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Abstract 

It is now widely accepted that adult neurogenesis plays a fundamental role in hippocampal function. 

Neurons born in the adult dentate gyrus of the hippocampus undergo a series of events before they 

fully integrate in the network and eventually become undistinguishable from neurons born during 

embryogenesis. Adult hippocampal neurogenesis is strongly regulated by neuronal activity and 

neurotransmitters, and the synaptic integration of adult-born neurons occurs in discrete steps, some 

of which are very different from perinatal synaptogenesis. Here, we review the current knowledge on 

the development of the synaptic input and output of newborn neurons, from the stem/progenitor 

cell to the fully mature neuron. We also provide insight on the regulation of adult neurogenesis by 

some neurotransmitters and discuss some specificities of the integration of new neurons in an adult 

environment. 

The understanding of the mechanisms regulating the synaptic integration of adult-born neurons is 

not only crucial for our understanding of brain plasticity, but also provides a framework for the 

manipulation and monitoring of endogenous adult neurogenesis as well as grafted cells, for potential 

therapeutic applications.  
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Introduction 

The generation of neurons in the adult mammalian dentate gyrus was detected as early as 1965 

(Altman & Das, 1965) and shortly thereafter was it demonstrated that these cells receive mature 

synaptic input (Kaplan & Hinds, 1977). Yet, it took another 30 years and the advent of genetic-based 

labeling techniques to confirm these observations and to demonstrate that adult-born hippocampal 

neurons differentiate, mature, migrate and integrate into the hippocampal network and finally 

become morphologically and functionally undistinguishable from all other granule neurons (See also 

the reviews from Schinder et al. ; Aasebo et al., in this issue).   

 

Relatively little is known on how adult-born neurons connect to the mature network and the rules of 

the game for a newcomer in the adult brain can be drastically different than those governing 

synaptogenesis in the fetal brain. Indeed, contrary to neurons born during prenatal development, 

adult-born neurons develop in a mature and functioning environment and therefore these cells can 

potentially be shaped by various factors including: Neighbor cells, brain activity and experience, 

hormonal variations, stress and disease. Conversely, the addition of neurons can remodel the 

connectivity of the pre-existing network, which may in turn result in behavioral modifications, the 

formation of new connectivity or the repair of damaged networks. Therefore, a better understanding 

of the mechanisms regulating the integration of new neurons will not only shed light on the plastic 

properties of the adult brain and on the function of adult neurogenesis, but it will also provide a 

framework for the development and evaluation of cell-replacement therapies.  

Here, we review the current knowledge of the synaptic integration of neurons born in the adult 

hippocampus and explore such questions as: Are adult-born neurons similar to neurons born during 

embryogenesis? Does synaptogenesis on adult-born neurons follow the same rules as prenatal 

synaptogenesis? Does the insertion of newborn neurons interfere with the mature network? What is 

the interplay between neuronal activity and the integration of new neurons?  
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Main text 

Connectivity of the dentate gyrus 

The dentate gyrus is formed by three layers. The closest to the cortical surface is the molecular layer, 

which comprises mainly dendrites and axons. Below it, lays the granule cell layer which contains the 

bodies of the granule neurons and forms a V-shaped structure. Below the granule cell layer lays the 

hilus, formed by the axons of the granule cells and interneurons.  

The entorhinal cortex provides the hippocampus with its major excitatory, glutamatergic input 

through perforant path axons which project to the dentate gyrus and contact the granule neurons in 

the molecular layer. Most of these synapses are found on dendritic spines in the distal two-thirds of 

the dendrites of the granule neurons. Another glutamatergic input originates from hilar mossy cells, 

mainly on the proximal third of the dendrites of granule neurons. The granule neurons then project 

mossy fiber axons to the CA3 pyramidal cells, which project Schaffer collaterals to the CA1. In turn, 

the CA1 pyramidal neurons project back to the entorhinal cortex, through the subiculum. The mossy 

fibers of the granule neurons also establish collaterals in the hilus and synapse with the proximal 

dendrites of the mossy cells, the basal dendrites of the basket cells and other unidentified cells.  

