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Abstract 44 

Objective: To develop a fully automated method of retinal pigmented epithelium (RPE) cells 45 

detection, segmentation, and analysis based on in-vivo cellular resolution images obtained with the 46 

transscleral optical phase imaging method (TOPI). 47 

Methods: 14 TOPI-RPE images from 11 healthy individuals were analysed. The developed image 48 

processing method encompassed image filtering and normalization, detection and removal of blood 49 

vessels, cell detection, and cell membrane segmentation. The produced measures were cellular density 50 

of RPE layer, cell area, number of neighbouring cells, eccentricity, circularity, and solidity. 51 

Additionally, we proposed coefficient of variation (CV) of RPE cellular membrane (CMDCV) and the 52 

solidity of the RPE cell membrane-shape as new metrics for the assessment of RPE single cells.  53 

Results: The observed median cellular density of the RPE layer was 3,743 cells/µm2 (interquartile rate 54 

(IQR) 1,687), with a median observed RPE cell area of 193 µm2 (IQR 141). The mean number of 55 

neighbouring cells was 5.22 (standard deviation (SD) 0.05) per RPE cell. The mean RPE cell 56 

eccentricity was 0.67 (SD 0.02), median circularity 0.83 (IQR 0.01), and median solidity 0.92 (IQR 57 

0.00). The median CMDCV was 0.19 (IQR 0.02). The method is characterized by a median image 58 

processing and analysis time of 48 seconds (IQR 12) per image. 59 

Conclusions: The present study provides the first fully automated quantitative assessment of human 60 

RPE single cells in-vivo. The method provides a baseline for future research in the field of clinical 61 

ophthalmology, enabling characterization and diagnostics of retinal diseases at the single cell level. 62 



Introduction 63 

The retina is the vitreal-most ten-layered light-sensitive nervous tissue membrane of the eye. Its 64 

role is to convert the received light stimuli into nerve impulses and send them with the optic nerve to 65 

the visual centres of the brain. The retinal pigmented epithelium (RPE) is the scleral-most monolayer 66 

of pigmented retinal cells.  67 

Although they are located outside of the neurosensory retina, RPE cells play some crucial roles, 68 

such as light absorption, epithelial transport, and maintenance of the visual cycle1–5. Some RPE cell 69 

morphology characteristics, namely cell density, number of neighbours, eccentricity, and form factor, 70 

are postulated to differ depending on cell maturation and condition2,6–9. Some other studies report 71 

RPE cell loss caused by diseases of the eye and aging10–13. 72 

Although several diagnostic imaging modalities allow for in vivo assessment of the human eye 73 

(e.g., optical coherence tomography (OCT)15–17, scanning laser ophthalmoscopy (SLO)18,19, and fundus 74 

autofluorescence20,21) these methods do not allow for the diagnosis of retinal diseases at their early 75 

stage because the minuscule changes in RPE cell morphology cannot be detected. Furthermore, RPE 76 

layer in vivo imaging at the single cell level is challenging due to several factors, namely, the low 77 

contrast between neighbouring cells, motion artefacts, retinal layer non-linearity, and difficulties with 78 

the image’s focal point identification.  79 

Transscleral optical phase imaging (TOPI), proposed in 2017, is a novel non-invasive, in vivo, 80 

high-resolution retinal imaging modality. The use of both adaptive optics and oblique illumination of 81 

the retina enhances the contrast of RPE cells2,9. The resultant superior imaging resolution enables 82 

discerning single RPE cells’ cellular membranes. 83 

In this paper, we present a novel fully automated method of RPE cell detection, segmentation, 84 

and analysis at both layer-level and single cell level for the TOPI-obtained retinal images. 85 



Materials and methods 86 

Study population  87 

The study population included 11 healthy individuals (4 women and 7 men), from which 14 88 

TOPI-RPE images of the left eye were obtained. The mean age of the examined individuals was 29 89 

years (standard deviation (SD) 8). The conducted study adheres to the tenets of the Declaration of 90 

Helsinki. The study was approved by the Ethical Committee of the Swiss Department of Health on 91 

research involving human subjects (CER-VD N°2017-00976). Informed consent was obtained from 92 

all the participants. 93 

 94 

TOPI image acquisition 95 

TOPI relies on high-angle oblique illumination of the retina, combined with a flood illumination 96 

adaptive optics fundus camera, to enhance cell contrast and correct for ocular aberrations. Transscleral 97 

illumination of the retina was performed using two near-infrared light-emitting diodes (wavelength, λ 98 

