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ABSTRACT. Big data applications and Monte Carlo simulation results can nowadays easily contain data sets in the
size of millions of entries. We consider the situation when the information on a large univariate data set or sample
needs to be preserved, stored, or transferred. We suggest an algorithm to approximate a univariate empirical distri-
bution through a piecewise linear distribution which requires significantly less memory to store. The approximation
is chosen in a computationally efficient manner, such that it preserves the mean, and its Wasserstein distance to the
empirical distribution is sufficiently small.

Monte Carlo simulation, empirical distribution, piecewise linear approximation, Wasserstein distance, com-
pression.

1. INTRODUCTION

The continuous improvement in computer processing power and the increase of available digital informa-
tion, as well as the instruments to register and store it, makes more data available nowadays than ever before
and this tendency will grow continuously. On the other hand, Monte Carlo simulation has become an om-
nipresent tool used in a broad range of disciplines as physics, engineering, biology or finance, to approximate
probability distributions of variables of interest that have a random behaviour. The data sets that can be ob-
tained from such big data applications or Monte Carlo simulations often extend to millions of observations.
Even though the mechanisms to capture and store this growing influx of data are broadening and ameliorating,
the amount of information created increases at a faster rate than the available storage [see 1].

We consider the case of a random variable X :Ω 7→ R on some probability space (Ω,F,P) that has a distri-
bution X ∼ F . A large univariate sample of size n from distribution F is available and leads to an empirical
distribution Fn . We suggest an algorithm to compress Fn through a piecewise linear (PWL) approximating
distribution G .

F
sampl i ng−−−−−−−−−−−→ Fn

compr essi on−−−−−−−−−−−−−→G ∼ PWL

Note that in this paper, we are not concerned with the sampling algorithm from the distribution F leading to
the empirical distribution Fn , but only discuss the approximation step from the empirical distribution Fn to G .
Of course, obtaining Fn may also present very challenging technical and mathematical aspects. For instance,
testing the hypothesis that the sample underlying Fn comes from a hypothesized distribution F is treated in
detail on [2].

PWL distributions are a versatile class of distributions. The class is parsimonious, in the sense that the
number of parameters scales with the complexity of the approximated distribution and it can represent distri-
butions with any shape. The proposed algorithm is efficient and reduces significantly the amount of memory
required to store the distribution compared to storing the full sample. At the same time, our approach pre-
serves the shape of the distribution and allows to have a controlled error with respect to the sample distribu-
tion, which is not possible when storing only particular key statistics, such as the first few moments.

The algorithm preserves the mean and is chosen such that the Wasserstein distance between the empirical
distribution and its approximation W (Fn ,G) is small. In fact, the error introduced because of the PWL approx-
imation can be controlled as a function of the sampling error and is selected to be noticeably smaller than the
latter. This can be achieved thanks to the estimator Ŵ (F,Fn) in Section 4.5 for which it is not necessary to have
information about distribution F other than its first moment to be finite. In this way, a PWL approximation
obtained by means of the algorithm presented in this work can be used without significant additional error
than the one introduced by the sampling.

This publication is inspired by [3], an article dealing with the same type of piecewise linear approximation
in a finance and insurance context and some initial ideas in [4]. The algorithm in [3] uses a constraint on a
set of risk measures, namely tail value at risk. In this publication, we consider a constraint on the Wasserstein
distance, which is more often used in a statistical environment compared to risk measures. The described
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methodology can also be seen as the estimation of a histogram on a large dataset with a bound on its Wasser-
stein distance. A review on different methodologies to construct histograms is done in [5]. In previous works,
[6] describe a strategy for selecting a piecewise linear approximation of an empirical distribution, with a pre-
determined number of segments, using the Wasserstein distance of order 2. Compared with that work, we
use the Wasserstein distance of order 1 instead and look for an approximation whose distance W (Fn ,G) does
not exceed a predefined value, without fixing its number of segments. Optimal quantization deals with a sim-
ilar problem, to approximate a distribution by a discrete random variable with a predetermined maximum
number of atoms, such that the Wasserstein distance is minimized [see 7]. We relate our approach to opti-
mal quantization in Section 4.7. Approximation of density functions is described among others in [8] through
piecewise constant functions using a constraint in L2 distance; in [9] through piecewise polynomial functions
using a constraint in total variation and in [10] through histograms that minimize relative error measures.

The paper is structured as follows. Section 2 introduces piecewise linear distributions. Section 3 focuses on
the Wasserstein distance and defines admissible approximation distributions. Section 4 specifies the approxi-
mation algorithm. In Section 5, we give examples of results and implementation and conclude in Section 6.

2. PIECEWISE LINEAR DISTRIBUTIONS

In this section, we define the class of random variables with a piecewise linear distribution that is used as
approximation to the empirical distribution function. A PWL distribution has both its cumulative distribution
function (cdf) and its quantile function composed by linear segments. For ease of understanding, we start with
an illustrative example and define a parametrization subsequently.

Example 2.1. Consider the following cdf and quantile function, defining a PWL distribution:

G(x) =



0, if x < 1,
(x−1)0.6

3 , if 1 ≤ x < 4,

0.8, if 4 ≤ x < 6,
(x−6)0.2

3 +0.8, if 6 ≤ x < 9,

1, if 9 ≤ x,

G←(t ) =


2.5+1.5

( 2t
0.6 −1

)
, if 0 < t ≤ 0.6,

4, if 0.6 < t ≤ 0.8,

7.5+1.5
(
2 t−0.8

0.2 −1
)

, if 0.8 < t ≤ 1.

The distribution G(x) is illustrated in Figure 1.
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FIGURE 1. An illustration of the cdf of the PWL distribution defined in Example 2.1. It per-
tains a positive density on the intervals (1,4) and (6,9), as well as an atom at 4.

It is also possible to parametrize the class of PWL distributions through its interpolation points, i.e., the
points where the linear segments connect. However, from an algorithmic point of view, the following equiva-
lent parametrization is easier to use. It is based on the quantile function as a starting point, and it uses average
and slope per quantile segment as parameters.

Definition 2.2. A random variable X : Ω→ R has a piecewise linear distribution with vector parameters z =
(z1, . . . , zS ) ∈ [0,1]S , µ= (µ1, . . . ,µS−1) ∈RS−1, and δ= (δ1, . . . ,δS−1) ∈ [0,∞)S−1 for S ∈N, such that

0 = z1 < z2 < ·· · < zS = 1, and

µs +δs ≤µs+1 −δs+1 for s = 1,2, . . . ,S −2,(2.1)

if its quantile function G←(t ) on the intervals (zs+1, zs ] is given by:

G←(t ) =µs +δs

(
2t − (zs+1 + zs )

zs+1 − zs

)
for t ∈ (zs , zs+1].(2.2)
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The vector z = (z1, z2, . . . , zS ) is called basis of G : basis(G) = (z1, z2, . . . , zS ). The semi-closed intervals (zs , zs+1]
between two consecutive points zs and zs+1 in the basis are called segments of G and S−1 denotes the number
of segments in the approximation.

