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In the present study, we analyzed 58 samples of the lesser white-toothed shrew group (Crocidura suaveolens) from
eastern Europe and Turkey, where, according to previous publications, three different mitochondrial and nuclear
lineages are present. We sequenced 799 bp of the nuclear BRCA1 gene and 400 bp of the mitochondrial cytochrome
b gene to: (1) determine a potential contact zone between the lineages; (2) detect hybridizations and introgressions
between them; and (3) comment on the level of reproductive isolation of the different lineages. We revealed two
zones of hybridization in Turkey, of which the first occurred west of the Bosphorus Straits (three hybrids) and the
second in Anatolia (twelve hybrids). In the latter, the nuclear markers revealed a large zone of hybridization, of
approximately 600 km. It also revealed that hybrids of first, second, and later generations are present within the
populations, and therefore that the reproductive isolation between the different lineages is weak. © 2008 The
Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95, 557–565.

ADDITIONAL KEYWORDS: BRCA1 – cytochrome b – dispersal – expansion – hybrid – mammals –
phylogeography.

INTRODUCTION

Numerous phylogeographic studies have shown the
impact of Pleistocene climatic fluctuations throughout
the world. In the northern hemisphere, mitochondrial
DNA (mtDNA) markers reveal general patterns that
involve southern refugia and northern recolonization
routes (Hewitt, 2000, 2004a, b). Mountain chains and
seas are known to have isolated populations in dif-
ferent glacial refugia, leading to the formation of
divergent genetic lineages, which are often considered
as different subspecies or species. Moreover, the
Pleistocene climatic fluctuations have led to various
postglacial recolonization patterns of those lineages
(Taberlet et al., 1998; Hewitt, 1999). Western Eurasian

refugia include the Iberian Peninsula, the Italo-
Balkanic region, and eastern areas such as the Cau-
casus, western Asia, and possibly northern refugia
such as the southern Urals and Carpathian Mountains
(Santucci, Emerson & Hewitt, 1998; Taberlet et al.,
1998; Nesbo et al., 1999; Palme & Vendramin, 2002;
Seddon et al., 2002; Michaux et al., 2004; Culling et al.,
2006; Dubey et al., 2006, 2007a, b; Saarma et al.,
2007). In some cases, the subsequent postglacial
expansion led to secondary contact zones and genetic
introgressions between populations derived from sepa-
rated glacial refugia; for example, in the bank vole
Clethrionomys glareolus (Tegelström & Jaarola, 1998),
in the hares Lepus timidus and L. europaeus (Thulin,
Fang & Averianov, 2006), and in the ground squirrel
Spermophilus (Ermakov et al., 2002).

Unfortunately, most phylogeographic studies are
based on mtDNA and consider at most the phenotype,
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whereas the inclusion of nuclear markers can con-
siderably enhance our understanding of population
history, as shown recently in several species of Palae-
arctic shrews of the genus Crocidura (Brändli et al.,
2005; Bannikova et al., 2006; Dubey et al., 2006,
2007b). Using these techniques, secondary contact
zones and mitochondrial introgressions can be more
easily detected. In addition, this is the only way to
reveal hybridization between different lineages and
thus to determine the level of reproductive isolation
between taxa.

Within the lesser white-toothed shrew group (Cro-
cidura suaveolens Pallas, 1811) numerous subspecies
and species have been described based on morpho-
logical characteristics (Corbet, 1978; Hutterer, 2005).
However, in studies based on mitochondrial and/or
nuclear phylogenetics, Dubey et al. (2006, 2007a)
have highlighted only ten well differentiated mito-
chondrial lineages, originating from various Pleis-
tocene refugia. Nuclear and mitochondrial datasets
were congruent for the seven different clades identi-
fied in Dubey et al. (2006). Moreover, two pairs of
morphologically recognized species, namely (1) Croci-
dura sibirica Dukelski, 1930 from Siberia and the
European C. suaveolens from Crimea (type locality)
and (2) Crocidura monacha Thomas, 1906 and Croci-
dura gueldenstaedtii Pallas, 1811, both from the Near
East, were revealed to be genetically identical and
should therefore be considered as synonyms from a
genetic point of view (Bradley & Baker, 2001; Baker
& Bradley, 2006).

