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Abstract

Environmental gradients have been postulated to generate patterns of diversity

and diet specialization, in which more stable environments, such as tropical

regions, should promote higher diversity and specialization. Using field sam-

pling and phylogenetic analyses of butterfly fauna over an entire alpine region,

we show that butterfly specialization (measured as the mean phylogenetic dis-

tance between utilized host plants) decreases at higher elevations, alongside a

decreasing gradient of plant diversity. Consistent with current hypotheses on

the relationship between biodiversity and the strength of species interactions,

we experimentally show that a higher level of generalization at high elevations

is associated with lower levels of plant resistance: across 16 pairs of plant spe-

cies, low-elevation plants were more resistant vis-à-vis their congeneric alpine

relatives. Thus, the links between diversity, herbivore diet specialization, and

plant resistance along an elevation gradient suggest a causal relationship analo-

gous to that hypothesized along latitudinal gradients.

Introduction

Darwin (1859) and Wallace (1878) were among the first

to document more diverse and specialized biotic inter

actions, mediated by higher numbers of species, in the

tropics compared with higher latitudes. Since then, multi-

ple hypotheses have been developed to explain gradients

in the strength of biotic interactions, and how these relate

to gradients in species diversity (e.g., Fischer 1960; Mac-

Arthur 1972; Pennings et al. 2009; Schemske et al. 2009).

Speciation and diversification have been postulated to be

catalyzed by stronger and more specialized biotic inter

action, through the species-driven expansion of available

resources and niche space (Schemske et al. 2009). In par-

ticular, high herbivorous insect richness in the tropics has

been suggested to shape plant diversification through the

evolution of defense specialization (Ehrlich and Raven

1964; Coley and Aide 1991).

Higher herbivore richness and abundance in tropical

regions compared with temperate climates may have pro-

moted more efficient plant defenses and the need for

insects to specialize to overcome them (Ehrlich and Raven

1964; Levin and York 1978; Coley and Aide 1991). While

there is evidence of more intense insect herbivory on plants

in the tropics (Pennings et al. 2009; Schemske et al. 2009),

there is still conflicting evidence with regard to possible

differences of diet breadth (Fiedler 1998; Dyer et al. 2007;

Novotny et al. 2007; Slove and Janz 2010) and plant

defense (Moles et al. 2011) along latitude, and these

dimensions have never been simultaneously assessed.

Other environmental gradients, such as elevation, offer

biogeographically controlled means to address the rela-
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tionships between diversity, herbivore diet specialization,

and plant defense. Elevational studies, which encompass

steep clines over relatively small geographical ranges, are

more resistant to problems of dispersal and historical

contingency than latitudinal studies. When ascending rap-

idly from lowland to alpine environments, species experi-

ence strong abiotic variation over extremely short

distances (Körner 2003). With increasing elevation,

changes in partial pressure, temperature, wind speed, UV

exposure, and soil have been shown to affect the phenol-

ogy, morphology, physiology, and chemistry of host

plants (Hodkinson 2005) that in turn may affect defensive

capacities. Recent evidence indicates that herbivore diver-

sity (Beck et al. 2011), herbivore attack (Scheidel and

Bruelheide 2001), and herbivore abundance and special-

ization (Rodrı́guez-Castañeda et al. 2010) also vary along

altitudinal gradients, paralleling the findings for latitude.

In this study, we employed hypotheses for latitudinal

gradients with elevational gradients by simultaneously

investigating variation in diversity and diet breadth in the

superfamily Papilionoidea, along with resistance of poten-

tial host plants. We postulated that, while coevolution of

plant defense and insect resistance may have driven plant

and insect diversification in warmer and more stable con-

ditions (i.e., lowlands), the decrease of herbivore abun-

dance with elevation should relax plant resistance and

promote insect generalization (Coley and Aide 1991).

Specifically, we tested the following hypotheses: (1) due

to reduced herbivore pressure and/or more severe envi-

ronmental conditions, plant resistance against herbivores

should be relaxed at high altitudes and (2) lower plant

resistance at high elevations should promote greater diet

breadth in butterfly species that have colonized colder

environments.

