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Introduction 

The removal of unwanted plasma solutes and pathogens 

can be life-saving under certain conditions, such as sepsis, 

intoxication, and organ failure. Thus, the unique ability 

of hemoperfusion (HP) to adsorb specific molecules with 

large molecular weight (MW) and/or a high protein-bind-

ing affinity could explain why HP has been allured as a 

promising treatment for several diseases [1]. 

Whereas poisoning was once considered the classical 

indication of HP, advances in sorbents’ biocompatibility 

and design have helped to expand its potential clinical in-

dications to the treatment of inflammatory conditions (e.g., 

sepsis, pancreatitis, and hepatitis), autoimmune diseases, 

and chronic uremic symptoms [2]. 

The European Uremic Toxin Group classifies uremic 
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toxins into three groups: small water-soluble toxins with 

an MW of <500 Da (e.g., urea and creatinine), middle mol-

ecules with an MW of ≥500 Da (e.g., parathyroid hormone 

[PTH], C-reactive protein, and β2-microglobulin [B2M]) 

that can be successfully removed by hemofiltration (HF) 

and high-flux hemodialysis (HD), and protein-bound sol-

utes (e.g., homocysteine) which are not removed by classic 

HD or HF [3]. Moreover, as current dialysis techniques 

based on diffusion and convection show limitations due to 

membrane permeability characteristics [4], HP can be an 

attractive adjuvant modality for blood purification either 

alone or in combination with other renal- replacement 

therapies (RRTs). Besides, the high mortality rate attributed 

to cardiovascular disease and the outcomes of end-stage 

renal disease (ESRD) patients on HD have been correlated 

with blood levels of medium/large molecules insufficiently 
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cleared by RRT [5].  

Novel sorbents with greater biocompatibility and safety 

than before have renewed scientific interest in the broader 

implementation of HP [6]. Fig. 1 summarizes the advantag-

es, disadvantages, and clinical conditions where HP can be 

considered. 

Given the accumulation of encouraging data and the 

emerging new perspectives derived from research in HP as 

well as the current lack of consensus clinical guidelines, we 

aimed to conduct a literature review of the principles of HP, 

the evolution of sorbent materials, and the promising ap-

plications of HP in different clinical settings with a special 

focus on ESRD patients. 

Principles of function and adsorption materials 

According to the Consensus Conference on Biocompati-

bility, adsorption is the process of removing particles and 

toxins from the blood or plasma through their connection 

to the surface of the adsorbent, which lies in an extracorpo-

real purification machine [7]. 

Chemical and physical attraction forces are responsible 

for retaining the adsorbed molecules on the adsorbent. 

Physical forces include Van der Waals and hydrophobic 

interactions, whereas chemical interactions involve the 

formation of chemical bonds between the surface and the 

adsorbed species. 

Adsorption materials can be found in nature or can be 

manufactured (e.g., synthetic polymers). Activated carbon 

produced from natural raw materials has shown a good 

adsorption capacity but poor biocompatibility [8,9]. Acti-

vated encapsulation technology or the use of activated car-

bon from other sources (resin-based) was considered for 

overcoming safety issues due mostly to the latter’s rough 

surface [10]. With these modifications and alternatives, 

however, the adsorption capacity was influenced [11]. 

Inorganic porous materials present some important ad-

vantages, such as reusability and pore size variability, but 

adverse effects have been reported with their use [12–14]. 

Synthetic polymeric materials show remarkable functions, 

stability, and biocompatibility due to the tailor-made mo-

lecular design and/or surface modifications compared to 

natural polymeric materials. Notably, their low cost, hemo-

compatibility, and structure designability are their main 

advantages (Table 1) [15]. 

In general, adsorption materials can be found as gran-

Figure 1. Overview of hemoperfusion technique.
HD, hemodialysis; COVID-19, coronavirus disease 2019; ESRD, end-stage renal disease.

