 
 

In eukaryotes, RNA polymerase II (Pol II) is responsible for transcription of all the 

mRNA-encoding genes, as well as most snRNA and microRNA genes. The 

mechanism by which Pol II transcribes protein-coding genes is intensely studied. The 

recruitment of Pol II to gene transcription start sites (TSSs) is regulated by a number 

of sequences that can be categorized as regulatory regions and core promoters, the 

latter including the region encompassing the TSS and immediate downstream 

sequences. The regulatory regions bind transcription factors that can be activators or 

repressors and the core promoter regions bind so called general transcription factors 

(GTFs), which, in vitro, are sufficient to direct transcription (Orphanides and 

Reinberg 2002; Smale and Kadonaga 2003). Pol II transcription entails several steps; 

pre-initiation complex (PIC) formation on the core promoter, transition of Pol II from 

the TSS to the region immediately downstream, release of Pol II from this TSS 

proximal region to efficient elongation, and finally, termination of transcription (Hahn 

2004).   

 

As Pol II transcription is highly controlled, gene expression is very dynamic in cells, 

and it is subject to variation in response to many environmental, signaling, and 

genetic processes. The control of Pol II transcription may occur at any of its 

transcription steps (Fuda et al. 2009). Pol II recruitment can be limited by inefficient 

PIC assembly due, for example, to nucleosomes present in the promoter region, which 

can be overcome by the action of some activators (Bai and Morozov 2010; Lai and 

Pugh 2017). Pol II transcription can also be limited at the step during which the 

polymerase clears the TSS and transitions to the promoter proximal downstream 

region. This step involves the Pol II C-terminal domain (CTD), a structure at the C-

terminus of the Pol II largest subunit consisting of a seven amino acid sequence 

repeated 52 times in mammals (Egloff and Murphy 2008). The CTD plays critical 

roles in transcriptional and co-transcriptional events; during Pol II clearing from the 

TSS, the CTD becomes phosphorylated at Ser5 in the CTD repeats, an event 
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catalyzed by the general transcription factor TFIIH (Hsin and Manley 2012; 

Heidemann et al. 2013).  

 

A third important step in regulation of Pol II transcription occurs after transition to the 

promoter-proximal region, where Pol II pauses. This pause is visualized in ChIP 

assays as an accumulation of Pol II in the 5' end region of some genes. These genes 

are in a so-called “poised” state, and they maintain an open promoter structure 

accessible to GTFs and other factors required for transcription (Gilchrist et al. 2010; 

Adelman and Lis 2012; Jonkers and Lis 2015). Two main factors are responsible for 

polymerase pausing, NELF and DSIF. Exit from the pause is regulated by P-TEFb, a 

kinase that phosphorylates NELF, thus leading to its dissociation from the Pol II 

complex. P-TEFb also phosphorylates DSIF, thus converting it into a positive 

elongation factor that remains bound to Pol II during elongation, as well as the Pol II 

CTD on Ser2 (Figure 1-1). ChIP-seq experiments show that Pol II is more 

phosphorylated at Ser5 of its CTD near the 5' end of genes, and more at Ser2 of its 

CTD as it travels towards the 3' end. Ser2 phosphorylation is thus a mark of 

elongating Pol II (Peterlin and Price 2006; Kwak and Lis 2013).  

 

P-TEFb itself is a highly regulated factor and can be controlled at several steps 

including transcriptional, post-transcriptional, and post-translational steps. However, 

the best-studied mechanism of P-TEFb regulation is via the 7SK small nuclear 

ribonucleoprotein particle (snRNP) (Diribarne and Bensaude 2009). The 7SK snRNP 

consists of the 7SK RNA bound to two proteins that protect its 5' and 3' ends. When 

the RNA-binding protein HEXIM joins the complex, it changes its conformation so 

that the complex can now sequester PTEF-b and keep it in an inactive state. Factors 

like HIV Tat protein and BRD4 can release PTEF-b from the 7SK snRNP complex, 

freeing it for action on paused Pol II complexes leading to productive elongation 

(Peterlin et al. 2012a) (Figure 1-1). 

 

After Pol II starts elongation, several factors contribute to productive elongation in the 

gene body. TFIIS helps backtracked Pol II make a cut in the nascent RNA 3' end 

region to realign it with the Pol II catalytic site, and this can restore Pol II elongation. 

Other factors like TFIIF, a general transcription factor involved in transcription 
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initiation, and Super Elongation Complex (SEC) consisting of PTEF-b, ELL 

elongation factors, and several other associated factors, also promote efficient 

elongation (Shilatifard et al. 2003; Sims et al. 2004; Lin et al. 2010). The polymerase-

associated factor complex (PAFc) has an indirect role in elongation as it mediates 

interaction between Pol II and the SEC (He et al. 2011).  

 

Transcriptional and co-transcriptional events like RNA capping, splicing, and mRNA 

3' end processing are highly linked, and the Pol II CTD plays a key role as an 

integrator of these different processes (Fong and Bentley 2001). DSIF and Ser5 

phosphorylation of the Pol II CTD in the early elongation complex are important for 

nascent mRNA 5' capping, as they cause Pol II to pause, which in turn stimulates the 

capping enzyme to perform its function. Ser2 phosphorylation of the Pol II CTD and 

hence the responsible kinase, PTEF-b, are involved in the recruitment of splicing 

factors and the formation of splicing complexes. Splicing factors themselves can 

facilitate elongation. mRNA 3' end processing, which includes cleavage and 

polyadenylation, is stimulated by Pol II CTD Ser2 phosphorylation, by PAFc, and 

also by the ELL2 component of the SEC (Neugebauer 2002; Zhou et al. 2012). 

 

Pol II elongation is highly dynamic with the rate of elongation varying across a gene. 

This is required for the co-transcriptional events to be performed efficiently.  The rate 

of Pol II elongation is affected by several factors like presence of nucleosomes, CG 

rich sequences, and histone marks. For example, in exons, higher CG content, 

nucleosome occupancy, and also some histone marks lead to decreased rate of Pol II 

elongation, and this can enhance recruitment of splicing factors as well as co-

transcriptional splicing events. Moreover, histone marks and formation of R loops 

(RNA-DNA hybrids) lead to Pol II pausing after the polyadenylation signal, and this 

pause leads to efficient termination and 3' end processing of the pre-mRNA, including 

the 3' cut in the mRNA and subsequent polyadenylation at this newly formed 3' end 

(Jonkers et al. 2014; Jonkers and Lis 2015). 
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Figure 1-1. Pol II pause and pause release. The promoter proximal pause of Pol 

II is mediated by DSIF and NELF. Release of PTEF-b from 7SK snRNP 

complex can lead to productive elongation. Active PTEF-b phosphorylates 

DSIF, NELF, and Pol II CTD on Ser2.  
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After the mRNA is synthesized and processed, it can be translated into protein. Unlike 

bacteria, in which transcription and translation are coupled processes, in eukaryotes, 

the translation process occurs independently of transcription, in the cytoplasm. As 

described above, during and right after transcription, the mRNA undergoes several 

processing events, including m7G capping at 5' terminus, splicing or alternative 

splicing, and 3' terminus polyadenylation. The mature mRNA is exported into the 

cytoplasm, where many factors contribute to its translation, among which ribosomes 

play a central role. The 80S ribosomes in eukaryotes consist of two subunits: a small, 

40S, subunit and a large, 60S, subunit. The 40S subunit consists of 33 proteins and 

18S ribosomal RNA (rRNA), whereas the 60S subunit consists of 47 proteins, 28S 

rRNA, 5.8S rRNA, and 5S rRNA (Melnikov et al. 2012).  

 

Translation occurs in four steps: initiation, elongation, termination, and recycling 

(Kapp and Lorsch 2004). In brief, 40S ribosomal subunit together with methionyl-

tRNAi is recruited to the 5' terminus of capped mRNAs. This complex then scans the 

5' UTR of the mRNA until the start codon AUG is recognized. More rarely, an 

mRNA possesses an internal ribosome entry site (IRES) sequence, which is capable 

of delivering this complex directly to the start codon, without scanning of the 5' UTR. 

With the subsequent recruitment of the 60S subunit, the ribosome is assembled, and 

the next aminoacyl-tRNA is placed in the aminoacyl-tRNA site (A-site) of the 

ribosome, while the methionyl-tRNAi is located in the peptidyl-tRNA site (P-site). 

The amino acid on the tRNA in the P-site forms a peptide bond with the one in the A-

site, and so the tRNA in P-site becomes uncharged. Then the mRNA is shifted to the 

next codon, the A-site becomes empty to accept a new aminoacyl-tRNA, and the 

uncharged tRNA leaves the exit site (E-site) (Hinnebusch and Lorsch 2012). The 

polypeptide chain is elongated by the formation of peptide bonds between amino 

acids specified by corresponding codons and the concomitant mRNA shifting codon 

by codon, and then terminated when a stop codon is placed in A-site of the ribosome. 

The nascent peptide is then released and the ribosomal subunits are recycled for next 

rounds of translation (Figure 1-2). In each of these steps, several specific translation 

factors are involved. eIF2α and eIF4E are two well-known initiation factors, involved 

in early steps of eukaryotic translation. eIF2α promotes the binding of methionyl-

tRNAi to the 40S ribosomal subunit, which then together with some other factors, 
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forms the pre-initiation complex. eIF4E is involved in recognition of the cap structure 

of mRNA by the pre-initiation complex. eIF4E activity can be inhibited through 

interaction with 4E-binding proteins (4E-BPs) (Gebauer and Hentze 2004).  

 

Like transcription, translation is also highly controlled, as it is one of the most energy-

consuming processes in the cell. The regulation of translation can occur at any step. 

However, the main known mechanisms of translational control occur at the initiation 

step (Sonenberg and Hinnebusch 2009). Translational control can be global, affect a 

set of mRNAs, or just a single type of mRNA. The regulation of translation initiation 

can be mediated through effects on the mRNAs directly or through the translational 

machinery. The main direct effectors on mRNA translation are RNA-binding proteins 

(RBPs) and microRNAs (miRNAs). RBPs can bind to different regions at the 5' and 3' 

UTR of mRNAs and play different roles such as translational regulation. This 

regulation can be mediated through different mechanisms like competing with 

translation factors binding or interaction with these factors. La-related protein 1 

(LARP1) and poly(A)-binding proteins are well-known RPBs involved in 

translational regulation (Harvey et al. 2018). miRNAs bind the 3' UTR of the mRNA, 

leading to translation repression (Huntzinger and Izaurralde 2011). As to regulation 

through the translational machinery, the most-studied mechanism is translational 

regulation through phosphorylation of the translation initiation factor eIF2α and 4E-

BPs, where phosphorylation of the first inhibits, and of the second enhances, 

translation (Jackson et al. 2010; Hershey et al. 2012). 
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Figure 1-2. Different steps of mRNA translation in eukaryotes. A) Small 

ribosomal subunit together with methionyl-tRNAi is recruited to the cap 

structure of mRNA, and scans the 5' UTR until the AUG start codon is found. 

The large ribosomal subunit is recruited, while the methionyl-tRNAi is in P site 

of the ribosome. B) The next aminoacyl-tRNA is placed in the A site of 

ribosome. A peptide bond is formed between two amino acids. C) After shifting 

of the ribosome to the next codon, the next aminoacyl-tRNA is placed in the A 

site. Formation of a peptide bond between amino acids in the P and A sites, and 

release of the uncharged tRNA from the E site, are continued codon by codon. 

D) When a stop codon is localized to the A site, the nascent peptide is released. 
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RNA polymerase III genes 
 
RNA polymerase III (Pol III) transcribes a wide variety of non-coding RNA genes in 

eukaryotic cells (Dieci et al. 2013). For example, the tRNAs, which charge different 

amino acids, and 5S rRNA, which is present in ribosomes, are well-known Pol III 

RNA products that have essential roles in protein synthesis. tRNA genes are the most 

abundant Pol III-transcribed genes (Canella et al. 2010; Canella et al. 2012). After 

transcription, tRNAs go through several steps of maturation, including 5' and 3' end 

processing, removal of intron (if any), addition of a CCA tail, and chemical 

modifications at several bases. Finally, the mature tRNAs, folded into a very specific 

tertiary structure, are able to carry specific amino acids to the translation machinery 

(Rak et al. 2018). Other genes transcribed by Pol III generate RNAs with a variety of 

functions. U6 snRNA together with Pol II-transcribed snRNAs play role in splicing of 

pre-mRNAs (Mroczek and Dziembowski 2013). The 7SL RNA component of the 

signal recognition particle functions in protein translocation to the endoplasmic 

reticulum (Walter and Blobel 1982). 7SK RNA negatively regulates Pol II 

transcription by sequestering PTEF-b in the 7SK snRNP complex (Yang et al. 2001) 

(see above, Figure 1-1) . RNase P RNA is mainly involved in 5' end processing of 

pre-tRNAs, while RNase MRP RNA plays role in pre-rRNA processing (Esakova and 

Krasilnikov 2010; Goldfarb and Cech 2017; Jarrous 2017). Vault RNAs as parts of 

vault particles are involved in processes like intracellular transport and drug resistance 

(van Zon et al. 2006; Chen et al. 2018). Y RNAs play role in initiation of 

chromosomal DNA replication (Krude et al. 2009). Moreover, some short 

Interspersed Nuclear Elements (SINEs) are still actively transcribed by Pol III and are 

likely to carry out functions, although these remain to be determined. 

   

SINEs are one of the main types of transposable elements (TEs) in the genome. They 

constitute about 8 and 15 percent of the mouse and human genomes, respectively 

(Treangen and Salzberg 2011; Kassiotis 2014). SINEs are retrotransposons, i.e. their 

transposition occurs through an RNA intermediate. Moreover, they are non-

autonomous TEs, as reverse transcription of the RNA intermediate and transposition 

depend on another type of TEs called Long Interspersed Nuclear Elements (LINEs), 

which encode in particular the reverse transcriptase required to convert the RNA 
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intermediate into DNA (Dewannieux et al. 2003; Dewannieux and Heidmann 2005). 

SINEs are derived from Pol III genes, mostly tRNA and 7SL RNA genes, and also 5S 

rRNA genes. These genes have gene-internal promoters (see below), which are thus 

transposed through the RNA intermediate, giving rise to SINEs that may be 

transcriptionally competent. Indeed, although most SINEs are epigenetically 

repressed, some are actively transcribed by Pol III (Canella et al. 2010; Canella et al. 

2012). The resulting SINE RNAs do not encode proteins and most of them have 

lengths comprised between 150 to 300 nucleotides. They contain three parts; a 5' part, 

which resembles the Pol III gene they originate from, a body whose sequence origin is 

unclear, and, for most of them, an A-rich tail at the 3' end. Some SINEs also have 

several T residues at the 3' end, which serve as a Pol III transcription termination 

signal. Depending on both their structure and their origin, SINEs are categorized into 

different classes. For example B1 SINEs in rodents and Alu elements, which are 

specific to primates, originate from 7SL RNA, whereas B2 SINEs in rodents originate 

from tRNAs (Kramerov and Vassetzky 2011; Vassetzky and Kramerov 2013). 

Mammalian Interspersed Repeats (MIRs) are an ancient family of tRNA-derived 

SINEs that were amplified mainly before eutherian radiation (Smit and Riggs 1995).  

 

Although SINEs have long been considered junk DNA, they can profoundly impact 

genome functions. On the one hand, SINEs can mutate or disrupt the sequences in 

which they are integrated. Although SINE movement in the genome is quite rare, 

SINEs-mediated disruption in the genome was shown to cause several diseases such 

as hemophilia and breast cancer (Belancio et al. 2008; Hancks and Kazazian 2012). 

On the other hand, some SINEs can play gain of function roles such as act as 

enhancers (Sasaki et al. 2008), introduce a polyadenylation signal inside genes (Lee et 

al. 2008), or introduce splice sites leading to alternative splicing (Pattanakitsakul et al. 

1992). Further, some specific B2 and Alu SINE transcripts are able to bind to Pol II 

and repress mRNA transcription after heat shock (Espinoza et al. 2004; Mariner et al. 

2008). 
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RNA polymerase III transcription 
 
Pol III consists of seventeen subunits, of which five are shared among Pol III, Pol I, 

and Pol II, and two between Pol III and Pol I. Five subunits are highly related but not 

identical among the three polymerases, and correspond to the five subunits of E. coli 

RNA polymerase. Another five subunits are unique to Pol III (Cramer et al. 2008; 

Vannini and Cramer 2012). The role of several subunits of Pol III in transcription has 

been studied. The C53 subunit of Pol III forms with the C37 subunit a heterodimer 

that resembles the RNA polymerase II transcription factor TFIIF, and plays a role in 

promoter opening and transcription initiation (Kassavetis et al. 2010; Wu et al. 2011). 

This heterodimer together with the TFIIS-like subunit C11 also functions in Pol III 

transcription termination and recycling (Arimbasseri and Maraia 2015; Mishra and 

Maraia 2018). The Rpc82, Rpc34, and Rpc31 subunits form a TFIIE-related 

subcomplex, which was shown to play a role in Pol III transcription initiation and 

elongation (Khoo et al. 2018; Wei and Chen 2018). 

 

In addition to known general roles of Pol III subunits in the transcription process 

(Hoffmann et al. 2015), roles for individual Pol III subunits in different cells have 

been defined. As a first example, it was shown that the POLR3G subunit of Pol III 

plays a role in the maintenance of pluripotency in human embryonic stem cells 

(hESCs), as its siRNA-mediated knockdown in ES cells led to loss of pluripotency 

and promoted differentiation. Indeed, POLR3G knockdown led to a change in 

transcript levels of several hundred genes, many of which were shown to be bound by 

pluripotency factors at promoter regions (Lund et al. 2017). The POLR3G gene itself 

was found to be a downstream target of NANOG and OCT4, two pluripotency 

transcription factors (Wong et al. 2011). Second, mutations in the POLR3A and 

POLR3B genes, which encode the largest and second largest subunits of Pol III, were 

shown to be associated with leukodystrophy in clinical studies (Saitsu et al. 2011). 

Specific mutations in the POLR1C gene, encoding POLR1C subunit of Pol III and Pol 

I, was also associated with leukodystrophy, and at the molecular level resulted in 

impaired Pol III assembly and decreased binding of mutant POLR1C to Pol III genes 

(Thiffault et al. 2015). In zebrafish, a mutation of the Polr3b gene resulting in a 

protein deficient in interaction with the other Pol III subunit Polr3k caused a 
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deficiency in digestive development (Yee et al. 2007). Yet another study showed that 

targeted mutation of Polr3b in the mouse intestinal epithelium led to impaired cell 

proliferation and a major mortality of the mice (Kieckhaefer et al. 2016). Finally, 

mutations in POLR3E, POLR3A, POLR3C, and POLR3F could be identified in 

patients with varicella zoster virus (VZV) infection. These mutations impaired a 

cytosolic Pol III function required to activate immunity against VZV (Carter-Timofte 

et al. 2018).   

 

Like the other eukaryotic RNA polymerases, the Pol III enzyme requires promoter 

elements and transcription factors to initiate transcription at defined positions in the 

genome. Pol III promoter structures can be classified into three types (Figure 1-3). 

