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Abstract: A methodology for fMRI data analysis confined to the cortex, Cortical Surface Mapping (CSM),
is presented. CSM retains the flexibility of the General Linear Model based estimation, but the procedures
involved are adapted to operate on the cortical surface, while avoiding to resort to explicit flattening. The
methodology is tested by means of simulations and application to a real fMRI protocol. The results are
compared with those obtained with a standard, volume-oriented approach (SPM), and it is shown that
CSM leads to local differences in sensitivity, with generally higher sensitivity for CSM in two of the three
subjects studied. The discussion provided is focused on the benefits of the introduction of anatomical
information in fMRI data analysis, and the relevance of CSM as a step toward this goal. Hum. Brain
Mapping 12:79–93, 2001. © 2001 Wiley-Liss, Inc.
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INTRODUCTION

Data analysis of functional magnetic resonance im-
aging (fMRI) protocols is currently done with little
regard for the anatomical specificity of the object un-
der study. Even though simple operations based upon
anatomical information are occasionally performed
(e.g., threshold-based masking out of extracerebral

voxels), usually no attempt is made to take into con-
sideration the spatial distribution of the different tis-
sues (grey and white matter) involved, nor particular
topological specificities such as the sheet-like near-2D
nature of the cortex. In most implemented procedures,
signal emanating from grey and white matter is
treated in an indiscriminating fashion, and the spatial
smoothing step very often included in the analysis
chain leads to nuisance averaging with surrounding,
non-interest signal, and most particularly with extra-
cerebral signal, potentially harming analysis sensitiv-
ity. Moreover, the highly convoluted structure of the
cortex will inevitably lead to situations of smoothing-
induced signal averaging across sulci, reducing spatial
discriminating power. Making the entire data analysis
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chain of procedures more compliant with the structure
of the cortex thus appears as a natural and highly
desirable step.

Anatomical representations of the cortex, obtained
from segmented T1-weighted magnetic resonance im-
ages (MRI), have sometimes been used as an aid to
fMRI data analysis. Retinotopy studies in humans, for
instance, have resorted to cortical representations to
assist the mapping of visual cortex topographic or-
ganisation [Sereno et al., 1995; DeYoe et al., 1996], and
smoothing over the cortical surface has been proposed
to help with the visualisation of the spatial organisa-
tion of the visual areas [Tootell et al., 1997]. Indeed,
the definition of surface-based coordinate systems
provides a more natural framework for cortically ori-
ented analyses. Recently, surface-based coordinate
systems have been further used to facilitate the build-
ing of probabilistic atlases for large populations [Fis-
chl et al., 1999]. These efforts have often been associ-
ated with the development of flattening or unfolding
techniques [Drury et al., 1996; Fischl et al., 1999].

However, it remains that representations of the cor-
tex have mostly been used as a tool to help gain a
richer and more encompassing perspective over re-
sults obtained in the classical, 3D-based fashion. Tech-
niques for performing detection over the cortex have
been devised [Goebel and Singer, 1999], but so far lack
generality and have not yet gained widespread accep-
tance. Recently, a new approach aiming to introduce a
certain amount of 2D cortical anatomy information in
functional brain data analysis, through the use of an-
atomically constrained spatial basis functions has been
presented [Kiebel et al., 2000]; see also [Poline et al.,
1995]. It is conceptually close to deconvolution tech-
niques, and it has the merit of providing a strictly
two-dimensional framework, thereby shifting the fo-
cus from 3D space to cortical space. Nevertheless, an
integrated methodology to perform strictly two-di-
mensional fMRI data analysis, able to tackle problems
such as surface spatial smoothing and multiple com-
parisons correction, while avoiding the problems
stemming from the metric distortion that is a result of
explicit flattening techniques, had yet to be developed.

In the present paper, we propose a methodology
(Cortical Surface Mapping, or CSM for short) meant to
allow for a more extensive introduction of anatomical
information throughout the analysis of fMRI experi-
ments. In its essence, CSM closely follows standard
approaches that rely upon General Linear Model pa-
rameter estimation, voxel-by-voxel hypothesis tests,
and the building of statistical parametric maps [Fris-
ton et al., 1995; Worsley et al., 1992], as it is imple-
mented, for instance, in the SPM package, but several

adaptations are introduced to take into account the
near-2D nature of the cortex as well as its convoluted
structure. In this work, the proposed CSM methodol-
ogy is tested on simulated noise data and its sensitiv-
ity is studied with a motor protocol (grasping). The
results are compared to those obtained with standard
3D SPM on the same data.

MATERIALS AND METHODS

Description of the proposed methodology

General overview

CSM methodology can be subdivided into several
stages. The procedures involved, which are briefly
described below, are either common to standard, 3D-
oriented methods or require adaptations, to a greater
or lesser extent. Important conceptual differences with
respect to standard methods are presented in a sepa-
rate treatment of the procedures in question. The
stages comprise:

• Spatial image transformation(s): The set of func-
tional MRI scans acquired in the course of the
experimental protocol can be spatially realigned
and/or normalised to match a template. These are
optional spatial transformations, and the decision
to apply one or both should be guided by criteria
(subject motion, purpose of making inter-subject
comparisons) that have no direct bearing upon
the specific nature of the proposed methodology.
Coregistration between the T2

*-weighted scans
and a T1-weighted anatomical scan can be per-
formed to ensure a satisfactory match between the
cortical representation (obtained from the T1-
weighted image) and the functional volumes. The
assignment of values to cortical positions (see be-
low) relies heavily upon this matching; therefore
this is a critical step. However, coregistring is not
compulsory, provided that no substantial subject
movement takes place between the functional and
anatomical acquisitions. Distortion in the func-
tional scans, due to Echo-Planar acquisition, is
also a major issue, since it can put in jeopardy the
possibility of achieving a satisfactory match. For
moderate field MRI machines, distortion should
not be strong enough to require the application of
a correction algorithm [Jezzard and Clare, 1999].

