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A B S T R A C T   

High-resolution gridded rainfall products at sub-daily and 100 km scales are required for hydrological applica-
tions in mountainous and urban catchments. As most catchments are ungauged, gridded rainfall data are often 
obtained through remote sensing. However, their spatial resolution is often too coarse (at 101 km) and requires to 
be downscaled to a finer resolution. The challenge is not only to downscale the rainfall intensity to a finer scale 
by considering areal reduction factors, but also the spatial structure of the storm, as both elements are equally 
important to the assessment of the surface hydrological response. As a result of the lack of training data, the latter 
is difficult to obtain. Further development of the stochastic multiple-point geostatistics (MPS) framework is 
presented to downscale long-term satellite-derived gridded rainfall series using only a few years of high- 
resolution rainfall observations. We demonstrate how the MPS framework can be used to downscale the 
satellite-derived CMORPH rainfall from 8 to 1 km resolution for 1998–2019, taking the city of Beijing as a case 
study, with a specific focus on extreme rainfall events. The high-resolution multisource-merged CMPAS dataset 
(1 km, hourly), available for 2015–2020, is used as the source of the training images. We show that the 
downscaling framework preserves the observed mean areal rainfall (with a bias of 2 %), reproduces the spatial 
coefficient of variance (with a similar bias), and also retains extreme rainfall at the 99th percentile (with a bias of 
6 %). Furthermore, it adequately reproduces the rainfall spatial structure, preserving the variograms of the 
rainfall fields. Similarities were also observed comparing the 2- to 30-year return period maps of the downscaled 
rainfall extreme with ground observations, with half of the stations (10 out of 19) agreeing on the location and 
intensity of the extreme rainfall for all return periods. The results indicate that our framework downscales 
rainfall intensities and preserves the spatial structure well, especially for heavy rainfall, even if limited data is 
available. The proposed approach can be applied to other rainfall datasets and regions.   

1. Introduction 

High-resolution rainfall data in space and time are required for hy-
drometeorological, ecological, and environmental applications (Karger 
et al., 2017). In hydrology, the high spatial variability of rainfall at small 
scales is shown to have a large impact on the catchment hydrological 
response, especially when considering extreme rainfall intensities (Peleg 
et al., 2018; Wright et al., 2013). This is even more pronounced in flood 
impact studies that are conducted in fast-responding hydrological en-
vironments, such as in mountainous (Moraga et al., 2021) and urban 
areas (Cristiano et al., 2017; Dao et al., 2020; Peleg et al., 2017), for 

which high space–time resolution in the order of kilometer and (sub-) 
hourly scales are required (Ochoa-Rodriguez et al., 2015; Zhu et al., 
2018). 

Even though high-resolution spatial rainfall fields are needed as 
gridded input into hydrological models, they are not available for most 
catchments. C- and X-band weather radars can provide estimates of 
rainfall fields at the required resolution (e.g., Marra and Morin, 2018) 
but due to their high maintenance level and costs, their deployment is 
limited to cover large areas (i.e., at continental scale) in the US (Molter 
et al., 2021), Europe (Huuskonen et al., 2014) and China (Shen et al., 
2018). Moreover, many weather radar systems were deployed in the 
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recent two decades, hence their time series are usually relatively short 
and span only a few years. With no other alternative, gridded rainfall 
data can be obtained from other remote sensing devices (directly or post- 
processed with ground stations and/or climate models), like the global 
PERSIANN (Sorooshian et al., 2000) and CMORPH (Joyce et al., 2004) 
products. Despite the fact that these products usually record rainfall for 
longer periods than weather radars, they are still limited to data 
collected during the past two or three decades at most. While the hourly 
to the sub-hourly temporal resolution of these products is sufficient for 
most hydrological applications, their spatial resolution is often too 
coarse (101 km) and requires downscaling (e.g., to 100 km resolution). 

There are many different methods for downscaling rainfall (see e.g., 
the review paper by Abdollahipour et al., 2022), from simply applying a 
correction based on an areal reduction factor (Thorndahl et al., 2019) to 
a setup of a complex stochastic framework that preserves the rainfall 
space–time structure between scales (Peleg et al., 2020). Roughly, 
downscaling methods can be divided into two groups: (i) simple 
downscaling models that are light in training-data requirements and can 
satisfactorily downscale the rainfall intensity but without explicitly 
adjusting the rainfall spatial structure; and (ii) more complex down-
scaling models that can also account for the adjustment in rainfall fields 
when moving between scales but require considerable data as input for 
the model training. Using the latter methods is recommended, but 
training data, i.e., rainfall fields at the required space–time resolution of 
the desired downscaled product, are often insufficient in length, thus 
making these methods challenging to apply. A geostatistical generation 
method can serve as a solution that will enable downscaling of tens of 
years of remotely sensed data using limited training data of only several 
years in length, as further presented below. 