= 810 nm) located on the nasal and temporal side of the eye. The acquired images encompass a field-99 

of-view of 4.4° x 4.4°. More detailed information on the used TOPI setup has been published 100 

previously by our group2.  101 

A single TOPI-obtained RPE layer image is characterized by a low signal-to-noise ratio (SNR). 102 

Therefore, prior to image analysis, the SNR is first increased by acquiring several raw images (around 103 

100 per acquisition), then registered, and averaged into a single TOPI image. Image acquisition and 104 

registration were performed following the protocol described in detail by Laforest et al.2. The acquired 105 

image stacks were exported as .tif files. These images are characterized by a black border, resultant 106 

from the registration padding process. To remove such padding, first, the image gradient is calculated. 107 

Second, vertical and horizontal borders that presented an average local intensity gradient value below 108 

10% of the image’s gradient SD were removed, cropping the image to the final size. The eccentricities 109 



from the fovea of the imaged retinal areas ranged between 2.5° and 13.44° with a consistent field-of-110 

view of 5°. The final TOPI-RPE images were exported as 1975 by 1906 pixels and with a digital 111 

sampling between 0.73µm and 1.0µm per pixel. Supplementary Table 1 presents detailed information 112 

on imaging parameters, registered images, and imaged volunteers. 113 

 114 

Image processing 115 

The fully automated TOPI-obtained RPE image processing and analysis is divided into four 116 

stages. First, the images are normalized in terms of contrast/attenuation, unevenness of the RPE layer 117 

and noise, and any out-of-focus (OoF) areas are discarded. Second, the shadow of retinal vasculature 118 

present in the innermost (vitreal-most) retinal layers is detected and removed from the final image. 119 

Third, cells are individually detected and segmented. Finally, the fourth and last step consists of 120 

characterizing the RPE layer in general and single RPE cells (Figure 1).  121 

Image filtering and normalization 122 

In order to adjust for the unevenness of the RPE layer background, flat-field correction with a 123 

two-dimensional Gaussian smoothing kernel (σ 10 pixels) was applied. Subsequently, to clean the 124 

image from noise, Butterworth highpass filtering (Bhpf) and Gaussian filtering (Gauss) were performed. 125 

The first-order Butterworth filter used a cut-off radius of 50 pixels. The Gaussian filter used a 126 

smoothing kernel with a σ of 20 pixels (Figure 1A). To prevent the filtering out of essential RPE 127 

morphology, both in the spatial and frequency domain, the filter sizes, thresholds, and values 128 

implemented throughout the image processing and analysis methodology, were obtained 129 

experimentally and based on previously published literature in the assessment of ex-vivo and in-vivo 130 

morphology of RPE cells. The usual RPE cell size varies between 10 and 14 µm (14 – 19 pixels with 131 

a digital sampling of 0.73 µm)7,26,27. 132 



A lower RPE cell edge contrast characterizes the OoF areas compared to the in-focus part of the 133 

image. To remove the defocused areas, we implemented the channel-prior method28 with adaptive 134 

gamma correction, which increases the remaining image (deH) contrast. The method allows for single-135 

image enhancement without a priori knowledge of its’ quality or high contrast standard images. 136 

Moreover, the channel-prior method produces a distance map (Dist) (an estimation of the haze 137 

thickness at each pixel), necessary for the vascular outline approximation. 138 

Detection and removal of blood vessels 139 

The detection of blood vessels is performed by using the four previously obtained images (Bhpf, 140 

Gauss, deH, and Dist) (Figure 1B). Each image is subjected to Subroutine A (SubA). SubA begins with 141 

square-shaping the image, and its quadtree decomposition (QuaD) returns a sparse matrix 142 

subsequently reconstructed as a block-map. The QuaD threshold is applied at 3*SD of the image. 143 

QuaD is a common methodology in several fields, including image processing, being used from 144 

multiresolution decomposition and analysis29–31, to compression32,33 and machine learning34,35. 145 

Application of QuaD for RPE cells segmentation is a novel approach developed specifically for this 146 

project. The QuaD square blocks of ≥ 8 pixels and ≤10% of the original image size are included in 147 

the subsequent image processing. After inverting (image complement), the obtained square blocks 148 

maps, small and interconnected structures at their external borders are discarded using morphological 149 

filtering (erosion with a discoid element of 4-pixel radius) followed by dilation with the same discoid 150 

element. Finally, the last step of SubA is reshaping of the resultant mask to the original’s image size. 151 