• Grey matter/white matter segmentation: Grey
and white matter masks are built through seg-
mentation of the T1-weighted anatomical scan of
the subject [Mangin et al., 1995].

• Surface extraction: A triangulated lattice repre-
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sentation of the internal surface of the cortex is
extracted, through application of a surface track-
ing algorithm to the white matter segmented vol-
ume [Gordon and Udupa, 1989]. The lattice comes
under the form of a very dense mesh (the node
separation is of the order of the anatomical acqui-
sition voxel size, typically ;1 mm), with a size
that varies typically between 100,000 and 150,000
nodes for each hemisphere. Constraints in the
segmentation method insure that the lattice is ho-
motopic to a sphere.

• Value assignment to the surface positions: The
T2

*-weighted functional scans are interpolated on
the positions corresponding to the nodes of the
cortical lattice (plus a user defined outward shift
in the surface normal direction to account for
cortical thickness). The outcome of this operation
is a set of cortical surface scans (CS-scans) with n
values, n standing for the number of nodes in the
cortical lattice. Each value is associated with a set
of coordinates corresponding to the interpolating
position. Subsequent analysis steps will thus be
confined to a set of values interpolated from the
neighbourhood of the cortex.

• Spatial smoothing: Each one of the CS-scans, con-
sisting of a set of values associated with node
positions, is spatially smoothed. While the pur-
pose behind this surface-based smoothing is es-
sentially the same as for the classical 3D analysis,
the conceptual basis of its implementation is
markedly different, and therefore this step is
treated in more detail below.

• General Linear Model parameter estimation: Esti-
mation is performed in essentially the same way
as with classical three-dimensional analysis. The
option to perform global correction (proportional
scaling) or temporal filtering is retained. The out-
put is a set of estimated parameters, with the
same dimension (i.e., number of nodes) as an
individual functional CS-scan.

• Smoothness estimation: For this step, we have
employed “statistical flattening” [Worsley et al.,
1999], a generalised estimation procedure that
takes into account local fluctuations of smooth-
ness, and is easily adaptable to the particular re-
quirements of the proposed methodology. This
procedure and its implementation receive a more
thorough (albeit informal) independent treatment
below.

• Hypothesis testing based on intensity: The assign-
ment, for each node, of a P value reflecting the
risk of error concerning the rejection of a null
hypothesis involving a linear combination of the

estimated parameters is based upon the theory of
random fields, and does not differ from currently
employed procedures [Friston et al., 1995; Wors-
ley et al., 1996b].

Surface-based smoothing

The purpose behind spatial smoothing of functional
brain imaging data is two-fold [Petersson et al., 1999]:

• Improving signal-to-noise ratio, through the use
of a smoothing kernel wide enough to filter out a
significant part of the (mostly high-frequency)
noise.

• Ensuring that the output field of values consti-
tutes an adequate discrete representation of a con-
tinuous statistical field, so that subsequent infer-
ence procedures based on the theory of random
fields are valid. For this to be achieved, the
smoothness of the field must be large compared to
the sampling resolution of the images under
study. Note that this is not an absolute constraint,
since subsampling can always be employed as a
way to impose the required conditions.

Smoothing is usually implemented as a simple, fully
isotropic convolution with a three-dimensional Gauss-
ian kernel, and it is applied uniformly over the entire
volume. Such an implementation does not take into
account the anatomical configuration of the brain (dif-
ferent kinds of tissue, deeply folded structure, etc.).
This leads to averaging of signal emanating from the
cortex and from while matter of CSF, as well as to
averaging of signal issuing from sources that are close
to each other in a Euclidean sense, but geodesically far
apart. CSM methodology implements surface-oriented
smoothing, aiming to obtain a spatial correlation
structure that depends on geodesic rather than Euclid-
ean distance. In this way, the introduction of artificial
correlation between areas that are close together in
Euclidean terms but geodesically far apart (e.g., two
points on opposite sides of a sulcus) is avoided.

This implementation of surface-oriented smoothing
differs from simple, voxel-based isotropic three-di-
mensional convolution in two main aspects:

• At the practical level: smoothing is applied to a
field of values sampled with an irregular grid (as
opposed to a regular voxel-based sampling).

• At the conceptual level: smoothing is done along
the cortical surface, instead of being extended to
the whole acquired volume.

Clearly, convolution with a Gaussian kernel is no
longer a viable choice: the highly convoluted nature of
the cortex, along with the irregular sampling, requires
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a new theoretical framework to build the smoothing
procedure upon.

Smoothing an irregularly sampled field of values

The solution adopted to take the irregularity of the
sampling grid into account relies on a result widely
employed in image processing [Koenderink, 1984]: the
equivalence between Gaussian convolution and heat
diffusion. The diffusion of heat in a time-varying field
of temperatures I(rW, t) proceeds according to a law
expressed as

]I~rW, t!
]t 5 K¹2 I~rW, t! (1)

where t is time, K is a constant involving several
physical parameters (K 5 c/rcp, with c standing for
thermal conductivity, r for density and cp for specific
heat), and ¹2 is the Laplacian operator (¹2 I(x, y) 5
]2I/]x2 1 ]2I/]y2, in two dimensions). This assumes
that K is constant all over the field. On the other hand,
if t is taken to represent a smoothness (scale-space)
parameter, instead of time, it can be proved that

I~rW, t 5 T! 5 I~rW, t 5 0! # S 1
2pTe 2

x2 1 y2

2T D
(convolution of an image I(rW,t 5 0) with a Gaussian
kernel) is a solution of Equation 1 (with K 5 0.5).
Hence, applying a Gaussian spatial filter with param-
eter =T to an image is the same thing as letting a
diffusion process run its course for a lapse of time T.
The advantage of this formulation based on a differ-
ential equation is that it lends itself more easily to
being adapted for the specific case of an irregular 2D
lattice embedded in a three-dimensional space.