The main GABAergic input to the granule neurons is situated mainly in the inner third portion of the 

dendrites and on the cell body and originates mainly from hilar basket cells. Another inhibitory input 

comes from chandelier-type cells situated in the molecular layer and which contact the axon initial 

segment of granule neurons.  

Additionally, granule neurons receive various subcortical inputs which include cholinergic and 

GABAergic input from the medial septal nucleus and the diagonal band of Broca, glutamatergic input 

from the supramammilary area, noradrenergic input from the locus coeruleus, serotoninergic input 

from the raphe nucleus and dopaminergic input from the ventral tegmental area (Amaral et al., 

2007).  
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Maturation of adult-born neurons and their synaptic connectivity 

During embryonic development, granule neurons migrate from the basal polymorph layer and 

appear in the granule cell layer at embryonic day E20 in the rat (Crain et al., 1973; Altman & Bayer, 

1990). The first synapses are observed at 4 days after birth, but most of these synapses are 

symmetric and axo-dendritic, pointing to a GABAergic input (Crain et al., 1973). Postnatal 

synaptogenesis is most active between 4 and 11 days and is complete at about 28 days. 

Glutamatergic dendritic spines first appear at 4 days closest to the granule cell body and gradually 

occupy the entire dendritic field (Crain et al., 1973). This developmental stage coincides with the 

appearance of the first perforant path axons in the dentate gyrus (Singh, 1977b). Synaptogenesis is 

complete at about 28 days, although dendritic spines still undergo morphological maturation 

thereafter.  

In contrast, adult-born neurons develop from stem/progenitor cells located in the subgranular zone 

lining the granule cell layer (Figure 1) (Kriegstein & Alvarez-Buylla, 2009). The primary stem cells, also 

named type 1 cells, are slowly dividing, are assumed to have an unlimited self-renewal capacity and 

express stem cell markers such as nestin or Sox2. They project a single process which crosses the 

granule cell layer and intensely ramifies into the proximal part of the molecular layer. Upon division, 

type 1 cells give rise to intermediate neuronal progenitor cells, type 2 cells, which are more 

proliferative and have only short processes. Type 2 cells are subdivided in type 2a cells, which also 

express stem cell markers, and type 2b cells which start to express immature neuronal markers such 

as doublecortin and PSA-NCAM (the polysialylated form of the Neuronal Cell Adhesion Molecule). 

Type 2b cells then lead to type 3 cells, which also have a proliferative potential but no longer express 

stem cell markers and give rise to neurons (Filippov et al., 2003; Fukuda et al., 2003; Kronenberg et 

al., 2003; Kempermann et al., 2004; Zhao et al., 2008). 
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1. Type 1/stem cells 

As mentioned above, neuronal activity regulates cell proliferation. Indeed, increased activity such as 

epilepsy promotes proliferation (Parent et al., 1997; Jessberger et al., 2007), and voluntary exercise is 

the most efficient physiological way to enhance hippocampal neurogenesis (van Praag et al., 1999b). 

This effect is likely mediated by glutamate since NMDA (N-methyl-D-aspartate) receptor activity 

regulates cell proliferation in vivo (Cameron et al., 1995). However, on type 1 cells, no glutamatergic 

or GABAergic synapses have been detected, and the presence of receptors on these cells is debated: 

Using a transgenic mouse expressing the green fluorescent protein under the control of the stem cell 

marker nestin and electrophysiological recordings, Wang et al. reported the presence of glutamate 

and GABA receptors on cells with a type-1 morphology (Wang et al., 2005) whereas Tozuka et al. 

found no evidence of such receptors using the same mouse model and the same techniques (Tozuka 

et al., 2005). Using immunohistochemistry, a third study has found NMDA receptors at the surface of 

GFAP-expressing, putative type 1 cells (Nacher et al., 2007). The discrepancy between these 

observations can be attributed to the heterogeneity in the maturation stage of the identified cells. 

These results nonetheless support the view that type-1 cells may be regulated by neuronal activity, 

although indirectly.  

