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ABSTRACT – 244 Words  

Background: Age related declines in walking performance may be partly attributable to skeletal 

muscle mitochondrial dysfunction as mitochondria produce over 90% of ATP needed for 

movement and the capacity for oxidative phosphorylation decreases with age.  

Methods: Participants were from two studies: an ancillary to the Lifestyle Interventions and 

Independence for Elders (LIFE) Study (n = 33), which recruited lower functioning participants 

(Short Physical Performance Battery [SPPB], 7.8 ± 1.2), and the Study of Energy and Aging-

Pilot (SEA, n = 29), which enrolled higher functioning (SPPB, 10.8 ± 1.4). Physical activity was 

measured objectively using the Actigraph accelerometer (LIFE) and SenseWear Pro armband 

(SEA).  Phosphocreatine recovery following muscle contraction of the quadriceps was measured 

using 31P magnetic resonance spectroscopy and ATPmax (mM ATP/s) was calculated. Walking 

performance was defined as time (s) to walk 400m at a usual-pace. The cross-sectional 

association between mitochondrial function and walking performance was assessed using 

multivariable linear regression. 

Results: Participants were 77.6 ± 5.3 years, 64.2% female and 67.2% white. ATPmax was 

similar in LIFE vs. SEA (0.52 ± 0.14 vs. 0.55 ± 0.14, p = 0.31), despite different function and 

activity levels (1.6 ± 2.2 vs.77.4 ± 73.3 min of moderate activity/day, p<0.01). Higher ATPmax 

was related to faster walk-time in SEA (r2 = 0.19, p = 0.02,); but not the LIFE (r2 <0.01, p = 

0.74) cohort.  

Conclusions: Mitochondrial function was associated with walking performance in higher 

functioning, active older adults, but not lower functioning, sedentary older adults. 

Key Words: Mitochondrial Function, Mobility, Aging, Muscle, Physical Performance; Walking 

Performance 
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INTRODUCTION 

 Walking performance decreases significantly with age, but with considerable individual 

variation (1). The underlying causes of age-related slowing are of great interest as slower gait is 

an independent risk factor for institutionalization (2) and mortality (3). The role of skeletal 

muscle in slowing walking performance is still unclear, as sarcopenia only modestly predicts 

mobility maintenance (or loss) in older adults (4). Further, maximum aerobic capacity (VO2peak) 

decreases with age independent of lean mass and physical activity levels (5). VO2peak is partly 

dependent on the ability of skeletal muscle mitochondria to produce adenosine triphosphate 

(ATP) and mitochondria produce over 90% of ATP needed for movement (6). The capacity for 

mitochondrial oxidative phosphorylation is lower in aged compared to younger skeletal muscle, 

as both mitochondrial function and content are reduced (7-8). However, this age associated 

decrease in mitochondrial content and function may also be due in part to reduced physical 

activity and not completely attributable to aging per se (9). Thus, lower mitochondrial function 

may play a role in the age-related slowing of gait speed. 

In fact, worse skeletal muscle mitochondrial function in older adults has been linked with 

higher fatigability (10), lower physical function (11) and slower gait speed (12). For example, 

Coen et al. showed that higher mitochondrial function was significantly associated with faster 

gait speed in higher functioning older adults (13). However, the relationship between 

mitochondrial function and walking performance has not been examined in older adults with 

both high and low levels of physical function.  The purpose of this research was to examine the 

cross-sectional relationship between mitochondrial energetics, measured by 31P magnetic 
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resonance spectroscopy (MRS), and walking performance in older adults with a wide range of 

functional capacity.  

 

METHODS 

Participants 

 Participants were from two studies, employing identical measures of mobility and 

mitochondrial capacity for oxidative phosphorylation. The higher functioning cohort was from 

the Study of Energy in Aging-Pilot (SEA) (10,13) and lower functioning participants were from 

an ancillary study to the Lifestyle Interventions and Independence for Elders (LIFE) Study (14).  

