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A B S T R A C T     

1. Selecting the best subset of covariates out of a panel of many candidates is a key and highly 
influential stage of the species distribution modelling process. Yet, there is currently no commonly 
accepted and widely adopted standard approach by which to perform this selection. 

2. We introduce a two-step “embedded” covariate selection procedure aimed at optimizing the pre
dictive ability and parsimony of species distribution models fitted in a context of high-dimensional 
candidate covariate space. The procedure combines a collinearity-filtering algorithm (Step A) with 
three model-specific embedded regularization techniques (Step B), including generalized linear 
model with elastic net regularization, generalized additive model with null-space penalization, and 
guided regularized random forest.  

3. We evaluated the embedded covariate selection procedure through an example application aimed 
at modelling the habitat suitability of 50 species in Switzerland from a suite of 123 candidate 
covariates. We demonstrated the ability of the embedded covariate selection procedure to provide 
significantly more accurate species distribution models as compared to models obtained with 
alternative procedures. Model performance was independent of the characteristics of the species 
data, such as the number of occurrence records or their spatial distribution across the study area.  

4. We implemented and streamlined our embedded covariate selection procedure in the covsel R 
package, paving the way for a ready-to-use, automated, covariate selection tool that was missing in 
the field of species distribution modelling. All the information required for installing and running 
the covsel R package is openly available on the GitHub repository https://github.com/N-S 
DM/covsel.   
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1. Introduction 

Species distribution models (SDMs) relate species occurrence records 
with environmental covariates to predict and map species’ habitat 
suitability (Franklin, 2010; Guisan et al., 2017; Peterson et al., 2011). 
Over the last decades, the implementation of new informatic tools and 
computational platforms have led to a significant increase in SDMs use 
(Araujo et al., 2019; Ferrier et al., 2016; Guisan et al., 2013). Despite 
recent efforts for standardizing SDM development steps and reporting 
(Araujo et al., 2019; Merow et al., 2019; Zurell et al., 2020), several 
methodological considerations still require further investigation. These 
include the covariate selection, a highly influential stage of the species 
distribution modelling process (Austin and Van Niel, 2011; Brun et al., 
2020; Fourcade et al., 2018). 

The goal of the covariate selection is to identify the “best” subset of 
covariates out of a panel of many candidates, both from ecological and 
statistical perspectives (Austin and Van Niel, 2011; Petitpierre et al., 
2017; Yates et al., 2018). As highlighted in recent reviews (Fois et al., 
2018; Fourcade et al., 2018; Melo-Merino et al., 2020), a common 
practice for covariate selection in SDM studies consists of building an 
expert-based set of ~20 to 30 covariates, which is then reduced in 
number after collinearity analyses. Collinearity analyses are usually 
based on variance inflation factors (VIFs) (Brauner and Shacham, 1998), 
or correlation tests (Dormann et al., 2013). Principal components 
analysis (PCA) has also been regularly applied for reducing the dimen
sionality of covariate spaces (De Marco and Nóbrega, 2018; Grenouillet 
et al., 2011; Raes et al., 2009). 

Building on expert knowledge to select the covariate categories that 
are relevant from a species ecology perspective (e.g., bioclimatic, 
edaphic, hydrologic) is helpful for increasing the biological significance 
of the models (Mod et al., 2016; Petitpierre et al., 2017; Scherrer and 
Guisan, 2019). Expert input can also be useful to refine covariate sets or 
models obtained by using statistical methods for automated selection, 
but which seem unrealistic (Brandt et al., 2017). However, the expert 
approach alone can quickly become intractable as the number of 
candidate covariates and species to be modelled increases. Also, the 
expert approach may be inherently biased as selected covariates are 
generally the ones that are already well-known, reinforcing the use of 
“common covariates” in further studies and circularities in arguments. 
Automated covariate selection procedures are required for handling big 
data contexts, which are becoming the norm with the increasing amount 
of species occurrence data from citizen science initiatives (Amano et al., 
2016; Dickinson et al., 2010; Pocock et al., 2017) and the availability of 
environmental layers for modelling them (Kuenzer et al., 2014; Soille 
et al., 2018; Sudmanns et al., 2020). Yet, there is currently no reference 
approach, or tool, to perform automated, data-driven, parsimonious, 
and fast covariate selection for species distribution modelling. 