Its cdf G(x) =P[X ≤ x] (x ∈R) is equal to:

G(x) =


0, if x <µ1 −δ1,
(x−µs+δs )(zs+1−zs )

2δs
+ zs , if µs −δs ≤ x <µs +δs ,

zs+1, if µs +δs < x <µs+1 −δs+1 or x =µs −δs =µs +δs ,

1, if x ≥µS−1 +δS−1

The interpolation points of such a PWL distribution are given by (µ1 −δ1, z1), (µ1 +δ1, z2), (µ2 −δ2, z2), (µ2 +
δ2, z3), . . . , (µS−1 +δS−1, zS ).

Note that if J : Ω→ {1,2, . . . ,S − 1} and Us : Ω→ [0,1] are independent random variables with P[J = s] =
zs+1 − zs and Us ∼ U (0,1) for s = 1, . . . ,S − 1, then the variable X with distribution G ∼ PWL(z,µ,δ) has the
following stochastic representation as a discrete mixture of S −1 uniform random variables:

(2.3) X =
S−1∑
s=1

1{J = s}
[
2δsUs +µs −δs

]
where 1{ · } denotes the indicator function, and the mixing weights are zs+1−zs > 0,

∑S−1
s=1 (zs+1−zs ) = zS−z0 = 1.

In the case that δs = 0, the s-th variable in the mixture would be a degenerate variable given by the constant
µs .

Figure 2 illustrates a segment of a PWL distribution G parametrized by its basis z, and the vectors µ and δ

related to the average and slope per segment.

s s s s + s

zs

zs + 1

G
(x

)

( s s, zs)

( s + s, zs + 1)s

FIGURE 2. Illustration of a PWL distribution segment, parametrized through z, µ and δ. δs

equates to the distance between the average of G←(t ) on (zS , zs+1] (equal to µs ) and one of
the values G←(zs ) (equal to µs −δs ) or limt↑zs+1 G←(t ) (equal to µs +δs ).

Example 2.3. Consider the PWL distribution G as introduced in Example 2.1. The corresponding parameters
are

S = 4, z = (0,0.6,0.8,1), µ= (2.5,4,7.5), δ= (1.5,0,1.5).

Note that δ2 = 0 indicates an atom for the segment. The three segments of G are (0,0.6], (0.6,0.8], and (0.8,1].

A useful property of the class of PWL distributions is that many statistics such as moments can be computed
analytically.

Lemma 2.4. Let G = PWL(z,µ,δ) and m > 0. The m-th moment E[X m] of a random variable X ∼G is given by

E[X m] =
S−1∑
s=1

∫ zs+1

zs

G←(t )mdt ,

where ∫ zs+1

zs

G←(t )mdt =
{

(µs+δs )m+1−(µs−δs )m+1

2δs (m+1) (zs+1 − zs ), if δs > 0,

µm
s (zs+1 − zs ), if δs = 0.
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Proof. If U is uniformly distributed on [0,1], then E[X m] = E[(G←(U ))m]. Therefore,

E[X m] = E[G←(U )m] =
∫ 1

0
G←(t )mdt =

S−1∑
s=1

∫ zs+1

zs

G←(t )mdt ,

which leads to the desired result using (2.2). �

Example 2.5. Let G = PWL(z,µ,δ) as in Example 2.1 and X ∼G . Then, the mean is given by

E[X ] = 42 −12

2×1.5×2
(0.6−0)+4(0.8−0.6)+ 92 −62

2×1.5×2
(1−0.8) = 3.8.

The PWL distributions in this paper have a PWL cdf and quantile function, not a PWL density. This type of
distribution has been chosen for approximation purposes because of its worthwhile properties:

• PWL distributions allow to easily calculate quantities such as cdf, quantiles, moments or risk measures.
• PWL distributions can be used to approximate any kind of univariate distribution shape; continuous,

discrete or mixed (continuous in some parts of the domain with atoms).
• PWL distributions are parsimonious, the size of the parameter vectors z, µ and δ varies according to

the appearance and complexity of the empirical distribution that is being approximated. For large
samples, the number of PWL parameters is massively lower compared to the sample size.

Piecewise functions based on higher degree polynomials can also be used as approximations, but they
would make the calculation of quantities more difficult and the algorithm less efficient.

Assumption 2.6. Throughout the remainder of the paper, we assume that Fn denotes an empirical distribution
Fn(x) = 1

n

∑n
i=1 1{Xi ≤ x} of a sample {X1, X2, . . . , Xn} with sample size n ∈N.

Definition 2.7. A PWL(z,µ,δ) distribution G is sample compatible with respect to an empirical distribution
Fn , if zs ∈ {0/n,1/n,2/n, . . . ,n/n} for all s = 1,2, . . . ,S.

The former definition indicates that each linear segment of G corresponds to a specific set of sample points
in

{
X(1), X(2), . . . , X(n)

}
, where X(i ), i = 1, . . . ,n are the order statistics of the sample.

3. WASSERSTEIN DISTANCE AND ADMISSIBILITY

In this section, we introduce the Wasserstein distance, a metric that allows to quantify the proximity be-
tween two univariate distribution functions. This distance will be the basis to define when a PWL distribution
is an admissible approximation of an empirical distribution.

Definition 3.1. The Wasserstein distance between Fn and G is given by

(3.1) W (Fn ,G) =
∫ ∞

−∞
|Fn(x)−G(x)|dx =

∫ 1

0

∣∣F←
n (t )−G←(t )

∣∣dt .

The Wasserstein distance above is in fact the minimal L1 metric between random variables with distri-
butions Fn and G . This distance is known under different names as Kantorovich metric, Monge-Wasserstein
distance, Gini index or Earth-Mover’s distance given that several authors from distinct disciplines have worked
on it [see 11]. It is also related to optimal transportation problems and it has been used in approximation
of probability measures, statistical mechanics and image processing. For historical references on the origin
of Wasserstein distance and its use in optimal transportation [see 12]. Definition 3.1 can be extended to the
Wasserstein distance of order p as presented for instance in [11]. Under that alternative definition, Equation
(3.1) would be the Wasserstein distance of order 1.