 SEA participants were community-dwelling (n = 37) men and women aged 70–89 years 

from the Pittsburgh, PA area and inclusion and exclusion criteria have been described in detail 

elsewhere (10,13). Briefly, inclusion criteria included body mass index 20–32kg/m2, ability to 

walk without an assistive device and free of basic activities of daily living disability. Exclusion 

criteria included history of hip fracture, heart attack, angioplasty, or heart surgery within the past 

3 months, cerebral hemorrhage within the past 6 months, stroke within the past 12 months, or 

symptomatic cardiovascular or pulmonary disease. Participants were assessed at the magnetic 

resonance imaging (MRI) center for 31P MRS scan eligibility for ability to lie in a supine position 

for 1-hour, no MR unsafe metal or other implants, bilateral joint replacements, and tattoos. The 

final analytical sample from SEA included 29 participants with complete MRS and 400m walk 

data.  
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 The LIFE Study was a multi-center randomized controlled trial designed to test the 

effectiveness of physical activity compared with health education on preventing mobility 

disability (14-15). Briefly, LIFE included sedentary adults aged 70–89, at high risk for mobility 

disability (Short Physical Performance Battery [SPPB, 0-12] score of ≤9) (16) but able to walk 

400 meters in <15 minutes. LIFE study recruitment began in March of 2010 and ended in 

December of 2011 for the full study. In May 2011, LIFE participants from the Pittsburgh field 

center were screened, and if eligible, invited to take part in an ancillary study visit prior to 

starting their intervention program. The ancillary visit included a 31P MRS scan, which had 

identical MR eligibility criteria to SEA. There were 91 LIFE participants randomized during this 

time and of these: 17 (18.7%) refused, 35 (38.5%) were ineligible (28 due to MR unsafe implants 

or bilateral knee/hip replacements) and 39 (42.9%) were eligible to participate in the MR 

ancillary study. Of the 39 eligible participants, 33 had useable MRS data, yielding a final LIFE 

analytic sample of 33. Thus, the final analytic sample included 29 SEA and 33 LIFE participants 

(total n=62). 

 Both LIFE and SEA study protocols were approved by the University of Pittsburgh 

Institutional Review Board. All participants provided written informed consent. 

Clinic Examination and Measurements 

 Participants completed clinic visits at the Health Studies Research Center at the 

University of Pittsburgh. Body height (cm) was measured using a wall-mounted stadiometer and 

body weight (kg) with a standard certified, calibrated scale, and used to calculate BMI (kg/(m2). 

Participants completed demographic and self-reported health questionnaires. Questions were 

phrased in a similar manner between studies with one exception: history of arthritis. In SEA, the 
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question asked about any history of arthritis, whereas LIFE asked about a doctor’s visit in the 

past 6-months for arthritis or rheumatism. Diabetes was defined as either self-reported diagnosis, 

use of diabetic hypoglycemic medication or fasting blood glucose ≥126 mg/dL. 

 Lower extremity function was assessed using the SPPB, a widely used performance 

measure scored on a 0-12 point scale. The test includes 3 parts: a 4m walk; 5 timed, repeated 

chair stands; and a balance battery each worth 0-4 points (16). Seven-day free-living physical 

activity was measured in both studies; LIFE used the Actigraph™ accelerometer (model GT3X, 

ActiGraph, LLC), while SEA employed the SenseWear™ Pro armband (BodyMedia, Pittsburgh, 

PA). NHANES cut-points (17) were used to categorize Actigraph counts, while the Sensewear’s 

proprietary algorithm was used to calculate minutes per day spent in moderate and above 

(≥3METs) intensity activities.  

 400-Meter Walk 

 Walk protocols for both studies were nearly identical (13-14). The only difference was 

that LIFE permitted use of a single pronged cane. In both studies the test was conducted on a 

level ground 20-meter course. Participants were instructed to walk at their usual pace, without 

overexertion for 10 laps (20m up and back). Following the walk, participants from both studies 

were asked “Is anything bothering you?” and reported symptoms were recorded. Discomfort 

following the walk was defined as responding yes to this question. One SEA participant of the 

original 37 was excluded from analyses due to not completing the 400m walk.  
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Determination of ATPmax by 31P MRS 

 MRS protocols were identical and both studies utilized the same MR magnet, technician 

and MRS analyst. Phosphocreatine (PCr) recovery after exercise (ATPmax) was used to quantify 

mitochondrial capacity for oxidative phosphorylation. 31P MRS has been validated by animal and 

human studies showing that ATPmax varies in direct proportion to oxidative enzyme activity of 

healthy muscle (18) and mitochondrial content in human muscle (7). ATPmax has good 

reproducibility illustrated by previously published Bland Altman analysis from SEA (19).  

