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Summary 
 

Patients suffering from mental disorders have a significantly reduced life expectancy 

compared to the general population. This is mainly attributed to cardiovascular diseases 

resulting in part from the use of certain psychotropic treatments. Thus, many antipsychotics, 

some mood stabilizers and certain antidepressants can induce substantial metabolic 

disturbances. The aim of the present work was to identify whether and which clinical and/or 

genetic factors are associated with metabolic effects induced by psychotropic drugs, and to 

determine whether these factors can predict the worsening of metabolic parameters, in 

particular dyslipidemia, during treatment. Firstly, a candidate gene study on MCHR2 identified a 

significant association between MCHR2 rs7754794C>T and body mass index (BMI), with TT 

carriers having significantly lower BMI (-0.84 kg/m2) compared to C allele carriers (n=736). This 

association was also recognized in the general population, particularly in patients suffering from 

atypical depression (n=453). A second study was conducted to determine whether BMI-related 

single genetic polymorphisms (SNPs) in population-based samples are associated with 

cardiometabolic phenotype worsening in the psychiatric population during treatment. Using a 

hierarchical statistical approach, this study showed that SH2B1 rs3888190C>A (n=406) and 

RABEP1 rs1000940A>G (n=369) were significantly associated with blood levels of LDL-

cholesterol and fasting glucose, respectively. The third study, focusing on polygenic risk scores 

combining multiple SNPs, demonstrated significant associations between the scores and blood 

lipid levels in the psychiatric population (n=336). Finally, another project aimed to determine the 

predictive power of early (i.e. after the first month of treatment) changes of lipid levels on longer-

term (after three and twelve months) changes of lipid levels and on new onset dyslipidemia. 

This study showed that early lipid change of ≥5% after the first month was the best predictor for 

important lipid deterioration in longer-term treatment (n=181). These findings provide new 

insights into the mechanisms underlying metabolic disturbances induced by psychotropic drugs 

and emphasize the importance of clinical and genetic parameters to predict dyslipidemia in 

patients receiving these drugs, providing possible steps towards personalized medicine. 
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Résumé 
 

Les patients souffrant de troubles psychiatriques ont une espérance de vie significativement 

réduite par rapport à la population générale, principalement attribuée aux maladies 

cardiovasculaires résultant notamment de l’utilisation de certains psychotropes. En effet, de 

nombreux antipsychotiques ainsi que certains stabilisateurs de l’humeur et antidépresseurs 

peuvent induire des troubles métaboliques importants. Ce travail vise à identifier quels sont les 

facteurs cliniques et/ou génétiques associés aux effets secondaires métaboliques induits par les 

psychotropes, ainsi qu’à déterminer si ces facteurs peuvent prédire la détérioration 

métabolique, en particulier la dyslipidémie, durant le traitement. En premier lieu, une étude gène 

candidat a identifié une association significative entre le MCHR2 rs7754794C>T et l’indice de 

masse corporel (IMC), avec les patients porteurs du génotype rs7754794C>T TT ayant un IMC 

significativement plus bas (-0.84 kg/m2) que les porteurs de l’allèle C (n=736). Cette association 

a également été identifiée dans la population générale, en particulier chez les patients souffrant 

de dépression atypique (n=453). Une deuxième étude a été conduite afin de déterminer si des 

polymorphismes nucléotidiques simples (« single nucleotide polymorphisms » ou SNPs) 

associés à l’IMC dans la population générale étaient associés à la déterioration 

cardiométabolique observée chez les patients psychiatriques durant le traitement. A l’aide d’une 

approche statistique hiérarchique, cette étude a montré que SH2B1 rs3888190C>A (n=406) et 

RABEP1 rs1000940A>G (n=369) étaient significativement associés aux taux sanguins de 

cholestérol-LDL et de glucose, respectivement. La troisième étude, focalisée sur les scores de 

risque polygéniques combinant de nombreux SNPs, a démontré des associations significatives 

entre les scores et les taux sanguins lipidiques (n=336). Finalement, un autre projet visait à 

évaluer la puissance prédictive de modifications lipidiques précoces (c.-à-d. après le premier 

mois de traitement) sur les changements lipidiques à plus long terme (c.-à-d. après trois et 

douze mois) et sur le développement de dyslipidémie. Cette étude a montré que les 

modifications lipidiques précoces ≥5% sont les meilleurs prédicteurs pour une péjoration 

lipidique importante sur le long terme (n=181). Ces résultats fournissent de nouvelles 

connaissances sur les mécanismes impliqués dans les troubles métaboliques induits par les 

psychotropes et soulignent l’importance des paramètres cliniques et génétiques dans la 

prédiction de la dyslipidémie chez les patients recevant ces médications, ouvrant de possibles 

perspectives vers une médecine personnalisée. 
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Résumé large public 
 

Les maladies métaboliques comme l’obésité ou d’autres maladies cardiovasculaires 

(diabète de type 2, perturbations des lipides dans le sang, etc.) représentent un enjeu de santé 

majeur en psychiatrie. En effet, de nombreux antipsychotiques ainsi que certains stabilisateurs 

de l’humeur et antidépresseurs, couramment utilisés pour traiter les symptômes liés à la 

schizophrénie et aux troubles de l’humeur, peuvent induire des effets secondaires métaboliques 

importants. Le but de ce travail est d’étudier les facteurs de risque associés aux effets 

métaboliques induits par les psychotropes, et de déterminer si ces facteurs peuvent être utilisés 

pour prédire le développement des effets secondaires métaboliques (en particulier les 

dyslipidémies) durant le traitement. En premier lieu, des analyses génétiques ont mis en 

évidence l’importance d’un gène impliqué dans la régulation de l’appétit, le MCHR2, sur l’indice 

de masse corporelle des patients. Une deuxième étude, utilisant une approche différente, a 

déterminé des associations significatives entre des modifications génétiques au sein de deux 

gènes (SH2B1 et RABEP1) et les taux sanguins de cholestérol LDL et de glucose, 

respectivement. Une autre étude a montré des associations significatives entre les scores de 

risque génétique (combinant de nombreuses variations génétiques) et les taux sanguins de 

lipides (cholestérol LDL, cholestérol HDL, cholestérol total et triglycérides). Finalement, une 

étude a été menée afin d’évaluer l’effet d’une détérioration précoce des taux de lipides dans le 

sang (après le premier mois de traitement psychotrope) sur une détérioration ultérieure des 

lipides. Les analyses ont montré qu’une augmentation des taux lipidiques égale ou supérieure à 

5% après le premier mois de traitement permettait de prédire une détérioration lipidique 

importante ainsi que la survenue d’une dyslipidémie à plus long terme (après trois et douze 

mois de traitement). En résumé, les résultats de cette thèse permettent de mieux comprendre 

les mécanismes impliqués dans les troubles métaboliques, notamment lipidiques, associés aux 

psychotropes. De plus, ils apportent de nouveaux outils cliniques afin de prévoir et si possible 

éviter les effets lipidiques associés à la prescription de nombreux psychotropes. 
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Preface 
The present work was conducted at the Unit of Pharmacogenetics and Clinical 

Psychopharmacology (UPPC), in the Center for Psychiatric Neurosciences in Lausanne 

University Hospital. The UPPC lab is involved in different fields of activity, providing medico-

technical services in relation to therapeutic drug monitoring (TDM), including plasma and urinary 

psychotropic drug quantification, for which result interpretations and eventually 

psychopharmacological advices are provided. Medico-technical services for molecular biology 

related to pharmacogenetics are also supplied. A program of pharmacovigilance (i.e. drug 

safety) and clinical psychopharmacology intervisions are also proposed to some services in the 

Department of Psychiatry and to external physicians. 

In the UPPC lab, clinical and pharmacogenetic research aims to determine whether and 

which clinical and genetic factors are associated with psychotropic-related side effects. 

Weight gain (WG) and metabolic complications are major side effects induced by some 

psychotropic drugs, increasing the risk of cardiovascular events and long-term morbidity and 

mortality in psychiatric populations. Since 2007, the Department of Psychiatry has implemented 

an internal guideline requiring that patients being prescribed psychotropic drugs (antipsychotics, 

some antidepressants and mood stabilizers) must be followed for metabolic side-effects. To 

date, informed consent was obtained from more than 1500 patients whose clinical data, genetic 

data and DNA samples are available.  

The aim of the present thesis was to improve the current understanding of metabolic side 

effects induced by psychotropic drugs. For that purpose, different approaches were used to 

elucidate whether clinical and/or genetic factors are associated with metabolic side effects, and 

to which extent these factors predict these adverse effects.



 
 

  



 
 

INTRODUCTION  
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In the psychiatric population, a high prevalence of therapeutic failure and medication-

associated side effects are observed, partly due to the high inter-individual variability in drug 

responses for efficacy, safety and tolerability. Drug responses depend on many personal factors 

including age, sex, ethnicity but also environmental (e.g. smoking, concomitant medication, diet) 

and genetic factors.  

Since the pathophysiology of psychiatric disorders is only partially elucidated, drug 

development in mental health care has been essentially based on experimental observations. 

Thus, the first antipsychotic drug was discovered by accident in the 1950s when one drug with 

antihistaminic properties (chlorpromazine) was observed to have antipsychotic effects in 

schizophrenic patients. This discovery has been considered as one of the major advances in the 

history of psychopharmacology (1). By the 1970s, the ability of antipsychotics to block 

dopamine-2 receptors (D2R) was recognized as the mechanism through which they reduced 

positive symptoms of schizophrenia (i.e delusions and hallucinations). However, these 

compounds were linked with movement disorders, defined as acute extrapyramidal symptoms 

(EPS), and were limited by their inability to treat the full range of psychotic symptoms. In the 

early 1970s, the first second-generation antipsychotic introduced (i.e. clozapine) showed a 

lower tendency to induce EPS and a significant increase in efficacy on both positive 

(hallucinations, disorganized behavior) and negative symptoms (social withdrawal, apathy) due 

to their affinities for a larger spectrum of central receptors (2). Nowadays, as a result of an 

increasing number of diagnoses of mental health conditions but also of many off-label uses, the 

use of antipsychotic drugs has raised significantly.  

Therapeutic and side effects – mechanisms of action 

Although the pathophysiology of psychiatric disorders is only partially explained, the most 

commonly accepted hypothesis to describe schizophrenia is based in part on an hyperactivity of 

dopamine tone in the mesolimbic dopamine pathway, postulated to cause the positive 

symptoms of psychosis (3). This pathway is involved in the transmission of dopamine from the 
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ventral tegmental area to the nucleus accumbens and it regulates many reward-related 

processes. By blocking D2R in the mesolimbic pathway, antipsychotics reduce positive 

symptoms, i.e. delusions and hallucinations. On the other hand, this antagonism may generate 

a loss of reward, contributing to anhedonia and apathy which may induce or worsen negative 

symptoms of schizophrenia. In addition, instead of being specific to the mesolimbic dopamine 

pathway, antipsychotics target D2R from the entire brain region, which can contribute to the 

development of numerous adverse effects. Thus, D2R antagonism in the nigrostriatal dopamine 

pathway may produce movement disorders, i.e. EPS, occasionally leading to tardive dyskinesia 

in the long-term, a highly debilitating and potentially irreversible movement disorder (4). 

Moreover, D2R antagonism in the tuberoinfundibular pathway may induce hyperprolactinemia, a 

condition interfering with fertility in women, as well as a decrease in mineral bone density (5). 

First-generation antipsychotics also have other important pharmacological properties, including 

blockage of muscarinic cholinergic receptors, related with dry mouth, blurred vision, constipation 

and cognitive blunting, and a blockage of histamine-1 receptors (H1R), causing weight gain and 

drowsiness and blockade of alpha-1 adrenergic receptors, which may induce cardiovascular 

side effects (3). Because antipsychotics differ in their pharmacological profiles, they differ in 

their side-effects profile. Indeed, some are more sedating than others and some have more 

ability to cause EPS than others. 

Atypical antipsychotics or second generation antipsychotics are distinguished from classical 

antipsychotics by their pharmacological profile. Several serotonin receptors (5-HTR), such as 5-

HT2AR, 5-HT2CR, 5-HT1AR, 5-HT6R and 5-HT7R, may contribute to the mechanism of action of 

atypical antipsychotics (6). Dopaminergic modulations, including a low affinity for dopamine D2R 

and a partial D2R agonism and glutamatergic regulations may also be involved in the 

pharmacological background of “atypicality”. Compared to first generation antipsychotics, some 

second generation antipsychotics (i.e. clozapine and quetiapine) have a lower affinity for D2R 

and a faster D2R dissociation, thereby contributing to their lower propensity to induce EPS. 

Additionally, 5-HT2AR antagonism confers atypical antipsychotics a reduction of negative 
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symptoms and a reduction of hyperprolactinemia and of extrapyramidal symptoms. These drugs 

also display affinities for many other central receptors such as histaminic, muscarinic and 

adrenergic receptors (Table 1). 

Table 1 summarizes the pharmacological profile of various typical and atypical 

antipsychotics. Equilibrium constant (i.e. the concentration (in nanomolar) of antipsychotics 

needed to block 50% of the receptors) is indicated for each drug and receptor (6-14). Most 

typical antipsychotics have a propensity to antagonize D2R more potently than 5-HT2AR. On the 

other hand, most atypical antipsychotics possess more potent 5-HT2AR antagonism than D2R 

antagonism, resulting in a D2R /5-HT2AR ratio >1 (6). 

Table 1. Receptor affinities for some antipsychotics (Adapted from: Kusumi et al., Psychiatry and Clinical Neurosciences, 

2014) 
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Table 2. Target receptors of antipsychotic drugs and their associated metabolic side effects (Balt et al., Clinical 

pharmacology and therapeutics, 2011) 

 

Metabolic side effects induced by psychotropic drugs  

Psychotropic medications such as antipsychotics (mostly atypical but also some typical 

ones), mood stabilizers (e.g. lithium and valproate) and some antidepressants (e.g. mirtazapine) 

can increase the risk of metabolic disorders including obesity, dyslipidemia and type 2 diabetes 

(15). This excess cardio-metabolic risk contributes to a reported 10 year- shorter life expectancy 

in psychiatric patients, compared to the general population (16). In addition, the high prevalence 

and poor tolerability of metabolic effects induced by psychotropic medications frequently lead to 

suboptimal medication compliance and high rates of treatment discontinuation, resulting in 

relapse and poor patient outcomes in the long-term.  

Obesity and weight gain  

Patients with severe mental disorders have a significantly higher risk of being overweight or 

obese compared to the general population (17-19). Weight gain is a well-established side effect 
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of psychotropic drugs, affecting between 15% and 72% of patients (20). As reported by many 

studies, psychotropic treatments differ in their propensity to induce weight gain (20-23). A recent 

meta-analysis comparing 15 antipsychotics to placebo corroborated these findings (Figure 1), 

showing that clozapine and olanzapine are associated with greatest weight gain, quetiapine, 

risperidone and paliperidone confer an intermediate risk and aripiprazole, amisulpride and 

lurasidone have a lower effect on body weight (24). It is worth noting that some first-generation 

antipsychotics such as chlorpromazine and other sedative first generation antipsychotics are 

also associated with significant weight gain compared to placebo (24). Thus, the so-called low-

potency agents (such as chlorpromazine) have a higher weight gain potential than high-potency 

drugs such as haloperidol (20, 25). In addition, certain mood stabilizers (e.g. lithium, valproate) 

and antidepressants (e.g. mirtazapine, amitriptyline) were also described for their propensity to 

induce weight gain and other metabolic disturbances (20, 26-31).  
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Figure 1. Forest plot for weight gain induced by antipsychotics compared with placebo (Adapted from Leucht et al., 

Lancet, 2013) 

Metabolic syndrome (MetS) is a clinical condition defined by a combination of central obesity, 

high blood pressure, low high-density lipoprotein cholesterol (HDL), elevated triglyceridemia 

and/or hyperglycemia. As reported by Vancampfort and collaborators, individuals with severe 

mental disorder (i.e. schizophrenia, bipolar disorders and major depressive disorder) have a 1.6 

increased risk for metabolic syndrome and its components compared to the general population 

(32). In the same study, people treated with antipsychotics were more likely to suffer from MetS 

compared to antipsychotic-naïve participants, highlighting the ability of antipsychotics to worsen 

metabolic parameters. In accordance with weight gain-related studies, clozapine and olanzapine 

were also found at higher risk for MetS as compared to other molecules (32-35). Interestingly, in 

agreement with data shown in Figure 1 above, Vancampfort and collaborators demonstrated 

that certain first generation antipsychotics such as chlorpromazine were not devoid of metabolic 
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side effect as they had a higher tendency to induce metabolic disturbances than aripiprazole 

(32).  

 

Figure 2. Association of antipsychotic medication treatment with new-onset hyperlipidemia in adults with psychotic 

disorders (Adapted from: Olfson et al., The American journal of psychiatry, 2006) 

 

Lipid levels  

There is accumulating evidence showing that some psychotropic medications can increase 

the risk of dyslipidemia, i.e. the risk to develop an imbalance of lipid components, encompassing 

elevated levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL), triglyceride 

(TG) or reduced HDL levels. By examining individual cardio-metabolic abnormalities in 

schizophrenic patients, Mitchell and collaborators observed that at least 2 in 5 patients had lipid 
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abnormalities (36). More interestingly, they noticed that patients taking antipsychotics were 

more likely to suffer from hypertriglyceridemia and HDL hypocholesterolemia compared to 

untreated patients (36). These findings are in accordance with a case-control study reporting a 

significant increased risk of developing hyperlipidemia in patients with schizophrenia or mood 

disorders receiving antipsychotic medications compared to patients not treated with these drugs 

(37) and with studies in patients with depression or bipolar disorders receiving these 

medications (38, 39). Figure 2 shows that treatment with clozapine, olanzapine, risperidone, 

quetiapine and with first-generation antipsychotics (but not with aripiprazole) is associated with 

a significantly greater risk of new-onset hyperlipidemia compared to no-antipsychotic treatment 

(37). Although antipsychotic drugs are known to be associated with different degrees of weight 

gain, larger studies and meta-analyses are needed to determine how these drugs alter the lipid 

profile and whether their rank of risks is similar to weight gain. Despite their well-known 

propensity to induce weight gain, the influence of antidepressants on lipid levels remains scarce 

(40). Among mood stabilizers, lithium was shown to have a nominal influence on lipid traits (41), 

possibly through its influence on hypothyroidism leading to weight gain (42). Finally, valproate 

has been linked with lower TC and LDL levels in epileptic children (43) and in patients with 

bipolar disorders (44) despite its positive association with weight gain, triglycerides and glucose 

(45). Psychotropic-induced dyslipidemia has long been considered as resulting from 

psychotropic-drug induced weight gain. However, new data has revealed that these lipogenic 

adverse effects may occur very early during treatment and may even precede weight gain, 

displaying weight-independent molecular effects in addition to weight-related ones (46-51). A 

prospective longitudinal study conducted to determine the course of weight gain and other 

cardiometabolic abnnormalities in first-episode patients treated with antipsychotics showed that 

the weight was substantially increased within the first months of treatment (Figure 3). Similarly, 

within the same period of antipsychotic treatment, TC, LDL and TG levels were also drastically 

increased, and then remained relatively constant. On the contrary, HDL plasma levels remained 

stable during the first year and decreased only thereafter (Figure 3).    
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Figure 3. Evolution of weight and lipid values during the first three years of antipsychotic treatment (Adapted from: 

Perez-Iglesias el al., The international journal of neuropsychopharmacology, 2014) 

Glucose levels 

Glucose dysregulation may occur following psychotropic treatments in patients with 

schizophrenia or bipolar disorders (52), with approximately 20% of patients having significant 

hyperglycemia (36). This side effect may be provoked peripherally, independently of weight gain 

(53). Indeed, in healthy volunteers receiving olanzapine or placebo for 3 days, although no 

significant difference was detected between both treatments in terms of body weight, olanzapine 

provoked an important deterioration of oral glucose tolerance test (54). The weight-independent 

impaired glucose homeostasis was corroborated in a recently published inpatients study with a 

longer olanzapine treatment (9 days) (55). However, glucose impairment may also occur as a 

result of antipsychotic-induced weight gain. Although a recent meta-analysis determined that 

antidepressants increase the likelihood of new-onset type 2 diabetes (56), no causal 

relationship could be established and future randomized studies are needed to confirm this 
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association. In addition, the use of mood stabilizers was also reported to increase the 

occurrence of type 2 diabetes in patients with major depression (57). Thus, certain mood 

stabilizers such as valproate were associated with an elevated risk for the development of 

insulin resistance (58).  

Possible mechanisms of psychotropic drug-induced metabolic effects 

To date, mechanisms underlying psychotropic-induced metabolic side effects are only 

partially understood. One possible hypothesis to explain these mechanisms is the increase in 

appetite, which is often observed in treated patients. Thus, some receptors targeted by 

psychotropic drugs are also involved in the regulation of food intake (59). Because antagonism 

of 5-HT2CR in the hypothalamus was shown to enhance food intake (60) and 5-HT2CR genetic 

variants were extensively associated with obesity, glucose intolerance and susceptibility for 

weight gain in patients receiving psychotropic treatments (61, 62), this receptor represents a 

good candidate to explain psychotropic drug-induced weight gain and other metabolic 

abnormalities. However, certain drugs (such as ziprasidone) have a low ability to induce weight 

gain despite their high affinity for 5-HT2CR (63) (Table 1), suggesting many other possible 

receptor affinities to explain the orexigenic potencies of antipsychotic drugs. For instance, since 

H1 antihistamines were reported to be orexigenic in rats (64) and in humans (65), the 

histaminergic neurotransmission was also proposed to play a role in the homeostatic and 

hedonic aspects of feeding (53, 66). Antipsychotics associated with the greatest degree of 

weight gain (i.e. olanzapine and clozapine) are those that have the most potent antagonist 

action simultaneously on H1R and on 5-HT2CR (6, 67). Therefore, it is recognized that a 

concomitant antagonism on H1R and 5-HT2CR, together with many other receptors, may explain 

the metabolic profile of psychotropic drugs (3). Table 2 shows target receptors of antipsychotics 

and their possible associated metabolic side effects (68). It is worth mentioning that, in addition 

to their actions on the central nervous system, antipsychotics also target peripheral receptors 

(i.e. receptors in pancreas, liver, muscle and adipose tissue) (53). Through convergent 
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molecular pathways including signaling of these above-mentioned receptors, central and 

peripheral targets may interact to induce synergistic effects in metabolic disturbances induced 

by psychotropic drugs (53).  

Beside their direct pharmacodynamic activities, psychotropic drugs can also induce other 

mechanisms involved in the hypothalamic regulation of appetite. Thus, the transcription of some 

hormones involved in energy homeostasis (i.e. either anorexigenic or orexigenic) can be 

affected by certain psychotropic drugs. For instance, the expression of melanin-concentrating 

hormone (MCH) and its receptors may be up-regulated during antipsychotic treatment, which 

may enhance the rewarding aspects of food (69). Additionally, significant changes of mRNA 

levels were observed for neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) following 

olanzapine treatment (70). A prospective trial reported a significant appetite increase in 

schizophrenic patients receiving olanzapine treatment, even in conditions of high leptin levels, 

demonstrating the development of leptin resistance (71). Finally, a recent meta-analysis showed 

that antipsychotics inducing the most important weight gain (i.e. olanzapine, clozapine) were 

associated with the most important increase of blood leptin levels in schizophrenia patients (72). 

