
Automatic quality assessment in structural brain magnetic resonance imaging 
 

B. Mortamet1, M. A. Bernstein2, C. R. Jack Jr2, J. L. Gunter2, C. Ward2, P. J. Britson2, R. Meuli3, J-P. Thiran4, and G. Krueger1 
1Advanced Clinical Imaging Technology, Siemens Suisse SA, Healthcare Sector IM&WS - CIBM, Lausanne, Switzerland, 2Mayo Clinic, Rochester, MN, United States, 

3Centre Hospitalier Universitaire Vaudois and University of Lausanne, 4Ecole Polytechnique Fédérale de Lausanne (EPFL), Signal Processing Laboratory (LTS5), 
Lausanne, Switzerland 

 
Introduction: Quality assessment of magnetic resonance imaging is of great importance to derive reliable diagnostic information. With the growing number of clinical 
research and multicenter neuroimaging studies as well as the promising use of computer-aided diagnosis, automated and objective measures of quality are needed to 
replace visual inspection that is time-consuming and has imperfect repeatability. To address this need, we propose a new method which derives quality indices from air 
background analysis of magnitude MR images. This region corresponds typically to >30% of the total image volume and provides sufficient information to detect image 
degradation from several sources such as patient head movement, residual magnetization from incomplete spoiling, blurring, ghosting. For verification and fine-tuning 
of the method, we evaluate the effectiveness of two different indices to correctly classify 749 3D head scans as either high- or low-quality. 

Materials & Methods: In this study, 749 T1-weighted 
structural head MRI data (188 subjects, 72.5±17.5 years old) 
were obtained from the Alzheimer’s Disease Neuroimaging 
Initiative ADNI database (www.adni-info.org) and acquired 
on 36 clinical scanners (Siemens Medical Solutions, 
Erlangen, Germany) using 3D MPRAGE pulse-sequences 
(TR-TI=2.3-0.9/2.4-1s, 1.25x1.25x1.2/1x1x1.2 in-plane 
resolution FA=8/9° for 1.5T/3T acquisitions) operating with 
various software and hardware combinations at 1.5 and 3T 
[1]. Automatic quality control is achieved in a three-step 
process. Firstly, an atlas-based algorithm extracts 
background region over which analyses are performed. 
Secondly, artifacts regions are isolated by means of 
morphological operations and a quality index QI1 is 
computed as the proportion of artifactual voxels relative to 
the background size (see solid red line in Fig1). Thirdly, a 
chi distribution [2] is fitted to the background noise 
histogram (without artifactual voxels detected in Step 2) 
using maximum likelihood estimation. A quality index QI2 is 
computed by adding up the goodness-of-fit (absolute error 
between histogram and fit) and artifactual voxels from QI1 
(see dot line in Fig1). To investigate the predictive 
performance of the proposed indices, results are compared to qualitative grades assigned by the ADNI quality control center (taken as gold standard). Sensitivity and 
specificity are considered as the true positives (high-quality prediction) rate and the true negatives (low-quality prediction) rate, respectively. Receiver operating 
characteristics (ROC) curve (see Fig2) represents the range of combinations of sensitivity and specificity achievable over the range of possible cutoff points for our 
quality indices (QIs). ROC is used (a) to evaluate the performance of each QI measured by area under the curve (AUC, see Fig2) and (b) to compare the discriminative 
abilities of QIs in order to identify the preferred one. QIs cutoff values are determined by equalizing sensitivity and specificity. Analysis of variance is performed to 
detect significant mean differences among quality groups (low-/high-quality) resulting from classification based on either QI1 or QI2.  

Results: Both quality indices exhibited excellent prediction performances (AUC>0.9). Trading sensitivity and specificity at 
equal rates (87.19 & 85.18% for QI1 & QI2) provided optimal thresholds of 5.06e-3 & 5.7e-2. ANOVA revealed significant 
differences among the two quality groups for each QI (p < 0.001). Overall, the model (used for QI2) fitted the data well and 
our quality indices QI1 and QI2 appeared to be both accurate and consistent. 

Discussion: In this work, a novel method is proposed to measure MR image quality in an automatic manner by analyzing the 
air background of magnitude images. The two quality measures presented here both perform equally well and have proven to 
be very efficient and robust in predicting overall image quality in a large and heterogeneous data collection when compared 
to grading of an experienced reader. The results suggest that the proposed method may have a great potential in clinical 
research studies and routine clinical practice. It could offer the ability to rule-out the need for a repeat-scan while the patient 

is still in the MR bore. Because of its automation, quality assessment is highly reproducible (if the cutoff point is held fixed). The performance of our quality indices 
could even be further improved by differentiating artifacts subtypes with regard to their spatial location, checking protocols or analyzing k-space or brain tissue intensity 
distribution. Initial results show for example, that our atlas-based background segmentation technique performs well in detecting poor slice positioning such as nose-
wrap, which typically results in a poor quality rating by the reader. Since the QI2 index is based on a noise model, extension to data that have been processed with filters 
and parallel reconstruction is expected to result in reduced performance. As initial investigations exhibit, the QI1-based test, however, is expected to be directly 
extendable to data with other contrasts, using parallel-imaging techniques or corrected for various MR-related intensity inhomogeneities or geometrical distortions since 
the 3D connected structure of artifacts is not altered. 
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Fig 2. Performance of quality tests 
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Fig 1. Magnitude sagittal slices of high- (a) and low- (d) quality datasets (Allegra, single channel RX 

coil) with corresponding background masks (b-e), intensity distributions (c-f) 
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