Definition 3.2. The discretized Wasserstein distance W ∗(Fn ,G) between Fn and a sample compatible G is de-
fined as

W ∗(Fn ,G) = 1

n

n∑
i=1

∣∣∣∣X(i ) −G←
(

i −1/2

n

)∣∣∣∣ .(3.2)

Note that
∫ i

n
i−1

n

G←(t )d t = 1
n G← ( i−1/2

n

)
, thus by defining

(3.3) W ∗
i =

∣∣∣∣∣
∫ i

n

i−1
n

(
F←

n (t )−G←(t )
)

dt

∣∣∣∣∣= 1

n

∣∣∣∣X(i ) −G←
(

i −1/2

n

)∣∣∣∣
we can write W ∗(Fn ,G) =∑n

i=1 W ∗
i .
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Note that the empirical quantile function is defined as F←
n (t ) = X(i ) for i−1

n < t ≤ i
n , the inverse of the empir-

ical distribution function. Alternative definitions of the empirical quantile function (discrete or continuous)
can be found in [13].

The following theorem calculates the Wasserstein distance W (Fn ,G).

Theorem 3.3. The Wasserstein distance between Fn and a sample compatible G = PWL(z,µ,δ) is given by
W (Fn ,G) =∑n

i=1 Wi , where

Wi =
∫ i

n

i−1
n

∣∣F←
n (t )−G←(t )

∣∣dt =W ∗
i + 1

2

(
1

n
− W ∗

i

δ∗s

)
·max{δ∗s −nW ∗

i ,0}, and(3.4)

δ∗s = δs

n(zs+1 − zs )
=

∣∣∣∣G←
(

i

n

)
−G←

(
i −1/2

n

)∣∣∣∣=
∣∣∣∣∣ lim

t↑ i−1
n

G←(t )−G←
(

i −1/2

n

)∣∣∣∣∣ .

Note that Wi =W ∗
i in case δ∗s ≤ nW ∗

i .

Proof. We have that F←
n (t ) is constant for t ∈ ( i−1

n , i
n

]
: F←

n (t ) = X(i ). nW ∗
i = ∣∣X(i ) −G← ( i−1/2

n

)∣∣ equates to

the distance from G← ( i−1/2
n

)
, the middle point of G← on

( i−1
n , i

n

]
, to the sample value X(i ). Analogously, the

distance from that middle point to the end of G← on the segment
( i−1

n , i
n

]
is given by δ∗s .

We can now distinguish two cases: whether G←(t ) attains the value X(i ) in the interval
( i−1

n , i
n

]
(case 1) or

not (case 2).

• Case 1: G←(t ) 6= X(i ) for all t ∈ ( i−1
n , i

n

]
. In this case nW ∗

i ≥ δ∗s and max{δ∗s −nW ∗
i ,0} = 0. We know that

F←
n (t )−G←(t ) does not change sign for t ∈ ( i−1

n , i
n

]
. Therefore,

Wi =
∫ i

n

i−1
n

∣∣F←
n (t )−G←(t )

∣∣dt =
∣∣∣∣∣
∫ i

n

i−1
n

(F←
n (t )−G←(t ))dt

∣∣∣∣∣=W ∗
i .

• Case 2: If G←(t ) attains the value X(i ) in the interval
( i−1

n , i
n

]
, then F←

n (t )−G←(t ) changes its sign in
that interval and nW ∗

i < δ∗s . As shown in Figure 3, in this case Wi is given by the area of two triangles.
The areas of the smaller and larger triangle are given by

1

2

(
δ∗s −nW ∗

i

) 1

2n

(
1− nW ∗

i

δ∗s

)
and

1

2

(
δ∗s +nW ∗

i

) 1

2n

(
1+ nW ∗

i

δ∗s

)
,

respectively. Adding up these terms yields

Wi = 1

2

(
δ∗s −nW ∗

i

) 1

2n

(
1− nW ∗

i

δ∗s

)
+ 1

2

(
δ∗s +nW ∗

i

) 1

2n

(
1+ nW ∗

i

δ∗s

)
=W ∗

i + 1

2

(
1

n
− W ∗

i

δ∗s

)
· (δ∗s −nW ∗

i ).

Figure 3 illustrates both cases and the area which equals Wi .

�

G (i 1
n ) G (i 1/2

n ) G ( i
n )      X(i)

i 1
n

i 1/2
n

i
n

nW *
i

*
s

Case 1

G (i 1
n ) X(i)          G (i 1/2

n ) G ( i
n )

nW *
i

*
s

Case 2

FIGURE 3. Illustration of Wi (shaded area) for the empirical distribution Fn (solid line) and
the PWL approximation G (dashed line) in case that nW ∗

i ≥ δ∗s (left) and nW ∗
i < δ∗s (right).

The following theorem shows that the discretized Wasserstein distance W ∗(Fn ,G) is bounded by W (Fn ,G).
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Theorem 3.4. For Fn and its approximation G = PWL(z,µ,δ), we have:

W ∗(Fn ,G) ≤W (Fn ,G).

Proof. Adding up the components Wi and W ∗
i and exchanging absolute value with integral yields

W ∗(Fn ,G) =
n∑

i=1
W ∗

i =
n∑

i=1

∣∣∣∣∣
∫ i

n

i−1
n

(
F←

n (t )−G←(t )
)

dt

∣∣∣∣∣
≤

n∑
i=1

∫ i
n

i−1
n

∣∣F←
n (t )−G←(t )

∣∣dt =
∫ 1

0

∣∣F←
n (t )−G←(t )

∣∣dt =W (Fn ,G).

�

Example 3.5. Suppose we have the following sample of size 10:

{X(1), X(2), . . . , X(10)} = {1,1.6,4.3,4.6,6,7.1,13,15.6,16,18.8}.

Let Fn be its empirical distribution and G = PWL(z,µ,δ) with z = (0,0.6,1), µ = (4.1,15.85) and δ = (3.3,1.9).
Figure 4 shows Fn , G and both versions of the Wasserstein distance.

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0
Illustration of W(Fn, G)

0 5 10 15 20

Illustration of W * (Fn, G)

FIGURE 4. Empirical distribution Fn (dotted) and a PWL approximation G (dashed). In this
case Wi = W ∗

i for i = 2,3,7,10. The shaded area in the plot on the left illustrates the Wasser-
stein distance W (Fn ,G) = 0.6517. The average length of the solid segments in the plot on the
right corresponds to the discretized Wasserstein distance W ∗(Fn ,G) = 0.6.

Definition 3.6. For a sample distribution Fn , a PWL distribution G is called an admissible approximation of
Fn with accuracy ε> 0 if

W (Fn ,G) ≤ ε.(3.5)

In Section 4.5, we propose a procedure for selecting the ε parameter for practical purposes.
Even though we focus on the Wasserstein distance in this paper, an admissible approximation as defined

in (3.5) also implies an error bound on the Prokhorov, and Lévy metrics and a risk measure as the tail value at
risk.