The mechanisms through which psychotropic drugs influence markers of gene transcription are 

far from being fully defined. During the last decade, many studies have determined methylation 

changes associated with psychotropic drugs, including atypical antipsychotics (73-75) and mood 

stabilizers (76-78). A recent review discussed the possible influence of these drugs on the 

modulation of gene expression markers such as epigenetics (DNA methylation and histone 

modification), intracellular signaling pathways and post-transcription processes (microRNAs) 

(79). These molecular modifications can rescue molecular aberrations observed in patients with 

psychiatric diseases (80), but can also be linked to psychotropic drug-metabolic side effects. 

Two recent studies have drawn attention to associations between certain methylation sites and 

insulin resistance (81, 82). However, prospective studies are lacking and it remains to be 

asserted whether methylation modulations are tissue-specific and/or reversible. Many other 

possible molecular modifications induced by psychotropic drugs may participate in metabolic 
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side effects, in particular modulations in microRNA levels induced by antipsychotics (83), mood 

stabilizers (84-86) and some antidepressants (87). Future research placing a greater emphasis 

on gene transcription markers will need to be conducted to further disentangle mechanisms 

underlying metabolic side effects induced by psychotropic medications. 

Metabolic changes associated by psychotropic drugs do not seem to arise only from 

mechanisms regulating appetite homeostasis. Thus, some studies found that metabolic side 

effects such as lipid parameters and insulin resistance occurred before changes in hunger, 

satiety and food intake and were weight-gain independent, suggesting that psychotropic drugs 

can exert direct effects on peripheral tissues, independently from mechanisms regulating eating 

behavior (51, 55, 88-90).  

Lipid levels 

Adverse effects on serum lipids induced by psychotropic drugs should be considered as a 

possible direct or collateral consequence of these drugs, either through pharmacodynamic 

and/or transcription-related mechanisms (25, 47, 91). Although the exact mechanisms are only 

partially understood, certain changes of gene transcription levels were recognized. For instance, 

biochemical pathways involving sterol-regulatory element-binding proteins (SREBP), the most 

important transcriptional regulators of cellular lipid and cholesterol synthesis (92, 93), may be 

altered by a variety of antipsychotics (48, 94-97). Some studies suggested that lipid 

abnormalities associated with psychotropic drugs arise from increased leptin levels and an 

increase in lipid oxidation (98). In addition, the expression of lipoprotein lipase, involved in the 

hydrolysis of triglycerides into free fatty acids, was shown to be suppressed during clozapine 

treatment in adipocytes, in a dose-dependent manner (99). In agreement with this study, a 

case-report demonstrated a rapid increase of lipoprotein lipase levels, coupled with rapid 

triglyceride normalization after olanzapine cessation due to severe hypertriglyceridemia (100). A 

review on mechanisms underlying psychotropic induced hypertriglyceridemia has drawn 

attention to distinct direct and indirect mechanisms (101). Finally, results from animal studies 
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suggest that valproic acid modifies cholesterol metabolism by enhancing hepatic peroxisomal b-

oxidation (102). To date, the precise central and peripheral receptors mediating changes in the 

lipid profile are still to be elucidated, and there are many other possible mechanisms to explain 

drug induced alteration of the lipid profile.  

Glucose levels 

Similarly, hyperglycemia and/or diabetes following psychotropic treatment should be 

considered as a possible direct or collateral consequence of these drugs. On one hand, 

psychotropic-induced diabetes may follow psychotropic-induced weight gain, assuming that high 

levels of free fatty acids may blind insulin sensitivity, leading to insulin resistance and increased 

glycemia. On the other hand, the mechanisms driving the obesogenic and diabetogenic effects 

of psychotropic drugs appear to be partially independent. Thus, many molecular mediators were 

proposed to confer the diabetogenic potential of psychotropic drugs, partially or completely 

independently of weight gain (53, 103, 104). For instance, antagonism on several receptors in 

pancreatic beta-cells such as muscarinic-3-receptor (M3R), 5-HT1AR or 5-HT2CR may directly 

damage insulin secretion of these cells (68, 105, 106).   

Individual variations in metabolic side effects 

There are considerable inter-individual variations in weight gain and other metabolic side 

effects associated with psychotropic drugs, regardless of the type of medication (67). For a 

given agent, some individuals lose weight, others remain stable and a proportion of patients 

gain weight (23). This variability can be explained in part by the combination of certain clinical 

and genetic risk factors, described below.  

Clinical factors 

Factors that influence the risk of psychotropic-drug induced metabolic abnormalities include 

personal factors, illness characteristics and treatment-related factors. For instance, patients 
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whose baseline body mass index (BMI) is low (<25 kg/m2) and who are young have a high 

susceptibility to gain weight and develop other metabolic disturbances during psychotropic 

treatment (46). In addition, some studies, albeit controversial, suggested that women have a 

greater vulnerability to psychotropic drug-induced weight gain than men (91, 107). In addition, 

drug naïve and/or first-episode psychotic patients are more prone to gain substantial weight 

following psychotropic treatment, compared to patients with a long treatment history (23, 108). 

Finally, patients who gained more than 5% of their initial weight during the first month of 

treatment are at higher risk to gain substantial weight during psychotropic treatment (109), 

underlining the importance of metabolic monitoring during treatment with psychotropic drugs. 

Genetic factors 

Genetic variability can contribute to inherited differences in drug effectiveness and 

tolerability. With the rapid emergence of technical innovations in genotyping tools (such as 

genome-wide association studies (GWAS)) and competitive genotyping costs, a growing 

interest to include pharmacogenetics in clinical settings has emerged in the last two decades. 

To date, some polymorphisms across multiple genes involved in pharmacokinetics and 

pharmacodynamics of psychotropic drugs have been identified. Although pharmacogenetic 

testing in psychiatry is not yet included in standard clinical practice, it seems likely that this tool 

will enable an improvement of psychotropic treatment optimization.  

Pharmacokinetics and pharmacodynamic genes for drug response 

Of note, as the present work did not focus on pharmacogenetics of drug response, this 

paragraph is only a short summary of the topic. Even if psychotropic drugs are effective for the 

treatment of many psychiatric disorders, therapeutic responses are unfortunately not 

satisfactory for many patients (110). Thus, patients differ substantially in their ability to absorb, 

distribute, metabolize and excrete drugs, in part due to genetic differences in pharmacokinetic 

genes, i.e. in enzymes responsible for drug metabolism (e.g. CYP2D6). Besides, even though 

pharmacodynamic genes are less represented for preventing drug response than to predict 
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adverse effects, some genetic variants in DRD2 and COMT were linked with psychotropic drug 

responses (111-113). 

Pharmacokinetics and pharmacodynamic genes for adverse effects 

A better understanding of the variability in drug plasma concentration would be clinically 

valuable to prevent adverse effects linked with drug plasma levels. Some variants in 

pharmacokinetic genes such as CYP2D6 were related to certain adverse effects, such as EPS 

and tardive dyskinesia (114). However, studies are inconclusive on whether metabolic changes 

induced by psychotropic drugs are dose- and/or plasma concentration-dependent (115), which 

may explain the lack of association between pharmacokinetic genes and metabolic side effects 

induced by psychotropic drugs. Although some studies reported associations between weight 

gain and dose for clozapine, olanzapine and quetiapine (116-120), most studies did not 

corroborate these associations (115, 119, 121-127). Clozapine plasma levels were found to be 

positively associated with insulin and hypertriglyceridemia, but not with weight gain (116, 128, 

129). To date, the association between metabolic disorders and psychotropic drug plasma 

concentration is still insufficient to justify the utility of TDM in clinical practice to prevent 

metabolic side effects. 

On the other hand, pharmacogenetics of psychotropic-induced metabolic diseases has been 

extensively studied through candidate gene approaches focused on pharmacodynamic targets. 

A recent review showed that the most replicated genetic variants associated with weight gain 

and metabolic syndrome induced by psychotropic drugs were HTR2C -759C/T, LEP -2548G/A, 

MC4R rs489693 and one genetic variant near OGFRL1 (130). Additionally, other genes in 

receptors (e.g. D2R and H1R), in leptin-melanocortin pathways (e.g. LEPR, NPY), in the 

endocannabinoid system (CNR1) or in genes involved in fatty acid and cholesterol production 

(insulin-induced gene 2 (INSIG2)) showed an association with psychotropic-induced weight gain 

(62). Research conducted in our unit showed associations between other candidate genes 

coding for enzymes involved in energy balance, appetite regulation and glucose homeostasis 
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and psychotropic drug-induced weight gain (i.e. genetic variants in 11β-hydroxysteroid 

desydrogenase (11βHSD1)(131), CREB-regulated transcriptional coactivator 1 (CRTC1)(132) 

and phosphoenolpyruvate carboxykinase 1 (PCK1)(133)). Although mechanisms underlying 

psychotropic-induced dyslipidemia are only partially understood, recent studies suggested a role 

of the sterol regulatory element-binding protein (SREBP) pathway (48). Thus, olanzapine, 

clozapine and risperidone were shown to promote the up-regulation of SREBP leading to 

enhanced lipid and cholesterol synthesis in mice (95, 96). Many other genetic susceptibilities 

remain to be discovered to further understand the etiology of psychotropic-drug induced 

metabolic effects.  

Notably, many studies considering combinations of multiple loci yielded significant findings, 

while the examination of single markers provided nominal or non significant results with small 

effect sizes (134, 135). This puts emphasis on the probable polygenic inheritance of 

psychotropic drug-induced metabolic abnormalities, and the need for future studies to give more 

consideration to gene interactions and combinations (136). Two recent GWAS meta-analyses 

were conducted to reveal associations between abnormal lipid levels and single nucleotide 

polymorphisms (SNPs) in the general population (137, 138). Considering that these genetic 

variants have shown minor effects on lipid phenotypes, an alternative method of testing 

individual SNP effect would be to construct a polygenic risk score (PRS), which allows a better 

integration of the global information of these numerous small effects (139). While several PRS 

were determined as significant predictors of obesity, diabetes and dyslipidemia in the general 

population (140-142), associations between PRS and dyslipidemia among the psychiatric 

population have never been established.  

Furthermore, GWAS enabled identifying many SNPs associated with obesity located in or 

near genes whose role in obesity remains unclear. Part of this lack of understanding may be 

due to a focus on the genes in closest proximity to SNPs. However, new evidence suggests that 

SNPs may regulate genes that are located far away. For instance, a recent study demonstrated 
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that, in the human brain, obesity-associated SNPs in FTO were associated with the expression 

of IRX3, a gene located more than a half million base pairs downstream of the index SNP (143). 

Many other examples were described (144, 145). Thus, obesity-associated SNPs might act 

through long-range interactions and potentially through epigenetic mechanisms. The epigenome 

represents the pattern of chemical and structural modifications to DNA that are heritable but 

which do not involve changes in the DNA sequence. In particular, DNA methylation is a 

reversible and heritable attachment of a methyl group most commonly to the 5-carbon position 

of the cytosine residues within CpG dinucleotides of the mammalian genome (146). Epigenetic 

mechanisms, encompassing DNA methylation, have the potential to modify gene expression. In 

the last decade, some studies have determined methylation changes associated with 

psychotropic drugs, including atypical antipsychotics (73-75) and mood stabilizers (76-78). In 

addition, many studies reported SNPs associated with changes of DNA methlyation (i.e. 

methylome quantitative trait loci, meQTLs) in different tissues, such as in adipose tissue (147, 

148) and blood (149-151). Besides, recent evidence has drawn attention to the involvement of 

epigenetic mechanisms in the pathogenesis of obesity (152, 153). However, whether 

psychotropic-drug induced metabolic abnormalities may result from epigenetic mechanisms has 

not yet been addressed. 

Management of metabolic effects induced by psychotropic drugs 

As argued previously, there is clear evidence that certain psychotropic drugs such as 

antipsychotics, mood stabilizers and certain antidepressants are involved in the incidence 

and/or pejoration of metabolic comorbidities. In addition, many studies emphasized that the 

early months of treatment are a critical period for potential metabolic deterioration (47, 154). 

Therefore, regular monitoring for metabolic parameters in patients receiving the above-

mentioned drugs is an important issue. Some programs have proposed monitoring of metabolic 

parameters during treatment in patients receiving psychotropic drugs known to induce metabolic 

disturbances (i.e. antipsychotics, mood stabilizers and some antidepressants), including close 
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monitoring during the first three months of treatment (155, 156). In our department, a clinical 

monitoring guideline for patients starting such drugs was established in 2007 (157). This 

monitoring helps psychiatrists to identify patients who gained important weight early and to use 

preventive approaches, which has the potential to be more effective, acceptable, cost-efficient 

and beneficial. Some interventions, such as education for healthy lifestyle including nutritional 

counseling, may help patients with schizophrenia to reduce or attenuate psychotropic-induced 

weight gain (156, 158). Healthy behavioral education, instruction or intervention should always 

be used prior to considering switching to a less weight offending agent or adding comedication 

that reduces weight and/or reverses metabolic abnormalities (159-161). The decision to switch 

to another antipsychotic should consider the whole psychiatric and physical condition of the 

patient as well as the pharmacological profiles of the proposed and current drugs (162). Finally, 

certain medications such as metformin can be added to counteract metabolic adverse effects 

induced by psychotropic drugs, after a careful consideration of the add-on benefit (155, 156, 

163).  

The ultimate goal is to adopt a personalized medicine approach in order to prevent 

metabolic adverse effects induced by psychotropic drugs. Nowadays, a trial and error approach 

is commonly used by physicians to maximize the treatment efficacy and safety. Alternatively, a 

personalized approach based on personal, clinical and genetic factors sounds more efficient in 

terms of treatment- time- and cost-effectiveness. However, solid evidence regarding the 

usefulness of considering personal, environmental and pharmacogenetic testing in the 

prescription of psychotropic drugs is still lacking. The global aim of the present thesis was to 

improve the current understanding of psychotropic-induced metabolic side effects and to identify 

the possible clinical and genetic predictors of these adverse effects. 
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The overall objective of the present thesis is to improve the current understanding of 

psychotropic-induced metabolic side effects and to identify the possible clinical and genetic 

predictors of these adverse effects, using different strategies. 

 

Project I: To examine the influence of tagging SNPs of the melanin-concentrating hormone 

receptor 2 (MCHR2) on BMI during treatment with psychotropic drugs in three independent 

psychiatric samples. 

 

Influence of MCHR2 and MCHR2-AS1 Genetic Polymorphisms on Body Mass Index in 

Psychiatric Patients and In Population-Based Subjects with Present or Past Atypical 

Depression 

Manuscript published in PLOS ONE, 2015 

 

Project II: To determine whether population-based genetic variants related to BMI are 

associated with cardiometabolic phenotypes in patients from two psychiatric samples taking 

psychotropic drugs. 

 

Association of variants in SH2B1 and RABEP1 with worsening of low-density lipoprotein and 

glucose parameters in patients treated with psychotropic drugs 

Manuscript published in Gene, 2017 
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Project III: To investigate whether polygenic risk score combining multiple risk-associated SNPs 

from two lipid meta-analyses are associated with dyslipidemia-related traits in patients receiving 

psychotropic drugs known to induce worsening of metabolic parameters.  

 

Influence of polygenic risk scores on lipid levels and dyslipidemia in a psychiatric population 

receiving weight gain-inducing psychotropic drugs 

Manuscript published in Pharmacogenetics and Genomics, 2017 
 

 

Project IV: To study how plasma lipid changes during first month of treatment can predict mid- 

and long-term plasma lipid changes and new onset dyslipidemia (NOD) in patients taking 

psychotropic drugs. 

 

Early changes of blood lipid levels during psychotropic drug treatment as predictors of  

long-term lipid changes and of new onset dyslipidemia 

Manuscript accepted in Journal of Clinical Lipidology, in press 
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Full methods are described in each corresponding project. All results are based on three 

non-interventional clinical studies, described below: 

 

Etude suivi des effets secondaires métaboliques (Study on metabolic follow-up) 

According to international recommendations, a metabolic follow-up is ongoing since 2007 in 

the Department of Psychiatry at the Lausanne University Hospital, in which inpatients and 

outpatients are monitored when starting a pharmacological treatment known to have a potential 

risk to induce metabolic disturbances. These treatments include clozapine, olanzapine, 

risperidone, quetiapine, aripiprazole, amisulpride, lithium, valproate and/or mirtazapine. Several 

regular metabolic check-ups for metabolic parameters (weight, blood pressure, waist 

circumference) are recorded at baseline, and at one, two, three, six months and one year 

following the introduction of treatment. Blood samples are collected at baseline, and after one, 

three and twelve months in order to measure metabolic parameters (i.e. lipid profile, glucose) 

and drug plasma concentration. This cohort with metabolic-follow up constitutes the “PsyClin” 

study. A subset of patients within PsyClin signed an informed consent to participate in a 

pharmacogenetic study (PsyMetab). As of May 2017, a total of 1851 patients have been 

included in the routine metabolic follow-up (PsyClin), and among them, 1017 patients gave their 

written informed consent to be included in the pharmacogenetic study (PsyMetab). 

 

Etude Ambulatoire (Ambulatory study) 

This ongoing study started in 2010. Similarly to PsyMetab, this ongoing cross-sectional 

observational study follows outpatients treated with clozapine, olanzapine, risperidone, 

quetiapine, aripiprazole, amisulpride, lithium, valproate and/or mirtazapine for more than one 

year. Similar regular metabolic check-ups are recorded, once a year. As of May 2017, informed 

consents were received from 375 patients. 
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Etude poids Genève (Weight study Geneva) 

A cross-sectional observational and retrospective study was performed between June 2006 

and May 2008 in two out-patient psychiatric centers at Geneva University Hospital, enrolling 

patients between 18 and 65 years old receiving psychotropic drugs for more than three months. 

Current weight was measured, and initial weight was either self-reported or extracted from 

medical files. Blood samples were collected in order to measure lipid profile and drug 

concentration and to perform genetic analyses. 196 patients treated with clozapine (n=28), 

olanzapine (n=31), quetiapine (n=35), risperidone (n=42), lithium (n=35) and valproate (n=25) 

were included.  

 

Of note, from January 2014, patients treated with first generation antipsychotics and tricyclic 

antidepressants were also included in the metabolic follow-up (i.e. in PsyMetab and in 

Ambulatory study). In addition, patients treated with newly commercialized molecules such as 

lurasidone were included since their commercialization. Further details of the three psychiatric 

samples are presented in a previously published paper (164). Noteworthy, since no baseline 

lipid trait data were recorded in the Ambulatory study and Weight study Geneva, analyses 

conducted to determine the influence of clinical and/or genetic factors on lipid level worsening 

were only led in PsyMetab.  
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Project I: Influence of MCHR2 and MCHR2-AS1 Genetic Polymorphisms on Body 
Mass Index in Psychiatric Patients and In Population-Based Subjects with 

Present or Past Atypical Depression
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Project II: Association of variants in SH2B1 and RABEP1 with worsening of low-
density lipoprotein and glucose parameters in patients treated with psychotropic 

drugs
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Project III: Influence of polygenic risk scores on lipid levels and dyslipidemia in a 
psychiatric population receiving weight gain-inducing psychotropic drugs
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SUPPLEMENTARY DATA 

Material and methods 

Psychiatric samples 

Anthropometric measurements (weight and height), demographic variables (sex and age), 

history of treatments (treatment duration and psychotropic treatment), co-medications and lipid 

variables (i.e. HDL, LDL, TC and TG) were collected at baseline (i.e. before psychotropic 

treatment) and 1, 3 and 12 months after initiating a treatment with weight gain – inducing 

psychotropic drug. Patients having switched to such medication (i.e. non treatment-naive 

patients) were also included. Most blood samples were drawn in the morning in fasting 

conditions. Non-fasting blood samples (i.e. within six hours following last meal) were excluded 

for triglyceride analysis (1) and not for total, HDL- and LDL-cholesterol (1). Most clinical 

chemistry assays were conducted by the clinical laboratory, Department of Biomedicine, 

Lausanne University Hospital, which is ISO 15189:2012 certified. LDL-cholesterol was 

calculated using the Friedewald formula only if triglyceride levels were lower than 4.6 mmol/l (2).  

Quantification of drug concentration 

Plasma drug concentrations were quantified at one, three and twelve months in trough 

conditions (i.e. in the morning before the next drug intake). Liquid chromatography/mass 

spectrometry methods were used for measuring aripiprazole, amisulpride, clozapine, 

haloperidol, olanzapine, risperidone, OH-risperidone (paliperidone), quetiapine or plasma levels 

as previously described (3-5) and/or as recommended in our unit (Eap et al., unpublished data, 

available on request). Mirtazapine was measured by gas-chromatography-nitrogen detector 

(Eap et al., unpublished data, available on request), valproate by fluorescence polarization 

immunoassay (Cobas integra 400 plus Roche ®, Roche Diagnostic, Rotkreuz, Switzerland) and 

lithium by ion selective electrode (EasyLyte Na/K/Cl/Li, Medica ®, Chatel St-Denis, 

Switzerland). All methods are used on a routine basis in our accredited laboratory (ISO 15189 
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and 17025). Patients were considered compliant when drug plasma concentrations were higher 

than 10% of the lower value of the recommended therapeutic range (6). Of note, the sum of 

plasma concentrations risperidone and of its metabolite OH-risperidone was used.  

Genotyping 

The iSelect genotyping array was designed to test DNA variations of 200’000 SNPs from 

regions associated with metabolic and cardiovascular characteristics (7). All genotyped SNPs 

underwent quality control tests: when sex was inconsistent with genetic data from X-linked 

markers and genotype call rate was < 0.8, samples were excluded from the analyses. The 

results were extracted using the software GenomeStudio Data Analysis.  

From the reviewed variants, SNPs (or proxies with r2≥0.8 and a MAF≥5%) that were not 

available in the CardioMetabochip in the psychiatric sample were genotyped by the KBioscience 

Institute in the United Kingdom using the novel fluorescence-based competitive allele-specific 

PCR technology (KASP™) as described by the manufacturer. Genotyping of one SNP 

(rs1047891) with missing values for a subset of patients was performed using TaqMan SNP 

Genotyping Assays on ViiA™ 7 Real-Time PCR System as described by the manufacturer’s 

instructions. 

Ethnicity was assessed by patient’s reported ethnicity and confirmed by genotyping using 

principal component analysis with the EIGENSTRAT algorithm implemented in GCTA software 

(8). The majority of the variance was explained by the two first vectors, and Caucasian ethnicity 

was arbitrarily selected when pca1<0.0025 and pca2>-0.0125, values which gave the highest 

concordance with the patient’s reported ethnicity. 
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Construction of the PRSs 

Among the different PRS model approaches (e.g. simple count or odds ratio weighted PRS), a 

weighted PRS (wPRS) is a more adequate option than unweighted PRS since allele effects (β-

coefficients) vary among SNPs (9). In the present study, PRS were constructed as a weighted 

sum of all SNPs. Each patient received for each SNP the coding value of 0, 1 or 2 according to 

the number of risk alleles. For instance, for a given SNP, a score of 1 was assigned for a carrier 

of one risk allele, whereas a value of 0 was attributed to non-carriers of this risk allele. Weighted 

PRS were subsequently obtained by the summation of the lipid-associated risk alleles multiplied 

by their effect size reported for each SNP in corresponding meta-analyses, assuming that each 

SNP contributes to the PRS in an additive way (10,11). In order to facilitate interpretation of the 

results, wPRS were then rescaled according to a calculation described elsewhere (9). Of note, 

increasing the wPRS by one unit indicates one additional lipid-association risk allele (12).  