2. Type 2/progenitor cells 

Type 2b cells, identified by the expression of nestin and PSA-NCAM, express GABA receptors and 

some appear to receive GABAergic synaptic inputs, but lack glutamate receptor. The activation of 

GABA receptors induces the expression of the proneuronal transcription factor NeuroD and 

promotes neuronal differentiation (Tozuka et al., 2005; Wang et al., 2005). However, when their date 

of birth is identified by retrovirus labeling, electrophysiological recordings of new cells of 1 week of 

age or younger, indicate the expression of receptors for the major neurotransmitters GABA and 

glutamate, but not for afferent synaptic connections (Esposito et al., 2005; Ge et al., 2006). Again, 

the discrepancy between these observations can be attributed to the heterogeneity of the type 2 cell 
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population and the differences in the identification methods. However, these results also point to a 

regulation of type 2-cell proliferation and function by neuronal activity, although non-synaptically.  

3. Immature neurons 

During the second week after cell division, newborn neurons start to extend their axonal processes in 

the hilus and their dendritic processes towards the molecular layer. At this stage, electrophysiological 

recordings show that they receive direct slow GABAergic synaptic input, suggesting a dendritic 

localization (Esposito et al., 2005; Ge et al., 2006). This GABAergic input plays a great role in the 

maturation of the nascent neuron. Indeed, similarly to embryonic neurogenesis, immature neurons 

born in the adult hippocampus have a high intracellular concentration of chloride, due to the 

expression of NKCC1, a chloride importer. Therefore, a stimulation of GABA receptors results in cell 

membrane depolarization. This depolarization is crucial for the future maturation of the new neuron, 

since an experimental conversion of the GABA-induced excitation into an inhibition in these cells, 

impairs their development and synaptic integration in vivo (Ge et al., 2006). At the end of the second 

week after birth, electrophysiological and morphological evidence shows that new neurons receive 

their first glutamatergic input on dendritic spines (Esposito et al., 2005; Ge et al., 2006; Zhao et al., 

2006). At the same period of time, the same approaches show that they project their first 

glutamatergic output on CA3 pyramidal cells (Faulkner et al., 2008; Toni et al., 2008).  

During the third week, new neurons continue to extend their dendritic processes further into the 

molecular player and their axonal processes more distally into the CA3. The cells start to express the 

chloride exporter KCC2, which produces the GABA input to switch from depolarizing to 

hyperpolarizing (Ge et al., 2006). Dendritic spine growth and motility is maximal during this period 

(Zhao et al., 2006; Toni et al., 2007).  

Between 3 and 6 weeks of age, adult-born neurons show an increased synaptic plasticity and long-

term potentiation expression at perforant path synapses (Schmidt-Hieber et al., 2004; Ge et al., 

2007; Deng et al., 2009; Mongiat et al., 2009), supporting the view that these cells may be involved in 

mechanisms of learning (see also the review of Aasebo et al. in this issue). The final step of synaptic 
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integration is reached by the formation of fast, perisomatic GABAergic synapses (Esposito et al., 

2005). After this stage, although morphological maturation is reached, microscopy shows that the 

dendritic spines and mossy fiber boutons continue to mature up to 8 weeks after birth (Zhao et al., 

2006; Toni et al., 2007; Faulkner et al., 2008; Toni et al., 2008). At the end of this period, neurons 

born in the adult hippocampus are functionally and morphologically similar to neurons born during 

embryogenesis. They receive afferences and project efferences with similar synaptic partners, of 

similar morphology and function (van Praag et al., 2002; Laplagne et al., 2006; Toni et al., 2008).  

As mentioned above, adult neurogenesis is also modulated by other neurotransmitters such as 

Dopamine or Serotonin, but their role and their connectivity has been much less studied so far. 

Acetylcholine promotes neuronal proliferation in vivo (Ide et al., 2008; Itou et al., 2010), possibly by 

direct synaptic afferences from the medial septum, innervating adult-born neurons as early as 7 days 

after cell division (Ide et al., 2008). Cocaine inhibits cell proliferation, suggesting an effect of 

Dopamine on adult neurogenesis (Dominguez-Escriba et al., 2006). Norepinephrine promotes 

neurogenesis (Jhaveri et al., 2010), so does Serotonin (Brezun & Daszuta, 2000; Santarelli et al., 

2003). It is however unknown whether these neurotransmitters act through primary or secondary 

synapses or extrasynaptic release.   