Here we introduce a two-step “embedded” covariate selection pro
cedure aimed at optimizing the predictive ability and parsimony of 
SDMs fitted in a context of high-dimensional candidate covariate space. 
The procedure builds upon so-called “embedding methods”, i.e., 
modelling algorithms equipped with their own built-in covariate selec
tion procedures (Guyon and Elisseeff, 2003; Lal et al., 2006; Saeys et al., 
2007). A key characteristic of these methods is that the covariate 

Fig. 1. Schema of the embedded covariate selection procedure proposed in this study. GLM: Generalized Linear Model. GAM: Generalized Additive Model. RF: 
Random Forest. 
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selection is done at the same time as model fitting, allowing to account 
early-on for both the specificities of the target modelling algorithm(s) 
and the multivariate context. Two major examples of embedded 
methods are LASSO (Tibshirani, 1996) and RIDGE (Hoerl and Kennard, 
1970) regressions (see Guisan et al. (2002) in the context of SDMs). After 
providing a detailed description of our embedded covariate selection 
procedure, we assessed its performances relative to alternative simpler 
“filter” and “random” procedures through an example application aimed 
at modelling the habitat suitability of 50 species in Switzerland from a 
suite of 123 candidate covariates. 

2. “Embedded” covariate selection procedure 

Our embedded covariate selection procedure is developed around 
three main algorithms: Generalized Linear Model (GLM) (McCullagh 
and Nelder, 1989), Generalized Additive Model (GAM) (Hastie, 2017), 
and Random Forest (RF) (Breiman, 2001). These algorithms are among 
the most used in SDM studies (Hao et al., 2019) and are covering a 
gradient of flexibility and fitting methods that makes the ensemble of 
their results generalizable to many modelling frameworks. The pro
cedure consists of two main steps: Step A “Collinearity filtering”, and 
Step B “Model-specific embedding” (Fig. 1). 

2.1. Step A: Collinearity filtering 

In Step A, we reduce the dimensionality of the candidate covariate 
set by eliminating the less informative covariates among collinear pairs. 
This is done by iteratively reducing a correlation matrix in which the 
covariates are ordered based on univariate GLM p-values obtained using 
the pa vector of species presences/absences as response variable (see 
Fig. 1: Box 1 for details on the filtering algorithm). Collinear covariate 
pairs are identified using a user-specifiable Pearson correlation coeffi
cient |r| threshold corcut, with a corcut default value of 0.70. From this 
step and onwards, it is possible to force specific covariates to be included 
in the final modelling step. For maximizing the diversity of selected 
covariate categories, the filtering step can be sequentially applied at 
three levels: (i) at the variable level (e.g., selecting the best covariate 
among those calculated for the same variable using multiple moving 
windows of 100-m, 500-m, or 1-km radii), (ii) the category level (e.g.: 
within thematic covariate categories), and (iii) using all remainders. 

2.2. Step B: Model-specific embedding 

In Step B, covariates selected after Step A are used to fit models with 
embedded selection procedures. We use GLM with elastic-net regulari
zation (GLM-EN) (Zou and Hastie, 2005), GAM with null-space 

penalization (GAM-NP) (Marra and Wood, 2011), and guided regular
ized RF (RF-GR) (Deng and Runger, 2013). These algorithms are doing 
covariate selection at the same time as model fitting, allowing to account 
early-on for the specificities of the algorithms and the multivariate 
context. Furthermore, they have a more reasonable computational cost 
and limit overfitting compared to dredging or wrapping techniques, 
such as backward or forward selection strategies. Moreover, the three 
target algorithms are covering a gradient of fitting techniques (tree- and 
regression-based) and flexibility levels (GLM: parametric, GAM: semi- 
parametric, and RF: machine learning). A key benefit is that their co
variate selection results are generalizable enough to be used as input for 
other popular SDM algorithms, such as Maxent (Phillips et al., 2006) or 
Gradient Boosting (Elith et al., 2008), even if they are not directly 
included in the initial procedure. 

Details on the R packages and hyperparameter values used for fitting 
these three algorithms are provided in Supplementary material 1: Text 
S1. The three algorithms can be used all together (default), in combi
nations of two, or individually. For each algorithm, the n covariates 
retained after regularization are ranked from 1 (“best”) to n (“worst”). 
The algorithm-specific ranking is done based on the maximum absolute 
values of the regularized regression coefficients for GLM, the chi-square 
statistic for GAM, and the Mean Decrease Gini index for RF. The final 
ranking of covariates is obtained by ordering the sum of the ranks for 
each covariate, starting with the covariates that were commonly 
selected by all algorithms, and then adding the remaining ones. The top 
ncov covariates are selected as the final modelling set, with ncov and 
ncovmax being user-specifiable numbers. The default value for ncov is set 
to ceiling(log2(number of occurrences)), which, for example, results in 7 
and 14 covariates for species with 100 and 14′000 occurrences, 
respectively. For species with less occurrences, rules such as one predictor 
for ten occurrences might be more parsimonious (Harrell et al., 1984). 
The default value of ncovmax is set to 12 to limit the complexity of the 
models (Brun et al., 2020). 