Construction and interpretation of AUC 

AUC of the models were compared using a bootstrap test as published previously (13). An AUC 

of 0.5 would indicate a random test with 50% chance of positive response, whereas an AUC of 

1 suggests an ideal test where all patients are correctly classified (14). Tests having an AUC of 

0.75 or higher are considered informative and useful (15). 

Results 

Influence of GAMM covariates on the evolution of lipid levels during psychotropic 

treatment 

The evolution of lipid levels during psychotropic treatment according to covariates taken into 

account in GAMM analyses is presented in S2-S6 Figures. Because of their known influence on 

psychotropic-drug induced metabolic abnormalities (16), these variables were included in mixed 

models. Of note, although no study has been conducted yet to determine an influence of 
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psychotropic drug class on the deterioration of lipid profile, this variable was also considered in 

mixed models. The difference of lipid levels between patients whose BMI was above or below 

the BMI median was statistically significant for HDL, LDL, TC and TG levels (p=0.03, 0.0005, 

0.003 and 0.001, respectively, S2 Figure). In addition, the difference of HDL, LDL and TC levels 

between patients younger or older than the median age was statistically significant (p=0.007, 

0.01, 0.001, respectively, S3 Figure), but not for TG levels (p=0.82). Women had significantly 

higher levels of HDL, LDL and TC (p<0.0001, p=0.005, p<0.0001) but not of TG levels (p=0.32, 

S4 Figure). No difference of HDL, LDL and TC levels was observed between psychotropic drug 

classes. However, patients receiving mood stabilizers had significantly higher TG levels 

compared to those receiving antipsychotics (S5 Figure). Finally, although smoking status was 

not associated with lipid levels (p>0.05, S6 Figure), this variable was considered in GAMM 

because non smokers were observed to have a more favourable lipid profile compared to 

smokers in a recent systematic review and meta-analysis (17).  

Influence of polygenic risk scores on lipid phenotype worsening during psychotropic 

treatment  

The evolution of lipid levels during psychotropic treatment according to high- and low- wPRS 

groups is presented in S7-S8 Figures. The more extreme the groups were, the higher the 

differences of each lipid level were measured between the groups.  Overall, HDL was the only 

lipid trait that did not significantly change along the psychotropic treatment (p=0.62), whereas 

LDL, TC and TG levels significantly increased over time (p=0.01, 0.001 and 0.03 respectively, 

S9 Figure). The difference of lipid levels between high- and low- risk wPRS were statistically 

significant for HDL and TG levels (p=0.002), but not for LDL and TC levels (p=0.25 and 0.31, 

respectively; S9 Figure). S10 Figure represents the evolution of dyslipidemia prevalence 

according to the two groups of p50-classified wPRS. The same patterns of evolution were 

observed as described previously (i.e. influence of p50-classified wPRS groups on HDL and TG 

levels, but no clear effect on LDL and TC levels). Comparison of extreme wPRS percentiles (i.e. 
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p25-p75 and p10-p90) in S11 and S12 Figures, respectively, allowed to better illustrate the 

evolution of lipid variables in function of the wPRS.  

To date, many publications showed that the influence of genetic susceptibilities is greater 

among young patients (18-21). For exploratory purposes, and despite the fact that there was no 

significant interaction between age and wPRS on lipid levels in the present study, GAMMs were 

performed by stratifying the combined psychiatric sample according to the median of age (S15 

Table). In young patients, weighted PRSs were significantly associated with each lipid trait 

(p≤0.006) apart from LDL (p=0.08), whereas they were significant for all lipid traits in old 

patients (p≤0.03). Among statistical analyses not adjusted for covariates, in young patients (S13 

and S14 Figures), a significant influence of low- and high- risk wPRS groups was observed on 

HDL (p=0.02) and a similar trend was observed for TG (p=0.07). In patients older than the 

median of age, low- and high- risk wPRSs were also significantly associated with HDL and TG 

(S15 and S16 Figures; p=0.002 and 0.009 respectively), but along the treatment, HDL and TG 

levels of the two wPRS groups tended to converge. Interestingly, it seemed that low-risk wPRS 

patients tended to reach the same lipid levels than high-risk wPRS patients for HDL and TG 

after several months of psychotropic treatment. 

Interaction between polygenic risk scores and covariates on lipid phenotypes  

S17 Table displays results of interaction between wPRSs and age, sex and BMI on the four lipid 

phenotypes. A significant interaction was observed between wPRSs and BMI on LDL (p=0.02), 

and between wPRS and sex on TC (p=0.04). These results suggest that the influence of wPRS 

on LDL may be tested in BMI-stratified subsamples, and that the influence of wPRS on TC may 

be tested in men and women separately. GAMM performed in BMI-stratified samples showed a 

significant association between p50-classified wPRS groups and LDL only in patients having a 

BMI higher than the median value (S18 Table; 0.46 mmol/l; p<0.0001). In analyses not adjusted 

for covariates, no influence of wPRS on LDL within both BMI subgroups was observed (S18 
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Figure). Moreover, AUC of the model including genetics compared to the model with only 

clinical data was not significantly increased in both BMI subgroups (S19 Figure), possibly 

because of a poor statistical power. With regard to analyses of association between p50-

classified wPRS groups and TC levels performed in men and women separately, significant 

influences were observed in both sexes (S18 Table; p≤0.01). S20 Figure shows that the 

prevalence of hypercholesterolemia seemed higher in women than in men, and that the 

influence of p50-classified wPRS groups on total hypercholesterolemia was greater in the 

former group compared to the latter (p=0.009 for women and p=0.98 for men). ROC curves 

suggest  a higher increase of AUC with the model incorporating genetic data compared to the 

model with clinical data only, in women (AUC = 0.74 versus 0.67; p=0.11), compared to men 

(AUC = 0.78 versus 0.77; p=0.43), although none reached statistical significance in both 

gender. 
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S1 Table. Characteristics of psychiatric Caucasian samples: discovery, replication and combined samples  

 

 

 

Male, n (%) 332 142 (42.8) 140 65 (46.4) 0.46 472 207 (43.8)
Age, median (IQ range), years 332 48 (29-73) 140 49.5 (33-68) 0.87 472 48 (30-71)
BMI 
    Inital BMI, median (IQ range),  kg/m 2  1 332 23.3 (20.6-26.9) 140 24.9 (21.4-28.2) 0.06 472 23.7 (20.9-27.5)
    Initial BMI ≤25 kg/m 2 , n (%) 1,2 211 (63.5) 75 (53.6) 286 (60.6)
    Initial BMI 25-30 kg/m 2 , n (%) 1,2 69 (20.8) 42 (30.0) 111 (23.5)
    Initial BMI ≥30 kg/m 2 ,n (%) 1,2 52 (15.7) 23 (16.4) 75 (15.9)
    Current BMI, median (IQ range), kg/m 2  3 332 24.4 (21.7-28.1) 140 25.1 (21.6-29.5) 0.31 472 24.5 (21.7-28.4)
    Current BMI ≤25 kg/m 2 ,n (%) 2,3 184 (55.4) 70 (50.0) 254 (53.8)
    Current BMI 25-30 kg/m 2 ,n (%) 2,3 90 (27.1) 38 (27.1) 128 (27.1)
    Current BMI≥30 kg/m 2 ,n (%) 2,3 58 (17.5) 32 (22.9) 90 (19.1)
Lipids levels
Lipids levels at baseline 4

   Total cholesterol, median (IQ range), mmol/l 331 4.7 (3.9-5.6) 140 5.2 (4.3-5.9) 0.002 471 4.8 (4-5.7)
   Total cholesterol < 5 mmol/l, n (%) 5 189 (57.1) 62 (44.3) 251 (53.3)
   Total cholesterol ≥ 5 mmol/l, n (%) 5 142 (42.9) 78 (55.7) 220 (46.7)
   Total cholesterol < 5 mmol/l, n (%) 5 without hypolipemiant 167 (50.5) 55 (39.3) 222 (47.3)
   Total cholesterol ≥ 5 mmol/l, n (%) 5 or treated dyslipidemia 164 (49.6) 85 (60.7) 249 (52.7)

    HDL, median (IQ range), mmol/l 325 1.4 (1.1-1.6) 139 1.4 (1.1-1.7) 0.41 464 1.4 (1.1-1.7)
    HDL > 1 mmol/l, n (%) 5 272 (83.7) 111 (79.9) 383 (82.5)
    HDL ≤ 1 mmol/l, n (%) 5 53 (16.3) 28 (20.1) 81 (17.5)
    HDL > 1 mmol/l, n (%) 5 without hypolipemiant 251 (77.2) 104 (74.8) 355 (76.5)
    HDL ≤ 1 mmol/l, n (%) 5 or treated dyslipidemia 74 (22.8) 35 (25.2) 109 (23.5)

    LDL, median (IQ range), mmol/l 314 2.6 (2.1-3.5) 133 3.0 (2.4-3.6) 0.005 447 2.7 (2.1-3.5)
    LDL < 3 mmol/l, n (%) 5 187 (59.6) 66 (49.6) 253 (56.6)
    LDL ≥ 3 mmol/l, n (%) 5 127 (40.5) 67 (50.4) 194 (43.4)
    LDL < 3 mmol/l, n (%) 5 without hypolipemiant 164 (52.2) 60 (45.1) 224 (50.1)
    LDL ≥ 3 mmol/l, n (%) 5 or treated dyslipidemia 150 (47.7) 73 (54.9) 223 (49.9)

    Triglycerides, median (IQ range), mmol/l 168 1.0 (0.8-1.3) 59 1.1 (0.8-1.6) 0.5 227 1.0 (0.8-1.4)
    Triglycerides < 2 mmol/l, n (%) 5,8 153 (91.1) 48 (81.4) 201 (88.6)
    Triglycerides ≥ 2 mmol/l, n (%) 5,8 15 (8.9) 11 (18.6) 26 (11.5)
    Triglycerides < 2 mmol/l, n (%) 5,8 without hypolipemiant 142 (84.5) 46 (77.9) 188 (82.8)
    Triglycerides ≥ 2 mmol/l, n (%) 5,8 or treated dyslipidemia 26 (15.5) 13 (22.1) 39 (17.2)

    Treatment with hypolipemiant, n (%) 332 28 (8.4) 140 9 (6.4) 0.29 472 37 (7.8)
Lipids levels at current state  6

   Total cholesterol, median (IQ range), mmol/l 328 5.0 (4.1-5.8) 140 5.2 (4.4-5.8) 468 5.0 (4.2-5.8)
   Total cholesterol < 5 mmol/l, n (%) 5 164 (50.0) 59 (42.1) 223 (47.6)
   Total cholesterol ≥ 5 mmol/l, n (%) 5 164 (50.0) 81 (57.9) 245 (52.3)
   Total cholesterol < 5 mmol/l, n (%) 5 without hypolipemiant 134 (40.9) 50 (35.7) 181 (38.7)
   Total cholesterol ≥ 5 mmol/l, n (%) 5 or treated dyslipidemia 194 (59.2) 90 (64.3) 287 (61.3)

    HDL, median (IQ range), mmol/l 325 1.3 (1.1-1.6) 139 1.4 (1.1-1.7) 0.23 464 1.3 (1.1-1.6)
    HDL > 1 mmol/l, n (%) 5 256 (78.8) 110 (79.1) 366 (78.9)
    HDL ≤ 1 mmol/l, n (%) 5 69 (21.2) 29 (20.9) 98 (21.1)
    HDL > 1 mmol/l, n (%) 5 without hypolipemiant 228 (70.2) 100 (71.9) 327 (70.5)
    HDL ≤ 1 mmol/l, n (%) 5 or treated dyslipidemia 97 (29.9) 39 (28.1) 137 (29.5)

    LDL, median (IQ range),mmol/l 305 2.8 (2.2-3.5) 131 3.1 (2.4-3.7) 0.13 436 2.9 (2.3-3.5)
    LDL < 3 mmol/l, n (%) 5 174 (57.1) 60 (45.8) 234 (53.7)
    LDL ≥ 3 mmol/l, n (%) 5 131 (43.0) 71 (54.2) 202 (46.3)
    LDL < 3 mmol/l, n (%) 5 without hypolipemiant 143 (46.9) 52 (39.7) 193 (44.3)
    LDL ≥ 3 mmol/l, n (%) 5 or treated dyslipidemia 162 (53.1) 79 (60.3) 243 (55.7)

0.06

Discovery samplen n Replication sample

0.15

p-value7

0.54

0.97

0.02

0.32

0.57

0.05

n Combined sample

0.69

0.03

0.16

Characteristics

0.93

0.07

0.36

0.01

0.30
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1 Initial BMI represents BMI before the current psychotropic treatment. 
2 BMI from >25 to <30 kg/m2 refers to overweight, BMI ≥ 30 kg/m2 refers to obesity. 
3 Current BMI represents BMI at the end of the follow-up. 
4 Lipid levels at baseline represent lipid values before the current psychotropic treatment. 
5 Lipid level thresholds were defined according to ESH/ESC guidelines (22). 
6 Lipid levels at current state represent lipid values at the end of the follow-up. 

7 P-values were calculated using Wilcoxon-Mann-Whitney tests for Chi2 tests between the two psychiatric   
samples. Values in bold are significant. 

8 Triglyceride levels were collected in fasting conditions. 
 

 

 

  

Male, n (%) 332 142 (42.8) 140 65 (46.4) 0.46 472 207 (43.8)
Age, median (IQ range), years 332 48 (29-73) 140 49.5 (33-68) 0.87 472 48 (30-71)
Lipids levels at current state  6

    Triglycerides, median (IQ range), mmol/l 241 1.2 (0.8-1.6) 96 1.3 (0.6-1.9) 0.06 337 1.2 (0.9-1.7)
    Triglycerides < 2 mmol/l, n (%) 5,8 198 (82.2) 74 (77.1) 272 (80.7)
    Triglycerides ≥ 2 mmol/l, n (%) 5,8 43 (17.8) 22 (22.9) 65 (19.3)
    Triglycerides < 2 mmol/l, n (%) 5,8 without hypolipemiant 176 (73.0) 67 (69.8) 243 (72.1)
    Triglycerides ≥ 2 mmol/l, n (%) 5,8 or treated dyslipidemia 65 (27.0) 29 (30.2) 94 (27.9)

Treatment with hypolipemiant, n (%) 332 38 (11.4) 140 13 (9.3) 0.44 472 51 (10.8)
Medication, n (%)
    Amisulpride 331 27 (8.2) 140 10 (7.1) 471 37 (7.9)
    Aripiprazole 24 (7.3) 15 (10.7) 39 (8.3)
    Clozapine 25 (7.6) 9 (6.4) 34 (7.2)
    Lithium 23 (7.0) 13 (9.3) 36 (7.6)
    Mirtazapine 13 (3.9) 9 (6.4) 22 (4.7)
    Olanzapine 43 (13.0) 8 (5.7) 51 (10.8)
    Paliperidone 1 (0.3) 3 (2.1) 4 (0.8)
    Quetiapine 109 (32.9) 49 (35.0) 158 (33.5)
    Risperidone 50 (15.1) 17 (12.1) 67 (14.2)
    Valproate 16 (4.8) 7 (5.0) 23 (4.9)
Main diagnosis, n (%)
   Organic mental disorders 276 30 (10.9) 94 11 (11.7) 370 41 (11.1)
   Psychotic disorders 90 (32.6) 31 (32.9) 121 (32.7)
   Schizoaffective disorders 22 (7.9) 13 (13.8) 35 (9.5)
   Bipolar disorders 66 (23.9) 20 (21.3) 86 (23.2)
   Depressive disorder 68 (24.6) 19 (20.2) 87 (23.5)
Smoker, n (%) 332 108 (32.5) 140 57 (40.7) 0.51 472 165 (34.9)
Treatment duration, median (IQ range), days 332 146.5 (67-370) 140 110 (51-372) 0.12 472 134 (59-370)

Combined samplep-value7n Discovery sample n Replication sample nCharacteristics

0.38

0.65

0.15

0.49
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S2 Table. List of SNPs from the Global Lipids Genetics Consortium meta-analysis with their β-effect on HDL 

and HWE p-value 
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EAF: effect allele frequency, LD: linkage disequilibrium, SE: standard error. CardioMetabochip position = SNP 
identification used to extract genotyping data from psychiatric cohort. HWE p-value = p-value calculated with 
genotyping data from psychiatric cohort.   
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S3 Table. List of the selected SNPs from the Engage Consortium meta-analysis with their β-effect on HDL 

and HWE p-value 

 

EAF: effect allele frequency, LD: linkage disequilibrium, SE: standard error. CardioMetabochip position = SNP 
identification used to extract genotyping data from psychiatric cohort. HWE p-value = p-value calculated with 
genotyping data from psychiatric cohort.  
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S4 Table. List of the selected SNPs from combined meta-analyses with their β-effect on HDL and HWE p-

value 
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EAF: effect allele frequency, LD: linkage disequilibrium, SE: standard error, I: meta-analysis from Engage Consortium 
(from Surakka and al.), D: meta-analysis from the Global Lipids Genetics Consortium (from Willer and al.). 
CardioMetabochip position = SNP identification used to extract genotyping data from psychiatric cohort. HWE p-value 
= p-value calculated with genotyping data from psychiatric cohort.   
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S5 Table. List of SNPs from the Global Lipids Genetics Consortium meta-analysis with their β-effect on LDL 

and HWE p-value 
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EAF: effect allele frequency, LD: linkage disequilibrium, SE: standard error. CardioMetabochip position = SNP 
identification used to extract genotyping data from psychiatric cohort. HWE p-value = p-value calculated with 
genotyping data from psychiatric cohort.   
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S6 Table. List of the selected SNPs from the Engage Consortium meta-analysis with their β-effect on LDL and 

HWE p-value 

 

EAF: effect allele frequency, LD: linkage disequilibrium, SE: standard error. CardioMetabochip position = SNP 
identification used to extract genotyping data from psychiatric cohort. HWE p-value = p-value calculated with 
genotyping data from psychiatric cohort.   
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S7 Table. List of the selected SNPs from combined meta-analyses with their β-effect on LDL and HWE p-

value 
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EAF: effect allele frequency, LD: linkage disequilibrium, SE: standard error, I: meta-analysis from Engage Consortium 
(from Surakka and al.), D: meta-analysis from the Global Lipids Genetics Consortium (from Willer and al.). 
CardioMetabochip position = SNP identification used to extract genotyping data from psychiatric cohort. HWE p-value 
= p-value calculated with genotyping data from psychiatric cohort.   
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S8 Table. List of SNPs from the Global Lipids Genetics Consortium meta-analysis with their β-effect on TC 

and HWE p-value 
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EAF: effect allele frequency, LD: linkage disequilibrium, SE: standard error. CardioMetabochip position = SNP 
identification used to extract genotyping data from psychiatric cohort. HWE p-value = p-value calculated with 
genotyping data from psychiatric cohort.   
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S9 Table. List of the selected SNPs from the Engage Consortium meta-analysis with their β-effect on TC and 

HWE p-value 

 



 

- 114 - 
 

 

EAF: effect allele frequency, LD: linkage disequilibrium, SE: standard error. CardioMetabochip position = SNP 
identification used to extract genotyping data from psychiatric cohort. HWE p-value = p-value calculated with 
genotyping data from psychiatric cohort.   
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S10 Table. List of the selected SNPs from combined meta-analyses with their β-effect on TC and HWE p-

value 
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EAF: effect allele frequency, LD: linkage disequilibrium, SE: standard error, I: meta-analysis from Engage Consortium 
(from Surakka and al.), D: meta-analysis from the Global Lipids Genetics Consortium (from Willer and al.). 
CardioMetabochip position = SNP identification used to extract genotyping data from psychiatric cohort. HWE p-value 
= p-value calculated with genotyping data from psychiatric cohort.   
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S11 Table. List of SNPs from the Global Lipids Genetics Consortium meta-analysis with their β-effect on TG 

and HWE p-value 

 

EAF: effect allele frequency, LD: linkage disequilibrium, SE: standard error. CardioMetabochip position = SNP 
identification used to extract genotyping data from psychiatric cohort. HWE p-value = p-value calculated with 
genotyping data from psychiatric cohort.   
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S12 Table. List of the selected SNPs from the Engage Consortium meta-analysis with their β-effect on TG and 

HWE p-value 

 

EAF: effect allele frequency, LD: linkage disequilibrium, SE: standard error. CardioMetabochip position = SNP 
identification used to extract genotyping data from psychiatric cohort. HWE p-value = p-value calculated with 
genotyping data from psychiatric cohort.   
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S13 Table. List of the selected SNPs from combined meta-analyses with their β-effect on TG and HWE p-

value 
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EAF: effect allele frequency, LD: linkage disequilibrium, SE: standard error, I: meta-analysis from Engage Consortium 
(from Surakka and al.), D: meta-analysis from the Global Lipids Genetics Consortium (from Willer and al.). 
CardioMetabochip position = SNP identification used to extract genotyping data from psychiatric cohort. HWE p-value 
= p-value calculated with genotyping data from psychiatric cohort.   
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S14 Table. Association of rescaled PRS (SNPs selected from each meta-analysis) with lipid traits in GAMM 

adjusted for age, sex, BMI, medications and smoking status.  

 

 

ds: discovery sample, rs: replication sample, ts: total sample, dMA: Willer meta-analysis, iMA: Surakka meta-analysis, 
MA_: not corrected for psychotropic medication categories, n: number of patients, CI: confidence interval. Patients 
taking lipid-lowering medication were excluded. Only fasting patients were included for TG analyses.  

 

 

 

 

  

number 
of SNPs n Estimates 

[95% CI]

Explained 
variability 

[%]

Explained 
variability by 

GRS [%]
p-value

wPRS_HDL_ds_dMA 65 242 0.01 [0.01 - 0.02] 19.24 4.11 <0.01
wPRS_LDL_ds_dMA 55 232 0.02 [0.00 - 0.03] 13.28 0.75 0.02
wPRS_TC_ds_dMA 69 239 0.03 [0.02 - 0.05] 15.82 1.85 <0.01
wPRS_TG_ds_dMA 38 216 0.06 [0.04 - 0.08] 26.16 6.32 <0.01

wPRS_HDL_ds_iMA 46 233 0.02 [0.01 - 0.03] 18.33 3.45 <0.01
wPRS_LDL_ds_iMA 39 214 0.03 [0.01 - 0.05] 15.29 1.48 <0.01
wPRS_TC_ds_iMA 44 234 0.04 [0.03 - 0.07] 15.99 2.35 <0.01
wPRS_TG_ds_iMA 33 213 0.06 [0.03 - 0.07] 24.06 4.23 <0.01

wPRS_HDL_rs_dMA 65 105 0.02 [0.01 - 0.03] 36.64 5.29 <0.01
wPRS_LDL_rs_dMA 55 102 0.03 [0.01 - 0.06] 8.24 3.24 <0.01
wPRS_TC_rs_dMA 69 106 0.05 [0.02 - 0.07] 14.13 3.44 0.01

wPRS_TG_rs_dMA_ 38 90 0.03 [0.00 - 0.05] 26.47 2.62 0.03

wPRS_HDL_rs_iMA 46 98 0.03 [0.01 - 0.04] 41.37 6.65 <0.01
wPRS_LDL_rs_iMA_ 39 93 0.05 [0.03 - 0.08] 14.14 8.13 <0.01
wPRS_TC_rs_iMA 44 102 0.07 [0.03 - 0.10] 17.04 6.14 <0.01
wPRS_TG_rs_iMA_ 33 87 0.04 [0.01 - 0.06] 27.74 4.77 <0.01

wPRS_HDL_ts_dMA 65 347 0.02 [0.01 - 0.02] 22.25 4.32 <0.01
wPRS_LDL_ts_dMA 55 334 0.02 [0.01 - 0.04] 10.83 1.13 <0.01
wPRS_TC_ts_dMA 69 345 0.03 [0.02 - 0.05] 14.8 2.09 <0.01
wPRS_TG_ts_dMA 38 306 0.05 [0.03 - 0.06] 25.38 5.08 <0.01

wPRS_HDL_ts_iMA 46 331 0.02 [0.01 - 0.03] 22.87 4.41 <0.01
wPRS_LDL_ts_iMA 39 307 0.04 [0.02 - 0.06] 13.33 2.91 <0.01
wPRS_TC_ts_iMA 44 336 0.05 [0.04 - 0.07] 15.72 3.06 <0.01
wPRS_TG_ts_iMA 33 300 0.05 [0.04 - 0.06] 24.52 4.39 <0.01
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S15 Table. Association of rescaled PRS (SNPs selected from each meta-analysis) with lipid traits in GAMM 

adjusted for age, sex, BMI, medications and smoking status, with PRS treated as a categorical variable in 

age-stratified samples.  