These observations on the role of neurotransmitters on the synaptic integration of adult-born 

neurons raise the question as to whether the activity-regulated synapse formation and the 

subsequent survival of neurons could be a selection mechanism for the insertion of neurons at the 

appropriate time and place. Indeed, besides regulating new neurons’ integration, neuronal input 

seems to also regulate the survival of these cells: A large fraction of new neurons die within the third 

week after cell division (Kempermann et al., 2003) and their survival is regulated by activity 

(Kempermann et al., 1997; Gould et al., 1999; van Praag et al., 1999a). This control may involve 

glutamate and NMDA receptor activity, since a cell-specific knock-out of the NR1 subunit in adult-

born neurons dramatically increases death during the third week after cell division (Tashiro et al., 

2006). Thus, adult-born neurons undergo a critical time window for their survival and it seems that 
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the activity of their NMDA receptors is a survival signal. Since most dendritic spines are formed at the 

beginning of this time window, it is likely that synapse formation and glutamatergic 

neurotransmission are required for cell survival. Furthermore, the synaptic competition occurring 

during the early phases of synaptogenesis may lead to a Darwinian selection of neurons. Finally, this 

selection mechanism may be underlying the reduced neurogenesis in Alzheimer’s disease. Indeed, 

Amyloid beta reduces NMDA receptor expression (Snyder et al., 2005) and spine formation (Spires et 

al., 2005) in vivo, which may in turn reduce the survival of adult-born neurons which is observed in 

this disease (Li et al., 2009) (Sun et al., 2009).  

Thus, adult-born neurons appear to integrate into the hippocampal network similarly to neurons 

generated during embryonic development. They follow similar milestones (dendritic and axonal 

development, GABAergic input followed by glutamatergic input, dendritic spine development, GABA 

switch from depolarizing to hyperpolarizing, etc…) and, according to the current state of our 

knowledge, eventually become indistinguishable. However, since adult-born neurons integrate in a 

mature environment, they are likely influenced by factors which do not exist in the embryo. These 

factors may result in differences in the course of the development of these cells. For example, 

neurons born in the adult develop slower than neurons born during embryogenesis (Overstreet-

Wadiche et al., 2006; Faulkner et al., 2008). In the following paragraph, we will give an overview of 

some of these differences and emphasize the potential role of these specificities on the function of 

adult neurogenesis.  

 

Specificity of synaptogenesis on neurons born in the adult brain 

1. Maturation of the connectivity of adult-born neurons 

With the concomitant extension of their axons and dendrites, it is likely that adult-born neurons 

switch synaptic network during their maturation. Indeed, during a short period of time, dendrites are 

restricted to the inner molecular layer and, at the same period of time, axons are restricted to the 

hilus. The hilus is densely populated with GABAergic interneurons such as basket cells (Amaral et al., 
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2007) and the proximal portion of the dendrites receive mostly afferences from mossy cells. Thus, 

the first synapses (both afferent and efferent) formed by adult-born neurons involve mainly 

interneurons. At this stage, newborn neurons, which also show an increased excitability (Schmidt-

Hieber et al., 2004; Mongiat et al., 2009) are therefore expected to modulate the activity of 

interneurons and neighboring granule neurons which are interconnected by the same interneurons. 

This transient state may have a potential effect on information coding by the dentate gyrus (Aimone 

et al., 2006). As they mature, the axonal and dendritic processes of these cells extend and form 

synapses with more diverse partners including glutamatergic input from the entorhinal cortex and 

output to pyramidal cells in the CA3. This shift in connectivity is unique to neurons born during 

adulthood and may induce modifications in their physiology along the course of their maturation, 

with possible functional implications. 

 

2. Interaction with pre-existing synapses 

While adult-born neurons develop dendritic spines, perforant path afferences adapt to this change 

by remodeling their axon terminals to innervate the new neurons. In a similar manner, the projection 

of mossy fibers from adult-born neurons towards the CA3 remodels the fine anatomy of this area. To 

which extent are the synaptic partners of adult-born neurons remodeled by their integration? Does 

the adult brain generate new pre- and post-synaptic partners to accommodate the new neurons, or 

do new neurons connect to pre-existing partners?  

