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Abstract
Most of the existing models of alpine permafrost distribution show a direct correlation between the 
permafrost occurrence and the increase in altitude. This may be correct at a regional scale, but it is often 
not valid at a more local scale, because of the high spatial discontinuity of alpine permafrost. For instance, 
the fact that permafrost is usually present only in the lower part of talus slopes has never been modeled. 
This paper presents a new model of alpine permafrost distribution that includes data obtained from 
field investigations carried out on various alpine landforms. The main goal of the study was to develop 
a model as reliable as possible at the local scale and to test the potential of an innovative approach in 
the field of permafrost modeling: Support Vector Machines (SVMs). This method is based on machine 
learning and provides a classification of samples produced by learning statistical dependencies between 
the studied phenomenon and other variables. This technique was used to model the spatial permafrost 
distribution in sedimentary landforms. In a second step, the lower limits of permafrost in rock walls, 
obtained by field measurements by PERMOS, were added to the model.

Keywords: mountain permafrost, modeling, machine learning, Support Vector Machines, Swiss Alps.

1	 Introduction

Nowadays, permafrost mapping has a fundamental relevance for natural hazard prevention 
as for the design and the maintenance of infrastructures in high Alpine regions. As permafrost 
is invisible at the ground surface, its spatial modeling is one of the most important tasks 
of Alpine permafrost research. Initial efforts were proposed by Haeberli (1973) with the 
so-called empirical «rules of thumb», which considered the relationship between some 
topographic parameters and permafrost occurrence and were successively implemented in a 
GIS environment by Keller (1992). Later, other spatial models were proposed by using rock 
glacier inventories (e.g. Imhof 1996; Delaloye and Morand 1997; Lambiel and Reynard 
2001; Baroni et al. 2004; Seppi et al. 2005), potential direct solar radiation (e.g. Funk and 
Hoelzle 1992; Hoelzle and Haeberli 1995; Frauenfelder 1998; Nyenhuis et al. 2005), near 
ground surface and borehole temperatures (e.g. Gruber et al. 2004; Etzelmüller et al. 2006, 
2007; Allen et al. 2009) or snow basal temperature (BTS) (e.g. Keller et al. 1998; Gruber and 
Hoelzle 2001; Ebohon and Schrott 2008). These models generally offer a good overview of 
the potential spatial distribution of mountain permafrost at the regional scale. Other more 
process oriented models (e.g. Stocker-Mittaz et al. 2002) succeeded to simulate with good 
accuracy the ground temperature at the point scale, but the high number of input parameters 
needed prevent a regionalization of the information. All in all, there is a lack of models able 
to simulate the strong heterogeneity of mountain permafrost at the local scale (e.g. Lambiel 
and Pieracci 2008; Scapozza and Lambiel, this volume). The majority of existing models 
indicate a general correlation between permafrost occurrence and the increase of altitude 
(Keller 1992; Imhof 1996; Gruber and Hoelzle 2001; BAFU 2005; Boeckli et al. 2012). If 
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this may appear correct at a regional scale, it is not always valid at a more local scale, because 
of the high spatial discontinuity of the permafrost extension. Effectively, recent studies 
have shown that Alpine permafrost is usually present only in the lower half of talus slopes 
in relation to the so-called chimney effect, allowing air circulation through coarse blocky 
surfaces (Delaloye et al. 2003a; Morard et al. 2010; Scapozza et al. 2011).

The first goal of this study is to propose a new model aiming at integrating and simulating 
the heterogeneity of mountain permafrost, and thus to propose a model as reliable as possible 
at the local scale. Accordingly, a machine learning approach was adopted (cf. 3.1). Thus, the 
second objective of the study is to test the potential of this innovative approach in the field 
of permafrost modeling.

