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Global warming accelerates soil
heterotrophic respiration

Alon Nissan 1 , Uria Alcolombri 1, Nadav Peleg 2, Nir Galili3,
Joaquin Jimenez-Martinez 1,4, Peter Molnar 1 & Markus Holzner4,5

Carbon efflux from soils is the largest terrestrial carbon source to the atmo-
sphere, yet it is still one of the most uncertain fluxes in the Earth’s carbon
budget. A dominant component of this flux is heterotrophic respiration,
influenced by several environmental factors, most notably soil temperature
and moisture. Here, we develop a mechanistic model from micro to global
scale to explore how changes in soil water content and temperature affect soil
heterotrophic respiration. Simulations, laboratory measurements, and field
observations validate the new approach. Estimates from the model show that
heterotrophic respiration has been increasing since the 1980s at a rate of
about 2% per decade globally. Using future projections of surface temperature
and soil moisture, the model predicts a global increase of about 40% in het-
erotrophic respirationby the endof the century under theworst-case emission
scenario, where the Arctic region is expected to experience a more than two-
fold increase, driven primarily by declining soil moisture rather than tem-
perature increase.

Rising atmospheric carbon dioxide (CO2) concentration is one of the
primary contributors to global warming1. Within the terrestrial carbon
cycle, soil respiration, the emission of CO2 through root (autotrophic)
and microbial (heterotrophic) respiration2, is the largest carbon efflux
into the atmosphere1,3. Therefore, reliable quantification of how soil
respiration may be affected by climate change is critical for predicting
future atmospheric CO2 concentrations. However, estimating terrestrial
carbon effluxes, primarily driven by soil respiration, is highly
uncertain4–7. The global carbon budget is significantly impacted by
terrestrial carbon fluxes,making it crucial to improve current estimates.
Soil carbon fluxes are dependent on complex interactions between
biological, chemical, and physical processes, which play out under
fluctuating and heterogeneous environmental conditions. As a result,
observing, measuring, and modeling soil carbon fluxes is challenging.

Soils play a vital role in transferring, buffering, filtering, and
accumulating carbon at the interface between the atmosphere,

biosphere, and lithosphere. For example, soils contain about three
times as much carbon (1500–2400 PgC, 1 Pg = 1015 g) as the atmo-
sphere (600–800 PgC) or the Earth’s vegetation (450–650 PgC)1,8,9.
Roughly a fifth of atmosphericCO2originates fromsoils (~110 PgC yr−1),
which is about ten times more than anthropogenic CO2 emissions
(~11 PgC yr−1)1. Soil heterotrophic respiration (HR) is one of the primary
mechanisms throughwhich terrestrial ecosystems release CO2 into the
atmosphere, and its relative contribution has been observed to gra-
dually increase over the past two decades10. HR varies over a wide
range of time scales (e.g., daily fluctuations and seasonal cycles), and is
principally controlled by two climatic variables: soil temperature and
moisture11. While soil temperature is positively correlated with HR12,13,
soil moisture shows a non-monotonic relationship14. Low soil moisture
content reduces HR rates by limiting solute flux due to poor water
connectivity in the pores. High moisture content reduces HR by lim-
iting oxygen (O2) supply from the atmosphere due to the weak
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diffusivity of O2 in water relative to gas. As a result, the response of HR
to soil water saturation shows a bell-shaped response curve, with
optimal conditions for respiration at intermediate soil moisture
content15.

Modelling HR rates based on soil temperature and moisture is
challenging due to the many interacting processes that are controlled
by these variables11,16. Consequently, most modelling efforts to quan-
tify changes in HR rates as a function of temperature and moisture
employ empirical parameterizations using macro-scale (bulk) proper-
ties of the soil (e.g.,15,17) or empirical fits using a variety of function
shapes (e.g.,16,18,19). These parameterizations often have no direct con-
nection to biophysical processes, and are site dependent rather than
universal laws16.

Here, we provide a mechanistic perspective on soil HR built upon
pore-scale processes at the grain interface where microbial commu-
nities reside (see inset of Fig. 1 as an example) and link this to global-
scale patterns and future trends. We first quantified soil HR starting
from the pore (micro) scale, integrating parameters that are biological
(e.g., microbial respiration and production of CO2), chemical (reaction
processes), and physical (transport mechanisms and soil texture).
Subsequently, we upscaled the pore-scale HR relations by defining
scaling laws from pores to water patches using percolation theory20,
which allows us to make predictions of HR fluxes for larger (field)
scales while maintaining the biophysical representation of the pore
scale. Then, considering soil temperature and moisture variation in
space and time, we show that the model yields estimates of recent
trends in soil HR rates at the global scale that are in line with obser-
vations. Finally, we use thismechanisticmodel to simulate how soil HR
might change under the worst-case future climate scenario from
CMIP6 climate change experiments.