Advantages and rationale
1. Efficient removal of middle molecular weight & 

protein-bound uremic toxins
2. Overcoming limitations of HD membranes
3. Coating and biocompatibility improvement allows 

placement of sorbent in contact with blood
4. Can be combined with other extracorporeal 

methods for synergic effects
5. Potential selective targeting

Disadvantages and concerns
1. Higher cost
2. Limited availability/clinical experience
3. Saturation of the adsorbent cartridge
4. Lack of consensus clinical guidelines
5. Current evidence is insufficient to recommend 

use in all patients presenting indications

Clinical conditions where HP can be 
considered

1. Sepsis
2. COVID-19 infection
3. Chronic complications of ESRD
4. Autoimmune diseases
5. Drug poisoning, intoxications

Hemoperfusion (HP)
Patient’s blood is circulated through a unit 

containing a sorbent material
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ules, spheres, fibers, cylindrical pellets, flakes, and pow-

ders. They are solid particles with diameters ranging from 

50 μm to 1.2 cm. Their surface area to volume ratio is 

extremely high, with the surface area ranging from 300 to 

1,200 m2/g. Further classification of sorbents is based on 

their pore size, i.e., >500 Å (50 nm) (macroporous), 20 to 

500 Å (mesoporous), and <20 Å (microporous). 

Sorbents should also have favorable kinetics and trans-

port properties. Isotherm equations and data from plotting 

curves known as adsorption isotherms during laboratory 

experiments provide information about the amount of 

sorbent required to remove a given amount of solute (Fig. 

2) [1]. Moreover, packing sorbent particles into a cartridge 

requires a tortuous pathway (sorbent bed) through which 

blood or fluid must flow and be distributed uniformly. 

The mechanisms of solute adsorption in porous media 

include: 1) the external (interphase) mass transfer of the 

solute by convection from the bulk fluid and by diffusion 

through a thin film or boundary layer to the outer surface 

of the sorbent, 2) the internal (intra-phase) mass transfer 

of the solute by convection from the outer phase of the 

sorbent into the internal porous structure, and 3) surface 

diffusion along the surface of the internal pores and ad-

sorption of the solute onto the porous surface (Fig. 3) [16]. 

Biocompatibility 

The ideal sorbent material for extracorporeal therapies is 

one that is biocompatible. Moreover, it should be charac-

terized by hardness and mechanical strength to prevent 

crushing and erosion and to avoid any release of fragments 

into the systemic circulation. Additionally, since the blood 

is exposed to a larger surface in this context compared to 

other extracorporeal therapies, any cytotoxic reaction and 

immune system activation—clinically identifiable with the 

onset of rashes, shivers, leukopenia, and thrombocytope-

nia—must be prevented [17].  

Therefore, surface coating is an attractive method to 

increase biocompatibility. Coating materials such as cel-

lulose nitrate, albumin-collodion, cellulose acetate, and 

polyamide were initially evaluated by Chang [18], whereas 

Table 1. Summary of adsorbent types and their main advantages, disadvantages, and clinical indications

Adsorbent type Advantage Disadvantage Example Clinical 
availability Clinical indication

Activated carbon (nat-
ural or resin-based) 
[8–11,15]

Low cost, high adsorp-
tion capacity

Poor biocompatibility Adsorba (coated 
with cellulose 
acetate)

– Intoxication

Stable under physiologi-
cal conditions

Lack of selective adsorption

Inorganic porous materi-
al (e.g., mesoporous sil-
ica, silica gel) [12–15]

Reusability, pore size 
highly variable for 
different sizes of toxin 
molecules

High cost, variable results 
in biocompatibility, poor 
modifiability, limited struc-
tural design possibility

LiChroprep RP-18 – Removal of biliru-
bin and uric acid, 
medicine removal

Natural (e.g., polysac-
charide) or synthetic 
polymeric materials 
[15]

Hemocompatibility, high 
stability, bioinertia, 
structure designability 
and modifiability, low 
cost

Selectivity of natural poly-
meric materials not advan-
tageous

CytoSorb, HA 330, 
Toraymyxin

+ Wide range

Data reproduced from references.

Figure 2. Example of adsorption isotherm graph. Adsorption 
increases steadily until it reaches equilibrium, which is when 
the concentration of the marker solute at the outlet of the unit is 
equal to the concentration at the inlet.
Ps, saturation pressure.

PsPressure

Am
ou

nt
/w

ei
gh

t o
f a

ds
or

be
nt



Damianaki, et al. Hemoperfusion: advances and treatment perspectives

301www.krcp-ksn.org

Figure 3. Mechanism of solute adsorption in porous media. Mechanisms of mass transport from the bulk solution to the sorbent 
surface. (A) External (interphase) mass transfer of the solute by convection from the bulk fluid by diffusion through a thin film of bound-
ary layer to the outer surface of the sorbent. (B) Internal (intra-phase) mass transfer of the solute by pore convection from the outer 
surface of the adsorbent to the inner surface of the internal porous structure. (C) Surface diffusion along the porous surface and ad-
sorption of the solute onto the porous surface. Reproduced from Clark et al. [16] with permission of Karger Publishers.

hydrogel was investigated by Andrade et al. [19]. Later on, 

various polymeric systems were developed to form stable 

protective coatings with better performances. 