Two of them are intragenic, whereas the third is extragenic. The type of promoter 

defines which transcription factors will bind and recruit Pol III. The intragenic type 1 

promoters, which are seen in the 5S rRNA genes, consist of an A box, an intermediate 

element, and a C box. In this type of promoter, TFIIIA, a zinc finger protein, binds 

first to the intermediate element. This protein-DNA complex can then recruit TFIIIC, 

followed by Brf1-TFIIIB. Brf1-TFIIIB consists of three subunits, a SANT domain 

protein known as Bdp1, the TATA box binding protein TBP, and the TFIIB related 

factor Brf1. These factors together form a transcription pre-initiation complex, which 

recruits Pol III to start transcription. The intragenic type 2 promoters, which are 

observed in tRNA genes, differ from type 1 promoters in that they do not need 

TFIIIA. Instead, TFIIIC binds directly to the promoter elements, called A and B box, 

followed by TFIIIB binding and Pol III recruitment. The extragenic type 3 promoters, 

found for example in the U6 and 7SK genes, consist of a distal sequence element 

(DSE) to which the transcription factors Oct1 and Staf bind. The DSE serves as an 

enhancer element that activates transcription from the core promoter. The core 

promoter consists of a proximal sequence element (PSE) to which a five-subunit 

complex known as SNAPc binds, and a TATA box to which Brf2-TFIIIB (which is 

identical to Brf1-TFIIIB except that the Brf1 subunit is replaced by another TFIIB-

related factor, Brf2) binds. After assembly of these factors, Pol III is recruited to start 

transcription (Schramm and Hernandez 2002; Dumay-Odelot et al. 2014).   
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Figure 1-3. Different types of Pol III promoters. Type 1 and type 2 promoters 

have an intragenic structure, whereas type 3 have an extragenic structure. Pol III 

transcription is terminated at a short run of T residues. 
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RNA polymerase III regulation 
 

Like Pol II, Pol III is highly regulated, and its activity level can affect protein 

translation and cell growth. Pol III regulation has been studied in several model 

systems and has been documented in processes such as cell differentiation, adaptation 

to the circadian cycle and response to nutrients, and the cell division cycle. Together, 

the results point to the involvement of different regulators under different conditions 

(Figure 1-4).  

 

Several studies have shown that Pol III is regulated in development and cellular 

differentiation. Regulation of Pol III was observed during development of mouse liver 

and brain by comparison of different time points of embryonic and adult stages. The 

most pronounced differences were observed during the embryonic to adult transition 

(Schmitt et al. 2014). In a study examining Pol III occupancy before and after 

differentiation of THP-1 monocytes into macrophages, Pol III occupancy at Pol III 

genes showed a general decrease and highly occupied loci were found to be more 

affected than that of the lowly occupied ones. In this study, it was shown that active 

tRNA genes reside in DNA loops, and the regulation of tRNA genes organized in 

clusters, domains, and interconnected through long-range interactions was found to be 

somewhat coordinated (Van Bortle et al. 2017). In another study, Pol III was found to 

bind more Pol III genes in human embryonic stem cells (ES cells) than in 

differentiated cell types, and Pol III binding regions in ES cells overlapped with   

regions bound by the pluripotency factors NANOG and OCT4, suggesting that these 

transcription factors might promote Pol III occupancy in these cells (Alla and Cairns 

2014).  The detailed mechanisms and factors governing Pol III regulation during the 

differentiation process remain, however, to be determined.   

 

One known major regulator of Pol III transcription is the protein Maf1. Maf1 was first 

discovered in yeast, where it is a central player in the repression of Pol III 

transcription in response to several types of stress including DNA damage, secretory 

pathway defects, and lack of nutrients (Upadhya et al. 2002). Under stress conditions, 

yeast Maf1 becomes dephosphorylated, which allows it to bind to, and repress, Pol 

III. Various yeast kinases have been shown to phosphorylate Maf1 including PKA, 

Sch9, and TORC1 (Moir et al. 2006; Lee et al. 2009; Wei et al. 2009). Maf1 is 
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conserved from yeast to human. In mammalian cells, it is directly phosphorylated by 

mTORC1 (Michels et al. 2010), and like in yeast, it represses Pol III transcription 

under stress conditions (Reina et al. 2006; Johnson et al. 2007; Bonhoure et al. 2015; 

Willis and Moir 2018). For example, in IMR90hTert cells, serum starvation led to 

decreased Pol III occupancy at most of its bound loci, and reduction of endogenous 

MAF1 levels by RNAi prevented a large part of this effect (Orioli et al. 2016).  

 

Pol III activity is regulated in response to circadian rhythm and nutrient availability. 

Mice are nocturnal animals and feed during the night. Pol III activity in mouse liver 

was shown to be higher during the night and lower during daytime (Mange et al. 

2017). To decipher whether this effect resulted from circadian regulation or from a 

response to feeding, Pol III occupancy was measured in mice lacking a central 

component of the core circadian clock, and thus completely arrhythmic, but fed only 

at night, and in mice with an intact circadian clock but fed every four hours. The 

results revealed that Pol III occupancy increases before the night, in other words 

before the natural feeding time, and that this anticipation effect depends on an intact 

circadian clock. On the other hand, sustained higher Pol III occupancy during the 

night and lower occupancy during the day was lost in mice fed every four hours, and 

the lower occupancy during the day depended on the presence of MAF1. This was 

consistent with the known inactivation of MAF1 by phosphorylation through the 

TORC1 pathway, which is itself activated in response to nutrients (Mange et al. 

2017). 

 

Several studies have shown Pol III regulation during the cell division cycle. Thus, 

synthesis of some pre-tRNAs, 5S RNA, and other Pol III products has been found to 

increase during the transition from a resting G0 state to a proliferating state upon 

serum stimulation of serum-starved cells (Mauck and Green 1974; Scott et al. 2001). 

This effect is mediated at least in part by the Ras/Raf/MEK/ERK pathway and 

involves activated ERK2 phosphorylating BRF1, thereby increasing BRF1 association 

with TFIIIC and Pol III (Felton-Edkins et al. 2003a).  

 

Pol III is not only modulated upon exit from the G0 state but also during the 

subsequent phases of the cell division cycle, with high levels of activity in late G1, S, 
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and G2 phases, followed by repression at mitosis and early G1 (White et al. 1995; 

Gjidoda and Henry 2013; Herrera et al. 2018). Key players in this cell division cycle 

regulation include RB and the related p107 and p130 polypeptides as well as the 

kinases CK2, Plk1, and Cdk1. RB can repress Pol III transcription of genes with type 

1 and type 2 promoters through interaction with Brf1-TFIIIB. Phosphorylation of RB 

mediated by Cyclin D-CDK4 and Cyclin E-CDK2 disrupts this interaction, relieving 

its repressor activity. In Pol III genes with a type 3 promoter structure, RB could 

stably associate with SNAPc, TBP, and Pol III on the promoter, thereby inhibiting 

transcription (Scott et al. 2001; Hirsch et al. 2004; Gjidoda and Henry 2013). 

 

CK2 has a dual role in regulation of Pol III during the cell cycle. Whereas CK2 has a 

positive effect on Pol III transcription during S phase, as CK2 inhibition at this stage 

of the cell cycle decreases Pol III transcription, it has a negative effect during mitosis, 

at which point it phosphorylates Bdp1, leading to its dissociation from Pol III 

promoters and thus transcription inhibition (Hu et al. 2004). Like CK2, Plk1 can also 

regulate Pol III transcription positively and negatively. Plk1 regulates transcription of 

tRNA and 5S rRNA genes by differential phosphorylation of Brf1. Plk1 

phosphorylation of Brf1 at serine 450 leads to transcription activation, whereas 

phosphorylation at threonine 270 during mitosis leads to transcription repression 

(Fairley et al. 2012). In yeast, yet another kinase, namely Cdk1, was shown to 

regulate Pol III activity; Cdk1 phosphorylates Bdp1 at tRNA genes during S phase, 

which boosts their transcription (Herrera et al. 2018). 

Pol III deregulation is linked with cancer, with increased Pol III activity in malignant 

cells (White 2004; White 2005; Johnson et al. 2008; Marshall and White 2008).  Such 

increased activity is manifested for example by genome-wide increased Pol III 

binding to its targets in a hepatocarcinoma cell line as compared to normal liver cells 

(Renaud et al. 2014). tRNA overexpression was moreover observed in breast cancer 

cells (Pavon-Eternod et al. 2009), and upregulation of tRNAGlu
UUC and tRNAArg

CCG was 

shown to be involved in breast cancer metastasis (Goodarzi et al. 2016). Consistent 

with such observations, the tumor suppressors RB, p53 and PTEN can repress Pol III 

activity, while the c-MYC oncogene product can activate it. Interaction with TFIIIB 

was shown to be critical for regulation of Pol III by these factors (Chu et al. 1997; 
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Cairns and White 1998; Felton-Edkins et al. 2003b; Gomez-Roman et al. 2003; 

Woiwode et al. 2008).   

Along with overexpression of Pol III products, an increase in components of the Pol 

III transcription machinery has been observed in several transformed cells. Some 

examples include increased levels of several Pol III transcription factors and subunits 

in IMR90 fibroblasts following transformation (Durrieu-Gaillard et al. 2018), 

increased BRF2 level in Lung Squamous Cell Carcinoma as compared to normal cells 

(Lockwood et al. 2010), and overexpression of TFIIIC2 in ovarian tumors (Winter et 

al. 2000). 
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Figure 1-4. Regulators of Pol III transcription. Pol III transcription can be 

positively or negatively regulated by different regulators in different conditions. 
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Overlapping genes 
 

Many genes in the genomes of different organisms overlap. This overlap can be 

partial, or in extreme cases, an entire gene may be located inside another gene, in 

which case the embedded gene is called a nested gene (Makalowska et al. 2005). In 

eukaryotes, nested genes located in exons of the host genes are rare (Kumar 2009). 

Nested genes are mostly located within introns of the host genes, and the introns that 

include the nested genes are usually larger than the other introns (Yu et al. 2005).  

 

When considering the promoters of overlapping genes, different arrangements are 

observed: in a first set of two possible arrangements, the promoters themselves are not 

overlapping and can direct transcription i) in different directions (convergent 

promoters) or ii) in the same direction (tandem promoters); in a second set of three 

possible arrangements, the two promoters overlap and can be i) tandem, ii) divergent, 

or iii) convergent (Figure 1-5). In all these cases, the genes could potentially impact 

each other’s expression through transcriptional interference, which might operate by 

different mechanisms.  

 

In a “promoter competition” mechanism, binding of RNA polymerase to one 

promoter inhibits binding of RNA polymerase to the other one. In the “sitting duck” 

model, an initiation complex sitting on a promoter and slow to fire the polymerase is 

often dislodged by an elongating RNA polymerase coming from another promoter. In 

the “occlusion” model, which resembles the “sitting duck” model, the passage of an 

elongating RNA polymerase through the promoter of another gene transiently inhibits 

transcription factor and RNA polymerase binding to that promoter. Thus in a study in 

yeast, transcription of the non-coding RNA SRG1 from a site upstream of the SER3 

gene was shown to interfere with activators binding to SER3 gene promoter, leading 

to its transcription repression (Martens et al. 2004). “Collision” occurs between two 

elongating RNA polymerases from convergent promoters and can lead to premature 

termination. For example in yeast, antisense transcription of the non-coding RNA 

RME2 interferes with transcription elongation of the overlapping IME4 gene (Gelfand 

et al. 2011). Lastly, an immobile DNA-bound factor, including factors tightly bound 

on a promoter, can act as a “roadblock” for an elongating RNA polymerase (Shearwin 

et al. 2005).  
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Transcriptional interference is not the only mechanism by which two overlapping 

genes can affect each other’s expression. This phenomenon can also be mediated at 

post-transcriptional levels and the mechanisms involved are actively studied in several 

organisms from bacteria to yeast and higher eukaryotes. Most of these studies focus 

on antisense long non-coding RNA (lncRNA) genes, which could impact expression 

of the sense, protein-coding gene at the transcription or post-transcription levels 

(Katayama et al. 2005; Pelechano and Steinmetz 2013; Huber et al. 2016). Some 

studies have suggested mechanisms by which transcription or transcript of a gene 

could affect expression of the other one in an overlapping arrangement. One of the 

mechanisms intensively studied is regulation through chromatin modifications.  

 

In yeast, transcription of lncRNA IRT1 recruits histone methyltransferase and 

deacetylase complexes to the IME1 gene promoter, which results in a silent chromatin 

state and inhibition of transcription activators binding (van Werven et al. 2012). In 

another example, antisense transcription leads to repression of PHO84 gene through 

histone deacetylation (Castelnuovo et al. 2013). At the PHO5 gene promoter, 

antisense transcription leads to histone eviction and transcription activation (Uhler et 

al. 2007). And at the CDC28 gene, osmotic stress activates transcription of an 

antisense lncRNA from 3' region of the gene, which by a gene looping mechanism 

leads to chromatin remodeling at CDC28 gene promoter and its transcription 

activation (Nadal-Ribelles et al. 2014).  

 

In human cells, HAS2 antisense RNA was shown to be sufficient for chromatin 

opening around HAS2 gene promoter and its increased transcription (Vigetti et al. 

2014).  The lncRNA ANRIL was found to interact with polycomb repressive complex 

1 (PRC1) and to repress INK4A gene transcription through H3K27me3 maintenance 

(Yap et al. 2010). siRNA-mediated knockdown of the BDNF antisense transcript led 

to a decrease of the repressive mark H3K27me3 at the BDNF locus and elevated 

BDNF transcription in different mouse and human cell lines (Modarresi et al. 2012). 

In hepatocellular carcinoma cells, AChE gene repression due to histone methylation at 

the promoter mediated by an antisense RNA was observed (Xi et al. 2014). In another 

study in hepatocellular carcinoma cells, GPC3 antisense transcript recruited histone 

acetyltransferase P300/CBP‐associated factor to GPC3 gene body, which in this case 
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enhanced the histone marks H3K4ac, H3K27ac, and H4ac, leading to GPC3 

transcription upregulation (Zhu et al. 2016).  

 

Another mechanism by antisense genes that can affect sense gene expression is 

through DNA methylation. Transcription of an antisense RNA leads to mouse Igf2r 

gene promoter methylation and its repression on the paternal allele (Wutz et al. 1997). 

Similarly, transcription of antisense RNA was shown to be involved in HBA2 gene 

silencing through its CpG island methylation (Tufarelli et al. 2003).  

 

A third mechanism involves post-transcriptional regulation of the sense gene by the 

antisense RNAs, which requires formation of double strand RNAs. This type of 

regulation can be mediated by increased mRNA stability. Thus, an antisense transcript 

was shown to increase BACE1 mRNA stability by masking a miRNA-binding site 

(Faghihi et al. 2010). Moreover, two mRNAs, WDR83 and DHPS, were shown to 

from a duplex at their overlapping regions leading to their increased mutual stability 

(Su et al. 2012). Yet in another example, an antisense RNA increased stability of 

PDCD4 mRNA by regulating its association with RNA-binding proteins (Jadaliha et 

al. 2018).  

 

And fourth, antisense RNA can be involved in translation regulation. Nos1 antisense 

RNA was shown to decrease NOS1 protein levels, and not Nos1 mRNA levels 

(Korneev et al. 2015). Further, an antisense lncRNA, which does not change Uchl1 

mRNA levels, leads to an increase in UCHL1 protein levels in mouse cells. This 

antisense transcript contains an embedded SINEB2 domain that is essential for its 

function (Carrieri et al. 2012). 

 

The aforementioned studies in eukaryotes are all focused on overlapping Pol II 

transcribed genes. There are, however, also a few known examples of Pol II-Pol I and 

Pol II-Pol III gene overlaps. In Saccharomyces cerevisiae, a mitochondrial protein 

gene named TAR1 is transcribed antisense of 25S rRNA gene. The nested TAR1 gene 

is transcribed by Pol II, whereas the 25S rDNA is transcribed by Pol I. However, 

whether transcription of one of these two transcription units might impact on the other 

has not been examined (Coelho et al. 2002). In a study in yeast, TFIIIB bound to a 
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tRNA gene located between two Pol II transcription units could block Pol II 

transcription, inhibiting read-through transcription of the upstream Pol II gene. 

Inactivation of TFIIIB binding led to production of an abnormal transcript extending 

over both Pol II genes (Korde et al. 2014). In another study, performed in Arabidopsis 

thaliana, it was shown that antisense Pol III transcription of a set of nine proline 

tRNA genes nested in the AtNUDT22 gene negatively correlated with Pol II sense 

transcription of the AtNUDT22 gene (Lukoszek et al. 2013).  
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Figure 1-5. Schematic view of different promoter arrangements in overlapping 

genes. A) Non-overlapping promoters, in which transcription of the overlapping 

genes can be convergent or tandem. B) Overlapping promoters, in which 

transcription of overlapping genes can be tandem, divergent, or convergent. 
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RNA polymerase III effects on protein-coding genes 
expression 
 

Although different RNA polymerases transcribe different sets of genes in eukaryotes, 

there is interplay between the RNA polymerases. In particular, there are several 

mechanisms by which Pol III, directly or through its products, can affect expression 

of protein-coding genes, at the transcriptional or post-transcriptional levels (Table 1). 

As mentioned above, physical overlaps between Pol III and Pol II genes can influence 

Pol II transcription through transcriptional interference, with at least the two 

documented cases just mentioned, i.e. the roadblock to Pol II transcription constituted 

by TFIIIB binding to a tRNA gene (Korde et al. 2014), and the anticorrelation 

observed between Pol III transcription of proline tRNA genes and Pol II transcription 

of the gene in which the tRNA genes are nested (Lukoszek et al. 2013).    

 

Physical location of Pol III relative to Pol II genes seems to play a role even when the 

genes do not overlap. Several studies suggest that active Pol III genes are often 

located close to Pol II peaks and Pol II TSS, and that the transcription by Pol III and 

nearby Pol II might be co-regulated (Barski et al. 2010; Moqtaderi et al. 2010; Oler et 

al. 2010; Canella et al. 2012; Van Bortle et al. 2017). It was also suggested that during 

differentiation, some Pol III genes change in concert with distant Pol II genes through 

long-range interactions (Van Bortle et al. 2017). Although the mechanisms involved 

have not been explored in these genome-wide studies, there are a few specific 

examples for which more information is available. For example, a B2 SINE located 

upstream of the growth hormone locus was shown to act as a boundary element. 

Bidirectional transcription of the SINE by Pol III and Pol II changes the chromatin 

structure, which leads to transcription of the growth hormone gene during 

development (Lunyak et al. 2007; Ponicsan et al. 2010). Moreover in neuronal cells, a 

class of SINEs with enhancer activity was identified (eSINEs). In response to 

neuronal depolarization, these eSINEs are transcribed by Pol III, which activates 

transcription of their nearby Pol II genes (Policarpi et al. 2017). 