Supplementary Figure 1, Block B, presents a more in-depth depiction of the process, where Gauss 152 

image is an example input. 153 

The OoF mask obtained during image filtering and normalization stage is summed with the binary 154 

mean of SubA(Bhpf), SubA(Gauss), SubA(deH), and SubA(Dist), forming the vessel-OoF mask (VOoF). 155 

VOoF mask is used to eliminate the infravascular RPE cells from further image processing. 156 



Cell detection  157 

Cell centre detection is based on the method proposed by Khamidakh et al.36, henceforth named 158 

Subroutine B (SubB). In case the distance between adjacent cellular centres is ≤10 pixels, the individual 159 

cells are detected as the same cell. We applied SubB to Bhpf, to the contrast-limited adaptive histogram 160 

equalized Bhpf, and to the highpass filtered (
ଵ

଼
  of the original image sized kernel) Bhpf. One more time, 161 

cellular centres within ≤ 10 pixels are fused. Finally, cellular centres in the distance of ≤ 10 pixels from 162 

the image border are removed to prevent the inclusion of non-fully-imaged cells in the image analysis 163 

(Figure 1C). Supplementary Figure 1, Block C, presents a more in-depth graphical demonstration of 164 

the cell detection method, with Bhpf as its input. 165 

Cell membrane segmentation 166 

Detection of the cellular membrane at the single cell level begins with convolving Bhpf with a 167 

discoid structuring element (radius of 4 pixels). The resultant blurring of the image removes any 168 

possible local salt-and-pepper noise that might occur during the transformation from the Fourier to 169 

the spatial domain. Then, the image is convolved with a star-shaped mask (size 7 pixels). The 170 

convolution enhances local vertical, horizontal, and diagonal edges in the image. The final filter is a 171 

7x7-pixel Mexican hat. With these three filtering stages followed by zero-crossing in the spatial 172 

domain, a binary mask representing the cellular membrane is developed. Finally, the mask is 173 

skeletonized and cleaned from sporadic branches, while single pixels are discarded. The inverted mask 174 

is convolved with a discoid structuring element (radius of 4 pixels) and re-inverted (Figure 1D). Such 175 

a procedure improves the separation of the cells and prevents their possible overlapping. An example 176 

of the process of the cell membrane segmentation method is presented in Supplementary Figure 1, 177 

Block D, with the Bhpf as input. Cellular masks not corresponding with respective cellular centres 178 

identified during the “Cell detection” step are subsequently classified as artefacts and discarded from 179 

further analysis. 180 



Supplementary Figure 2 presents an example of the outputs and intermediate results obtained 181 

throughout the segmentation and analysis process. 182 

 183 

Data analysis 184 

Cells with area or centre overlapping with the VOoF mask were discarded from the analysis of 185 

cellular characteristics. 186 

Using the previously created cellular masks and the original TOPI-obtained image, 187 

morphological, and neighbourhood characteristics of individual RPE cells were assessed (Figure 1E). 188 

MATLAB regionprops function was used to obtain basic morphological characteristics of RPE cells 189 

(area, centroid and weighted centroid, eccentricity, solidity, intensity, and circularity). Additionally, 190 

assessed characteristics included the coefficient of variation (CV) of RPE cellular membrane 191 

(CMDCV)37,38, number of neighbouring cells, and the cellular density of the RPE layer. To decrease the 192 

possible risk of assessment bias, RPE cells immediately adjacent to the VOoF mask were discarded 193 

from the number of neighbours’ evaluation. A descriptive analysis was conducted for each image. 194 

Supplementary Table 2 presents the full list of the assessed metrics, along with their definitions and 195 

formulas. 196 

The normality of variables was assessed with Shapiro-Wilk’s test (p > 0.10) and histogram 197 

skewness (skewness -0.5 – 0.5). 198 

The image processing pipeline and the underlying algorithms were developed and tested, as well 199 

as data management, on a DELL workstation (DELL XPS 13 9380, Windows 10, 64 bits, 2 1.80 GHz, 200 

16.0 GB RAM) equipped with the MATLAB (version R2019, with Bioinformatics ToolboxTM, 201 

Financial ToolboxTM, and Statistics and Machine Learning ToolboxTM). Image registration was 202 

performed with ImageJ 1.52 with a modified macro from Laforest et al.2, with the plugins TurboReg39 203 



and Template Matching40. For boxplots generation and statistical analysis, we used R studio 1.2.1335 204 

with gmodels, e1071, readxl, and xlsx packages.  205 



Results 206 

Figure 2 presents the resultant analysis maps for an example sample (number 6), where the RPE 207 

coverage was 88%. 208 

 209 

Characteristics of the RPE layer 210 

In all obtained image samples, the algorithm analysed a significant image area (median 90%, 211 

interquartile rate (IQR) 9%). The discarded parts of the image areas were either blood vessels or 212 

blurred/hazed. After discarding cells belonging to the VOoF areas (example in Supplementary Figure 213 