Geostatistical generation methods are widely applied to model 
spatial correlations in geology, remote sensing, and earth surface science 
(Benoit and Mariethoz, 2017; Gravey and Mariethoz, 2020; Mariethoz 
et al., 2010; Oriani et al., 2017; Zou et al., 2021). Essentially, these 
methods statistically learn spatial patterns from given training data and 
can stochastically produce a new image (i.e., field) or complete missing 
information in a given image by following the learned spatial correlation 
and magnitude (Mariethoz and Caers, 2015). One commonly applied 
approach is variogram-based geostatistical kriging, which explores 
spatial relations by using exclusive pairs of points to obtain covariance 
functions (Gribov and Krivoruchko, 2020; Oliver and Webster, 2014). 
However, the variogram sometimes fails to accurately represent the 
spatial structure if training data is limited or if the spatial structure is 
complex (Chen et al., 2021). An alternative approach is multiple-point 
geostatistics (MPS), which uses more complex structures with higher- 
order nonparametric statistics, and it can be applied when the training 
data is extremely limited (Mariethoz et al., 2010; Mariethoz, 2018; 
Mariethoz and Caers, 2015). MPS was initially developed to model 
geological features with solid contacts and connected structures (Chen 
et al., 2018; Cui et al., 2021; MacKie et al., 2020; Yin et al., 2022), but it 
is also applied in climate and hydrological sciences (Jha et al., 2015; 
MacKie et al., 2020; Oriani et al., 2014). 

Oriani et al. (2017) demonstrated that MPS could simulate small- 
scale (1 km) daily rainfall fields. Beyond using radar images and sta-
tion observation as training data, they conditioned the spatial statistics 
with elevation and showed that the MPS preserved both the temporal 
and spatial weather patterns. The method was also applied in the context 
of downscaling of rainfall. Jha et al. (2015) downscaled one year of daily 
rainfall from 50 km to 10 km based on the Direct Sampling MPS algo-
rithm (Mariethoz et al., 2010) using multivariate training images from 
the Weather Research and Forecasting (WRF) model. It is apparent from 
these past studies that the MPS method can be used to downscale rainfall 
at much finer temporal scales (i.e., minutes to hours) than previously 
attempted. However, sub-daily rainfall exhibits a more dynamic spatial 
structure that evolves rapidly in time and space (Muñoz et al., 2018; 
Peleg and Morin, 2012), making training and capturing it by an MPS- 
based algorithm a challenging task. 

This study aims to develop a spatial downscaling approach that can 
stochastically downscale rainfall from a coarse-resolution dataset (101 

km) to high-resolution rainfall fields (at 100 km) based on a limited 
sample of high-resolution training images using the MPS method. As a 
study case, we demonstrated downscaling hourly rainfall fields from an 
8 km to a 1 km resolution in Beijing. Our study specifically focuses on 
the downscaling potential of heavy rainfall fields due to their risk of 
triggering pluvial floods in urban and small rural catchments. 

2. The MPS model 

MPS is a simulation technique that generates or fills missing parts in 
target images (also called gridded data or fields) while preserving the 
spatial features of training images. It is possible to use the same or a 
different data source for the training images, provided the training im-
ages contain the required statistical information as the end target. 
Therefore, the training images do not need to be from the same period as 
the target images but should statistically reflect the target period. 
Consequently, MPS can potentially be used as a stochastic downscaling 
method if the training images are of higher resolution than the target 
images. 

The MPS family consists of different algorithms. The first pixel-based 
MPS algorithm, ENESIM, was introduced by Guardiano and Srivastava 
(1993). The ENESIM simulates categorical variables based on all 
possible matches in training images, which could result in massive 
computational costs. Another example is the Direct Sampling algorithm, 
a more advanced and memory-efficient MPS method (Mariethoz et al., 
2010). However, this algorithm requires some parameterization on the 
user’s part and is not easy to implement. This has led to a more flexible 
and easy-to-use MPS method, Quick Sampling (QS), being proposed 
recently (Gravey and Mariethoz, 2020). This method uses fast Fourier 
transforms to rapidly compute mismatches and select candidate patterns 
by decomposing the standard distance metrics as sums of cross- 
correlation. In this study, the QS algorithm has been further devel-
oped to enable rainfall downscaling, and its basic concepts are outlined 
in the following paragraphs. 

The MPS-QS algorithm is illustrated in Fig. 1 with a simplified 
example. Fig. 1a is the target image, a rainfall field with several missing 
values; grid values indicate the rainfall intensity in mm h− 1 and their 
colors represent high (dark blue) to low (light blue) intensities. Fig. 1b is 
a training image, with the same dimension and resolution as the target 
image but from a different time (the process of selecting the most 
appropriate training image from the image archive is described in Sec-
tion S1). The algorithm executes the following steps:  

1. For the unknown value y in the target image (Fig. 1a), its neighboring 
known values, e.g., 10, 15, and 18, are marked as conditioning data 
N(y) (N = 3 in this case).  

2. Find the similar structures/patterns N(xi) from the training image 
(Fig. 1b) and compute their distances (similarities) to N(y). Then, 
rank the patterns by their distance index (sum of squared error, see 
Gravey and Mariethoz, 2020); a smaller distance indicates more 
similarity between pattern and conditioning data (Fig. 1c). For 
example, out of the four patterns A, B, C, and D visible in the training 
image (Fig. 1b), pattern B is ranked first (Fig. 1c).  

3. The patterns to be assigned in the target image are selected by the K- 
sampling strategy. When the parameter K is equal to 1, the best 
pattern is selected, and when it is equal to 2, one of the two best 
patterns is selected (with equal weight). Taking K to be 1.5, as in the 
example (Fig. 1c), selecting the best pattern will be weighted pro-
portionally, i.e., 67.7 % and 33.3 % for the first- and second-best 
patterns, respectively. 