 The exercise protocol was performed in an MRI magnet (3T TIM Trio, Siemens’ Medical 

System) (10,13). Participants laid supine with the right knee (unless contraindicated) elevated at 

~30º. Straps were placed over the legs and a 2.5” surface RF coil tuned to 31P was placed over 

the quadriceps. Participants performed repeated voluntary, rapid, maximal isometric contractions 

(kicking) for two bouts (30s and 36s) followed by a 6-minute rest. The protocol was designed to 

deplete PCr by 33-66% without inducing acidosis (pH <6.8). A monoexponential fit of [PCr] 

recovery yields the recovery constant (k) for use in calculating ATPmax:  

ATPmax = [PCr]rest•kPCr. 

Previous analyses of human vastus lateralis muscle biopsies revealed that ATP content accounted 

for the range of PCr/ATP levels among participants aged 65-80 years (7).  In contrast, PCr was 

stable (as was total creatine) and averaged 27mM.  Thus, we used 27mM for [PCr]rest (10,13). 

Finally, we determined pH from the chemical shift of the Pi peak relative to the PCr peak (20).  
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Statistical Analyses 

 The final analytic sample included 29 SEA and 33 LIFE participants with complete 

ATPmax and 400m data (total n=62). Baseline characteristics, means and standard deviations for 

continuous variables and frequencies and percents for categorical variables, were generated for 

each study. To test for between study differences, Wilcoxon rank-sum, chi-squared and Fischer’s 

exact tests were used where appropriate.  

 To determine the relationship between ATPmax and 400m walk time (s) multivariable 

linear regression was used. We present results for each group separately. Bivariate and 

multivariable models adjusted for age, sex, race, study and BMI were generated. The beta 

coefficients represent the difference in 400m walk time (in seconds) per 1 SD higher ATPmax 

(0.14 mM atp/s). Since it is has been shown that those with type 2 diabetes have impaired 

mitochondrial function(21), we also examined the effect of diabetes on the relationship between 

ATPmax and 400m walk time. Physical activity was considered last because it is a known 

determinant of muitochondrial function, as we have previously shown(13,22). All analyses were 

performed with SAS version 9.3. 

 

RESULTS 

Baseline Comparison of SEA and LIFE Study Participants 

 LIFE compared with SEA participants were significantly more overweight, less active, 

had lower SPPB scores, and slower 400m walk times (Table 1). Of note, only one SEA 

participant had an SPPB score <9, an inclusion criteria for LIFE. LIFE also contained a 
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significantly larger proportion of females and African Americans as well as a higher prevalence 

of diabetes and fewer reporting consuming 6 or more drinks per (Table 1). Despite significantly 

lower physical function and activity levels, LIFE had similar ATPmax compared with SEA (0.55 

± 0.14 vs. 0.52 ± 0.14mM ATP/s, p = 0.31).  

Table 1. Characteristics by Study and in Combination 

 SEA (n = 29) 

Mean (SD) or N (%) 

LIFE (n = 33) 

Mean (SD) or N (%) 

P-value for 

between study 

difference 

Age, yrs 78.6 (5.0) 76.6 (5.5) 0.14 

Sex , female 13 (44.8) 25 (75.8) 0.01 

Race, white 27 (93.1) 16 (48.5) <0.01 

BMI, kg/m2 26.0 (2.7) 30.8 (5.4) <0.01 

Smoker, current or former 10 (34.5) 9 (27.3) 0.54 

Alcohol, 6+ drinks/week 8 (27.6) 2 (6.1) 0.04 

Diabetes 1 (3.5) 9 (27.3) 0.01 

Myocardial infarction 3 (10.3) 1 (3.0) 0.33 

Chronic obstructive pulmonary 

disease 

1 (3.5) 3 (9.1) 0.62 
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Arthritis 9 (31.0) 6 (18.2) 0.24 

Moderate and above activity, 

min/day 

77.4 (73.3) 1.6 (2.2) <0.01 

SPPB, 0-12 10.8 (1.4) 7.8 (1.2) <0.01 

400m walk time, s 343.8 (65.5) 466.9 (110.1) <0.01 

Discomfort at end of 400m walk, yes 5 (17.2) 12 (36.4) 0.09 

ATPmax,  mM/s 0.52 (0.14) 0.55 (0.14) 0.31 

 

 In LIFE, 12 (36.4%) participants reported discomfort at the end of the walk compared 

with 5 (17.2%) from SEA (Table 1). More specifically, in LIFE, 3 participants reported back 

pain, 3 reported hip pain, 2 reported knee pain, 2 reported light headedness, 1 reported tiredness 

and foot pain, while 1 requested their straight cane due to general discomfort. In SEA, the 5 

participants who reported discomfort reported the following symptoms: shortness of breath and 

back pain, knee and calf pain, back pain, hip and calf pain, and foot pain.  