Nevertheless, the specific status of these lineages
remains uncertain, and the mean genetic distance
between them (Kimura two-parameters distance =
4.7% and 10.8%, respectively) may be situated within
a single species, or represent an incipient species
or a well separated full species (Bradley & Baker,
2001).

Based on a large sample, the geographic distribu-
tion of lineages was well defined, allowing approxi-
mate delineation of the potential contact zones.
Nevertheless, no sympatry was detected. However,
in a study based on nuclear and mitochondrial
markers and focused on the Caucasus region, Ban-
nikova et al. (2006) found one hybrid (mitochondrial
introgression) between the lineages gueldenstaedtii
and suaveolens. Unfortunately, very few samples
were analyzed in the potential contact zones,
making it difficult to comment on the level of iso-
lation of the different lineages. Nonetheless, the
authors drew taxonomic conclusions, proposing
levels of classification such as ‘superspecies’, ‘super-
subspecies’, and ‘semispecies’.

In the present study, we analyzed samples of the
C. suaveolens group from western Turkey, where
three different mitochondrial and nuclear lineages

are present (Dubey et al., 2006, 2007a). The aims of
the study were: (1) to determine a potential contact
zone between the lineages; (2) to detect hybridizations
and introgressions between them; and (3) to comment
on the level of reproductive isolation of the different
lineages.

MATERIAL AND METHODS
SAMPLING

We analyzed 58 samples of the Crocidura suaveolens
group collected in eastern Europe and western Turkey
(Fig. 1, Table 1). We used as an outgroup Crocidura
brunnea and Crocidura nigripes (cyt-b: DQ630385
and DQ630384, respectively) from Indonesia, two
species that are included within the sister clade of the
C. suaveolens group (Dubey et al., 2007c). This set of
samples included material from the collections of
the University of Lausanne, Lausanne, Switzerland
(IZEA) and from the collection of the Trakya Univer-
sity, Edirne, Turkey. Some additional sequences were
obtained from Dubey et al. (2006; Table 1).

DNA EXTRACTION AND AMPLIFICATION

Liver samples from the IZEA collection were frozen
in liquid nitrogen in the field and kept for several
years at -70 °C before being stored in ethanol for
DNA extraction. Samples from the other collections
were stored directly in ethanol. The DNA extraction
was carried out using the QIA Amp DNA Mini Kit
(Qiagen). Double-stranded DNA amplifications of
the cytochrome b gene (cyt-b) were performed using
the primer pair L14724/H15149 (Irwin, Kocher &
Wilson, 1991). Amplifications of the breast cancer
susceptibility 1 gene (BRCA1) were performed using
the primer pair BRCA1f/BRCA1r18 (Dubey et al.,
2006). Amplification conditions for BRCA1 and cyt-b
consisted of 40 thermal cycles of denaturation at
94 °C for 60 s (30 s for cyt-b), annealing at 50 °C for
60 s (45 s for cyt-b), and extension at 72 °C for 120 s
(60 s for cyt-b). The polymerase chain reaction (PCR)
products were checked on a 1% agarose gel and
then purified using the QIAquick PCR Purification
Kit (Qiagen) following the manufacturer’s instruc-
tions. DNA sequencing was performed in a total
volume of 10 ml containing 1–3 ml of amplified PCR
product, 1 ml of 10 mM primer, and 4 ml of ABI
PRISM Dye Terminator 1 (Perkin-Elmer). Sequence
reactions were visualized on an ABI 3100 genetic
analyzer (Applied Biosystems).

PHYLOGENETIC METHODS

Nucleotide sequences of cyt-b and BRCA1 genes were
edited using Sequence Navigator (Parker, 1997) and
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manually aligned. Two methods of phylogenetic analy-
sis were performed for cyt-b, using PAUP*version
4.0b10 PPC (Swofford, 1998). A Neighbour-joining
(NJ) tree was constructed using Kimura two-
parameter genetic distances (Kimura, 1980). Parsi-
mony analyses (MP) were performed using the op-
tions: heuristic search, stepwise addition of sequences,
ten replicates of random additions of taxa, and tree-
bisection-reconnection branch swapping (Swofford,
1998). Tests were conducted on the complete frag-
ment, all codon positions were used, and trees were
rooted using sequences from C. brunnea and
C. nigripes. Fast maximum likelihood (ML) heuristic
searches and bootstrap analyses (1000 replicates) were
performed using PHYML (Guindon & Gascuel, 2003)
with a general time reversible model, which had been
selected previously using MODELTEST 3.06 according
to the protocol of Posada & Crandall (1998). Bootstrap
support values were obtained with 1000 pseudo-
replicates.