4. The value from the selected pattern is finally assigned to the un-
known y in the target image. 

In the example presented in Fig. 1, we use a single training image to 
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illustrate the method. However, this search is not limited to a single 
image, and multiple training images can be used to find the best 
matching patterns to N(y). 

Two parameters in the MPS-QS algorithm require setting by cali-
bration. The first is the neighborhood parameter N that determines the 
number of grid cells around y that make up the conditioning data N(y) in 
the target image. The second parameter is the sampling strategy 
parameter K, which Gravey and Mariethoz (2020) suggested setting to 
1.2. The MPS-QS algorithm is described in detail by Gravey and Mar-
iethoz (2020), and the readers can refer to their paper for further 
information. 

3. Downscaling rainfall using the MPS model 

In the previous section, we explained how the MPS-QS algorithm is 
used to complete missing data in target images using training images at 
the same resolution. In this section, we describe how the algorithm can 
be used to downscale rainfall. 

3.1. Downscaling workflow 

The model workflow is illustrated in Fig. 2, which shows a simple 
case of downscaling a single coarse-resolution image (Fig. 2a). Two 
datasets are required in the MPS downscaling approach: conditional and 
training images. 

The conditional dataset comprises a conditional image (Fig. 2b) and 
a target image (Fig. 2e). The conditional image (Fig. 2b) is re-gridded 
from the coarse image (Fig. 2a) using a nearest-neighbor approach to 
the required downscaled resolution (i.e., the resolution of Fig. 2f). The 
target image has the same high grid resolution as that of the conditional 
image, and its values can be either empty or randomly sampled from the 
conditional image. 

The training dataset comprises training images (Fig. 2d) and their 

corresponding upscaled training images (Fig. 2c). The training images 
have the same high resolution as the target image, and they can be either 
one or multiple images. The upscaled training images are obtained from 
upscaling the training images to the native resolution of the coarse 
image (i.e., that of Fig. 2a) by bicubic interpolation approach, then re- 
gridding the image using a nearest-neighbor method to match the 
same grid size to the target image. An iterative pattern search procedure 
(marked as 1 to 5 in Fig. 2) is taking place to define the rainfall in-
tensities in the downscaled image (Fig. 2f): (1) for the unknown value y 
in the target image (Fig. 2e), a conditional pattern N(y) will be defined 
in the conditional image (Fig. 2b) at the location of y; (2) the MPS al-
gorithm will match the most similar pattern in the upscaled-training 
image (Fig. 2c); (3) the location of the matched pattern is duplicated 
to the training image (Fig. 2d); (4) the corresponding rainfall value of 
the center of the matched pattern detected in the training image 
(Fig. 2d) is assigned to the unknown grid cell y in the target image 
(Fig. 2e) and downscaled image (Fig. 2f); and (5) this procedure con-
tinues until values are assigned to all the unknown grids in the down-
scaled image (Fig. 2f). It should be noted that due to the stochastic 
nature of the algorithm employed in the K-sampling strategy (Section 2 
and Fig. 1c), downscaled images may differ slightly each time the al-
gorithm is executed. 

3.2. Inverting the areal reduction factor 

When moving from a fine resolution to a coarse resolution, such as 
from a point scale (e.g. rain gauge) to an areal-averaged rainfall esti-
mation (e.g. satellite), an areal reduction factor must be applied to ac-
count for the areal averaging of rainfall intensity (Sivapalan and Bloschl, 
1998). With MPS-QS, the spatial structure of rainfall is preserved when 
rainfall fields are downscaled from coarse to fine resolution; but this is 
done without affecting rainfall intensities at the fine scale to reverse the 
effect of the areal reduction factor. In other words, the rainfall volumes 

Fig. 1. A schematic illustration of the MPS-QS algorithm. The target image is shown in (a), with an unknown value y and its neighboring N(y) values (i.e., 10, 15, and 
18). The training image is presented in (b), with an example of four patterns (A, B, C, and D). The patterns rank according to their distance from the neighboring N(y), 
and the sampling probability when K is equal to 1.5 is shown in (c). 
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and averaged rainfall are preserved when downscaling with MPS-QS, 
but the rainfall extremes (both high and low intensities) are under-
estimated or overestimated as the rainfall variability is not increasing. 

To simplify the problem of changes in rainfall intensities with spatial 
scales, we can consider the changes in rainfall spatial coefficient of 
variation (CV, defined as the ratio of the standard deviation to the mean 
of rainfall intensities per rainfall image). Moving toward finer spatial 
resolutions leads to an increase in rainfall spatial CV, a relationship that 
can be quantified using linear scaling laws (Peleg et al., 2018). 