Definition 3.7. For a distribution F with E[F ] < ∞ and α ∈ (0,1] the tail value at risk (TVaRα) is equal to
TVaRα(F ) = 1

α

∫ 1
1−αF←(t )dt .

Theorem 3.8. Let the PWL distribution G be an admissible approximation of Fn . Then,

|TVaRα(Fn)−TVaRα(G)| ≤ ε

α
.

Proof.

ε≥
∫ 1

0

∣∣F←
n (t )−G←(t )

∣∣dt ≥
∫ 1

1−α

∣∣F←
n (t )−G←(t )

∣∣dt

≥
∣∣∣∣∫ 1

1−α
(F←

n (t )−G←(t ))dt

∣∣∣∣=α|TVaRα(Fn)−TVaRα(G)|.

�
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Note that the converse is not true. For instance, G = PWL(z,µ,δ) with

z = (0,α,1), µ=
(

1

1−α
∫ 1−α

0
F←

n (t )dt ,
1

α

∫ 1

1−α
F←

n (t )dt

)
, δ= (0,0)

has the same TVaRα as Fn , but potentially much larger Wasserstein distance.

Definition 3.9. The Lévy metric dL(Fn ,G) and the Prokhorov metric dP (Fn ,G) between Fn and G are equal to:

dL(Fn ,G) = inf
τ>0

{
G(x −τ)−τ≤ Fn(x) ≤G(x +τ)+τ,∀x ∈R}

,

dP (Fn ,G) = inf
τ>0

{
Fn(A) ≤G(Aτ)+τ,∀A ∈B}

.

where Aτ is a closed τ−neighbourhood of A and B is the Borel sigma algebra.

Theorem 3.10. Let the PWL distribution G be an admissible approximation of Fn . Then,

dL(Fn ,G) ≤ dP (Fn ,G) ≤p
ε.

Proof. Immediate consequence of Definition 3.6 and the fact that dL(Fn ,G) ≤ dP (Fn ,G) and (dP (Fn ,G))2 ≤
W (Fn ,G) as shown in Section 3 of [14]. �

4. ALGORITHM

The basic idea on how to implement an algorithm to find an admissible PWL approximation of Fn is very
simple: Start with z = (0,1) and iteratively insert values into z, until there exists an admissible PWL distribution
G with basis(G) = z. Figure 5 illustrates the iterative decomposition. However, for a concrete implementation,
several mathematical and numerical issues related to this basic idea are clarified in this section.

0.0

1.0
Iteration 1

0.000

0.9270.927
1.000

Iteration 2

8 10 12 14
0.000
0.0650.065

0.9270.927
1.000

Iteration 3

8 10 12 14
0.0

1.0
Final iteration

FIGURE 5. Iterative process to find an admissible PWL distribution G . Empirical distribution
Fn (solid line) and a PWL approximation G (dashed line). For the first iteration z = (0,1), for
the second z = (0,0.927,1), for the third z = (0,0.065,0.927,1) and for the final iteration z is a
vector of size 50 in this case. The Wasserstein distance corresponds to the shaded area in the
lower sub-plots.
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4.1. Mean parameter.
In this subsection, we describe the algorithmic choice of the mean (location) parameter µs . The following

theorem shows the relationship between the Wasserstein distance and the difference on the expected values
of two distributions.

Theorem 4.1. For two distributions Fn and G with expected values E[Fn] and E[G], we have:

|E[Fn]−E[G]| ≤W (Fn ,G) ≤ |E[Fn]−E[G]|+W (Fn −E[Fn],G −E[G]).(4.1)

Proof.

|E[Fn]−E[G]| =
∣∣∣∣∫ 1

0

(
F←

n (t )−G←(t )
)

d t

∣∣∣∣≤ ∫ 1

0

∣∣F←
n (t )−G←(t )

∣∣d t =W (Fn ,G)

=
∫ 1

0

∣∣F←
n (t )−E[Fn]+E[Fn]−G←(t )−E[G]+E[G]

∣∣d t

≤
∫ 1

0
|E[Fn]−E[G]|d t +

∫ 1

0

∣∣F←
n (t )−E[Fn]−G←(t )+E[G]

∣∣d t

= |E[Fn]−E[G]|+W (Fn −E[Fn],G −E[G]).

�

From (4.1), we observe that if we set the PWL approximation to have the same expectation than Fn , E[G] =
E[Fn], their Wasserstein distance will have a smaller upper bound, so that it will be faster to find an admissible
approximation. In order to achieve the same first moment, we define µs as the average of all order statistics
X(i ) belonging to the segment s.

Algorithm 4.2. Given a z vector parameter of a sample compatible PWL distribution, set µ such that

µs = 1

n(zs+1 − zs )

nzs+1∑
i=nzs+1

X(i ) for s = 1,2, . . . ,S −1.(4.2)

Lemma 4.3. If µs is set through Algorithm 4.2, then∫ zs+1

zs

G←(t )dt =
∫ zs+1

zs

F←
n (t )dt .

Proof. Using Definition 2.2, we get
∫ zs+1

zs
G←(t ) = (zs+1−zs )µs . So that ifµs is set as in Algorithm 4.2

∫ zs+1
zs

G←(t ) =
1
n

∑nzs+1
i=nzs+1 X(i ) which is equal to

∫ zs+1
zs

F←
n (t )dt . �

4.2. Default slope parameter.
Given a basis z, since the parameter µ is given through Algorithm 4.2, the only remaining free parameter is

δ. In this section, we provide default values for δs to be used. We propose to take the δs which minimizes the
discretized Wasserstein distance between F←

n and G← measured on the segment (zs , zs+1].

Theorem 4.4. For a segment s of a sample compatible approximation G, let
ωs (δs ) : [0,∞) → [0,∞) denote the discretized Wasserstein distance between G← and F←

n on (zs , zs+1] as a func-
tion of δs using µs as defined in Algorithm 4.2, ωs (δs ) =∑nzs+1

i=nzs+1 W ∗
i . Let δW

s the value that minimizes ωs (δs ) :

δW
s = argmin

δs≥0
ωs (δs ) = argmin

δs≥0

nzs+1∑
i=nzs+1

1

n

∣∣∣∣∣X(i ) −
(
µs +δs

(
2
( i−1/2

n

)− (zs+1 + zs )

zs+1 − zs

))∣∣∣∣∣ .

Then, the minimum is attained for some δW
s ∈∆s =

{
∆s,i : i = nzs +1, . . . ,nzs+1

}
, where

∆s,i =
(
X(i ) −µs

)
/

(
2
( i−1/2

n

)− (zs+1 + zs )

zs+1 − zs

)
.(4.3)

Proof. W ∗
i is a piecewise linear function in δs , being decreasing for δs <∆s,i and increasing for δs >∆s,i ; hence

it attains its minimum W ∗
i = 0 when δs = ∆s,i . A special case occurs when there is an odd number of sample

points in segment s, and i = n(zs+zs+1)+1
2 . In that situation W ∗

i = 1
n |X(i ) −µs | is constant for all values of δs .