Numerical computation of the results of a diffusion
process over a discrete field of values can be carried
out as an iterative process of the form

I~rW, t 1 Dt! 2 I~rW, t!
Dt 5 K¹2Î~rW, t! (2)

for each temporal iteration step (Dt). ¹2Î~rW, t! is the
local estimation of the Laplacian at time t. The appli-
cation of this solution would be trivial in the case of a
regular lattice with a fixed neighbourhood: finite dif-
ferences, for instance, could be chosen as a method for
locally estimating partial derivatives. For an irregular
lattice, a general approach can be employed [Liszka

and Orkisz, 1980; Huiskamp, 1991], based on the Tay-
lor series expansion of a function around a point.
Assume that an image, implicitly described by a func-
tion I(x, y), is sampled with an irregular lattice com-
posed of interconnected nodes. For a point (x0,y0) of
the image, this expansion has the form:

Ii 5 I0 1 hi

]I0

]x1

ki

]I0

]y1
hi

2

2
]2 I0

]x2 1
ki

2

2
]2I0

]y21kihi

]2 I0

]x]y1O(d3) (3)

where Ii 5 I(xi, yi), hi 5 xi 2 x0, ki 5 yi 2 y0, and d 5
=hi

2 1 ki
2. Writing Equation 3 for a surface element

consisting of a lattice node, located at (x0, y0), and its
neighbours i 5 1, 2,. . .m, we obtain the set of equa-
tions

@A#@DI# 2 @I# 5 @0#

where

[A]53
h1 k1

h1
2

2
k1

2

2
h1k1

h2 · · · · · · · · · · · ·
······

hm

4
@I]5[I12I0, I22I0, . . . , Im2I0]T

and the five derivatives at point (x0, y0) are

@DI# 5 F]I0

]x
, ]I0

]y
, ]2I0

]x2
, ]2I0

]y2
, ]2I0

]x]yG
T

.

In this fashion, estimates of the two-dimensional
Laplacian (¹2 I(x, y) 5 ]2 I/]x2 1 ]2 I/]y2) are obtained
at each node of the lattice. This approach amounts to
solving, for each node, a linear system involving the
relative positions of the node and its neighbours and
the corresponding field value differences. It is still a
finite differences method, in the sense that the partial
derivatives are estimated by differences between field
values in neighbouring points, but its range of appli-
cation is extended to any arbitrarily irregular grid.
Some constraints remain, however, concerning the
configuration of the lattice. Firstly, the application of
post-processing procedures (e.g., decimation) to the
lattice may lead to situations in which node neigh-

r Andrade et al. r

r 82 r



bours are fewer than the number of variables esti-
mated locally (this number will be 5 in the case of the
second order Taylor expansion necessary to estimate
the Laplacian, or 4 if isotropy is assumed and the
]2f0/]x]y term is considered to be zero), making the
corresponding linear system underdetermined, which
means that the solution will not be unique. One of the
options to pick one among the infinity of solutions
thus obtained is to select the solution with the smallest
norm. This is the condition implied by the pseudo-
inverse based resolution that we adopted. This was
shown to be a sensible option in practice: provided
that the nodes with less than four neighbors constitute
a small (;1%) proportion of the total number of
nodes, the final results do not differ significantly from
those obtained in a situation of system determinacy all
over the lattice. The second constraint has to do with
node separation: the nodes must be sufficiently close
together for the partial derivative estimations to be
reliable. The specifics of lattice building are not dis-
cussed in this paper, but it should be made clear that
these constraints can be applied at the surface extrac-
tion stage, by suitable tuning of the extraction algo-
rithm parameters. In the analyses we carried out, we
employed both undecimated lattices (the direct output
of the surface extraction stage), with ;100,000–
150,000 nodes per hemisphere, and lattices that under-
went constrained node decimation. The latter had
;25,000 nodes per hemisphere, and a small (,1%)
proportion of nodes with less than four neighbours.
Mean and maximal internodal distance were, respec-
tively, 1 and 1.8 mm (undecimated lattice) and 2.5 and
6 mm (decimated lattice). Only minor differences were
detected between the results obtained with undeci-
mated and decimated lattices. This seems to indicate
that the presence of important internodal distance
variability, and the resulting local decrease in the ac-
curacy of Laplacian estimation, does not per se affect
the outcome of the analysis in a significant way.

Another important concern is the choice of the tem-
poral iteration step (Dt in Equation 2). The critical
value above which the numerical resolution will be
unstable [Press et al., 1992; Gerig et al., 1992], in the
specific case of the diffusion equation, depends on
thermal conductivity, a parameter included in the K
term in Equation 1. In the case of diffusion-based
smoothing over a lattice, this conductivity term can be
seen as conceptually equivalent to node distance: the
closer a pair of nodes is, the stronger their mutual
influence, and this mimics the situation of high ther-
mal conductivity and fast heat propagation. Irregular
node spacing, thus, parallels a situation of varying
thermal conductivity across the field. The critical tem-

poral iteration step is directly proportional to the min-
imal node distance, because instability tends to spread
over the whole lattice, and therefore a single pair of
nodes that are too close together will be enough to
globally affect the results. Lattices possessing nodes in
these conditions require very small temporal iteration
steps, and this may lead to exceedingly long process-
ing times. Hence, a double constraint operates at the
level of node separation: small internodal distances
imply a small temporal iteration step and long com-
putation times; on the other hand, very large inter-
nodal distances will eventually affect the reliability of
the Laplacian estimations. There is, thus, a trade-off
between processing speed and estimation accuracy.