Therefore, we aim to adjust the CV of the downscaled rainfall by 
preserving the mean rainfall (µ) and changing the standard deviation 
(S). It can be written as: 

SD

μ −
S*

D

μ = CVC − CV*
D (1)  

where µ represents the mean rainfall intensities of the rainfall field, SD 
represents the standard deviation of the downscaled rainfall computed 
from the MPS-QS output, S*

D is the standard deviation of the adjusted 
downscaled rainfall after applying the CV adjustment, CVC is the rainfall 
CV at the resolution of the coarse rainfall field (i.e., before downscaling), 
and CV*

D is the adjusted CV at the downscaled resolution. 
µ and SD are known (can be computed directly from the downscaled 

image), and also CVC and CV*
D can be assumed to be known (based on 

scaling law analysis, e.g., Fig. S2). Hence, it seems there is a simple 
analytical solution (Eq. (1) to obtain S*

D and adjust the downscaled 
rainfall image. But deriving S*

D is likely to result in a considerable 
overestimation of the extreme rainfall in the downscaled image. Hence, 

we suggest finding S*
D by optimization while constraining the upper 

rainfall percentile. 
The optimization of S*

D is done by minimizing Eq. (1), which is re- 
written as: 

SD − S*
D − (CVC − CV*

D)μ ≅ 0 (2)  

and it includes the constrain to the rainfall R at a specific quantile q (e.g., 
at the 99th percentile): 

RC(q) < R*
D(q) < ZRC(q) (3)  

where RC(q) and R*
D(q) indicate the extreme rainfall intensity at the 

coarse rainfall field and the adjusted downscaled rainfall field (respec-
tively), and Z is a constant linear factor that can be derived from an 
estimate of an areal reduction factor (Le et al., 2018; Li et al., 2015; 
Pavlovic et al., 2016). Other optional constraints can be added to the 
optimization procedure; for example, as S*

D can be computed analytically 
(from Eq. (1), one can constrain the optimized S*

D value not to divert by 
more than a given percentiles from the expected S*

D value. 
Once S*

D is found using Eq. (2) and the constrain of Eq. (3), we can 
adjust the rainfall quantiles q in the downscaled rainfall field R*

D ac-
cording to a distribution anamorphosis scheme (Peleg et al., 2017; 
Schleiss et al., 2012), which is defined as: 

R*
D(q) = F− 1[U(RD(q) ) ] (4)  

where U is the quantile function, and F-1 is the inverse cumulative 
probability distribution function. 

Fig. 2. An illustration of the MPS downscaling workflow (section 3.1 for details).  
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The proposed transformation of the rainfall intensities in the 
downscaled image can be easily implemented in most marginal distri-
bution functions. As an example, we will use the Gamma distribution, 
one of the most widely used distributions to quantify rainfall intensity 
(Schleiss et al., 2012; Ulbrich, 1983; Yue et al., 2001), which is also the 
distribution we will use later in our case study. The Gamma distribution 
has two parameters: a shape parameter κ and a scale parameter θ. The 
mean and standard deviation are derived analytically as μ = κθ and S =

̅̅̅̅̅̅̅
κθ2

√
, respectively. As such, Eq. (2) can be rewritten to explicitly find 

the k* and θ* parameters of the Gamma distribution function required 
for the transformation: 

SD −

̅̅̅̅̅̅̅̅̅̅̅

k*θ*2
√

− (CVC − CV*
D)μ ≅ 0 (5)  

and Eq. (4) can then be rewritten for the explicit case of the Gamma 
distribution: 

R*
D(q) = G* − 1

[G(RD(q) ) ] (6)  

where G is the quantile function of Gamma(κ, θ), which parameters are 
derived directly from the rainfall field RD, and G* − 1 is the inverse cu-
mulative probability distribution function of Gamma(k*, θ*), which pa-
rameters are estimated by minimizing Eq. (5). 

4. Case study 

4.1. Beijing city 

Beijing is located in the northern part of the North China Plain, 
bordered by the Yanshan Mountains in the north and the Taihang 
Mountains in the west. With over 21 million residents, Beijing is one of 
the largest cities in the world and is vulnerable to pluvial floods trig-
gered by summer (convective) short-duration heavy rainfall (Fu et al., 
2018; Hénonin et al., 2015; Yang et al., 2017). Elevation increases from 
southeast to northwest in the region, while rainfall decreases (Fig. 3). 
The climate in the Beijing area is classified as a monsoon-influenced 
humid continental climate, which is characterized by hot and humid 
summers and cold and dry winters. The annual average rainfall is 
around 600 mm, with 72.5 % of precipitation occurring during the 
summer months of June, July, and August (Yin et al., 2011; Zhai et al., 
2014; Zou et al., 2021). 

4.2. Data 

The coarse rainfall fields (target images) to be downscaled are the 
bias-corrected version of the Climate Prediction Center Morphing 
(CMORPH, Xie et al., 2017), which covers the period from 1998 to 2019 
with temporal and spatial resolutions of 30 min and 8 km, respectively. 
The high spatial–temporal resolution of the rainfall data is suitable for 
urban hydrological applications (Ochoa-Rodriguez et al., 2015), and the 
length of the data meets the requirements for analyzing rainfall extremes 
(Marra et al., 2017). CMORPH has been used to analyze extreme rainfall 
in China’s major metropolitan areas (Chen et al., 2015; Fu et al., 2019; 
Wang et al., 2021; Xing et al., 2019) in the past. 