2	 Study area and known permafrost distribution

For this study, we choose the entire Swisstopo 1:25 000 “Rosablanche” topographic map 
to develop and to test the model. The research area is located in the Western Swiss Alps 
and it covers three main valleys: Bagnes, Nendaz and Hérémence. Since 1998, the Mont 
Gelé – Mont Fort region, situated in the western part of the map (Verbier/Nendaz area), 
has been studied by several field campaigns conducted by the geography institutes of the 
universities of Lausanne and Fribourg. The first attempts to estimate the potential permafrost 
distribution were proposed by Reynard (1996), Reynard et al. (1999), and Lambiel and 
Reynard (2001, 2003), thanks to geomorphological mapping, rock glacier inventoring 
and 1-D resistivity prospecting. During the last decade, various methods such as electrical 
resistivity tomography, seismic refraction, ground (surface) temperature measurements 
and borehole logging were used to map the permafrost distribution and to characterize the 
ground stratigraphy in different landforms such as rock glaciers, talus slopes and moraine 
deposits (e.g. Turatti 2002; Delaloye et al. 2003b; Reynard et al. 2003; Marescot et al. 2003; 
Delaloye 2004; Delaloye and Lambiel 2005; Lambiel 2006; Lambiel and Pieracci 2008; 
Lambiel and Schuetz 2008; Hilbich 2009; Scapozza et al. 2011; Scapozza 2012).

As we will describe in the next chapter, the modeling approach chosen for this study 
requires a calibration based on examples that indicate the permafrost occurrence. The 
availability of data for the Mont Gelé-Mont Fort region made the Rosablanche topographic 
map the best choice for this purpose.

3	 Methodical background

3.1	 Learning from data

The last decades were characterized by the development of numerical models based on 
physical or statistical approaches. The relevance of these tools, as help for decision-making, 
became crucial since the availability of a wide number of spatial data and measurements, 
which have increased due to technological improvements in automated environmental 
monitoring. Rapidly, the research field of statistical machine learning grew, permitting the 
analysis of huge volumes of data and to discovery of the dependencies hidden inside them 
(Kanevski et al. 2009). The application of the binary classification to machine learning was 
one of most important tasks introduced by the Statistical Learning Theory (Vapnik 1998). 
Without, a priori, any users’ assumptions about phenomena distribution, data-driven 
algorithms should search for a decision function discriminating all samples of a dataset in 
two binary classes (such as “absence” or “presence” of a phenomenon). The classification 
is produced by learning statistical dependencies between the studied phenomenon and 
other variables in a so-called training samples dataset. These techniques should supply to 
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accurate decision boundaries, taking into account non-linear solutions and misclassifications 
of observed data samples.

For this study, a technique providing these requirements and considering the complexity 
of the permafrost distribution was necessary. This complexity is linked to a high amount of 
variables (predictors), which lead to a high dimensional feature space of factors related to the 
permafrost occurrence. Therefore, Support Vectors Machines (SVMs) were chosen because 
of their suitability for high-dimensional datasets, avoiding model overfitting and allowing a 
probabilistic interpretation of the outputs through a continuous decision function. However, 
this method requires abundant examples that indicate the presence of permafrost. Since a 
good set of training samples indicating the permafrost distribution was unavailable for rock 
walls, SVMs were only used to predict the permafrost distribution in sedimentary landforms 
such as rock glaciers and talus slopes. The lower limits of permafrost in rock walls were 
obtained by field measurements from the Swiss Permafrost Monitoring Network (PERMOS 
2009) (Fig. 1) and added to the model in a second step.

Fig. 1. permafrost lower limits in rockwalls, resulting from PERMOS (2009) field measurements.

Fig. 2. linear separable samples in 2-D (A) and 3-D (B) features space.
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3.2	 Support Vector Machines

3.2.1	 Main concepts
The main concept of SVMs introduced by Vapnik (1998) indicates that, when dealing 
with a problem in which different objects have to be divided in two categories by placing 
a discriminating boundary, the most intuitive option is to draw a separating line. In an 
N-dimensional space, the line becomes a hyperplane (Fig. 2). 