If computation time is not unreasonably large, a
conservative value for Dt should be chosen. We have
adopted a default value of Dt 5 0.1, throughout the
analysis of the fMRI protocol described below, which
proved to be low enough to lead to a stable process for
the undecimated lattices we worked with (minimal
internodal distance ;0.6–0.7 mm). For these very
dense lattices (;100,000–150,000 nodes), this choice
implies that a diffusion process equivalent to convolv-
ing with a Gaussian kernel with FWHM 5 8 mm (s 5
3.397) requires 115 iterations (that is s2/Dt rounded to
the nearest integer). In terms of computation time, this
represents roughly 2–3 min in a SUN ULTRA 10 work-
station, for a single CS-scan (one hemisphere). Group-
ing scans in blocks treated simultaneously allows to
optimise smoothing time, so that the increase in time
is not linear with respect to the total number of scans.
8 mm smoothing for a protocol consisting of ;100
scans takes a few hours, making this by far the most
time-consuming step of the analysis. Computation
time may quickly rise to prohibitive values for bulkier
protocols, and this is why the use of decimated lattices
may be recommended, or even become compulsory.
To give an idea of the decrease in computation time,
the same amount of smoothing applied to the same
protocol, but this time with scans built from deci-
mated lattices (;25,000 nodes) took ;40 min.

Smoothing along a curved surface

The theoretical framework described in the previ-
ous paragraph was chosen to tackle the problem of
smoothing an irregularly sampled field of values. We
have focused on its 2D version, since the aim is to
smooth over the surface. However, the fact that the
cortical representation lattice is embedded in a volume
raises a problem concerning the proper axis system
upon which to base the estimation of the local partial
derivatives. A conflict exists between the need to em-
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ploy three spatial coordinates in the Euclidean space
to unambiguously describe the position of each node
and the wish to perform a strictly surface-based
smoothing: locally estimating three-dimensional
Laplacians and solving the diffusion equation accord-
ingly would clearly go against this intent. The defini-
tion of a coordinate system intrinsic to the surface
would allow for a strictly 2D-based smoothing. This
implies a parameterization, i.e., the definition of a
mapping function m such that (x, y, z) [ m21 (u, v), u
and v being the new coordinates that allow to refer to
every point in the surface without ambiguity. The
diffusion equation is then solved along u and v, in a
strictly 2D fashion.

The parameterization adopted was a simple local
transformation that maps each surface element (a
node and its first neighbours) into the plane, while
keeping unchanged both the edge distances and the
angular proportions between the edges [Welch and
Witkin, 1994]. An individual mapping function mi is
defined for each node i, independently of the sur-
rounding surface elements. This approach is made
possible since, for each iteration step of the numerical
solution of the diffusion equation, the estimations in-
volve only the differences between the values associ-
ated with each node and its nearest neighbours. Lo-
cally mapping each surface element into the plane
avoids the severe areal distortion that would result
from a global flattening. This distortion is of the order
of 10–20% [Drury et al., 1996], but locally attains much
higher values.

Multiple comparisons correction by means
of “statistical flattening”

Statistical inference of parametric maps must take
into account the degree of effective mutual depen-
dence presented by the individual hypothesis tests.
Considering the tests as totally independent would
not be realistic, since, due both to physiological rea-
sons and to instrumentation-related specifics of fMRI
acquisition, a certain amount of correlation will al-
ways be present, and hence a Bonferroni-type correc-
tion would generally prove too harsh [Worsley et al.,
1992]. Usually, an estimation of the field smoothness is
made, and the stringency of the correction depends
upon this measure of spatial correlation.

Smoothness-based correction can be seen as the
computation of the number of tests normalised for the
global smoothness of the statistical field. This can al-
ternatively be seen as “shrinking” the field so that its
extent, in each of the space directions, is expressed in
smoothness-normalised Resolution Elements (Resels)

[Worsley et al., 1992] instead of voxels. An intuitive
generalisation of this principle consists in the estima-
tion of local smoothness parameters, and in locally
shrinking the field so that distances are normalised for
the smoothness estimation at that point. This, in very
general terms, is the idea behind the “statistical flat-
tening” correction procedure, described elsewhere
[Worsley et al., 1999], and chosen to implement mul-
tiple comparisons correction in the cortical surface
mapping methodology described herein. This proce-
dure applies local smoothness estimations based on
the residual values, after removal of the effects ac-
counted for by the experimental linear model. To per-
mit exact flattening, this operation takes place in the
multidimensional residual space, impossible to visu-
alize, into which the individual values are mapped.

Although statistical flattening can be applied in the
case of standard volumic analyses (it has, indeed, been
incorporated to the latest release of the SPM package),
it lends itself particularly well to being adapted for the
case of data associated with a triangulated lattice: edge
distances are normalised by the correlation between
the normalised residuals associated with the corre-
sponding nodes, so that the ensuing correlation struc-
ture is isotropic, and the total surface of the deformed
field reflects the number of effectively independent
tests involved.

Validation with simulated noise scans

To assess the type I error of the implemented
method, CSM analysis methodology was validated
using random noise scans and a simulated protocol.
Twenty random noise volumes (mean m 5 0) were
interpolated on an irregular lattice (586 nodes), and
the resulting sets of values underwent the treatment
described above. Two different values of surface-
based smoothing were applied, corresponding to
equivalent Gaussian kernels with an FWHM of 5 and
8 mm. A total of 500 noise sets were generated and
analysed, and the ensuing t statistics were converted
to corrected intensity-level P values. Since exact re-
sults for the P value of the maximum of a statistical
field are not known, P value computation resorted to
the expected Euler characteristic of a thresholded field
[Worsley et al., 1996b]. Multiple comparisons correc-
tion was performed using the previously described
procedure (“statistical flattening”).

For each of a set of thresholds ranging from a 5 0.01
to a 5 0.20, the number of suprathreshold regions due
to noise was computed for each of the 500 simulated
analyses, for each amount of smoothing, to check how
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closely the observed number of spurious activations
followed the theoretical false positive rate.