Anti-adhesion properties are also important for bio-

compatibility since the contact of blood with an artificial 

surface triggers a number of processes, including protein 

and cell adsorption and platelets’ adhesion to the artificial 

surface. Thus, anti-adhesion modifications and surface 

coating using new materials like zwitterionic groups have 

received increasing interest [20]. Indeed, zwitterionic ma-

terials are highly resistant to non-specific protein adsorp-

tion, bacterial adhesion, and biofilm formation [21]. 

Selective targeting 

Selective targeting of a key molecule as an endotoxin 

has promoted the concept of surface grafting. Besides, in 

complex biological media such as blood, they will always 

exist molecules of different origins that compete for the 

chemical adsorption site against the target molecules. By 

immobilizing a molecule with a specific affinity for the 

target molecule on the surface, a high affinity is obtained, 

mainly via a combination of electrostatic and hydrophobic 

interactions plus steric complementarity of both molecules 

rather than a covalent chemical bond formation [22]. 

Polymyxin B, an antibiotic derived from Bacillus poly-

myxa that binds and neutralizes endotoxin (an outer mem-

brane component of gram-negative bacteria), and protein 

A, which binds anthrax toxin (a specific exotoxin secreted 

by virulent strains of the bacterium Bacillus anthracis), 

are typical applications of the surface grafting concept in 

cases of sepsis [23,24]. Except for antibiotics, other ligands 

(e.g., amino acids) have also been used [25]. Technological 

achievements in the genomic area have inspired the use of 

grafted nucleic acid-based ligands on adsorbents for the 

treatment of patients with systemic lupus erythematosus 

and hepatitis B [26,27]. Synthetic ligands also exhibit resis-

tance to biological degradation and similar selectivity [28]. 

Finally, computation simulation has enabled the design of 

affinity ligands based on the structure of Asp-Phe-Leu-Ala-

Glu (DE5), a sequence of toxic peptides frequently found in 

uremic patients [29]. 

Technical aspects of hemoperfusion 

HP alone does not achieve sufficient removal of small ure-

mic toxins and fluid balance; however, when combined 

with other HD techniques, a synergistic effect can be ob-

CBA
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tained [6]. 

In HP, the cartridge is placed in direct contact with the 

patient’s blood, with the basic requirements being an HP 

cartridge, double lumen catheter, vascular access, and 

an anticoagulant (heparin or citrate) [30]. HP is effective 

in removing uncharged molecules through competitive 

binding, especially those that are significantly plasma pro-

tein-bound and lipophilic. Indeed, HP targets molecules 

that tend to be more difficult to remove with conventional 

HD or with continuous RRTs (CRRT) and has the capacity 

to remove molecules with MW up to 30,000 Da depending 

on the characteristics of the sorbent material [31]. When 

combined with HD/CRRT, the sorbent can be placed 

before or after the dialyzer and enhance the removal of 

middle molecules that are not sufficiently removed by HD, 

such as B2M [32]. 

In the process of plasma filtration adsorption, plasma is 

first separated from the whole blood and circulates through 

the sorbent [33], then is returned to the whole blood, which 

can be subjected to HD or CRRT in order to expand the 

clearance of small solutes such as urea and creatinine. In 

this case, the use of both methods maximizes solutes’ re-

moval [34]. 

In double plasma filtration molecular adsorption system, 

different cartridges exhibiting specific characteristics can 

be placed in the plasma filtration circuit [35]. Finally, HP 

can be combined with extracorporeal membrane oxygen-

ation [36].  

Potential clinical applications of hemoperfusion 
and ongoing trials  

Poisoning 

Extracorporeal therapies for drug or chemical intoxication 

are indicated when there is life-threatening toxicity, an in-

adequate response to standard supportive measures, or the 

poison’s endogenous clearance is <4 mL/min/kg and the 

poison’s volume distribution is <1–2 L/kg [37]. 