2.3. The covsel R package 

The goal of the covsel R package is to implement and streamline 
the two steps of the embedded covariate selection procedure. It requires 
a standard installation of R (version≥4.0.0) and is openly available on 
the GitHub repository https://github.com/N-SDM/covsel, with all the 
information required for installing and running it. The README file of 
the repository (also provided as Supplementary material 2) navigates 
the user through the three functions currently available in covsel (ver. 
1.0) (Table 1). It also includes an example application aimed at selecting 
the top 12 covariates, out of a panel of 75 candidates, for modelling the 
habitat suitability of the alpine marmot (Marmota marmota) in 

Table 1 
The three functions available in covsel (ver. 1.0.) with information on input data and arguments. See https://github.com/N-SDM/covsel and the function help files 
for additional details and examples.  

Function Description Common inputs Specific arguments 

covsel. filteralgo() Collinearity filtering (Step A) pa numeric vector of species presences (1) and 
absences (0); covdata data frame with continuous 
covariate data; weights (optional) numeric vector 
with the weights for each value in pa; force 
(optional) character vector with the name(s) of the 
covariate(s) to be forced in the final set 

corcut value of the correlation coefficient threshold 
used for identifying collinearity    

covsel. embed() Model-specific embedding (Step B) algorithms character vector with the name(s) of the 
algorithms(s) used for the embedding procedure; 
ncov value for the target number of covariates to 
include in the final set; maxncov value for the 
maximum possible number of covariates to include in 
the final set; nthreads value for the number of cores to 
be used during parallel operations    

covsel. filter() Wrapper function applying the collinearity 
filtering algorithm at each target level(s) 
(e.g. i: variable level; ii: category level; iii: 
all remainders) 

corcut value of the correlation coefficient threshold 
used for identifying collinearity; categories character 
vector with category-level covariate names; variables 
character vector with variable-level names  
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Switzerland. 

3. Performance demonstration 

We assessed the performances of our embedded covariate selection 
procedure relative to alternative “filter” and “random” procedures 
through an example application aimed at modelling the habitat suit
ability of 50 species in Switzerland from a suite of 123 candidate 
covariates. 

3.1. Species and covariate data 

3.1.1. Species occurrence data 
Occurrence records for 50 vertebrate and plant species in 

Switzerland were provided by the Swiss Species Information Center 
InfoSpecies (http://www.infospecies.ch) on August 23, 2021 (see Sup
plementary material 1: Table S1 for details on species data). Species 
were selected for maximizing the heterogeneity in terms of organismal 
groups, number of occurrence records, and spatial distribution in 
Switzerland. The number of occurrences available per species ranges 
from 130 to 13,462. For each species, 10,000 background absences were 
randomly generated across the study area to contrast the occurrence 
observations. 

3.1.2. Covariate data 
We used a suite of 123 candidate covariates from 8 environmental 

categories: 19 bioclimatic, 8 edaphic, 9 hydrologic, 67 land use and 
cover, 1 population, 12 topographic, 2 transportation, and 5 vegetation 
(see Supplementary material 2: Table S2 for details on covariate data). 
All covariates were extracted from a common 100-m resolution grid 
covering all of Switzerland and standardized to zero mean and unit 
variance. 

3.2. Evaluated covariate selection procedures 

For comparison with the embedded covariate selection procedure, 
we evaluated two alternative procedures: filter and random. For each 
procedure, we used covsel default values with corcut = 0.7, ncov =
ceiling(log2(number of occurrences)), and ncovmax = 12. 

The embedded procedure applied the full two-step approach 
described above. For the filter procedure, only Step A “collinearity 
filtering” was applied. For the random procedure, which was used as a 
null reference, ncov covariates were randomly sampled from the set of 
candidates. This random procedure was repeated 10 times for each 
species. For the embedded and filter procedures, the filtering algorithm 
(Step A) was first applied at the category level (i.e.: between covariates 

from each of the eight environmental categories), and then using all 
remainders. The three main procedures (embedded, filter, and random) 
were applied individually to each species. 