 Relationship between ATPmax and 400m Walk Time 

 Higher levels of ATPmax were significantly related to faster 400m walk time in SEA (ß 

= -29.3, p = 0.02), with ATPmax explaining 19% of the variance in walk time (Table 2, Figure 

1). However, no association was observed in LIFE (ß = 6.2, p = 0.74, Table 2, Figure 1). After 

adjustment for age, sex, race and BMI, the relationship between ATPmax and 400m walk time in 

the SEA was attenuated slightly (ß = -24.8, p = 0.08). Adding diabetes to the fully adjusted 
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models had no effect on the relationship between ATPmax and walk time (SEA: p = 0.95; LIFE: 

p = 0.52 for diabetes parameter) and there was no interaction between ATPmax and diabetes on 

walking time in either cohort (SEA: p > 0.99; LIFE: p = 0.15). Physical activity was uniformly 

low in LIFE and not associated with ATPmax (r = -0.06, p = 0.75), while it was in SEA (r = 

0.48, p <0.01), as we have previously shown(13,22).  

   

Table 2. Association between ATPmax and Time to Walk 400 meters by Study and in 

Combination 

Model 
Beta, s§ 

(per 0.14 mM/ATP/s) 
SE 

p-

value 

SEA (n = 29) – Unadjusted -29.3 11.6 0.02 

SEA – Adjusted*  -24.8 13.3 0.08 

LIFE (n = 33) - Unadjusted  6.2 19.5 0.75 

LIFE – Adjusted* 26.0 16.0 0.11 

SE: standard error 
*adjusted for age, race, sex and BMI 
§beta coefficients represent the difference in 400m walk time (in seconds) per 1 SD higher 
ATPmax (0.14 mM atp/s).  
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Caption for Figure 1. 

ATPmax is defined as phosphocreatine recovery in the quadriceps following an acute bout of 
exercise measured by 31P magnetic resonance spectroscopy. Unadjusted p-values and bivariate r2 

values for the relationship between ATPmax and 400m walk time were as follows: A.) r2 = 0.19, 
p = 0.02 for SEA and B.) r2 <0.01, p = 0.75 for LIFE. 
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DISCUSSION 

 High ATPmax was associated with faster time to walk 400m in higher functioning, active 

SEA participants, but not lower functioning, sedentary LIFE participants. This lack of an 

association is contrary to hypotheses generated from our previous work (13) as well as several 

other studies of older adults (11-12,23). Namely, higher mitochondrial function measured by 31P 

MRS was related to faster time to complete a get-up-and-go-test in French, lower functioning 

hospitalized (n=49, aged 86.1 ± 5.3 years) and higher functioning community-dwelling older 

adults (n=28, aged 74.5 ± 6.2 years) (12). Similarly, a muscle biopsy study in relatively younger 

(aged 62.0 ± 11.8) peripheral artery disease patients showed that higher mitochondrial function 

was related to longer walking time during a VO2 max test (23). Importantly, both of the 

previously mentioned studies measured mitochondrial function in the gastrocnemius muscle 

(12,23), whereas the current study used the quadriceps. The conflicting results could be 

attributable to studying different muscle groups, as previous cross-sectional work suggests aging 

may affect locomotory muscles differently (24). However, the vastus lateralis (VL)  muscle, the 

muscle of interest in the current study, may be more susceptible to age and physical activity 

related changes compared to the tibialis anterior muscle (24). Therefore, in theory the VL muscle 

would have been more closely associated with age related decreases in walking performance. 

Further, a study from Joseph et al. showed that participants with lower mitochondrial respiration 

rates and markers of biogenesis in permeabilized muscle fibers from the VL are also significantly 

more likely to have lower SPPB scores (11). Although both are locomotory muscles of the lower 

leg, perhaps mitochondrial function in the gastrocnemius and tibialis anterior muscles undergo 
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heterogeneous age-related changes possibly due to gait biomechanics. This issue requires further 

investigation in studies examining the relationship between walking performance and 

mitochondrial function in different muscle groups from the same individual. Further, 

longitudinal studies of different muscle groups are needed to truly understand the effects of age 

and physical activity on mitochondrial function.  

Another key finding was that ATPmax levels were nearly identical between SEA and 

LIFE even though the LIFE participants were much less physically active and lower functioning. 