RESULTS
MITOCHONDRIAL DATA

In 47 sequences of 400 bp from samples of the C.
suaveolens group, thirteen haplotypes were found,
and were named H1 to H13 (Fig. 2, Table 1). They
corresponded to the three different lineages V (H1–
H2), VI (H7–H13), and VII (H3–H6) found by Dubey
et al. (2006, 2007a). The sequences are deposited
under the Genbank accession numbers EU271921–
EU271933. Lineage V was supported by bootstrap
values of 98% for ML, 99% for MP, and 100% for NJ;
lineage VI by values of 100% for ML, 97% for MP, and
99% for NJ; lineage VII by values of 81% for ML, 66%
for MP, and 90% for NJ.

In the present study, lineage V was found to be
distributed from western Turkey (east of the Bos-
phorus) to Georgia; lineage VI was found in western
Turkey (east of the Bosphorus) and on Lesvos Island
(Greece); and lineage VII was distributed from
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Figure 1. Location of populations (black round) with mitochondrial lineages (star, V; circle, VI; hexagon, VII) and nuclear
lineages and alleles of each sample (V-A13, V-A14, V-A15, VI-A7, VI-A8, VI-A17, VI-A16, VII-A4, VII-A5, VII-A6,
VI-VII-A18). Populations included within a circle are those possessing haplotypes or alleles of two different lineages
(eastern of the Bosphorus Strait, V and VI; western of the Bosphorus Strait, VI and VII).
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ğ-
B

u
rs

a,
Tu

rk
ey

18
20

05
/2

8
V

V
-A

15
H

1
O

sm
an

ca
V

il
la

ge
-B

ig
ad

iç
-B

al
ik

es
ir

,
Tu

rk
ey

19
20

03
/1

65
V

I
V

I-
A

7/
V

I-
A

16
H

10
A

la
ca

at
lı

V
il

la
ge

-S
ın

dı
rg

ı-
B

al
ik

es
ir

,
Tu

rk
ey

20
20

03
/1

51
V

I
V

I-
A

7
H

11
E

ri
kl

i
V

il
la

ge
-B

an
dı

rm
a-

B
al

ik
es

ir
,

Tu
rk

ey
21

20
03

/7
1

V
I

V
I-

A
7/

V
I-

A
8

H
10

E
ri

kl
i

V
il

la
ge

-B
an

dı
rm

a-
B

al
ik

es
ir

,
Tu

rk
ey

21
20

03
/7

2
V

I
V

I-
A

7
H

13
M

an
ya

s
K

u
s

C
en

n
et

i-
M

an
ya

s-
B

al
ik

es
ir

,
Tu

rk
ey

22
20

03
/9

4
V

I
V

I-
A

7
H

10
S

av
as

te
pe

-B
al

ik
es

ir
,

Tu
rk

ey
23

20
03

/1
46

V
I

V
I-

A
7

H
10

Y
u

ka
rı

K
ız

ıl
ca

V
il

la
ge

-K
em

al
pa

sa
-İ
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Switzerland to western Turkey (west of the Bospho-
rus). All populations showed only haplotypes of
one lineage, except in western Turkey, east of the
Bosphorus, where haplotypes of lineages V and VI
were found within the same locality (Hamzabey
and Soğukpınar; Fig. 1, localities 17 and 18,
respectively).

Sequences of cyt-b obtained by Dubey et al. (2006)
(Table 1) were not included in the phylogeny shown in
Figure 2 because the sequences were not entirely
overlapping. Nevertheless, they were used to deter-
mine the different existing lineages in the present
study (results not shown).