In addition, we ran complementary procedures aimed at evaluating 
the “top-ranking” approach for selecting the set of covariates to be used 
in the final SDMs (see section 2.2.2 for details on the ranking approach). 
For the embedded procedure, this was done by comparing the results to 
those obtained using ncov randomly selected covariates among the set of 
non-regularized ones (after Step B). To obtain comparable outputs for 
the filter procedure, we replicated the random selection analysis on the 
subset of covariates selected after Step A. These two complementary 
random analyses were repeated 10 times each. 

3.3. Model fitting and assessment 

Selected covariate sets from the main (one embedded, one filter, and 
ten random) and complementary (ten random after Step B and ten 
random after Step A) procedures were used for fitting GLM, GAM and RF 
models. Details on the hyperparameters used for model fitting are pro
vided in Supplementary material 1: Text S2. Model accuracy was eval
uated using the Area Under the Curve’ (AUC′) (or Somers’ D, such as 
AUC′ = AUC * 2 − 1) (Somers, 1962), the maximized True Skill Statistic 
(maxTSS) (Guisan et al., 2017), the Continuous Boyce Index (CBI) 
(Hirzel et al., 2006), and their average “Score” value obtained through a 
split-sample strategy repeated 100 times with 30% of the data kept aside 
for validation. 

For each of the main procedure, we graphically summarized the 
relative representation of the eight environmental categories among 
selected covariates by displaying the percentages of the ratio between 
the count of selected covariates from a given category and the overall 
number of covariates available in this category. Differences in model 
accuracy between procedures were summarized using boxplots and 
Wilcoxon tests were used to assess their statistical significance. In 
addition, we computed the percentage of species for which a given 
procedure led to the top model. We assessed the sensitivity of our results 
to species data characteristics, by investigating model accuracy ac
cording to the number of occurrence records and their spatial coverage 
across Switzerland (Supplementary material 1: Table S1). 

We compared the average computation time needed for (i) running 
the overall covariate selection procedure and model fitting steps under 
each of the three main procedures, and (ii) model fitting only. Analyses 
were run using a 10-core central processing unit strategy with AMD® 
EPYC 7402 on the University of Lausanne HPC cluster. 

Fig. 2. Relative representation of the covariate categories selected for the 50 species under each of the three main covariate selection procedures (“embedded”, 
“filter”, and “random”). Each section represents the percentage of the ratio between the count of selected covariates from a given category and the overall number of 
covariates available in this category. See Supplementary material 2: Table S2 for details on covariate data. 
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3.4. Results 

3.4.1. Selected covariates 
Covariate selection procedures and models were successfully run for 

all 50 species. Selected species-specific covariate sets included 8 to 12 
covariates. Overall, covariate categories relative representation ob
tained for the embedded and filter procedures showed quite similar 

patterns (Fig. 2). For these two procedures, the “transportation” cate
gory was the most often selected relative to the overall number of 
covariates available in it, whereas “land use and cover” and “popula
tion” were among the least selected. The “hydrologic” category was the 
one with the largest difference in its relative representation between the 
embedded and filter procedures, with 21% and 7%, respectively. The 
random procedure selected covariate categories in a uniform way 

Fig. 3. Somers’ D (AUC’), maximum True Skill Statistic (maxTSS), continuous Boyce index (CBI), and Score (average of AUC’, maxTSS, and CBI) values of the models 
obtained for the 50 species under each of the three main covariate selection procedures (“embedded”, “filter”, and “random”) and by modelling algorithm (GLM: 
Generalized Linear Model, GAM: Generalized Additive Model, and RF: Random Forest). For each boxplot, the central box represents the 1st quartile, the median, and 
the 3rd quartile. The two whiskers extend to the furthest non-outlier points (i.e., that are within 3/2 times the interquartile range of the 1st and 3rd quartiles). 
Wilcoxon tests were used to assess statistical significance in differences between methods with ****: p < .0001; ***: p < .001; **: p < .01; *: p < .05; ns: 
non-significant. 
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(Fig. 2). 

3.4.2. Model accuracy 
Models fitted with covariate sets obtained from the embedded pro

cedure achieved the highest evaluation metrics (Fig. 3), with a mean ±
standard deviation (SD) Score value for the 50 species and three algo
rithms of 0.77 ± 0.12. Models obtained with the random procedure had 
the lowest Score of 0.65 ± 0.18. The filter procedure had intermediate 
Score of 0.68 ± 0.21. 

Results from the complementary analyses aimed at evaluating the 
top-ranking approach for selecting the covariates to be used in the final 
SDMs revealed that this method yielded an average increase in Score of 
0.10 ± 0.08 and 0.12 ± 0.11 for the embedded and filter procedures 
(both significant at 0.001 level) by comparison to a random selection 
approach, respectively (see Supplementary material 1: Figs. S1 and S2 
for detailed results on individual algorithms and metrics). 