Therefore, ωs (δs ) is a piecewise linear function since it is the sum of piecewise linear functions. This function
has left and right derivatives on the full domain but it is not differentiable for the values of δs ∈∆s,i ; precisely
because its slope changes at those values. Then, ωs is convex and has a minimum value that is attained at one
or some of these points in ∆s . �

Algorithm 4.5. Given z and µ, calculate δs as follows:

• Determine the set ∆s and sort its values.
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• Apply a binary search algorithm to find δW
s ∈ ∆s such that ωs

(
δW

s

)
has a non-positive left derivative

and a non-negative right derivative.

Note that this algorithm has numerical complexity O(|∆s | log |∆s |), with |∆s | = n(zs+1 − zs ) the number of sam-
ple points corresponding to segment s.

Example 4.6. Given the sample distribution Fn and z = (0,0.6,1) andµ= (4.1,15.85) as defined in Example 3.5.
Then, Algorithm 4.5 yields to:

∆1 = {3.72,5,−1.2,3,3.8,3.6}, δW
1 = 3.72,

∆2 = {3.8,1,0.6,3.933}, δW
2 = 3.8.

Figure 6 shows Fn and G with this choice for the slope parameters. Figure 7 shows the function ωs (δs ) for the
two segments (0,0.6] and (0.6,1].

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.2

0.4

0.6

0.8

1.0

FIGURE 6. Fn (dotted line) and G (solid line) with δW
s that minimizes ωs (δs ). For this

parametrization W ∗(Fn ,G) = 0.332 and W (Fn ,G) = 0.5521.
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FIGURE 7. On the left ω1 (δ1), for the first segment the minimum ω1
(
δW

1

) = 1.72 is obtained
for δW

1 = 3.72. On the rightω2 (δ2), with the minimumω2
(
δW

2

)= 1.6 for δW
2 = 3.8. The dots in

the graphs correspond to the points (∆s,i ,ω(∆s,i )). Note that ωs (δs ) changes the slope at the
values δs ∈∆s,i .

The default parameter δW
s proposed in this section corresponds to the parameter from the median (quan-

tile) regression line between F←
n and G← on (zs , zs+1] that crosses through

(
µs , zs+zs+1

2

)
. Refer to [15] for a

detailed explanation of quantile regression.
Alternative approaches to set the slope parameter δs could be taken. For instance, if the method of mo-

ments is used, µs and δs can be obtained by matching 1
n

∑n
i=1 X(i ) with E[G] and 1

n

∑n
i=1 X 2

(i ) with E[G2] as given
in Lemma 2.4 for m = 1,2. In this way, not only the mean but also the sample variance could be preserved on
the approximation G .
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4.3. Segment bisection.
The basic idea of the approximation algorithm is to start with z = (0,1) and to insert points into z until an

admissible solution is found. In this section, we describe where to bisect (zs , zs+1]. When choosing among the
different segments, the segment s with the biggest value of ωs (δS ) is selected for bisection.

Algorithm 4.7. If it is required to bisect segment s, insert z̃ between zs and zs+1, where

z̃ = argmin
ζ∈{

zs+ 1
n ,zs+ 2

n ,...,zs+1− 1
n

}
{∫ ζ

zs

(
L(zs ,ζ](t )−F←

n (t )
)2 dt +

∫ zs+1

ζ

(
L(ζ,zs+1](t )−F←

n (t )
)2 dt

}
(4.4)

with∫ ζ

zs

(
L(zs ,ζ](t )−F←

n (t )
)2 dt = 1

n

nζ∑
i=nzs+1

X 2
(i ) +δI

[
µI (ζ+ zs )− 2

n2(ζ− zs )

nζ∑
i=nzs+1

X(i )(i −1/2)

]
−µ2

I (ζ− zs )

Where for the segment I = [zs ,ζ), µI is chosen accordingly to Algorithm 4.2 (but replacing zs+1 by ζ) and δI

corresponds to the δs parameter used for the PWL approximation L I (t ) that is the L2 regression of the sample

points on the interval I [see 3, Theorem 5.7].
∫ zs+1
ζ

(
L(ζ,zs+1](t )−F←

n (t )
)2 dt is given by an analogous expression

but with the segment I = [ζ, zs+1).

The value z̃ bisects the segment at the point with the optimal reduction of the L2 distance. Such a distance
is preferred to the Wasserstein in this section of the algorithm, because a closed formula exists for the slope pa-
rameter δsi , so that Algorithm 4.7 has a O(|∆s |) numerical complexity, whilst using the distanceωsi

(
δW

si

)
would

imply a O
(|∆s |2 log |∆s |

)
complexity. The effect of using the Wasserstein distance instead of the L2 distance in

the bisection of segments, in the performance of the algorithm, is examined in Section 5.

Example 4.8. Given the sample distribution Fn as defined in Example 3.5 and z = (0,1), applying Algorithm 4.7
on the segment (z1, z2] = (0,1] yields z̃ = 0.6 since for z = (0.1,0.2, . . . ,0.9), the value of the right expression in
(4.4) evaluates to (1.868,1.755,1.425,1.354,1.299,0.392,1.521,2.183,2.131).

4.4. Ensuring segment compatibility.
Remember that the idea of the approximation algorithm is to find a PWL(z,µ,δ) distribution G such that

W (Fn ,G) ≤ ε. Although setting the value of δs = δW
s as described in Section 4.2 will lead in most of the cases

to compatible segments, it is possible that the compatibility condition (2.1) is not fulfilled for some segments.
This means that

µs +δW
s >µs+1 −δW

s+1,

for some s ∈ {1,2, . . . ,S −2}, i.e. that the PWL function defined by (z,µ,δ) is not a proper distribution function.
The following algorithm has the purpose of correcting this situation.

Algorithm 4.9. Suppose that for some fixed s, we have

µs +δW
s >µs+1 −δW

s+1,

Then, reset δs and δs+1 such that

µs +δs =µs+1 −δs+1 =
µs +δW

s +µs+1 −δW
s+1

2

so that the values of δs and δs+1 after the adjustment are δs = µs+1−µs+δW
s −δW

s+1
2 , δs+1 = µs+1−µs+δW

s+1−δW
s

2 .

The following example illustrates Algorithm 4.9.

Example 4.10. Suppose Fn is defined as in Example 3.5. Furthermore, let z = (0,0.3,1). We have

µ1 = 2.3, δW
1 = 2.475, µ2 = 11.586, δW

2 = 8.417,

which leads to

4.775 =µ1 +δW
1 >µ2 −δW

2 = 3.169.