Materials and Methods

Field sampling of butterflies and plants

Over the course of two consecutive summers, we investi-

gated species composition of butterfly superfamily Papi-

lionoidea (sensu Heikkilä et al. 2012) and angiosperm

communities over a >700 km2 area of the Western Swiss

Alps (Fig. 1). The study area ranges in elevation from

800 m to 3210 m a.s.l. (Fig. S1). We selected sites outside

forested areas, following a balanced random-stratified

sampling design based on elevation, slope, and aspect

(Hirzel and Guisan 2002). To assess butterfly richness

and species composition along elevational gradient, we

sampled 192 sites between May 15 and September 15, at

hours when butterflies were most active (i.e., 10:00–
17:00 h) and only in good weather conditions. Each 50

(a) (c)

(b)

Figure 1. Examples of Alpine biodiversity included in the present study. Shown is (a) the nymphalid butterfly Coenonympha gardetta, (b) the

lycaenid butterfly Plebejus argus, and (c) a sample of the Swiss Alpine flora. In the foreground two species included in the multi-species

resistance experiment are visible: Thymus alpestris (now T. pulegioides subsp. pulegioides) with pink flowers, and Potentilla aurea with yellow

flowers.
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9 50 m site was visited every 3 weeks, during which we

conducted 45 min of observation. Butterflies were col-

lected with a net and identified and inventoried by spe-

cies. We collected adult specimens rather than caterpillars

because they were more conspicuous, easier to identify,

and more reliable to survey. By excluding migratory spe-

cies (see below) we assume that the correlation between

adult observation and sites reflects one of the larvae.

Additionally, within a 4 m2 area at the center of each of

the 192 sites, we exhaustively inventoried the vegetation

to characterize the plant community of the site (for

details refer to Dubuis et al. 2011). The relationships

between plant richness and butterfly richness and abun-

dance as a function of altitude were analyzed using a

General linear model (GLM) with a quasi-Poisson distri-

bution and included both linear and quadratic terms

given the nonlinear nature of the relationships.

Analysis of diet breadth along elevation
gradients

We reconstructed the phylogeny of all angiosperm gen-

era and butterfly species within the study area (see Figs.

S2, S3, and methodological details of phylogenetic

reconstruction therein). The larval host plant affiliations

(i.e., plant genera) of each butterfly species were

extracted from a comprehensive literature survey (Ebert

and Rennwald 1993; Lepidopterologen-Arbeitsgruppe

1994; Huemer 2004). We measured the larval diet

breadth of each butterfly species as the mean phyloge-

netic distance (MPD) between its host plant genera.

Although across closely related, coexisting species we

might observe overdispersion of secondary metabolite

diversity due to herbivore-mediated character displace-

ment (Kursar et al. 2009), phylogenetic distance can be

observed as an integration of plant traits, such as chemi-

cal defenses, and has been argued as an optimal predic-

tor of insect specialization (Rasmann and Agrawal 2011).

The use of phylogenetic distance rather than an arbitrary

taxonomic unit (such as number of genera) can also

overcome the subjectivity of taxonomic scale choice

(Symons and Beccaloni 1999). Moreover, plant species

and genus diversity decrease with rising elevation, which

could lead to spurious observation of higher degrees of

polyphagy at low elevations (Fig. S4). We used the

“MPD” function in the Picante R package implementing

tools for extracting MPD between host plants (Kembel

et al. 2010). We related the species’ MPD to mean eleva-

tion of occurrence for each species using a linear model

(LM), accounting for phylogenetic distance among but-

terfly species as implemented in the phylogenetic gener-

alized least square (PGLS) in the caper R package

(Orme 2011). The PGLS function addresses phylogenetic

nonindependence between species by incorporating

covariance between taxa into the calculation of estimated

coefficients. For this analysis, we considered only nonmi-

gratory butterfly species that occurred in at least 10% of

the 192 sampled communities, to avoid less accurate

estimates of elevation optima for rare species due to low

sample size. Additionally, considering all nonmigratory

species, while including all species, we related the eleva-

tion of each locality to the corresponding butterfly com-

munity mean diet breadth, which was measured as the

average value of diet breadth (i.e., MPD) for all butterfly

species observed in each community. To include nonlin-

ear relationships, we related average MPD to elevation

using a Gaussian GLM with both linear and quadratic

terms.