As training images, high spatial resolution rainfall fields from the 
China Meteorological Administration (CMA) Multisource-merged Pre-
cipitation Analysis System product (CMPAS, Shen et al., 2018) are used. 
CMPAS has a resolution of 1 h and 1 km, which is obtained by merging 
with weather radar, ground station, and CMORPH data within China. 
This product is relatively new and spans six years from 2015. It would be 
an ideal dataset for analyzing extreme rainfall impacts on floods in 
urban regions, but its short period prevents direct use in this context. 
However, its high spatial resolution and quality make it a great candi-
date for image training. The purpose of this case study is to demonstrate 
spatial downscaling of rainfall using the MPS-QS algorithm without 
taking into consideration the temporal differences between rainfall 
products. For this reason, we aggregated the CMORPH data from 30 min 
to 1 h to match the CMPAS data. 

To assist in validating the MPS-QS downscaling results, we also 
extracted hourly rainfall data from nineteen climate stations (see their 
locations in Fig. 3), operated by China Meteorological Administration 
(CMA). Their data include 58 years between 1954 and 2012. 

4.3. Model parameters 

As described in Sections 2 and 3, the MPS-QS includes a few pa-
rameters that need to be calibrated or set. Based on trial and error (not 
shown), we found setting the parameters N(y) to 15 and K to 1.2 ideal 
for our downscaling purposes. 

The CV scaling required to adjust the downscaled rainfall image was 
computed by upscaling the CMPAS product from 1 km to 20 km reso-
lution (Fig. S2). The specific quantile q to constrain the rainfall adjust-
ment was set to 0.99; this is an arbitrary but common choice, as rainfall 
extreme is often referred to as the 99th percentile. Based on the litera-
ture (e.g., Li et al., 2015; Pavlovic et al., 2016), we set Z, representing 
the rainfall difference at the 99th quantile between 8 km and 1 km, to 
10. The Nelder-Mead simplex algorithm (Lagarias et al., 1998) search 
method was used for the minimum optimization of Eq. (5). 

4.4. Model evaluation criteria 

A simple bias skill was used to evaluate the results of the MPS-QS 
downscaling on rainfall intensities, i.e., the difference in percentages 
or the ratio between the downscaled and observed or expected rainfall 
values. The rainfall spatial structures were evaluated using a variogram 
(Armstrong, 1998; Benoit and Mariethoz, 2017): 

γ(h) =
1

2n(h)
∑n(h)

i=1
(R(i) − R(i + h) )2 (7)  

where R(i) and R(i+h) are rainfall intensities at grid cell i and grid cell 
i+h at the same rainfall field (image), with h being the distance between 
them, and n(h) is the number of the pairs of rainfall intensities separated 
by distance h. The value where the variogram stabilized is called sill, 
which describes the average variance of the rainfall over the domain; 
and the distance where the sill value is reached is called range, which 
represents the smallest decorrelation distance or the size of rainfall 
spatial patterns. Fig. 3. A map of the study area.  
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4.5. Example: Downscaling of a single rainfall field 

An extreme hourly rainfall event that occurred on the 20th of July 
2016 was selected as an example to demonstrate the downscaling pro-
cess and efficacy of the method. Based on the CMPAS data, we obtained 
the rainfall field recorded at 10 am (Fig. 4a) and upscaled it from 1 km to 
8 km resolution (Fig. 4b) by simple averaging. We treated the original 
rainfall field at 1 km resolution as our “ground truth” (i.e., the image we 
intended at the end of the downscaling procedure). In this way, our 
desired high-resolution rainfall field is not hidden and can be compared 
to the downscaled rainfall field. The next step was to run the MPS-QS 
algorithm and downscale the rainfall field to its native resolution of 1 
km (Fig. 4c). All the CMPAS data, excluding this particular hourly 
rainfall field, were used as training images. The best three training im-
ages matching the hourly rainfall were ultimately used by the algorithm. 
Finally, we inverted the areal reduction factor using the CV adjustment 
method and obtained an adjusted downscaled image (Fig. 4d). 

Several properties of the rainfall field can now be compared, 
beginning with the mean areal rainfall (MAR). MAR difference between 
the coarse-scale rainfall field (Fig. 4b) and downscaled rainfall field 
(Fig. 4c) is as low as 1.2 %, implying that rainfall mass is preserved 
during downscaling. But both rainfall CV and extreme rainfall intensity 
(equivalent to the 99th percentile in this case) decrease with down-
scaling by 7 % and 8 % (respectively, Fig. 4b-c). However, because of 
adjusting the downscaled rainfall field using the scaled CV, we can 
obtain an adjusted downscaled image (Fig. 4d) with MAR, CV, and 
extreme rainfall intensity values similar to those found in the ground 
truth (Fig. 4a), resulting in biases of less than 2 % for all factors (Fig. 4e). 
To estimate the spatial structure of the adjusted downscaled rainfall field 
(Fig. 4d) with the ground truth image (Fig. 4a), we plotted their vario-
grams in Fig. 4f. At a distance of approximately 60 km, both variograms 

show the same decorrelation range. The bias in the average variance 
(sill) between variograms is around 12 %, which can be partially 
attributed to the fact that the original rainfall field (Fig. 4a) is affected by 
radar artifacts (for example, beam blockage; note the arcs and straight 
lines in the figure without any data) that are removed by the MPS al-
gorithm (Fig. 4d). Based on this, we conclude that the spatial rainfall 
structure has been preserved in downscaling, as can also be visually seen 
when comparing Fig. 4a and d. 