2 - VOoF subpanel), the mean number of cells analysed per sample was 6,864 (SD 869). The median 214 

observed cellular density of the RPE layer was 3,743 cells/µm2 (IQR 1,687) (Table 1, Supplementary 215 

Table 3 and 4, and Supplementary Figure 3). 216 

 217 

Characteristics of RPE single cells 218 

The median observed RPE cell area was 193 µm2 (IQR 141). The mean number of neighbouring 219 

cells was 5.22 (SD 0.05) per RPE cell. The mean RPE cell eccentricity was 0.67 (SD 0.02). The RPE 220 

cell circularity was at a median 0.83 (IQR 0.01). The median CMDCV, denoting the distance of each 221 

cellular membrane-depicting pixel to the cellular centroid, was 0.19 (IQR 0.02). The median solidity 222 

of the RPE cells was 0.92 (IQR 0.00). The median RPE cell normalized image intensity value was 0.44 223 

(IQR 0.04). The mean pixel distance between morphology-based and intensity-based RPE cellular 224 

centroids was 0.29 pixels (SD 0.06) (Table 1, Supplementary Table 3 and 4, and Supplementary Figure 225 

3). 226 

 227 

Performance of the image processing algorithm 228 



The median image processing time was 48 seconds (IQR 12) per image. It included digital image 229 

transformations, image segmentation and analysis, rendering and saving metrics, figures, and graphs. 230 

The most time-consuming stage was image processing and analysis pertaining to single cell detection 231 

and cellular membrane identification, accounting for 65% of the total processing time. The second 232 

most tedious stage was metrics calculation (23% of the total processing time) (Table 1, Supplementary 233 

Table 3 and 4, and Supplementary Figure 3).  234 



Discussion 235 

Comparison of the results with the literature 236 

The aim of the presented research was the development of an algorithm enabling automated 237 

segmentation and analysis of in vivo TOPI-imaged RPE cells at the single cell level.  238 

To the knowledge of the authors, fully automated and user-independent in vivo RPE single cell 239 

imaging, segmentation, and analysis has not been achieved before, primarily because high-resolution 240 

RPE images were not available.  241 

The most akin method presented in the literature was a protocol for the automated segmentation 242 

of RPE cells images obtained with adaptive optics SLO, developed by Rangel-Fonseca et al. 43,44. Some 243 

other authors presented semi-automatic protocols for the detection and segmentation of RPE cells 244 

based on the localization of cone cell centers25,45, non-specific for the actual underlying RPE cells layer. 245 

Furthermore, unlike ours, none of the three previous methods proposes a fully automated system of 246 

vascular outline elimination from the image processing and analysis. Finally, our method discards the 247 

OoF region automatically. 248 

The observed characteristics of the RPE layer and RPE single cells are comparable with 249 

previously published literature (Figure 3 and Supplementary Table 3); however, the published research 250 

data on RPE statistics are all based on ex vivo or in vitro observations. It is thus interesting to compare 251 

the results between human in-vivo and ex-vivo/in vitro. 252 

The observed median cellular density (3,743 cells/µm2) was within the range reported previously 253 

in the literature (3,000-5,500 cells/µm2)44,46,47. Similarly, the median observed RPE cell area at 193 µm2 254 

is within the reported studies27(140-840 µm2). The mean number of neighbouring cells was 5.22. Since 255 

mature, confluent RPE cell colonies or layers, are commonly described in the literature as hexagonal 256 

cobblestone conformation, denoting six neighbours per RPE cell6–8,25,48–50 (Supplementary Table 3), 257 



this result is somehow unanticipated. Further studies in healthy subjects and different retinal 258 

eccentricities need to be undertaken. 259 

The observed mean eccentricity at 0.67 was 27% higher than in the literature2. The median 260 

circularity at 0.83 was in line with the previously published circularity of 0.74 and matching well with 261 

the theoretically ideal circularity of 0.84 shown by Bhatia et al. 7(Supplementary Table 3). To our 262 

knowledge, both CMDCV and cell solidity were used for the first to characterize RPE cells. Hence, a 263 

comparison of our findings with previously published literature was not possible. 264 