Plant resistance along elevation gradients

To assess the degree of plant resistance at different eleva-

tions, we performed a cafeteria test using Spodoptera litto-

ralis caterpillars (obtained from Syngenta, Switzerland) in

a phylogenetically controlled paired design. S. littoralis is

a generalist known to consume plants of at least 40 differ-

ent families (Brown and Dewhurst 1975) and is widely

used for performing plant resistance bioassays. Analysis of

congeneric plant species that span large segments of the

phylogeny can be understood as a phylogenetically correct

independent contrast, as long as the compared branches

do not intersect (Felsenstein 1985). We used S. littoralis

caterpillars, not yet present in Switzerland, as a nonadapt-

ed caterpillar to remove the confounding effect of possi-

ble local adaptation to plants.

Fresh leaves of 16 pairs of congeneric plant species

were sampled at either high (about 2000 m a.s.l) or low

(about 800 m a.s.l.) elevation (Table S1). We chose con-

generic plant pairs that never occupy the contrasted eleva-

tions simultaneously. The leaves were preserved at 5°C
before being offered to neonate caterpillars under

controlled temperature (24°C day) and light (14/10 h)

conditions (n = 10 replicates per species) and were chan-

ged twice over the course of the 1-week trials. After 7

days, the caterpillar weights were measured.

To remove the confounding effect of leaf toughness, a

potential antiherbivore trait (Schoonhoven et al. 2005)

that may vary with elevation (Körner 2003), we also deter-

mined mean specific leaf area (SLA) for each plant species

in the experiment. Between 4 and 20 individuals per plant

species were measured, from locations of contrasting expo-

sure, slope, and elevation to cover each plant species’ total

ecological range and capture its entire regional intraspecific

trait variation. For each individual plant, a fully developed

leaf was sampled, immediately weighed, and scanned using

ImageJ software (http://rsbweb.nih.gov/ij/) to quantify its
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area. The leaves were then dried at 40°C for one night to

obtain dry mass, and SLA was then calculated as the ratio

of leaf surface to dry mass, expressed in mm² mg�1.

We related the weight of each caterpillar to the eleva-

tion and SLA, accounting for the genus of the host plant.

We tested the significance using a permutation-based

analysis of variance, as implemented in the lmPerm pack-

age in R (Wheeler 2010), to overcome nonnormally dis-

tributed data, and we used a rank-transformation to

overcome heterogeneity of variances. We related the sur-

vival (0 or 1) to elevation, accounting for genus using a

GLM with binomial distribution.

Results

Shifts in diet breadth along elevation
gradients

Overall, we found that plant species richness (Fig. 2a, linear:

t = �7.1, P < 0.0001, quadratic: r = 0.55, t = �7.2,

P < 0.0001), butterfly species richness (Fig. 2b, linear:

t = �5.64, P < 0.0001, quadratic: t = �3.04, P < 0.0001),

and butterfly abundance (Fig. 2c, linear: t = �6.9, P < 0.0001,

quadratic: t = 1.9, P = 0.053) all decreased with increasing ele-

vation. We also observed a peak of richness at mid-elevation

for plants, which would point to a mid-domain effect as sug-

gested by Grytnes (2003), but this was not the case for butter-

flies. On the other hand, larval diet breadth increased with

increasing elevation (i.e., insects became more generalized)

when accounting for phylogenetic nonindependence between

butterfly species using a phylogenetic GLS model (Fig. 3a,

df = 47, t = 2.27, P = 0.02). As corollary to this second result,

butterfly communities at high elevations were found to be

composed of species displaying greater average larval diet

breadth compared with low-elevation communities (Fig. 3b,

linear: t = 6.12, P < 0.0001, quadratic: t = �3.25, P = 0.001).

(a)

(b)

(c)

Figure 2. Species richness and abundance along elevation gradients.

Shown are the relationships between elevation and (a) plant species

richness, (b) butterfly species richness, and (c) butterfly abundance,

sampled in 192 plots along elevation gradients of the Swiss Alps.