With a SVMs approach, we must firstly suppose that the data samples (x1, y1), …, (xN , yN), 
where x are the input features (e.g. see Table 1) and y ∈ {–1; +1} the binary labels (e.g. absence 
and presence of permafrost), are linearly separable. This allows samples to be classified into 
two binary classes. The SVMs algorithm aims to determine the function that maximizes the 
distance between the training points and the hyperplane (the so-called margin ρ). The linear 
decision function is defined as

     
	 (1)

where w is a weighing vector which needs to be optimized along with the scalar b in order 
to maximize the margin ρ. The maximal margin is obtained by minimizing ||w||2. Moreover, 
the sign of the function ƒ (x) determines the class in which a predicted sample belongs. The 
optimization of the parameters w and b is a quadratic programming problem with linear 
constraints and unique solution. Furthermore, w is defined as a linear combination of the 
training samples xi, in which almost the total of them have a weight αi equal to zero:

     
	 (2)

The solution of the optimization problem allows the SVMs decision function to be formulated 
as

     
	 (3)

All nearest samples to the decision boundary are the only ones that contribute to the 
maximum margin solution. They have a non-zero weight and they are called Support Vectors 
(Fig. 3).

A linearly separable data samples case, where the two classes are not overlapping, is an 
ideal situation one will rarely be dealing with. In fact, data could be noisy and it is not always 
possible to avoid training errors when drawing a separating line. The SVMs classifier accounts 
for overlapping data with a soft margin adaptation: slack variables ξi are assigned to noisy 
samples lying outside their class margin. Therefore, at this point, a coefficient that affects 
the trade-off between complexity and proportion of non-separable samples is required and 
it must be selected by the user (Cherkassky and Mulier 1998). For this reason, a so-called 
cost hyper-parameter C is added to the optimization in order to keep a balance between 
empirical error and the minimization of ||w||2 for the finding of the largest possible margin ρ.

Up to this point, we have seen how a linear decision function can be optimally applied 
in order to classify our examples with binary labels. When dealing with datasets where the 
input/output relationships are non-linear (Fig. 4A), we need to find a more clever way to 
discriminate the two classes. The tricky idea is to map the dataset into a space of higher 
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dimensions and then to perform the well-known linear separation on the transformed data 
(Fig. 4B), rather than applying complex decision functions directly on the initial dataset. In 
this case, a “kernel trick” is used in equation (3) to substitute the dot product between the 
input vector of a sample x and all training samples xi with a kernel function K(⋅,⋅), allowing 
non-linear decision boundaries to be determined. Accordingly, the final formulation of the 
decision function for a classification task takes the form:

     
	 (4)

Among the available kernel functions, a user’s choice often falls on the Gaussian Radial 
 
Basis Function (Gaussian RBF) kernel  because of the simple geometrical 
interpretation it provides. The parameter σ, controlling the bandwidth of the Gaussian 
surface centered on vector x, needs to be tuned using a validation dataset.

Fig. 3. binary classification of two 
groups of samples by maximizing 
the margin ρ and allowing 
misclassifications.

Fig. 4. RBF mapping allowing non-
linear classification in a linear space 
to be solved.
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3.2.2	 Data preparation
For this case study a pool of 15 features was retained (Table 1). Some variables are strictly 
related to permafrost presence or absence, but for some of them a generalization was 
necessary. This was, for example, the case for glacier forefields, in which permafrost is often 
restricted to the lateral and frontal margin (e.g. Reynard et al. 2003). For simplicity, we 
decided to label this variable as an indicator of permafrost absence.