4.6. An evaluation of the downscaling method 

The downscaling method was evaluated using a similar approach to 
that presented in the previous section. From the 1 km CMPAS data, 10 
heavy summer (convective) rainfall events with more than 200 rainfall 
fields were selected. The fields were upscaled to 8 km by averaging and 
then downscaled again to 1 km resolution by applying the MPS-QS 
method using the leave-one-out cross-validation approach (i.e., down-
scaled rainfall fields were not included in the training data). Then the 
downscaled rainfall fields were adjusted by inverting the areal reduction 
factor. Rainfall intensities and structures were compared between the 
original 1 km images and the adjusted downscaled images. 

In terms of rainfall intensities, the MPS-based downscaling with the 
CV adjustment method effectively preserved MAR, as demonstrated by a 
low bias of 2 % (Fig. 5a). Similarly, CV is well conserved (with a bias of 
2 %) in downscaled rainfall fields, although it tends to be slightly 
underestimated when CV exceeds 8 on rare occasions (Fig. 5b). 
Furthermore, the downscaling method reproduces extreme rainfall in-
tensities at the 99th percentile with an average overestimation of only 6 
% (Fig. 5c). 

Variograms were compared to assess the rainfall spatial structure. 
The average bias between the variograms at distances of 20 km, which is 

Fig. 4. Downscaling the hourly rainfall field recorded by CMPAS (a) at 10 am, on the 20th of July 2016. The rainfall field was upscaled to 8 km (b), downscaled by 
the MPS-QS (c), and adjusted for the rainfall CV (d). (e) and (f) present the absolute difference between the original and downscaled images (i.e., |d-a|) and their 
variograms (respectively). 
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well within the range of rainfall correlation in this region (see for 
example Fig. 4f), amounts to only 4 %. By examining the bias at dis-
tances of 80 km, often where the rainfall fields are no longer spatially 
correlated, the bias increases to 12 %. In light of these results, it appears 
that the downscaling method is capable of reproducing realistically the 
spatial structure of rainfall. Nevertheless, we also evaluated the 
method’s ability to reproduce rainfall structures for different rainfall 
types while downscaling. We focused on four common rainfall cases: 
stratiform homogeneously-distributed rainfall (Fig. 6a), a scattering of 
convective cells (Fig. 6b), a convective squall line (Fig. 6c), and a clus-
tered convective cell (Fig. 6d). 

When comparing the reference CMPAS and adjusted downscaled 
rainfall images, the stratiform homogeneously-distributed storm shows 
comparable rainfall fields and variogram patterns (Fig. 6a). The vario-
grams agree up to a distance of 20 km, then diverge, resulting in a 12 % 
bias. Nevertheless, decorrelation distances for both images are similar at 
approximately 80 km. A similar pattern was found when downscaling 
the rainfall field characterized by scattered convective cells (Fig. 6b). 
Variograms, in this case, are also similar up to the 20 km distance, but 
since the rainfall intensity is stronger (up to 100 mm h− 1), a higher bias 
(19 %) is found. When a convective square line (Fig. 6c) and a clustered 
convective cell (Fig. 6d) are downscaled, variogram similarity levels are 
even more prominent, with decorrelation distances around 60 km and 
bias levels as low as 4 %. Considering that most of the bias is derived 
above the rainfall decorrelation distances and that the shape of the 
variograms is essentially the same, we conclude that the spatial structure 
of the rainfall fields is satisfactorily reproduced. 

Accordingly, the results presented above demonstrate that MPS- 
based downscaled images with the suggested adjustment are capable 
of reproducing both rainfall intensity (Fig. 5) and the spatial structure of 
rainfall fields (Fig. 6) of various rainfall types. 

5. Downscaling 22 years of CMORPH data 

Using the MPS-QS model and the adjusted algorithm discussed 
above, 22 years of CMORPH data were downscaled from 8 km to 1 km 
resolution in the Beijing area. As our focus is on heavy convective 
rainfall events, the results for the downscaled summer rainfall are pre-
sented here, while the autumn and spring rainfall are shown in Fig. S3 
and S4 (respectively). 

We start by exemplifying downscaling of a single heavy rainfall, an 
hourly 8-km coarse-resolution CMORPH rainfall image from the 21st of 
July 2012 (Fig. 7a). Two downscaled images from the MPS-QS model 
before and after applying the CV adjustment are presented in Fig. 7c and 
e, and are zoomed-in in Fig. 7d and f, respectively. The MAR is well 
preserved comparing the coarse resolution image (11.3 mm h− 1) and the 

downscaled images (11.4 and 11.8 mm h− 1), with a difference of only 4 
% between the images. As expected, the CV is identical in the coarse 
image and downscaled image (1.08 and 1.07), and increased following 
the adjustment to 1.1. Similarly, the intense rainfall at the 99th 
percentile is the same, comparing the coarse and downscaled images 
(56.1 and 56.3 mm h− 1), and increased following the adjustment to 61.7 
mm h− 1; an increase of 10 % that is following the 10 % intensification 
expected when applying the inverse areal reduction factor between 8 km 
and 1 km scales (see discussion above). 