Nowadays, the use of high-flux and high-efficiency dia-

lyzers and the higher blood flow rates achieved, have estab-

lished intermittent HD as the preeminent extracorporeal 

modality for poisoning. Moreover, HD is easily accessible; 

it removes poisons rapidly and simultaneously corrects 

any electrolyte and acid-base disorders [38]. In contrast, 

HP requires greater systemic anticoagulation; flows that do 

not exceed 350 mL/min so as to avoid the risk of hemoly-

sis; and nonselectively adsorbs platelets, calcium, glucose, 

and white blood cells [39,40]. The higher cost and the need 

to replace the cartridge every 2 hours due to saturation are 

also important disadvantages of HP [41]. Finally, for some 

metals like lithium and alcohols (e.g., methanol, ethylene 

glycol), HP is not indicated due to less efficiency [42,43]. 

While HP use for poisoning has declined to roughly 1% 

of HD utilization in the United States [44], HP seems to 

be more effective than HD for paraquat poisoning [45]. 

HP achieves enhanced clearance of paraquat, leading to 

higher survival rates compared to high-flux HD [46]. With 

paraquat poisoning being an important concern mostly in 

Asia, current recommendations do not mention the use of 

extracorporeal treatment for it [37]. 

Currently, the strongly recommended method by the 

EXTRIP (Extracorporeal Treatments in Poisoning) group 

for the removal of most drugs is intermittent HD (https://

www.extrip-workgroup.org/recommendations). In some 

cases, HP is an alternative option (1C or 1D) when HD can-

not be performed (Table 2). 

Sepsis 

CRRT methods are widely used due to their capacity to 

retain body fluid balance and to correct electrolytic and 

acid-base imbalances in patients with sepsis and acute 

kidney injury (AKI). However, the removal of proinflamma-

tory cytokines and complement fragments that promote 

kidney dysfunction and aggravate multiorgan dysfunction 

in the setting of septic shock is limited due to the limited 

permeability of the membranes [47]. Consequently, the 

use of high-flux HF and/or high cut-off membranes has 

been encouraged due to their removal capacity reaching 

up to 65 kDa. Unfortunately, their main disadvantage is the 

concomitant removal of important amounts of albumin. 

Therefore, HP and the design of biocompatible cartridges 

with the potential for customizing the target solutes have 

led to the increasing application of adsorption in sepsis 

and other inflammatory states such as coronavirus disease 

2019 (COVID-19) (Table 3). 

With selective HP being an alluring approach for remov-

ing circulating endotoxin and theoretically preventing the 

biological cascade in sepsis, research had focused on the 

https://www.extrip-workgroup.org/recommendations
https://www.extrip-workgroup.org/recommendations
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use of polymyxin-bound membranes. Besides, antiendo-

toxin drug therapies and intravenous polymyxin B have 

failed to prove a clinical benefit [48]. Therefore, direct HP 

with a polymyxin device (Toraymyxin; Today Industries 

Ltd.) was initially introduced and approved in Japan as an 

adjuvant sepsis therapy [49]. Later on, its use was expand-

ed to other countries. Several randomized trials have pro-

vided conflicting results on the clinical benefit of polymyx-

in B in terms of mortality, hemodynamic parameters, and 

respiratory function of patients with septic shock due to an 

abdominal cause compared to conventional care [50–52]. 

Currently, the TIGRIS study (NCT03901807), a prospective, 

multicenter, randomized open-label trial, is investigating 

the effects of standard medical care plus polymyxin-based 

HP versus the standard care of treatment. 

Regarding nonselective HP, extracorporeal cytokine ad-

sorption with the CytoSorb cartridge (CytoSorbents Cor-

poration) has been investigated in case series and small 

comparative studies [53–55]. CytoSorb consists of specially 

designed polymers with large surfaces, high flow, and low 

resistance. It is indicated for clinical situations with high 

plasma concentrations of cytokines. CytoSorb binds cy-

tokines 10 to 50 kDa in size, with a removal rate of >90% 

to 95% [56]. However, in a multicenter randomized trial 

comparing conventional care with CytoSorb in ventilated 

patients with sepsis and either acute lung injury (ALI) or 

acute respiratory distress syndrome (ARDS), no significant 

differences in interleukin (IL)-6 concentration were ob-

served [57]. In a recent randomized controlled trial (RCT; 