 

ts: total sample, cMA: combined meta-analyses, MA_: not corrected for psychotropic medication categories, n: 
number of patients, CI: confidence interval. wPRS_median = GAMM performed with PRS as a categorical variable 
with two groups: one with PRS lower than the median value and the other with PRS higher than the median value. 
Young = patients whose age is younger than the median age of patients. Old = patients whose age is older than the 
median age of patients. Patients taking lipid-lowering medication were excluded. Only fasting patients were included 
for TG analyses.  
  

number of 
SNPs

n Estimates 
[95% CI]

p-value

wPRS_median_HDL_ts_cMA_ 73 331 0.13 [0.07 - 0.19] <0.0001
wPRS_p25_HDL_ts_cMA_ 73 167 0.28 [0.19 - 0.36] <0.0001
wPRS_p10_HDL_ts_cMA_ 73 68 0.35 [0.22 - 0.49] <0.0001

wPRS_median_LDL_ts_cMA_ 60 303 0.20 [0.04 - 0.36] 0.004
wPRS_p25_LDL_ts_cMA_ 60 158 0.31 [0.11 - 0.53] 0.003
wPRS_p10_LDL_ts_cMA_ 60 68 0.63 [0.27 - 1.00] 0.0004

wPRS_median_TC_ts_cMA_ 72 336 0.32 [0.15 - 0.49] <0.0001
wPRS_p25_TC_ts_cMA_ 72 171 0.50 [0.28 - 0.74] <0.0001
wPRS_p10_TC_ts_cMA_ 72 76 0.66 [0.30 - 1.07] 0.0002

wPRS_median_TG_ts_cMA_ 47 299 0.26 [0.13 - 0.38] <0.0001
wPRS_p25_TG_ts_cMA_ 47 146 0.47 [0.30 - 0.64] <0.0001
wPRS_p10_TG_ts_cMA_ 47 56 0.60 [0.19 - 0.91] 0.002
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S16 Table. Predictive statistics in the combined sample 

 

AUC: area under the curve. 
1 Logistic model including only clinical variables. 
2 Logistic model including  clinical and genetic variables. 

3 P-values of difference between the AUC of the model containing clinical data and the model containing clinical  
and genetic data. 2000 bootstraps were used for the analysis. 

  

Dependent variable Logistic 
model

Sensitivity % 
(95%CI)

Specificity %
 (95%CI)

Accuracy %
 (95%CI)

AUC 
(95%CI) P-value3

Clin1 72.2 (60.4-84.4) 63.3 (52.2-73.3) 70.0 (61.9-78.1) 0.70 (0.63-0.77)
Clin + Gen 2 73.3 (67.4-80.7) 67.7 (57.7-76.6) 71.9 (66.9-77.5) 0.73 (0.67-0.80)

Clin1 70.5 (57.7-78.4) 60.9 (51.4-72.4) 67.2 (59.9-72.9) 0.66 (0.59-0.73)
Clin + Gen 2 65.6 (55.5-80.2) 62.9 (50.5-73.3) 65.1 (58.7-72.9) 0.68 (0.61-0.74)

Clin1 71.2 (62.6-79.1) 67.6 (60.7-75.3) 69.3 (64.3-73.7) 0.73 (0.74-0.78)
Clin + Gen 2 70.5 (62.6-79.1) 73.1 (64.4-80.8) 72.4 (67.3-76.8) 0.76 (0.71-0.81)

Clin1 70.0 (60.0-79.1) 71.3 (61.6-80.5) 70.4 (64.9-75.9) 0.74 (0.68-0.80)
Clin + Gen 2 70.9 (56.4-80.9) 67.1 (57.9-82.3) 68.9 (63.5-74.8) 0.75 (0.69-0.80)

TC hypercholesterolemia 0.08

0.57Hypertriglyceridemia

HDL hypocholesterolemia 0.03

0.41LDL hypercholesterolemia
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S17 Table. Interaction tests between rescaled PRS and age, sex and BMI in GAMM on lipid traits for SNPs 

selected from combined meta-analyses in the combined sample 

 

ds: discovery sample, rs: replication sample, ts: total sample, cMA: combined meta-analyses, MA_: not corrected for 
psychotropic medication categories. Age*wPRS = interaction between age and genetic risk score, sex*wPRS = 
interaction between sex and genetic risk score, BMI*wPRS = interaction between BMI and genetic risk score. 
Patients taking lipid-lowering medication were excluded. Only fasting patients were included for TG analyses.  
  

p-value 

HDL_age*wPRS_ts_cMA 0.25
HDL_sexe*wPRS_ts_cMA 0.19
HDL_BMI*wPRS_ts_cMA 0.31

LDL_age*wPRS_ts_cMA 0.32
LDL_sexe*wPRS_ts_cMA 0.19
LDL_BMI*wPRS_ts_cMA 0.02

TC_age*wPRS_ts_cMA 0.3
TC_sexe*wPRS_ts_cMA 0.04
TC_BMI*wPRS_ts_cMA 0.47

TG_age*wPRS_ts_cMA 0.14
TG_sexe*wPRS_ts_cMA 0.25
TG_BMI*wPRS_ts_cMA 0.20
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S18 Table. Association of rescaled PRS (SNPs selected from each meta-analysis) with lipid traits in GAMM 

adjusted with age, sex, BMI, medications and smoking status with PRS treated as a categorical variable in 

stratified samples.  

 
 

 ts: total sample, cMA: combined meta-analyses, MA_: not corrected for psychotropic medication categories, n: 
number of patients, CI: confidence interval. wPRS_median = GAMM performed with PRS as a categorical variable 
with two groups: one with PRS lower than the median value and the other with PRS higher than the median value. 
BMI_low = patients whose BMI is smaller than the median value. BMI_high = patients whose BMI is higher than the 
median value. Patients taking lipid-lowering medication were excluded. Only fasting patients were included for TG 
analyses.  

 

  

number of 
SNPs

n Estimates 
[95% CI] (mmol/l)

p-value

wPRS_median
LDL_BMI_low_ts_cMA_

60 179 0.03 [-0.19 - 0.17] 0.42

wPRS_median
LDL_BMI_high_ts_cMA_

60 155 0.46 [0.23 - 0.72] <0.0001

wPRS_median
TC_female_ts_cMA_

72 199 0.40 [0.18 - 0.62] <0.0001

wPRS_median
TC_male_ts_cMA_

72 137 0.27 [0.04 - 0.58] 0.01
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S19 Table. Explained variability of each covariates using GAMM with SNP selected from combined meta-

analyses in the combined sample 

 

Explained variability = variability explained by the clinical and genetic data. Variability explained without variable = 
variability explained by the whole model without the considered variable. Patients taking lipid-lowering medication 
were excluded. Only fasting patients were included for TG analyses.  
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S20 Table. Explained variability of each SNP groups using GAMM with SNPs selected from combined meta-

analyses in the combined sample 

 

Explained variability = variability explained by the clinical and genetic data. Variability explained without genetics = 
variability explained by the whole model without considering genetics. ALL SNPs = wPRS constructed with the total 
number of SNPs. ALL SNPs β=1 = non-weighted PRS, i.e. PRS constructed with the total number of SNPs without 
considering specific β-effects (all β-effects=1). ≤β p50 SNPs = wPRS constructed with SNPs whose β-effects are 
lower or equal to the median of all β-effects. >β p50 SNPs = wPRS constructed with SNPs whose β-effects are higher 
than the median of all β-effects. >β p95 SNPs = wPRS constructed with SNPs whose β-effects are higher than the 
percentile 95 of all β-effects.  Patients taking lipid-lowering medication were excluded. Only fasting patients were 
included for TG analyses. 

 

 

 

 

 

Total sample
Combined meta-analyses n SNPs n obs Explained 

variability [%]

Variability 
explained without 

genetics [%]

Variability 
explained by 
genetics [%]

ALL SNPs wPRS_HDL 73 331 22.79 18.46 4.33
ALL SNPs β=1 wPRS_HDL 73 331 20.04 18.46 1.58
≤β p50 SNPs wPRS_HDL 36 361 18.04 17.77 0.27
>β p50 SNPs wPRS_HDL 37 331 22.54 18.46 4.08
>β p95 SNPs wPRS_HDL 4 358 21.71 18.16 3.55

ALL SNPs wPRS_LDL 60 303 13.61 10.21 3.40
ALL SNPs β=1 wPRS_LDL 60 303 10.25 10.21 0.04
≤β p50 SNPs wPRS_LDL 30 346 9.79 9.64 0.15
>β p50 SNPs wPRS_LDL 30 307 15.03 10.42 4.61
>β p95 SNPs wPRS_LDL 3 346 12.5 9.41 3.09

ALL SNPs wPRS_TC 72 336 15.91 12.66 3.25
ALL SNPs β=1 wPRS_TC 72 336 13.81 12.66 1.15
≤β p50 SNPs wPRS_TC 36 361 12.66 12.66 0.00
>β p50 SNPs wPRS_TC 36 339 16.69 12.85 3.84
>β p95 SNPs wPRS_TC 4 363 15.57 13.01 2.56

ALL SNPs wPRS_TG 47 299 24.97 20.11 4.86
ALL SNPs β=1 wPRS_TG 47 299 22.72 20.11 2.61
≤β p50 SNPs wPRS_TG 26 317 19.77 19.24 0.53
>β p50 SNPs wPRS_TG 21 300 23.73 20.13 3.6
>β p95 SNPs wPRS_TG 3 308 23.52 20.19 3.33
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S21 Table. SNPs most involved in genetic explained variability of lipid phenotypes 

 

a. SNPs whose β-effects are higher than the percentile 95 of all β-effects (i.e. p95 SNPs) for HDL, LDL, TC and TG 
are shown, in decreasing order. P95 SNPs shared between two or more phenotypes are in bold. b. Characteristics of 
each p95 SNPs of a. 1: other phenotypes significantly associated with corresponding SNP in the combined meta-
analysis.  

  

a.
HDL rs3764261 rs12678919 rs1800961 rs78058190
LDL rs1065853 rs112374545 rs646776
TC rs7412 rs112374545 rs10401969 rs646776
TG rs964184 rs12678919 rs1260326

b.
SNP Gene Gene name Remarks Phenotypes1

rs3764261 CETP
Cholesteryl Ester 

Transfer 
Protein

HDL, LDL, TC, TG

rs12678919 LPL Lipoprotein lipase HDL, TG

rs1800961 HNF4A Hetatocyte Nuclear 
Factor 4 Alpha missense SNP HDL, TC

rs78058190 PRKAG3

Protein Kinase AMP-
Activated Non-

Catalytic 
Subunit Gamma 3

HDL

rs1065853 APOE Apolipoprotein E LDL

rs112374545 LDLR
Low density 
lipoprotein 
receptor

LDL, TC

rs646776 CELSR2

Cadherin EGF 
LAG 

Seven-Pass G-
Type 

Receptor 2

LDL, TC

rs7412 APOE Apolipoprotein E missense SNP TC

rs10401969 CILP2
Cartilage 

Intermediate 
Layer Protein 2

LDL, TC, TG

rs964184 APOA1 Apolipoprotein A1 HDL, LDL, TC, TG

rs1260326 GCKR
Glucokinase 

(Hexokinase 4)
Regulator

missense SNP TC, TG
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S1 Figure. Decision tree for the selection between two SNPs located in the same gene. LD: linkage 

disequilibrium, MAF: minor allele frequency. P-value of 10-8 = p-value considered as being GWAS significant. Impact: 

meta-analysis from Engage Consortium (from Surakka and al.). Discovery: meta-analysis from the Global Lipids 

Genetics Consortium (from Willer and al.). 
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S2 Figure. Evolution of lipid levels during psychotropic treatment according to BMI: model including patients 

from the discovery sample.  Blue dots represent patients whose BMI was lower or equal to the median (23.3 

kg/m2). Red dots represent patients whose BMI was higher than the median (23.3 kg/m2). Patients taking lipid-

lowering medication were excluded. Only fasting patients were included for TG analyses. 
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S3 Figure. Evolution of lipid levels during psychotropic treatment according to age: model including patients 

from the discovery sample.  Blue dots represent patients younger or equal to the median value (48 years old). Red 

dots represent patients older than the median value (48 years old). Patients taking lipid-lowering medication were 

excluded. Only fasting patients were included for TG analyses. 
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S4 Figure. Evolution of lipid levels during psychotropic treatment according to gender: model including 

patients from the discovery sample.  Patients taking lipid-lowering medication were excluded. Only fasting patients 

were included for TG analyses. 

 

 



 

- 133 - 
 

 

 

 

S5 Figure. Evolution of lipid levels during psychotropic treatment according to medication classes in the 

discovery sample.  Patients receiving antipsychotics, mood stabilizers and antidepressants are represented in 

yellow, blue and grey dots, respectively. Patients taking lipid-lowering medication were excluded. Only fasting 

patients were included for TG analyses. 
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S6 Figure. Evolution of lipid levels during psychotropic treatment according to the smoking status: model 

including patients from the discovery sample. Patients taking lipid-lowering medication were excluded. Only 

fasting patients were included for TG analyses. 
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S7 Figure. Evolution of lipid variables during psychotropic treatment: boxplots including all patients. Low risk 

PRS = PRS lower than the median value. High risk PRS = PRS higher than the median value. Median, interquartiles 

and number of observations are indicated for each box. Months were defined as: month [0]: day 0, month ]1[: ≥10 & 

<45 days, month ]2-3[: ≥45 & <135 days, month ]6-12[: ≥135 & <535 days. Patients taking lipid-lowering medication 

were excluded. Only fasting patients were included for TG analyses.  
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S8 Figure. Lipid variables evolution during psychotropic treatment: boxplots including only 50% of patients 

having extreme PRS values. 25% PRS = PRS lower than the 25th percentile. 75% PRS = PRS higher than the 75th 

percentile. Median, interquartiles and number of observations are indicated for each box. Months were defined as: 

month [0]: day 0, month ]1[: ≥10 & <45 days, month ]2-3[: ≥45 & <135 days, month ]6-12[: ≥135 & <535 days. 

Patients taking lipid-lowering medication were excluded. Only fasting patients were included for TG analyses. 
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 S9 Figure. Evolution of lipid levels during psychotropic treatment with linear mixed regression: model 

including all patients. Low risk PRS = PRS lower than the median value. High risk PRS = PRS higher than the 

median value. Patients taking lipid-lowering medication were excluded. Only fasting patients were included for TG 

analyses. 
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S10 Figure: Evolution of dyslipidemia prevalence for each lipid trait during psychotropic treatment: plots 

including all patients. Low risk PRS = PRS lower than the median value. High risk PRS = PRS higher than the 

median value. Numbers of observations are indicated for each barplot. Months were defined as: month [0]: day 0, 

month ]1[: ≥10 & <45 days, month ]2-3[: ≥45 & <135 days, month ]6-12[: ≥135 & <535 days. Patients taking lipid-

lowering medication were excluded. Only fasting patients were included for TG analyses. 
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S11 Figure. Evolution of dyslipidemia prevalence for each lipid trait during psychotropic treatment: plots 

including only 50% of patients having extreme PRS values. 25% PRS = PRS lower than the 25th percentile. 75% 

PRS = PRS higher than the 75th percentile. Numbers of observations are indicated for each barplot. Months were 

defined as: month [0]: day 0, month ]1[: ≥10 & <45 days, month ]2-3[: ≥45 & <135 days, month ]6-12[: ≥135 & <535 

days. Patients taking lipid-lowering medication were excluded. Only fasting patients were included for TG analyses. 
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S12 Figure. Evolution of dyslipidemia prevalence for each lipid trait during psychotropic treatment: plots 

including only 20% of patients having extreme PRS values. 10% PRS = PRS lower than the 10th percentile. 90% 

PRS = PRS higher than the 90th percentile. Numbers of observations are indicated for each barplot. Months were 

defined as: month [0]: day 0, month ]1[: ≥10 & <45 days, month ]2-3[: ≥45 & <135 days, month ]6-12[: ≥135 & <535 

days. Patients taking lipid-lowering medication were excluded. Only fasting patients were included for TG analyses.  
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S13 Figure. Evolution of dyslipidemia prevalence for each lipid trait during psychotropic treatment: plots 

including only patients younger than the median age of patients. Low risk PRS = PRS lower than the median 

value. High risk PRS = PRS higher than the median value. Young = patients whose age is younger than the median 

age of patients. Numbers of observations are indicated for each barplot. Months were defined as: month [0]: day 0, 

month ]1[: ≥10 & <45 days, month ]2-3[: ≥45 & <135 days, month ]6-12[: ≥135 & <535 days. Patients taking lipid-

lowering medication were excluded. Only fasting patients were included for TG analyses. 
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S14 Figure. Evolution of lipid levels during psychotropic treatment with linear mixed regression: model 

including only patients younger than the median age of patients. Low risk PRS = PRS lower than the median 

value. High risk PRS = PRS higher than the median value. Young = patients whose age is younger than the median 

age of patients. Patients taking lipid-lowering medication were excluded. Only fasting patients were included for TG 

analyses. 
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S15 Figure. Evolution of dyslipidemia prevalence for each lipid trait during psychotropic treatment: plots 

including only patients older than the median age of patients. Low risk PRS = PRS lower than the median value. 

High risk PRS = PRS higher than the median value. Old = patients whose age is older than the median age of 

patients. Numbers of observations are indicated for each barplot. Months were defined as: month [0]: day 0, month 

]1[: ≥10 & <45 days, month ]2-3[: ≥45 & <135 days, month ]6-12[: ≥135 & <535 days. Patients taking lipid-lowering 

medication were excluded. Only fasting patients were included for TG analyses. 
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S16 Figure. Evolution of lipid levels during psychotropic treatment with linear mixed regression: model 

including only patients older than the median age of patients. Low risk PRS = PRS lower than the median value. 

High risk PRS = PRS higher than the median value. Old = patients whose age is older than the median age of 

patients. Patients taking lipid-lowering medication were excluded. Only fasting patients were included for TG 

analyses. 
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S17 Figure a. ROC curves for HDL hypocholesterolemia, LDL hypercholesterolemia, total 

hypercholesterolemia and hypertriglyceridemia in the discovery sample. The red curves correspond to the 

model including clinical and genetics components, whereas the green curves include only clinical values. Only fasting 

patients were included for TG analyses. 
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S17 Figure b. ROC curves for HDL hypocholesterolemia, LDL hypercholesterolemia, total 

hypercholesterolemia and hypertriglyceridemia in the replication sample. The red curves correspond to the 

model including clinical and genetics components, whereas the green curves include only clinical values. Only fasting 

patients were included for TG analyses. 
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S18 Figure. Evolution of dyslipidemia prevalence and lipid levels for LDL during psychotropic treatment: 

plots including all patients (low BMI patients one the left and high BMI patients on the right). Low risk PRS = 

PRS lower than the median value. High risk PRS = PRS higher than the median value. Numbers of observations are 

indicated for each barplot. Months were defined as: month [0]: day 0, month ]1[: ≥10 & <45 days, month ]2-3[: ≥45 & 

<135 days, month ]6-12[: ≥135 & <535 days. Patients taking lipid-lowering medication were excluded.  
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S19 Figure. LDL ROC curves for combined samples (discovery + replication) among low BMI (left) and high 

BMI (right) patients. The red curves correspond to the model including clinical and genetics components, whereas 

the green curves include only clinical values.  
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S20 Figure. Evolution of dyslipidemia prevalence, evolution of TC levels during psychotropic treatment, and 

ROC curves for abnormal TC levels in female (top) and male (bottom) patients. Low risk PRS = PRS lower than 

the median value. High risk PRS = PRS higher than the median value. Numbers of observations are indicated for 

each barplot. Months were defined as: month [0]: day 0, month ]1[: ≥10 & <45 days, month ]2-3[: ≥45 & <135 days, 

month ]6-12[: ≥135 & <535 days. Patients taking lipid-lowering medication were excluded.  
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SUPPLEMENTARY DATA 

1. METHODS 

1.1 Study design 

Clinical data were either collected during hospitalization or in outpatient centers during a 

medical examination based on the department guideline for the metabolic follow-up of 

psychotropic drugs performed on a routine basis (1). Follow-up was restarted from 

baseline if a treatment was stopped for more than 2 weeks, if a psychotropic drug was 

replaced by another, or if a second psychotropic drug was added. If two or more follow-

ups were available for one patient, only the longest one was included in the analysis, as 

described in the flowchart (S1 Figure). Adherence was monitored by therapeutic drug 

monitoring and only patients for whom adherence was ascertained at each time point 

were included in analyses for the discovery sample (more information in paragraph 1.3). 

Diagnoses were based on the International Classification of Diseases 10th (ICD-10): 

F00-F09: organic disorders; F20.0-F24.9 and F28-F29: psychotic disorders; F25.0-

F25.9; schizoaffective disorders; F30.0-F31.9: bipolar disorders; F32.0-F33.9: 

depression. Anxiety, personality disorders and mental retardation were classified in 

“other” disorders. 

1.2 Blood samples and lipid levels 

The majority of blood samples were drawn in the morning in fasting conditions. Non-

fasting blood samples (i.e. within six hours following last meal) were excluded only for 

triglyceride (TG) analysis (not for total (TC), HDL- (HDL-C), LDL- (LDL-C) and 

non_HDL- (non-HDL-C) cholesterol) (2,3). Clinical chemistry assays from plasma 

samples collected before and after January 2009 were performed at the Unit of 

Pharmacogenetics and Clinical Psychopharmacology and at the Clinical Laboratory of 
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the Lausanne University Hospital, respectively (both laboratories are ISO 15189 

certified). LDL-C was calculated using the Friedewald formula only if TG levels were 

lower than 4.6 mmol/l (407 mg/dL) (4). Non-HDL-C was calculated from TC minus HDL-

C. The definition of different categories for elevated blood lipid levels varies slightly 

between different guidelines and recommendations (4-6). Low HDL-C, high LDL-C, high 

TG and high TC levels were defined by HDL hypocholesterolemia (<1 mmol/l; 39 

mg/dL), LDL hypercholesterolemia (≥3 mmol/l; 116 mg/dL), hypertriglyceridemia (≥2 

mmol/l; 177 mg/dL) and hypercholesterolemia (≥ 5 mmol/l; 193 mg/dL), respectively, 

and/or by the prescription of a lipid-lowering agent (S1 Table), according to European 

Society of Hypertension and of the European Society of Cardiology (ESH/ESC) 

guidelines (5). In order to take into account the large variability of baseline lipid values, 

relative thresholds expressed in percentage of change were used. 