 

Two cases in which a Pol III product directly affects Pol II transcription have been 

described. The first is Pol III synthesis of 7SK small nuclear RNA (Yang et al. 2001), 

which a described above can repress Pol II transcription by sequestering the positive 
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transcription elongation factor b (P-TEFb) into the P-TEFb/HEXIM/7SK complex. 

Upon some stimulation such as signaling pathways, stress, UV irradiation and 

transcription inhibitors, the active form of P-TEFb is released, which leads to 

productive transcription elongation (Diribarne and Bensaude 2009; Peterlin et al. 

2012b). The second is Pol III synthesis of some classes of SINE RNAs, specifically 

B2 RNAs in the mouse and Alu RNAs in human cells, in response to cellular stress 

including heat shock. These SINE RNAs can bind directly to Pol II, leading to 

transcription repression (Espinoza et al. 2004; Mariner et al. 2008).  

 

Pol III is indirectly involved in translation of mRNAs into proteins and is thus 

involved in another layer of regulation. Indeed, Pol III transcribes 5S rRNA, which 

has significant structural roles in the ribosome (Ciganda and Williams 2011; 

Gongadze 2011). Furthermore, Pol III transcribes all tRNAs, which deliver the 

different amino acids to the translation machinery, so changes in level of tRNAs can 

be a potential regulator of translation. tRNA genes have been shown to be 

differentially expressed in different human tissues (Dittmar et al. 2006), and altered 

tRNA levels have been associated with several diseases (Kirchner and Ignatova 

2015). Some studies suggest that the differences in tRNA expression under different 

conditions coincide with differential codon usage and therefore translation of specific 

mRNAs (Plotkin et al. 2004; Gingold et al. 2014).  

 

tRNAs are heavily modified at different nucleosides. Although some of these 

modifications are important for tRNA structure, those in or close to the anticodon 

loop of the tRNA are critical for translation efficiency and accuracy (Duechler et al. 

2016). These modifications are highly dynamic and can vary in response to 

environmental changes such as cellular stress and nutrient, leading to change in 

translation, either general translation or translation of some specific mRNAs (Gu et al. 

2014; Liu et al. 2016), or to an unfolded protein stress response (Nedialkova and 

Leidel 2015). Consistent with the importance of tRNA modifications, changes in 

these modifications are observed in several diseases including cancer (Kirchner and 

Ignatova 2015; Dong et al. 2016). 
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tRNAs can be cleaved by different nucleases leading to generation of tRNA halves 

and short tRNA-derived fragments (tRFs) (Sobala and Hutvagner 2011). tRNA halves 

usually result from cleavage within the anticodon loop of mature tRNAs in stress 

conditions, and can play roles in translation repression (Kumar et al. 2016). As to 

short tRFs, they are often the products of cleavage at the 5' or 3' ends of mature or 

precursor tRNAs. Some of these tRFs were found to associate with Argonaute 

proteins, displaying a miRNA-like translation repression, whereas others associate 

with polysomes to repress translation in a global manner (Keam and Hutvagner 2015). 

 

SINE RNAs can also impact gene expression at the translation level. Some Alus were 

shown to be located upstream of miRNA genes in the human genome, leading to 

transcription of these miRNAs by Pol III, which are then processed and can, like other 

miRNAs, play a role in translational regulation (Borchert et al. 2006). Alu RNA itself 

was moreover shown to stimulate selective mRNAs translation without affecting 

global protein synthesis (Rubin et al. 2002). Further, 7SL was found to interact with 

the 3' UTR of p53 mRNA and suppress its translation (Abdelmohsen et al. 2014), and 

small RNAs generated from vault RNAs (svRNAs) were shown to act like miRNAs 

to regulate gene expression (Persson et al. 2009). Finally, BC1 RNA, which is 

expressed in a subset of neuronal cells, can repress translation through interaction 

with eIF4A and poly(A) binding protein (Wang et al. 2005). 
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Effect mediator Effect level 

Genomic arrangements Transcription 

7SK Transcription 

SINE RNA Transcription 

5S rRNA Translation 

tRNA and tRNA modifications Translation 

tRNA-derived fragments Translation 

SINE RNA Translation 

7SL Translation 

Small vault RNA (svRNA) Translation 

BC1 RNA Translation 
	

Table 1. Pol III effects on Pol II gene expression. Different effect mediators and 

their effect level are indicated. 
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Chapter II – Effect of a MIR-SINE on expression of 
the Polr3e gene 
 

Summary 
 

Genomic overlap of genes is a common phenomenon in different organisms. In 

eukaryotes, especially in yeast, these overlaps can mediate gene expression 

regulation. Most of the studies have focused on Pol II-transcribed long non-coding 

RNA, stemming from sequences partially overlapping, or nested in, a protein-coding 

gene, and often in an antisense orientation. However, overlaps between genes 

transcribed by Pol II and Pol III, and the possible effects of such overlaps, are poorly 

studied. 

 

A MIR-SINE located in the first intron of the Polr3e gene, which encodes for a 

subunit of Pol III, is an example of a Pol III gene nested in a Pol II gene in an 

antisense orientation. ChIP-seq experiments have shown that this MIR is highly 

occupied by Pol III in mouse liver, and that there is an unexpected accumulation of 

Pol II at the region corresponding to its 3' end. So we asked whether this MIR is 

playing a role in the regulation of Polr3e expression (Figure 2-1). 

 

We showed that the sequence, and the genomic arrangement of the MIR, i.e. in the 

first intron of the Polr3e gene, are conserved in different mammalian species. We 

further used available datasets to show that this MIR is highly occupied by Pol III not 

only in liver, but also in several other cell types. Furthermore, the absence of NELF in 

the region showing accumulation of Pol II at the 3' of the MIR argues against the 

presence of a Pol II TSS in this region, and thus against the possibility that the 

accumulation of Pol II reflects the accumulation usually seen at TSSs of actively 

transcribed genes.  

 

To examine whether the MIR regulates Pol II transcription through the Polr3e gene 

and thus POLR3E expression, we performed a number of different experiments. We 

first placed the MIR, either wild-type or with mutations debilitating its promoter, in 

the intron of an EGPF gene, and observed that active antisense transcription of the 
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MIR decreased EGFP expression. Second, we used CRISPR/Cas9 to remove the MIR 

sequence from the genome in cultured cells, and showed that removal of the MIR 

increased Polr3e mRNA and protein levels. Overexpression of the MIR from distant 

loci in the genome did not change Polr3e levels, suggesting a role for MIR 

transcription, rather than for the MIR transcript, in Polr3e regulation. ChIP 

experiments revealed the absence of Pol II accumulation at 3' region of the MIR in 

MIR-deleted cell line, further suggesting a transcriptional interference mechanism 

between Pol II transcribing Polr3e and Pol III transcribing the MIR. 

 

We then used available ChIP-seq datasets for Pol II and Pol III and showed that in 

several cases where a Pol III gene is located inside a Pol II gene, and where both Pol 

II and Pol III genes are occupied by their respective RNA polymerases, there is a peak 

of Pol II coinciding with the Pol III gene. These findings suggest that down-regulation 

of Pol II gene expression by Pol III transcription of a gene nested inside the Pol II 

gene constitutes a so far unsuspected layer of gene expression regulation. 

 

In this work, I did all the experiments, wrote the first version of the manuscript, and 

then contributed to revised versions (Yeganeh et al. 2017).  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pol II

Pol III

?

Figure 2-1. Schematic view of the project summary. In this project, the aim was 

to study whether a Pol III gene nested in a Pol II gene plays a role in its 

expression regulation, and whether transcriptional interference is involved.  
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Transcriptional interference by RNA
polymerase III affects expression
of the Polr3e gene
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Overlapping gene arrangements can potentially contribute to gene expression regulation. A mammalian inter-
spersed repeat (MIR) nested in antisense orientation within the first intron of the Polr3e gene, encoding an RNA
polymerase III (Pol III) subunit, is conserved inmammals and highly occupied by Pol III. Using a fluorescence assay,
CRISPR/Cas9-mediated deletion of the MIR in mouse embryonic stem cells, and chromatin immunoprecipitation
assays, we show that the MIR affects Polr3e expression through transcriptional interference. Our study reveals a
mechanism by which a Pol II gene can be regulated at the transcription elongation level by transcription of an
embedded antisense Pol III gene.

[Keywords: RNA polymerase; gene expression regulation; Polr3e gene; antisense transcription; transcriptional
interference; SINE]
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In eukaryotes, RNA polymerase II (Pol II) is responsible for
transcription of all of the mRNA-encoding genes as well
as most genes encoding small nuclear RNA (snRNA)
and microRNAs. Pol II-dependent transcription occurs
in several steps, each of which can be subjected to regula-
tion in response to environmental and genetic signaling
processes (Fuda et al. 2009). One of the highly regulated
steps is the transition from initiation to productive elon-
gation, which is controlled by several positive and nega-
tive regulatory factors (Zhou et al. 2012). In particular,
the 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB)
sensitivity-inducing factor (DSIF) and the negative elonga-
tion factor (NELF) cause the polymerase to pause just
downstream from the transcription start site (TSS). Enter-
ing productive elongation involves DSIF and NELF phos-
phorylation and loss of NELF from the transcription
complex. Once the polymerase has entered productive
elongation, its elongation rate is highly dynamic and var-
ies across a gene, in particular to allow cotranscriptional
events to be performed efficiently. The largest Pol II accu-
mulations detected by chromatin immunoprecipitation
(ChIP) assays typically correspond to promoter-proximal
pausing before productive elongation and slowing down
near the gene 3′ end for cotranscriptional polyadenylation
of the transcript (Jonkers and Lis 2015). The distribution of

DSIF follows a similar pattern, whereas NELF is typically
found only at the promoter-proximal pause region (Zhou
et al. 2012).
Genes often lie in overlapping arrangements on either

the same strand or opposite strands. The overlap can be
partial, or an entire genemay be located or “nested” inside
another gene, usually within an intron (Kumar 2009). A
frequent arrangement found in both yeast and mammals
but studied mostly in yeast is a long noncoding RNA
(lncRNA; natural antisense transcript) gene present in an-
tisense orientation relative to a protein-coding gene
(Katayama et al. 2005; Huber et al. 2016). The different ar-
rangements of overlapping genes can contribute to the
regulation of gene expression by a number of mechanisms
involving, in general, the natural antisense transcripts
and/or, in some cases, the process of overlapping tran-
scription (Pelechano and Steinmetz 2013). As recent ex-
amples, in yeast, a CDC28 antisense lncRNA induced
upon osmotic stress mediates gene looping and the trans-
fer of Hog1 and associated factors from the 3′ untranslated
region (UTR) to the CDC28 TSS region, resulting in
CDC28 transcription activation (Nadal-Ribelles et al.
2014). In mammalian cells, the lncRNAWrap53, an anti-
sense transcript originating from the p53 locus, binds
CTCF and contributes to p53 regulation (Saldana-Meyer
et al. 2014), and as a third example, a lncRNA antisense

Corresponding author: nouria.hernandez@unil.ch
Article published online ahead of print. Article and publication date are on-
line at http://www.genesdev.org/cgi/doi/10.1101/gad.293324.116. Freely
available online through theGenes &DevelopmentOpen Access option.

© 2017 Yeganeh et al. This article, published in Genes & Development,
is available under a Creative Commons License (Attribution 4.0 Interna-
tional), as described at http://creativecommons.org/licenses/by/4.0/.

GENES & DEVELOPMENT 31:413–421 Published by Cold Spring Harbor Laboratory Press; ISSN 0890-9369/17; www.genesdev.org 413

 Cold Spring Harbor Laboratory Press on October 5, 2018 - Published by genesdev.cshlp.orgDownloaded from 



	 35	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

to the Nos1 locus down-regulates Nos1 protein but not
Nos1 mRNA, suggesting a post-transcriptional effect
(Korneev et al. 2015).

Most cases of gene regulation by an overlapping ncRNA
gene in eukaryotes concern arrangements in which both
genes are transcribed by Pol II, with very few studied ex-
amples of Pol II–Pol I and Pol II–Pol III gene overlaps.
Among these, the Pol II TAR1 gene is nested within the
Pol I 25S rRNA gene in Saccharomyces cerevisiae, but
the influence, if any, of this layout on gene expression
has not been examined directly (Coelho et al. 2002). In
Arabidopsis thaliana, a set of nine Pol III proline transfer
RNA (tRNA) genes is located antisense of the Pol II
AtNUDT22 gene, and the two genes display negatively
correlated expression levels, consistent with the possibil-
ity that they influence each other’s expression (Lukoszek
et al. 2013).

In addition to genes of known function, Pol III tran-
scribes some short interspersed nuclear elements (SINEs).
SINEs originated by retrotranspositionmostly from tRNA
and Rn7sl genes, often resulting in the transposed ele-
ment carrying the gene-internal promoter of the source
gene (Dieci et al. 2013). Although most SINEs are epige-
netically repressed, some are actively transcribed by Pol
III as independent transcription units (Roberts et al.
2003; Barski et al. 2010; Canella et al. 2010, 2012; Moqta-
deri et al. 2010; Oler et al. 2010; Raha et al. 2010; Renaud
et al. 2014). SINEs have long been considered as junk
DNA, but it is now clear that they can profoundly impact
genome functions both in cis (for example, by constitut-
ing new enhancers or splice sites) and in trans (for exam-
ple, by producing RNAs that affect Pol II transcription)
(Kramerov and Vassetzky 2011). Here we examined the
role of a member of the mammalian interspersed repeat
(MIR) family, an ancient family of tRNA-derived SINEs
that were amplified before the mammalian radiation
(Smit and Riggs 1995). ThisMIR is nested in antisense ori-
entation within the first intron of the Polr3e gene, which
codes for one of the Pol III subunits. We show that this ar-
rangement is conserved in different mammalian species
and that it directly impacts on Pol II transcription elonga-
tion through the Polr3e gene. Thus, the Pol III transcribed
MIR can contribute to regulation of a Pol III subunit-en-
coding gene.

Results

A MIR in the first intron of the Polr3e gene is conserved
among mammalian species and highly occupied
by both Pol III and Pol II

In both the mouse and human genomes, the first intron of
the Polr3e gene contains an antisense MIR SINE (Canella
et al. 2012). ChIP-seq (ChIP combined with high-through-
put sequencing) data obtained from mouse livers reveal
that this MIR is as highly occupied by Pol III as a tRNA
Leu gene located upstream of the Polr3e TSS (Fig. 1A). In-
deed, this MIR was found to be highly occupied by Pol III
as compared with the mean occupancy scores of either all
Pol III-occupied loci or just SINEs in not onlymouse livers

but also a mouse hepatocarcinoma cell line and human
IMR90 and IMR90Tert cell lines (Fig. 1B; Renaud et al.
2014; Orioli et al. 2016), consistent with its high occupan-
cy also in HeLa cells (Oler et al. 2010).

The high Pol III occupancy of this particular MIR is in
contrast to the low occupancy of most SINEs and prompt-
ed us to search for its presence in other species. We found
MIR-related sequences located antisense in the first
intron of the Polr3e genes of all examined mammalian
species, including themonotreme platypus (Ornithorhyn-
chus anatinus), as illustrated by the sequence similarity
tree in Figure 1C. The sequence alignment in Supplemen-
tal Figure S1 shows that all of theseMIRs have potentially
functional type 2 Pol III promoters; i.e., gene-internal A
and B boxes separated by 25–26 base pairs (bp). This con-
servation is consistent withMIRs having amplified before
the mammalian radiation (Smit and Riggs 1995) and sug-
gests that the MIR in the first intron of the Polr3e gene
might have a function.

When examining the Pol II and Pol III occupancy pat-
terns in Figure 1A, we noticed a striking accumulation
of Pol II not only at the TSS, as expected from pausing be-
fore escape into productive elongation, but also just before
the antisense Pol III MIR (Fig. 1A; see also Canella et al.
2012). ChIP-seq data from HeLa cells (Liu et al. 2014)
show DSIF accumulation near both the TSS and the
MIR but NELF accumulation only near the TSS, arguing
against Pol II accumulation at the MIR resulting from a
second, unannotated TSS in this region (Fig. 2). A possible
interpretation is that the MIR contributes to a Pol II accu-
mulation at its 3′ end through either transcription inter-
ference or a trans-acting mechanism involving the MIR
RNA.

Active transcription of the MIR in antisense, but not
sense, orientation within an EGFP-expressing construct
leads to decreased fluorescence intensity

To examine the effect of theMIR on expression of an over-
lapping Pol II gene, we placed theMIR (either wild type or
with mutated A and B boxes in either sense or antisense
orientation) within an intron inserted into the EGFP-cod-
ing sequence (Fig. 3A,B; Santillan et al. 2014). In vitro tran-
scription assays with these constructs revealed robust and
intact A-box- and B-box-dependent expression of both the
sense and antisense MIR (Fig. 3C). We thus used these
constructs to create stable inducible cell lines by cotrans-
fection into Flp-In T-REx 293 cells along with a plasmid
expressing Flp-recombinase and selection of the transfect-
ed cells with hygromycine. Northern blotting revealed
weak but clearly detectable A-box- and B-box-dependent
expression from both the sense and antisense MIRs (Fig.
3D). The relatively weak signal, which is in contrast to ro-
bustMIR expression in vitro, suggests rapid degradation of
the MIR transcript in the cell.

We measured EGFP expression by FACS in either non-
induced cells or cells induced for EGFP expression by dox-
ycycline. When the MIR was antisense relative to EGFP
transcription, fluorescence intensitywas decreased slight-
ly (20%–30%) but reproducibly in cells containing the
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wild-typeMIR as compared with cells containing the mu-
tantMIR construct (Fig. 3E). This was true at both the low
leaky EGFP expression levels in the absence of doxycy-
cline and at high doxycycline-induced EGFP expression
levels. In contrast, no measurable effect was observed in
this assay when the MIR was in the sense orientation
(Fig. 3F). Thus, a Pol III transcribedMIR can reduce expres-
sion of a Pol II gene in which it is embedded in antisense
orientation.