the REMOVE trial), the authors failed to demonstrate a 

reduction in postoperative organ dysfunction or 30-day 

mortality with intraoperative use of CytoSorb in patients 

undergoing cardiac surgery for infective endocarditis. Even 

though CytoSorb achieved a lower level of plasma key cy-

Table 2. List of drugs and the recommended extracorporeal therapy in case of acute poisoning
Drug The first choice of extracorporeal modality Acceptable alternatives
Acetaminophen Intermittent HD (1D) Intermittent HP (1D), CRRT (3D)
Baclofen Not recommended (1D)
Barbiturates Intermittent HD (1D) HP (1D) or CRRT (3D)
B-blockers
Propranolol Not recommended (1D)
Atenolol Intermittent HD (1D) only in severe poisoning with kidney impairment
Sotalol
Calcium channel blockers Not recommended (1D)
Carbamazepine Intermittent HD (1D) Intermittent HP (1D), CRRT (3D)
Digoxin Not recommended (1D)
Gabapentin/pregabalin Intermittent HD (1D) only in severe poisoning with kidney impairment
Isoniazid Not recommended (2D), consider extracorporeal therapy where pyri-

doxine cannot be administrated (2D)
Lithium Intermittent HD (1D) CRRT (1D)
Metformin Intermittent HD (1D) CRRT (2D)
Methanol Intermittent HD (1D) CRRT (1D)
Methotrexate Not recommended (2D) when glucarpidase is not administrated, not 

recommended (1D) when glucarpidase is administrated, not recom-
mended (1D) instead of administrating glucarpidase

Phenytoin Intermittent HD (1D) Intermittent HP (1D)
Quinine/chloroquine Not recommended (1D)
Salicylates Intermittent HD (1D) Intermittent HP (1D), CRRT (3D)
Thallium Intermittent HD (1D) Intermittent HP (1D), CRRT (1D)
Theophylline Intermittent HD (1C) Intermittent HP (1C), CRRT (3D)
Tricyclic antidepressants Not recommended (1D)
Valproic acid Intermittent HD (1D) Intermittent HP (1D), CRRT (2D)

CRRT, continuous renal-replacement therapies; HD, hemodialysis; HP, hemoperfusion.
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Table 3. Summary of characteristics and main results of the most frequently used HP filters in the field of sepsis and COVID-19 infec-
tion

Filter Selectivity Targets Indications Combined 
treatment Results

Toraymyxin (Today 
Industries Ltd.) 
[49–52,69]

+ Endotoxins, inflam-
matory mediators, 
cytokines

Sepsis with positive culture for 
Gram-negative bacteria/high 
endotoxin activity assay level, se-
vere sepsis or septic shock from 
an abdominal cause, COVID-19 
infection with septic shock

Higher hemodynamic and 
ventilation parameters

Unclear results for mortality

CytoSorb (CytoSorbents 
corporation)  
[53–58,69–78]

- Inflammatory medi-
ators, cytokines, 
albumin-bound sub-
stances and patho-
genic toxins but not 
effective removal of 
endotoxin

Severe sepsis or septic shock 
(cytokine storm) and ARDS, 
COVID-19 infectiona

HD SCUF CRRT 
ECMO

Higher hemodynamic 
parameters and improved 
respiratory distress

Unclear results for mortality 
and for reduction of IL-6

HA series (Jafron 
Biomedical Company) 
[59–62,69]

- Inflammatory medi-
ators, cytokines, 
complement, free 
hemoglobin and 
myoglobin

Severe sepsis or septic shock 
+/– acute lung injury, COVID-19 
infection

CRRT ECMO Reduction of inflamma-
tory cytokine levels and 
improved hemodynamic 
parameters

Unclear results for mortality
oXiris (Baxter Inc.) 

[64–68,70,83–85]
- Endotoxins, inflam-

matory mediators 
and cytokines with 
potential antithrom-
bogenic properties

COVID-19 infectiona, sepsis with 
AKI

Stand-alone filter 
for SCUF and 
CRRT

Reduction in inflammatory 
markers and improved 
hemodynamics

Limited experience on mor-
tality

Seraph 100 Microbind 
Blood Affinity Filter 
(ExThera Medical Cor-
poration) [70,79–82]

- Pathogens and 
proinflammatory 
cytokines

COVID-19a HD CRRT Improvement in circulatory 
dysfunction and in inflam-
matory markers (CRP and 
IL-6), initial results show-
ing lower mortality

Spectra Optia Apheresis 
and Depuro D2000 
Adsorption Cartridge 
(Terumo BCT) [70,86]

- Endotoxins, inflam-
matory mediators 
and cytokines

COVID-19a Therapeutic 
apheresis

Limited experience

Data reproduced from references.
AKI, acute kidney injury; ARDS, acute respiratory distress syndrome; COVID-19, coronavirus disease 2019; CRP, C-reactive protein; CRRT, continuous re-
nal-replacement therapy; ECMO, extracorporeal membrane oxygenation; HD, hemodialysis; IL, interleukin; SCUF, slow-continuous ultrafiltration.
aDevices approved by U.S. Food and Drug Administration for the treatment of severe COVID-19 infection.

tokines, no clinical benefit was obtained [58]. 