Results
Soil heterotrophic respiration at the pore scale
To quantify the non-linear relationship between HR and soil moisture
content14, which is considered to be the most uncertain parameter
when estimating soil HR16, we started by performing pore-scale

numerical simulations using an image-based percolation algorithm,
to obtain the air–water distribution in the soil matrix under different
saturation degrees21 (Methods and Supplementary Fig. 1a). Different
soil configurationswere examined by changing the characteristic grain
diameter λc. The soil configurations were generated using a random
distribution of circular grains with radius λc.

Based on the air–water distribution in the soil from the percola-
tion simulations (Supplementary Fig. 1b), reactive transport simula-
tions were computed on the 2D pore-scale domains22 (Methods and
Fig. 1) to quantify the response of HR to soil saturation degree
(~θ=θ=θs, where θs is the moisture capacity of the porous media). In
these simulations, other environmental conditions (e.g., ambient
temperature and reaction parameters) were kept constant (Supple-
mentary Table 2). The inset in Fig. 2a shows the model output,
revealing the expected non-monotonic relationship between ~θ and
mean soil HR, ~Rh =

R
Ω

Rh
Vm

dΩ, where Rh is the local respiration
[molm−2 s−1], Vm is themaximum respiration rate [molm−2 s−1] from the
surface of grains, and Ω is the length of the solid–liquid interface [m].
As expected, ~Rh increases as the characteristic grain size (λc) decreases,
due to the increase in the surface area.

To make the connection between pores and continuum (bulk)
scale processes, we examine the flux ~Rh as a function of the number of
water patches23 in the domain Nc and the mean characteristic size of
those water patches Sc, both dependent on saturation degree ~θ.
Simulations show that there is a characteristic scaling relation
~Rh=Nc ∼ S0:5c , which indicates a proportionality between the respiration
rate within a single water patch and its size (dots in Fig. 2a).

From the scaling laws of percolation theory20, we derive the
characteristic number (Nc) and sizes (Sc) of water patches within the
domain23, for different water saturation degrees (see Methods). The
resulting theoretical relations of Nc and Sc to ~θ at the continuum scale
(Eqs. (2), (3) in Methods) were compared successfully against the
results from numerical percolation simulations, and are shown in
Supplementary Fig. 2a, b. In addition, to further validate Eqs. (2) and
(3), we conducted laboratory drainage experiments using microfluidic
chipswithdifferent grain sizes λc, inwhichwe compared simulated and

Fig. 1 | Schematic of the reactive transport model at the pore-scale. O2(g) dif-
fuses from the atmosphere (gas phase) and is dissolved to the liquid phase (O2(aq))
according to Henry’s law. Simultaneously, dissolved organic carbon (DOC) is
released from soil organic matter (OM). In the presence of both O2(aq) and DOC,
aerobic heterotrophic respiration occurs at the interface between the aqueous

phase (blue) and the surface of soil grains (brown) by attachedmicrobes (biofilms).
As a result, CO2(aq) is released to the water and to the atmosphere CO2(g). In the
inset, a scanning electron microscope image shows a cluster of bacteria (bluish
colored) around a micrometer root (brown); false coloring was applied for illus-
tration purposes.
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observed water patch properties (Methods and Supplementary
Fig. 2c, d).

Soil heterotrophic respiration at the patch scale
Following the results of pore-scale simulations in Fig. 2a, which
demonstrate the basic relation between water patch size (Sc) and
respiration rate, we can now generalize the problem to account for
variation in environmental conditions (i.e., soil texture, temperature,
substrate concentration, diffusion and reaction parameters) by for-
mulating a steady-state Diffusion Reaction Equation (DRE) at the scale
of a singlewater patch. Themathematical formulation is basedon three
general assumptions: (i) the reactive volume can be treated as homo-
geneous within the water patch and proportional to the grain surface
area, (ii) the substrate (dissolved organic carbon) concentration is
uniformly distributed within the water patch, and (iii) at steady state
conditions, microbial activity is proportional to the substrate fluxes.

In non-dimensional form, with symmetrical and spherical coor-
dinates, the DRE can be written as (see Methods for the mathematical
development),

d2u
dχ2

+
2
χ
du
dχ

=
βu
u+α

, ð1Þ

where u is the normalized oxygen concentration, β and α account for
the biophysical parameters of the soil, solute, reaction, and char-
acteristic water patch (Methods Eq. (6)), and χ is the normalized spatial
coordinate. An analytical solution for Eq. (1) is not available, except for
limiting cases (α < < u or α > > u). We can, however, solve Eq. (1)
numerically, to obtain the (non-dimensional) total respiration rate as a
function of β for example, for different α values for a characteristic
water patch (dots in Fig. 2b). To examine the validity of Eq. (1), we
compare it with the results from the 2D numerical reactive transport
simulations (Fig. 2a). The solid black line in Fig. 2a represents the
numerical solution of Eq. (1) for λc = 1 mm.