CRISPR/Cas9-mediated deletion of the MIR leads
to increased expression of Polr3e

To determine the effect of the MIR in its natural genomic
context, we used the CRISPR/Cas9 system to delete MIR
genomic sequences inmouse embryonic stem (ES) cells. A
schematic view of deletions obtained in different ES cell
clones is shown in Figure 4A. We engineered deletions
that left intact the 3′ region of the MIR where our ChIP-
seq data had revealed accumulation of Pol II. As expected,
MIR RNAwas absent from these cell lines as determined
by RT-qPCR (Fig. 4B), and at least the one cell line (KO11)
that we tested still expressed the three pluripotency tran-
scription factor-encoding genes Oct4, Sox2, and Nanog
despite a number of cell passages imposed by genome en-
gineering and single-cell cloning (Fig. 4C).
We then measured Polr3e mRNA expression levels in

the various MIR knockout cells and wild-type cells by
RT-qPCR with qPCR primers located inside a single
exon toward the 3′ end of the Polr3e transcription unit
(i.e., measuring both processed and unprocessed tran-

scripts) and observed increased Polr3e total mRNA levels
in allMIR knockout cell lines as comparedwith wild-type
cells (Fig. 4D).
We focused on the MIR-deleted cell line KO11. To

determine whether the increase in total mRNA level of
Polr3e reflected increased transcription or any post-tran-
scriptional effect such as increased stability, wemeasured
levels of Polr3e pre-mRNA and mature mRNA in wild-

Figure 1. A MIR in the first intron of the Polr3e gene is
conserved among mammals and highly occupied by Pol
III and Pol II. (A) The genomic arrangement of the begin-
ning of the mouse Polr3e gene is shown at the top. A
tRNA Leu gene is located upstream of the Polr3e TSS.
TheMIR in the first intron is transcribed in the antisense
direction. The bottom part shows a University of Cali-
fornia at Santa Cruz (UCSC) genome browser view of
Pol III and Pol II ChIP-seq profiles in mouse livers.
(B) MIR, average Pol III-occupied locus, and average
Pol III-occupied SINE Pol III occupancy scores [log2-
(immunoprecipitation/input)] shown as percentages in
mouse hepa1–6 cells, mouse livers, IMR90 cells, and
IMR90tert cells. (C ) Alignment tree of MIR sequences
in the first intron of Polr3e in different mammalian spe-
cies, including Balaenoptera acutorostrata (B.a.), Bos
taurus (B.t.), Bubalus bubalis (B.b.), Callithrix jacchus
(C.j.), Chlorocebus sabaeus (C.s.), Eptesicus fuscus (E.
f.), Homo sapiens (H.s.), Lipotes vexillifer (L.v.), Macaca
fascicularis (M.f.), Microtus ochrogaster (M.o.), Mus
musculus (M.m), Nomascus leucogenys (N.l.), Ornitho-
rhynchus anatinus (O.an.), Orycteropus afer (O.af.),
Oryctolagus cuniculus (O.c.),Ovis aries (O.ar.), Pan pan-
iscus (P.p.), Pan troglodytes (P.t.), Papio anubis (P.a.), Per-
omyscus maniculatus bairdii (P.m.b), Rattus norvegicus
(R.n.), Tursiops truncates (T.t), and Vicugna pacos (V.p.).
The tree is based on the alignment in Supplemental Fig-

ure S1 and was generated from Jalview with the neighbor joining based on percent identity; the file was processed at the Interactive Tree
of Life (iTOL) Web site (http://itol.embl.de) for circular graphic representation.

Figure 2. UCSC genome browser views of Pol III, Pol II, DSIF,
and NELF ChIP-seq profiles in HeLa cells in the POLR3E gene re-
gion. Tracks are from ENCODE (Pol III subunit RPC1) and Liu
et al. (2014) (Pol II, DSIF, and NELF).
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type and KO11 cells by RT-qPCR. We designed (1) qPCR
primers inside a single intron and (2) a primer at an
exon–exon junction paired with another within an exon
to amplify specifically precursor and mature mRNAs, re-
spectively.We observed increased levels of both unspliced
(Fig. 4E) and spliced (Fig. 4F) Polr3e mRNA in KO11 cells
relative to wild-type cells, and this increase in turn result-
ed in an almost 1.5-fold increase in protein levels as deter-
mined byWestern blot (Fig. 4G).However, these increased
POLR3E levels did not lead to increased levels of 5S
rRNA, pre-tRNA Ile, and U6 snRNA (Supplemental Fig.
S2), suggesting that this Pol III subunit is not limiting
for Pol III activity under the conditions tested.

The regulation of Pol II gene expression by a nested Pol
III gene shown here suggests the existence of another layer
of gene expression regulation by interplay between RNA
polymerases. To determine howgeneral this phenomenon
might be, we examined all of the Pol III (RPC1) ENCODE
peaks from HeLa cells and extracted those embedded in a
Pol II transcription unit. We found 984 ENCODE Pol III
peaks within Pol II genes, but examination of several of
those RPC1 peaks in Pol II-occupied genes (for example,
peaks located within the CDA, KPNA6, YARS, STK40,
CTH, USP33, DNAJB4, and SOAT1 Pol II transcription
units on chromosome 1) did not reveal corresponding ac-
cumulations of Pol II. However, in the human genome,
the analysis of anti-Pol III ChIP-seq experiments is compli-
cated by the presence of a large number of repetitive
sequences derived from Pol III transcription units; as a re-
sult, a large proportion of the sequence tags obtained in

such experiments matches several locations (sometimes
several hundred locations) in the genome.We therefore re-
mapped the ENCODE sequence tags and recalculated
peak scores using our previously described method (Can-
ella et al. 2012), which assigns different weights to tags ac-
cording to the number of times they were sequenced and
the number of corresponding matches in the genome.
The results confirmed 22 of the 984 peaks, of which 15 co-
incidedwithRPC4 peaks observed in IMR90Tert cells (see
Supplemental Table S1; Orioli et al. 2016). These 15 Pol III
peaks were located in nine different Pol II transcription
units, five of which were clearly occupied by Pol II (Liu
et al. 2014) and, importantly, clearly displayed Pol II accu-
mulations at locations of Pol III peaks, as shown in Figure 5
for the VAC14, SHF, CTC1, and HES7 genes. Such accu-
mulations occurred when the Pol III transcription unit
was orientated sense or antisense relative to the Pol II
gene (Fig. 5). The results show that at least in HeLa and
IMR90Tert cells, there are very few cases of Pol III-occu-
pied transcription units leading to intragenic Pol II accu-
mulations; they further suggest that both sense and
antisense Pol III transcription units can lead to Pol II road-
blocks, although the final effect on gene expression is like-
ly to depend on both Pol II and Pol III transcription levels.

The MIR effect on Polr3e is mediated by transcriptional
interference

To determine whether MIR RNA is sufficient to regulate
Polr3e expression, we overexpressed the MIR using a

Figure 3. Active transcription of the MIR
in antisense, but not sense, orientation
within an EGFP-expressing construct leads
to decreased fluorescence intensity. (A)
Schematic view of the EGFP construct.
EGFP-coding sequence under a tetracy-
cline-inducible promoter is interrupted by
an intron in which wild-type (WT) or mu-
tant (MUT) MIR in sense or antisense ori-
entation is inserted. (B) Mutations
introduced in the A and B boxes of the
MIR. Changes are indicated in red. (C ) In vi-
tro transcription performed with the tem-
plates indicated at the top: mutant MIR or
wild-type MIR inserted in the EGFP intron
in sense or antisense orientation. The Ade-
novirus 2 VAI gene was used as a positive
control. (D) Northern blot analysis of
mouse MIR expression in human Flp-In T-
REx 293 cells transfected with the con-
structs indicated at the top. Total RNA ex-
tracted from mouse embryonic stem (ES)
cells transduced with a construct contain-
ing the sameMIR insert as in the EGFP con-
structs served as a positive control for MIR

size. As an internal control for loading, the blot was probed with an oligonucleotide complementary to human U87. (E) FACS analysis of
cells transfected with EGFP constructs containing wild-type and mutant MIR in antisense orientation represented as cell count (Y-axis)
versus log fluorescence intensity (X-axis) either noninduced or inducedwith 2 µg/mLdoxycycline and collected 72 h after induction.Non-
transfected Flp-In T-REx 293 cells were used as a negative control. The experiment was repeated four times. P-value−dox = 0.000023; P-
value+dox = 0.000016, calculated using Student’s t-test. (F ) As in E but with cells transfected with wild-type or mutant sense constructs.
P-value−dox = 0.131; P-value+dox = 0.167.
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lentiviral vector coexpressing GFP. We did so not in only
wild-type but also KO11 cells, in case the endogenous
MIR levels in wild-type cells were already saturating.
Although we could confirm MIR overexpression in
both wild-type and KO11 ES cells by RT-qPCR (Fig. 6A,
B, left panels), we did not observe any significant change
in the level of total Polr3emRNA (Fig. 6A,B, right panels)
or POLR3E protein (Fig. 6C,D). This suggests that
MIR RNA overexpressed from other loci in the genome
does not affect Polr3e transcription or Polr3e mRNA
translation.
The results above (Fig. 1A) revealed Pol II accumulation

toward the 3′ end of theMIR, consistent with theMIR cre-
ating a roadblock to elongation. We performed ChIP-
qPCR assays in mouse ES cells using antibodies against
the RPC4 (POLR3D) subunit of Pol III and the RPB2
(POLR2B) subunit of Pol II. The positions of the primers
used for qPCR are shown in Figure 6E and Supplemental
Figure S3A. As expected, we detected a strong Pol III signal
on the tRNA Leu gene upstream of the Polr3e TSS in both
wild-type and KO11 cells, and the Pol III signal in theMIR
region was detectable only in the wild-type cells (Fig. 6F;
Supplemental Fig. S3B). With the anti-RPB2 antibody,
we observed similar Pol II enrichment on the Polr3e TSS
in both wild-type and MIR KO11 cells, suggesting that
the presence or absence of the MIR did not affect Pol II
recruitment (Fig. 6G; Supplemental Fig. S3C). Similarly,
Pol II recruitment was unaffected at several locations
along the Polr3e gene with one notable exception: The

Pol II accumulation in wild-type cells just before the
MIRwas absent inMIRKO11 cells (Fig. 6G; Supplemental
Fig. S3C). These results indicate that removal of the MIR
and thus suppression of antisense Pol III transcription
within the first Polr3e intron relieve Pol II pausing, lead-
ing to the increased expression of Polr3e observed above.

Discussion

We describe a genomic arrangement, conserved in mam-
malian cells, in which a MIR antisense Pol III transcrip-
tion unit creates a roadblock within the Polr3e Pol II
transcription unit, leading to decreased expression of the
Polr3e gene at both the level of mRNA and protein accu-
mulation. The effect on protein expression was relatively
modest (1.5-fold) but in line with the conclusions of a re-
cent systematic study in yeast, where Pol II antisense tran-
scription of ncRNAs was shown to lead, on average, to a
less than twofold reduction in the protein levels encoded
by the sense genes (Huber et al. 2016). However, the effect
of antisense transcription was different in different condi-
tions; in this respect, it is possible that the MIR affects
Polr3e levels differently in different cells and tissues and
under different conditions.
Insertion of the MIR into an intron placed within the

EGFP-coding sequence leads to decreased EGFP expres-
sion under conditions of both low (noninduced) and high
(doxycycline-induced) EGFP transcription. This is in

Figure 4. CRISPR/Cas9-mediated deletion of the
MIR leads to increased expression of Polr3e. (A) Sche-
matic view of CRISPR/Cas9-mediated deletions in
different clones (#8, #11, #16, #29, and #33). All dele-
tions maintain intact the region corresponding to the
3′ end of the MIR. (B) RT-qPCR performed withMIR-
specific primers for both reverse transcription and
qPCR with RNA extracted from the indicated cell
lines. The qPCR results were normalized to Gapdh
expression. (C ) RT–PCR performed with total RNA
from KO11 and wild-type ES cells to monitor expres-
sion of the pluripotency genes Oct4, Sox2, and
Nanog. In the control RT(−) lanes, no reverse tran-
scriptase was included in the reactions. (D) Results
of RT-qPCR performed with primers detecting both
pre-mRNA and mature Polr3e mRNA in the indicat-
ed ES knockout cell lines relative to wild-type cells.
The qPCR results were normalized to Actb mRNA.
Error bars represent ± SEM. n = 3. The P-values were
calculated using Student’s t-test and are relative to
the wild type. (E) Results of RT-qPCR performed
with primers detecting Polr3e pre-mRNA in the
knockout ES cells relative to wild-type cells. The re-
sults were normalized to Actb expression. Error bars
and P-values are as in D. (F ) As in E but with primers
detecting only mature Polr3e mRNA. (G, top) West-
ern blot performed with anti-POLR3E and anti-γ-tu-
bulin antibodies with protein extracts from
knockout and wild-type ES cells. (Bottom) The
POLR3E band intensities were quantified and nor-
malized to their corresponding γ-tubulin band inten-
sities. Error bars and P-values are as in D.
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contrast to ncRNA Pol II transcription in yeast, which
seems to suppress specifically low levels of gene expres-
sion. Thus, in a genome-wide study, antisense ncRNA
transcription was found to switch off corresponding sense
genesunderconditionsof low, butnothigh, expression (Xu
et al. 2011). Similarly, a ncRNA transcribed antisense of
the GAL10 gene suppressed leaky expression of GAL10
and GAL1 in glucose-containing repressing medium but
not in galactose-containing inducing medium (Lenstra
et al. 2015). The inhibitory effect of the MIR under con-

ditions of both low and high Pol II transcription may be a
specificity of an antisense Pol III transcription unit as
opposed to an antisense Pol II ncRNA transcription unit,
or the range of the EGFP assaymay not cover Pol II expres-
sion levels that might be differentially affected by MIR
expression.

Our results show that the levels of the POLR3E subunit
of Pol III can be regulated by theMIR. Like its yeast ortho-
log, Rpc37, with Rpc53, POLR3E (RPC5) forms a dimer
with POLR3D (RPC4) that resembles TFIIF (Hu et al.
2002; Cramer et al. 2008). In yeast, this TFIIF-like dimer
contributes to promoter opening and transcription initia-
tion (Kassavetis et al. 2010) and is necessary, together
with Rpc11, for formation of the pretermination complex
and transcription termination (Arimbasseri and Maraia
2015). Mammalian POLR3E is also essential for Pol III
transcription, as immunodepletion of this subunit from
the Pol III complex debilitated Pol III transcription in vitro
(Hu et al. 2002). Thus, the POLR3E subunit plays essential
roles in the Pol III transcription process, and regulation of
its levels may be critical. Although we did not observe
higher levels of several Pol III products in MIR KO11 cells
as comparedwithwild-type cells, suggesting that POLR3E
was not limiting under our experimental conditions, it is
likely that in other cell types or conditions in which the
Polr3e gene is less transcribed, inhibition by the MIR,
which, as mentioned above, reduces expression of lowly
expressed EGFP, leads to less Pol III activity. Under such
a condition, inhibition by theMIRmight constitute a neg-
ative feedback loop,where overactivated Pol III would lead
to increasedMIR transcription and thus decreased expres-
sion of POLR3E, leading in turn to decreased Pol III
activity.

How frequent is inhibition of Pol II transcription by an
embedded Pol III transcription unit? A stringent analysis
of Pol III occupancy in HeLa and IMR90Tert cells revealed
only a handful of Pol III-occupied loci embedded within
Pol II-occupied genes, but, in all of these cases, the Pol
III peaks coincided with accumulations of Pol II. Thus,
in these particular cultured cells, there are few potential
cases. However, there is a very large number of unoccu-
pied SINEs within Pol II transcription units: The observed
tissue-specific expression of SINEs and tRNA genes (Ditt-
mar et al. 2006; Faulkner et al. 2009) raises the possibility
that some of the embedded Pol III transcription units cre-
ate roadblocks for expression of their host Pol II genes in a
tissue-specific manner. Moreover, there might be mecha-
nisms other than elongation block for regulation of Pol II
genes by nested Pol III transcription units.

The ineffectuality of MIR RNA overexpression to im-
pact on Polr3e expression even in MIR KO11 cells, the in-
hibitory effect on EGFP expression of an actively
transcribed MIR embedded antisense within the EGFP
transcription unit, and, perhapsmost telling, the accumu-
lation of Pol II in the first Polr3e intron when—and only
when—theMIR is present all argue for amechanism of in-
hibition entailing a transcriptional interference mecha-
nism. Transcriptional interference in overlapping genes
can be modeled in several ways (Shearwin et al. 2005),
one of which is disruption of transcription factor binding

Figure 5. UCSCgenomebrowser views showing examples of Pol
II accumulations overlapping with Pol III peaks within the
VAC14 (A), SHF (B), CTC1 (C ), and HES7 (D) genes. Tracks are
from ENCODE (RPC1) and Liu et al. (2014) (Pol II).
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by the traveling polymerase. In our case, the MIR tran-
scription unit does not overlap with the Polr3e promoter
andmust thus be interfering with Pol II elongation within
the Polr3e gene. Interference might result from one of the
Pol III transcription factors forming a roadblock to Pol II
elongation. TFIIIC, which binds directly to the A and B
boxes and recruits TFIIIB, has a low enrichment relative
to TFIIIB subunits in ChIP-seq analyses, consistent with
it detaching from the template after establishment of
the Pol III transcription initiation complex (Roberts
et al. 2003, 2006; Moqtaderi and Struhl 2004; Soragni
and Kassavetis 2008). TFIIIB, on the other hand, has very
high occupancy and is responsible, in yeast, for the inhibi-
tion by a Pol III tRNA gene of readthrough Pol II transcrip-
tion from an upstream lncRNA gene, an effect that was
independent on orientation (Korde et al. 2014). A TFIIIB-
mediated effect might account for some of the cases that
we observed in the human genome, which involve sense
as well as antisense Pol III transcription units (Fig. 5),
but, in the case of the MIR, the results of the EGFP assay
suggest that a major roadblock function occurs only when
the MIR is antisense. Thus, a more likely possibility is
that, in this case, inhibition results from head-to-head col-
lision of Pol II and Pol III. The Pol II encountering Pol III
might either just slow down, pause, or have to backtrack
to allow cleavage of the nascent RNA 3′ end and realign-
ment into the catalytic site. In yeast, the collision of
two Pol II machineries transcribing from convergent pro-

moters was shown to block transcription and lead to Pol
II polyubiquitylation and degradation (Hobson et al.
2012). Thus, an interesting question iswhether full-length
Polr3e mRNAs can be generated only when the MIR hap-
pens to not be transcribed by Pol III or whether Pol II, per-
haps in collaboration with some bypass factors, can, at
least on occasion, transcribe through the roadblock.

Materials and methods

Cell culture, transfection, and lentiviral transduction

V6.5mouse ES cells weremaintained on 0.1% gelatin in DMEM/
F-12 GultaMAX (Gibco) supplemented with 15% ES cell-quali-
fied fetal bovine serum (Gibco), 100 U/mL penicillin, 100 µg/
mL streptomycin, 0.1 mM nonessential amino acids, 0.1 mM
2-mercaptoethanol, and 1000 U/mL LIF (Merck Millipore). Flp-
In T-REx 293 cells were cultured in DMEM containing 10% tet-
racycline-free fetal calf serum (Bioconcept) and penicillin/strep-
tomycin. Mouse ES cells and 293 cells were transfected with
1:4 and 1:3 (microgram:microliter) ratios of DNA to FuGENE
HD transfection reagent (Promega), respectively. For production
of lentiviral particles, 293FT cells were cotransfected with
psPAX2, pMD2.G, and pRRLSIN.cPPT.PGK-GFP.WPRE plasmid
(Addgene) containing the MIR and ∼140 bp of 5′ and 3′ flanking
genomic sequence (the same sequence used for EGFP assay).
The supernatant of transfected cells was collected 48 and 72 h af-
ter transfection, and the lentiviral particles were concentrated by
ultracentrifugation. Transduced ES cells were selected by FACS.