HP with the Jafron HA cartridges (Jafron Biomedical 

Company) has also been tested in acute respiratory fail-

ure caused by sepsis, with prominent results concerning 

hemodynamic parameters, respiratory function, and mor-

tality within 28 days of hospitalization [59]. The HA 330 

cartridge has an electrically porous resin that specifically 

removes cytokines, complements, and other endotoxins 

with MWs of 10 to 60 kDa. HA 330-based HP was studied 

in multiple cohorts in the context of inflammatory condi-

tions such as sepsis, ALI, hepatitis, and pancreatitis [2]. In 

a small nonrandomized study, intensive care unit (ICU) 

mortality and length of ICU stay were found to be better 

in septic patients receiving HA 330-based HP compared 

to those given standard therapy, albeit with no effect on 

mortality [60]. Encouraging results come from a case series 

of children with sepsis and underlying hematological dis-

orders receiving HA 330-based HP as an adjunctive treat-

ment to counterbalance the cytokine storm [61]. In another 

study, patients with ALI induced by extrapulmonary sepsis 

were randomized to HA 330-based HP or standard therapy. 

In the HP group, significant reductions in the duration of 

mechanical ventilation and ICU stay and the ICU mortality 

rate were observed. Improved respiration parameters were 

also observed and correlated with the significant removal 

of inflammatory cytokines (tumor necrosis factor [TNF] 

and IL-1). In a recent study by Chu et al. [62], the combi-

nation of the same cartridge with pulse high-volume HF in 
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patients experiencing septic shock led to beneficial effects 

on cardiovascular physiology and greater decreases in IL-

6, IL-10, and TNF-α concentration when compared to pa-

tients who received continuous venous-venous HF. 

Finally, the AN69-based oXiris membrane (Baxter Inc.), 

which is a heparin-grafted membrane specifically designed 

for cytokine and endotoxin adsorption, alongside RRT, 

presents three layers: 1) AN69 copolymer hydrogel struc-

ture that adsorbs cytokines and removes solutes via con-

vection through membrane pores, 2) a multilayer structure 

of polyethyleneimine that adsorbs endotoxin and offers 

better biocompatibility, and 3) a heparin graft that reduces 

local thrombogenicity [63]. In vitro comparison of oXiris 

with Toraymyxin and CytoSorb revealed similar efficacies 

in lipopolysaccharide clearance and inflammatory medi-

ator clearance, respectively [64]. However, there are a lim-

ited number of studies to support its action in septic shock 

compared to the above-mentioned products [65–67]. 

Viral infections, including severe acute respiratory 
syndrome coronavirus 2 

Uncontrolled cytokine response was considered the hall-

mark of severe COVID-19 during the first months of the 

pandemic [68]. Several extracorporeal blood-purification 

techniques have been used in COVID-19 patients to restore 

“immune homeostasis” by removing inflammatory mole-

cules [69]. 

Recently, experts’ recommendations state that, in severe 

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 

infection and cytokine release syndrome, cytokine-remov-

al strategies should be reserved for COVID-19 patients with 

evidence of high levels of circulating cytokines like IL-6 

and IL-8, a biochemically determined inflammatory status, 

a high SOFA (Sequential Organ Failure Assessment) score, 

clinical symptoms of hemodynamic instability requiring 

vasopressors, and initial signs of immune dysregulation or 

coagulation disorders [69]. Polymyxin-based HP is indicat-

ed in the early phase for suspected sepsis (indicated by a 

high procalcitonin level and/or positive bacterial culture) 

or an elevated endotoxin level proven by activity assay. If 

HP is indicated for cytokine removal, sessions with Cyto-

Sorb or HA 380 might follow.  

In fact, the U.S. Food and Drug Administration (FDA) 

has approved four blood-purification devices to treat 

COVID-19, including 1) CytoSorb, 2) the Seraph 100 Mi-

crobind Affinity Blood Filter (ExThera Medical Corpora-

tion), 3) the oXiris Filter, and 4) the Spectra Optia Apheresis 

System (Terumo BCT) [70]. 