Application to an fMRI protocol

Surface-based analysis was applied to data from
three subjects that took part in a motor (grasping)
activation experimental protocol, consisting of three
activation epochs separated by three rest periods. Ac-
quisitions were made on a GE 1.5 T machine, using an
Echo-Planar Imaging sequence (TR 5 2 s, image ma-
trix 64 3 64 3 18, functional voxel size 3.75 3 3.75 3
3.8 mm3). It was judged that distortion at this moder-
ate field intensity was not important enough to require
the application of a correction procedure.

The whole procedure outlined in the General Over-
view was applied to the three subjects. Realignment
was performed only when motion was greater than 1
mm (translation) or 0.5° (rotation) (one subject out of
the three). No anatomical normalisation was per-
formed. The matching between the functional vol-
umes and the T1-weighted, high-resolution anatomical
scan acquired on the same occasion was checked vi-
sually.

The cortical triangulated representations (grey mat-
ter/white matter interface) were extracted from seg-
mented white matter images obtained from T1-
weighted anatomical scans acquired for each subject.
The surface extraction procedures were applied sepa-
rately for each hemisphere. The results herein pre-
sented concern an analysis with undecimated lattices
(that is the direct output of the extraction procedure,
with no further post-processing), even though it was
verified that the use of decimated lattices was per-
fectly feasible and gave rise to virtually identical re-
sults. The analysis was carried out in parallel for the
two hemispheres, and merging occurred only at the
statistical analysis stage. This considerably alleviates
the computational load, and poses no particular pro-
cessing or conceptual problem, inasmuch as the hemi-
spheres can be considered to be strictly independent
regions, topologically homotopic to a sphere. Smooth-
ing in particular, since it is confined to the cortical
surface, should not “spill over” to the opposite hemi-
sphere.

The nodes of the triangulated surface were shifted
outward by a distance of 1.5 mm in the normal direc-
tion, prior to the interpolation of the functional scans.
This represents half an assumed average cortical thick-
ness of 3 mm. Through visual inspection, it was veri-
fied that interpolation positions fell inside the func-
tional volume. Figure 1 depicts node positions (after
the shift), for a hemisphere, for subject 1, superim-

posed over a functional scan. This allows for an over-
all perspective of the matching between the interpo-
lating lattice and the T2

*-weighted scan. The matching
is further illustrated by means of an overlay of the
shifted lattice over the anatomical scan (Fig. 2). Note
that apparent discontinuities in the lattice surface out-
line in Figures 1 and 2 do not result from inadequate
coverage of the cortical surface by the lattice nodes.
They are a consequence of the nearest-neighbour in-
terpolation step involved in building the volume rep-
resentation of the lattice. Since internodal spacing is of
the order of the anatomical voxel size, the number of
voxels that do not contain any node will be consider-
able, and these appear as gaps in the displayed lattice
contour.

A simple trilinear interpolation was performed to
assign values to the lattice nodes. In the spatial
smoothing stage, the lapse of time t for the diffusion
process (see Eq. 1) was made to correspond to an
equivalent Gaussian kernel with a FWHM of 8 mm.
The experimental model comprised the rest and
grasping periods (as a boxcar convolved with an esti-
mation of the hemodynamic response function), along
with the mean and temporal derivatives.

In parallel, SPM analysis of the same data was car-
ried out with a similar model. The analysis parameters
were the same, and the FWHM of the Gaussian kernel
used for smoothing was also 8 mm.

Figure 1.
Match between interpolating lattice (originally extracted from
anatomical image) and functional scan (for subject 1). Lattice nodes
(after shift in normal direction to account for cortical thickness)
are shown in a lighter shade, superimposed over coronal, sagittal,
and transverse views of a T2

*-weighted functional scan. Note that
apparent discontinuities in the lattice surface outline are due to
the interpolation step (see text for explanation).
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Visualisation of the results

Visualisation of the results resorts to inflated repre-
sentations of the cortex, to allow for the display of the
entire surface, and to provide a clearer picture of
sulcal topography. The cortical representations are the
same ones that were used for the analysis itself. The
adopted implementation for inflation of the cortical
triangulated lattices is based on criteria described in
the literature [Van Essen et al., 1998; Carman et al.,
1995]. The main concern is to minimise metric distor-
tion, while making sure that the whole of the buried
cortical structures is brought to light. Since this infla-
tion procedure was devised only for displaying pur-
poses, however, minimisation of metric distortion is
not as crucial as in the case of surface-based analytical
procedures (e.g., smoothing, as described above).

RESULTS AND DISCUSSION

Simulations

As illustrated in Figure 3, the false positive rates
(spurious activations due to noise) do not stray signif-
icantly from the theoretically expected values, for the
range of thresholds tested (this range was chosen to
span the range of thresholds usually applied in real

experiments). This establishes that the statistical flat-
tening procedure, applied to the specific case of a 2D
triangulated lattice, is a sound solution to implement
multiple comparisons correction, and indicates that
protection against type I error is satisfactory, for this
intensity-based test.

Figure 2.
Left: Lattice nodes overlayed on sections of anatomical scan (for subject 1). Right: Detail of axial
section. Note that apparent discontinuities in the lattice surface outline are due to the interpolation
step (see text for explanation).

Figure 3.
Expected (dashed line) vs. observed (solid line) false positive rate
for simulations. 5 mm (top) and 8 mm (bottom) surface-based
equivalent smoothing kernels. Corrected thresholds range from
0.01 to 0.2.
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fMRI protocol

To summarise the results obtained, the following
information is presented:

• display of activated regions superimposed over
inflated representations of the cortex

• comparative tables of results obtained with CSM
and classical 3D-based SPM, for one of the sub-
jects

• graphics summarising overall reproducibility in-
formation, for all three subjects.

The display of activated regions, for both SPM and
CSM, over inflated representations of the cortex (Fig.
4) provides an immediate visual check of overall re-
producibility. (Only the left cortex is shown.)