Electron microscopy observations support the latter hypothesis (Figure 2, upper panel). Filopodia and 

dendritic spines from adult-born neurons were analyzed in three dimensions using serial-section 

electron microscopy (Toni et al., 2007). Filopodia are immature and very motile dendritic protrusions 

which probe between potential synaptic partners and eventually stabilize into dendritic spines and 

form synapses (Marrs et al., 2001; Yuste & Bonhoeffer, 2004; Knott et al., 2006; Lohmann & 

Bonhoeffer, 2008). On newborn neurons as well as on more mature neurons, the tip of filopodia is 

always found very close (within 100 nanometers) to pre-existing synapses. This distance is smaller 
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than the distance predicted if filopodia grew randomly, suggesting that these structures are attracted 

by pre-existing synapses. This preference for pre-existing synapses is supported by the observation of 

the more mature dendritic spines: When dendritic spines are three-dimensionally reconstructed, 

they are found to form multiple synapse boutons, i.e. contact with axon terminals already involved in 

a synapse with another neuron. One month after cell division, about two-thirds of their dendritic 

spines contact multiple-synapse boutons (i.e. axonal boutons synapsing with at least two 

postsynaptic partners), whereas the other third of the spines contacts axonal boutons devoid of 

other synapse. This observation suggests that the dendritic spines of newborn neurons have a 

preference for pre-existing synapses. Although the mechanism for this preference is currently 

unknown, several experiments from developmental synaptogenesis support the idea that glutamate 

may attract nascent filopodia. Indeed, although they do not make a mature synaptic contact, 

filopodia express NMDA receptors (Takumi et al., 1999) and focal glutamate application induces 

filopodia growth (Portera-Cailliau et al., 2003; Konur & Yuste, 2004). Thus, glutamate spillover 

resulting from synaptic activity (Kullmann & Asztely, 1998) may induce filopodia growth towards 

active synapses, and their stabilization into spines contacting multiple-synapse boutons.  

Intriguingly, during the course of neurons’ maturation, their dendritic spines contacted multiple-

synapse boutons in a smaller proportion (about one third), whereas their filopodia continued to be 

very close to pre-existing synapses, suggesting a transformation of multiple-synapse boutons into 

single-synapse boutons over time (Toni et al., 2007). This supports the hypothesis that dendritic 

spines from adult-born neurons compete with dendritic spines from older neurons and eventually 

replace them (Figure 2, upper panel).  Such a mechanism is reminiscent of the synaptic competition 

occurring during the development of the neuromuscular junction, where several axons innervate 

several muscle fibers and compete until a single axon remains for each fiber (Buffelli et al., 2003).  

Interestingly, the development of mossy terminals from adult-born neurons follows a similar 

mechanism: The first axon terminals contact the dendritic shafts from CA3 pyramidal cells. Then, 

mossy terminals contact individual small thorny excrescences protruding from these dendrites, or 
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share mature thorny excrescences with other granule neurons. And it is only after 2 months of 

maturation that mossy terminals contact individual and mature thorny excrescences (Toni et al., 

2008), Figure 2 lower panel). Together, these observations suggest that both the synaptic output and 

the synaptic input of adult-born neurons have a time window during which synaptic partners are 

shared with pre-existing neurons and that competition may occur at both the input and output levels  

of a nascent neuron.  

The formation of multiple synapse boutons is not restricted to the context of adult neurogenesis. 

Rather, these structures are formed by most, if not all, manipulations which induce synaptogenesis in 

the adult brain such as: lesion-induced synaptogenesis (McWilliams & Lynch, 1978; Ito et al., 2006), 

Estrogen (Yankova et al., 2001), or even associative learning (Geinisman et al., 2001) and LTP 

induction (Desmond & Levy, 1990; Toni et al., 1999). However, an increase of multiple synapse 

boutons has not been reported during perinatal development in the hippocampus. This difference 

between postnatal and adult synaptogenesis may be due to the rate of presynaptic development. 

Indeed, during developmental neurogenesis, perforant path axons develop concomitantly to the 

dendrites of granule neurons (Singh, 1977a) and it is therefore likely that boutons are connected by 

individual nascent spines. Thus, multiple-synapse bouton formation and the subsequent competition 

which may occur on these structures may be a mechanism of synaptogenesis specific for the adult 

brain, which is particularly active in adult-born neurons.  