(a)

(b)

Figure 3. Host specialization along elevation gradients. (a)

Relationship between the average elevation of occurrences of the

butterfly species and their larval diet breadth, and (b) relationship

between the elevation of the sampled butterfly communities and the

community mean of the butterfly larval diet breadth.
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Overall, we found that several clades in the Papilionoidea fam-

ily have independently adapted to tolerate the severe environ-

mental conditions found at high elevations, and to increase

their diet breadth (Fig. 4, blue tones on the phylogeny, along

with longer bars).

Plant resistance along elevation gradients

Across 16 pairs of congeneric plant species, we found that

caterpillars grew 50% less rapidly on low-elevation plants

compared with high elevation plants (Fig. 5, permutation

analysis; elevation effect, R Mean Sq = 1.53, P = 0.009).

The analysis took into account potential variation among

genera (genus effect, R Mean Sq = 6.4, P < 0.0001) and

variation in SLA (SLA effect, R Mean Sq = 0.42, P = 0.21,

and elevation*SLA interaction, R Mean Sq = 0.79,

P = 0.075) as a measure of leaf thickness. Particularly, high

elevation plants had 20% denser leaves, but this result was

found to be genus specific. Survival of neonate caterpillars,

a critical step in the lepidopteran life-cycle (Schoonhoven

Figure 4. Butterfly phylogeny and their diet breadth in relation to altitude. Shown is the pruned tree of butterfly species that are both

nonmigratory and found in at least 10% of the field plots from a comprehensive phylogeny of all butterflies sampled (see Fig. S2). Bars on the

right show butterfly diet breadth measured as the mean phylogenetic distance between the host plant species. Each bar is colored according to

the optimum habitat for each butterfly species, where colder (blue) colors represent high elevations, and warmer (orange) colors represent low

elevations. Ancestral state of elevation optimum was reconstructed with maximum likelihood using the ace function in ape R package and shows

that colonization of high elevation is a derived state.

Figure 5. Lower plant resistance for high-elevation plant species.

Shown is the mean (± 1SE) Spodoptera littoralis larval mass after

7 days of feeding on 16 high elevation (open bars) plant species, and

their congeneric low elevation (black bars) across all genera (left), and

reaction norms for each individual plant genus (right) (•P < 0.1;

*P < 0.05; **P < 0.01; ***P < 0.001, †, no survival on both species,

using permutation analyses on SLA corrected data). All significant

effects indicate lower growth rate on low-elevation plants. Plant

species were sampled along the phylogeny to include the most

commonly found families (Table S1).
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et al. 2005), did not differ between the high and low eleva-

tions (Fig. S5, t = �0.276, P = 0.78).

Discussion

This study follows hypotheses for latitudinal gradients

(Beaver 1979; Coley and Aide 1991; Dyer et al. 2007) and

found that, along with overall reduced species richness,

butterflies occurring at high elevations displayed greater

diet breadth, while host plants were less resistant to gen-

eralist herbivores. The results from field sampling and

empirical bioassays of regional butterfly fauna suggest that

lower plant defense at high elevations promotes trophic

generalization in those butterfly species that have colo-

nized colder conditions.

Because of the correlative nature of this study, it

remains to be tested whether relaxation of plant resistance

traits at high elevations is a direct result of lower herbi-

vore pressure, as suggested by the lower abundance of

butterflies found in our study, or if plant resistance traits

are also, or even primarily, influenced by environmental

factors, such as temperature or resource availability.

Indeed, a number of plant traits, including foliar nitrogen

(Erelli et al. 1998; Hengxiao et al. 1999; Richardson

2004), defensive chemistry (alkaloids, coumarins, pheno-

lics, and terpenes [Erelli et al. 1998; Hengxiao et al. 1999;

Salmore and Hunter 2001; Zehnder et al. 2009]), and

structural compounds, such as lignin and cellulose (Rich-

ardson 2004), vary with elevation, which may result from

a combination of herbivory pressure and abiotic condi-

tions. Leaves with higher concentrations of cellulose and

lignin are stronger, more resistant to damage, and poten-

tially longer lived than leaves with lower fiber concentra-

tions (Abrahamson et al. 2003; Richardson 2004).