The cortical representations that are shown inflated in
Figure 4 are the same ones that were used, before infla-

Figure 4.
Activated (P , 0.05 corrected)
regions superimposed over
inflated representations of
the left cortex, for the three
subjects (top to bottom).
Left column: CSM results.
Right column: SPM results.
The background is a map of
curvature signs, making it
possible to distinguish the
contours of sulci (negative
curvature, darker shade) and
gyri (positive curvature, lighter
shade). Blobs are semi-trans-
parent to avoid completely
blotting out sulcal limits. The
colour scale shown for each
subject is the same for both
modalities (CSM and SPM).
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tion, in the CSM analysis itself. Visualisation of the CSM
results relies on a simple one-to-one assignment of the t
values to the corresponding lattice nodes. For the results
of the SPM analysis, the activated voxels corresponding
to the chosen threshold were saved as an image, which
was subsequently interpolated (trilinear) with the corti-
cal representation used for display, so that t values could
be assigned to its nodes. The use of a different interpo-
lation strategy would clearly cause localised changes in
the images. For the purposes of qualitative comparison
of general activation patterns, however, this should not
be a crucial point.

From Figure 4 it is seen that no major disparities
exist between the overall activation patterns obtained
with SPM and CSM. An extensive parietal activation,
as well as sparser frontal ones, are clearly visible in the
results of both methods. Results for the right hemi-
sphere (not shown) confirm this observation. As a
further corroboration, the averages of the obtained t
values were almost similar for both analyses: for in-
stance, the between-methods difference in mean t
value above a significance level of P , 0.05 (corrected
for multiple comparisons) did not exceed 1.2 3 1022.

The comparative tables (Tables I, II) present the

TABLE I. SPM vs. CSM comparison for subject 1*

SPM CSM

P(corr.) t x,y,z(mm) P(corr.) t x,y,z(mm) dist(mm)

0.000 18.03 41.2 233.8 0.0 0.000 17.77 42.6 232.9 22.4 2.8
0.000 13.68 241.2 3.8 7.6 0.000 10.22 240.4 3.8 3.8 3.9
0.000 13.50 56.2 11.2 27.6 0.000 12.11 56.3 11.8 28.3 0.9
0.000 13.06 245.0 245.0 230.4 0.000 12.74 244.5 245.9 228.8 1.9
0.000 7.89 18.8 218.8 226.6 0.000 9.94 18.6 221.2 225.5 2.7
0.001 7.05 30.0 45.0 11.4 0.000 7.87 31.7 42.2 11.1 3.3
0.001 6.73 23.8 267.5 3.8 0.000 7.57 23.5 268.7 3.9 1.2
0.002 6.61 48.8 256.2 230.4 0.000 7.53 47.4 256.6 229.5 1.7
0.002 6.59 230.0 267.5 215.2 0.000 10.11 230.6 266.5 215.0 1.1
0.014 5.88 27.5 218.8 222.8 0.002 6.33 26.9 219.8 224.0 1.7
0.018 5.79 27.5 237.5 7.6 0.001 6.40 27.6 239.1 6.9 1.7
0.031 5.58 237.5 30.0 27.6 0.009 5.73 238.6 33.2 28.8 3.7
0.040 5.48 30.0 248.8 27.6 0.007 5.82 30.8 248.5 27.3 0.9

* CSM sensitivity at SPM maxima locations.

TABLE II. CSM vs. SPM comparison for subject 1*

CSM SPM

P(corr.) t x,y,z(mm) P(corr.) t x,y,z(mm) dist(mm)

0.000 17.77 42.6 232.9 22.4 0.000 17.08 41.2 233.8 23.8 2.1
0.000 13.31 10.2 236.3 26.9 0.000 13.45 11.2 237.5 26.6 1.6
0.000 13.28 228.3 246.2 15.9 0.000 11.24 230.0 245.0 15.2 2.2
0.000 12.76 242.6 248.7 228.8 0.000 8.98 241.2 248.8 230.4 2.0
0.000 12.50 10.4 215.0 13.0 0.000 9.99 11.2 215.0 11.4 1.8
0.000 12.16 61.0 6.6 27.5 0.000 10.75 60.0 7.5 27.6 1.4
0.000 11.83 233.4 6.6 211.6 0.000 11.21 233.8 7.5 211.4 1.0
0.000 10.62 252.8 222.5 215.4 0.000 10.25 252.5 222.5 215.2 0.4
0.000 10.42 213.8 212.3 24.2 0.000 8.46 215.0 211.2 22.8 2.1
0.000 10.42 21.4 25.6 15.9 0.000 12.01 0.0 23.8 15.2 2.4
0.000 10.11 230.6 266.5 215.0 0.002 6.59 230.0 267.5 215.2 1.1
0.000 9.94 18.6 221.2 225.5 0.000 7.59 18.8 222.5 226.6 1.7
0.000 9.39 22.4 11.7 8.4 0.000 7.16 23.8 11.2 7.6 1.7
0.000 9.20 233.9 232.5 15.0 0.000 10.07 233.8 233.8 15.2 1.3
0.000 7.87 31.7 42.2 11.1 0.004 6.34 30.0 41.2 11.4 1.9

* SPM sensitivity at CSM maxima locations.
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results, for both methods, and for subject 1, at the
spatial locations corresponding to absolute (as op-
posed to regional) cluster maxima. In Table I, results
for SPM maxima locations (P , 0.05 corrected for
multiple comparisons) are compared to results corre-
sponding to the most significantly activated CSM
node, among those whose distance to the maximum
(voxel center) is smaller than 4 mm, that is half the
FWHM of the chosen 3D smoothing kernel. Table II is
built in a similar way: CSM maxima locations are
compared to results for the SPM voxel that contains
the node corresponding to the maxima. All SPM local
maxima for this subject are presented in the SPM vs
CSM table. The CSM vs SPM table is abridged, for the
sake of concision. This comparison reflects the overall
reproducibility between the methods, at the maxima
level. It was observed that the distances between the
SPM maxima (voxel centers) and the nearest interpo-
lating lattice nodes were consistently inferior to 6 mm
in all three subjects, and fell most frequently on the
range of 0–2 mm (cf. the voxel dimensions of the
functional acquisition: 3.75 3 3.75 3 3.8 mm3). This is
a good indicator of the accuracy of spatial matching
between the T2

*-weighted functional scans and the in-
terpolating lattice. Local misregistrations that remain
undetected due to partial volume effect should be
limited to half the voxel size, and therefore their im-
pact in the final analysis results should be weak.