This conflicts with two studies showing that sedentary older adults have impaired mitochondrial 

function compared with active (25) and a second finding  that lower functioning older adults 

possess worse mitochondrial bioenergetics compared with higher functioning as measured by the 

SPPB (11). These conflicting results may in part be explained by the different measures of 

mitochondrial function, as the two abovementioned studies used biopsy measures. However, 

ATPmax reflects in-vitro measures of mitochondrial function(13); perhaps ATPmax does not 

correlate as well with biopsy measures in lower function individuals. Future methodological 

work should investigate these associations in low functioning participants. 

The inconsistencies concerning the relationship between ATPmax and walking 

performance could be attributable to our walking performance measure (400m walk); however, 

lower functioning individuals walk closer to their maximal performance during a usual paced 

400m walk compared with higher functioning (26). Therefore, since ATPmax is highly related to 

VO2 peak (13), a stronger relationship would  have been expected in the lower functioning LIFE 

participants. Unless the LIFE participants had other impairments limiting walking performance, 

unrelated to oxidative capacity of the quadriceps, such as pain or joint stiffness. Indeed, although 
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the difference did not reach statistical significant, over twice the proportion of LIFE participants 

reported discomfort, mainly due to pain, during the walk compared with SEA (36% vs. 17%).    

 There are several possible explanations for why ATPmax was unrelated to 400m walk 

time in lower functioning participants. First, there may be differences in muscle mass that could 

affect walking time independent of ATPmax; however LIFE was lacking a measure of muscle 

mass. The, the higher prevalence of discomfort and pain experience by LIFE participants during 

the walk may have caused them to slow down for reasons unrelated to mitochondrial function. 

Joint impairments (27), arthritis (28), knee (29) and back pain (30) are associated with slower 

walking speed or physical disability in older adults. Secondly, the LIFE Study was lacking a 

measure of mitochondrial efficiency (P/O), which is related to exercise efficiency in older adults 

(31). Finally, since discomfort and pain may evoke alterations to normal gait (32), it is plausible 

that those with both higher levels of ATPmax and slower walk times were biomechanically 

inefficient. Thus, these participants may be producing more energy (ATP) to walk at the same 

speed (or more slowly) than a biomechanically efficient individual. Indeed, higher energy cost of 

walking (VO2 normalized to gait speed) is related to worse biomechanical gait parameters (33-

34) and impaired mobility (34-36). This may cause a less biomechanically efficient individual to 

have a higher ATPmax than their activity level or walking speed would suggest, which may also 

partially explain the phenomenon of similar ATPmax levels observed in SEA compared with 

LIFE. However, we cannot rule out the mediating role of other factors related to VO2 peak such 

as cardiopulmonary function. Further investigations are needed, particularly in lower functioning 

older adults, to further understand the interrelationships between ATPmax, gait biomechanics, 

energy cost of walking and walking performance. 
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 Strengths of this study include a larger sample size compared with previous work 

examining the relationship between skeletal muscle mitochondrial energetics and walking 

performance in older adults and including a diverse population in terms of sex, race, function and 

physical activity levels. Mitochondrial function was measured directly and in vivo using 31P 

MRS. Performance measures, as opposed to self-report, were used to quantify physical function 

and walking speed. Limitations include participants being from two separate studies; however, 

the study sites, primary outcome and predictor were identical. Muscle biopsies were not obtained 

in the LIFE cohort, so mitochondrial efficiency and other parameters could not be determined. 

The study was cross-sectional, thus no causal inferences can be made. Despite being the largest 

study to have examined these relationships to date, the sample size was still relatively small, 

which limited our ability to stratify by possible mediating/confounding factors, particularly those 

that differed across the study populations, or test for interactions.  

 In conclusion, our study provides important and novel insights into the role of skeletal 

muscle mitochondrial capacity for oxidative phosphorylation in walking performance in older 

adults. Specifically, ATPmax (functional oxidative capacity of the quadriceps) was unrelated to 

walking times in lower functioning, sedentary participants and those with a wide range of 

function. However, higher mitochondrial function was related to faster walking times in higher 

functioning, active participants. This suggests that lower mitochondrial function may be a marker 

of early functional decline in higher functioning older adults. Further, mitochondrial function 

does not appear to be a limiting factor in lower functioning participants, who may slow for other 

reasons such as pain while ambulating. Larger studies examining other aspects mitochondrial 
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energetics, energy cost and physical performance in older adults with wide age (e.g. aged 50-85) 

and physical function ranges are needed to further investigate these relationships. 
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