NUCLEAR DATA

From 799 bp sequences of the BRCA1 gene, we found
11 different alleles within the studied areas, which
were named A4 to A18. Six alleles corresponded to
alleles previously found in Dubey et al. (2006): A4 to
A6 of lineage VII, A7 and A8 of lineage VI, and A13 of
lineage V. For convenience, the same nomination is
used in the present study, and the five newly identi-
fied alleles are named A14 to A18. The number of
mutations varied from one to six between the differ-
ent alleles (Table 2); three characteristic mutations
separated the alleles of lineage V from those of lin-
eages VI and VII. Alleles A13 to A15 were found in
Turkey and Georgia and were associated with mito-
chondrial lineage V. Alleles A7, A8, A16, and A17 were
found in western Turkey and were associated with
mitochondrial lineage VI, and alleles A4 to A6 were
found in Europe and were associated with mitochon-
drial lineage VII. Allele A18 exhibited the character-
istic mutations of lineages VI and VII. However,
because it was found in only one sample, from the
west of the Bosphorus, in association with allele A8
and a haplotype of lineage VII, it was not possible to
classify this allele within lineage VI or VII. The
eleven alleles are named as follows in Tables 1 and 2
and Figure 1: V-A13, V-A14, V-A15, VI-A7, VI-A8,
VI-A17, VI-A16, VII-A4, VII-A5, VII-A6, and VI-VII-
A18. The sequences are deposited under Genbank
accession numbers EU271910–EU271920.

In Turkey, six different populations showed alleles
of two different nuclear lineages, as detailed below.

Population 17 (Fig. 1; Hamzabey): one homozygote VI
with the haplotype lineage V, and one heterozygote
V/VI with the haplotype lineage VI were found (Fig. 1,
Table 1).

Population 18 (Soğukpınar): one homozygote VI with
the haplotype lineage VI, one homozygote V with the
haplotype lineage V, two heterozygotes V/VI with
the haplotype lineage VI, and one heterozygote with
the haplotype lineage V were found.

Population 25 (Özbek): nine samples of homozygotes
VI with the haplotype lineage VI, and two heterozy-
gotes V/VI with the haplotype lineage VI were found.

Population 15 (Paşamandıra): four homozygotes VI
with the haplotype lineage VI, one homozygote V with
the haplotype lineage VI, and one heterozygote V/VI
with the haplotype lineage VI were found.

Population 29 (Balkusan): three homozygotes VI, one
homozygote V, and one heterozygote V/VI with the
haplotype lineage V were found.

C. nigripes
C.brunnea

H12

H13

H11

H10

H9

H7

H8

H1

H2

H5

H6

H4

H3

0.01

Bootstrap:
ML
MP
NJ

81
66
90

98
99

100

100
97
99

100
100
100

VI

/
/
/

VII

V

Figure 2. Phylogeny of the 400 bp cytochrome b fragment
analysed with maximum likelihood, using the general
time reversible model of substitution and tree-bisection-
reconnection branch swapping. Values in branches are
bootstrap indices of support for the major branches
for maximum likelihood (ML), parsimony (MP) and
Neighbour-joining (NJ) analyses (percentage of 1000).
Codes are as in Table 1.
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Population 11 (Edirne): two homozygotes VI with the
haplotype lineage VII and one homozygote VI with
the haplotype lineage VII were found.

DISCUSSION

According to Dubey et al. (2006, 2007a), three different
mitochondrial and nuclear lineages, designated V to
VII, of the lesser white-toothed shrew are present
in eastern Europe and Turkey. The mitochondrial
Kimura two-parameter genetic distance between the
lineages is 5.8% for V/VI, 4.7% for VI/VII, and 5.1% for
V/VII. These lineages are known to have a parapatric
distribution: lineage V is distributed strictly in central
and eastern Turkey, lineage VI in western Anatolia,
and lineage VII in central and eastern Europe.