Altitude, potential direct solar radiation, aspect, slope and curvature were simply 
extrapolated from the Swisstopo’s digital elevation model with a 25 × 25 meter resolution. 
Lakes, human infrastructures, current glacier extension and mineral/vegetation-covered 
surfaces were extracted from the Swisstopo’s primary surfaces map. From these variables, 
other features were calculated. The mean annual air temperature (MAAT) was obtained for 
the entire Rosablanche map with a linear regression involving daily temperatures measured 
at Les Attelas ENET meteorological station, according to Bouët’s (1985) formulas. 
Moreover, glacier forefields were extrapolated by subtracting the current glacier extension 
from the Little Ice Age glacier extension (Maisch 1999). Talus slopes and rock wall mapping 
was produced by a DEM-based geomorphometric approach proposed by Loye et al. (2009), 
which permitted the identification of these features according to a slope angle distribution 
analysis. Intact rock glaciers (actives and inactives) were extracted from the region’s rock 
glacier inventory (Lambiel 1999; Lambiel and Reynard 2003). The dataset was completed by 
empirical data from field campaigns, which show permafrost presence in talus slopes. 

Table 1. the list of features used for the permafrost distribution modeling in sedimentary landforms.

Variable Permafrost occurrence Description

Altitude – Elevation in meters

Aspect – Exposition in degrees

Slope – Slope angle in degrees

Potential direct solar 
radiation

– Direct solar radiation for the snow-free period 
(1st July-31 October)

MAAT – Mean annual air temperature (in degrees) for 
the 1996-2009 period

Curvature – Topographic curvature in degrees

Glacier Unlikely/Rare Binary variable indicating glacier presence/
absence (‘1’ or ‘0’)

Intact rock glacier Probable Binary variable indicating rock glacier presence/
absence (‘1’ or ‘0’)

Human infrastructure Unlikely Binary variable indicating human infrastructure 
presence/absence (‘1’ or ‘0’)

Lake Unlikely Binary variable indicating lake presence/absence 
(‘1’ or ‘0’)

Glacier forefield Unlikely/Rare Binary variable indicating glacier forefield 
presence/absence (‘1’ or ‘0’)

Mineral-covered surface Possible Binary variable indicating mineral-covered 
surface presence/absence (‘1’ or ‘0’)

Rock wall Possible Binary variable indicating rock wall presence/
absence (‘1’ or ‘0’)

Vegetation Unlikely Binary variable indicating vegetation presence/
absence (‘1’ or ‘0’)

Talus slope Possible Binary variable indicating talus slope presence/
absence (‘1’ or ‘0’)
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The input vectors were composed of several groups of features for each location. In order 
to reduce the dimensionality, all values were standardized (z-score). The goal of the SVMs 
training process was to generate discriminative predictants related to permafrost occurrence 
(presence, absence or uncertainty). On a total of 295 680 samples (pixels), 6193 of them 
indicated presence of permafrost (2 %) and 182 173 indicated absence of permafrost (62 %). 
The last 107 314 samples (36 %) were unlabelled and needed to be classified (Fig. 5). Only 
a small portion of samples were randomly extracted from the two first categories and used 
for the training process. This means that SVMs predicted the permafrost occurrence for the 
entire study area. Remaining samples from these categories were used to validate the model. 
In fact, the modeling process involved a random partitioning of the original dataset into 3 
sub-datasets: a training set to fit the model and maximize margins, a validation set to estimate 
the prediction error for model selection (tuning hyperparameters) and a test set, used for 
assessment of the generalization error of the final chosen model. This process was repeated 
30 times using different random sample pools and different proportions between the sub-
datasets.

3.2.3	 Prediction process and probabilistic SVMs output interpretation for decision  
	 support and model accuracy
By using the training set to find the final decision function, the classification was possible. The 
so-called prediction process was then executed, in which each unlabelled pixel was placed 
under or above the margin ρ (hyperplane). During this simulation phase, the test sets were 
also used to validate the final model and to calculate its error.

In the Statistical Learning Theory, Vapnik (1998) shows that the SVMs approach usually 
provides an excellent generalization ability and accurate predictions in high dimensional 
spaces. Moreover, this technique usually avoids over-fitting and accounts auto-correlation 

Fig. 5. labeled samples (pixels) used by Support Vector Machines (SVMs) for the simulation.
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between similar input features. However, decision function output labels y = {–1; +1} are 
difficult to interpret and employ for decision making. A smooth confident measure p: 0 < p(y 
= {–1; +1} | x) < 1 is computable by using the Platt (1999) sigmoid function:

     
	 (5)

where A and B are the parameters to tune on the validation set in order to avoid model 
over-fitting.