The embedded procedure led to highest Score values for >80% of the 
models (Table 2). The “embedded” > “filter” > “random” hierarchy was 
maintained across all modelling algorithms (Fig. 3 and Table 2). We 
showed that these results were consistent independently of the species 
data characteristics, with same findings obtained for species groups 
stratified by the number of occurrence records and spatial coverage 
across Switzerland (Supplementary material 1: Figs. S3 and S4). On 
average, the tendency of the embedded procedure to increase model 
accuracy was even more pronounced for RF, followed by GAM and GLM 
(Table 2). 

3.4.3. Computation time 
The overall average computation time for running both the covariate 

selection procedure and model fitting steps was ~1.5 time higher with 
the embedded procedure compared to the two alternatives (Fig. 4.A), 
which is the same order of magnitude as the gain in model accuracy. 
However, models from the embedded procedure were faster to fit (Fig. 4. 
B), presumably because the more relevant the covariate set, the faster 
the algorithms converged. 

4. Conclusion 

By combining a collinearity-filtering algorithm with model-specific 
embedded regularization techniques, we demonstrated the abilities of 
the two-step “embedded” covariate selection procedure to deliver ac
curate and parsimonious SDMs. Implemented and streamlined in the 
covsel R package, it offers an open and evolutive ready-to-use tool for 
automated covariate selection that was missing in the SDM field, with 
the potential to become the new standard by which to perform this step. 

Capable of dealing with covariate sets ranging from several tens to 
thousands of candidates, the covsel R package can be easily run on any 
local computer or high-performance computing cluster. Despite being 
available for several decades (Hoerl and Kennard, 1970; Saeys et al., 
2007; Tibshirani, 1996), embedding techniques have been little used in 
SDM studies. One of their main benefits compared to the more 
commonly applied filtering-only methods is their ability to interact 
directly with the target algorithms and to account for the multivariate 
context. Moreover, the combination of the three target algorithms (GLM, 
GAM and RF), that are covering a gradient of fitting techniques and 

Table 2 
Percentage of species (n = 50) for which a given covariate selection procedure (Em: “embedded”, Fi: “filter”, and Rd: “random”) led to the top Score value (average 
value of Somers’ D, maximum True Skill Statistic, and continuous Boyce index) for each modelling algorithm (GLM: Generalized Linear Model, GAM: Generalized 
Additive Model, and RF: Random Forest). Results are shown for all species, species with the highest number of records (3rd tercile: “More records”), species with the 
lowest number of records (1st tercile: “Less records”), species with the widest spatial coverage in Switzerland (3rd tercile: “High coverage”), and species with the lowest 
spatial coverage (1st tercile: “Low coverage”). See Supplementary material 1: Table S1 for details on species data.   

All species More records (3rd tercile) Less records (1st tercile) High coverage (3rd tercile) Low coverage (1st tercile) 

Procedure Em Fi Rd Em Fi Rd Em Fi Rd Em Fi Rd Em Fi Rd 

GLM 76 22 2 65 35 0 82 18 0 75 25 0 88 12 0 
GAM 82 18 0 83 17 0 76 24 0 81 19 0 94 6 0 
RF 92 8 0 100 0 0 94 6 0 88 12 0 88 12 0  

Fig. 4. Average computation time (seconds) for the 50 species needed for (A) running the overall covariate selection procedure and model fitting steps under each of 
the three main covariate selection procedures (“embedded”, “filter”, and “random”), and (B) model fitting only under each of the three main covariate selection 
procedures and by modelling algorithm (GLM: Generalized Linear Model, GAM: Generalized Additive Model, and RF: Random Forest). Wilcoxon tests were used to 
assess statistical significance in differences between methods with ****: p < .0001; ***: p < .001; **: p < .01; *: p < .05; ns: non-significant. 
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flexibility levels, makes our procedure particularly well-suited for 
ensemble SDM frameworks. 

Measuring predictive accuracy with metrics such as AUC’, maxTSS, 
or CBI was helpful to quantitatively compare and rank model perfor
mances. However, these metrics may capture only a partial picture of 
the quality of the model. Depending on the focus of the SDM study (e.g., 
conservation, climate change, biological invasions, ecological niche 
modelling, etc.), other model outputs, such as response curves and 
mapped predictions, should also be checked (Araujo et al., 2019; Zurell 
et al., 2012; Zurell et al., 2020). In addition, if the covariate selection is a 
key feature of the SDM process, all the other important steps with a 
potential influence on the predictions, including the complexity and 
tuning of model parameters, should also be carefully evaluated (Brun 
et al., 2020; Merow et al., 2014; Moreno-Amat et al., 2015). 