Based on thorough sampling in this area, the
present study has highlighted more complex relation-
ships between the mitochondrial and nuclear data
than those reported previously by Dubey et al. (2006,
2007a). Unexpectedly, we revealed hybridizations
between lineages VI and VII in western Turkey, west
of the Bosphorus, where three samples from different
populations possessed haplotypes of lineage VII and
nuclear alleles of lineage VI (Fig. 1). By contrast,
lineage VI was only found east of the Bosphorus
strait. From a biogeographic point of view, this means
that lineage VI, during its postglacial expansion from
a refugium situated in Anatolia (Dubey et al., 2006),
crossed the Bosphorus strait and colonized eastern
Europe. This type of colonization from Turkey to
Europe is poorly documented by current phylogeo-
graphic studies; it has only been described previously
for the bicolored shrew Crocidura leucodon (Dubey
et al., 2007b). However, the permeability of the
Bosphorus for various species has already been
demonstrated for the reverse direction in classical
zoogeography (Hosey, 1982).

Similarly, hybridizations between lineages V and
VI were detected in western and southern central
Turkey, with 12 hybrids possessing mitochondrial
haplotypes and nuclear alleles of one of the respective
lineages, and some being heterozygotes or homozy-
gotes (i.e. hybrids of first, second, and/or later gen-
erations). The nuclear data revealed a large zone of
hybridization; the most distant populations sharing
the two lineages were separated by approximately
600 km (Fig. 1).

Interestingly, the mitochondrial data revealed a
much smaller introgression zone: the only two popu-
lations sharing the two different haplotype lineages
were separated by less than 50 km. Consequently, the
mitochondrial introgression is very limited compared
with the nuclear one, despite the fact that mtDNA is
not linked directly to genes that are involved in
reproductive isolation, and may penetrate reproduc-
tive barriers more easily than nuclear DNA (Barton &
Jones, 1983; Takahata & Slatkin, 1984; Tegelström &
Jaarola, 1998).

The present study failed to demonstrate clear
reproductive isolation between three different lin-
eages of the C. suaveolens group, despite cyt-b dis-
tances of 4.7% to 5.8% between them, and an origin
dating from the Lower Pleistocene (Dubey et al., 2006,
2007a). It is probable that the absence of karyotypic
rearrangement between the different lineages of the
C. suaveolens group supported these types of intro-
gression between relatively distant sister taxa.

In a recent study employing nuclear and mitochon-
drial markers, Bannikova et al. (2006) translated the
different lineages of C. suaveolens s.l. into taxonomic
units and attributed levels (superspecies, supersub-
species, semispecies) in accordance with the branch-
ing pattern of the resulting phylogeny. By contrast,
Dubey et al. (2006, 2007a) preferred to avoid any
splitting as long as the degree of genetic isolation at

Table 2. Mutations observed between the different alleles of BRCA1 and location in bp

Lineage and allele 28 122 154 171 245 526 531 581 589 631 656 735 740

V-A13 A G C A T G G G T G A A G
V-A14 . . . . . . . . . A . . .
V-A15 . . . . C . . . . . . . .
VI-A7 . A . G C . A . . . . T A
VI-A8 . . . G C . . . . . . T A
VI-A16 . . . G C . . A . . . T A
VI-A17 . . T G C . . . . . . T A
VII-A4 . . . G C . . . . . T T A
VII-A5 C . . G C . . . . . . T A
VII-A6 C . . G C A . . . . . T A
VI-VII-A18* . . . G C . . . C . . T A

Characteristic mutations of the lineages VI and VII are shown in bold.
*See Results section.
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the contact zones is unknown. In the present study,
the results obtained provide evidence of conspecificity
between lineages V to VII. It is probable that lineages
IX (Crocidura suaveolens aleksandrisi from Lybia)
and X (Crocidura suaveolens cypria from Cyprus
Island; Dubey et al., 2007a), which show a similar
level of differentiation, should be considered as con-
specific, although they are geographically isolated
and no contact zones have been identified.

The study of contact zones between deeper branches
of the C. suaveolens group, i.e. between lineages II
(Crocidura suaveolens suaveolens) and III (Crocidura
suaveolens caspica), or of both with lineage V (Croci-
dura suaveolens gueldenstaedtii), or between lineages
IV (Crocidura suaveolens iculisma) and VIII (Croci-
dura suaveolens mimula), will be a challenge. Never-
theless, no thorough sampling in potential contact
zones is currently possible. In conclusion, we have
revealed that the clear large-scale biogeographic
pattern, shown in Dubey et al. (2006, 2007a), with
parapatric distributions of different genetic lineages of
lesser white-toothed shrews, is too simplistic. There-
fore, sampling in potential contact zones coupled with
the analyses of mitochondrial and nuclear markers is
the only way to reveal a clear phylogeographic pattern,
as well as the level of reproductive isolation between
closely-related taxa. Consequently, our results support
the argument that both nuclear and mitochondrial
markers should be included in phylogenetic studies
because the full story can be more complex than the
analysis of either category of marker alone might
indicate.