By using Algorithm 4.9, we set δ1 = 1.672 and δ2 = 7.614, such that µ1 +δ1 = µ2 −δ2 = 3.972. After this adjust-
ment, the two segments connect at the midpoint. Figure 8 provides an illustration.

It is important to note that the stochastic representation in (2.3) does not require that the compatibility
condition (2.1) is fulfilled. The mixture of uniform variables would add a new segment between µs+1 −δs+1

and µs +δs without introducing additional elements to the vector parameters z, µ and δ. However, the new
segment does not guarantee the sample compatibility condition on Definition 2.7. Therefore, the obtained
formulae (3.2) and (3.3) for W ∗(Fn ,G) and (3.4) for W (Fn ,G) would not be exact. Because of the former, the
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After adjusting 1 and 2

FIGURE 8. Illustration of Algorithm 4.9. Left: With δ1 = δW
1 and δ2 = δW

2 , the two segments
of the PWL approximation (solid) are incompatible. Right: Setting δ1 = 1.672 and δ2 = 7.614
yields compatible and connected segments.

use of the stochastic representation to solve the problem with the compatibility condition would imply more
involved formulae for the Wasserstein distance, and the full algorithm would lose its simplicity, hence the
solution with Algorithm 4.9 is preferred.

4.5. Selection of accuracy parameter.
In this section, we describe a statistical approach for the estimation of the accuracy parameter ε. To that

end, we consider the convergence of Fn to F in terms of the Wasserstein distance, and then set ε such that the
approximation error is significantly smaller than the sampling error. Most of the convergence theory in this
section is based on [16].

Definition 4.11. An estimator of the expected Wasserstein distance between Fn and F is defined as

Ŵ (F,Fn) = 1p
n

√
2

π

∫ ∞

−∞

√
Fn(t )(1−Fn(t ))dt .

Note that Ŵ (F,Fn) depends only on Fn , i.e., it is independent of F and can therefore be calculated from the
sample.

The following theorem provides the conditions and mathematical formulation of Ŵ (F,Fn) as a consistent
estimator of E [W (F,Fn)].

Theorem 4.12. Suppose E[|X |ξ] <∞ for X ∼ F and some ξ> 2. Then,

lim
n→∞

∣∣pnŴ (F,Fn)−p
nE [W (F,Fn)]

∣∣= 0.

Proof. [See 16, Theorem 2.4]. We have Lξ ⊂ L2,1 [see 16, p.1014 after (2.1’)]. For the expectation E
∫ |B(F )| =p

2/π
∫ p

F (1−F ) [see 16, p.1038]. del Barrio E. et al. [16, Equation (1.6)] also provide the limiting distribution
and variance of W (F,Fn) around the mean in terms of a weighted Brownian motion. �

The careful reader may have observed that Theorem 4.12 requires E[|X |ξ] <∞ for some ξ> 2. del Barrio E.
et al. [16] also provide the convergence behaviour in the other cases:

• If E[X 2] = ∞ and E[|X |ξ] < ∞ for some ξ > 1, then anE[W (F,Fn)] converges to a constant for some
appropriately chosen sequence of scaling factors an . Under the conditions of Theorem 4.12, an =p

n
was used, but the infinite variance case implies a slower convergence rate. For instance, for a power
tailed distribution with a tail decay parameterα (such as Pareto(α)), del Barrio E. et al. [16, Theorem 2.2
and (2.13)] provide an = n1−1/α. For α= 1.5, this gives an = n1/3. The constant to which anE[W (F,Fn)]
converges can be determined as shown by K (t ) and [16, (2.24)], but cannot practically be estimated,
since it depends on constants which are not known when only having a sample distribution Fn at hand
[see 16, (2.22)]. del Barrio E. et al. [16, Theorem 1.1b)] provide the limiting distribution of anW (F,Fn)
and [16, Theorem 2.4b)] the corresponding moments.

• If E[|X |] = ∞ then W (F,Fn) = ∞ for all n. However, Fn is finite, and G is finite as well. Therefore, a
“good” approximation can be found, in some sense to be defined by the user. However, ε cannot be
based on the convergence behaviour of W (F,Fn). A different criterion will be required.

• There are some boundary cases not captured in the three cases mentioned above and in Theorem 4.12.
These are covered in [16, Sections 4-6], but are not of practical relevance in this paper.
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We propose to generally use the result of Theorem 4.12 in order to practically determine the accuracy pa-
rameter ε.

Algorithm 4.13. For a given sample distribution Fn , set

ε̂= 0.1 ·Ŵ (F,Fn) = 0.1
1p
n

√
2

π

n−1∑
i=1

√
i

n
· n − i

n

(
X(i+1) −X(i )

)
.(4.5)

Using Algorithm 4.13 implies that asymptotically the error introduced through the piecewise linear approx-
imation (error between Fn and G) is at least one order of magnitude smaller than the sampling error (error
between F and Fn). In fact, if the distribution F satisfies certain conditions, then we can establish an upper
bound on the probability that the difference between these two errors is bigger than a fixed value δ.

Lemma 4.14. Assume that F satisfies a Poincaré inequality, i.e. it is a continuous distribution for which exists a
constant λ> 0, such that for any absolutely continuous function u :R→R

λVar[u(F )] ≤ E[|u′(F )|2]
For the empirical distribution Fn , let G be an admissible PWL approximation with accuracy ε̂ according to

Algorithm 4.13. Then

P [|W (Fn ,G)−0.1W (F,Fn)| ≥ δ] ≤Ce−20 δ
p
λn for any δ> 0,n ∈N

where C > 0 is an absolute constant.

Proof. This result is a consequence of Definition 3.6, Definition 4.11, and Theorem 7.1 in [17]. �

The upper bound in Lemma 4.14 applies to continuous random variables with finite exponential moments
such as Gaussian or gamma, but it excludes sub-exponential distributions with heavy tails as the ones de-
scribed in [18]. Since the approximation is intended to be used in the case of large sample sizes, the factor 0.1
in Algorithm 4.13 defines for most of the cases in practice the expected proportion of the approximation error
relative to the sampling error.

In case Algorithm 4.13 is deemed unsuitable for the situation at hand, one may either adjust the factor 0.1
to some other value, or select ε as a value adapted to the specific situation or application. This should notably
be considered if the underlying distribution is known to have infinite variance or if Fn is not derived from an
i.i.d. sample of F .

4.6. Full algorithm.
Using the results of the previous sections, we now have all components to describe the full algorithm.

Algorithm 4.15.

(1) Initialize z = (0,1). Set ε> 0 as described in Section 4.5.
(2) Determine G ∼ PWL(z,µ,δ) with µ set through Algorithm 4.2 and δ set through δs = δW

s as in Algo-
rithm 4.5.