The first case of CytoSorb use in conjunction with CRRT 

in a critically ill patient with COVID-19 was reported by 

Rizvi et al. [71], underlining a plausible contribution to ear-

ly improvement in inflammatory markers. Other case-con-

trol and retrospective studies followed, highlighting a po-

tentially beneficial role of adjuvant HP with CytoSorb in the 

early phase of COVID-19 in terms of cytokine reductions 

(mainly IL-6 levels), a better clinical course with less need 

for vasoactive agents, and the improvement of respiratory 

distress. However, data on mortality rates were inconsistent 

[72–77]. Indeed, in a recent prospective, randomized pilot 

study with 50 COVID-19 patients receiving CytoSorb for 3 

to 7 days or standard therapy, HP did not improve the res-

olution of vasoplegic shock (primary outcome) or the pre-

defined secondary endpoints, which included mortality, 

IL-6 concentration, and catecholamine requirement [78]. 

Ongoing randomized trials and a large registry of CytoSorb 

therapy in COVID-19 ICU patients (NCT04391920) aim to 

enrich the current literature regarding the role of CytoSorb 

as a potential therapy in severe COVID-19 [70]. 

HP with the Seraph 100 Microbind Affinity Blood Fil-

ter, a biomimetic adsorber that has been shown to bind 

pathogens, including SARS-CoV-2, from the blood using 

ultra-high MW adsorptive beads [79], received Emergen-

cy Use Authorization for severe COVID-19 from the FDA. 

Olson et al. [80] were the first to report its use in COVID-19 

patients with ARDS and septic shock who required me-

chanical ventilation. Rapid improvement in vasopressor 

needs, overall circulatory dysfunction as well as C-reactive 

protein and IL-6 levels were noticed following the initia-

tion of HP. Similar results were documented by Sandoval et 

al. [81] who used Seraph 100 in four elderly, multimorbid 

ESRD patients on HD with severe COVID-19. Data from 

the COSA (COVID-19 patients treated with the Seraph 100 

Microbind Affinity filter) registry support that Seraph 100 

treatment is easy to deploy either as a stand-alone HP treat-

ment or in combination with RRT. The observed mortality 

rate was lower than that calculated by established scores, 

but the data are limited due to the lack of a control group 

[82]. Initial data from an observational retrospective study 

(PURIFY-OBS-1; NCT04606498) suggest improvements in 
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the survival of severely ill COVID-19 patients treated with 

Seraph 100. 

Evidence of significant reductions in inflammatory 

markers and improved hemodynamics, organ function, 

and clinical outcomes with oXiris comes mostly from case 

series, the oXirisNet registry, and small observational stud-

ies [83–85]. An RCT (oXAKI-COV Study; NCT04597034) is 

ongoing and aims to demonstrate the clinical efficacy of 

AN69-oXiris compared to the AN69 standard membrane 

in decreasing vasopressor requirements to sustain a sta-

ble mean arterial pressure in critically ill patients with 

COVID-19 and AKI requiring CRRT. 

Finally, the Spectra Optia Apheresis System provides 

therapeutic apheresis in combination with HP with the 

Depuro D2000 adsorption cartridge. The Depuro D2000 

cartridge is composed of activated uncoated coconut shell 

charcoal and the non-ionic resins Amberlite XAD-7HP and 

Amberchrom GC300C, and its placement downstream in 

the apheresis circuit allows for cytokine removal with sub-

sequent return of the treated plasma to the patient. Its use 

as a rescue therapy for cardiogenic shock due to stress-car-

diomyopathy in severe COVID-19 has been reported only 

in a single patient by Faqihi et al. [86]. An ongoing large 

multicenter single-arm clinical trial (Plasma Adsorption in 

Patients With Confirmed COVID-19; NCT04358003) of the 

United States is expected to provide information about the 

effects of the D2000 cartridge with the Optia protocol on 

morbidity and mortality rates of COVID-19 patients admit-

ted to the ICU. 

Maximizing toxin removal and clinical benefits in 
patients with end-stage renal disease 

ESRD has been increasingly recognized as an inflamma-

tory state with protein-bound uremic toxins (PBUTs) and 

middle molecules like B2M being key factors and inducing 

various cardiovascular complications. Therefore there 

is a rationale for the increasing research on synergic ap-

proaches that combine HP with other dialytic techniques 

to achieve complementary elimination of metabolites and 

effectively prevent and treat complications and improve 

clinical outcomes [6,87]. 

