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“Mathematics is the only avant-garde remaining in the whole
province of art. It’s pure art, lad. Art and science. Art, sci-
ence and language. Art as much as the art we once called art.
It lost its wings after the Babylonians fizzled out. But emerged
again with the Greeks. Went down in the Dark Ages. Moslems
and Hindus kept it going. But now it’s back, bright as ever.”

Don DelLillo, Ratner’s Star.
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1 Introduction

This thesis is devoted to the study of non-Borel Al pointclasses of the Baire
space, using reductions by continuous functions. This work is divided in three
main parts. In the first one, we generalise results obtained by Duparc [26, 27]
and Louveau [68] to provide a complete description of the Wadge hierarchy
of the class Diff(IT}), the class of increasing differences of coanalytic sets,
under some determinacy hypothesis. In a second part, we study some Al
pointclasses above Diff(IT}), and give a fragment of the Wadge hierarchy
for those classes. Finally, we apply our results and techniques to theoretical
computer science and more precisely to the study of regular tree languages,
that is sets of labeled binary trees that are recognized by tree automata.

1.1 The Borel sets and the emergence of
descriptive set theory: A brief historical
introduction

“Descriptive set theory is the definability theory of the continuum,
the study of the structural properties of definable sets of reals.”

Akihiro Kanamori, [51].

Over a century ago, the development of modern analysis by the french mathe-
maticians Emile Borel, René Baire and Henri Lebesgue induced a fundamen-
tal interest in the study of well-behaved subsets of the real line. Topology,
which developed about the same time, yielded the mathematical framework
for such a study. Borel sets were introduced by Borel [15, pp. 46-47] in
order to extend the notion of length of an interval to a measure on a wide
class of subsets of the real line, and are defined by recursion as follows. Be-
ginning with the intervals, we add at each stage sets whose complement was
previously defined or which are the union of a countable family of previously
defined set. The resulting family is stable under complementation and count-
able unions: it is the smallest o-algebra containing the intervals. As soon as
the Borel sets where introduced, they were set up in a natural hierarchy of



1 Introduction

height wy, the first uncountable ordinal. This hierarchy relies on counting the
number of successive operations of countable unions and complementations
that are necessary to produce a set, beginning with the class of all unions
of open intervals (XY), and its dual the class of closed intervals (IT}). The
class X, for a countable, is thus obtained by taking unions of a countable
family of sets in ITj with § < , and the class IT), is defined as its dual class,
the class of sets whose complements are in 3. Using a variant of Cantor’s
enumeration and diagonalization argument, Lebesgue [64] proved that this
hierarchy is proper. Moreover, the Borel sets are well-behaved: they are mea-
surable in the sense of Lebesgue [63], have the Baire property (BP) [11], which
states that they each have a meager symmetric difference with some open set,
and have the perfect set property [1], which states that they are all either
countable or of the size of the continuum. This nice behaviour, along with
their closure properties, made the Borel sets an appropriate domain for the
mathematical practice and study, and they are now quite well-understood.

“L’origine de tous les problemes dont il va s’agir ici est une
grossiere erreur [...]. Fructueuse erreur, que je fus bien inspiré
de la commettre!”

Henri Lebesgue, preface to [73].

In a seminal article, Lebesgue [64] gave a demonstration of the fact that the
projection of a Borel set of the plane is a Borel subset of the real line. A
decade later however, it was discovered by Suslin [106] that the published
proof was fallacious. The projection of a Borel set is not always Borel, so
that the class of Borel sets is not stable under projection. This led to the
definition of the class of analytic subsets (X1), which are the projections of
Borel sets. Suslin proved that every Borel set is analytic, that there is an
analytic set that is not Borel, and that a set of reals is Borel if and only if
both it and its complement are analytic. Luzin and Sierpinski [74, 75] proved
furthermore that the regular properties hold for the analytic sets, extending
thus the natural domain of analysis. Luzin [72] and Sierpinski [102], building
on the analytic sets, proposed another natural hierarchy above the Borel sets
by alternating complementation with projection: the projective hierarchy. Its
first level is this time formed by the class of analytic sets and the class of
their complements, the coanalytic sets (IT}). On the second level, the class
of projections of coanalytic sets is denoted by X}, and its dual class by II3,
and so on and so forth. This hierarchy is, as in the Borel case, proper. A
natural question arose here: is it possible to extend the realm of analysis to
these classes? Do they enjoy the same regularity properties as the Borel sets
— or the analytic sets?



1.2 The Wadge hierarchy

“L’étude des ensembles analytiques a conduit naturellement a
celle des ensembles projectifs, dont les propriétés extrémement
paradoxales nous obligent, a mon avis, a poser la question de la
légitimité méme de ces ensembles.”