(3) Calculate W ∗(Fn ,G). If W ∗(Fn ,G) > ε, bisect the segment s with the biggest value ωs (δs ) using Algo-
rithm 4.7. Incorporate z̃ into z and return to point (2).

(4) If there are any incompatible segments (i.e., segments breaching condition (2.1)), then adjust δ by
applying Algorithm 4.9.

(5) Calculate W (Fn ,G) through Theorem 3.3. If W (Fn ,G) < ε, then a sample compatible and admissible
solution G ∼ PWL(z,µ,δ) has been found. Otherwise, bisect the segment s with the largest value of
ωs (δs ) and go back to point (2) but using W (Fn ,G) instead of W ∗(Fn ,G).

Note that the algorithm is shift invariant since G is chosen to have equal mean as Fn . Furthermore, it is
scale invariant since (4.2), (4.3) and (4.5) scale linearly with the sample. Hence, given a sample Xi , we deter-
mine an admissible PWL approximation GX ∼ PWL(zX ,µX ,δX ) using Algorithm 4.15, with accuracy ε̂X as in
Algorithm 4.13. If we transform linearly the sample to Yi = a +bXi with a ∈ R and b > 0, which can for in-
stance be seen as a change in currency or an adjustment by inflation; then it is not required to apply again
Algorithm 4.15 to the sample Yi . The admissible PWL approximation GY for sample Yi with accuracy ε̂Y = bε̂X

can be deduced adjusting the parameters of GX accordingly, so that GY ∼ PWL(zX , a1+bµX ,bδX ).
The full algorithm checks first the admissibility condition (3.5) for the discretized Wasserstein distance

W ∗(Fn ,G); once the condition is fulfilled with this distance, it is verified for the Wasserstein distance W (Fn ,G).
In doing so, the algorithm approximates Wi , the area between the quantile functions F←

n (t ) and G←(t ) for
t ∈ ( i−1

n , i
n

]
, through W ∗

i , the distance between the empirical quantile function F←
n (t ) and G← ( i−1/2

n

)
the mid-

dle point of G← in the interval
( i−1

n , i
n

]
(see Figure 4). The approximation is exact in the case that the quantile
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function G← does not equal a sample value X(i ) in the interval considered, as shown in Theorem 3.3. This
allows the full algorithm to be more efficient, given that Wi is only calculated in the last iteration.

When comparing Algorithm 4.15 with the one described in [3], we can appreciate that the admissibility con-
dition on the latter is based on the relative error of the TVaRα for all levelsα ∈ (0,1), i.e. the entire domain of the
quantile function. This admissibility condition can be verified independently for every segment s, analysing
only the TVaRα for α ∈ (zs , zs+1]. On the contrary, condition (3.5) depends on the values of the distribution in
all its domain and has to be verified globally for the entire distribution at each iteration. Therefore, a PWL ap-
proximation obtained with the algorithm described in this work is expected to have its points more uniformly
spread, with a smaller proportion of segments in the tail, than the approximation based on the relative error
of the TVaR.

4.7. Connection with optimal quantization.
There is a link between the proposed approximation algorithm, and the optimal quantization problem in

one dimension with the L1 distance as norm. The optimal quantization problem as described in [7] fixes the
number S ∈N of approximation points, and then finds an approximation G with a maximum number of points
S that minimizes W (Fn ,G); whereas in our approach, given an accuracy ε the aim is to find an admissible ap-
proximation G such that W (Fn ,G) ≤ ε. However, optimal quantization is restricted to discrete approximations
(or mixtures of Dirac components) while our approach utilizes PWL approximations (or mixtures of uniform
random variables). The use of discrete approximations in our approach would correspond to G ∼ PWL(z,µ,δ)
with δ= 0.
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FIGURE 9. Accuracy ε as the S-th quantization error against S (solid line) and the number
of segments for Algorithm 4.15 with δs = 0 (dashed line) and δs = δW

s (dotted line), for F ∼
E xp(100) and F ∼U (0,100) over 10 repetitions with n = 100′000 (in log log scale).

For a given sample distribution Fn , Algorithm 4.15 provides an admissible approximation G as required in
(3.5); but there is no guarantee that the distribution G is the PWL admissible approximation with the minimal
number of segments. However, we can fix the accuracy ε in Algorithm 4.15, as the minimum Wasserstein
distance for a discrete approximation with S points (S-th quantization error) and compare S with the number
of segments obtained for the PWL approximation. Figure 9 shows the accuracy parameter ε equal to the S-
th quantization error (for distributions with explicit formulas of its value), against the number of points S in
the quantization problem and the number of segments in the PWL approximation from Algorithm 4.15. We
can appreciate that the approximation obtained when Algorithm 4.15 is executed under the same conditions
than the optimal quantization problem, i.e. forcing δs = 0, has a number of segments on the same order of
magnitude than the optimal, in this case the accuracy ε decreases as O

(
S−1

)
[see 7, Theorem 6.2]. For a fixed

ε, when Algorithm 4.15 is executed with δs = δW
s , the number of segments in the PWL approximation is of at

least one order of magnitude smaller, than in the case δs = 0.

5. IMPLEMENTATION AND ILLUSTRATIONS

We provide an implementation of the algorithm in Python. The code is provided under the permissive and
free MIT license; it can be obtained through the authors or at the following internet address:

https://sites.google.com/site/philipparbenz/home/pwl-wasserstein

Example 5.1. The Python implementation of the PWL approximation algorithm takes three arguments: the
sample (as a list or numpy array), the accuracy mode which can be "Relative" (default option) if ε is chosen
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through Algorithm 4.13 or "Absolute" if the value of ε is directly entered by the user; and the accuracy param-
eter that is equal to the percentage that multiplies Ŵ (F,Fn) in (4.5) (by default 0.1) in the case of a relative
accuracy mode, or equal to the value of ε to be used if the absolute accuracy mode is selected.

LISTING 1. Minimal code example in Python
from compressor import WassersteinPWLcompressor
Sample = [1, 1.6, 4.3, 4.6, 6, 7.1, 13, 13.4, 16, 18.8]
PWLapprox = WassersteinPWLcompressor(Sample , AccuracyMode = "Relative",

AccuracyParameter = 0.1)

To illustrate the result from the algorithm when applied to a large sample, the data set ‘brvehins1’ for Brazil-
ian vehicle insurance from the CASdatasets package [see 19] of the statistical software R, which contains a col-
lection of insurance related data sets, is used. This data set contains information on risk features, number of
claims and claim amounts of 1,965,355 auto mobile insurance policies in Brazil during the year 2011. Two vari-
ables from the data set are utilized to illustrate the performance of the algorithm. The first sample corresponds
to the total claim amount per payment XTot , i.e. the total value of the losses paid per policy for the policies
that had to pay one or more auto mobile claims. The second sample corresponds to the claim portion paid
for partial collision for the policies that had at least one auto mobile claim XPar tCol l . Both samples contain
363,076 observations corresponding to the number of policies with non-zero losses during 2011. Values in
the sample XTot are positive without ties, while XPar tCol l is a sample with an atom at zero for the cases when
there was a claim, but it corresponds to a different coverage than partial collision (robbery, total collision, fire
or other guarantees).