ACKNOWLEDGEMENTS

We thank Nelly Di Marco for laboratory facilities and
Darron Cullen for linguistic advice. This work was
supported by the Herbette Foundation, University of
Lausanne.

REFERENCES

Baker RJ, Bradley RD. 2006. Speciation in mammals and
the genetic species concept. Journal of Mammalogy 87:
643–662.

Bannikova AA, Lebedev VS, Kramerov DA, Zaitsev MV.
2006. Phylogeny and systematics of the Crocidura suaveo-
lens species group: corroboration and controversy between
nuclear and mitochondrial DNA markers. Mammalia 70:
106–119.

Barton N, Jones JS. 1983. Mitochondrial-DNA-New clues
about evolution. Nature 306: 317–318.

Bradley RD, Baker RJ. 2001. A test of the genetic species
concept: cytochrome-b sequences and mammals. Journal of
Mammalogy 82: 960–973.

Brändli L, Handley LJ, Vogel P, Perrin N. 2005. Evolu-

tionary history of the greater white-toothed shrew (Croci-
dura russula) inferred from analysis of mtDNA, Y and X
chromosome markers. Molecular Phylogenetics and Evolu-
tion 37: 832–844.

Corbet GB. 1978. The mammals of the Palaearctic Region: a
taxonomic review. London, Ithaca: British Museum (Natural
History), Cornell University Press.

Culling MA, Janko K, Boron A, Vasil’ev VP, Cote IM,
Hewitt GM. 2006. European colonization by the spined
loach (Cobitis taenia) from Ponto-Caspian refugia based on
mitochondrial DNA variation. Molecular Ecology 15: 173–
190.

Dubey S, Cosson J-F, Magnanou E, Vohralík V, Hutterer
R, Vogel P. 2007a. Mediterranean populations of the
Lesser white-toothed shrew (Crocidura suaveolens group):
an unexpected puzzle of Pleistocene survivors and prehis-
toric introductions. Molecular Ecology 16: 3438–3452.

Dubey S, Cosson J-F, Vohralik V, Krystufek B, Diker E,
Vogel P. 2007b. Molecular evidence of Pleistocene bidirec-
tional faunal exchange between Europe and the Near East:
the case of the bicolored shrew (Crocidura leucodon, Sori-
cidae). Journal of Evolutionary Biology 20: 1799–1808.

Dubey S, Salamin N, Ohdachi SD, Barrière P, Vogel P.
2007c. Molecular phylogenetics of Soricidae (Mammalia,
Eulipotyphla) reveals timing of transcontinental colonisa-
tions. Molecular Phylogenetics and Evolution 44: 126–137.

Dubey S, Zaitsev M, Cosson J-F, Abdukadier A, Vogel P.
2006. Pliocene and Pleistocene diversification and multiple
refugia in a Eurasian shrew (Crocidura suaveolens group).
Molecular Phylogenetics and Evolution 38: 635–647.

Ermakov OA, Surin VL, Titov SV, Tagiev AF, Luk AV.
2002. A molecular genetic study of hybridization in four
species of ground squirrels (Spermophilus: Rodentia, Sciu-
ridae). Russian Journal of Genetics 38: 796–809.

Guindon S, Gascuel O. 2003. A simple, fast, and accurate
algorithm to estimate large phylogenies by maximum like-
lihood. Systematic Biology 52: 692–704.

Hewitt GM. 1999. Post-glacial re-colonization of European
biota. Biological Journal of the Linnean Society 68: 87–112.

Hewitt GM. 2000. The genetic legacy of the quaternary ice
ages. Nature 405: 907–913.