Numerical solution of Eq. (1) reveals the effect of β onHR at water
patch scale for different α values (dots in Fig. 2b). High β values are
associated with large water patches (i.e., high ~θ), porous media with
high surface area (i.e, small λc), small diffusion coefficient (e.g., at low
temperature) and high reaction rates. As a consequence, at high β, the
local reaction rate within a water patch shows spatial variability, where
dissolved O2 is rapidly consumed at the surface of the patch and does

not penetrate into the patch’s interior (Fig. 2b right inset, β = 1000). On
theother hand, at low β values, reactionproduction is uniform in space
(Fig. 2b left inset, β =0.1), and there is noO2 limitation within the water
patch. In general, as the values of α decrease and β increase, more
respiration (i.e., CO2 efflux) takes place in the water patch; for more
details see Methods.

To testourmodelling framework,we compared the simulated and
observed HR rates with published laboratory and field measurements
demonstrating the dependence on soil saturation and
temperature24–28. To define the soil parameters for these comparisons,
the reported soil texture was used to estimate λc

29 and porosity ϕ.
Other parameters (e.g., diffusion coefficient, oxygen concentration)
were derived using the temperature conditions, while the substrate
(DOC) concentration was assumed saturated with respect to
Michaelis–Menten kinetics. Despite the considerable experimental
scatter and the uncertainties inherent in initializing some of themodel
parameters, the observations and model outputs were in good
agreement (Supplementary Fig. 3).

Soil heterotrophic respiration at global scale
To validate the predictions from our model for various climatic loca-
tions, we compare the results with the global soil respiration
database30 (Supplementary Fig. 3d). To estimate themodel parameters
(Eqs. (6), (7)), we used global databases (at a spatial resolution of 0.25°
and at monthly intervals) to characterize the soil temperature and
saturation degree31, soil texture32, and dissolved organic carbon
concentration33 (for more details see Methods and Supplementary
Fig. 6). We computed soil HR at monthly resolution, and aggregated
the values to obtain amean annual HR representing the time period of
eachobservation. Despite large uncertainties in the global climatic and
soil databases, the results from our model are in good agreement
(RMSE = 214 gCm−2 yr−1).

The globally simulated top soil (0–10 cm depth) annual HR is
presented in Fig. 3a. We find that the average global HR rate from the
topsoil layer is ~282gCm−2 yr−1, which is consistent with previous
estimates6,34,35 and represents approximately 70% of current estimates
of the total global soil HR (about 42 PgC yr−1). This highlights the
dominant contribution of the topsoil to soil HR resulting from the fact
that this layer is usually under semi-saturated water conditions, at a
higher temperature than deeper soil layers, rich in soil organic mate-
rial, and abundant heterotrophic organisms.

Fig. 2 | Heterotrophic respiration from pore to continuous scale. a Simulated
mean dimensionless heterotrophic respiration rate per water patch (~Rh=Nc) as a
function of the water patch characteristic size (Sc). The inset shows the non-
monotonic relationship between the mean soil HR (~Rh) and soil saturation (~θ), for
different grain sizes λc (in mm units). The error bars represent the standard
deviation of 20 realizations. bDimensionless heterotrophic respiration at the scale

of a single water patch as a function of β, for different α values (Methods, Eq. (7)).
The solid lines represent the analytical solutions (Methods) for the limiting cases; u
is the dimensionless substrate concentration. Insets show the spatial distribution of
the reaction within a water patch (α =0.1), for β =0.1 (left inset) and β = 1000 (right
inset). The colour bar represents the dimensionless respiration rate in logarith-
mic scale.
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To evaluate the impact of input uncertainties in the monthly soil
temperature and moisture data on our model predictions, we con-
ducted a sensitivity analysis using a daily database31. The analysis
involved 2000 Monte Carlo simulations, in which representative
monthly soil temperature and moisture values were generated by
randomly selecting from their daily distributions at each grid cell. The
results of the simulations were analyzed to determine the annual HR
estimate and its level of variability. As shown in Supplementary Fig. 5a,
the highest level of sensitivity was estimated at 5% and found at the
southern pole (±12 gCm−2 yr−1), while the highest standard deviation of
about ±20gCm−2 yr−1 was found at the tropics. The robustness of the
model is confirmed by these results, which are further discussed in the
Methods section.