Next, we summarize the statistics of all the downscaled CMORPH 
hourly summer rainfall fields. The adjusted MPS downscaled images 
maintain adequate MAR values with an average overestimation bias of 3 
% (Fig. 8a). In general, CV values are increasing (average positive bias of 
4 %); however, there are some images in which CV values are decreasing 
(Fig. 8b). Furthermore, all downscaled images show an increase in 
heavy rainfall intensity (at the 99th percentile Fig. 8c). Following the 
adjustment algorithm, extreme rainfall intensity increases by 8 % on 
average, which is not far from the expected 10 % intensification when 
moving from 8 km to 1 km resolution. 

We also examined the ability of downscaled rainfall to spatially 
reproduce extreme rainfall intensities. To this end, we calculated the 
annual maximum rainfall from the adjusted MPS downscaled images 
and used the Weibull distribution to calculate the extreme rainfall at the 
2, 5, 10, and 30-year return levels. This procedure was repeated with the 
hourly rainfall data collected from 19 ground stations within the Beijing 
area (Fig. 3). For all return periods, the most severe rainfall intensities 
were detected over or around 20 km northeast of Beijing station (Fig. 9). 
The return levels of downscaled CMORPH correspond well to at least 
half of the stations (10 out of 19) within this study area, including the 
Beijing station that represents the rainfall over the urban area. The 
underestimation between the downscaled and the observed extremes are 
on average 10 mm h− 1 for the 2- to 10-year return level and around 20 
mm h− 1 for the 30-year return level. This underestimation is attributed 
to the different periods used for the estimation of the rainfall extremes 
between the downscaled CMORPH (1998–2019) and the stations 
(1998–2012), and due to the difference in spatial scales, i.e., between 1 
km (downscaled product) and point scale (ground stations). 

The final example will demonstrate the MPS model’s ability to 
downscale a rainfall event over several hours while maintaining realistic 
rainfall patterns in space and time (Fig. 10). We have chosen six images 
(hours) of a storm that crossed Beijing between 10 am and 3 pm on 21st 
of July 2012. It was one of the most extreme storms that hit the city, with 
hourly rainfall ranging between 36.7 and 63.6 mm h− 1. The downscaled 
rainfall fields largely maintain the spatial structure and volume of the 
coarse images, but increase the CV and maximum rainfall intensity, as 
expected (refer to the labels located above the images in Fig. 10). 

Fig. 5. Comparison of mean areal rainfall (a), rainfall spatial CV (b), and extreme rainfall intensity at the 99th percentile (c) between reference CMPAS rainfall fields 
and downscaled rainfall fields using the MPS-QS method. 
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Despite the absence of a temporal autocorrelation function in MPS-QS, it 
appears that the rainfall fields are adequately downscaled not only 
spatially but over time as well. 

6. Discussion 

6.1. MPS-QS model parameters 

We set N(y), which defines the number of grid cells to be used when 
searching for the most suitable pattern match in the training images, to 

Fig. 6. Reference (left, CMPAS images at 1 km) and downscaled (center, MPS-QS adjusted images at 1 km) four common rainfall types: (a) a stratiform rainfall, (b) a 
scattering of convective cells, (c) a convective squall line, and (d) a clustered convective cell, and their variograms (right). 
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15; within the suggested range of 15 to 25 (Gravey and Mariethoz, 2022; 
2020). In their application to the MPS model with a similar domain size, 
Singhal and Jha (2022) used a similar value (N(y) equals 14). While it 
seems possible to fix N(y) value to this range, Gravey and Mariethoz 
(2022) mentioned that the optimal parameter value can also depend on 
the training dataset, thus calibration is recommended. This can be 
accomplished by upscaling several images from the training data and 
downscaling them again to their native resolution, as described in Sec-
tion 4.5, while varying N(y). The same applies to the K parameter. In our 
case study, it was set to 1.2, as recommended by Gravey and Mariethoz 
(2020; 2022), and the authors suggest the use of k > 1, to reduce the 

issue of a verbatim copy of the training image. Since MPS-QS has only 
two parameters to consider, and both of them can be easily adjusted to 
optimize the model’s performance, the model is both simple and flex-
ible, making it appealing to end users. 

6.2. Training data 

The training data we used for this study consisted of 6 years’ worth of 
hourly CMPAS rainfall fields, which amounted to more than 52,000 
images in total. Since the model was based upon a seasonal framework 
(hence a quarter of the images were used per season), and since many of 

Fig. 7. The hourly rainfall field derived from the CMORPH data (8 km) on the noon of the 21st of July 2012 (a, b), the MPS downscaling images at 1 km (c, d), and 
the rainfall images at 1 km after applying the adjustment algorithm (e, f). 

W. Zou et al.                                                                                                                                                                                                                                     



Journal of Hydrology 632 (2024) 130899

10

the hourly images occur during periods of rainfall intermittency (i.e., 
when no rainfall is recorded), there is a substantial reduction in the 
number of images that are effectively available. Nevertheless, there 
were still approximately 6500 training images with the potential to be 
used; according to our downscaling results (e.g., Figs. 8 and 9), this 
appears to be an adequate number of images for model training. For a 
comparison, Jha et al. (2015) had around 7300 training images to 
downscaled one-year daily precipitation from 50 km to 10 km, and 
Singhal and Jha (2022) had around 1500 training images to downscale 
daily precipitation for the monsoon season from 30 km to 10 km. Their 
conclusion was similar to ours in that this number of images was 
adequate to meet their needs. Furthermore, an average of three best 
training images for each downscaled hourly CMORPH rainfall are used 
in the study. When enough data are available, increasing numbers of 
training images contribute to enhanced downscaling accuracy. Howev-
er, this improvement is accompanied by a proportional increase in 

computational time. The determination of the optimal number of 
training images can not be defined a priori, as it depends on the user’s 
available data and computational resources. 