Nikolai N. Luzin, [73].

These questions would need decades to be settled, and would only meet
satisfactory answers in the second part of the twentieth century, thanks to
modern set theory, the development of powerful metamathematical methods
by Godel and the invention of forcing by Cohen. Contrarily to the Borel case,
the questions concerning the regularity properties of the projective classes are
indeed independent of ZFC!. The frontier for the domain of analysis seems
thus to be definitely, in ZFC, the class of analytic sets.

In this thesis, we take a look beyond this frontier, for our main interest is
to study and describe non-Borel sets that are both in the classes IT} and 3.

1.2 The Wadge hierarchy

One of the main concerns of descriptive set theory is the study of the com-
plexity of subsets of the Baire space w®, the "logician’s reals”, a space home-
omorphic to the irrationals. A natural measure of the relative complexity of
subsets of the Baire space is given by the reducibility by continuous functions.
Given two subsets A and B of the Baire space, A is said to be reducible to
B, and we write A <y B, if and only if A is the preimage of B for some
continuous function f from the Baire space to itself. If we understand the
complexity of A to mean the difficulty of determining membership in A, we
observe that if A is reducible to B then A is, in a certain sense, no more
complicated than B: if we wonder whether x belongs to A, then we just have
to compute f(z) and see if it is in B or not. Given that computing the value
of a continuous function is topologically simple, the second question is not
more complicated than the first one, and thus the membership problem for
A is not more complicated than the membership problem for B.

If A is reducible to its complement, we say that A is self-dual. The relation
<w is merely by definition a preorder, and its initial segments are exactly the
pointclasses of the Baire space, that is the classes of sets closed under contin-
uous preimages. It thus refines all the well known hierarchies of pointclasses
such as the Borel hierarchy, or the projective hierarchy. When restricted
to a class with suitable determinacy properties, the partial order induced

1See for example Kanamori [51] for an exposition of these results.
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by <y on its equivalence classes, known as the Wadge degrees, is in fact a
well-quasi-ordering: the Wadge hierarchy. This follows from two important
results: Wadge’s Lemma [115] and the Martin-Monk Theorem [112]. Both
are proved using a very powerful correspondence between the reducibility by
continuous function and a certain infinite two players game called the Wadge
Game. This is a two-player game with perfect information. In the Wadge
game W (A, B), with A, B C w*, the players I and II take turn in choosing
integers. The second player may skip, while the first one cannot, in such a
way that after infinitely many moves, the first player has produced an infinite
sequence of integers x, and the second one has played an infinite sequence
y. The second player wins the game if and only if (z € A <> y € B). As
it turns out, the rules of the game were designed by Wadge so that a win-
ning strategy for II immediately yields a continuous function that witnesses
the reduction between A and B, and any continuous function f satisfying
(x € A+ f(x) € B) for all z € w* can be turned into some winning strategy
for II in this game.

The Wadge hierarchy of the Borel subsets of the Baire space has been
thoroughly studied by Louveau [68] and Duparc [26, 27], in two different
manners that were both initiated by Wadge in his PhD thesis [115]. The
former relies on a Theorem proved by Wadge stating that all the non-self-
dual Borel pointclasses can be obtained by w-ary Borel boolean operations
on open sets. Louveau’s work provides a description of all the Borel point-
classes, and thus of the whole Wadge hierarchy on the Borel sets, by means of
boolean operations. The use and study of boolean operations in this context
led to prominent results concerning the consistency strength of the Wadge
determinacy and structural properties of the Borel pointclasses by Louveau
and Saint-Raymond [69, 70, 71].

The latter approach, followed by Duparc, aims to define and make use of
operations on sets, such as the sum and the countable multiplication, in order
to give, for each non-self-dual Wadge class of Borel subsets, a canonical com-
plete set. It relies heavily on the peculiar characterization of the continuous
reducibility relation made available through the Wadge game. In an effort
to extend this approach, Duparc introduced the so-called conciliatory sets,
namely subsets of w=*, as an ansatz. The shift from infinite sequences to
both finite and infinite sequences, and the definition of a preorder <. on the
subset of w=* is motivated by natural game theoretic considerations, and in
particular by the will to symmetrize the Wadge game. For two subsets A, B
of w=¥, we indeed define A <, B to hold if and only if player II has a winning
strategy in the variant of the Wadge game where both players can skip, and
even stop playing after a finite number of moves. This ansatz places reliance
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on the definition of a mapping C' +—— C® from conciliatory sets to subsets
of the Baire space together with the preorder <. on the subsets of w=* that
does not arise from a reduction relation, but rather from a game. For each
non-self-dual pointclass I' of the Baire space, a class I'. of subsets of w=* is
also defined. Duparc [26, 27] studies the conciliatory hierarchy, the hierar-
chy induced by <., when restricted to the class corresponding to the Borel
pointclass, gives its complete description, and finally proves that the Wadge
hierarchy restricted to the non-self-dual Borel degrees and the fragment of
the conciliatory hierarchies coincide, via the function C' — C°. Since there
is a straightforward and uniform procedure to derive the structure of self-dual
sets from the non-self-dual ones?, one can study indistinctively the Wadge
hierarchy or the conciliatory one. We give in Chapter 3, a topological inter-
pretation of the conciliatory ansatz and a direct proof of the correspondence
between the conciliatory and the Wadge hierarchy.