1.3 Quantification of drug concentration 

Plasma drug concentrations were quantified at one, three and twelve months in trough 

conditions (i.e. in the morning before the next drug intake). Liquid chromatography/mass 

spectrometry methods were used for measuring plasma levels of medications 

considered in the present study, i.e. aripiprazole, amisulpride, clozapine, haloperidol, 

mirtazapine, olanzapine, risperidone, OH-risperidone (paliperidone) or quetiapine as 

previously described (7-9) and/or validated according to the ISO 17025 / 15189 criteria 

under which the laboratory is accreditated (Eap et al., unpublished data, available on 

request). Valproate was measured by fluorescence polarization immunoassay (Cobas 

integra 400 plus Roche ®, Roche Diagnostic, Rotkreuz, Switzerland) and lithium by ion 

selective electrode (EasyLyte Na/K/Cl/Li, Medica ®, Chatel St-Denis, Switzerland). All 

methods are used on a routine basis for therapeutic drug monitoring (TDM) in patients. 
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The accuracy profiles (total error) were included in the acceptance limits of ±30% for 

biological samples on the entire investigated range, in accordance with the latest 

international recommendations (10). Patients were considered non compliant when drug 

plasma concentrations were lower than 10% of the lower value of the recommended 

therapeutic range (11). For risperidone, the sum of plasma concentrations of risperidone 

and of its active metabolite OH-risperidone was used. Only patients with adherence 

ascertained at each time point were included in analyses (discovery sample).  Thus, 

patients were included in the present study only if their drug plasma levels were above 

the arbitrary threshold at 10% of the minimal value of the therapeutic range (11) (i.e. 10 

ng/ml, 15 ng/ml, 35 ng/ml, 0.1 ng/ml, 0.05 mmol/l, 3 ng/ml, 2 ng/ml, 10 ng/ml, 2 ng/ml, 2 

ng/ml and 5 mg/L for amisulpride, aripiprazole, clozapine, haloperidol, lithium, 

mirtazapine, olanzapine, quetiapine, risperidone plus OH-risperidone, OH-risperidone 

(paliperidone) and valproate, respectively). This threshold was chosen to indicate a 

suspicion of compliance issue and/or a rapid metabolism and/or pharmacokinetics drug 

interaction and/or low dose prescription (e.g. prescription of 50 mg/day of quetiapine). 

Less stringent criteria were used to define the replication sample, in which patients were 

included when at least one observation with adherence ascertained, but with other 

observations without adherence assessment (i.e. no plasma available for TDM). Of 

note, patients with at least one observation of non-adherence as defined above were 

not included in the present study. 

1.4 Statistical analyses 

1.4.1 Short-term lipid changes as predictors of long-term lipid changes in the discovery 

sample 
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Early lipid changes below 5% were not examined because small changes could 

represent normal fluctuations in lipid concentrations rather than clinically meaningful 

changes (12). Indeed, a study investigating the within-person variation in TC and HDL-C 

plasma levels observed that for a median of 4 days between blood draws, the geometric 

mean of the within-person standard deviation was 0.13 mmol/l (5 mg/dL) for TC and 

0.04 mmol/l (1.5 mg/dL) for HDL-C (coefficient of variation ~3% for both lipid levels) 

(12). 

1.4.2 Confirmatory analyses in discovery and replication samples 

The fitted linear mixed effect model had a random effect at the subject level. To be more 

robust in inferences, a bootstrap analysis was used to evaluate the uncertainty of 

estimated parameters (evaluated uncertainties are more conservative, but more reliable 

if there are violations from model assumptions, as normality assumption of residuals). 

Results were based on 10000 bootstrap replicates at the subject level (subjects were 

considered to be independently recruited) and increasing the number of bootstraps did 

not influence substantially the uncertainty of estimated parameters. Results of linear 

mixed models were tested for replication in an independent replication sample. The 

replication sample included patients with less strict criteria of drug-adherence, i.e. 

patients with at least one observation with adherence ascertained, without any 

observations of non-adherence, but with one or several observations without adherence 

measurement. 

1.4.3 Short-term lipid changes and new onset dyslipidemia 

Logistic mixed regression models and Cox regression tests were fitted adjusting for 

baseline age, baseline body mass index (BMI), gender, smoking status, psychotropic 
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drug category (i.e. olanzapine, clozapine and valproate being associated with the 

highest risk of dyslipidemia, mirtazapine, lithium, risperidone, quetiapine conferring an 

intermediate risk, and aripiprazole, amisulpride and haloperidol being at lower risk  

(13,14)) and early weight gain (≥5%) groups. More specifically, TC≥5% was compared 

to TC<5% patient group on hypercholesterolemia development, LDL-C≥5% was 

compared to LDL-C <5% patient group on LDL hypercholesterolemia development, 

TG≥5% was compared to TG<5% patient group on hypertriglyceridemia development, 

and HDL-C ≤-5% was compared to HDL-C >-5% patient group on HDL 

hypocholesterolemia development. 

Further analyses were conducted using combined predictors integrating multiple early 

thresholds (i.e. for TC, LDL-C, TG and HDL-C) to predict outcomes integrating multiple 

dyslipidemia phenotypes (i.e. for TC, LDL-C, TG and HDL-C). Because non-HDL-C 

integrates both TC and HDL-C, this paramater was not considered in these analyses. 

Predictors were defined as the number of exceeded early thresholds (EET), ranging 

from 0 to 4. Outcomes were defined as the number of new onset dyslipidemia after 3 

months of treatment, ranging from 0 to 4. Especially, several groups (0 versus 1 or more 

EET(s); 0 or 1 versus 2 or more EETs; 0, 1 or 2 versus 3 or more EETs; 0,1,2 or 3 

versus 4 EETs) were compared to determine the impact of each additional EET on the 

subsequent risk of developing long-term dyslipidemia. Of note, non adjusted Chi-

squared and Fisher exact tests were conducted to confirm results obtained using 

multivariate analyses. 
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2. RESULTS 

2.1 Demographics and evolution of metabolic parameters 

S2 Table displays demographic and clinical characteristics of the psychiatric discovery 

sample used for the determination of best early thresholds for TC, LDL-C and TG 

increase and for HDL-C decrease. Median age was 33 years (IQR 23-50), which is 

younger than in our previous study on early weight increase as predictor on long term 

weight gain (15), probably explained by the exclusion of patients receiving lipid lowering 

comedication(s). Psychotic disorders (F20.0-F24.9 and F28-F29) were the most 

frequent diagnosis (38%), and quetiapine was the most frequently prescribed 

psychotropic drug (29%). Blood lipid levels and the prevalence of dyslipidemia 

significantly increased during psychotropic treatment (S2 Table). Of note, no data on 

cardiovascular and/or kidney diseases was available in the present study. 

2.2 Short-term lipid changes as predictors of long-term lipid changes in a 
discovery cohort 

Of note, patients with TCi≥5%, LDLi≥5% or HDLd≥5% after the first month of treatment 

but who did not exceed TCi≥30%, LDLi≥40% or HDLd≥20% after 3 months (i.e. false 

positives), had still higher TCi, LDLi and HDLd compared to patients with TCi<5%, 

LDLi<5% or HDLd<5% after the first month of treatment (TCi of 11% vs -4%, p<0.0001; 

LDLi of 9% vs -8%, p<0.0001; HDLd of 0% vs 8%, p=0.0004). However, patients with 

TGi≥5% after one month who did not reach TGi≥45% after three months did not differ 

significantly from patients with TGi<5% (TGi of 0% vs -13%; p=0.13). This lack of 

significance may probably be explained by an insufficient number of observations due to 

the exclusion of patients in non-fasting conditions. 
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2.3 Distribution of demographic and clinical variables according to risk-groups 
based on early lipid thresholds 

Table 1 displays demographic and clinical characteristics of the psychiatric discovery 

sample according to the early thresholds of blood lipid changes. The characteristics of 

the one hundred and eighty one patients already described in S2 Table are repeated in 

the first column. A higher proportion of patients suffering from psychotic disorders was 

observed in patients with early TCi≥5% and LDLi≥5% compared to others (i.e. TCi<5% 

and LDLi<5%, respectively). Additionally, a lower proportion of patients with LDLi≥5% 

received aripiprazole (6% versus 19%; p=0.02) and a higher proportion of patients with 

HDLd ≥5% received valproate (10% versus 1%; p=0.008). Beside, a higher proportion 

of patients with early weight gain (WG)≥5% was observed in patients with early TCi≥5% 

(p=0.001), underlining a possible synchrony in the worsening of these two metabolic 

phenotypes. 

For the five lipid phenotypes, at baseline, patients whose early lipid increase outreached 

5% had a significantly lower proportion of dyslipidemia as compared to others. 

Conversely, after the first month of treatment, the proportion of dyslipidemia was 

significantly higher in patients whose early lipid increase outreached 5% compared to 

others, underlining a higher propensity of developing dyslipidemia in patients whose 

early lipid levels outreached 5% compared to others (Table 1). 

2.4 Confirmation of early lipid changes as predictors of long-term lipid trait 

changes 

Some clinical variables were significantly associated with lipid changes after 3 months 

of treatment (S5 Table). Thus, men had a significantly lower increase of TC levels and a 
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significantly higher decrease of HDL-C levels. In addition, HDL-C levels were 

significantly decreasing with increasing age and in patients with early WG≥5% (data not 

shown). Finally, men had a significantly lower increase of non-HDL-C levels as 

compared to women (data not shown). In the replication sample, none of the covariates 

was associated with lipid profile worsening, except age and baseline BMI which were 

significantly associated with decreased HDL-C.   

Notably, early lipid increase thresholds were also significant in age-stratified, gender-

stratified and lipid level-stratified subgroups (data not shown). However, medication- 

stratified analyses could not be conducted because of the low final number of patients in 

each drug group, even when grouping medication into drug classes. 

2.5 Influence of early lipid thresholds on new onset dyslipidemia 

An important proportion of patients developed new onset dyslipidemia (NOD) during the 

first year of psychotropic treatment (S7 Table). Most NOD classifications were based on 

exceeded clinical thresholds and not on new prescriptions of lipid-lowering 

comedications (only one case). This is in agreement with the reported undertreatment of 

dyslipidemia in psychiatric patients (16). Patients developing NOD had significantly 

higher baseline lipid levels compared to patients who did not develop NOD (p≤0.004), 

making them closer to dyslipidemia thresholds, reminding that most included patients 

were not drug naïve when starting the current psychotropic treatment. The incidence of 

NOD was significantly higher in patients whose early lipid change outreached 5% 

compared to others (S8 Table).  

In addition, the medication group was significantly associated with the incidence of new 

onset hypercholesterolemia for LDL-C and non-HDL-C (p=0.01 and 0.05, respectively). 

Moreover, men had significantly higher risk of new onset HDL-C and new onset 
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hypertriglyceridemia compared to women (p=0.007 and p=0.04, respectively) and 

patients with early weight gain had a higher incidence of new onset hypertriglyceridemia  

and of new onset hypercholesterolemia compared to others (p=0.0004 and 0.05, 

respectively) (S2 Figure). 

2.6 Influence of the number of early lipid thresholds on new onset dyslipidemia 

When restricting analyses to patients without dyslipidemia in any of the four lipid traits at 

baseline (n=84), 12 patients did not reach any of the four lipid trait thresholds during the 

first month of treatment, 12 had one EET, 25 had two EETs, 24 had three EETs and 11 

had four EETs. EET(s) number was significantly associated with the risk of developing 

at least one dyslipidemia during psychotropic treatment in whichever of the four lipid 

traits (S9 Table). These results were supported by non-adjusted analyses (Fisher tests) 

and interestingly, in contrast to results including each lipid trait separately, none of the 

covariates was associated with the risk of developing dyslipidemia during psychotropic 

treatment, suggesting that this risk is age- sex- baseline BMI- smoking- psychotropic 

drug- and weight gain-independent and/or that the early lipid profile worsening captures 

the main dyslipidemia risk variance. 
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S1 Table. Lipid-lowering drugs considered as characterizing dyslipidemia 

 

The list was extracted from (17). This list only provides lipid-lowering drugs prescribed in the present psychiatric sample. 

 

  

Lipid-lowering drugs Antidiabetic drugs Antihypertensive drugs

Atorvastatin Desmopressin Aliskiren
Ezetimibe Glibenclamid Amiloride hydrochlorothiazide

Fenofibrate Gliclazide Amlodipin
Fluvastatin Glimepiride Atenolol
Pravastatin Insulin Bisoprolol

Rosuvastatin Metformin Bosentan
Simvastatin Pioglitazone Candesartan

Rosiglitazone Captopril
Sitagliptin Carvedilol
Vildagliptin Celiprolol

Dilitiazem
Enalapril

Eplerenone
Felodipine
Furosemide

Hydrochlorothiazide
Irbesartan

Lercanidipine
Lisinopril
Losartan

Metolazone
Metoprolol
Midodrine

Molsidomine
Nebivolol
Nifedipine

Nitroglycerin
Olmesartan
Perindopril
Propranolol

Ramipril
Spironolactone

Telmisartan
Torasemide
Trandolapril

Valsartan
Verapamil
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S2 Table. Demographic parameters and evolution of lipid profile during psychotropic 

treatment in patients without lipid-lowering comedication 

 

1 p-values were calculated using ranksum tests (for continuous variables) and chi2 tests (for categorical variables) between baseline 
versus 1 month of treatment. Values in bold are significant. 
2 p-values were calculated using ranksum tests (for continuous variables) and chi2 tests (for categorical variables) between baseline 
versus 3 months of treatment. Values in bold are significant. 
3 p-values were calculated using ranksum tests (for continuous variables) and chi2 tests (for categorical variables) between baseline 
versus 12 months of treatment. Values in bold are significant. 
4 Dyslipidemia was defined as an elevated TC level (≥ 5 mmol/l (193 mg/dL)), LDL-C level (≥ 3 mmol/l (116 mg/dL)) and/or a low HDL-C 
level (≤ 1 mmol/l (39 mg/dL)). In order to keep a sufficient number of observations, TG level was not considered in this variable. 

 

 

 

 

Demographics
Age, median (IQR), y
Men, n(%)
Diagnosis, n(%)

Psychotic disorders
Schizoaffective disorders

Bipolar disorders
Depressive disorders

Organic disorders
Other

Not available
Medication, n(%)

Amisulpride
Aripiprazole

Clozapine
Haloperidol

Lithium
Mirtazapine
Olanzapine
Quetiapine

Risperidone
Valproate

Variable evolution Baseline 1 month p-value1 3 months p-value2 12 months p-value3

Smoking, n(%) 82 (45.3) 90 (50.0) 0.06 78 (52.0) 0.21 32 (52.5) 0.62
Overweight prevalence (BMI ≥ 25 kg/m2), n(%) 53 (32.1) 58 (35.4) 0.53 56 (41.8) 0.08 27 (46.6) 0.05
Obesity prevalence (BMI ≥ 30 kg/m2), n(%) 19 (11.5) 18 (11.0) 0.88 13 (9.7) 0.61 12 (20.7) 0.08

Total cholesterol, median (IQR) mmol/l 4.7 (4-5.4) 4.7 (4.1-5.6) 0.12 4.9 (4.2-5.7) 0.03 5.1 (4.2-6.0) 0.02
Prevalence of hypercholesterolemia (≥ 5 mmol/l), n/total (%) 68/181 (37.6) 78/181 (43.1) 0.28 79/163 (48.5) 0.04 45/84 (53.6) 0.01

LDL-C, median (IQR) mmol/l 2.6 (2-3.2) 2.7 (2.2-3.3) 0.08 2.8 (2.2-3.4) 0.07 2.9 (2.3-3.6) 0.03
Prevalence of LDL hypercholesterolemia (≥ 3 mmol/l), n/total (%) 52/162 (32.1) 61/162 (37.7) 0.29 56/136 (41.2) 0.1 33/69 (47.8) 0.02

HDL-C, median (IQR) mmol/l 1.3 (1.1-1.7) 1.3 (1.1-1.6) 0.29 1.3 (1.1-1.6) 0.47 1.3 (1-1.6) 0.08
Prevalence of HDL hypocholesterolemia (≤ 1 mmol/l), n/total (%) 30/173 (17.3) 36/173 (20.8) 0.41 28/153 (18.3) 0.82 25/80 (31.3) 0.01

Fasting TG, median (IQR) mmol/l 1.1 (0.8-1.4) 1.1 (0.9-1.6) 0.25 1.2 (0.8-1.6) 0.4 1.2 (0.9-1.7) 0.12
Prevalence of hypertriglyceridemia (≥ 2 mmol/l), n/total (%) 11/95 (11.6) 15/95 (15.8) 0.4 14/85 (16.5) 0.34 9/37 (24.3) 0.07

Non-HDL-C, median (IQR) mmol/l 3.1 (2.6-4) 3.4 (2.8-4.1) 0.05 3.4 (2.9-4.3) 0.02 3.6 (2.9-4.6) 0.002

Prevalence of dyslipidemia, n/total (%)4 81/162 (50.0) 91/162 (56.2) 0.26 76/136 (55.9) 0.31 47/69 (68.1) 0.01

23 (12.7)

n=181
33 (23-50)

96 (53)

69 (38.1)
13 (7.2)
28 (15.5)
26 (14.4)

3 (1.7)
14 (7.7)
28 (15.5)

19 (10.5)

13 (7.2)
8 (4.4)

13 (7.2)
1 (0.6)

13 (7.2)
5 (2.8)

33 (18.2)
53 (29.3)
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S3 Table. Receiver operating parameters for early lipid changes after one month to 

predict lipid changes after 3 months of psychotropic treatment 

 

TC increase 
after 1st 

month (≥,%)

TC increase 
after 3rd 

month (≥,%)
PPV NPV Sensitivity Specificity AUC

Number of 
positives 
after 1st 
month

Number of 
positives 
after 3rd 
month

Number of 
observations

5 10 69.7 84.38 75.41 80.2 77.8 76 61 162
5 15 57.58 87.5 76 75 75.5 76 50 162
5 20 50 94.79 86.84 73.39 80.11 76 38 162
5 25 40.91 96.88 90 70.45 80.23 76 30 162
5 30 33.33 97.92 91.67 68.12 79.89 76 24 162
5 35 24.24 97.92 88.89 65.28 77.08 76 18 162
10 10 75 80 63.93 87.13 75.53 61 61 162
10 15 61.54 83.64 64 82.14 73.07 61 50 162
10 20 53.85 90.91 73.68 80.65 77.16 61 38 162
10 25 44.23 93.64 76.67 78.03 77.35 61 30 162
10 30 38.46 96.36 83.33 76.81 80.07 61 24 162
10 35 26.92 96.36 77.78 73.61 75.69 61 18 162
15 15 68.29 81.82 56 88.39 72.2 49 50 162
15 20 60.98 89.26 65.79 87.1 76.44 49 38 162
15 25 51.22 92.56 70 84.85 77.42 49 30 162
15 30 43.9 95.04 75 83.33 79.17 49 24 162
15 35 31.71 95.87 72.22 80.56 76.39 49 18 162
20 20 75 87.31 55.26 94.35 74.81 33 38 162
20 25 67.86 91.79 63.33 93.18 78.26 33 30 162
20 30 60.71 94.78 70.83 92.03 81.43 33 24 162
20 35 46.43 96.27 72.22 89.58 80.9 33 18 162
25 25 71.43 89.36 50 95.45 72.73 25 30 162
25 30 66.67 92.91 58.33 94.93 76.63 25 24 162
25 35 47.62 94.33 55.56 92.36 73.96 25 18 162
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LDL 
increase 
after 1st 

month (≥,%)

LDL 
increase 
after 3rd 

month (≥,%)

PPV NPV Sensitivity Specificity AUC

Number of 
positives 
after 1st 
month

Number of 
positives 
after 3rd 
month

Number of 
observations

5 5 81.13 78.75 71.67 86.3 78.98 68 67 149
5 10 64.15 82.5 70.83 77.65 74.24 68 52 149
5 15 60.38 87.5 76.19 76.92 76.56 68 46 149
5 20 54.72 90 78.38 75 76.69 68 41 149
5 25 52.83 91.25 80 74.49 77.24 68 37 149
5 30 52.83 95 87.5 75.25 81.37 68 33 149
5 35 47.17 96.25 89.29 73.33 81.31 68 29 149
5 40 41.51 97.5 91.67 71.56 81.61 68 24 149
5 45 37.74 97.5 90.91 70.27 80.59 68 22 149
5 50 30.19 97.5 88.89 67.83 78.36 68 18 149
5 55 24.53 97.5 86.67 66.1 76.38 68 15 149
10 10 67.35 82.14 68.75 81.18 74.96 62 52 149
10 15 63.27 86.9 73.81 80.22 77.01 62 46 149
10 20 57.14 89.29 75.68 78.12 76.9 62 41 149
10 25 55.1 90.48 77.14 77.55 77.35 62 37 149
10 30 55.1 94.05 84.38 78.22 81.3 62 33 149
10 35 48.98 95.24 85.71 76.19 80.95 62 29 149
10 40 42.86 96.43 87.5 74.31 80.91 62 24 149
10 45 38.78 96.43 86.36 72.97 79.67 62 22 149
10 50 30.61 96.43 83.33 70.43 76.88 62 18 149
10 55 24.49 96.43 80 68.64 74.32 62 15 149
15 15 62.22 84.09 66.67 81.32 73.99 57 46 149
15 20 57.78 87.5 70.27 80.21 75.24 57 41 149
15 25 57.78 89.77 74.29 80.61 77.45 57 37 149
15 30 57.78 93.18 81.25 81.19 81.22 57 33 149
15 35 51.11 94.32 82.14 79.05 80.6 57 29 149
15 40 44.44 95.45 83.33 77.06 80.2 57 24 149
15 45 40 95.45 81.82 75.68 78.75 57 22 149
15 50 33.33 96.59 83.33 73.91 78.62 57 18 149
15 55 26.67 96.59 80 72.03 76.02 57 15 149
20 20 65.71 85.71 62.16 87.5 74.83 47 41 149
20 25 65.71 87.76 65.71 87.76 76.73 47 37 149
20 30 65.71 90.82 71.88 88.12 80 47 33 149
20 35 57.14 91.84 71.43 85.71 78.57 47 29 149
20 40 48.57 92.86 70.83 83.49 77.16 47 24 149
20 45 45.71 93.88 72.73 82.88 77.81 47 22 149
20 50 40 95.92 77.78 81.74 79.76 47 18 149
20 55 31.43 95.92 73.33 79.66 76.5 47 15 149
25 25 74.07 85.85 57.14 92.86 75 36 37 149
25 30 74.07 88.68 62.5 93.07 77.78 36 33 149
25 35 66.67 90.57 64.29 91.43 77.86 36 29 149
25 40 59.26 92.45 66.67 89.91 78.29 36 24 149
25 45 55.56 93.4 68.18 89.19 78.69 36 22 149
25 50 48.15 95.28 72.22 87.83 80.02 36 18 149
25 55 37.04 95.28 66.67 85.59 76.13 36 15 149
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TG increase 
after 1st 

month (≥,%)