To evaluate the quality of this modeling, two approaches were chosen: the overall accuracy 
ratio (OAR) (6) and the area under the receiver-operating characteristics (AUROC). The 
first ratio, which ranges between 0 and 1, reports the number of correct predictions over 
the total number of points, indicating the reliability of the model. The receiver-operating 
characteristic (ROC) plots in a 2-dimensional graph the false positive rate (horizontal axis) 
(7) and the true positive rate (the vertical axes) (8). It results in an interesting quality measure 
because a SVMs binary classification is executed according to a defined threshold resulting 
in a positive class label if the score is above the threshold t (ƒ(x) > t), or in a negative one if 
the value is lower than t (ƒ(x) < t). When computing these TP/FP rates for the classifications 
obtained with thresholds varying from their minimal to maximal values, we will be able to 
plot a point (FP rate, TP rate) associated with each selected threshold (Fawcett 2006; Hamel 
2009). AUROC ranges between 0.5, which means a random model behavior, and 1 (perfect 
model).

      
	 (6)

      
	 (7)

     
	 (8)

The final model was evaluated with the means of all OAR and AUROC calculated for each 
of the 30 sub-sets.

4	 Results and discussion

4.1	 The Rosablanche permafrost extension map

The SVMs final model indicates all values calculated by the decision function (Fig. 6). Values  
(ƒ(x) < –1 or ƒ(x) > +1 or ƒ(x) > +1 correspond to samples that are labeled as a negative 
or a positive class, or more precisely as a pixel in which permafrost is absent or present. 
However, all values predicted in the [–1; +1] range (between margins) cannot be classified 
with certitude. The Platt sigmoid function (5) is then required in order to allow a probabilistic 
interpretation of these samples.

Resulting occurrence probabilities (Fig. 7) were classified into three categories. Predictions 
below 0.4 were classified as “permafrost absent”. The remaining 0.6 was divided into two 
equal classes: from 0.4 to 0.7 predictions were labeled as “permafrost possible”; from 0.7 to 
1.0 as “permafrost probable”. Figure 8 illustrates the final model of the potential permafrost 
extent, called PERMAL (for “Permafrost Machine Learning”), which was produced by 
merging the probabilistic SVMs output with the permafrost map for rock walls resulting 
from PERMOS (2009) measured lower limits.
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Fig. 6. Support Vector Machines decision function results. Pixel values require a probabilistic 
transformation to be interpreted (see 3.2.3).
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Fig. 7. distribution of permafrost occurrence’s probabilities resulting from the Platt sigmoid function 
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the Darbonneire glacier forefield (a) and for the Tsauderys glacier surface (b). For most talus 
slopes, permafrost occurrence was simulated as probable. However, some contrasts can be 
observed between the lower and the upper parts of some slopes. It is especially the case in the 
center of the map (c), where PERMAL predicted a total absence of permafrost for the upper 
part of these regular slopes. In sector d, even though the lower part was not clearly separated 
from the upper part of the slope, a decrease in the probability of permafrost occurrence with 
altitude was modeled. Thus, for these sectors, SVMs appears to be modeling correctly the 
atypical permafrost distribution for talus slopes. 

The last example illustrates the permafrost distribution for the Pic d’Artisinol area (Fig. 
11A and 12). PERMAL simulated correctly a low occurrence of permafrost in vegetation-
covered slopes and probabilities above 40% for mineral-covered surfaces. The two rock 

Figure 11 here

4.2	 PERMAL result analysis

In order to provide a quantitative analysis, the OAR and the AUROC were calculated, 
providing values of 0.967, respectively 0.975. These rates indicate an almost perfect model, 
which is usually synonym of a model over-estimation. Unluckily, SVMs are a “black-box” 
type modeling, a disadvantage the machine learning methods are often criticized for. This 
means that it is impossible to understand in what way predictors influenced the permafrost 
occurrence without the embedding of additional algorithms. As a result, we must suppose 
that the permafrost extent is probably less important than the modeled one. 