Similarly, phenolic compounds can protect leaves from

photodamage by acting as antioxidants and reducing her-

bivore fitness (Close and McArthur 2002).

An analysis of soil nutrient elements (C/N, P) in the

same study area showed no relationship with elevation

(Fig. S6). On the other hand, steep altitudinal gradients are

regularly associated with a reduction in temperature (Fig.

S7). Lower temperatures are generally associated with

slow-growing conditions (Körner 2003), and in accordance

with a classic hypothesis, slow-growing plants should

invest more in defenses (Coley et al. 1985; Fine et al.

2004). However, we argue that this should be true only in

the case of identical abiotic conditions and probability of

herbivore attack. We propose that, along elevation gradi-

ents, even if plants have slower growth rates (Körner

2003), lower herbivore abundance leads to relaxation of

plant defenses, which in turn favors increased herbivore

diet breadth. Lower temperatures may also reduce photo-

synthetic capacity and therefore the resources that can be

invested in defense. Nonetheless, more empirical data on

leaf damage, herbivore pressure, and insect communities

that have colonized colder environments are needed to test

whether herbivores and/or abiotic conditions are the main

drivers of plant defense evolution.

Other processes may have also shaped the observed pat-

tern of less herbivore specialization at high altitudes. Cli-

matic oscillations that spanned the Quaternary may have

reduced the number of species-specific plant-insect interac-

tions in alpine habitats by limiting the timescale over which

long-term coevolutionary processes could occur, due to

recurrent local extinctions and continually shifting available

host plant ranges (Schönswetter et al. 2005). Herbivorous

insects, unable to follow these shifting ranges, would have

become locally extinct if no other available feeding plants

were present, thus favoring the emergence of generalist hab-

its. However, this would only be true for herbivores with

very low dispersal capacity. Alternatively, at high elevations,

short-lived exothermic insects need to distribute their eggs

during the short periods of good flight weather. The less

selective they are, the easier they can achieve high fecundity.

At high elevation, we observed a few rare species (observed

at <10% of the sites) that display a restricted trophic niche

(e.g., Plebejus glandon, Erebia pluto, E.mnestra, Pontia calli-

dice feeding on closely related Androsace spp., Poaceae and

Brassicaceae, respectively). This suggests that although

relaxed plant defenses at high elevation may facilitate the

acquisition of broader trophic niche breadth, remaining

specialized is still an option. However, the low ecological

success indicated by the rarity may be explained by their

specialization in the unstable environment at high elevation.

Finally, other biotic factors, such as top-down effects from

predators, have been shown to contribute to insect feeding

habits (Singer et al. 2012) and in turn to plant-defense

expression. These factors should thus be included in future

experiments on specialization along elevation gradients

(Preszler and Boecklen 1996).

Can our results be generalized to other ecosystems?

Novotny et al. (2005) found no difference in moth diet

breadth between sites from two elevations at 200 and

1800 m a.s.l. in tropical New Guinea, while Rodrı́guez-

Castañeda et al. (2010) showed a decrease in moth

specialization with elevation in Costa Rica and Ecuador,

suggesting site-specific patterns. Interestingly, Papilionoi-

dea, which generally show high levels of diet specializa-

tion compared with other Lepidopteran clades, do not

seem to be the only insect group that displays more spe-

cialized species in the lowlands of the Alps. A survey of

recent literature shows that bees (Apiformes) and wood-

boring beetles (Buprestidae) also display this pattern of

greater diet breadth with increasing altitude (Rasmann

et al. In press), indicating that generalization at high ele-

vation might be taxonomically widespread.
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In conclusion, our study provides evidence that lower

plant defense at high elevations, caused by relaxed biotic

pressure, promoted increased butterfly diet breadth. Reci-

procal selective responses between plants and insects are

one major driver of current terrestrial diversity, and the

evolution of plant defensive traits has been suggested to

sculpt such patterns (Ehrlich and Raven 1964). Capturing

mechanisms of plant–insect interactions along elevation

gradients, as performed in our study, allows for better pre-

dictions of ecosystem modification during climate change,

including how herbivores that are migrating to high eleva-

tions ahead of the vegetation might behave when they

encounter novel and less resistant potential host plants.
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