TG increase 
after 3rd 

month (≥,%)
PPV NPV Sensitivity Specificity AUC

Number of 
positives 
after 1st 
month

Number of 
positives 
after 3rd 
month

Number of 
observations

5 10 58.33 75.68 75.68 58.33 67 54 37 87
5 15 54.17 81.08 78.79 57.69 68.24 54 33 87
5 20 45.83 81.08 75.86 53.57 64.72 54 29 87
5 25 45.83 81.08 75.86 53.57 64.72 54 29 87
5 30 45.83 83.78 78.57 54.39 66.48 54 28 87
5 35 31.25 86.49 75 49.23 62.12 54 20 87
5 40 31.25 97.3 93.75 52.17 72.96 54 16 87
5 45 31.25 100 100 52.86 76.43 54 15 87
5 50 31.25 100 100 52.86 76.43 54 15 87
10 10 57.78 72.5 70.27 60.42 65.34 51 37 87
10 15 53.33 77.5 72.73 59.62 66.17 51 33 87
10 20 44.44 77.5 68.97 55.36 62.16 51 29 87
10 25 44.44 77.5 68.97 55.36 62.16 51 29 87
10 30 44.44 80 71.43 56.14 63.78 51 28 87
10 35 28.89 82.5 65 50.77 57.88 51 20 87
10 40 28.89 92.5 81.25 53.62 67.44 51 16 87
10 45 28.89 95 86.67 54.29 70.48 51 15 87
10 50 28.89 95 86.67 54.29 70.48 51 15 87
15 15 63.89 79.59 69.7 75 72.35 40 33 87
15 20 52.78 79.59 65.52 69.64 67.58 40 29 87
15 25 52.78 79.59 65.52 69.64 67.58 40 29 87
15 30 52.78 81.63 67.86 70.18 69.02 40 28 87
15 35 36.11 85.71 65 64.62 64.81 40 20 87
15 40 36.11 93.88 81.25 66.67 73.96 40 16 87
15 45 36.11 95.92 86.67 67.14 76.9 40 15 87
15 50 36.11 95.92 86.67 67.14 76.9 40 15 87
20 20 50 76.47 58.62 69.64 64.13 37 29 87
20 25 50 76.47 58.62 69.64 64.13 37 29 87
20 30 50 78.43 60.71 70.18 65.44 37 28 87
20 35 32.35 82.35 55 64.62 59.81 37 20 87
20 40 32.35 90.2 68.75 66.67 67.71 37 16 87
20 45 32.35 92.16 73.33 67.14 70.24 37 15 87
20 50 32.35 92.16 73.33 67.14 70.24 37 15 87
25 25 51.52 76.92 58.62 71.43 65.02 36 29 87
25 30 51.52 78.85 60.71 71.93 66.32 36 28 87
25 35 33.33 82.69 55 66.15 60.58 36 20 87
25 40 33.33 90.38 68.75 68.12 68.43 36 16 87
25 45 33.33 92.31 73.33 68.57 70.95 36 15 87
25 50 33.33 92.31 73.33 68.57 70.95 36 15 87
30 30 51.61 77.78 57.14 73.68 65.41 34 28 87
30 35 35.48 83.33 55 69.23 62.12 34 20 87
30 40 35.48 90.74 68.75 71.01 69.88 34 16 87
30 45 35.48 92.59 73.33 71.43 72.38 34 15 87
30 50 35.48 92.59 73.33 71.43 72.38 34 15 87
35 35 47.83 85.48 55 81.54 68.27 26 20 87
35 40 47.83 91.94 68.75 82.61 75.68 26 16 87
35 45 47.83 93.55 73.33 82.86 78.1 26 15 87
35 50 47.83 93.55 73.33 82.86 78.1 26 15 87
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HDL 
decrease 
after 1st 

month (≥,%)

HDL 
decrease 
after 3rd 

month (≥,%)

PPV NPV Sensitivity Specificity AUC

Number of 
positives 
after 1st 
month

Number of 
positives 
after 3rd 
month

Number of 
observations

5 5 63.16 76.34 62.07 77.17 69.62 71 60 159
5 10 50.88 84.95 67.44 73.83 70.64 71 45 159
5 15 36.84 89.25 67.74 69.75 68.74 71 33 159
5 20 24.56 93.55 70 66.92 68.46 71 22 159
10 10 59.09 83.96 60.47 83.18 71.82 56 45 159
10 15 43.18 88.68 61.29 78.99 70.14 56 33 159
10 20 27.27 92.45 60 75.38 67.69 56 22 159
15 15 53.12 88.14 54.84 87.39 71.12 41 33 159
15 20 34.38 92.37 55 83.85 69.42 41 22 159
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Non-HDL-C 
increase 
after 1st 

month (≥,%)

Non-HDL-C 
increase 
after 3rd 

month (≥,%)

PPV NPV Sensitivity Specificity AUC

Number of 
positives 
after 1st 
month

Number of 
positives 
after 3rd 
month

Number of 
observations

5 5 73.85 74.12 68.57 78.75 73.66 78 72 159
5 10 60 80 69.64 72.34 70.99 78 57 159
5 15 55.38 84.71 73.47 71.29 72.38 78 50 159
5 20 55.38 88.24 78.26 72.12 75.19 78 46 159
5 25 50.77 92.94 84.62 71.17 77.89 78 39 159
5 30 46.15 95.29 88.24 69.83 79.03 78 34 159
5 35 44.62 96.47 90.62 69.49 80.06 78 32 159
5 40 38.46 97.65 92.59 67.48 80.04 78 27 159
5 45 32.31 97.65 91.3 65.35 78.33 78 23 159
5 50 30.77 97.65 90.91 64.84 77.88 78 22 159
5 55 26.15 98.82 94.44 63.64 79.04 78 18 159
10 10 67.27 80 66.07 80.85 73.46 66 57 159
10 15 61.82 84.21 69.39 79.21 74.3 66 50 159
10 20 61.82 87.37 73.91 79.81 76.86 66 46 159
10 25 58.18 92.63 82.05 79.28 80.67 66 39 159
10 30 52.73 94.74 85.29 77.59 81.44 66 34 159
10 35 50.91 95.79 87.5 77.12 82.31 66 32 159
10 40 43.64 96.84 88.89 74.8 81.84 66 27 159
10 45 36.36 96.84 86.96 72.44 79.7 66 23 159
10 50 34.55 96.84 86.36 71.88 79.12 66 22 159
10 55 29.09 97.89 88.89 70.45 79.67 66 18 159
15 15 68.75 84.31 67.35 85.15 76.25 57 50 159
15 20 68.75 87.25 71.74 85.58 78.66 57 46 159
15 25 64.58 92.16 79.49 84.68 82.09 57 39 159
15 30 58.33 94.12 82.35 82.76 82.56 57 34 159
15 35 56.25 95.1 84.38 82.2 83.29 57 32 159
15 40 47.92 96.08 85.19 79.67 82.43 57 27 159
15 45 39.58 96.08 82.61 77.17 79.89 57 23 159
15 50 37.5 96.08 81.82 76.56 79.19 57 22 159
15 55 31.25 97.06 83.33 75 79.17 57 18 159
20 20 75 83.33 58.7 91.35 75.02 43 46 159
20 25 72.22 88.6 66.67 90.99 78.83 43 39 159
20 30 63.89 90.35 67.65 88.79 78.22 43 34 159
20 35 61.11 91.23 68.75 88.14 78.44 43 32 159
20 40 52.78 92.98 70.37 86.18 78.27 43 27 159
20 45 47.22 94.74 73.91 85.04 79.48 43 23 159
20 50 44.44 94.74 72.73 84.38 78.55 43 22 159
20 55 36.11 95.61 72.22 82.58 77.4 43 18 159
25 25 77.42 87.39 61.54 93.69 77.62 37 39 159
25 30 67.74 89.08 61.76 91.38 76.57 37 34 159
25 35 64.52 89.92 62.5 90.68 76.59 37 32 159
25 40 58.06 92.44 66.67 89.43 78.05 37 27 159
25 45 51.61 94.12 69.57 88.19 78.88 37 23 159
25 50 48.39 94.12 68.18 87.5 77.84 37 22 159
25 55 38.71 94.96 66.67 85.61 76.14 37 18 159
30 30 71.43 88.52 58.82 93.1 75.96 34 34 159
30 35 67.86 89.34 59.38 92.37 75.87 34 32 159
30 40 60.71 91.8 62.96 91.06 77.01 34 27 159
30 45 57.14 94.26 69.57 90.55 80.06 34 23 159
30 50 53.57 94.26 68.18 89.84 79.01 34 22 159
30 55 42.86 95.08 66.67 87.88 77.27 34 18 159
35 35 76.19 87.6 50 95.76 72.88 26 32 159
35 40 66.67 89.92 51.85 94.31 73.08 26 27 159
35 45 61.9 92.25 56.52 93.7 75.11 26 23 159
35 50 57.14 92.25 54.55 92.97 73.76 26 22 159
35 55 52.38 94.57 61.11 92.42 76.77 26 18 159
40 40 77.78 90.15 51.85 96.75 74.3 22 27 159
40 45 72.22 92.42 56.52 96.06 76.29 22 23 159
40 50 66.67 92.42 54.55 95.31 74.93 22 22 159
40 55 61.11 94.7 61.11 94.7 77.9 22 18 159
45 45 76.47 92.48 56.52 96.85 76.69 20 23 159
45 50 70.59 92.48 54.55 96.09 75.32 20 22 159
45 55 64.71 94.74 61.11 95.45 78.28 20 18 159
50 50 68.75 91.79 50 96.09 73.05 19 22 159
50 55 62.5 94.03 55.56 95.45 75.51 19 18 159



 

209 
 

PPV: positive predictive value; NPV: negative predictive value; AUC: area under the curve; Number of positives after 1st month: 

number of patients whose lipid levels outreached the 1st month threshold indicated in the first column. Number of positives after 3rd 

month: number of patients whose lipid levels outreached the 3rd month threshold indicated in the second column. 
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S4 Table. Receiver operating parameters for early lipid changes after one month to 

predict lipid changes after 12 months of psychotropic treatment 

 

TC increase 
after 1st 

month (≥,%)

TC increase 
after 12th 

month (≥,%)
PPV NPV Sensitivity Specificity AUC

Number of 
positives 
after 1st 

month

Number of 
positives 
after 12th 

month

Number of 
observations

5 10 80 75.51 70 84.09 77.05 76 40 84
5 15 65.71 83.67 74.19 77.36 75.78 76 31 84
5 20 48.57 85.71 70.83 70 70.42 76 24 84
5 25 37.14 91.84 76.47 67.16 71.82 76 17 84
5 30 34.29 95.92 85.71 67.14 76.43 76 14 84
10 10 82.14 69.64 57.5 88.64 73.07 61 40 84
10 15 67.86 78.57 61.29 83.02 72.15 61 31 84
10 20 53.57 83.93 62.5 78.33 70.42 61 24 84
10 25 42.86 91.07 70.59 76.12 73.35 61 17 84
10 30 39.29 94.64 78.57 75.71 77.14 61 14 84
15 15 66.67 75 51.61 84.91 68.26 49 31 84
15 20 50 80 50 80 65 49 24 84
15 25 37.5 86.67 52.94 77.61 65.28 49 17 84
15 30 33.33 90 57.14 77.14 67.14 49 14 84
20 20 58.82 79.1 41.67 88.33 65 33 24 84
20 25 52.94 88.06 52.94 88.06 70.5 33 17 84
20 30 47.06 91.04 57.14 87.14 72.14 33 14 84
25 25 64.29 88.57 52.94 92.54 72.74 25 17 84
25 30 57.14 91.43 57.14 91.43 74.29 25 14 84



 

211 
 

 

LDL 
increase 
after 1st 

month (≥,%)

LDL 
increase 
after 12th 

month (≥,%)

PPV NPV Sensitivity Specificity AUC

Number of 
positives 
after 1st 

month

Number of 
positives 
after 12th 

month

Number of 
observations

5 5 84.62 60.47 56.41 86.67 71.54 68 41 76
5 10 76.92 65.12 57.14 82.35 69.75 68 37 76
5 15 69.23 67.44 56.25 78.38 67.31 68 33 76
5 20 57.69 79.07 62.5 75.56 69.03 68 24 76
5 25 53.85 86.05 70 75.51 72.76 68 20 76
5 30 50 93.02 81.25 75.47 78.36 68 16 76
5 35 42.31 93.02 78.57 72.73 75.65 68 14 76
5 40 42.31 93.02 78.57 72.73 75.65 68 14 76
5 45 42.31 93.02 78.57 72.73 75.65 68 14 76
5 50 38.46 93.02 76.92 71.43 74.18 68 13 76
10 10 75 62.22 51.43 82.35 66.89 62 37 76
10 15 70.83 66.67 53.12 81.08 67.1 62 33 76
10 20 58.33 77.78 58.33 77.78 68.06 62 24 76
10 25 54.17 84.44 65 77.55 71.28 62 20 76
10 30 54.17 93.33 81.25 79.25 80.25 62 16 76
10 35 45.83 93.33 78.57 76.36 77.47 62 14 76
10 40 45.83 93.33 78.57 76.36 77.47 62 14 76
10 45 45.83 93.33 78.57 76.36 77.47 62 14 76
10 50 41.67 93.33 76.92 75 75.96 62 13 76
15 15 76.19 66.67 50 86.49 68.24 57 33 76
15 20 61.9 77.08 54.17 82.22 68.19 57 24 76
15 25 57.14 83.33 60 81.63 70.82 57 20 76
15 30 57.14 91.67 75 83.02 79.01 57 16 76
15 35 52.38 93.75 78.57 81.82 80.19 57 14 76
15 40 52.38 93.75 78.57 81.82 80.19 57 14 76
15 45 52.38 93.75 78.57 81.82 80.19 57 14 76
15 50 47.62 93.75 76.92 80.36 78.64 57 13 76
20 20 62.5 73.58 41.67 86.67 64.17 47 24 76
20 25 56.25 79.25 45 85.71 65.36 47 20 76
20 30 56.25 86.79 56.25 86.79 71.52 47 16 76
20 35 56.25 90.57 64.29 87.27 75.78 47 14 76
20 40 56.25 90.57 64.29 87.27 75.78 47 14 76
20 45 56.25 90.57 64.29 87.27 75.78 47 14 76
20 50 50 90.57 61.54 85.71 73.63 47 13 76
25 25 58.33 77.19 35 89.8 62.4 36 20 76
25 30 58.33 84.21 43.75 90.57 67.16 36 16 76
25 35 58.33 87.72 50 90.91 70.45 36 14 76
25 40 58.33 87.72 50 90.91 70.45 36 14 76
25 45 58.33 87.72 50 90.91 70.45 36 14 76
25 50 58.33 89.47 53.85 91.07 72.46 36 13 76
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TG increase 
after 1st 

month (≥,%)

TG increase 
after 12th 

month (≥,%)
PPV NPV Sensitivity Specificity AUC

Number of 
positives 
after 1st 

month

Number of 
positives 
after 12th 

month

Number of 
observations

5 10 71.43 56.25 68.18 60 64.09 54 22 38
5 15 71.43 62.5 71.43 62.5 66.96 54 21 38
5 20 71.43 68.75 75 64.71 69.85 54 20 38
5 25 71.43 75 78.95 66.67 72.81 54 19 38
5 30 71.43 75 78.95 66.67 72.81 54 19 38
5 35 61.9 75 76.47 60 68.24 54 17 38
5 40 47.62 75 71.43 52.17 61.8 54 14 38
5 45 47.62 81.25 76.92 54.17 65.54 54 13 38
10 10 75 58.82 68.18 66.67 67.42 51 22 38
10 15 75 64.71 71.43 68.75 70.09 51 21 38
10 20 75 70.59 75 70.59 72.79 51 20 38
10 25 75 76.47 78.95 72.22 75.58 51 19 38
10 30 75 76.47 78.95 72.22 75.58 51 19 38
10 35 65 76.47 76.47 65 70.74 51 17 38
10 40 50 76.47 71.43 56.52 63.98 51 14 38
10 45 50 82.35 76.92 58.33 67.63 51 13 38
15 15 75 57.14 57.14 75 66.07 40 21 38
15 20 75 61.9 60 76.47 68.24 40 20 38
15 25 75 66.67 63.16 77.78 70.47 40 19 38
15 30 75 66.67 63.16 77.78 70.47 40 19 38
15 35 62.5 66.67 58.82 70 64.41 40 17 38
15 40 50 71.43 57.14 65.22 61.18 40 14 38
15 45 50 76.19 61.54 66.67 64.1 40 13 38
20 20 73.33 59.09 55 76.47 65.74 37 20 38
20 25 73.33 63.64 57.89 77.78 67.84 37 19 38
20 30 73.33 63.64 57.89 77.78 67.84 37 19 38
20 35 60 63.64 52.94 70 61.47 37 17 38
20 40 46.67 68.18 50 65.22 57.61 37 14 38
20 45 46.67 72.73 53.85 66.67 60.26 37 13 38
25 25 73.33 63.64 57.89 77.78 67.84 36 19 38
25 30 73.33 63.64 57.89 77.78 67.84 36 19 38
25 35 60 63.64 52.94 70 61.47 36 17 38
25 40 46.67 68.18 50 65.22 57.61 36 14 38
25 45 46.67 72.73 53.85 66.67 60.26 36 13 38
30 30 73.33 63.64 57.89 77.78 67.84 34 19 38
30 35 60 63.64 52.94 70 61.47 34 17 38
30 40 46.67 68.18 50 65.22 57.61 34 14 38
30 45 46.67 72.73 53.85 66.67 60.26 34 13 38
35 35 72.73 65.38 47.06 85 66.03 26 17 38
35 40 63.64 73.08 50 82.61 66.3 26 14 38
35 45 63.64 76.92 53.85 83.33 68.59 26 13 38



 

213 
 

 

 

 

  

HDL 
decrease 
after 1st 

month (≥,%)

HDL 
decrease 
after 12th 

month (≥,%)

PPV NPV Sensitivity Specificity AUC

Number of 
positives 
after 1st 

month

Number of 
positives 
after 12th 

month

Number of 
observations

5 5 77.14 73.33 69.23 80.49 74.86 71 41 83
5 10 62.86 82.22 73.33 74 73.67 71 32 83
5 15 48.57 82.22 68 67.27 67.64 71 27 83
5 20 28.57 93.33 76.92 62.69 69.8 71 15 83
10 10 73.08 79.63 63.33 86 74.67 56 32 83
10 15 53.85 79.63 56 78.18 67.09 56 27 83
10 20 34.62 92.59 69.23 74.63 71.93 56 15 83
15 15 55.56 75.81 40 85.45 62.73 41 27 83
15 20 33.33 88.71 46.15 82.09 64.12 41 15 83
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PPV: positive predictive value; NPV: negative predictive value; AUC: area under the curve.  Number of positives after 1st month: 

number of patients whose lipid levels outreached the 1st month threshold indicated in the first column. Number of positives after 12th 

month: number of patients whose lipid levels outreached the 12th month threshold indicated in the second column. 

 

 

 

 

 

Non-HDL-C 
increase 
after 1st 

month (≥,%)

Non-HDL-C 
increase 
after 12th 

month (≥,%)

PPV NPV Sensitivity Specificity AUC

Number of 
positives 
after 1st 
month

Number of 
positives 
after 3rd 
month

Number of 
observations

5 5 81.58 61.9 65.96 78.79 72.37 78 49 83
5 10 81.58 69.05 70.45 80.56 75.51 78 45 83
5 15 68.42 73.81 70.27 72.09 71.18 78 38 83
5 20 60.53 76.19 69.7 68.09 68.89 78 34 83
5 25 50 83.33 73.08 64.81 68.95 78 26 83
5 30 50 85.71 76 65.45 70.73 78 25 83
5 35 50 90.48 82.61 66.67 74.64 78 23 83
5 40 50 95.24 90.48 67.8 79.14 78 21 83
5 45 34.21 95.24 86.67 61.54 74.1 78 15 83
10 10 90.62 68.75 65.91 91.67 78.79 66 45 83
10 15 78.12 75 67.57 83.72 75.64 66 38 83
10 20 71.88 79.17 69.7 80.85 75.27 66 34 83
10 25 59.38 85.42 73.08 75.93 74.5 66 26 83
10 30 59.38 87.5 76 76.36 76.18 66 25 83
10 35 59.38 91.67 82.61 77.19 79.9 66 23 83
10 40 59.38 95.83 90.48 77.97 84.22 66 21 83
10 45 40.62 95.83 86.67 70.77 78.72 66 15 83
15 15 74.07 67.92 54.05 83.72 68.89 57 38 83
15 20 66.67 71.7 54.55 80.85 67.7 57 34 83
15 25 59.26 81.13 61.54 79.63 70.58 57 26 83
15 30 59.26 83.02 64 80 72 57 25 83
15 35 59.26 86.79 69.57 80.7 75.13 57 23 83
15 40 59.26 90.57 76.19 81.36 78.77 57 21 83
15 45 44.44 94.34 80 76.92 78.46 57 15 83
20 20 68.42 67.21 39.39 87.23 63.31 43 34 83
20 25 68.42 78.69 50 88.89 69.44 43 26 83
20 30 68.42 80.33 52 89.09 70.55 43 25 83
20 35 68.42 83.61 56.52 89.47 73 43 23 83
20 40 68.42 86.89 61.9 89.83 75.87 43 21 83
20 45 52.63 91.8 66.67 86.15 76.41 43 15 83
25 25 75 78.12 46.15 92.59 69.37 37 26 83
25 30 75 79.69 48 92.73 70.36 37 25 83
25 35 75 82.81 52.17 92.98 72.58 37 23 83
25 40 75 85.94 57.14 93.22 75.18 37 21 83
25 45 56.25 90.62 60 89.23 74.62 37 15 83
30 30 75 79.69 48 92.73 70.36 34 25 83
30 35 75 82.81 52.17 92.98 72.58 34 23 83
30 40 75 85.94 57.14 93.22 75.18 34 21 83
30 45 56.25 90.62 60 89.23 74.62 34 15 83
35 35 92.31 83.58 52.17 98.25 75.21 26 23 83
35 40 92.31 86.57 57.14 98.31 77.72 26 21 83
35 45 69.23 91.04 60 93.85 76.92 26 15 83
40 40 90.91 84.06 47.62 98.31 72.96 22 21 83
40 45 63.64 88.41 46.67 93.85 70.26 22 15 83
45 45 70 88.57 46.67 95.38 71.03 20 15 83
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S5 Table. Linear mixed effect models fitted on lipid trait changes (%) over time in the discovery sample 

 

 

 

Results were obtained by fitting a linear mixed model controlling for age, gender, time, baseline BMI, smoking, current psychotropic drug and early weight gain >5%, during the first three 

months of treatment 

P-values in bold are significant. 

Abbreviation: TC: total cholesterol; LDL-C: low-density lipoprotein cholesterol; TG: triglycerides; HDL-C: high-density lipoprotein cholesterol; non-HDL-C: non high-density lipoprotein 

cholesterol. 

n
Difference of TC change 
(%) between <5% and 
≥5% groups (95%CI)

p-value n

Difference of LDL-C 
change (%) between 
<5% and ≥5% groups 

(95%CI)

p-value n

Difference of TG 
change (%) between 
<5% and ≥5% groups 

(95%CI)

p-value n
Difference of HDL-C 

change (%) between <5% 
and ≥5% groups (95%CI)

p-value n
Difference of non-HDL-C 
change (%) between <5% 
and ≥5% groups (95%CI)

p-value

181 24.6% (16.1% - 33.2%) <0.0001 161 34.0% (17.2% - 50.6%) 0.0001 95 39.8% (-0.8% - 88.1%) 0.03 172 -13.9% (-19.3% - (-)8.6%) <0.0001 172 36.1% (22.5% - 50.6%) <0.0001



 

216 
 

S6 Table. Linear mixed effect models fitted on lipid trait changes (%) over time in the replication sample 

 

 

 

Results were obtained by fitting a linear mixed model controlling for age, gender, time, baseline BMI, smoking, current psychotropic drug and early weight gain >5% after 3 and/or 12 months of 

psychotropic treatment. 