Nevertheless, it is apparent that the broader the number of rainfall 
images available for the model training, the better the downscaling re-
sults may be. Training images do not need to come from the same 
domain as the domain of interest. Yin et al. (2022), for example, used the 
MPS with training images from the Artic area to improve digital eleva-
tion resolution in Antarctica. Therefore, as long as the rainfall space-
–time patterns are the same, it is possible to extend the training images 
for rainfall downscaling by taking high-resolution images from a 
different location. The number of training images can also be increased 
by using images obtained from multiple other sources. For example, 
Singhal and Jha (2022) not only used precipitation data but also used 
temperature, latitude, longitude, and elevation variates as training im-
ages to downscale daily precipitation in the northwest Himalayas area. 

Fig. 8. Comparing MAR (a), CV (b), and the heaviest 99th percentile rainfall intensity (c) between 8-km CMORPH and 1-km adjusted MPS downscaling.  

Fig. 9. Comparison of (a) 2, (b) 5, (c) 10, and (d) 30-year return levels between the adjusted MPS downscaling and nineteen stations (red circles). (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Since complex terrain (Roe, 2005) and large metropolitan areas (Yang 
et al., 2014; Zhang, 2020) can affect rainfall space–time patterns, it is 
important to consider this when selecting the domain and source of the 
training images. 

6.3. The areal adjustment method 

The proposed areal reduction adjustment requires input from users 
on two aspects: how the areal reduction factor affects extreme rainfall 

when moving between scales, as well as which marginal distribution 
method best characterizes the spatial distribution of rainfall intensity. 
The 99th rainfall percentile was defined in our case study as the anchor 
for adjusting extreme rainfall following the areal reduction factor. 
However, this is an arbitrary definition that can be modified by the 
users, as extreme rainfall intensity can be defined by a wide range of 
percentiles, from 95th to 99.9th (Fischer and Knutti, 2016; Zhang et al., 
2017). Furthermore, in our application, we considered a reduction fac-
tor value obtained from the literature (Pavlovic et al., 2016), but users 

Fig. 10. An example of a downscaled storm from 10 am to 3 pm on the 21st of July 2012. (a), (c), (e), (g), (i), and (k) are the hourly 8-km CMORPH rainfall images, 
and below them are the corresponding 1-km adjusted downscaled MPS-QS images [(b), (d), (f), (h), (j), and (l)]. 
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may choose to upscale the training images to the scale of the coarse 
images and compute the reduction factor directly (for example, as Peleg 
et al., 2018 did). 

It is possible to evaluate the rainfall adjustment procedure by 
comparing the adjusted rainfall CV values to their theoretical values 
after downscaling (e.g., Fig. S2). Biases from the theoretical values are in 
the range of 20 %, varying from − 60 % to 10 % based on the adjusted 
rainfall CV (Fig. 11). As we are interested in downscaling heavy rainfall 
in our area, and as it is primarily spatially heterogeneous summer con-
vection (CV greater than 4), we conclude that we are generally within 
10 % agreement with the theoretically expected CV values. However, 
this is only a first-order evaluation based on theoretical values, as we 
lack ground truth. 

To describe rainfall intensity in space, we found that the Gamma 
distribution is most appropriate for fitting to summer heavy rainfall in 
Beijing. The Gamma distribution is widely used to capture rainfall in-
tensity worldwide (Yue et al., 2001). Different marginal distributions 
can, however, be tested and applied as they may be more appropriate in 
different regions and climates characterized by different rainfall types. 

7. Conclusions 

Further development of the MPS-QS model is presented and 
demonstrated to downscale satellite-derived gridded rainfall series 
based on a few years of high-resolution rainfall observations. The 
method is light in terms of parameterization, requiring only decisions 
from the end-user on the model’s sampling strategy (two parameters), 
how extreme rainfall intensities and rainfall spatial heterogeneity are 
scaled, and the marginal distribution that best describes how rainfall is 
distributed in space. This required information can be obtained directly 
from the training data (i.e., the high-resolution rainfall fields) provided 
as input to the model. By using rainfall data from the Beijing area as a 
case study, we demonstrate that the downscaling method can both 
accurately represent rainfall intensities while preserving rainfall spatial 
structure, and even correct rainfall images if rainfall intensities are 
partially missing. We focused primarily on downscaling heavy summer 
rainfall, but the method can be applied to other types of rainfall and to 
other climates as long as sufficient high-resolution rainfall data are 
available to train the model. 

Code and data availability 

The MPS-QS algorithm can be accessed from the GAIA website (htt 
ps://github.com/GAIA-UNIL/G2S). And an example of the MPS-based 
downscaling method can be found in the Zenodo archive at https: 
//zenodo.org/records/10497207. This code example reproduces Fig. 4 
from the manuscript. The CMPAS data can be accessed from the China 
Meteorological Administration (Shen et al., 2018). 
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