 265 

Strengths and limitations of the study 266 

The presented image processing method is dependent on the high quality of the TOPI-obtained 267 

retinal images. Albeit all images are normalized and filtered, imaging is still dependent on various 268 

parameters, both intrinsic and extrinsic to the TOPI setup. Conditional external factors to the TOPI 269 

setup include morphological heterogeneity of eye dependent on visual impairment, age, and 270 

illumination conditions.  271 

The primary strength of the study is the fully automated analysis of the TOPI images, which 272 

allows for reproducibility and replicability of the results. Another strength of the presented image 273 

processing algorithm is a short analysis time, acceptable both for research and for clinical purposes 274 

(48 seconds per image). All 14 samples (from 11 individuals) were able to be analysed and provide 275 

metrics both at the cell and colony level. 276 

The small sample size can somewhat decrease the generalizability of the findings regarding RPE 277 

cells characteristics. Moreover, as the whole study population was composed of healthy volunteers, 278 

the performance of the developed image-processing pipeline on patients with degenerative diseases 279 

cannot yet be assessed. 280 

 281 



Significance of the findings and suggestions for future research 282 

To our knowledge, this work is the first fully automated image processing pipeline developed for 283 

high resolution TOPI-obtained RPE images both at layer-level and single cell levels. 284 

The presented results are a step towards the possible implementation of automated RPE cell 285 

analysis in clinical practice for diagnostics of several retinal diseases. The use of non-invasive, real-286 

time, and fully automated evaluation of the retinal cells can facilitate the work in both 287 

ophthalmological research and practice. Furthermore, the RPE cells’ assessment method proposed in 288 

this paper is time-efficient (median of 48 seconds per image). Finally, the analysis of the retinal cells’ 289 

morphology both on layer-level and single cell level opens new paths for eye health assessment and 290 

follow-up.  291 

In the future, associations between different morphological features of the retinal cells and the 292 

type of vision impairment should be assessed. Cross-sectional studies with larger study populations 293 

should be conducted to validate and assess the performance of the developed method in adapting to 294 

the variability of the in vivo RPE layer. Furthermore, to assess the system and analysis pipeline utility 295 

in the follow-up and surveillance measure, prospective cohort studies need to be undertaken. 296 



Conclusions 297 

In this study, a new fully automated image processing method for segmentation and analysis of 298 

high-resolution TOPI-imaged RPE cells was presented. It is the first report on the RPE single cells in 299 

vivo characteristics. The present study lays the groundwork for future research in the field of clinical 300 

ophthalmology, enabling characterization and diagnostics of retinal diseases on the single cell level. 301 

 302 

Supplementary Information 303 

Supplementary information is available at Eye’s website. Colour figures are available on the online 304 

version of the manuscript, as also supplementary figures and tables. 305 
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Titles and legends to figures 439 

Figure 1. TOPI-RPE image processing diagram. From acquisition to single cell masks for an example 440 

sample. Cyan boxes represent 9x zoomed areas of the underlying structures. (Other example zoomed 441 

regions from each step are presented in Supplementary Figure 3) (For the colour version, please refer 442 

to the online version of the article) 443 

SubA: subroutine A.  444 

SubB: subroutine B.  445 

VOoF: Vessel and out-of-focus mask 446 

 447 

Figure 2. Sample 6: Analysis results, with final metrics maps. Area of the assessed RPE layer: 88%. 448 

CMDCV: coefficient of variation of RPE cellular membrane mask (For the colour version, please 449 

refer to the online version of the article) 450 

 451 

Figure 3. Spider graph comparison between literature and study obtained parameter ranges. (For the 452 

colour version, please refer to the online version of the article) 453 

 454 
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Abbreviations and Acronyms: 479 

Bhpf  Butterworth highpass filtered image 480 

CMDCV cellular membrane mask coefficient of variation 481 

CV  coefficient of variation 482 

deH  dehazed image 483 

Dist  distance map 484 

FLIO  fluorescence lifetime imaging ophthalmoscopy 485 

FOV  field of view 486 

Gauss  Gaussian filtered image 487 

IQR  interquartile rate 488 

OCT  optical coherence tomography 489 

OoF  out-of-focus mask 490 

QuaD  quadtree decomposition 491 

RPE  retinal pigmented epithelium 492 

SD  standard deviation 493 

SLO  scanning laser ophthalmoscopy  494 

SNR  signal-to-noise ratio 495 

SubA  subroutine A 496 

SubB  subroutine B 497 

TOPI  transscleral optical phase imaging  498 

VOoF  vessel & out-of-focus mask 499 