Present and future trends in soil heterotrophic respiration
In light of current trends in surface temperature and soil moisture1,36,
and the fact that these two are the main factors controlling soil
respiration11, we estimate the temporal evolution of soil HR over the
last 73 years (1948–2021) based on these two climatic variables from
the Global Land Data Assimilation System database31 (Fig. 3c). Data for

each geographical zone and the global value are normalized by the
mean soil HR from 1948 to 1980. A statistically significant trend
(p < 0.01; Mann–Kendall test) is seen from 1980 onwards, where soil
HR shows an average global increase of 0.2% ±0.05% each year. This is
equivalent to an average increase of around 6 gCm−2 per decade.
Similar trends are found for all geographical zones except the Arctic,
where model output suggests a greater increase of ~ 0.4% ±0.11%
annually. These findings are in agreement with field observations for
1989–200830, remote sensing data for 2000–201437 of the overall soil
respiration, and data-driven models19,38,39.

The global trend estimated by our model is roughly 1.5 times
higher than previous estimates computed using a machine learning
algorithm38 based on the SRDB database30, with low temporal resolu-
tion and for the entire soil column. The topsoil layer is an interface to
the atmosphere and thus is more sensitive to environmental feedback
and changes. Hence, the discrepancy between the two models, which
use different approaches (mechanistic and data-driven) and soil layers,
fallswithin reasonable limits. In theArctic zone, although the change in
HR is already meaningfully higher than in the other geographical
regions ( ~ × 2), soil HR shows highly scattered values (Fig. 3c). This is

Fig. 3 | Heterotrophic respiration at the global scale. a Global map of simulated
mean annual soil heterotrophic respiration (HR) rate (for year 2021); colour bar in
logarithmic scale (log10ðHRÞ, where HR units are gCm−2 yr−1). White regions repre-
sent aquatic environments or missing data. b HR is shown for various Köppen
climate classifications. c Temporal trend in soil HR (normalized by the mean HR

value from 1948 to 1980) over the period 1948–2021; colours represent different
latitudinal climatic regions. The black line is a linear fit to the global data (with
shading indicating the 95% confidence interval for thefit), and the cyan line is thefit
for the Arctic zone.
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due to extreme fluctuations between seasons in the Arctic; as an
example, in 2010, due to the extremely hot summer40, the model
indicates a 15% increase in soil HR compared to the baseline. As these
fluctuations have become more frequent in the last decade (Fig. 3c,
2010 onwards), soil HR in the Arcticmight increase considerably faster
than 0.4% per year.

Finally, to predict potential future trends, we used data from 10
Global Circulation Models (Coupled Model Intercomparison Project
phase 6, CMIP641, resolution of 1° andmonthly) to assess how changes
in surface temperature and soil moisture might affect the evolution of
soil HR until the end of the century (Fig. 4a).We employ theworst-case
greenhousegas emission scenario (SSP5-8.5 scenario) as an upper limit
for future projections of soil HR. On this basis, the model predicts a
dramatic increase in soil HR emission in all geographical zones (~40%),
with a much greater increase in the Arctic zone (~100% increase
by 2100).

Recently, Lynch et al.42 carried out a comprehensive evaluation of
25 Earth System Models (ESMs) under the SSP5-8.5 scenario. The
findings reported in their paper exhibit significant disparities and
uncertainties among the models. The mean projection of HR by the
end of the century is a 50% increase, while only a few ESMs successfully
reproduce the historical HR. Our model provides a lower estimate of
HR increase while retaining consistency with prior observations.

To better understand the mechanisms underlying the predicted
HR trends, we computed anddisplayed the projectedmeansoil HR as a
function of themean surface temperature and soil saturation (Fig. 4b).
All geographical zones are predicted to experience a strong increase in
surface temperature and a moderate decrease in saturation (Fig. 4b);
this is predicted to result in a strong increase in the soil HR rate
(percentage valueswithin Fig. 4b). The increaseof surface temperature
and decrease of soil moisture cause the soil HR to increase in parallel
with the surface maximal gradient, which leads to a (near) maximal
rate-of-change in the tropical and temperate zones— and also globally.
Notably, some of the geographical zones are in the vicinity of the
maximum HR potential (purple dashed line) based on their mean
temperature and soil moisture (most clearly the tropical and tempe-
rate zones). This might suggest an adjustment of the soil microbial
activity to maximum production in these zones. Changes in soil HR in

all geographical zones except theArctic showan increaseof 36–42%by
the end of the century (Fig. 4b). The Arctic zone occupies a unique
place on this surface.While current observations reveal a considerable
increase in surface temperature but little change in soil moisture, cli-
mate models project instead a future decrease in soil moisture, which
results in a sharp increase in the predicted soil HR by > 100%. This
strong increase stems from the curvature of the HR surface at the
Arctic location, where the maximum change is oriented upwards and
to the left on the surface. The model response surface indicates that a
reduction in soilmoisture, in all zones except in theArctic,will lead to a
reduction in soil HR.