These comparative tables show the typical amount
of variation that exists between CSM and SPM. They
highlight the reproducibility of the two methods but
also show important local differences. Note that the
CSM vs SPM table is abridged, and that at lower
thresholds (not shown) it happens often that signifi-
cance (0.05 corrected) at CSM maxima is not reached
by the corresponding SPM values. For the remaining
subjects, a high degree of reproducibility can also be
observed. The instances in which CSM is unable to
reproduce SPM activation are too few to allow for a
general conclusion to be reached, but they may corre-
spond to local mismatches between the lattice and the
functional scans.

The graphics shown in Figure 5 summarise the tab-
ulated data for the three subjects. The starting point
for the tracing of the SPM vs. CSM curve in Figure 5 is
the list of SPM absolute maxima, as shown in the
corresponding table (Table I). This curve was built in
the following way. For each of the SPM maxima (P ,
0.05 corrected) locations, the nearest CSM node was
found. For each of a list of thresholds encompassing
from 1 to 1 3 10210 (uncorrected), it was determined
how many of the CSM P values associated with these
nodes were above the threshold. The curve simply

reflects the ratio between the number of SPM maxima
and suprathreshold “nearest nodes,” for each thresh-
old. The CSM vs. SPM curve is constructed in a similar
fashion: the list of CSM maxima (P , 0.05 corrected) is
the starting point, and the ratio between suprathresh-
old “nearest voxels” and the total number of CSM
maxima is computed. For example, CSM analysis de-
tects 43 maxima at P , 0.05 (corrected) for subject 2.
For each of these maxima, the voxel that contained the
corresponding node was found. From this list of 43
voxels, it was found that 30 are associated with an
uncorrected SPM P value inferior to 5 3 1026 issuing
from the SPM analysis. Hence, the ratio value at this
threshold is 30/43 5 0.70 (cf. Fig. 5, middle graphic,
intersection between solid line and dotted vertical
line). These ratios tell us to what extent the locations
corresponding to maxima in one of the analyses show
up as significantly activated when data is analysed
with the other method. A flagrant disparity between
the curves would indicate an important difference in
local sensitivity. If one of the curves appear consis-
tently above the other for the whole range of thresh-
olds, this is a strong indicator of better relative sensi-
tivity at maxima level, for the method in question.
This can be seen for instance in the top of Figure 5
(subject 1), in which CSM shows better sensitivity all
over the threshold range.

Data shown in Figure 5 corroborate the previous
conclusions about across-methods reproducibility: the

Figure 5.
Local sensitivity ratios for the three subjects (top to bottom).
Thresholds range from 1 to 1 3 10210. Solid line: SPM sensitivity
at CSM maxima locations (CSM vs. SPM curve). Dashed line: CSM
sensitivity at SPM maxima locations (SPM vs. CSM curve). Dotted
vertical line indicates the threshold corresponding to 5 3 1026

uncorrected. (See text for explanation.)
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relative sensitivity ratios at maxima locations are com-
prised between 0.5 and 1 for a threshold of 5 3 1026

(uncorrected). This threshold corresponds roughly to
the corrected 0.05 value used to obtain the list of
maxima that serves as a basis for this test. At this level,
CSM evidences higher sensitivity with respect to SPM.
The ratio reaches values of about 0.8 for thresholds
around 1 3 1025 and 1 3 1024, and tends rapidly to
unity afterwards, confirming that no substantial over-
all sensitivity differences between the two methods
are noticeable at the maxima level.

Some important localised differences between the
two methods can nevertheless be pinpointed. Figure 6

highlights a left insular region shown to be activated
(P , 0.05 corrected) with CSM but not with SPM, in
subject 2. The local CSM maximum is significant at
P , 2 3 1024 corrected (t 5 7.15), while SPM signifi-
cance at the same location does not exceed P , 0.14
corrected (t 5 4.91).

The difference images shown in Figure 7, superim-
posed over cortical depth maps, make it possible to
clearly distinguish this region, while providing a
global picture of between-methods differences in sen-
sitivity. These images correspond simply to the differ-
ences between each CSM t value and the SPM t value
of the voxel closest to the corresponding node.

Figure 6.
Activation (P , 0.05 corrected) superimposed
over anatomical sections and inflated left cortex
(subject 2). Top: SPM analysis. Bottom: CSM
analysis. Left insular region showing marked dif-
ferences in activation between both methods is
highlighted (crosshair position). The colour scale
shown corresponds to the activations overlayed
on the inflated cortex.
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Grasping movements are known to activate a wide
network of cortical structures, strongly implicating
motor areas but including also more scattered activity,
and bilateral insular activity associated with this kind
of task has been reported [Matsumura et al., 1996].
Since the insula is a deeply buried part of the cortex,
fMRI signal issuing from this region is particularly
vulnerable to smoothing-induced nuisance averaging
with surrounding signal. Therefore, enhanced sensi-

tivity in this particular area appears as a natural con-
sequence of the surface-oriented approach. Indeed,
CSM reveals increased sensitivity for areas buried
more deeply into the white matter (especially the bot-
tom of sulci) and for the outermost part of gyri, while
SPM is more sensitive to signal issuing from regions of
intermediate depth (limit between darker and lighter
shaded regions in Fig. 7), where nuisance averaging
with signal not issuing from the grey matter is less
likely to happen. A similar trend was also observed for
the remaining subjects.