P-values in bold are significant. 

Abbreviation: TC: total cholesterol; LDL-C: low-density lipoprotein cholesterol; TG: triglycerides; HDL-C: high-density lipoprotein cholesterol; non-HDL-C: non high-density lipoprotein cholesterol. 

 

 

 

 

 

 

 

 

 

 

 

n
Difference of TC change 
(%) between <5% and 
≥5% groups (95%CI)

p-value n
Difference of LDL-C 

change (%) between <5% 
and ≥5% groups (95%CI)

p-value n
Difference of TG change 
(%) between <5% and 
≥5% groups (95%CI)

p-value n
Difference of HDL-C 

change (%) between <5% 
and ≥5% groups (95%CI)

p-value n
Difference of non-HDL-C 
change (%) between <5% 
and ≥5% groups (95%CI)

p-value

79 21.6% (10.2%-33.9%) <0.001 73 28.6% (12.7% - 45.0%) <0.001 45 56.5% (16.9% - 92.8%) 0.003 78 -21.4% (-30.6% - (-)11.8%) <0.001 78 30.9% (13.8% - 49.4%) <0.001
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S7 Table. Demographic parameters and comparisons between patients with and without new onset dyslipidemia 

  

Only patients with no dyslipidemia at baseline are included. 
NODTC: new-onset hypercholesterolemia, defined either by plasma levels of total cholesterol ≥5 mmol/l (193 mg/dL) and/or by prescription of a lipid-lowering agent. 
NODLDL: new-onset LDL hypercholesterolemia, defined either by plasma levels of LDL cholesterol ≥3 mmol/l (116 mg/dL)and/or by prescription of a lipid-lowering agent. 
NODTG: new-onset hypertriglyceridemia, defined either by plasma levels of triglycerides ≥2 mmol/l (177 mg/dL) and/or by the prescription of a lipid-lowering agent. 
NODHDL: new-onset HDL hypocholesterolemia, defined either by plasma levels of HDL cholesterol ≤1 mmol/l (39 mg/dL) and/or by the prescription of a lipid-lowering agent. 
NODnonHDL: new-onset nonHDL hypercholesterolemia, defined either by plasma levels of non-HDL cholesterol ≥4 mmol/l (154 mg/dL) and/or by the prescription of a lipid-lowering agent. 
1 Levels of TC for NODTC groups, LDL-C for NODLDL groups, TG for NODTG groups, HDL-C for NODHDL groups and non-HDL-C for NODnonHDL groups. 
p-values were calculated using ranksum tests (for continuous variables) and chi2 tests (for categorical variables) between groups. Values in bold are significant. 

Patients 
without 
NODTC 
(n=64)

Patients 
with 

NODTC 
(n=50)

p-value

Patients 
without 
NODLDL 

(n=72)

Patients 
with 

NODLDL 
(n=43)

p-value

Patients 
without 
NODTG 
(n=66)

Patients 
with 

NODTG 
(n=18)

p-value

Patients 
without 

NODHDL 
(n=116)

Patients 
with 

NODHDL 
(n=36)

p-value

Patients 
without 

NODnonHDL 
(n=89)

Patients with 
NODnonHDL 

(n=38)
p-value

Age, median (IQR), y 26 (20-41) 35 (26-50) 0.03 26 (20-44) 35 (25-51) 0.04 29 (20-46) 34 (26-42) 0.39 34 (22-53) 32 (25-55) 0.98 28 (20-46) 34 (28-51) 0.06
Men, n(%) 39 (60.9) 23 (46.0) 0.11 38 (52.8) 20 (46.5) 0.52 30 (45.5) 13 (72.2) 0.04 49 (42.2) 26 (72.2) 0.002 43 (48.3) 22 (57.9) 0.32
Smoking, n(%) 31 (48.4) 21 (42.0) 0.76 30 (41.7) 21 (48.8) 0.57 29 (43.9) 10 (55.6) 0.59 39 (33.6) 22 (61.1) 0.01 37 (41.6) 19 (50.0) 0.56
Diagnosis, n(%)

Psychotic disorders 20 (31.3) 27 (54) 0.01 26 (36.1) 21 (48.8) 0.18 22 (33.3) 7 (38.9) 0.66 38 (32.7) 13 (36.1) 0.71 32 (35.9) 17 (44.7) 0.35
Schizoaffective disorders 7 (1.09) 2 (4) 0.17 7 (9.7) 2 (4.7) 0.33 4 (6.1) 2 (11.1) 0.46 7 (6.0) 4 (11.1) 0.3 9 (10.1) 2 (5.3) 0.37

Bipolar disorders 5 (7.8) 5 (10.0) 0.68 7 (9.7) 3 (7) 0.61 13 (19.7) 3 (16.7) 0.77 20 (17.2) 8 (22.2) 0.5 9 (10.1) 5 (13.2) 0.62
Depressive disorders 12 (18.8) 0 (0) 0.02 12 (16.7) 3 (7) 0.14 11 (16.7) 4 (22.2) 0.59 22 (18.9) 2 (5.6) 0.05 14 (15.7) 4 (10.5) 0.44

Organic disorders 2 (3.1) 2 (4.0) 0.21 2 (2.8) 0 (0) 0.27 0 (0) 0 (0) 3 (2.6) 1 (2.8) 0.95 2 (2.3) 1 (2.6) 0.9
Other 5 (7.8) 7 (14.0) 0.29 6 (8.3) 4 (9.3) 0.86 7 (10.6) 0 (0) 0.15 9 (7.7) 4 (11.1) 0.53 7 (7.9) 4 (10.5) 0.63

Not available 13 (20.3) 7 (14.0) 0.38 12 (16.7) 10 (23.3) 0.39 9 (13.6) 2 (11.1) 0.78 17 (14.7) 4 (11.1) 0.59 16 (18.0) 5 (13.2) 0.5

Medication, n(%)
Amisulpride 9 (14.1) 5 (10.0) 0.51 10 (13.9) 4 (9.3) 0.47 7 (10.6) 1 (5.6) 0.52 11 (9.5) 3 (8.3) 0.84 11 (12.4) 1 (2.6) 0.09
Aripiprazole 10 (15.6) 4 (8.0) 0.22 11 (15.3) 1 (2.3) 0.03 10 (15.2) 2 (11.1) 0.66 16 (13.8) 3 (8.3) 0.39 13 (14.6) 3 (7.9) 0.3

Clozapine 3 (4.7) 4 (8.0) 0.47 2 (2.3) 8 (18.6) 0.004 4 (6.1) 2 (11.1) 0.46 8 (6.9) 1 (2.8) 0.36 4 (4.5) 7 (18.4) 0.01
Haloperidol 0 (0) 0 (0) 0 (0) 1 (2.3) 0.19 0 (0) 0 (0) 1 (0.9) 0 (0) 0.58 0 (0) 0 (0)

Lithium 2 (3.1) 1 (2.0) 0.71 5 (6.9) 1 (2.3) 0.28 5 (7.6) 1 (5.6) 0.77 9 (7.8) 3 (8.3) 0.91 6 (6.7) 1 (2.6) 0.35
Mirtazapine 1 (1.6) 0 (0) 0.38 1 (1.4) 0 (0) 0.44 1 (1.5) 0 (0) 0.6 3 (2.6) 2 (5.7) 0.38 2 (2.3) 0 (0) 0.35
Olanzapine 14 (21.9) 12 (24.0) 0.79 1419.4) 11 (25.6) 0.44 12 (18.2) 2 (11.1) 0.48 22 (18.9) 7 (19.4) 0.95 18 (20.2) 8 (21.1) 0.92
Quetiapine 15 (23.4) 20 (40.0) 0.06 20 (27.8) 14 (32.6) 0.59 17 (25.7) 9 (50.0) 0.05 35 (30.2) 9 (25.0) 0.55 24 (27.0) 14 (36.8) 0.27

Risperidone 5 (7.8) 4 (8.0) 0.97 5 (6.9) 3 (7.0) 0.99 6 (9.1) 1 (5.6) 0.63 7 (6.0) 4 (11.1) 0.3 6 (6.7) 4 (10.5) 0.47
Valproate 5 (7.8) 0 (0) 0.04 4 (5.6) 0 (0) 0.12 4 (6.1) 0 (0) 0.29 4 (3.5) 4 (11.1) 0.07 5 (5.6) 0 (0) 0.14

Obesity prevalence (BMI ≥ 30kg/m2), n(%)
Baseline 6 (10.3) 6 (9.1) 0.83 4 (5.9) 6 (16.7) 0.08 6 (10.0) 1 (5.9) 0.6 10 (9.4) 5 (15.6) 0.32 6 (7.3) 5 (14.7) 0.22

1 year 4 (13.8) 6 (27.3) 0.23 2 (6.5) 5 (31.3) 0.02 4 (17.4) 0 (0) 0.24 6 (30.0) 5 (6.0) 0.05 3 (8.3) 7 (33.3) 0.02

Early weight gain (≥5%), n(%) 9 (14.8) 12 (24.5) 0.2 12 (17.4) 10 (23.8) 0.41 5 (7.7) 6 (35.3) 0.003 19 (17.1) 10 (28.6) 0.14 13 (15.1) 10 (27.0) 0.12
Psychiatric illness duration, median (IQR) years 3 (1-8) 6 (2-10) 0.16 4 (2-10) 4 (1-13) 0.86 3.5 (1-10.5) 5 (3-10) 0.33 4 (1-10) 3 (1-9) 0.35 4 (1-10) 4 (3-10) 0.55
Baseline lipid levels1, median (IQR), mmol/l 3.9 (3.5-4.3) 4.4 (4.1-4.7) 0.0001 2.1 (1.8-2.4) 2.4 (2.0-7.8) 0.003 1 (0.7-1.2) 1.2 (1.1-1.6) 0.004 1.5 (1.3-1.8) 1.2 (1.2-1.4) <0.0001 2.7 (2.2-3.1) 3.2 (2.9-3.5) <0.0001
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S8 Table. Risk factors for new onset TC- and LDL hypercholesterolemia, hypertriglyceridemia, HDL-hypocholesterolemia and non-

HDL hypercholesterolemia in patients receiving psychotropic treatment 

 

  

 

Results were obtained by fitting Cox regressions controlling for age, gender, baseline BMI, smoking status, current psychotropic drug category and early weight gain >5% group. 
1 Early lipid change groups constructed according to 5% thresholds (≥5% versus <5% of TC increase for NODTC model, ≥5% versus <5% of LDL-C increase for NODLDL model, ≥5% versus 
<5% of TG increase for NODTG model, ≥5% versus <5% of HDL-C decrease for NODHDL model and (≥5% versus <5% of non-HDL-C increase for NODnonHDL model ).  
2 Psychotropic medication categories were defined according to their expected metabolic effect drugs i.e. olanzapine, clozapine and valproate being associated with the highest risk of 
dyslipidemia, mirtazapine, lithium, risperidone and quetiapine conferring an intermediate risk, and aripiprazole, amisulpride and haloperidol being at lower risk.  
3 Early weight gain groups were constructed according to the 5% threshold after one month of treatment (≥5% versus <5%).   
Abbreviation: SE: standard error; NS: non significant; NODTC: new onset hypercholesterolemia for total cholesterol; NODLDL: new onset hypercholesterolemia for low-density lipoprotein 
cholesterol; NODTG: new onset hypertriglyceridemia; NODHDL: new onset hypocholesterolemia for high-density lipoprotein cholesterol; NODnonHDL: new onset hypercholesterolemia for non-
high-density lipoprotein cholesterol. 

 

 

 

 

 

 

estimate (SE) p-value estimate (SE) p-value estimate (SE) p-value estimate (SE) p-value estimate (SE) p-value
Age NS NS 0.03 (0.01) 0.02 NS NS
Sex NS NS 1.62 (0.60) 0.007 2.69 (1.02) 0.008 NS

Baseline BMI NS NS NS NS NS
Smoking status NS NS NS NS NS

Early lipid increase1 1.25 (0.41) 0.002 1.65 (0.56) 0.003 1.84 (0.54) 0.0007 2.6 (1.24) 0.04 NS
Psychotropic medication group2 NS 0.88 (0.30) 0.003 NS NS 0.62 (0.27) 0.02

Early weight gain3 0.83 (0.41) 0.04 NS NS 2.2 (0.69) 0.001 1.10 (0.43) 0.01

NODTC (n=114) NODLDL (n=115) NODHDL (n=152) NODTG (n=84) NODnonHDL (n=127)



- 219 - 
 

S9 Table. Influence of the number of exceeded early thresholds on new onset 

dyslipidemia during psychotropic treatment. 

 

 

 

1 Number of early exceeded thresholds refers to TCi≥5%, LDLi≥5%, TGi≥5% and/or HDLd≥5% 

2 Logistic mixed models were adjusted for age, sex, baseline BMI, smoking status, psychotropic drug category and early weight gain 

group. 

 

 

 

 

 

 

Risk of developing one or more new onset dyslipidemia

Odd-ratio (CI 95%) p-value
Adjusted odd-
ratio (CI 95%)2 p-value

Control 0 3/12 (25%)
Case 1,2,3 or 4 47/72 (65%)

Control 0,1 7/24 (29%)
Case 2,3 or 4 43/60 (72%)

Control 0,1,2 22/49 (45%)
Case 3 or 4 28/35 (80%)

Risk of developing two or more new onset dyslipidemia

Odd-ratio (CI 95%) p-value
Adjusted odd-
ratio (CI 95%)2 p-value

Control 0,1 3/24 (13%)
Case 2,3 or 4 28/60 (47%)

Control 0,1,2 9/49 (18%)
Case 3 or 4 22/35 (63%)

Control 0,1,2,3 21/73 (29%)
Case 4 10/11 (91%)

0.00007

0.000123.8 (3.1 - 1087.9)

7.3 (2.5 - 23.1)

6.0 (1.5 - 34.8) 0.005

0.001

0.00442.8 (3.4 - 540)

9.2 (2.4 - 36.1)

6.8 (1.1 - 42.1) 0.04

Adjusted analyses
Logistic mixed modelFisher

Patients developing at least one 
dyslipidemia during psychotropic 

treatment, n/total (%)

0.0024.8 (1.7 - 15.7) 0.0055.8 (1.7 - 19.8)

Non adjusted analyses

Fisher
Patients developing at least two 
dyslipidemia during psychotropic 

treatment, n/total (%)

Number of early exceeded 
thresholds 1

Logistic mixed model
Adjusted analysesNon adjusted analyses

Number of early exceeded 
thresholds 1

0.004

5.5 (1.2 - 34.5) 0.01 14.4 (1.5 - 137.6) 0.02

6.0 (1.9 - 20.4) 0.0005 10 (2.1 - 47.2)
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3917observations
1860 follow-ups
1300 patients

2789 observations
1210 follow-ups

936 patients

1601 observations
461 follow-ups
401 patients

1054 observations
308 follow-ups
274 patients

6550 observations
2390 follow-ups
1603 patients

972 observations
286 follow-ups
253 patients

453 observations
195 follow-ups
181 patients

421 observations
181 follow-ups
181 patients

222  TG observations
97 TG follow-ups
97 TG patients

Excluding observations with no lipid measurement

Excluding observations with no baseline lipid measurement

Excluding observations with less than three lipid measurements

Excluding follow-ups with one or more observations of non-compliance

Excluding follow-ups with at least one lipid-lowering drug prescription

Excluding follow-ups with 1st month recorded <15 or >45 days; 
12th month recorded >535 days

Excluding shortest follow-up if several follow-ups for the same patient

Ο For TG analyses: 
excluding follow-

ups with non 
fasting 

observations

TC: 114 patients
LDL: 115 patients
HDL: 152 patients

TG: 81 patients

Δ Absence of this 
step for new onset 

dyslipidemia 
analyses (data 2)

Δ

Excluding patients with baseline dyslipidemia and/or with baseline 
prescription of a lipid-lowering drug.

Ο

 

S1 Figure. Flow chart of patient selection 

 
Data 1 constitute data used for the determination of thresholds of early lipid changes to predict long-term lipid change, in patients 
with no lipid-lowering medication at any time of treatment (see paragraphs 1.1 and 1.2). 
Data 2 constitute data used for the analysis of thresholds of early lipid changes to predict new onset dyslipidemia, i.e. in patients 
with no dyslipidemia at baseline (see paragraphs 1.1 and 1.2). 
Of note, replication samples of data 1 and data 2 include patients with less strict criteria of drug-adherence, i.e. patients with at least 
one observation with adherence ascertained, without any observations of non-adherence, but with one or several observations 
without adherence measurement.  
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S2 Figure. Survival curves for new onset dyslipidemia (NOD) by Kaplan-Meier curves 
according to clinical parameters 
a. Survival curves for NODTC (new onset hypercholesterolemia) according to weight gain threshold groups (n=114). Kaplan-Meier 
p-value is shown. 
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S2 Figure. Survival curves for new onset dyslipidemia (NOD) by Kaplan-Meier curves 
according to clinical parameters 
b. Survival curves for NODLDL (new onset LDL hypercholesterolemia) according to psychotropic medication groups (low risk group 
includes patients receiving amisulpride or aripiprazole; mid risk group includes patients receiving mirtazapine, haloperidol, lithium, 
quetiapine, risperidone or paliperidone; high risk group includes patients receiving clozapine, olanzapine or valproate) (n=115). 
Kaplan-Meier p-value is shown. 
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S2 Figure. Survival curves for new onset dyslipidemia (NOD) by Kaplan-Meier curves 
according to clinical parameters 
c. Survival curves for NODHDL (new onset HDL hypocholesterolemia) according to age groups (median=40 years old) (n=152). 
Kaplan-Meier p-value is shown. 
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S2 Figure. Survival curves for new onset dyslipidemia (NOD) by Kaplan-Meier curves 
according to clinical parameters 
d. Survival curves for NODHDL (new onset HDL hypocholesterolemia) according to gender (n=152). Kaplan-Meier p-value is shown. 
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S2 Figure. Survival curves for new onset dyslipidemia (NOD) by Kaplan-Meier curves 
according to clinical parameters 
e. Survival curves for NODTG (new onset hypertriglyceridemia) according to gender (n=84). Kaplan-Meier p-value is shown. 
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S2 Figure. Survival curves for new onset dyslipidemia (NOD) by Kaplan-Meier curves 
according to clinical parameters 
f. Survival curves for NODTG (new onset hypertriglyceridemia) according to weight gain threshold groups (n=84). Kaplan-Meier p-
value is shown. 
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S2 Figure. Survival curves for new onset dyslipidemia (NOD) by Kaplan-Meier curves 
according to clinical parameters 
g. Survival curves for NODnonHDL (new onset non-HDL hypercholesterolemia) according to psychotropic medication groups (low 
risk group includes patients receiving amisulpride or aripiprazole; mid risk group includes patients receiving mirtazapine, haloperidol, 
lithium, quetiapine, risperidone or paliperidone; high risk group includes patients receiving clozapine, olanzapine or valproate) 
(n=127). Kaplan-Meier p-value is shown. 
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S2 Figure. Survival curves for new onset dyslipidemia (NOD) by Kaplan-Meier curves 
according to clinical parameters 
h. Survival curves for NODnonHDL (new onset non-HDL hypercholesterolemia) according to weight gain threshold groups (n=127).  
Kaplan-Meier p-value is shown.  
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DISCUSSION  
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A substantial inter-individual variation in the therapeutic efficacy and tolerability of 

psychotropic drugs is observed in psychiatry, which represents a significant challenge for 

physicians and their patients. Adverse metabolic effects induced by psychotropic drugs are a 

major source of patients’ non adherence (and/or treatment discontinuation), which leads to 

higher rates of relapse (165, 166). To date, there is still a lack of evidence regarding the 

consideration of clinical and pharmacogenetic data in psychiatric care, in particular to prevent 

metabolic side effects induced by psychotropic drugs. The global aim of the present thesis was 

to improve the current understanding of psychotropic-induced metabolic side effects and to 

identify the possible clinical and genetic predictors of these adverse effects.  

 

For that purpose, we conducted different projects based on different approaches. Firstly, we 

examined the influence of tagging SNPs localized in a candidate gene involved in the regulation 

of food intake, the melanin-concentrating hormone receptor 2 (MCHR2), on BMI during 

treatment with psychotropic drugs. In a second step, we aimed to determine whether 

population-based genetic variants related to BMI are associated with cardiometabolic phenotype 

worsening in patients during psychotropic treatment. The two other projects were focused on 

psychotropic-induced lipid disturbances. Firstly, we investigated whether polygenic risk score 

combining multiple risk-associated SNPs from two lipid meta-analyses were associated with 

dyslipidemia-related traits in patients receiving psychotropic drugs. Secondly, in a more clinic-

based approach, we investigated the evolution of lipid changes over one year of treatment, and 

attempted to define how plasma lipid changes during the first month of treatment could predict 

mid- and long-term plasma lipid changes and new onset dyslipidemia (NOD) in patients taking 

psychotropic drugs. Of note, we also investigated whether psychotropic drugs could induce 

methylation changes in candidate genes during the first month of treatment, and to which extent 

these potential epigenetic modulations were associated with the worsening of cardiometabolic 
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parameters during psychotropic treatment. In addition, we aimed to use genetic and clinical 

markers in order to predict early lipid changes during treatment with psychotropic medications.  

Since the last decade, the ability to sequence DNA at increasing throughput and decreasing 

cost has enabled scientists to successfully reveal many genetic variants associated with 

cardiometabolic parameters in the general population (167) and in patients treated with 

psychotropic drugs known to induce metabolic disturbances (130, 168). Although GWAS on 

metabolic traits have been a rich source to determine new pathways and provide new candidate 

genes, the explained variance of genetics on cardiometabolic phenotypes remains very low 

(169-173). Thus, it appears that very little of the heritability of cardiometabolic phenotypes has 

been explained, suggesting that many genetic and epigenetic variants remain to be determined.  

In a first step, we conducted a candidate gene approach, i.e. a hypothesis-driven approach. 

We focused our analysis on MCHR2, a receptor involved in the transduction of orexigenic 

signals, which can be upregulated during treatment with antipsychotics and may probably 

enhance rewarding aspects of food (69). We determined a significant association between BMI 

and one variant (i.e. rs7754794) located in the promoter of MCHR2 and/or of its antisense gene. 

In addition, this association was also recognized in individuals from the general population 

suffering from atypical depression, an illness characterized by an improved mood in response to 

positive events, featuring some symptoms such as an increased appetite, weight gain and 

hypersomnia (174). It is worth mentioning that no difference of rs7754794 frequency was 

observed in the atypical depression subgroup of PsyCoLaus as compared to others, suggesting 

that rs7754794 is not a risk factor for atypical depression but rather for BMI increase during 

atypical depression. In our research unit, similar hypothesis-driven approaches were used to 

identify associations between obesity and genetic variants located in other candidate genes 

(e.g. HSD11B1, PCK1 and CRTC1 genes (131-133)); (see collaborations in Appendix). 