Discussion
We have presented a biophysical model to estimate soil heterotrophic
respiration from climatic data. The principal innovation of our
approach is themechanistic perspective on soil HR frompore to global
scales, in the absence of any empirical parameters, which enables
robust quantification of current HR rates and future trends. The sim-
plicity of the model is encapsulated by the two variables, α and β
(Methods Eq. (6)), that control the respiration rate at the scale of a
single water patch (Fig. 2b). Moreover, as the value of α is strictly
limited (0.01 < α < 0.5) for aerobic respiration, it is mainly β that con-
trols the reaction rate within a single patch (Supplementary Fig. 4a, b).
We validated the model against controlled laboratory measurements
and field observations, and find a good agreementwith the predictions
(Supplementary Fig. 3).

A fundamental assumption of the model is that the ambient
conditions control microbial functioning43, despite the taxonomic
diversity ofmicrobes on Earth44,45. This assumption is supported by the
relative importance of β over α (Fig. 2b) in determining HR rate at the
single patch level, as β characterizes the environmental conditions
while α accounts for microbial activity.

As demonstrated by the global-scale analysis (Fig. 3c), HR from
the topsoil layer is increasing globally at a rate of about 2% per decade
(equivalent to an increase of about 0.7 PgC per decade). This trend is
similar in all geographical locations except for the Arctic zone, where
the rate is double the global mean (about 4% per decade). Based on
projections of changes in soil temperature and moisture obtained

Fig. 4 | Future projections of heterotrophic respiration. a Future projections of
soil heterotrophic respiration ( ~HR, the ratio of the predicted HR to its initial ten-
year mean value) based on our model, for different geographical regions. Points
represent ~HR estimates based on the ensemble average of ten CMIP6 climate
models (SSP5-8.5), which were used to initialize the model parameters of surface
temperature and soil moisture; climate model uncertainty is represented as mini-
mum and maximum estimates of soil ~HR among the ensemble (shaded areas).
b Surface map of soil HR (log10 scale, gCm−2 yr−1) as a function of the soil moisture
(~θ) and surface temperature (T). The model was parameterized under the average

global conditions of soil grain size and substrate concentration. The large point for
each geographical zone corresponds to its current state in 2021, with symbol size
representing the relative contribution to global soil HR (Tropical 67%, Subtropical
23%, Temperate 10% and Arctic 0.1%). Projected annual changes in soil moisture
and surface temperature are indicated by small points; the variance between the
climatic models is represented by the error-bars along each trajectory. The sym-
bolX at the end of each trajectory represents the predicted variable values at the
end of the century. The dashed purple line indicates the ridge of the HR surface.
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from climate models, we demonstrated that future trends indicate a
gradual increase in annual soil HR rate until the end of the century (5%
per decade),with agreater increase (10%per decade) in theArctic zone
(Fig. 4a). Within the Arctic zone, unlike other climatic zones, the
change in soil HR is principally driven by a projected reduction in soil
moisture rather than by the increase in temperature (Fig. 4b).
According to current observations, the soil moisture content in the
Arctic does not yet showanegative trend and remains on average close
to saturation. The increase in soil respiration in the Arctic over the last
four decades (Fig. 3c) is thus still mainly due to increased surface
temperature, and the onset of declining soil moisture may represent a
tipping point.

Our model predictions, as depicted in Figs. 3, 4, treat DOC as a
static or quasi-static input variable46, rather than considering it as a
dynamicoutcomeof soil carbonfluxes47. To test ourhypothesis that soil
temperature and water content are the primary factors controlling the
availability of DOC for HR, we simulated two extreme scenarios of DOC
concentration until 2100 using predictions from Earth System Models
(Todd–Brown et al., 2014): a 20% linear increase and a 5% linear
decrease. The results, depicted in Supplementary Fig. 5b, demonstrate
that soil temperature and moisture are the primary regulators of DOC
availability for microorganisms, even under these two end-member
scenarios. Our modeled HR trends are consistent with
observations6,34,35, highlighting the significant role of soil temperature
andmoisture as key determinants of HR efflux and, consequently, DOC
availability. Amoreexplicit inclusionofDOCas adynamic input variable
into ourmodel couldbe relevant for predictingHR in ecosystemswhere
DOC fluctuates at short temporal scales. However, this would require
consideration of dependencies of DOC on several factors, including
vegetation, root exudates, microbial activity, precipitation, tempera-
ture, and moisture, and is beyond the scope of the present work.

Land-use changes, such as deforestation48, reforestation49,
afforestation50, and changes in agriculture and land management51–53,
can have a significant impact on the terrestrial carbon cycle by
affecting carbon storage in soil and vegetation. These effects can be
both positive or negative, and their future predictions are highly
uncertain1. While our study does not consider the effects of these
changes, the model can be parameterized to reflect future changes in
land use by modifying the soil and dissolved organic carbon para-
meters. It should benoted that current estimates indicate that land-use
changes contribute about 0.1 PgC per year to the atmosphere, while
HR estimates are around 50–60 PgC per year1. Hence, even without
considering land-use changes in the model’s future projections, the
results are still valid given their relatively minor contribution.