Figure 6. The MIR effect on Polr3e is me-
diated in cis. (A) RT-qPCR detecting the
MIR (left panel) and total Polr3e mRNA
(right panel) in wild-type ES cells trans-
duced with a GFP lentiviral construct ei-
ther containing the MIR (MIR GFP) or
without the MIR (GFP), as indicated on
the X-axis. The results were normalized to
Actb mRNA. Error bars represent ±SEM.
n = 3. The P-values were calculated using
Student’s t-test. (B) As in A but in KO11
cells. (C ) Western blot performed with
anti-POLR3E and anti-α-tubulin antibodies
with protein extracts from wild-type ES
cells transduced with MIR GFP or GFP len-
tiviral constructs. (D) As in C but with
KO11 ES cell extracts. (E) Positions of prim-
ers used for qPCR after ChIP in wild-type
and KO11 cells. (F ) ChIP-qPCR performed
with anti-RPC4 antibody. The tRNA Leu
gene upstream of the Polr3e TSS served as
a positive control. A Pol II-occupied locus
(Mycbp) served as a negative control. The
qPCR signals were normalized to input. Er-
ror bars and P-values are as in A. (G) ChIP-
qPCR performed with anti-RPB2 antibody.
The Polr3eTSS served as a positive control,
and a Pol III-occupied locus (a tRNA Leu
gene on chromosome 13) served as a nega-
tive control. The qPCR signals were nor-
malized to the input. Error bars and P-
values are as in A.
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CRISPR/Cas9 genome engineering

CRISPR/Cas9 genome engineering was performed as described
(Ran et al. 2013). To delete the MIR genomic sequence, preserv-
ing its 3′ end region, we used two short guide RNAs (sgRNAs)
(see Supplemental Fig. S4A). After cotransfection of mouse ES
cells with pSpCas9(BB)-2A-GFP vectors containing sgRNA1
and sgRNA2 and selection by FACS, we screened for MIR dele-
tions by PCR on genomic DNA of single-cell-derived ES cells
with a pair of primers flanking the MIR (Supplemental Fig. S4B)
and by sequencing of some of the PCR products (Supplemental
Fig. S4C). We obtained different deletion lengths (Supplemental
Fig. S4D).

RNA extraction and RT-qPCR

Total RNA was extracted and DNase I-treated with the miR-
Neasy minikit (Qiagen). One microgram of RNA was reverse-
transcribed withM-MLV reverse transcriptase (Promega) with ei-
ther gene-specific primers or randomhexamers. The sequences of
the qPCR primers are listed in Supplemental Table S2.

Western blot, Northern blot, and in vitro transcription

The primary antibodies for Western blots (anti-POLR3E [RPC5],
CS1542 [Hu et al. 2002], and anti-γ- and α-Tubulin [Santa Cruz
Biotechnology]) were used at 1:1000 dilutions. For Northern
blots, RNA was extracted with TRIzol reagent (Ambion) accord-
ing to the manufacturer’s instructions, and 20 µg (Fig. 3D) or 10
µg (Supplemental Fig. S2) of total RNAwas used. The oligonucle-
otide probe sequences are listed in Supplemental Table S2. In vi-
tro transcription was performed according to Lobo et al. (1992).

ChIPs

ChIPs were performed as described in Orioli et al. (2016). Chro-
matin was sheared with a Bioruptor sonicator (Diagenode). Soni-
cated chromatin from 5million cells was used for each ChIP. The
antibodies for immunoprecipitation were anti-RPB2 (POLR2B)
(Santa Cruz Biotechnology, H-201) and anti-RPC4 (POLR3D)
(Canella et al. 2012). The sequences of qPCR primers used after
ChIP are listed in Supplemental Table S2.
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Figure S1. Alignment of the MIR-

like sequence in the first intron of the 

Polr3e gene in different mammalian 

species. The alignment was 

performed with ClustalW with the 

default settings for nucleotide 

sequences; the graphic representation 

was generated with Jalview. The A 

and B boxes are indicated.   
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KO WT

5S rRNA

U6 snRNA

Pre-tRNA Ile

U3 snoRNA

Figure S2. Northern blot for Pol III transcribed 5S rRNA, U6 snRNA, and pre-tRNA Ile 

in MIR KO and WT ES cells. The Pol II-transcribed U3 snoRNA was used as an 

internal control for RNA loading. 
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Figure S3. Pol III and Pol II occupancy sampling over the Polr3e gene. A) Position of 

primers used for qPCR after ChIP. The exon-intron structure of the Polr3e gene is 

redrawn from the Ensembl genome browser. B) ChIP-qPCR performed with an anti-

RPC4 antibody. C) ChIP-qPCR performed with an anti-RPB2 antibody. 
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KO 8,11,33 CTAGGTTCGCCTTATCCCTTTGAAGCCGGTGTGTGGTTTAAAATAGGAAAGGACC---------------------------------------------
WT         CTAGGTTCGCCTTATCCCTTTGAAGCCGGTGTGTGGTTTAAAATAGGAAAGGACCCAGGGTTATGCAATTCACGTCGCTAATCAGCTGCTATATTGAAGA

      
KO 8,11,33 ----------------------------------------------------------------------------------------------------
WT         GGTAGGATTTGAACCTGTAAGGTTTTGCACGGCAGTCCAACCTCTTAACCACTACACCATACTGCCTTTTACCAAAGAGATGTGCAGCATGTTAGTTAAG

KO 8,11,33 ----------------TTGGCATCAGCTAGATTTGGATTTCTTTACCTGTTTTCTTGGGGGGCTGTGACCTTGGGTAAACCAATTCGAAGTT 
WT         AATAAAACCAAGGCTCTTGGCATCAGCTAGATTTGGATTTCTTTACCTGTTTTCTTGGGGGGCTGTGACCTTGGGTAAACCAATTCGAAGTT
   

KO 16      CTAGGTTCGCCTTATCCCTTTGAAGCCGGTGTGTGGTTTAAAATAGGAAAGGACCCAGGG----------------------------------------
WT         CTAGGTTCGCCTTATCCCTTTGAAGCCGGTGTGTGGTTTAAAATAGGAAAGGACCCAGGGTTATGCAATTCACGTCGCTAATCAGCTGCTATATTGAAGA

      
KO 16      ----------------------------------------------------------------------------------------------------
WT         GGTAGGATTTGAACCTGTAAGGTTTTGCACGGCAGTCCAACCTCTTAACCACTACACCATACTGCCTTTTACCAAAGAGATGTGCAGCATGTTAGTTAAG

KO 16      -------------------------------------------------------------GCTGTGACCTTGGGTAAACCAATTCGAAGTT 
WT         AATAAAACCAAGGCTCTTGGCATCAGCTAGATTTGGATTTCTTTACCTGTTTTCTTGGGGGGCTGTGACCTTGGGTAAACCAATTCGAAGTT
   

KO 29      CTAGGTTCGCCTTATCCCTTTGAAGCCGGTGTGTGGTTTAAAATAGGAAAGGACCCAGGG----------------------------------------
WT         CTAGGTTCGCCTTATCCCTTTGAAGCCGGTGTGTGGTTTAAAATAGGAAAGGACCCAGGGTTATGCAATTCACGTCGCTAATCAGCTGCTATATTGAAGA

      
KO 29      ----------------------------------------------AACCACTACACCATACTGCCTTTTACCAAAGAGATGTGCAGCATGTTAGTTAAG
WT         GGTAGGATTTGAACCTGTAAGGTTTTGCACGGCAGTCCAACCTCTTAACCACTACACCATACTGCCTTTTACCAAAGAGATGTGCAGCATGTTAGTTAAG

KO 29      AATAAAACCAAGGCTCTTGGCATCAGCTAGATTTGGATTTCTTTACCTGTTTTCTTGGGGGGCTGTGACCTTGGGTAAACCAATTCGAAGTT 
WT         AATAAAACCAAGGCTCTTGGCATCAGCTAGATTTGGATTTCTTTACCTGTTTTCTTGGGGGGCTGTGACCTTGGGTAAACCAATTCGAAGTT
   

C

5’ AAAATAGGAAAGGACCCAGGGTTATGCAATTCACGTCGCTAATCAGCTGCTATATTGAAGAGGTA
3‘ TTTTATCCTTTCCTGGGTCCCAATACGTTAAGTGCAGCGATTAGTCGACGATATAACTTCTCCAT

   
  GGATTTGAACCTGTAAGGTTTTGCACGGCAGTCCAACCTCTTAACCACTACACCATACTGCCTTTTA 3’
  CCTAAACTTGGACATTCCAAAACGTGCCGTCAGGTTGGAGAATTGGTGATGTGGTATGACGGAAAAT 5’ 

Target 1
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A boxB box
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Figure S4. CRISPR/Cas9-mediated deletion of the MIR in mouse ES cells. A) 

sgRNA design for deletion of the MIR. The MIR sequence, the A and B boxes, 

and the target sequences are shown. The PAM sequences are shown in bold, and 

the predicted double strand break sites are indicated by double arrows. B) Products 

of PCRs performed on genomic DNA from several clones with a pair of primers 

flanking the MIR, separated on an agarose gel. C) Characterization of the deletions 

in different MIR KO clones. The sequencing results of the PCR products obtained 

from several clones are shown aligned to the WT sequence. The A (yellow) and B 

(green) boxes are highlighted; the MIR sequence is shown in bold. D) Schematic 

view of the deletions in the different clones. The MIR A (yellow) and B (green) 

boxes, TSS (arrow), and termination site (end of black line) are shown. 

 

Table S1. List of ENCODE Pol III peaks located inside human Pol II genes. The 

table lists all ENCODE RPC1 peaks located inside Pol II transcription units. 

Column A gives links to a UCSC genome browser session showing RPC4, RPC1, 

ENCODE RPC1, Pol II, DSIF, and NELF tracks. The pol II, DSIF, and NELF 

tracks are from Liu et al., 2014. Column D indicates the direction of the Pol III 

transcription unit relative to the genome.  Column G refers to scores (columns R, 

S, and T) calculated as in Canella et al., 2012, for the regions indicated (columns P 

and Q), for anti-RPC4 ChIP-seq data obtained from IMR90Tert cells under serum 

replete conditions (Orioli et al. 2016). Column H refers to scores (columns U, V, 

W) calculated as in Canella et al., 2012, for the regions indicated (columns P and 

Q), for the ENCODE anti-RPC1 ChIP-seq data obtained from HeLa cells. Column 

I refers to scores (column X), calculated as in ENCODE, for the regions indicated 

(columns P and Q).  Y stands for yes, N for no. Column L indicates the direction 

of the Pol II gene relative to the genome.  

“Table S1 is available at http://genesdev.cshlp.org/content/31/4/413/suppl/DC1” 
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!RT$qPCR!
Oligonucleotide*name* Sequence*(5’*to*3’)*

MIR@*Fwd* GACTGCCGTGCAAAACCTTA*
MIR@*Rev* TTATGCAATTCACGTCGCTAA*

Total*Polr3e@*Fwd* AGAGACAGTTTGTGCTCACG*
Total*Polr3e@*Rev* TGAGACGCCACTGAAGAGTA*
Pre@Polr3e@Fwd* CTGTTGGCTGCTACTGAACA*
Pre@Polr3e@Rev* CTCTTCGCAGTGCTTTGACT*

Mature*Polr3e@*Fwd* CACATATTCCTCAAAGCTGATGG*
Mature*Polr3e@*Rev* GATGCCATGTAAAGGTGTCAGG*

Actb@*Fwd* CTAAGGCCAACCGTGAAAAGAT*
Actb@*Rev* CACAGCCTGGATGGCTACGT*

Gapdh@*Fwd* AGGTCGGTGTGAACGGATTTG*
Gapdh@*Rev* TGTAGACCATGTAGTTGAGGTCA*

!

!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!ChIP$qPCR!

Oligonucleotide*name* Sequence*(5’*to*3’)*
MIR@*Fwd* TTCGCCTTATCCCTTTGAAG*

MIR@*Rev*(WT)* CAGTATGGTGTAGTGGTTAAG*
MIR@*Rev*(KO11)* TACTCTTCTCATTAGCTGTGC*

chr7@tRNA*Leu@*Fwd* TTAGAAAACGACGTCAACAGC*
chr7@tRNA*Leu@*Rev* GACAAAAGAAAAAGCCTGCCT*
Polr3e*TSS@*Fwd* CATTGTGGGTAAGAGGAAGC*
Polr3e*TSS@*Rev* TATCAGGCAGCGGCCATGTTC*
Mycbp@*Fwd* ACTCGAAGCGCGAGCAGT*
Mycbp@*Rev* CTCACCTTTCGTCAGCGTGT*

chr13@*tRNA*Leu@*Fwd* AGGTTCACGGAAGGTCTG*
chr13@*tRNA*Leu@*Rev* CTATGGCTTCCTCGCTCTG*

Locus*1@*Fwd* *****************GCTTTCGGAAGAGTGGGAAG*
Locus*1@*Rev* ******************AGAGTTGACCAGGTTCAACG*
Locus*2@*Fwd* ****************CACAGACACAGAAAGGAGACC*
Locus*2@*Rev* *******************ACCTCACAGTCCTCAACTCG*
Locus*3@*Fwd* AGAGACAGTTTGTGCTCACG*
Locus*3@*Rev* TGAGACGCCACTGAAGAGTA*
Locus*4@*Fwd* *******************CATCGGCAGGTTTTGCTTG*
Locus*4@*Rev* ****************CTTTAGCACTTTATCCACCTCC*

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Northern!blot!
Oligonucleotide*name* Sequence*(5’*to*3’)*

MIR* TTATGCAATTCACGTCGCTAA*
U87*snoRNA* TCACACCCATGACTGCCACT*
5S*rRNA* TTAGCTTCCGAGATCAGACG*
U6*snRNA* CACGAATTTGCGTGTCATCC*
Pre@tRNA*Ile* ATCGCTTACGCCTAGCACTG*
U3*snoRNA* GGAGGGAAGAACGATCATCA*

Yeganeh_Table*S2*

Table S2. Sequences of oligonucleotides used in RT-qPCR, ChIP-qPCR, and 

northern blots. 
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Regulation of the MIR in differentiation 
 
We showed that the MIR located in the first intron of the Polr3e gene is highly 

occupied by Pol III in different cells and tissues, and that this reduces Pol II 

transcription of the Polr3e gene. An interesting question is whether differential 

occupation of the Pol III gene under different conditions might result in differential 

expression of the Polr3e gene. To address this question, we first tried to increase Pol 

III transcription of the MIR by knocking down the Pol III repressor Maf1 in ES cells, 

in order to see whether this would reduce Polr3e mRNA level. However, Maf1 

knockdown did not increase MIR RNA levels in ES cells, suggesting that MIR Pol III 

transcription is already maximal (data not shown). We then took advantage of the ES 

cells capability for differentiation to examine MIR, and Polr3e, regulation. To induce 

exit from the stem cell state and differentiation, we kept the cells in a medium lacking 

leukemia inhibitory factor (LIF). LIF is a cytokine whose usage in mouse ES cells 

medium stimulates their self-renewal and inhibits their differentiation. In the 

differentiated cells as compared to ES cells, we observed an up-regulation of the MIR, 

while the Polr3e level was slightly decreased (Figure 2-2).   
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Figure 2-2. Regulation of the MIR in differentiation. A) Light microscopy of 

mouse ES cells, and differentiated cells. B) qPCR results for pluripotency factor 

Oct4, MIR, and Polr3e, indicated as relative to ES1. The results were normalized 

to Gapdh mRNA level. 
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Given these results, we decided to induce a more precise, lineage-specific 

differentiation of the ES cells. We induced neural differentiation by producing 

embryoid bodies in a suspension medium, followed by seeding the cells in a neural 

differentiation-inducing medium. Neural differentiation was confirmed by 

microscopy, immunostaining, and qPCR of mRNAs coding for pluripotency and 

neural markers. We showed that there is an increase in the level of MIR RNA in 

differentiated cells versus ES cells, accompanied by a decrease in Polr3e mRNA 

levels (Figure 2-3). These results indicate that transcription of the MIR can be 

regulated under different conditions, and suggest that this impacts directly on Pol II 

transcription of the Polr3e gene.  
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Figure 2-3. Regulation of the MIR in neural differentiation. A) Light 

microscopy and anti-MAP2 staining of the differentiated neural cells. B) qPCR 

results for pluripotency factors Oct4 and Nanog, neural markers Nestin and 

Map2, Polr3e and MIR, indicated as relative to ES. The results were normalized 

to Gapdh mRNA level. Error bars represent ± SD and n=3.   
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Chapter III – RNA polymerase III regulation in liver 
regeneration 
 

Summary 
 

Pol III is highly regulated during development, differentiation, and proliferation, 

probably to adapt the cell to any changes requiring either quantitative or qualitative 

changes in its translational program. Dynamic changes of Pol III activity have been 

studied in several cell lines, but very rarely in normal tissues. Furthermore, although it 

has been shown that many active Pol III genes reside close to Pol II genes and 

H3K4me3 chromatin mark, it was not shown whether the dynamics of Pol III 

transcription is coordinated with that of Pol II transcription and H3K4me3 occupancy. 

In this study, we have used a partial hepatectomy (PH) system followed by Pol III, 

H3K4me3, and Pol II ChIP-seq in mouse liver to study the dynamics of Pol III 

occupancy when the liver enters regeneration and hepatocytes start dividing, and to 

determine whether Pol III occupancy changes are correlated with changes in 

surrounding H3K4me3 and Pol II occupancy (Figure 3-1). 

 

First, we showed that before PH, tRNA genes that have surrounding H3K4me3 and 

Pol II peaks have a generally higher Pol III occupancy score as compared with those 

with Pol III peak only. For SINEs however, these scores were not much different. For 

both tRNA genes and SINEs, the surrounding Pol II peaks generally corresponded to 

the TSS of a Pol II gene. 

 

Next, we examined the dynamics of Pol III after PH. We showed that Pol III 

occupancy is generally higher in regenerating liver cells 36 hours after PH (TP36) 

versus in resting cells (TP0), an effect that was most pronounced for lowly occupied 

loci. We identified some genes not occupied by Pol III at TP0 and becoming occupied 

at TP36. This increase in Pol III occupancy was accompanied by an increase in levels 

of several pre-tRNAs and mRNAs coding for Pol III subunits and transcription 

factors. The increase in Pol III occupancy on tRNA genes classified according to 

isoacceptors and isotypes was very general, with no clear specific effect on one or the 

other isoacceptor or isotype class.  
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Last, we investigated how different Pol III genes respond differentially to liver 

regeneration. We showed that tRNA genes without surrounding Pol II and H3K4me3 

peaks, which tend to be lowly occupied at TP0, are those that changed the most with 

respect to Pol III occupancy after PH. On the other hand, tRNA genes with 

surrounding H3K4me3 and Pol II peaks generally changed less with respect to Pol III 

occupancy. Consistent with this observation, only a very low percentage of tRNA 

genes that changed significantly from TP0 to TP36 had surrounding Pol II peaks. 

When we looked at Pol III occupancy changes by chromosome, we observed a 

chromosomal bias with chromosome 13 having a disproportionately large number of 

changing genes. We showed that there are a few tRNA gene clusters on chromosome 

13 and other chromosomes with the genes in the cluster regulated more similarly to 

each other than to genes outside the clusters on the same chromosome. 

 

In this work, I analyzed and interpreted data, did the qPCR experiments, wrote a 

manuscript draft and contributed to revised versions (Yeganeh et al. 2018). 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Pol III
?