A qualitative analysis was carried out on selected regions of interest. The Mont Gelé 
sector (Fig. 9A) provides good examples of how SVMs predicted the permafrost occurrence 
for different landforms. Training samples, such as rock glaciers of the Yettes Condja valley 
(a), periglacial lobes at Lac des Vaux (b) and the Lapires talus slope (c) were correctly 
recognized. On the other hand the decrease of permafrost occurrence with altitude in the 
talus slopes was not modeled correctly (c, d). Another result is that permafrost boundaries 
were automatically limited to mineral-covered surfaces, according to the Swisstopo’s primary 
surfaces mapping (e).

Darbonneire and Tsauderys glacier circuses (Fig. 10A) supply supplementary examples that 
illustrate the way SVMs modeled the permafrost extension. These sectors are characterized 
by extended mineral-covered surfaces and are particularly interesting because they do not 
contain any training samples. For the entire area, the permafrost distribution was simulated 
by the SVMs calculated decision function. The PERMAL result appears correct for all 
eights aspects. Northern exposed slopes are characterized by a more important permafrost 
occurrence than the south-facing ones. Furthermore, permafrost was predicted as absent for 

Figure 10 here

Fig. 8. the final potential alpine permafrost distribution map for the entire Rosablanche topographic 
map area. 
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the Darbonneire glacier forefield (a) and for the Tsauderys glacier surface (b). For most talus 
slopes, permafrost occurrence was simulated as probable. However, some contrasts can be 
observed between the lower and the upper parts of some slopes. It is especially the case in the 
center of the map (c), where PERMAL predicted a total absence of permafrost for the upper 
part of these regular slopes. In sector d, even though the lower part was not clearly separated 
from the upper part of the slope, a decrease in the probability of permafrost occurrence with 
altitude was modeled. Thus, for these sectors, SVMs appears to be modeling correctly the 
atypical permafrost distribution for talus slopes. 

The last example illustrates the permafrost distribution for the Pic d’Artisinol area (Fig. 
11A and 12). PERMAL simulated correctly a low occurrence of permafrost in vegetation-
covered slopes and probabilities above 40% for mineral-covered surfaces. The two rock 

Figure 11 here

Fig. 10. PERMAL simulation (A) versus the BAFU one (B) for the Darbonneire and Tsauderys glacier 
circuses sector. Refer to text for the meaning of the small letters.

Fig. 9. PERMAL simulation (A) versus the BAFU one (B) for the Mont Gelé sector. Refer to text for 
the meaning of the small letters.
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glaciers located on the Northeastern side of the Pic d’Artsinol (b) were not provided to the 
machine because they were not included in the rock glacier inventory used for the training 
process. As indicated in figure 12, SVMs were capable of predicting the boundaries of these 
landforms with accuracy.

Fig. 12. Rock glacier limits (A) and PERMAL simulation (B) in the northern part of the Pic d’Artsinol.

Fig. 11. PERMAL simulation (A) versus the BAFU one (B) for the Pic d’Artsinol sector. For the 
significance of the small letters see the text. The highlighted zone corresponds to the zoom in Fig. 12.