A final point concerns the comparative severity of
the multiple comparisons correction in the two meth-
ods. The fact that in CSM the analysis is confined to a
2D representation of the cortex might, at first sight,
seem to indicate that the 2D implementation of the
correction would necessarily be less stringent than the
classical one (a smaller domain implies less effectively
independent tests, for a similar amount of smoothing),
and therefore give rise to a more significant P value for
the same t. However, other factors come into play,
namely the presence of additional terms that stem
from the topological nature of the object under study,
and hence the situation is not as clear-cut as it might
appear. Nevertheless, a glance at Table I is enough to
conclude that the multiple comparisons correction as
implemented in CSM is indeed slightly but consis-
tently more lenient with respect to the standard im-
plementation. For instance, the last maximum listed
shows that a t of 5.82 corresponds to a corrected P of
0.007 in CSM, while a larger t (5.88) results in a cor-
rected P of 0.014 with SPM (4th maximum from bot-
tom). This trend is consistent over the three subjects
analysed. This improved sensitivity is partially due to
the exclusion of basal ganglia from the analysis. Fur-
ther testings will allow to determine if this decreased
strictness of the correction is mostly or solely attribut-
able to this feature of the proposed implementation, or
if the 2D nature of CSM plays a significant role.

CONCLUSIONS

We have presented a methodology that implements
cortical-based analysis of fMRI data. Application to a
simple experimental protocol evidenced good overall
reproducibility with respect to standard 3D-based
SPM and better sensitivity in specific instances. The
procedure applied to deal with multiple comparisons
leads to a correction less strict than its 3D counterpart,
even though further tests will be required to establish
whether this is a specific feature of this implementa-
tion.

Figure 7.
Difference (CSM 2 SPM) t images over inflated cortex (left hemi-
sphere), for subject 2. Top: Positive values of difference map
(CSM sensitivity greater than SPM sensitivity). Bottom: Negative
values of difference map (SPM sensitivity greater than CSM sensi-
tivity). In both cases, higher values of colour scale correspond to
larger differences between methods. Background is a cortical
depth binary map: regions deeper than a given threshold (corre-
sponding roughly to the average cortical depth) are shown in a
lighter shade.
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One of the critical steps in the proposed method is
the assignment of functional values to the nodes of the
cortical lattice. This step relies heavily on the adequate
match of the position of the cortical lattice and the
functional information. If this match is not good
enough, functional information could be lost or mis-
placed, and CSM analysis could lead to poorer results
when compared to 3D analysis. The results seemed to
indicate that localised failures of CSM analysis to re-
produce SPM activations were attributable to local
mismatches between anatomical and functional infor-
mation rather than misspecification of the cortical sur-
face from T1 segmented images. Clearly, CSM meth-
odology will benefit from future improvements in the
rigid or non rigid coregistration of functional and
anatomical images. Robustness of the assignment
method to small distortion or small movements is also
an important issue to be addressed in the future.

The assignment procedure proved to be robust with
respect to the amount of normal shift introduced to
account for cortical thickness: results similar to those
obtained with the chosen shift (1.5 mm) were obtained
with shiftes of 1.0 and 2.0 mm. However, the choice of
a fixed normal shift is subject to refinement, and this
stage could benefit from the incorporation of some
input concerning the actual spatial distribution of the
grey matter, available at the segmentation level. We
are currently developing assignment strategies that go
beyond mere interpolation in a search for better ro-
bustness and for the fulfillment of the potential for
improved anatomical localisation that constitutes a
feature of cortical surface based methods.

The choice of the filter size to apply to the data in 3D
has been a recurring question in fMRI (or PET) data
analysis. Clearly, since the size of the activated regions
is not known, multifiltering [Poline and Mazoyer,
1994] or multi-scaling detection [Worsley et al., 1996a]
or representation [Coulon et al., 1997] procedures can
be considered. The situation is similar with cortical
surface smoothing, except that we hope to limit the
partial volume effect induced by large kernels. How-
ever, the diffusion method used to smooth the data is
particularly well adapted to construct a scale space on
the cortical surface, and we therefore hope to extend
the CSM method with these ideas, leading both to a
description and a detection of functional activation
that are independent of the smoothing kernel.

In theory, the method could be extended to analyse
a group of subjects by using the normalisation pro-
posed by [Fischl et al., 1999] and a simple interpola-
tion onto a “standard” cortical surface lattice. How-
ever, we fear that this would prevent the study of
precise subject by subject anatomical-functional rela-

tionship and we would rather promote subject by
subject analyses and reports, even if this richer infor-
mation is difficult to communicate in practice.

In its current implementation, CSM is restricted to
the cortical surface. Being surface-oriented, it does not
lend itself to being applied to volumes such as the
internal structures of the brain (basal ganglia, thala-
mus. . .). Methods suitable for small volumes, such as
basal ganglia, already exist [Worsley et al., 1996b], and
it is one of the aims of our future work to combine
surfacic and volumic approaches.

Cortical surface anatomical information is also fre-
quently used in combination with Electroencephalog-
raphy or Magnetoencephalography data to constrain
the so-called inverse problem that aims at locating the
source of the electric or magnetic signal measured on
the surface of the scalp. It is likely that these surface
oriented techniques can benefit from CSM, since it
takes into account the geometry of the brain, and that
this method can potentially provide good prior infor-
mation for the inverse problem. Minimisation of inter-
sulcal blurring, most notably, may allow for a signif-
icant improvement in the quality of prior functional
information.

To conclude, the proposed Cortical Surface Map-
ping is a general statistical detection method that re-
duces the risk of introducing partial volume effects
due to filtering procedures. It retains the framework of
multiple comparisons correction to provide an esti-
mate of the risk of false positives, as well as the option
to apply temporal filtering procedures applied to the
data. For all these reasons, it can prove to be a step
toward a better use of anatomical information in sta-
tistical fMRI signal detection.
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