All the complementary information required for the installation and 
use of covsel, along with sample data for an example application, are 
available on the covsel GitHub repository https://github.com/N-S 
DM/covsel. Anyone interested in contributing to its improvement is 
invited to suggest optimizations to existing pieces of code. To cite 
covsel or acknowledge its use, cite this article as follows, substituting 
the version of covsel that you used for “version 1.0”: Adde et al. 2023. 
Too many candidates: embedded covariate selection procedure for 
species distribution modelling with the covsel R package (ver. 1.0). 
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De Marco, P., Nóbrega, C.C., 2018. Evaluating collinearity effects on species distribution 
models: an approach based on virtual species simulation. PLoS One 13, e0202403. 

Deng, H., Runger, G., 2013. Gene selection with guided regularized random forest. 
Pattern Recogn. 46, 3483–3489. 

Dickinson, J.L., Zuckerberg, B., Bonter, D.N., 2010. Citizen science as an ecological 
research tool: challenges and benefits. Annu. Rev. Ecol. Evol. Syst. 41 (41), 149–172. 

Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carre, G., Marquez, J.R.G., 
Gruber, B., Lafourcade, B., Leitao, P.J., Munkemuller, T., McClean, C., Osborne, P.E., 
Reineking, B., Schroder, B., Skidmore, A.K., Zurell, D., Lautenbach, S., 2013. 
Collinearity: a review of methods to deal with it and a simulation study evaluating 
their performance. Ecography 36, 27–46. 

Elith, J., Leathwick, J.R., Hastie, T., 2008. A working guide to boosted regression trees. 
J. Anim. Ecol. 77, 802–813. 

Ferrier, S., Ninan, K.N., Leadley, P., Alkemade, R., Acosta, L.A., Akçakaya, H.R., 
Brotons, L., Cheung, W.W.L., Christensen, V., Harhash, K.A., Kabubo-Mariara, J., 
Lundquist, C., Obersteiner, M., Pereira, H.M., Peterson, G., Pichs-Madruga, R., 
Ravindranath, N., Rondinini, C., Wintle, B.A., 2016. IPBES : The methodological 
assessment report on scenarios and models of biodiversity and ecosystem services. 
In: Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and 
Ecosystem Services (IPBES), Bonn, DE. 

Fois, M., Cuena-Lombrana, A., Fenu, G., Bacchetta, G., 2018. Using species distribution 
models at local scale to guide the search of poorly known species: review, 
methodological issues and future directions. Ecol. Model. 385, 124–132. 

Fourcade, Y., Besnard, A.G., Secondi, J., 2018. Paintings predict the distribution of 
species, or the challenge of selecting environmental predictors and evaluation 
statistics. Glob. Ecol. Biogeogr. 27, 245–256. 

Franklin, J., 2010. Mapping Species Distributions: Spatial Inference and Prediction. 
Cambridge University Press. 

Grenouillet, G., Buisson, L., Casajus, N., Lek, S., 2011. Ensemble modelling of species 
distribution: the effects of geographical and environmental ranges. Ecography 34, 
9–17. 

Guisan, A., Edwards, T.C., Hastie, T., 2002. Generalized linear and generalized additive 
models in studies of species distributions: setting the scene. Ecol. Model. 157, 
89–100. 

Guisan, A., Tingley, R., Baumgartner, J.B., Naujokaitis-Lewis, I., Sutcliffe, P.R., 
Tulloch, A.I.T., Regan, T.J., Brotons, L., McDonald-Madden, E., Mantyka-Pringle, C., 
Martin, T.G., Rhodes, J.R., Maggini, R., Setterfield, S.A., Elith, J., Schwartz, M.W., 
Wintle, B.A., Broennimann, O., Austin, M., Ferrier, S., Kearney, M.R., Possingham, H. 
P., Buckley, Y.M., 2013. Predicting species distributions for conservation decisions. 
Ecol. Lett. 16, 1424–1435. 

Guisan, A., Thuiller, W., Zimmermann, N.E., 2017. Habitat Suitability and Distribution 
Models, with Applications in R. Cambridge University Press, Cambridge.  

Guyon, I., Elisseeff, A., 2003. An introduction to variable and feature selection. J. Mach. 
Learn. Res. 3, 1157–1182. 

Hao, T.X., Elith, J., Guillera-Arroita, G., Lahoz-Monfort, J.J., 2019. A review of evidence 
about use and performance of species distribution modelling ensembles like 
BIOMOD. Divers. Distrib. 25, 839–852. 