At large timescales, carbonefflux cannot exceed the carbon influx
by Gross Primary Production. The ratio between HR and autotrophic
respiration has increased over the past three decades10. Those two
facts, together with the predicted HR increase, are a manifestation of
the non-equilibrium conditions of the terrestrial ecosystem, whereHR,
at short time scales (i.e., up to hundreds of years), is independent of
Gross Primary Production, eventually leading to a loss of the soil car-
bon stocks54,55. How future changes in the Earth’s climatic environment
will affect the terrestrial carbon cycle is one of the primary concerns of
the 21st century, and this study sheds light on one of its primary
mechanisms.

Methods
Image-based invasion percolation algorithm
An image-based invasion percolation algorithm21,56 was used to simu-
late thewater spatial distribution at different saturation degrees (~θ) for
different porous medium configurations. The porous materials were
generated using randomly distributed grains of uniform diameter (λc)
within the domain (20 realizations for each λc); each porous medium
system had overall dimensions of 3 cm (width) × 2.25 cm (height), and
a porosity of 0.5. Initially, the domain is filled with water, and during

the invasion percolation process, the air is entering from the upper
boundary of the system and invades the liquid phase, following the
capillary entry conditions at the air–water interface. At the end of the
simulations, the percolation clusters (Supplementary Fig. 1a) and thus
the distribution of water patches within the domain (Supplementary
Fig. 1b) is obtained at different saturation degrees. Note that even
though we used a uniform grain size for each realization, the resulting
simulated porous media are highly heterogeneous in their pore size
distributions (see inset in Supplementary Fig. 1b as an example). For
more details see56.

Estimating water patch proportionalities from percolation theory.
From percolation theory, we expect that the size distribution of water
patches n(s) in the domain follows a general proportionality20,
nðsÞ= s�τ expð�s=ξÞ, where s is the water patch size, τ is the Fisher
exponent, which depends on the dimensionality of the system, and ξ is
a cut-off parameter, which depends on the porous medium properties
and the saturation degree23. From this definition of n(s), we calculate
the characteristic number of patches in the domain using the mean of

the distribution function, Nc =
R 1
0 nð~sÞd~s (where ~s = s=θs), which yields

Nc =
1
ξ

� �τ�1
Γð1� τÞ � Eτ

1
ξ

� �
, where Γ is the gamma function and Eτ is

the exponential integral function. From mass conservation, the char-
acteristic patch size is

Sc = ~θ=Nc: ð2Þ
Frompercolation simulations, the valueof ξ is found todependon

~θ as ξ = γð1� ~θÞ, with γ = 100. Finally, to account for the total number of
water patches in the domain of length scale L, Nc is normalized by

N0 = L
λc

� �dð1�~θÞ
23, to yield

Ncð~θ,λcÞ≈N0ð~θ,λcÞ
1

ξð~θÞ

 !τ�1

Γð1� τÞ � Eτ
1

ξð~θÞ

 !
, ð3Þ

where d is the dimensionality (d = 2 for the numerical simulations).
According to this formulation, under fully saturated conditions (~θ= 1),
Nc = 1 (thus a single water cluster) and the characteristic patch Sc has
the size of the entire system voids. The resulting theoretical relations
of Nc and Sc to ~θ at the continuum scale (Eqs. (2)–(3)) are shown in
Supplementary Fig. 2a and b, respectively, and compared to the
numerical percolation simulations.

Microfluidic experiments
To support the relationships between water patch properties and soil
saturation degree (Eqs. (2),(3)) obtained from percolation theory, we
performed microfluidic experiments. Microfluidic chips were fabri-
cated using soft lithography57. Each chip had overall dimensions
5 cm× 5 cm×0.005 cm. Similar to the numerical simulations (Meth-
ods), the solid phase was generated by randomly distributing circular
objects (“grains”) with diameter λc mm. To mimic the invasion perco-
lation algorithm, the microfluidic chips were placed with a long axis
vertical and saturated with water (dyed with fluorescein solution of
0.01mM) as initial condition. The upper side of each chip was open to
the atmosphere, and the lower side was open for drainage. The air and
water phasesweremonitored during the drainage process using aCCD
camera (Ximea, Germany), and the relationship between the number
and size of water patches and the saturation degree was obtained by
image analysis (Supplementary Fig. 2).

The divergence of the experimental data (Supplementary Fig. 2)
from theory observed at very low saturation conditions is expected (as
~θ ! 0, alsoNc→0), because the relations in Eqs. (2)–(3) are derived at
the percolation threshold20 and therefore cannot account for the
limiting cases of very high and very low saturation conditions.
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However, for the range of expected soil saturation levels in natural
soils, the theoretical relations fit the laboratory data very well.