Pol III

Pol II
?

Figure 3-1. Schematic view of the project summary. In this project, the main 

aim was to compare Pol III occupancy levels in Pol III genes close to, or far 

from, Pol II peaks, and to determine whether these categories of genes were 

regulated differentially during liver regeneration. 
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ABSTRACT

Mouse liver regeneration after partial hepatectomy
involves cells in the remaining tissue synchronously
entering the cell division cycle. We have used this
system and H3K4me3, Pol II and Pol III profiling
to characterize adaptations in Pol III transcription.
Our results broadly define a class of genes close
to H3K4me3 and Pol II peaks, whose Pol III occu-
pancy is high and stable, and another class, distant
from Pol II peaks, whose Pol III occupancy strongly
increases after partial hepatectomy. Pol III regula-
tion in the liver thus entails both highly expressed
housekeeping genes and genes whose expression
can adapt to increased demand.

INTRODUCTION

Compared to RNA polymerase (Pol) II promoters, Pol III
promoters are quite simple with just three main types of
structures. Type 1 promoters occur only in the 5S genes, type
2, by far the most abundant, are present in tRNA genes,
most SINEs, and some other genes, and type 3 are present
in less than fifteen annotated genes in both the human and
mouse genomes (1,2). Despite this relative uniformity, dif-
ferent annotated Pol III genes have very different levels of
Pol III occupancy, which correlate with different levels of
transcriptional activity (3–5). In fact, one of the surprises of
early genomic studies was the discovery that some 40–50%
of annotated Pol III genes are not occupied by Pol III and

transcriptionally silent, an observation that is only partially
explained by poor promoter sequences (2–4,6–9).

Expressed Pol III loci differ from silent ones by the
nearby presence of histone marks such as H3K4me3 (2,6–
8,10) typical of chromatin regions that are or have been ac-
tively transcribed by Pol II ((11) and references therein).
Moreover, active Pol III loci tend to reside close to Pol II
TSSs and to peaks of Pol II occupancy, which suggests that
transcription of nearby Pol II and Pol III genes is some-
how co-regulated (2,5–8,10). Pol III transcription is indeed
tightly regulated, allowing the cell to adapt to changing
needs in biosynthetic capacity resulting from, for example,
cell growth and proliferation. Furthermore, overexpression
of Pol III genes is observed in many transformed cells (12–
17). Similarly, genome-wide Pol III occupancy comparisons
of mouse hepatocarcinoma cells with normal mouse liver
cells (18), or of precursors with induced pluripotent cells
and human H1 ES cells (10), all point to higher Pol III tran-
scription in dividing as compared to differentiated cells.

Genome-wide Pol III occupancy and transcription have
been studied in only a few dynamic systems, and very rarely
in a normal tissue. Studies comparing Pol III occupancy
in human serum-starved versus serum-replete IMR90Tert
cells (4), in the mouse liver at different times during the cir-
cadian cycle (19), in mouse liver and brain at different stages
of development (20), or in THP-1 cells and THP-1-derived
macrophages by PMA treatment (5) have all emphasized
that different Pol III genes respond differently to chang-
ing cellular conditions. In the last case, concerted down-
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regulation of certain tRNA genes in clusters and contact
domains was observed.

Here, we have taken advantage of the synchronous hep-
atocyte proliferation occurring after partial hepatectomy
(PH) to examine, in a normal tissue, the dynamics of Pol
III occupancy upon transition from a resting G0 state to
a proliferating state. We find two classes of active Pol III
genes, one class with high and relatively static Pol III oc-
cupancy, often characterized by proximity to Pol II TSSs
and Pol II peaks, and a second class with much lower Pol
III occupancy, devoid of nearby Pol II peaks, but highly dy-
namic. The resulting picture is one where a network of Pol
III genes, often located close to Pol II TSSs, ensures steady
production of essential Pol III RNA products in the differ-
entiated tissue, whereas another, expressed at low levels in
the differentiated tissue, ensures the increased synthesis of
Pol III products needed in preparation for cell division.

MATERIALS AND METHODS

Animals, partial hepatectomies, and chromatin immunopre-
cipitations (ChIP)

C57/BL6 12–14-week-old male mice were housed under
a 12 h light/12 h dark cycle regimen for two weeks with
food available during the night. Two-third partial hepatec-
tomies were performed as described (21–23). Three pools of
three mice were processed in one batch between ZT01.5 and
ZT02.5, with three mice operated every 20 minutes. The liv-
ers of the three mice were pooled for each timepoint. ChIPs
were performed as described (24). The following antibod-
ies were used: anti-RPC4 (CS681) (2), anti-H3K4me3 (Ab-
cam, ab8580) and anti-RPB2 (Santa Cruz Biotechnology,
sc-673-18). It should be noted that the anti-H3K4me3 an-
tibody used scored as the best ENCODE-validated anti-
H3K4me3 antibody but is 60–66% specific for H3K4me3,
with crossreaction to H3K4me2 and very weak crossreac-
tion with H3K4me1 (25).

Ultra-high-throughput sequencing and tag alignment

Ten nanogram of immunoprecipitated chromatin was used
to prepare sequencing libraries with the Diagenode Mi-
croPlex Library Preparation kit (catalog no C05010011) as
specified by the manufacturer, with a total of 14 amplifica-
tion cycles. One or several bar-coded sequencing libraries
were then loaded onto one lane of a HiSeq 2000 flow cell
and paired-end sequenced at 50 or 100 cycles. For each con-
dition, we sequenced both input chromatin and the corre-
sponding ChIP samples.

The first fifty nucleotides of each sequence were mapped
onto the UCSC mouse genome version NCBI37/mm9 via
the eland extended mode of ELAND v2e in the Illumina
CASSAVA pipeline v1.8.2. We first retrieved fragments
with unique matches at both ends. The tags with multi-
ple matches on the mouse genome were then aligned via
fetchGWI with an allowed maximum of 500 matches per
tag. When tag alignment revealed multiple possible frag-
ments for a tag pair, all possible fragments were kept and
given a weight corresponding to the normalized size proba-
bility as determined from the size probability distribution of

the unique fragments. Only fragments sequenced once (non-
redundant fragments) were considered in the analysis.

Score computation

We first normalized the number of fragments aligned onto
the genome in each sample relative to the median num-
ber of fragments aligned onto the genome across all sam-
ples (all time points). Scores were computed as the log2-
ratio between counts in paired ChIPs and Input samples
to which a pseudocount value of 16 was added. For RPC4
ChIP scores, the counts were assigned to a previously de-
fined list of mouse annotated Pol III genes and Pol III oc-
cupied loci (see (18)), with each annotated RNA-coding re-
gion extended by 150 bp on each side. As shown in Sup-
plementary Figure S1, the correlation between the RPC4
scores calculated from paired-end sequencing (this work)
and single-end sequencing (18) was very high (R = 0.962).
For H3K4me3 and RPB2, the regions considered extended
1000 bp upstream and downstream of the Pol III loci TSSs.
One fragment was worth one count, and fractional counts
were attributed in case of a partial overlap between a frag-
ment and an extended locus.

To establish whether the score value at a particular locus
was significantly higher than in other regions of the genome,
the score was compared to the distribution of scores com-
puted in non-overlapping bins (400 bp for RPC4 and 2000
bp for H3K4me3 and RPB2) over the entire genome. The
threshold value was obtained applying a Bonferroni correc-
tion for the multiplicity of loci. The calculated scores for all
samples are listed in Supplementary Table S1.

Data quality

To monitor sample quality, we produced mean-difference
scatter plots of mouse genome bin counts and Pol III loci
(see (26)). Samples displaying well-differentiated RPC4 oc-
cupancy scores on Pol III loci compared to scores on the rest
of the genome were considered of good quality. 134 tRNA
genes out of 433 (31%) had scores below the cutoff in all
replicates and all time points. Supplementary Figures S2A
and B show the score reproducibility for biological repli-
cates obtained at TP0, TP36, TP48, and TP60, for RPC4
and RPB2 occupancy, respectively. The scores from repli-
cates are, in some cases, slightly shifted relative to the X =
Y line, but the correlation coefficients are always larger than
0.9.

Statistical modeling

To investigate dynamical changes of RPC4 scores we con-
sidered a general linear model with four levels (correspond-
ing to the four time points, i.e. TP0, TP36, TP48 and
TP60) and two replicates per level and per ChIP-seq. The
model was estimated through empirical Bayes method im-
plemented in the Limma package (27). That method allows
a robust estimation of the variance ensuing from the vari-
ance across genes. For each contrast of interest (e.g. TP36
versus TP0) a P-value and a T statistic were computed for
each locus. To take into account the multiplicity of null hy-
potheses, false discovery rates (FDR) were estimated from
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the P-values (28). In particular, we estimated the propor-
tion of null P-values through a smoothing spline approach
(29) to increase power. Statistical significance was called for
genes showing a FDR <0.05.

Gene expression analysis

Total RNA was extracted using miRNeasy mini kit (Qia-
gen) with on-column DNase I treatment. One microgram
of RNA was used for cDNA synthesis with random hexam-
ers and M-MLV Reverse Transcriptase (Promega). qPCRs
were performed with appropriate primers (see Supplemen-
tary Table S2) and SensiFAST SYBR kit (Bioline) under
the following conditions: an initial denaturing step (95◦C
10′) followed by 40 cycles of incubations at 95◦C for 15′′,
58◦C for 20′′, and 72◦C for 20′′. qPCR reactions were per-
formed in triplicate, with reactions lacking reverse tran-
scriptase serving as negative controls. Melting curve anal-
yses revealed single peaks for all reactions, and calculation
of primers efficiencies using standard curves indicated com-
parably high efficiencies (from 86 to 102%) for the different
primer sets. The relative expressions were analyzed with the
2!!Ct method.

RESULTS AND DISCUSSION

Association of RPC4 occupancy with H3K4me3 and RPB2
occupancy at TP0

In our experiments, mice were kept in 12 h light/12 h dark
cycle, with food available only during the night. PH was per-
formed always at the very beginning of the day (ZT01.5-
ZT02.5). We profiled H3K4me3, Pol II (RPB2 subunit),
and Pol III (RPC4 subunit) occupancy in parallel at dif-
ferent time points after PH by chromatin immunoprecipi-
tation followed by high throughput sequencing (ChIP-seq).
The Pol II and H3K4me3 occupancy data have been used
to study occupancy dynamics at Pol II genes (11). Here, we
used the same data as well as the Pol III data to determine
occupancy scores at Pol III genes, as described before (18)
(Supplementary Table S1).

We first explored the relationship between RPC4 occu-
pancy and presence of H3K4me3 and RPB2 peaks at TP0,
before PH. To avoid confusing signals from overlapping
peaks at closely spaced loci, we considered only ‘isolated’
loci, i.e., Pol III loci separated by at least 1.5 kb, unless oth-
erwise mentioned (437 out of 646 loci, Supplementary Ta-
ble S3, column D). We classified these loci into eight groups,
i.e., loci with a peak for each of the three factors tested, with
peaks for two of them, with a peak for only one of them, and
with no peaks (Table 1). The Rn5S and the Rn4.5S genes,
which are each tandemly repeated in the genome, displayed
only RPC4 peaks, and both RPC4 and H3K4me3 peaks, re-
spectively (Table 1 and Supplementary Table S3). We found
SINEs in all groups, whereas nearly all ‘other’ Pol III genes,
corresponding mostly to genes with type 3 promoters (see
Supplementary Table S3, genes labeled ‘other’, for a list),
had peaks for RPC4+H3K4me3+RPB2 (Table 1).

For tRNA genes, the largest group was the one with no
peaks (Table 1). Considering just Pol III occupancy, ∼56%
of isolated tRNA genes had no RPC4 peaks against ∼45%
of all tRNA genes (see Supplementary Table S3), indicating

that the proportion of silent tRNA genes is higher among
isolated genes than among all tRNA genes. This is in line
with the finding that in human cells, the median expression
level for tRNA genes increases with the number of neigh-
boring tRNA genes (5). The second and third largest groups
of isolated tRNA genes were the ones with both RPC4+
H3K4me3 peaks, and with RPC4 + H3K4me3 + RPB2
peaks, respectively. The group with RPC4 peaks only com-
prised about 10% of isolated tRNA genes, and the latter
proportion was similar for all tRNA genes (Table 1 and Sup-
plementary Table S3).

We then investigated whether the RPC4 occupancy scores
differed across groups and types of genes. We focused on
the groups with RPC4 peaks either i) alone or ii) with
H3K4me3 peaks or iii) with both H3K4me3 and RPB2
peaks. The average RPC4 tag density profile and the in-
dividual gene RPC4 occupancy scores were lowest in the
first group and much higher in the groups with H3K4me3
peaks or H3K4me3 + RPB2 peaks for isolated tRNA genes
(Figures 1A and B), an effect not seen for isolated SINEs
(Supplementary Figures S3A and B). RPC4 scores of tRNA
genes with RPC4 + H3K4me3 peaks, or RPC4 + H3K4me3
+ RPB2 peaks, were similar to each other but clearly higher
than scores of tRNA genes with only RPC4 peaks (Figure
1B). The SINEs in the three groups had very similar scores
(Supplementary Figure S3B). Comparing tRNA gene and
SINE scores in each of the three groups revealed no signif-
icant difference for loci with only RPC4 (P-value = 0.1162
and 0.0126 for replicates 1 and 2) but much higher scores
for tRNA genes with RPC4 + H3K4me3 peaks, or RPC4 +
H3K4me3 + RPB2 peaks (P-value < 2e–4).

The average tag density RPC4 profiles revealed low peaks
of RPC4 in RPC4 alone group (Figure 1A and Supple-
mentary Figure S3A, see also Supplementary Figure S4A).
H3K4me3 profiles for genes with RPC4+H3K4me3 peaks
revealed a prominent H3K4me3 peak upstream of the TSS,
and for tRNA genes a smaller one downstream, reflecting
the aggregate of individual tRNA genes with only an up-
stream peak, only a downstream peak, or both (see Supple-
mentary Figure S4B). In the case of tRNA genes and SINEs
in the third group, the profiles of accumulated tags were very
similar, with major upstream and minor downstream peaks
(Figure 1A, Supplementary Figures S3A and S4C). This di-
rectionality, with the Pol II peak generally upstream of the
Pol III peak, is consistent with previous observations in cul-
tured human cells (6,7,10,30).

CpG islands (within 1 kb around the TSS) (red dots in
Figure 1B and Supplementary Figure S3B, Supplementary
Table S3, column F) were strongly associated with the pres-
ence of RPB2 peaks and depleted in tRNA genes or SINEs
with RPC4 peaks only. Thus, at TP0, isolated SINEs tend
to have low Pol III occupancy regardless of the presence of
H3K4me3 or RPB2 peaks, whereas isolated tRNA genes
can have high Pol III occupancy scores, which are gener-
ally associated with the presence of nearby H3K4me3 and
RPB2 peaks.

The general proximity of active Pol III transcription units
to H3K4me3 and Pol II peaks, and to Pol II TSSs, has
been noted before (2,5–8,10,30), but the relationship among
these Pol II peaks, H3K4me3 peaks, and Pol II TSSs is not
clear. Separation of isolated Pol III genes into two groups,

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article-abstract/doi/10.1093/nar/gky1282/5266946 by guest on 30 D

ecem
ber 2018



	 56	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

4 Nucleic Acids Research, 2018

Table 1. Pol III loci grouped according to presence or absence of RPC4, H3K4me3 and RPB2 peaks

Pol III Pol III Pol III ––––- Pol III ––––- ––––- ––––-

Pol II Pol II ––––- Pol II ––––- Pol II ––––- ––––-

H3K4me3 ––––- H3K4me3 H3K4me3 ––––- ––––- H3K4me3 ––––-

tRNA genes (233) No. 37/29 0/0 41/49 2/2 24/22 3/1 1/1 125/129
% 15.9/12.4 0/0 17.6/21 0.9/0.9 10.3/9.4 1.3/0.4 0.4/0.4 53.6/55.4

SINEs (123) No. 18/9 9/2 10/5 7/14 42/23 2/6 5/12 30/52
% 14.6/7.3 7.3/1.6 8.1/4.1 5.7/11.4 34.1/18.7 1.6/4.9 4.1/9.8 24.4/42.3

Rn5s (51) No. 0/0 0/0 0/0 0/0 40/40 0/0 0/0 11/11
% 0/0 0/0 0/0 0/0 78.4/78.4 0/0 0/0 21.6/21.6

Rn4.5s (17) No. 0/0 0/0 17/17 0/0 0/0 0/0 0/0 0/0
% 0/0 0/0 100/100 0/0 0/0 0/0 0/0 0/0

Other Pol III genes (13) No. 11/11 0/0 1/1 1/1 0/0 0/0 0/0 0/0
% 84.6/84.6 0/0 7.7/7.7 7.7/7.7 0/0 0/0 0/0 0/0

The columns correspond to isolated loci grouped by presence or absence (as defined by a score above or below the cut-off) of Pol III, H3K4me3 or Pol II,
at TP0. The lanes correspond to different types of Pol III loci. The first number in each group corresponds to RPC4 and RPB2 replicates 1, and H3K4me3
replicate 2, the second to RPC4, RPB2 and H3K4me3 replicates 2. For each group, the percentage of total number of genes in the corresponding gene type
(shown in parenthesis in the first column) is indicated.
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Figure 1. (A) Average tag density profiles for the factors indicated in the left, for the isolated tRNA gene groups (columns). The profiles were computed
from replicate 2. (B) Scatterplots of RPC4 scores for isolated tRNA genes in replicate 1 and 2. The grouping into tRNA gene groups was done for each
replicate independently (for H3K4me3, only replicate 2 was used). P-value < 2e–4 for the two comparisons in both replicates (see text), permutation based
t test with 10000 permutations. Red and blue dots, genes with and without associated CpG islands, respectively. (C) As in B, but the orange and green dots
indicate genes >2.65 kb and <2.65 kb, respectively, from TSS or poly A site of Pol II genes.
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those within 2.65 kb of, and those removed by more than
2.65 kb from, a Pol II gene (TSS or poly A signal) (Supple-
mentary Table S3, column D) revealed that the large major-
ity (about 76% for tRNA genes and 89% for SINEs) of the
loci with a RPB2 (and H3K4me3) peak were close to known
Pol II genes (Figure 1C and Supplementary Figure S3C).

Visual examination of each of these <2.65 kb loci showed
that in 26 out if 27 cases for tRNA genes, and in 13 out of
16 cases for SINEs, the RPB2 and H3K4me3 peaks over-
lapped a Pol II TSS (See Supplementary Figure S5A for ex-
amples), and the three remaining SINEs were located within
Pol II transcription units. Pol II TSSs and tRNA genes
were often divergent, consistent with previous findings (8)
and explaining the major Pol II peak upstream of tRNA
genes observed above (Figure 1A). Further, of the 10 iso-
lated tRNA loci with an RPB2 peak >2.65 kb away from
a Pol II TSS, half contained a CpG island (see Supplemen-
tary Figure S5B for examples with and without a CpG is-
land). Thus, for most isolated tRNA genes and most SINEs
with RPC4 + H3K4me3 + RPB2 peaks, the H3K4me3 and
RPB2 peaks are explained by Pol II occupancy of a nearby
Pol II transcription unit TSS or, for a few tRNA genes, of
a nearby CpG island devoid of annotated TSSs. In HeLa
cells, Oler et al. (8) observed a much more general presence
of Pol II peaks upstream of Pol III-occupied tRNA genes,
independent of the presence of Pol II TSSs. This may reflect
a human-mouse cell difference or, more likely, a more spuri-
ous Pol II occupancy in the highly transformed HeLa cells
as opposed to normal mouse liver cells.