Hewitt GM. 2004a. Genetic consequences of climatic oscilla-
tions in the Quaternary. Philosophical Transactions of the
Royal Society Series B, Biological Sciences 359: 183–195.

Hewitt GM. 2004b. The structure of biodiversity – insights
from molecular phylogeography. Frontiers in Zoology 1: 4.

Hosey GR. 1982. The Bosporus land-bridge and mammal
distributions in Asia Minor and the Balkans. Säuget-
ierkunde Mitt 30: 53–62.

Hutterer RM. 2005. Order Soricomorpha. In: Wilson DE,
Reeder DM, eds.. Mammal species of the world: a taxonomic
and geographic reference, 3rd edn. Baltimore, MD: Johns
Hopkins University Press, 220–311.

Irwin DM, Kocher TD, Wilson AC. 1991. Evolution of the
cytochrome b gene of Mammals. Journal of Molecular Evo-
lution 32: 128–144.

Kimura M. 1980. A simple method for estimating evolution-
ary rate of base substitution through comparative studies of

564 S. DUBEY ET AL.

© 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95, 557–565



nucleotide sequences. Journal of Molecular Evolution 16:
111–120.

Michaux JR, Libois R, Paradis E, Filippucci MG. 2004.
Phylogeographic history of the yellow-necked fieldmouse
(Apodemus flavicollis) in Europe and in the Near and
Middle East. Molecular Phylogenetics and Evolution 32:
788–798.

Nesbo CL, Fossheim T, Vollestad LA, Jakobsen KS. 1999.
Genetic divergence and phylogeographic relationships
among European perch (Perca fluviatilis) populations reflect
glacial refugia and postglacial colonization. Molecular
Ecology 8: 1387–1404.

Palme AE, Vendramin GG. 2002. Chloroplast DNA varia-
tion, postglacial recolonization and hybridization in hazel,
Corylus avellana. Molecular Ecology 11: 1769–1780.

Parker SR. 1997. Sequence Navigator. Multiple sequence
alignment software. Methods of Molecular Biology 70: 145–
154.

Posada D, Crandall KA. 1998. MODELTEST: testing the
model of DNA substitution. Bioinformatics 14: 817–
818.

Saarma U, Ho SYW, Pybus OG, Kaljuste M, Tumanov IM,
Kojola I, Vorobiev AA, Markov NI, Saveljev AP, Vald-
mann A, Lyapunova EA, Abramov AV, Mannil P,
Korsten M, Vulla E, Pazetnov SV, Pazetnov VS, Putch-
kovskiy SV, Rokov AM. 2007. Mitogenetic structure of
brown bears (Ursus arctos L.) in northeastern Europe and a

new time frame for the formation of European brown bear
lineages. Molecular Ecology 16: 401–413.

Santucci F, Emerson BC, Hewitt GM. 1998. Mitochondrial
DNA phylogeography of European hedgehogs. Molecular
Ecology 7: 1163–1172.

Seddon JM, Santucci F, Reeve N, Hewitt GM. 2002.
Caucasus Mountains divide postulated postglacial coloniza-
tion routes in the white-breasted hedgehog, Erinaceus con-
color. Journal of Evolutionary Biology 15: 463–467.

Swofford DL. 1998. PAUP*. Phylogenetic Analysis Using
Parsimony (* and other Methods). Version 4.0b1. Sunder-
land, MA: Sinauer Associates.

Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF.
1998. Comparative phylogeography and postglacial coloni-
zation routes in Europe. Molecular Ecology 7: 453–464.

Takahata N, Slatkin M. 1984. Mitochondrial gene flow.
Proceedings of the National Academy of Sciences of the
United States of America, Biological Sciences 81: 1764–
1767.

Tegelström H, Jaarola M. 1998. Geographic localization of
a contact zone between bank voles Clethrionomys glareolus
with distinctly different mitochondrial DNA. Acta Therio-
logica 43: 175–183.

Thulin CG, Fang MY, Averianov AO. 2006. Introgression
from Lepus europaeus to L-timidus in Russia revealed by
mitochondrial single nucleotide polymorphisms and nuclear
microsatellites. Hereditas 143: 68–76.

HYBRIDIZATIONS IN THE LESSER WHITE-TOOTHED SHREW 565

© 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95, 557–565