Numerical simulations of the two-phase reaction–diffusion
equation in porous media
Based on the water–air spatial distribution from the
invasion–percolation simulations, finite-element simulations of the
diffusion–reaction equation were performed22.

Within the system, two phases are considered, the (air) invading
phase, Φa and the (water) depending phase, Φw. Chemical compo-
nents (i.e., O2, CO2 and dissolved organic carbon, Cs) are transported
solely by diffusion, where each component has a phase-dependent
diffusion coefficient. Surface reactions (Michaelis–Menten kinetics)
take place on the perimeter of solid grains58 in Φw, with rate

Rsurf =Vm
Cs

Cs +KmðsÞ

CO2

CO2
+KmðO2Þ

, ð4Þ

where Vm is the maximum local rate of HR reaction [mol s−1 m−2], CO2
is

the dissolved oxygen concentration, Cs is the substrate concentration
and Km(s) and KmðO2Þ are the Michaelis constants of the substrate and
oxygen, respectively. At the interface of the two phases, the mass
transfer of chemicals is simulated by Henry’s Law59. A fixed atmo-
spheric concentration (C0O2

) was set as the upper boundary condition
for oxygen, while the other external boundaries were treated as open
for all species. At the perimeter of the solid grains in Φw phase, a
constant dissolved organic carbon concentration (C0DOC) was set, to
describe the organic matter (OM) degradation to dissolved organic
carbon (Cs). Then, Cs is transported by diffusion and reacts with dis-
solved oxygen, CO2

species, to produce dissolved CO2 (Eq. (4)). 20
realizations were performed for each value of λc. The parameters used
in the numerical simulations are given in Supplementary Table 2.

Reaction–diffusion equation at the continuum scale for a single
water patch
For a single water patch, the dissolved oxygen concentration (CO2

) can
be derived by solving the steady-state diffusion–reaction equation
(DRE). Assuming that water patches can be approximated by a sphe-
rical shape, the DRE can be written as

Dm

d2CO2

dr2
+
2
r

dCO2

dr

 !
=
3ϕVm

λc

Cs

Cs +KmðsÞ

CO2

CO2
+KmðO2Þ

, ð5Þ

where Dm [m2 s−1] is the molecular diffusion coefficient of dissolved
oxygen in water, ϕ is the medium porosity and r is the radial distance.
The term 3ϕ

λc
is the specific surface area [m2m−3], obtained by assuming

spherical grains as soil particles. By defining the following dimen-
sionless parameters,

u=
CO2

C0
; χ =

r
r0

;α =
KmðO2Þ
C0

;β=
3VmϕCsr

2
0

DmλcC0ðCs +KmðsÞÞ
, ð6Þ

we can rewrite Eq. (5) as

d2u
dχ2

+
2
χ
du
dχ

=
βu
u+α

: ð7Þ

Implementing boundary conditions u(1) = 1 and u0ð0Þ=0, Eq. (5)
can be solved analytically for the limiting cases

uðχÞ= 1
6
β χ2 � 1
� �

+ 1; if α <<u
e�

ffiffi
β

p
ðχ�1Þffiffi
α

p e
2
ffiffi
β

p
χffiffi

α
p � 1

� �

χ e
2
ffiffi
β

pffiffi
α

p � 1
� � ; if α >>u:

8>><
>>:

Otherwise, Eq. (7) can be solved numerically. To derive the char-
acteristic reaction term, i.e., the right-hand side in Eq. (7), the solution
for the normalized concentration, u(χ), is implemented in the reaction
term. Then, the reaction rate depending on the radial coordinate can
be obtained. Note, in the case of α < < u, the reaction term is equal to β
solely, without any radial dependency.

The analytical solutions for the limiting cases (where α < < u or
α > > u) can be used to delineate the boundaries of the real solutions.
As can be seen in Fig. 2b, at low β values, the solutions can be
restricted to a relatively narrow range ( ~ an order of magnitude)
between the two analytical solutions (solid and dashed lines in
Fig. 2b). This range increases as β increases. Up to β ≈ 10, the analy-
tical and the full solution (solved numerically) show an excellent
match. This suggests that analytical solutions forHR can be useful if β
is relatively small (β < 10). However, the value of β is likely to vary
strongly given the variation in the twomain components that control
soil HR: temperature and soil moisture (Supplementary Fig. 4a).
Moreover, as we demonstrate in Fig. 2b, the assumption α > > u leads
to a large difference with respect to the real solution when α is
relatively small (the upper dashed line shows the analytical solution
for α = 0.160,61). In contrast, for large α (the lower dashed line shows
the analytical solution for α = 10), the analytical solution captures the
numerical solution. However, such higher α values have no meaning
for aerobic respiration, where Michaelis constant, Km, is always
smaller than the saturated substrate concentration (i.e., it can be
safely assumed that for aerobic microbes, the apparent Km for
respiration is smaller than the maximum O2 concentration observed
at the soil-air interface).