In the RPC4 + H3K4me3 tRNA gene group close to Pol
II loci (Figure 1C, green dots), the H3K4me3 peak was on a
nearby Pol II TSS in only half the cases; in the other half, the
tRNA gene was often surrounded by two H3K4me3 peaks
with no associated annotated feature (see Supplementary
Figure S5C for examples). In RPC4 + H3K4me3 tRNA
gene group far from Pol II loci, there was generally a single
major H3K4me3 peak on one side of the tRNA gene, in rare
cases associated with a CpG island (Supplementary Figure
S5D). These findings confirm the occurrence of H3K4me3
peaks close to active Pol III genes independent of the pres-
ence of Pol II peaks. Indeed, the 4.5S genes are a striking
example of this configuration (See Table 1). This suggests
that H3K4 trimethylation can occur at Pol III transcription
units independently of the nearby presence of Pol II and Pol
II transcription units. Such trimethylation might be brought
about through transcription factors such as MYC, which
can associate both with active Pol III genes (31), and with
the WDR5 subunit of H3K4 methylase complexes (32).

Thus, at tRNA genes, high RPC4 occupancy scores
are associated with proximity to either just H3K4me3
or H3K4me3 + RPB2 peaks, and in the latter case the
H3K4me3 and RPB2 peaks are generally associated with
Pol II TSSs. At SINEs, the RPC4 scores are similar in all
groups, but where RPB2 and H3K4me3 peaks are present,
these peaks are again mostly associated with Pol II TSSs or
lie within Pol II transcription units.

Changes in Pol III genome association after PH

The results above describe Pol III gene occupancy in the
liver, an organ composed largely of differentiated cells in

a G0 state. After PH, most of the remaining hepatocytes
exit from the G0 state and progress though the cell divi-
sion cycle. Under the conditions used here for PH, S phase
was reached after about 36 h (time point (TP) 36), G2/M
phase at 44–48 h (TP48), followed by a second, less syn-
chronous round of division (23). We examined RPC4 oc-
cupancy scores after PH. In general, RPC4 occupancy at
all Pol III loci (isolated or not) increased sharply from TP0
to TP36, and then stayed quite elevated at TP48 and TP60
(Figure 2A). We built a one-way ANOVA statistical model
with samples from TP0, TP36, TP48 and TP60 and ran an
estimation of the contrasts of interests with the empirical
Bayes method (see Materials and Methods). We did not find
statistical differences (score changes with an FDR < 0.05)
between the samples at TP36, TP48 and TP60. There was,
however, a significant difference between TP0 and the later
time points. We focused on the TP0 to TP36 transition, cor-
responding to liver cells in G0 (TP0) and S phase (TP36).

To illustrate the RPC4 score changes from TP0 to TP36,
we plotted the T statistic as a function of the average score
at TP0 (Figure 2B; see Supplementary Table S4 for FDR
and T statistic values). The RPC4 scores of most loci in-
creased, but 143 loci showed significant changes (red and
blue dots; FDR < 0.05) and corresponded to those with low
to medium RPC4 scores at TP0; in fact, 44 loci with signif-
icant changes from TP0 to TP36 had an RPC4 score below
cutoff at TP0 (blue dots). Thus, out of 433 tRNA genes,
295 were occupied by Pol III in at least one sample at TP0
or TP36. By comparison, 300 tRNA genes were found to
be active in at least one stage of mouse liver development
(20), among them the 295 found active here. This indicates
that as suggested for human tRNA genes (4), a population
of mouse tRNA genes is in a lasting repressed state.

In contrast to loci with low scores at TP0, most loci
with high scores at TP0 did not change significantly. In-
terestingly, out of the 143 changing genes with significant
changes, the most numerous ones (n=107), and the ones
with the largest changes (representing 100% of the genes in
the upper tertile) were tRNA genes. The remaining chang-
ing loci were SINEs (n=31), Rn5s (n=3), and other Pol III
genes, namely Rny1 and Rpph1.

To determine whether increased Pol III occupancy re-
flected increased transcription, we measured levels of
intron-containing tRNA precursors, which are unstable
and, therefore, better reflect transcription activity than
mature tRNAs. RT-qPCR revealed increases in precur-
sor tRNA levels derived from the 985-tRNAArg-TCT, 85-
tRNALeu-CAA, and 960-tRNATyr-GTA loci (Figure 2C),
consistent with increased Pol III occupancy reflecting in-
creased ongoing transcription (4,5).

The increase in Pol III transcription was accompanied by
increased levels of mRNAs coding for several transcription
factors and Pol III subunits including TBP, BDP1, RPC8
(Polr3h mRNA), RPC4 (Polr3d mRNA), and RPC5 (Polr3e
mRNA) (Figure 2D), in line with the observation that upon
transformation of cultured cells, the levels of some Pol III
transcription factors and subunits increase (17). We also ob-
served an increase in the ratio of Polr3g to Polr3gl mRNA
levels (Figure 2E), consistent with the observation that the
Polr3gl gene provides a basic protein level and the Polr3g
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Figure 2. (A) Distribution of RPC4 scores for Pol III genes across time and replicates. Dots represent Pol III genes, and their distribution is summarized
with their median (thicker horizontal bar), lower/upper quartile (box) and ±1.5 times the interquartile range (end of whiskers). Genes with an RPC4
occupancy score below the cutoff in all time points and replicates are not shown. (B) Plot of T statistics estimated for the TP0 to TP36 transition as a
function of the average RPC4 score across replicates at TP0. A positive value of the T statistic indicates a score increase from TP0 to TP36. Red and blue
dots, loci with an associated FDR<0.05, with blue dots indicating loci with an RPC4 score below cutoff at TP0. Black dots, loci with an associated FDR
>0.05. Gray dots, loci with scores below the cutoff at both TP0 and TP36. (C) RT-qPCR quantification (normalized to Actb mRNA level) of indicated
precursor tRNAs, relative to the values at TP0. Error bars represent ± SD. n = 3. The P-values were calculated using Student’s t-test. (D) RT-qPCR
quantification (normalized to Actb mRNA level) of the indicated mRNAs, relative to the values at TP0. Error bars and P-values as in C. (E) RT-qPCR
quantification of Polr3g relative to Polr3gl mRNA. Error bars as in C.

gene allows adaptation to conditions when more protein is
needed ((18) and references therein)

The observation that only a subset of tRNA genes dis-
played significantly increased RPC4 occupancy at TP36 as
compared to TP0 prompted us to investigate how this in-
creased occupancy affected tRNAs by isotypes and isoac-
ceptors. As shown in Supplementary Figures S6A and S6B,
the increase was general among tRNA isoacceptors and iso-
types, suggesting a translation globally more active in divid-
ing cells as compared to resting ones. We further wondered
whether tRNA genes differentially occupied by Pol III at
TP0 and TP36 were the same as the ones changing during
development, and thus compared them with those changing
between embryonic stage E15.5 and adult mouse liver (33).
Of the 107 tRNA genes with changing scores from TP0 to
TP36 and the 97 genes with changing scores from E15.5 to

adult liver, 51 were common, clearly more than expected by
chance (Supplementary Figure S7). Thus, there seems to be
a pool of tRNA genes that are especially susceptible to dif-
ferential regulation.

Changes in Pol III occupancy after PH correlate weakly with
changes in H3K4me3 but not with changes in RPB2 occu-
pancy

As shown above and consistent with previous observations
in cultured cell lines, hepatocytes respond to the need to di-
vide by differential increased Pol III transcription at indi-
vidual Pol III loci. Do these loci also display changes in
nearby H3K4me3 or Pol II occupancy? Both H3K4me3
and RPB2 scores around Pol III loci were overall quite sta-
ble (Figures 3A and B). We observed a weak correlation
(Pearson correlation coefficient = 0.51) between changes in
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Figure 3. (A) Distribution of H3K4me3 scores around Pol III genes across time. Dots represent isolated Pol III loci whose H3K4me3 scores are above the
cutoff. (B) Distribution of RPB2 scores around Pol III genes across time and replicates. Dots represent isolated Pol III loci whose RPB2 scores are above
the cutoff. (C) Scatterplot of RPC4 scores T statistic and H3K4me3 fold change from TP0 to TP36. All Pol III loci are shown (n = 646). (D) Plot of RPB2
scores T statistic estimated for the transition TP0 to TP36 as a function of the RPB2 average score, across replicates, at TP0. RPB2 scores were computed
in a region of ±1 kb around Pol III gene TSS. A positive value of the T statistic indicates an increase of score from TP0 to TP36. Red dots and black dots,
genes with an associated FDR< and >0.05, respectively; grey dots, genes with RPB2 scores below cut-off. (E) Scatterplot of RPC4 and RPB2 scores T
statistic, from TP0 to TP36. All Pol III loci are shown (n = 646). (F) Scatterplot of RPC4 T statistic and fold change of RPB2 occupancy at nearby Pol II
TSS (±250 bp of the Pol II TSS). The Pol III loci considered (both isolated and not isolated) had RPC4 scores above the cutoff and were within 2.65 kb
of a Pol II TSS with a corresponding RPB2 peak (n = 52).
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Pol III and surrounding H3K4me3 peaks at all Pol III loci
(Figure 3C, see also Supplementary Table S5), which was
slightly higher for Pol III loci with RPC4 scores above cutoff
in at least one sample at TP0 or TP36 (Pearson correlation
coefficient = 0.56, data not shown). In contrast, whereas
most Pol III occupancy changes were positive from TP0
to TP36, Pol II occupancy changes went in both directions
(Figure 3D and Supplementary Table S4), and the correla-
tion was very low (Figure 3E and Supplementary Table S5,
Pearson correlation coefficient = 0.04). On the other hand,
Pol III occupancy changes and Pol II occupancy changes
occurring specifically at nearby Pol II TSSs (±250 bp) were
generally positive for both Pol II and Pol III, consistent
with the observations of Van Bortle et al. (5), who observed
tRNA genes in domains to be down-regulated similarly to
nearby protein-coding genes during differentiation (Supple-
mentary Table S5). However, the Pearson correlation was
again very low (0.12) (Figure 3F). Thus, locally (±1 kb), on
a gene per gene basis, the dynamical changes are not quan-
titatively associated. This argues against a simple model in
which Pol III genes are submitted to the same transcription
regulation as nearby Pol II transcription units.

Pol III occupancy dynamics after PH in different groups

We next wondered whether there might be differences in
how Pol III occupancy scores change in Pol III genes with
different associated peaks. Whereas for SINEs, there were
no significant differences between the groups, for tRNA
genes, T statistic scores were highest in the RPC4 peak
only group (two-sided KS test P-value = 0.001439 for
RPC4 > RPC4 + H3K4me3, and 3.073e–11 for RPC4
> RPC4 + H3K4me3 + RPB2), and slightly higher in
the RPC4 + H3K4me3 peak group than in the RPC4
+ H3K4me3 + RPB2 group (P-value = 0.0004566) (Fig-
ures 4A and B, see also Supplementary Table S6). We fo-
cused on the differences between the RPC4 peak only and
the RPC4 + H3K4me3 + RPB2 groups, as these differences
were the largest. Out of 49 isolated tRNA genes with signif-
icantly different scores between TP0 and TP36, ∼53% had
RPC4 peaks alone and 6% had RPC4 + H3K4me3 + RPB2
peaks, whereas among 82 non-changing Pol III-occupied
isolated tRNA genes, these numbers were about 11% for
genes with RPC4 peaks alone, and 52% for genes with
RPC4 + H3K4me3 + RPB2 peaks (Supplementary Figure
S8A). Thus, the majority of genes with changing scores, and
those with the largest score differences between TP0 and
TP36, were tRNA genes with RPC4 peaks alone, which
tended to have lower scores at TP0 than genes in other
groups (Figure 1). This was not a peculiarity of isolated
tRNA genes, as a similar tendency was observed when all
RPC4-occupied stable and changing tRNA genes were con-
sidered (Supplementary Figure S8B).

We used MEME to search for de novo motifs and Cent-
riMo to search for known motifs within tRNA genes and
their flanking sequences (±250 bp), or just within flank-
ing sequences. We compared tRNA genes grouped accord-
ing to surrounding peaks (tRNA genes in Figure 4A) as
well as tRNA genes with or without significant RPC4 oc-
cupancy changes from TP0 to TP36 (tRNA genes in Fig-
ure 2B). We could not, however, identify any motifs differ-

entially enriched in a specific group of tRNA genes, or in
tRNA genes with changing versus stable RPC4 occupancy
(data not shown), suggesting that differential expression af-
ter hepatectomy is not directly linked to the presence of spe-
cific DNA elements within tRNA genes and their immediate
flanking sequences. Consistent with this observation, with
the exception of some differences in the A and B boxes, the
known promoter elements of tRNA genes, previous studies
failed to identify cis-regulatory sequences correlating with
differential tRNA gene expression in the adult liver (2), dur-
ing development (20), or in proliferating versus diffenrenti-
ated cells (34).

Last, we examined the chromosomal location of all of
the 143 genes with significant increased RPC4 occupancy
from TP0 to TP36. As shown in Figure 4C, the median
of T statistics was highest for genes on chromosome 13,
which, together with chromosomes 1 and 3, also seemed to
harbor a disproportionate number of changing genes. We
performed a chi-square independence test testing the null
hypothesis that the distribution of changing versus stable
Pol III genes on each chromosome was uniform. We ob-
tained a P-value of 4.21e−12, indicating a strong associa-
tion between chromosomal location and changes in Pol III
occupancy. As shown in the mosaic plot in Supplementary
Figure S9, chromosome 13 was indeed strongly enriched in
changing genes, and depleted in stable genes, relative to ex-
pected values. Chromosomes 1 and 3 harbored a relatively
high number of changing genes but contributed little to the
total chi-square score.

tRNA genes in clusters and contact domains have been
observed to share similar transcriptional dynamics during
differentiation, as determined by comparing transcription
changes at tRNA genes with the median fold change across
tRNA gene clusters and domains to which they belong
(5). Chromosome 13 contains a number of clustered tRNA
genes. To explore how these and other tRNA gene clusters
behaved, we first defined tRNA clusters as regions contain-
ing three or more tRNA genes, each spaced less than 5 kb
from the next one, which gave a total of 42 clusters (listed
in Supplementary Table S7). For each chromosome, we per-
formed Kolmogorov-Smirnov tests to compare the distribu-
tion of RPC4 fold change among genes outside and within
clusters, testing the null hypothesis that the two distribu-
tions are similar. With this stringent criterion, some clus-
ters did indeed display a significantly different distribution
of fold changes than non-clustered genes on the same chro-
mosome, as shown by their P-values (Figure 4D (red bars
indicate P-values < 0.05), Supplementary Table S7), but
many did not. Thus, in our system, and as defined with strin-
gent criteria, the fold changes for genes in clusters are not
systematically differently distributed than for non-clustered
genes on the same chromosome.

Supplementary Figure S10 shows examples of clusters
with significantly different RPC4 fold change distribution
from non-clustered genes on chromosomes 13 and 1 (see
Figure 4D). The clusters contain very high proportions of
changing Pol III loci and are strikingly devoid of nearby
RPB2 peaks and, in many cases, of nearby H3K4me3 peaks,
consistent with the results above indicating that the most
changing tRNA genes are those devoid of RPB2 peaks (Fig-
ure 4A, Supplementary Figures S8A and B).
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Figure 4. (A) Scatterplot of RPC4 T statistic (between TP0 and TP36) for the indicated groups of isolated tRNA genes (RPC4 peak only, n = 35; RPC4
+ H3K4me3 peaks, n = 48); RPC4 + H3K4me3+RPB2 peaks (n = 46). There are significant differences between groups (see text for P-values). (B)
Scatterplot of T statistic (between TP0 and TP36) for the indicated groups of isolated SINEs (RPC4 peak only, n = 41; RPC4+H3K4me3 peaks, n =
11; RPC4 + RPB2 peaks, n = 14; RPC4 + H3K4me3 + RPB2 peaks, n = 38). There was no significant difference between various groups (RPC4 only
versus RPC4+H3K4me3/RPB2, P-value = 0.2417; RPC4 versus RPC4 + H3K4me3 + RPB2, P-value = 0.1018; RPC4 + H3K4me3/RPB2 versus RPC4
+ H3K4me3 + RPB2, P-value = 0.9975). (C) RPC4 T statistic for TP0 to TP36 transition across different chromosomes. Red dots, loci with significant
changes, grey dots, loci with RPC4 scores below cutoff. (D) Comparison of RPC4 occupancy fold change distribution between tRNA genes in clusters and
outside clusters on the same chromosome. Red bars indicate clusters with KS test P-value <0.05.

The Pol III occupancy changes described here contrast
with the observation that during differentiation in human
THP-1 cells, the most occupied genes were the ones with the
biggest occupancy changes after differentiation (5). They
are, however, consistent with previous results comparing
Pol III occupancy in serum-replete versus serum-starved
IMR90Tert human cells, which identified highly and rela-
tively stably occupied Pol III genes, and Pol III genes with
lower but more dynamic Pol III occupancy (4). It is further-
more striking that many of the genes with scores changing
between TP0 and TP36 also changed scores between em-
bryonic E15.5 and adult mouse liver (33). In the PH system,
we further observe that stable, but not changing, genes, are
close to H3K4me3 peaks and Pol II-occupied TSSs. It thus
appears that cells have a network of Pol III genes with rel-
atively stable expression, and genes outside this network to
adapt Pol III transcription quickly and reversibly to the in-
creasing need of dividing cells for Pol III products.
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Figure S1. Comparison of scores obtained with paired-end sequencing (current study) 

and single-end sequencing (Renaud et al., Genome Res, 2014. 24(1): p. 37-51). The 

scores are log2 ratios with a pseudocount value of 30. The scores are the average of 

two biological replicates (mouse liver) for the single-end sequencing, and the average 

of two replicates at TP0 for the paired-end sequencing. Single-end and paired scores 

were normalized to the median number of counts of the four samples. The Pearson 

correlation coefficient of the two sets of scores is 0.962. Each dot represents a gene, 

the red line is the x=y line. 