 

3. Astrocytes 

During embryonic development, neurogenesis precedes gliogenesis (Nixdorf-Bergweiler et al., 1994; 

Catalani et al., 2002). But neurons born in the adult brain immediately come in contact with mature 

astrocytes. Astroglia forms the stem cell niche and influence the proliferation, differentiation and 

maturation of neuroblasts (Doetsch et al., 1999; Lim & Alvarez-Buylla, 1999; Seri et al., 2004; Shapiro 

et al., 2005; Lledo et al., 2006). The regulation mechanisms are still unclear, but astrocytes express 

different molecules such as cytokines, chemokines (Barkho et al., 2006), IL-6 (Oh et al., 2010), or 
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Wnt3 (Lie et al., 2005), some of which participate to the regulation of stem cell differentiation. A 

clear demonstration of the importance of astrocytes in regulating neurogenesis came from in vitro 

experiments showing that astrocytes from the subgranular zone enable progenitor cells to 

differentiate into neurons (Song et al., 2002a; Song et al., 2002b), thereby demonstrating that 

astrocytes actively regulate stem cell differentiation. More recent results indicate that these cells can 

also control the maturation and survival of adult born neurons. In the subventricular zone/rostro-

migratory stream, glutamate released by astrocytes activates NMDA receptors in neuroblasts and 

enables the maturation and survival of newborn neurons in the olfactory bulb (Platel et al., 2010). 

Another mechanism by which astrocytes may regulate adult neurogenesis is by the formation of 

perisynaptic processes. Indeed, astrocytic perisynaptic processes are present around mature 

synapses in the cortex (Volterra & Meldolesi, 2005; Faissner et al., 2010) where they form tripartite 

synapses composed of the presynaptic terminal, the postsynaptic membrane and the astrocytic 

perisynaptic process, based on the demonstration of the existence of a bidirectional communication 

between astrocytes and neurons (Araque et al., 1999a; Araque et al., 1999b; Haydon, 2001). This 

communication plays a crucial role during synaptogenesis (Ullian et al., 2001) and enhances synapse 

maturation and efficacy (Mazzanti & Haydon, 2003; Murai et al., 2003) and is also very likely 

regulating the synaptic integration of adult-born neurons. 

 

Conclusion 

The constant addition of several hundreds of granule neurons in the dentate gyrus throughout the 

whole life of the animal generates major network remodeling, which may be greatly involved in 

learning and memory. Adult-born neurons fully integrate in the hippocampal network and eventually 

become undistinguishable from neurons born during embryogenesis.  However, the specificity of 

adult-born neurons lies in the mechanisms of their integration, the existence of a critical time-

window for enhanced excitability and plasticity, the possible competition with synapses from more 

mature cells and the activity-dependent survival and insertion of these cells. These specificities 
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indicate that adult neurogenesis is a major player in hippocampal function and plasticity. 

Furthermore, the mechanisms involved in the synaptic integration of adult-born neurons may 

provide a promising therapeutic target for interventions aiming at improving adult neurogenesis for 

cognitive enhancement, or brain repair.  

 

 

Figure legends 

Figure 1: Timeline showing the morphological development of adult-born hippocampal neurons as 

well as the development of GABA and glutamate receptor expression and connectivity.  

 

Figure 2: Schematics illustrating the hypothetical sequence of events involved in the synaptic 

integration of adult-born neurons into the glutamatergic network. Upper panel (input): A filopodia of 

an adult-born neuron (green) is attracted by a pre-existing synapse between an axonal bouton (blue) 

and another neuron (red). When the filopodia stabilizes and matures into a dendritic spine, a 

multiple-synapse bouton is formed. Progressively, the spine from the adult-born neuron increases in 

size and the spine from the other neuron decreases in size until it retracts, transforming the multiple-

synapse bouton in a single-synapse bouton. Lower panel (output): Upon reaching the CA3 area, 

mossy fiber terminals contact dendrites of pyramidal cells. At about one month, mossy terminals 

contact thorny excrescences, some of which are shared with pre-existing neurons and it is only after 

2 months that individual contacts are made between pre- and post-synaptic partners.  
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