In Supplementary Table 1, we summarize the parameters utilized
for the percolation simulations and our HR model.

Model sensitivity analysis
A sensitivity analysis of the model was performed using Monte Carlo
simulations on daily data of soil temperature andmoisture for the year
202131. The simulation randomly sampled values from the daily dataset
at each grid cell to evaluate the model input uncertainty, emerging
from the monthly dataset used in this study. The results of the yearly
heterotrophic respiration rate, as depicted in Supplementary Fig. 5a,
exhibit a clear latitudinal dependence, even within 2000 independent
realizations. The solid cloud in the figure represents the distribution of
all realizations, while the dashed red line indicates the mean. The
model demonstrates robustness and stability, even in the presence of
random daily fluctuations in the data, with a relatively low deviation
from the mean.

Global databases and climate projections
To initialize the model parameters, we used a set of global gridded
databases at a resolution of 0.25∘ andmonthly time interval. Data came
from remote sensing measurements (surface temperature, soil
moisture, surface altitude and texture31), and by observation inter-
polation (dissolved organic carbon33).

Based on these data sets, for each grid point, we derived the
following variables:

• Surface temperature
• Atmospheric oxygen concentration, based on the location’s

altitude and temperature59
• Dissolved oxygen concentration (C02

), according to Hen-
ry’s law59

• Oxygen diffusion coefficient in water (DO2
), based on the ambi-

ent temperature62
• Soil representative grain size (λc)

29

• Soil surface area (SSA)63
• Soil saturation degree, and thus the resulting water patch char-

acteristic size (Sc), and the number of patches (Nc).
• Maximum reaction rate, Vm, for Michaelis–Menten kinetics,

based on the ambient temperature58,60 and the soil surface area
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• Dissolved organic carbon concentration33.

Using these variables, Eqs. (1)–(3) were parameterized to each
location on the global grid. In Supplementary Fig. 6, we present a
schematic illustration of the model methodology for deriving hetero-
trophic respiration.

To predict future soil HR, we used climate projections from ten
global circulation models from the Coupled Model Intercomparison
Project Phase 641. To maximize climate projection variability64, we
chose climate models that minimized the genealogy similarity
between them65. We used the following models: ACCESS-CM2, EC-
Earth3-Veg-LR, CNRM-CM6-1, NorESM2-MM,MPI-ESM1-2-LR, MIROC6,
CanESM5, MIROC6, CMCC-CM2-SR5, CAMS-CSM1-0, and CESM2, and
derived two variables: surface temperature and soil moisture in the
upper portion of the soil column. The data were obtained with a
monthly and 1∘ resolution from the worst-case greenhouse gas emis-
sion scenario (SSP5-8.566) covering the period between 2015 (used as a
reference year to represent present climate conditions) and 2100. Our
model was then used to compute soil HR for each grid cell for the
entire period. We present results of the simulation summarized for
four climate zones: Tropical (0° to 23. 5° N/S), Subtropical (23. 5° to
40° N/S), Temperate (40° to 65° N/S), and Arctic (65° to 90° N/S). The
evolution of soil HR for each of the climate models is presented in
Supplementary Fig. 7.

To assess the potential changes in dissolved organic carbon
(DOC) in the soil, as estimated by various Earth Systems Models67,
we applied upper and lower boundary constraints for the expected
increase or decrease.We set an upper constraint of a 20% increase in
the global DOC concentration in soils and a lower boundary of a 5%
decrease67. The model was then run with a linear change until the
end of the century based on the established upper and lower
boundaries. As can be seen in Supplementary Fig. 5b, even under the
upper and lower boundaries (which represent the extreme scenarios
in DOC alteration), the model suggests only a minor change in the
response of heterotrophic respiration. This demonstrates the
importance of the availability of DOC for HR rather than its actual
concentration and, thus, the role of soil moisture and temperature
as the primary factors in controlling its availability for micro-
organism respiration. Additionally, the model suggests that micro-
bial communities in the soil are able to efficiently utilize DOC, as
indicated by the high local concentration of DOC compared to the
Michaelis constant (Eq. (4)), and thus operate at full capacity (close
to Vm) once DOC is available.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used to generate Figs 2-4, and Supplementary Fig. 3 can be
accessed at the following link: https://gitlab.ethz.ch/anissan/global-
warming-accelerates-soil-heterotrophic-respiration. Additionally, the
rawdata of themicrofluidic experiments is available at https://zenodo.
org/record/7918484#.ZFyxnOxBwrk. Formore details and data, please
contact the corresponding author (anissan@ethz.ch).

Code availability
Computer codes are available online at: https://gitlab.ethz.ch/anissan/
global-warming-accelerates-soil-heterotrophic-respiration.
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