 

 

 

 

 

 

 

 

 

 

 

Fig. S7
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Figure S2. Scatterplot of RPC4 and RPB2 scores between the two replicates for each 

time point. The x=y line is in red. R is the Pearson correlation coefficient. A) RPC4 

scores for those loci whose score is higher than the corresponding cutoff value for at 

least one time point. B) RPB2 scores for loci whose score is higher than the 

corresponding cutoff for at least one time point. 
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Figure S3.  A) Average tag density profiles for RPC4, H3K4me3, and RPB2, as 

indicated on the left, for isolated SINEs with RPC4 peaks only (left column), RPC4 

and H3K4me3 peaks (middle column), and RPC4, H3K4me3, and RPB2 peaks (right 

column). The profiles were computed from replicate 2 in a region of +/- 1Kbp around 

the annotated TSSs of isolated SINEs. B) Scatterplots of RPC4 scores for isolated 

SINEs in replicates 1 and 2 as indicated. The SINE groups are as in A, and the 

grouping into groups is done for each replicate independently (for H3K4me3, only 

replicate 2 was used). Scores in different groups are similar, permutation based t test 

P-value > 0.29) Red and blue dots, SINEs with and without associated CpG islands, 

respectively. C) As in B, but the orange and green dots indicate SINEs >2.65 Kbp and 

<2.65 Kbp, respectively, from TSS or poly A sites of Pol II genes. 
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Figure S4. Integrative Genomics Viewer (IGV) views of genome regions surrounding 

isolated tRNA genes with: A) RPC4 peaks only. B) RPC4 and H3K4me3 peaks. C) 

RPC4, H3K4me3, and RPB2 peaks. The ChIP-seq tracks are from replicate 2.  
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Figure S5. IGV views of genome regions surrounding isolated tRNA genes with 

different features: A) with RPC4, H3K4me3, and RPB2 peaks, located <2.65 Kbp 

from a Pol II gene, and with the RPB2 peak located on the Pol II gene TSS. B) with 

RPC4, H3K4me3, and RPB2 peaks, located >2.65 Kbp from a Pol II gene, and either 

containing (left), or not containing (right), a CpG island. C) with RPC4 and 

H3K4me3 peaks, and no RPB2 peak, located <2.65 Kbp from a Pol II gene, and with 

the main H3K4me3 peak either coinciding (left), or not coinciding (right), with  a Pol 

II TSS and CpG island. D) with RPC4 and H3K4me3 peaks, and no RPB2 peak, 

located >2.65 Kbp from a Pol II gene. The ChIP-seq tracks are from replicate 2. 
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Figure S6. Scatter plots of RPC4 scores at TP0 and TP36 for all tRNA genes by A) 

Isoacceptors B) Isotypes. The scores were calculated as the mean of the two replicates 

for each gene, and then summed by isoacceptors or isotypes. 

Fig. S6
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Figure S7. Venn diagram comparing tRNA genes differentially occupied by Pol III at 

TP0 and TP36 in this study with those different between embryonic and adult mouse 

liver (Rudolph et al., PLoS Genet, 2016. 12(5): p. e1006024). The number of active 

tRNA genes was 295 in our study and 311 in Rudolph et al. 
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Figure S8. Percentage of tRNA genes in each group according to presence of 

different peaks, in changing and non-changing tRNA genes (with RPC4 score above 

cutoff) for: A) Isolated tRNA genes B) All (isolated and non-isolated) tRNA genes.  
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Figure S9.  Chromosome 13 is enriched in Pol III genes with changes in occupancy 

between TP00 and TP36.  Mosaic plot where the width of the two columns is related 

to the number of genes with significant (left column) or non-significant (right 

column) changes in Pol III occupancy scores between TP00 and TP36 relative to the 

total number of Pol III genes. The height of each rectangle in the first and second 

column is related to the number of changing or stable genes in each chromosome 

relative to the total number of changing or stable genes. For each cell, full or dashed 

lines indicate whether the relative contribution of each chromosome to the total Chi-

square score is positive or negative, respectively, with blue and red colors indicating 

that the observed values are higher and lower, respectively, than expected (random) 

values.  
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Figure S10. IGV views of genome regions corresponding to some clusters of tRNA 

genes on chromosomes 13 (cluster 172) and 1 (clusters 10,11,12). The tracks are as 

indicated on the left.  
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Chapter IV – Discussion and Perspectives 
 
 
In eukaryotes, different RNA polymerases transcribe different sets of genes. 

Nevertheless, there is an important interplay between different polymerases. For 

example, studies have shown that several factors like c-Myc, p53, and RB can co-

regulate Pol I, Pol II, and Pol III (Hannan et al. 2000; Zhai and Comai 2000; Felton-

Edkins et al. 2003b; Gomez-Roman et al. 2006; White 2008; Beckerman and Prives 

2010). In this thesis project, we studied the interplay between Pol II and Pol III at the 

genomic level and showed how some specific genomic arrangements can be involved 

in the regulation of transcription by Pol II and Pol III. 

 

In the first part of this thesis project, we investigated how a Pol III transcription unit 

nested in a Pol II gene can regulate its transcription. We showed that antisense 

transcription of a MIR-SINE by Pol III interferes with Pol II transcription of the 

Polr3e gene. 

 

By inserting the MIR within the intron of the EGFP gene, we showed that it could 

reduce EGFP expression only when it is in antisense, and not in sense, orientation 

relative to EGFP gene. This was a surprising observation because in a study in yeast, 

it was shown that TFIIIB, the key factor binding to Pol III promoter and recruiting 

RNA polymerase III, could interfere with Pol II transcription regardless of its binding 

orientation on DNA (Korde et al. 2014). Furthermore, in several other cases of gene 

arrangements with a Pol III gene within a Pol II gene, we observed a Pol II peak, 

suggestive of Pol II slow-down, on the Pol III gene whether the Pol III gene was sense 

or antisense relative to the Pol II gene. This further suggests that Pol III transcription 

can interfere with Pol II transcription regardless of the relative orientation of the two 

genes. It thus remained to be determined why, in the EGFP model system, 

interference was dependent on an antisense orientation of the MIR.  We can probably 

exclude differences in levels of Pol III transcription of the MIR, since equivalent 

levels of MIR RNAs were produced from both the sense and antisense constructs.  It 

seems possible, however, that interference by Pol III is dependent not only on the 

level of Pol III transcription, but also on that of Pol II transcription of the host gene, 

and that the exact levels of Pol II and Pol III transcription affect the ability of sense or 
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antisense Pol III transcription to interfere with Pol II transcription. It would be 

interesting to confirm the effect observed with the MIR-Polr3e arrangement in some 

of the other candidate genes where we observed Pol II accumulation on a nested Pol 

III gene by removing the Pol III gene with CRISPR/Cas9, as we did for the MIR, and 

confirm increased Pol II transcription of the Pol II host gene. It would be interesting 

to perform this experiment in a case where the Pol III gene is oriented sense relative 

to the Pol II gene, as this would confirm that the effect can be independent of relative 

orientation of the two transcription units.   

 

An interesting aspect about the MIR and the Polr3e gene has been that Polr3e 

encodes a subunit of Pol III, and there might be a negative feedback loop, where 

increased Pol III activity leads to increased MIR transcription, then decreased Polr3e 

transcription, and ultimately decreased Pol III activity. To test this hypothesis, we first 

tried to increase Pol III transcription from the MIR. However, when we knocked 

down MAF1, the Pol III repressor, in ES cells, we did not observe any increase in the 

level of the MIR. The MIR is one of the most highly occupied Pol III targets in 

several cell types. It is thus possible that the MIR is simply transcribed at maximum 

levels even in the presence of MAF1, and thus removal of MAF1 has no effect. It 

would therefore be worthwhile to test more conditions leading to increase or, 

probably more important, decrease in Pol III activity. A possibility would be to use 

RNAi to decrease the levels of one of the Pol III subunits, for example the largest one, 

and determine whether this has an effect on Polr3e transcription and Pol II 

occupancy. 

 

Another requirement to bring support to the negative feedback loop hypothesis is that 

changes in levels of POLR3E should affect Pol III transcription. Thus, studies should 

be performed to test the effect of up- or down-regulation of POLR3E on Pol III 

transcription. In the MIR-KO cells, where we observed an increase in POLR3E, we 

did not see any difference in the levels of some selected Pol III products as assessed 

by northern blot. However, given that Pol III genes can be selectively regulated 

(Orioli et al. 2016; Mange et al. 2017; Van Bortle et al. 2017), a more comprehensive 

method to assess Pol III transcription levels, such as genome-wide examination of Pol 

III occupancy by ChIP-seq, would need to be performed.   
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Yet another requirement in support of a regulatory role of the MIR for differential 

Polr3e expression is that the MIR itself be subject to differential regulation. To 

examine this possibility, we sought conditions under which one might expect down-

regulation of general Pol III activity, and thus down-regulation of the Polr3e gene. 

One such condition is the passage from a cellular proliferation state to a differentiated 

state, in which one might expect demand for Pol III products to be lower. We thus 

examined the situation during differentiation of ES cells. We observed that levels of 

MIR RNA increased, with a slight decrease in Polr3e mRNA level, consistent with 

our hypothesis. It is, however, well known that during differentiation, the expression 

profile of many genes changes. So, to determine whether this change in Polr3e 

expression level is indeed mediated by the MIR rather than reflecting a decrease in 

transcription initiation due to other mechanisms of regulation, we would need to 

differentiate MIR-KO ES cells, probably from several different clones, with 

efficiencies comparable to WT cells, and determine whether Polr3e expression is 

regulated differently in the absence of the MIR. 

 

SINEs have long been considered "junk DNA", until several studies suggested that 

they might have evolved functions depending on where they got integrated in the 

genome. For example there are SINEs that act as polyadenylation sites, splicing 

acceptors, or enhancers. Here, we have revealed another potential role of a SINE 

mediated by its transcription. We have also shown that there are more SINEs and 

tRNA genes that have the same arrangements as the MIR, that could potentially play 

the same roles.  

 

Many of the previous studies on overlapping genes focused on Pol II long non-coding 

RNA (lncRNA) genes arranged in antisense orientation of protein-coding genes 

(Pelechano and Steinmetz 2013; Huber et al. 2016). This arrangement can regulate the 

protein-coding gene at the transcription or post-transcriptional levels through distinct 

mechanisms. In the case of the MIR located within the Polr3e gene, and in several 

other cases of Pol III genes nested within a Pol II gene, the mechanism by which the 

Pol III gene impacts on expression of Pol II gene seems to be through transcriptional 

interference, as evidenced by the peaks of Pol II occupancy occurring next to the peak 

of Pol III occupancy located on the Pol III gene. An interesting possibility is that in 
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addition to transcription interference, nested Pol III genes regulate the overlapping Pol 

II gene through their transcripts, which in many cases are complementary to the 

mRNA. However, our observation that overexpression of the MIR from a plasmid has 

no impact on Polr3e expression suggests that any RNA-mediated effect would be 

dependent on the RNA being synthesized in close proximity to the genomic location 

of the Pol II gene. In any case, given that many Pol II and Pol III genes are expressed 

differentially under different conditions, or in a tissue-specific manner (Dittmar et al. 

2006; Sonawane et al. 2017), the interplay between Pol II and Pol III transcription 

may constitute a so far unsuspected additional layer of gene expression regulation.     

 

In the second part of the thesis, we studied the dynamics of Pol III gene occupancy 

during mouse liver regeneration, and compared them with those of H3K4me3 and Pol 

II occupancy in the vicinity of Pol III genes. We used a two-third partial hepatectomy 

(PH) of the liver, which causes the remaining hepatocytes to enter the cell division 

cycle in a synchronous manner, combined with Pol III, Pol II, and H3K4me3 ChIP-

seq.  

 

First, we looked at Pol III occupancy at Pol III genes before PH. As shown before in 

mouse liver as well as in human cells (Canella et al. 2010; Canella et al. 2012), many 

tRNA genes were not occupied by Pol III. Further, because several studies suggested 

that active Pol III genes lie close to Pol II and H3K4me3 peaks (Barski et al. 2010; 

Moqtaderi et al. 2010; Oler et al. 2010; Raha et al. 2010; Canella et al. 2012; Alla and 

Cairns 2014; Van Bortle et al. 2017), we looked at H3K4me3 and Pol II peaks around 

tRNA genes and SINEs. We found that the presence of Pol II peaks is generally 

associated with the presence of CpG islands and that these peaks correspond to a Pol 

II gene TSS. In some cases for SINEs, the surrounding Pol II occupancy corresponded 

to an arrangement where the Pol III gene is located within a Pol II gene, a 

phenomenon we had observed before (Yeganeh et al. 2017). We also found Pol III 

genes with surrounding H3K4me3, and no Pol II peak nor Pol II gene. Interestingly, 

we found that Pol III occupancy at tRNA genes is generally higher when H3K4me3 

and Pol II peaks are present. 
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We then examined the dynamics of occupancy from 0 (TP0) to 36 hours (TP36) after 

PH. We observed that there is a general increase in Pol III occupancy at Pol III genes 

at TP36 as compared to TP0. This increase was more pronounced for loci lowly 

occupied by Pol III at TP0, consistent with a previous study comparing Pol III 

occupancy in serum-replete versus serum-starved human IMR90Tert cells (Orioli et 

al. 2016). We showed that there was a corresponding increase in the level of several 

pre-tRNAs as assessed by qPCR. In a recent study of a mouse lacking the Pol III 

repressor MAF1, it was shown that increased Pol III activity led to increased levels of 

some tRNA precursors but not mature-length tRNAs (Bonhoure et al. 2015). It would 

thus be worth to assess the levels of some mature tRNAs after PH by techniques such 

as northern blots, as mature tRNA levels are not efficiently assessed by qPCR due to 

the presence of many modifications that can affect the primer elongation step.  

 

To get a first idea of whether increased Pol III activity was accompanied by increased 

production of Pol III subunits and Pol III transcription factors, we assessed the levels 

of mRNAs encoding several Pol III subunits by qPCR, and indeed found an increase. 

Although suggestive of increased levels of Pol III and transcription factors, these 

results would need to be extended by western blot analyses to allow any firm 

conclusion.   

 

The observation that different tRNA genes are regulated differentially during liver 

regeneration raises several questions, in particular, why, and how? To address the first 

question, we checked whether differential increase in tRNA occupancy might lead to 

differential increase in some tRNA isoacceptor classes, which in theory could enhance 

translation of mRNAs enriched in specific codons, as has been observed before 

(Gingold et al. 2014; Goodarzi et al. 2016). However, when we compared Pol III 

occupancy of tRNA genes at TP0 and TP36 by isotypes and isoacceptors, we 

observed a general increase at TP36, suggesting the translation being generally higher 

in proliferating cells as compared to resting ones. This is consistent with a study in 

which despite differential expression of mRNA-coding genes and individual tRNA 

genes in different stages of mouse liver and brain development, the codon usage of 

mRNAs and the relative levels of tRNAs by isoacceptor and isotype classes were 

stable (Schmitt et al. 2014). 
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How can differential dynamics of Pol III genes be explained? Several studies have 

explored whether differences in promoter elements or any motifs flanking tRNA 

genes could explain differential expression under various conditions. In all cases, 

including one comparing highly occupied and non-occupied tRNA genes in mouse 

liver (Canella et al. 2012), another one comparing active tRNA genes in differentiated 

and proliferating cells (Gingold et al. 2014), and yet another one comparing tRNA 

genes differentially expressed in embryonic and adult mouse liver (Schmitt et al. 

2014), no DNA motifs different in one group compared to the other were found, with 

the exception of some small differences in the A and B boxes of the tRNA genes. 

Nevertheless, we searched for motifs within and around changing versus non-

changing tRNA genes, and tRNA genes close to Pol II peaks versus those with only 

Pol III peaks. Consistent with previous findings, we did not find any motifs 

differentially enriched in any of these groups. On the other hand, we did find that 

tRNA genes that are close to Pol II peaks, and thus close to Pol II gene TSSs, were 

not changing much in Pol III occupancy during liver regeneration, whereas those 

without surrounding H3K4me3 and Pol II were the most dynamic.  

 

Several studies suggest that active Pol III genes are associated with H3K27ac histone 

marks (Oler et al. 2010; Alla and Cairns 2014; Van Bortle et al. 2017). It was also 

shown that the upstream region of tRNA genes active in proliferating cells is more 

enriched with this modification than those of genes active in differentiated cells 

(Gingold et al. 2014). It would thus be very interesting to investigate the dynamics of 

H3K27ac at tRNA genes during liver regeneration, and to determine whether this 

histone modification is different in changing tRNA genes versus non-changing ones. 

Furthermore, in studies where the dynamics of Pol III transcription were examined 

either during serum starvation of cultured cells or during differentiation of THP-1 

monocytes into macrophages, enhanced binding of MAF1 at down-regulated tRNA 

genes was shown (Orioli et al. 2016; Van Bortle et al. 2017). To investigate whether 

the MAF1 repressor plays a role in differential regulation of tRNA genes during liver 

regeneration, PHs could be performed in Maf1 KO mice or, better, in liver-specific 

Maf1 KO mice, to determine whether regulation of Pol III occupancy would be 

altered.  
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When we looked at changes in Pol III occupancy by chromosome, we observed a 

chromosomal bias, with changing genes being over-represented on chromosome 13. 

For a few tRNA gene clusters on this chromosome and for some on other 

chromosomes, we observed that genes within the clusters were regulated more 

similarly to each other than to genes outside the clusters on the same chromosomes. 

Some of these clusters contained highly changing tRNA genes. However, we could 

not conclude a systematic co-regulation of genes in clusters. Co-regulation of tRNA 

genes in clusters was suggested in THP-1 monocytes differentiation into 

macrophages. In this study, tRNA gene clusters were defined as regions with 

neighboring genes less than 20 kb apart, and transcription dynamics of individual 

tRNA genes (down-regulated, non-differential, up-regulated) was compared with the 

median fold change of the clusters to which they belonged (Van Bortle et al. 2017). 

However, we used more stringent criteria. We defined clusters as regions with at least 

three tRNA genes, with distance between two neighbor genes less than 5 kb, and we 

compared the Pol III occupancy fold change distribution between tRNA genes in 

clusters and tRNA genes outside clusters on the same chromosome.       

 

It was shown that many active tRNA genes are located in genomic clusters (Schmitt et 

al. 2014), DNA loops (Van Bortle et al. 2017), and overlapping with CTCF binding 

sites (Alla and Cairns 2014). Moreover, examination of Pol III occupancy dynamics 

during THP-1 monocytes differentiation into macrophages suggested that tRNA genes 

in clusters changed coordinately with distant Pol II genes connected through DNA 

loops (Van Bortle et al. 2017). It would thus be interesting to determine whether the 

clusters examined in our study are located within DNA loops, by characterization of 

CTCF binding sites and mapping the interactions using Hi-C, and whether these DNA 

loops are dynamic during liver regeneration. The study of possible distant interactions 

with Pol II genes could be combined with that of the dynamics of Pol II genes during 

PH (Rib et al. 2018), to determine whether the dynamics of Pol III and Pol II gene 

expression might be coordinated among distant, but connected, genes. 

 

In summary, in this thesis, we showed how genomic arrangements could impact gene 

expression regulation. In the first part, we revealed a mechanism of Pol II 

transcription regulation by nested Pol III genes, and in the second part, we showed 
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that Pol III genes distant from, or in the vicinity of, Pol II peaks on Pol II TSSs are 

more or less prone to changes in Pol III occupancy during the transition from a resting 

to an actively dividing cellular state.    
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