4.3	 PERMAL – BAFU comparison

In order to show the PERMAL qualities and limitations, a comparison with the BAFU model 
is proposed. In this model, two different approaches were used for sedimentary landforms 
and for bedrock. The modeling of permafrost in sediment was based on the “rules of thumb” 
of Haeberli (1973) and implemented in the PERMAKART model by Keller (1992), For 
bedrock, the modeling was based on a physical model developed by Gruber et al. (2004). In 
the end, the BAFU map is built from different altitude thresholds above which permafrost 
may be found.
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For the Mont Gelé sector (Fig. 9), PERMAL and the BAFU model show quite different 
results. For example, in the Lapires talus slope, the BAFU map shows a direct correlation 
between permafrost occurrence and the increase of altitude (f), contrary to PERMAL, 
which presents the same probability for the entire slope. Despite the fact that the contrast 
between the upper part and the lower part has not been modeled by PERMAL, this result is 
nevertheless more in accordance with the field data (Scapozza 2012). Moreover, PERMAL 
considers the boundaries between vegetation and mineral-covered surfaces in a better way 
then the BAFU model. On the one hand, this provides an extension map in which permafrost 
is not present in vegetation-covered surfaces, as for slopes around the Lac des Vaux (g). 
On the other hand, PERMAL sometimes indicates doubtful permafrost presence for sites 
characterized by mineral cover. The south-facing slope of the Mont Gelé (h) is a good 
example in which we observe that the BAFU map, because of altitude thresholds, does not 
show any permafrost occurrence, contrary to PERMAL that simulates permafrost presence, 
probably because it recognizes a mineral-covered slope. 

For both Darbonneire-Tsauderys glaciers circuses and Pic d’Artsinol sectors (Fig. 10, 
11 and 12), the BAFU model is more optimistic and the permafrost extension is more 
important than what PERMAL simulates. It’s interesting to observe that samples labeled as 
“permafrost probable” are almost the same for both models. Nevertheless, some important 
differences need to be evoked. For the first site, the BAFU model points out permafrost 
presence in the Darbonneire’s glacier forefield (e). Also, contrary to PERMAL, this model 
does not consider a lower permafrost probability for the upper half of talus slopes (f). This 
sector clearly illustrates the consequence of the altitude thresholds used by the BAFU model 
for the permafrost simulation: gradually as the altitude increases, the permafrost probability 
becomes higher. In a similar way, these thresholds are evidently shown in the Pic d’Artsinol 
area (Fig. 11). South of the summit, different bands of probability are simulated and their 
altitudes vary according to the aspect of the slope (c). Moreover, for this site, we observe that 
the BAFU model predicts permafrost presence also for vegetation-covered slopes, which is 
generally not the case with PERMAL (a).

5	 Conclusion

PERMAL appears to be thorough in the simulation of the high discontinuity of mountain 
permafrost. Results revealed a rather good reliability with the field data and a good 
discrimination between mineral and vegetation surfaces, where permafrost is often absent. An 
important advantage of PERMAL is that it does not use any altitude thresholds, conversely 
to the BAFU model. In the end, comparisons between both models showed that PERMAL is 
less optimistic than the BAFU model. Presented examples indicate that results of PERMAL 
may be more consistent with the field data than those of the BAFU model.

Nevertheless, the presented analysis indicated some limitations. Firstly, the “black-box” 
model characterization of SVMs does not allow the weights of the variables and their 
importance for the permafrost occurrence to be understood. These predictors were chosen in 
accordance to field data and consecutively included in the dataset. However, more variables 
could be added. For example, in order to improve the results and to better model the contrast 
of permafrost occurrence between the lower and the upper part of talus slopes, two new 
predictors should be included in the dataset (“lower part” and “upper part” of the slope). 
These discriminating variables could help SVMs to recognize the pixel localization in the 
slope. Thus, a more significant occurrence of permafrost in the lower part of the slopes could 
be simulated. In fact, this contrast was modeled only for a couple of examples. Besides, 
boundaries that describe vegetation and mineral-covered surfaces are precisely taken into 
account by PERMAL. Accordingly, Swisstopo’s primary surfaces must be accurate to obtain 
a reliable result. Thus, next improvements should include more accurate data extracted from 
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satellite and aerial images, and high resolution DEMs. Further development would also 
require more detailed information about grain size of mineral-covered surfaces, in order to 
predict a higher permafrost occurrence in coarse blocky slopes and to better simulate the 
strong heterogeneity of mountain permafrost at the local scale.
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