Harrell, F.E., Lee, K.L., Califf, R.M., Pryor, D.B., Rosati, R.A., 1984. Regression modelling 
strategies for improved prognostic prediction. Stat. Med. 3, 143–152. 

Hastie, T.J., 2017. Generalized additive models. In: Statistical Models in Spp. Routledge, 
pp. 249–307. 

A. Adde et al.                                                                                                                                                                                                                                    

https://github.com/N-SDM/covsel
https://github.com/N-SDM/covsel
https://github.com/N-SDM/covsel
https://github.com/N-SDM/covsel
http://www.infospecies.ch
http://www.infospecies.ch
https://www.unil.ch/ci/dcsr
https://doi.org/10.1016/j.ecoinf.2023.102080
https://doi.org/10.1016/j.ecoinf.2023.102080
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0005
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0005
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0010
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0010
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0010
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0010
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0015
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0015
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0020
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0020
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0020
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0020
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0025
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0025
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0030
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0035
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0035
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0035
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0040
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0040
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0045
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0045
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0050
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0050
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0055
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0055
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0055
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0055
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0055
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0060
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0060
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0065
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0065
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0065
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0065
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0065
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0065
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0065
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0070
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0070
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0070
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0075
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0075
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0075
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0080
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0080
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0085
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0085
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0085
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0090
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0090
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0090
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0095
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0095
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0095
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0095
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0095
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0095
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0100
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0100
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0105
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0105
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0110
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0110
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0110
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0115
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0115
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0120
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0120


Ecological Informatics 75 (2023) 102080

8

Hirzel, A.H., Le Lay, G., Helfer, V., Randin, C., Guisan, A., 2006. Evaluating the ability of 
habitat suitability models to predict species presences. Ecol. Model. 199, 142–152. 

Hoerl, A.E., Kennard, R.W., 1970. Ridge regression: biased estimation for nonorthogonal 
problems. Technometrics 12, 55–67. 

Kuenzer, C., Ottinger, M., Wegmann, M., Guo, H., Wang, C., Zhang, J., Dech, S., 
Wikelski, M., 2014. Earth observation satellite sensors for biodiversity monitoring: 
potentials and bottlenecks. Int. J. Remote Sens. 35, 6599–6647. 

Lal, T.N., Chapelle, O., Weston, J., Elisseeff, A., 2006. Embedded methods. In: Feature 
Extraction. Springer, pp. 137–165. 

Marra, G., Wood, S.N., 2011. Practical variable selection for generalized additive models. 
Computat. Stat. Data Analys. 55, 2372–2387. 

McCullagh, P., Nelder, J.A., 1989. Generalized Linear Models, 2nd edition. Chapman and 
Hall, London.  

Melo-Merino, S.M., Reyes-Bonilla, H., Lira-Noriega, A., 2020. Ecological niche models 
and species distribution models in marine environments: a literature review and 
spatial analysis of evidence. Ecol. Model. 415, 108837. 

Merow, C., Smith, M.J., Edwards, T.C., Guisan, A., McMahon, S.M., Normand, S., 
Thuiller, W., Wuest, R.O., Zimmermann, N.E., Elith, J., 2014. What do we gain from 
simplicity versus complexity in species distribution models? Ecography 37, 
1267–1281. 

Merow, C., Maitner, B.S., Owens, H.L., Kass, J.M., Enquist, B.J., Jetz, W., Guralnick, R., 
2019. Species’ range model metadata standards: RMMS. Glob. Ecol. Biogeogr. 28, 
1912–1924. 

Mod, H.K., Scherrer, D., Luoto, M., Guisan, A., 2016. What we use is not what we know: 
environmental predictors in plant distribution models. J. Veg. Sci. 27, 1308–1322. 

Moreno-Amat, E., Mateo, R.G., Nieto-Lugilde, D., Morueta-Holme, N., Svenning, J.-C., 
Garcia-Amorena, I., 2015. Impact of model complexity on cross-temporal 
transferability in Maxent species distribution models: an assessment using 
paleobotanical data. Ecol. Model. 312, 308–317. 

Peterson, A.T., Soberón, J., Pearson, R.G., Anderson, R., Martínez-Meyer, E., 
Nakamura, M., Araújo, M.P., 2011. Ecological Niches and Geographic Distributions. 
Princeton University Press, Princeton.  

Petitpierre, B., Broennimann, O., Kueffer, C., Daehler, C., Guisan, A., 2017. Selecting 
predictors to maximize the transferability of species distribution models: lessons 
from cross-continental plant invasions. Glob. Ecol. Biogeogr. 26, 275–287. 

Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of 
species geographic distributions. Ecol. Model. 190, 231–259. 

Pocock, M.J., Tweddle, J.C., Savage, J., Robinson, L.D., Roy, H.E., 2017. The diversity 
and evolution of ecological and environmental citizen science. PLoS One 12. 

Raes, N., Roos, M.C., Slik, J.W.F., van Loon, E.E., ter Steege, H., 2009. Botanical richness 
and endemicity patterns of Borneo derived from species distribution models. 
Ecography 32, 180–192. 

Saeys, Y., Inza, I., Larranaga, P., 2007. A review of feature selection techniques in 
bioinformatics. Bioinformatics 23, 2507–2517. 

Scherrer, D., Guisan, A., 2019. Ecological indicator values reveal missing predictors of 
species distributions. Sci. Rep. 9. 

Soille, P., Burger, A., De Marchi, D., Kempeneers, P., Rodriguez, D., Syrris, V., Vasilev, V., 
2018. A versatile data-intensive computing platform for information retrieval from 
big geospatial data. Futur. Gener. Comput. Syst. 81, 30–40. 

Somers, R.H., 1962. A new asymmetric measure of association for ordinal variables. Am. 
Sociol. Rev. 799–811. 

Sudmanns, M., Tiede, D., Lang, S., Bergstedt, H., Trost, G., Augustin, H., Baraldi, A., 
Blaschke, T., 2020. Big earth data: disruptive changes in earth observation data 
management and analysis? Int. J. Dig. Earth 13, 832–850. 

Tibshirani, R., 1996. Regression shrinkage and selection via the LASSO. J. Royal Stat. 
Soc. Ser. B-Methodol. 58, 267–288. 

Yates, K.L., Bouchet, P.J., Caley, M.J., Mengersen, K., Randin, C.F., Parnell, S., 
Fielding, A.H., Bamford, A.J., Ban, S., Barbosa, A.M., 2018. Outstanding challenges 
in the transferability of ecological models. Trends Ecol. Evol. 33, 790–802. 

Zou, H., Hastie, T., 2005. Regularization and variable selection via the elastic net. 
J. Royal Stat. Soc. Series B Stat. Methodol. 67, 301–320. 

Zurell, D., Elith, J., Schroder, B., 2012. Predicting to new environments: tools for 
visualizing model behaviour and impacts on mapped distributions. Divers. Distrib. 
18, 628–634. 

Zurell, D., Franklin, J., Konig, C., Bouchet, P.J., Dormann, C.F., Elith, J., Fandos, G., 
Feng, X., Guillera-Arroita, G., Guisan, A., Lahoz-Monfort, J.J., Leitao, P.J., Park, D.S., 
Peterson, A.T., Rapacciuolo, G., Schmatz, D.R., Schroder, B., Serra-Diaz, J.M., 
Thuiller, W., Yates, K.L., Zimmermann, N.E., Merow, C., 2020. A standard protocol 
for reporting species distribution models. Ecography 43, 1–17. 

A. Adde et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0125
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0125
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0130
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0130
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0135
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0135
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0135
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0140
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0140
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0145
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0145
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0150
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0150
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0155
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0155
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0155
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0160
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0160
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0160
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0160
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0165
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0165
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0165
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0170
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0170
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0175
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0175
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0175
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0175
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0180
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0180
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0180
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0185
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0185
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0185
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0190
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0190
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0195
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0195
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0200
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0200
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0200
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0205
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0205
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0210
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0210
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0215
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0215
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0215
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0220
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0220
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0225
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0225
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0225
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0230
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0230
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0235
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0235
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0235
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0240
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0240
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0245
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0245
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0245
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0250
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0250
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0250
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0250
http://refhub.elsevier.com/S1574-9541(23)00109-7/rf0250

	Too many candidates: Embedded covariate selection procedure for species distribution modelling with the covsel ​R package
	1 Introduction
	2 “Embedded” covariate selection procedure
	2.1 Step A: Collinearity filtering
	2.2 Step B: Model-specific embedding
	2.3 The covsel R package

	3 Performance demonstration
	3.1 Species and covariate data
	3.1.1 Species occurrence data
	3.1.2 Covariate data

	3.2 Evaluated covariate selection procedures
	3.3 Model fitting and assessment
	3.4 Results
	3.4.1 Selected covariates
	3.4.2 Model accuracy
	3.4.3 Computation time


	4 Conclusion
	Author contributions
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix A Supplementary data
	References