Regarding overall survival, a systematic review and me-

ta-analysis showed that the combination of HD with HP 

improves survival rates [88]. 

Important ameliorations of blood pressure—even in di-

alysis patients with refractory hypertension—and left ven-

tricular mass index, reduced dosages of epoetin, and high-

er hemoglobin levels, have been reported when HD with 

HP are combined compared to HD alone [89–91]. Consid-

ering the more pronounced decrease in levels of myocardi-

al enzymes associated with the combination of HP and HD, 

it was speculated that their concurrent use can lighten the 

cardiovascular burden and protect the myocardium [92]. 

Besides, the improvement of microinflammatory indicators 

associated with the combination of these therapies could 

partially explain the lower incidence of cardiocerebrovas-

cular events and the improvement of anemia in patients 

who had received both HP and HD treatment [93]. 

Along the same lines, in a study by Raine et al. [94], apart 

from the greater reduction in inflammation markers, an 

important improvement in the indices of nutritional status 

occurred in the HD plus HP group. 

Greater benefits in terms of B2M and PTH reductions 

have been shown by several studies when HP and HD were 

combined. 

Hence, there are potential to improve secondary hyper-

parathyroidism, pruritus, and dialysis-related amyloidosis 

[95–97]. 

Interestingly, based on the reported relationship be-

tween the intestinal environment and renal disease, HP 

combined with dialysis showed encouraging results with 

respect to the potential improvement of microbiota disor-

ders. Indeed, significantly higher levels of beneficial bacte-

ria like Lactobacillus acidophilus and lower levels of harm-

ful bacteria such as Escherichia coli were reported in colony 

distributions of patients receiving HP combined with HD 

plus hemodiafiltration compared to patients receiving HD 

plus HF [98]. Research is now focusing on promising sor-

bent materials—such as a divinylbenzene sorbent coated 

with polyvinylpyrrolidone (DVB-PVP) and cellulose with 

hexadecyl chains—which show a high adsorption ability 

of PBUTs or hydrophobic cytokines. A synergistic effect on 

the reduction of PBUTs was recently demonstrated during 

HD therapy combined with DVB-PVP resins and symbiotic 

formulation [99]. 

Moreover, improved sleep disturbance and sleep effi-

ciency accompanied by an increase in nocturnal melatonin 

levels were reported with HP therapy (1–2 times/wk) for 2 

years [100]. 
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Finally, there is some evidence that the combination of 

HP with HD can improve the life quality of ESRD patients 

[97,101]. Symptoms like skin itching, fatigue, sleep quality, 

and sexual function were significantly improved by adding 

HP, probably due to the greater clearance of middle and 

large molecular toxins such as PTH and B2M [88]. 

Experimental indications of sorbent use in 
systemic diseases with kidney involvement 

Some interesting results have arisen from case series of pa-

tients with systemic autoimmune diseases such as systemic 

lupus erythematosus, rheumatoid arthritis, and vasculitis 

with and without renal involvement [102,103]. Improve-

ments in renal function and dialysis independence follow-

ing HP sessions in combination with chemotherapy have 

also been reported in a patient with cast nephropathy [104]. 

Finally, AKI can occur as a side effect of medications used 

in autoimmune disease; thus, HP could also be of value 

in this context. A recent small case series of patients with 

high-dose methotrexate-induced AKI showed a possibly 

positive effect of using charcoal HP as a rescue therapy un-

til glucarpidase is available [105]. 

Conclusion 

Whereas HP was once only indicated for treating poison-

ing from certain substances, emerging evidence suggests 

that other indications might be also considered. Advances 

in the biocompatibility of new cartridges and the selective 

removal of key molecules in different clinical settings and 

diseases like sepsis, hepatitis, and SARS-CoV-2 infection 

have been considered as the triggering force in that direc-

tion. With the increasing research interest in the removal 

of PBUTs and their involvement in CKD-related systemic 

complications, HP is also regaining its place as a vital ac-

cessory to dialysis treatment. 

Despite this progress, current clinical use of HP remains 

limited, with possible reasons including the cost of per-

formance, local practice or physician preference, a lack of 

consensus clinical guidelines and established indications 

for HP, and the absence of consistent data derived from 

RCTs. 

In conclusion, the role of HP remains a point of discus-

sion until its clinical effectiveness can be verified by further 

positive RCTs. Although in this era of disease-targeting 

treatments new indications are being investigated, efforts 

to better evaluate the applicability of HP and to shed light 

on the role of HP in current clinical practice are needed. 
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