Interestingly, the contribution of the latter genetic variants on metabolic phenotypes appeared to 

be greater in psychiatric patients compared to individuals from the general population, possibly 
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attributable to the higher prevalence of metabolic abnormalities in the psychiatric population 

compared to the general population (32), but also to a possible specific synergistic influence of 

these genetic factors in patients with psychiatric disorders. Thus, it has been hypothesized that 

psychiatric disorders share common etiological pathways with obesity, suggesting that comorbid 

obesity and psychiatric diseases have related neurobiological bases (175-177). Another further 

study on CRTC1 aimed to investigate whether this gene was associated with major depressive 

disorder (MDD) and/or with obesity markers in large case-control samples with MDD (178) (see 

collaborations in Appendix). As for MCHR2, CRTC1 did not seem to play a role in the 

development of psychiatric diseases, but was rather involved in obesity markers specifically in 

individuals with MDD (178). By contrast, one example of a shared genetic contributor between 

metabolic and psychiatric conditions is the well-known gene FTO, which was extensively 

associated with obesity in GWAS (179), and which was also recognized to be associated with 

major depressive disorder especially in patients suffering from atypical depression, 

independently of BMI (180-182). To date, data on such shared and/or synergistic genes remain 

scarce and further genetic studies are warranted to better elucidate the close interaction 

between psychiatric and metabolic diseases, in particular in diagnostic-stratified studies. 

As mentioned above, a growing body of evidence suggests that the influence of genetic 

factors on metabolic phenotypes in patients suffering from psychiatric diseases seems to be 

stronger than in healthy controls. On the other hand, some genetic studies have paid attention 

to the possibility of certain genetic variants to be pleiotropic, meaning that these can be 

associated with multiple phenotypic traits at once (e.g. obesity, hyperlipidemia, diabetes, 

hypertension) (169). Given that the power to detect genetic associations with cardiometabolic 

variables appears particularly high in the psychiatric population (177), we examined whether 

SNPs previously associated with BMI and other cardiometabolic variables in the general 

population (170) are associated with the worsening of cardiometabolic phenotypes in a 

psychiatric population receiving psychotropic treatments known to induce metabolic 

disturbances. In particular, we aimed to refine underlying mechanisms linking and/or discerning 
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genetics of BMI with regard to other cardiometabolic comorbidities in the psychiatric population. 

For that purpose, we used a hierarchical statistical approach to detect SNPs whose impact on 

cardiometabolic variable deterioration during psychotropic treatment was meaningful, i.e. on TC, 

HDL, LDL, TG, BMI, waist circumference (WC), fasting glucose (FG), systolic blood pressure 

(SBP) and diastolic blood pressure (DBP). After some statistical steps fully described in the 

paper (183), we determined that SH2B1 rs3888190C>A and RABEP1 rs1000940A>G were 

significantly associated with LDL and FG levels, respectively, in two independent psychiatric 

samples. This study proposed possible mechanisms to explain the novel association of these 

SNPs with both cardiometabolic variables, which were not observed in population-based 

samples. The most recent GWAS meta-analysis of BMI including more than 300’000 individuals 

from the general population observed that although most BMI variants were associated with 

related cardiometabolic traits in accordance with epidemiological relationships, some BMI-

associated variants had effects on other cardiometabolic traits going against biological 

expectations.  To date, cross phenotypic associations going against biological expectations are 

only poorly understood and many other effects remain to be discovered. In addition, future 

studies on obesity should preferably focus on body fat percentage rather than on BMI, which is 

a less accurate marker of overall adiposity (184).  

Metabolic diseases arise from a complex interplay between genetic and environmental 

factors. During the last two decades, many efforts were put into understanding how genetic and 

environmental factors interact to contribute to the development of cardiometabolic diseases. 

Recently, epigenetic mechanisms have been proposed to link the genetic background with 

environmental influences, thus placing significant expectations on their potential to give new 

insights into the mechanisms underlying cardiometabolic diseases (185). Although different 

types of epigenetic regulation have been investigated in relation to cardiometabolic diseases 

(e.g. DNA methylation, histone modification and post-transcriptional silencing mediated by 

micro-RNAs) (186-188), most efforts have been essentially put on DNA methylation, due in part 
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to the large number of technical platforms available for analysis (189). A growing number of 

epigenome-wide studies indicate that BMI and other obesity features are associated with 

widespread changes in DNA methylation in different tissues (188, 190-193). Besides, 

environmental factors such as smoking, diet, physical exercise, environmental toxins and 

certain drugs are known to promote substantial changes in DNA methylation (194-204). In the 

psychiatric population, DNA methylation changes in different genes and tissues have been 

recognized in patients treated with psychotropic drugs, including atypical antipsychotics (73-75) 

and mood stabilizers (76-78), giving insights into possible mechanisms underlying the side 

effects of these drugs. Recently, some studies observed a relationship between the use of 

second generation antipsychotics, insulin resistance and global DNA methylation (81, 82). 

However, to the best of our knowledge, no prospective study has been performed yet in 

psychiatric patients receiving psychotropic drugs. In the epigenetic project, we aimed to better 

understand epigenetic mechanisms underlying metabolic adverse effects induced by 

psychotropic drugs. In particular, methylation analyses were conducted in DNA extracted from 

blood samples drawn before the initiation of psychotropic drug and after the first month of 

treatment, in 96 candidate methylation sites, using each patient as his own control. During the 

first month of psychotropic treatment, significant methylation decreases in 4 methylation sites 

localized in different candidate genes (i.e. SP110, NR3C2, IRS2 and CRTC1) were determined. 

In particular, during the first month of treatment, CRTC1 CpG319 decrease was associated with 

BMI increase. However, whether BMI increase resulted from psychotropic-driven methylation 

decrease or conversely (i.e. methylation decrease resulted from psychotropic-drug induced BMI 

increase) remains to be determined. Such a causal inference could be conducted in future 

studies using mendelian randomization, a recently proposed tool which can be used in this sort 

of analysis (205). Besides, in order to test the validity of our GoldenGate Genotyping VeraCode 

Technology-derived methylation results, CRTC1 CpG319 was assessed using another 

technique considered as the gold-standard for methylation analyses, namely pyrosequencing. 

Unfortunately, methylation values observed using pyrosequencing were totally inconsistent with 
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those obtained with the GoldenGate Genotyping VeraCode Technology Assay. Since all quality 

controls were adequate in results obtained using the GoldenGate VeraCode Technology, one 

hypothesis that might explain these discrepancies is that the detected signal resulted from a 

combination of multiple signals in the genome, suggesting that the probe used for these 

analyses was not specific enough. This hypothesis is in accordance with one study which 

recognized some limitations of methylation arrays from Illumina, such as a suboptimal probe 

design (e.g. probes hybridizing to multiple map adresses) (206). In spite of this, in accordance 

with results observed using the GoldenGate Genotyping VeraCode Technology, results from 

pyrosequencing analyses also showed a trend of association between the CRTC1 SNP 

previously associated BMI (i.e. rs3746266A>G) and CRTC1 CpG319, located only 10 base 

pairs apart, in line with the literature showing associations between some methylation sites and 

certain SNPs in their close proximity (207, 208). It is worth noting that this trend was also 

observed in samples from adipose tissue, which sounds promising regarding the possible use of 

blood samples as a peripheral biomarker, at least for the present methylation site. However, as 

these results are only preliminary, they will be confirmed (or infirmed) in the future by using the 

Infinium MethylationEPIC Array of Illumina, an assay including more than 850’000 methylation 

sites. CRTC1 methylation sites (n=44 in 450K) will be analysed in order to better understand to 

which extent CRTC1 is epigenetically modulated following psychotropic treatment and to 

understand the biological mechanisms underlying this possible influence (funds obtained, study 

in preparation). Globally, the contribution of epigenetic mechanisms in the development of 

cardiometabolic diseases is an exciting, yet complex, field of research. A growing number of 

prospective studies are now emerging, which will help better understand to which extent 

epigenetic mechanisms are involved in the pathophysiology of cardiometabolic diseases, 

specifically in patients taking psychotropic treatments known to induce metabolic abnormalities. 

Metabolic diseases are polygenic diseases resulting from multiple contributing genetic 

variants, which have shown minor effects on metabolic phenotypes when considered 
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individually. In order to grasp the overall picture of the contribution of genetic factors in 

cardiometabolic phenotype worsening during psychotropic treatments, one approach would 

entail a combination of all contributing genetic risk factors into one single parameter. Thus, 

combining data from numerous SNPs in the construction of a polygenic risk score (PRS) would 

allow a better integration of these numerous nominal effects (139). While several PRS were 

identified to be associated with obesity, diabetes and dyslipidemia in population-based studies 

(140-142), associations between PRS and these metabolic conditions among the psychiatric 

population have never been established. Our research group recently demonstrated that PRS 

(combining 52 polymorphisms associated with BMI) was shown to be significantly associated 

with BMI increase in psychiatric patients taking psychotropic treatment (142); see collaborations 

in Appendix. Similarly, the aim of the third project was to investigate whether PRS combining 

multiple risk-associated SNPs from two lipid meta-analyses (137, 138) were associated with 

lipid traits (i.e. HDL, LDL, TC and TG) in patients taking psychotropic drugs known to induce 

worsening of metabolic parameters. In the present study, we observed that genetic variants 

from population-based PRS had significant influence on lipid levels in the psychiatric population. 

Thus, genetics alone explained 4.3%, 3.4%, 3.3% and 4.8% of the total variability of HDL (73 

SNPs), LDL (60 SNPs), TC (72 SNPs) and TG (47 SNPs), respectively. Compared to the 

previously reported explained variability of BMI-associated SNP on BMI (i.e. 2%; see 

collaborations in Appendix (142), these values are higher, in agreement with previous genetic 

studies showing a greater contribution of genetics on lipid levels than on BMI (138, 170). 

However, in the general population, polygenic risk scores constructed using lipid-associated 

SNPs explained 6.6%, 5.7%, 8.2% and 5.0% for the variance of HDL, LDL, TC and TG 

respectively (209), which seems higher than in the present psychiatric sample. This difference 

can be explained by a lower number of patients in our psychiatric sample but also by the use of 

inappropriate allele estimates. Thus, population-based estimates could either under- or over-

represent the influence of some SNPs in the psychiatric population, which may flatten explained 

variability. As a matter of fact, the psychiatric population displays a greater influence of some 
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genetic variants on metabolic features in comparison to the general population, possibly 

because of an intricate interaction between the psychiatric illness and metabolic regulation (178, 

210), as well as a higher prevalence of metabolic abnormalities in this specific population (211). 

As a consequence, a PRS constructed with estimates from psychiatric samples would be more 

pertinent and would certainly enhance the explained variability of genetics in this high-risk 

population. Unfortunately, no GWAS on lipid traits has been performed in the psychiatric 

population yet. Hence, results from this project underline the need to conduct GWAS in 

psychiatric patients in order to get more accurate estimates for the construction of more 

adequate polygenic risk scores. Although some questions remain about the eventual clinical 

utility of polygenic risk scores, new ways to combine polygenic risk scores with other traditional 

risk factors (e.g. clinical) may prove to be beneficial. 

The clinical project of the present thesis aimed to calculate the predictive power of early (i.e. 

after one month) modifications of lipid levels on further (i.e. after 3 months) changes of lipid 

levels. In our psychiatric sample, increases of 5% for TC, LDL and TG (and decrease for HDL) 

were found to be the best predictors for important lipid changes after 3 and 12 months of 

psychotropic treatment. The negative predictive value observed for TG was in agreement with 

findings from the only other predictive study previously conducted on lipid levels, which 

recognized that patients with low triglyceride increase during the first month of treatment (i.e. 

less than 20 mg/dl (corresponding to 0.22 mmol/l) after 6 to 12 weeks) did not have a 

substantial triglyceride increase after 24 to 28 weeks of treatment with haloperidol, olanzapine 

or risperidone (212). Taken together, results from the present study emphasize the importance 

of metabolic monitoring in patients receiving psychotropic treatments known to induce metabolic 

disturbances. Because clinicians have been found to have a poor adherence to these guidelines 

worldwide (213), there is a need for programs to help educate providers and to facilitate 

monitoring of these cardiometabolic risk factors. To date, no consensus has been established 

among clinicians with regard to thresholds of lipid increase that would need a reconsideration of 
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the psychotropic treatment. Nevertheless, recent guidelines from the European Society of 

Cardiology and European Atherosclerosis Society were proposed for the management of 

dyslipidemia in patients receiving antipsychotics (214). These recommendations emphasize the 

importance of starting primary prevention earlier rather than later in psychiatric patients 

receiving psychotropic medication associated with metabolic disturbances (215). In addition, a 

study investigating cardiometabolic risks in first-episode schizophrenic patients showed that 

only a small proportion of patients with dyslipidemia were treated with lipid-lowering agent, 

underlining poor access to health care and an under-recognition of lipid abnormalities (216), 

consistent with some other studies from Mitchell and collaborators (20, 213, 217) and with the 

low proportion (i.e. less than 10%) of patients with hyperlipidemia who receive lipid-lowering 

drugs in our present psychiatric sample. In the present study, patients with baseline 

hypercholesterolemia appeared to be less prone to have ≥ 5% early increase of TC, LDL, TG or 

decrease of HDL during the first month, in comparison to patients who did not have baseline 

hypercholesterolemia. These results are in agreement with those reported for early WG (i.e. 

where baseline obese patients were less prone to have a strong and rapid WG during the first 

month of treatment than leaner patients (218); (see collaborations in Appendix)). In order to 

better understand to which extent early lipid levels could potentially predict an important WG 

during the first year of psychotropic treatment, as well as the reverse (i.e. to which extent an 

early WG could predict important lipid changes during the first year of treatment), further 

predictive analyses were conducted. These additional analyses showed that patients with early 

LDL, TC and TG increase of ≥5% had a significantly higher WG over one year of treatment (by 

approximately 3%; p≤0.007) compared to those who had an early LDL, TC and TG increase of 

<5% (data not shown). However, the observed difference of WG appears clinically marginal, 

indicating that, compared to early lipid predictors, the early WG predictor is a better indicator to 

predict subsequent important WG. Conversely, patients with early WG ≥5% had higher HDL 

decrease (9%; p=0.004) compared to others during the long term psychotropic treatment (no 

difference was however observed for TC, LDL and TG increase). The above-mentioned results 
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are in agreement with the reported kinetics of the different metabolic variables during 

psychotropic treatment (haloperidol, risperidone or olanzapine) in patients with a first treated 

psychotic episode (219). The latter study observed that weight and levels of TC, LDL and TG 

significantly increased during the first year of treatment whereas HDL levels only started to 

decrease after the first year of treatment (219). 

The identification of at-risk patients before the initiation of a psychotropic drug, based on 

individual susceptibilities, would be even more pertinent for personalized medicine. In the last 

project, we aimed to combine genetic and clinical risk factors to predict, before initiating the 

psychotropic treatment, patients who are at high risk for developing important increase of lipid 

levels and/or dyslipidemia (i.e. patients with ≥5% early TC, LDL and TG increase and HDL 

decrease). Genetic variants associated with lipid levels in GWAS meta-analyses from the 

general population were retained in the final predictive model if they contributed to the variance 

of linear mixed models, using a statistical method described in the project. Preliminary results 

showed that adding genetic to clinical factors significantly increased the prediction of a ≥5% 

early TC, LDL and TG increase and HDL decrease by approximately 20%. Analyses are 

underway to test the present findings for replication in an independent psychiatric sample. Of 

note, because no GWAS has been performed yet on the genetic determinants of a 5% increase 

of lipid levels, no estimates were available to construct a polygenic risk score.  

The results of the projects presented in the scope of this thesis need to be evaluated with 

some limitations. First, projects including genetic analyses were restricted to Caucasian 

patients. Second, effects of environmental changes such as physical exercise or diet habits 

throughout the treatment, which could have influenced the evolution of metabolic features, were 

not available and therefore not taken into account. Third, a considerable drop-out rate was 

observed during the prospective study, reducing the number of available observations after one 

year of treatment, possibly due to psychiatry-related factors such as treatment switching, poor 

medication compliance and/or the refusal of outpatients to be followed-up. Fourth, in both cross-
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sectional studies (i.e. Etude Ambulatoire and Etude Poids Genève), initial weights (i.e. before 

the introduction of the psychotropic treatment) were self-estimated by patients, which may not 

be accurate. However, it is worth mentioning that, for a subset of patients for whom both self-

reported and medical file weights were available, a good concordance between both values was 

observed (164). In addition, the majority of patients were not drug naïve, and the observed 

metabolic disturbances may have resulted from past treatments. However, the naturalistic 

setting of the present studies strengthens the clinical validity of the present findings. In addition, 

therapeutic drug monitoring was performed to ascertain compliance to exclude false negatives, 

i.e. patients who did not develop metabolic disturbances because they did not take the drug, 

which is an important factor to consider in the psychiatric population. Finally, the naturalistic and 

prospective setting of PsyMetab strengthens the clinical validity of the present findings. 

Perspectives 

The present work gives new insights into mechanisms underlying psychotropic drug-induced 

metabolic disturbances and emphasizes the importance of clinical and genetic parameters to 

predict metabolic side effects in patients receiving these drugs, providing possible steps towards 

personalized medicine. 

In particular, clinically useful values for sensitivity, specificity and accuracy (>70%) were 

identified using predictive models integrating clinical and/or genetic predictors. For instance, 

models including both polygenic risk scores and clinical variables indicated that the prediction of 

HDL hypocholesterolemia was informative and useful enough (220) and that only 24 patients 

would be needed to be genotyped to avoid HDL hypocholesterolemia for one patient (221). 

Besides, an early lipid increase during the first month of treatment of ≥ 5% for TC, LDL and TG 

and an early decrease of ≥ 5% for HDL were identified as best predictors for subsequent 

important lipid changes after 3 and 12 months of psychotropic treatment. Sensitivities of these 

early predictors (≥70%) indicated that they allowed the detection of the majority of at-risk 
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patients. Conversely, the observed high negative predictive values (≥94%) implied that most 

patients who did not outreach early lipid thresholds did not have neither substantial increase of 

lipid levels in the longer-term. Finally, models combining clinical and genetic variables to predict 

early lipid changes of ≥5% displayed high predictive values (i.e. AUC>0.8) and emphasized the 

additive value of adding genetic in the model, improving accuracy by more than 10%. The 

aforementioned results seem clinically relevant and should motivate clinicians to consider 

genetic testing in clinical health care. However, these models should be tested for replication in 

additional studies with larger sample size before the additive value of including genetic 

information in predictive models is transposable to routine clinical practice. On the other hand, it 

must be emphasized that our results show the need to combine clinical with genetic data to 

increase the accuracy of predictive models. 

With improvements in technology, the analysis of multiple genes in a single assay has 

become more easily available, for considerably lower costs than previously for single gene 

tests. Thus, costs for genome sequencing have been in continuous free falls since the human 

genome has been sequenced for the first time in 2003 (which costed roughly $ 2.7 billion and 

took more than ten years). In 2017, Illumina announced the launch of a new sequencer, called 

NovaSeq, able to sequence a whole genome for less than $100, within less than one hour. 

Many scientists have predicted that in the near future, each individual’s entire genome will be 

sequenced, making genetic results available for clinical use and for an optimized health care 

throughout life (222). Nowadays, the question is therefore shifting from “whether to perform a 

genetic test” to “how the available genetic results can and should be used for prescribing 

optimization”. Considering the important amount of data we are facing, there is a growing need 

of consortia to puts efforts into creating evidence-based and publicly available guidelines for 

prescribers to know how to use genomic data.  

Despite an increasing number of tools helping to predict side effects, a trial and error 

strategy is still commonly used today in clinical practice when prescribing psychotropic drugs. 

Thus, many barriers hinder the implementation of clinical and pharmacogenetic tools in clinical 
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settings. For instance, many health care systems do not provide financial reimbursement for 

preventive medicine or for pre-emptive screening services (223, 224), although the situation has 

changed recently in Switzerland (225). Although the cost-effectiveness for some drugs has been 

studied (226), the cost-effectiveness of a panel approach implemented early in life usable for an 

individual’s lifetime has never been established, which impedes reimbursement of systematic 

pre-emptive genomic testing. In addition, the significant reduction of genotyping costs is 

counterbalanced by emerging costs associated with genetic result interpretations and their 

continuous updates, including annotation of additional novel variants (222). Another hurdle of 

using pharmacogenetic tools in clinical settings is the lack of clinical guidelines for translating 

genetic variation into actionable recommendations. Finally, other barriers include the willingness 

of more clinical evidence, the lack of education among clinicians about utility and interpretation 

of pharmacogenomic tests and logistic barriers (e.g. institutional inertia, automation of clinical 

decision support in electronic medical record) (227). For the last ten years, many efforts of 

implementation were made worldwide for improving therapy by integrating pharmacogenetic 

information into clinical care (228-234). In the near future, genetic tests integrated into 

comprehensive knowledge of side effects related to psychotropic drugs will hopefully help to 

intervene earlier to achieve better somatic outcomes. 

In parallel, the implementation of metabolic monitoring programs has still to be developed in 

many institutions. Although the American Diabetes Association and the American Psychiatric 

Association published a consensus statement including metabolic monitoring guidelines more 

than ten years ago (235), clinicians have been found to have a poor adherence to them. 

According to studies conducted between 2000 and 2011 in five countries, only 22% of patients 

initiating a second-generation antipsychotic received a test for lipid profile (213). Even if local 

and national guideline implementations helped to significantly increase this disquieting 

screening rate (up to 37%), rates of testing remained insufficient (213). More recently, another 

study also concluded that only a minority of psychiatric patients being prescribed psychotropic 

medications known to induce metabolic side effects was screened for metabolic syndrome in 
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accordance with best practice recommendations (236). In addition, it has been evaluated that 

nearly 40% of primary care providers were unaware of consensus guidelines for metabolic 

monitoring, an alarming rate which should be diminished, partly by putting more efforts into the 

enforcement of knowledge (237). In our institution, since ten years, many efforts have been 

made to carry out metabolic monitoring in clinical practice. However, further steps need to be 

taken in order to improve the early detection of at-risk patients and to define clinical 

recommendations and procedures for dealing with metabolic disturbances.  

With regard to future research projects, an increased number of patients and of 

observations would enable to examine the evolution of additional pertinent phenotypes during 

psychotropic treatment. For instance, calculating a cardiovascular risk score (e.g. Framingham 

risk score (238)), would be useful to determine the likelihood of a patient to develop 

cardiovascular disease (e.g. coronary heart disease, stroke, peripheral vascular disease, or 

heart failure) over a fixed time, for example the next 10 years. Because such an algorithm 

integrates numerous cardiovascular risk factors, i.e. sex, age, systolic blood pressure, total 

cholesterol, high-density lipoprotein cholesterol, smoking behavior, and diabetes status, such 

analyses require data fully completed for each of these variables. Furthermore, an increased 

number of patients would allow performing medication-stratified analyses in order to examine 

the influence of particular psychotropic drugs on the worsening of metabolic parameters. In the 

future, many other projects will be conducted in our research group once the number of 

observations and/or of patients is sufficient. 

Finally, complex diseases such as obesity and dyslipidemia arise from a close interplay 

between genetic and multiple environmental factors. Ongoing and future whole-genome 

sequencing studies will help to identify additional common and rare variants associated with 

these diseases. In addition, the influence of other sources of variability including other genetic 

(e.g. copy number variants) or epigenetic factors (e.g. histone acetylation, DNA methylation and 

microRNA) should be integrated in future predictive models. Last but not least, multiple “omic” 

techniques, including transcriptomics, epigenomics, proteomics, metabolomics and/or 
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microbiomics, also recently emerged as possible predictors of complex diseases (213). Future 

studies integrating the combination of such variables will need to develop complex statistical 

algorithms in order to further refine the prediction of metabolic side effects induced by 

psychotropic drugs. 

To conclude, over the last decades, substantial improvements have been achieved in 

medical science. To date, many efforts remain to be made before personalized medicine can be 

applied in routine care, in particular for patients suffering from complex diseases. The 

emergence of new “omic” techniques holds the promise of providing new steps towards 

personalized medicine.  
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