Figure 10 shows the result of the algorithm when applied to the empirical distributions F Tot
n and F Par tCol l

n
from the samples XTot and XPar tCol l when the accuracy ε is selected according to (4.5). In both cases n =
363,076 and in the first case Ŵ

(
F,F Tot

n

)= 104.62 while for XPar tCol l , we have Ŵ
(
F,F Par tCol l

n

)= 36.74.
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FIGURE 10. Empirical distributions (solid line) and admissible PWL approximations
(dashed) with an accuracy ε̂ given by Algorithm 4.13. For F Tot

n (left plot) the accuracy used
is ε̂= 10.46. For F Par tCol l

n (right plot) the accuracy used is ε̂= 3.67. The lower right sub-plot
provides a zoom into the quantiles [0.852-0.8525].

Table 1 shows the run time, the number of segments and the Wasserstein distance (discretized or not), when
the approximation algorithm is applied to F Tot

n and F Par tCol l
n . From this table, we can see that there is only a

small difference between the values of W (G ,Fn) and W ∗(G ,Fn) for the final PWL approximation. The number
of segments on the approximation is about 3 per 10,000 of the sample size, showing its efficiency in reducing
the amount of memory required.

Next, we examine the run time of the algorithm for different sample sizes. To that end, we take sub-samples
without replacement from XTot and XPar tCol l for sample sizes n = 10,000 up to n = 360,000 and compute the
average run time over 100 repetitions. Figure 11 shows the average run time per sample size n. We observe
that the run time is always slightly longer for XTot than for XPar tCol l , which must be due to the presence
of the atom at zero for the second sample whose PWL approximation requires a slightly smaller number of
segments. Additionally, we observe a linear behaviour on the increase on time with respect to the sample
size. It is important to note that the accuracy parameter ε̂ selected through (4.5) decreases when the sample
size n increases; being on average 49.21 and 18.98 when n = 10,000 for XTot and XPar tCol l , respectively, and
decreasing to the values shown in Table 1 when n = 363,076.
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TABLE 1. Average run time (in ms), number of segments and Wasserstein distance (dis-
cretized or not) of the resulting PWL approximation with ε̂ = 0.1 · Ŵ

(
F,F X

n

)
, when the al-

gorithm is applied to the sample X = {XTot , XPar tCol l }

Sample (X ) Run time Number of ε̂ Ŵ
(
F,F X

n

)
W ∗ (

G ,F X
n

)
W

(
G ,F X

n

)
(milliseconds) segments (S −1)

XTot 971 108 10.46 104.6 9.66 10.37
XPar tCol l 914 101 3.67 36.7 3.52 3.67
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FIGURE 11. Average run time of the algorithm over 100 repetitions when applied to subsam-
ples of size n of the samples XTot (solid line) and XPar tCol l (dashed).

Table 2 shows the first five iterations of the algorithm when applied to F Par tCol l
n . The Wasserstein distance

decreases rapidly during these initial iterations until an admissible approximation is obtained after 101 itera-
tions. For these initial iterations, the value of the Wasserstein distance and its discretized version is the same
up to three decimal digits but their difference increases in the following iterations until reaching the values
shown in Table 1 in the final iteration.

TABLE 2. Initial iterations of the Algorithm 4.15 for the sample XPar tCol l

Iteration z W
(
G ,F Par tCol l

n

)
1 (0, 1) 3763.40
2 (0, 0.9908, 1) 2816.21
3 (0, 0.9028, 0.9908, 1) 1467.51
4 (0, 0.5872, 0.9028, 0.9908, 1) 832.88
5 (0, 0.5872, 0.9028, 0.9692, 0.9908, 1) 668.54

As discussed in Section 4.3, the distance ωsi

(
δW

si

)
could be used instead of the L2 distance in Algorithm 4.7.

The resulting PWL approximations will be different under the two methods. However, our tests applying these
two bisection methods on sub-samples of size n = 50,000 and n = 100,000 of XTot and XPar tCol l show that
the resulting PWL approximations have the same magnitude in the number of segments, differing in a few
segments (less than 10% of the number of segments) and without being consistently better for any of the
two distances. On the contrary, the run time of Algorithm 4.15 blows up from less than a second when using
L2, to several minutes when using ωsi

(
δW

si

)
in Algorithm 4.7. Therefore, such a change would render the full

algorithm unusable for practical purposes.



16 P. ARBENZ AND W. GUEVARA-ALARCÓN

6. DISCUSSION

This paper introduces an algorithm that computes a piecewise linear approximation G for a large univari-
ate sample distribution Fn , with hundred of thousands or millions data points. The approximation has the
same mean as the empirical distribution and a bounded error in terms of the Wasserstein distance. For dis-
tributions with a finite second moment, it is proposed to select the error of the approximation as one order of
magnitude smaller than the sampling error. The algorithm is efficient, and the resulting distribution has only a
couple of hundred points for typical applications with sample sizes on the hundreds of thousands and requires
significantly less memory than the original sample. The approximation algorithm can be applied to discrete,
continuous or mixed distributions. An efficient and open source software implementation is provided. The
approximation is particularly useful in industrial or applied environments where numerous distributions of
big samples are repeatedly used and transferred among different systems. In that situation, diverse statistics
from the distributions (as moments, quantiles or risk measures) are calculated in each of the stages and the use
of the approximations accelerates the operation of the process and maintains the reliability of the quantities
calculated.

TABLE 3. Qualitative properties of the different approaches which can be used to retain in-
formation on a large univariate sample distribution

Shape preserving Memory and bandwidth efficient

Storing key statistics No Yes
Storing full sample Yes No
PWL approximation Yes Yes

Table 3 provides a comparative overview on the qualitative properties of the PWL approximation under
a Wasserstein distance constrain compared to two other approaches commonly used when information on
large univariate sample distributions should be preserved or transferred between systems: storing some key
statistics and storing the full sample. Using a PWL approximation is an approach which preserves shape and
statistics, and is memory and bandwidth efficient. The other two approaches do not satisfy both properties.

In future work, we intend to study the approximation of a multivariate sample through a piecewise den-
sity under a Wasserstein distance. The Wasserstein distance naturally extends to higher dimensions, but its
computation is more involved and the components of the algorithm would need to be adapted.
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