1.3 Wadge hierarchy and Al sets

1.3.1 The state of the art

The concept defined by Wadge has given rise to a flourishing area of research
in descriptive set theory, with interesting applications to set theory and the-
oretical computer science. Aside from the authors and articles already cited,
we survey here some of the most important pieces of work related to the
Wadge hierarchy.

Until the end of the 80’s, most of the research on continuous reducibility
was concerned with the general theory of pointclasses of the Baire space un-
der (AD), as illustrated by the works of Becker, Jackson, Kechris, Martin,
Moschovakis and Steel [13, 49, 54, 81, 105]. In these papers, questions about
closure and structural properties of arbitrary pointclasses of the Baire space
are addressed, under the full axiom of determinacy (AD). Relationship be-
tween determinacy and the structure of the Wadge preorder have been also
investigated by Harrington [42], Hjorth [45], and Andretta [2, 3]. Interest in
generalizations of continuous reducibility on zero-dimensional Polish spaces
has rapidly grown last decades, as both more general reduction notions and
topological spaces outside the zero-dimensional Polish world were considered.
Lecomte [65] studied for example the descriptive complexity of subsets of
products of Polish spaces, whereas Andretta and Martin [5] defined and ana-

2Note that the converse is not true in general, so that the essence of the Wadge hierarchy
appears to be completely captured by the study of the non-self-dual degrees.
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lyzed the Borel-Wadge preorder on the Baire space, the preorder induced by
Borel functions instead of continuous functions. Other generalizations of the
Wadge hierarchy were recently explored by Ikegami, Motto Ros, Pequignot,
Schlicht, Selivanov and Tanaka [47, 48, 83, 84, 93, 98, 100].

Regarding the Wadge hierarchy of the A} sets of the Baire space, or equiv-
alently the pointclasses included in the A} class, not much is known. Under
(AD), Martin and Steel [112] proved that the order type of the Wadge hi-
erarchy restricted to the Al sets is the projective ordinal 83, which turns
out to be N1 under this determinacy hypothesis by a result of Martin [79].
Some hierarchies of Al sets have been considered, such as the hierarchy of
differences of coanalytic sets, the hierarchy of C-sets of Selivanovski [101],
and the hierarchy of R-sets of Kolmogorov [57, 58], but none of them ex-
hausts the A} class. Moreover, the only piece of information on their Wadge
rank is given by a result from Kechris and Martin mentioned by Steel [105],
which states that, under (AD), the order type of the Wadge hierarchy of the
w decreasing differences of co-analytic sets is Ny. Regarding the height of the
Wadge hierarchy of the Borel sets, Wadge [115] proved it to be V“1(2), the
second value of the wi-th Veblen function of basis wy. The Veblen hierarchy
of basis wy consists of functions (V)¢ from wy {0} to wy that are defined
as follows:

(i) V°is almost the exponentiation of base wy:
- Vo) =1;
~ Vo%a+1)=V%a) w; for all 0 < a < ws;
~ V%a) = wf for all @ < w, limit of cofinality wy;
— V%) = w*! for all a < wy limit of cofinality w.
(ii) For A > 0, V* is the function that enumerates the fixpoints of cofinality
wy of the Veblen functions of lesser degrees:

- VAL =1
— VX1 +a) is the o' fixpoint of cofinality w; of all V¢ with £ < .

So far, the general situation may thus be roughly depicted by Fig. 1.1. Note
that the inclusions are all provably strict in ZF + DC.

1.3.2 Our contribution

Just like in the Borel case with the Borel hierarchy or the Hausdorff-Kuratowski
hierarchies, the three classical hierarchies mentioned on the Al class are very
coarse. If they provide benchmarks for the study of the Wadge hierarchy of
the A} sets, they nonetheless leave tremendous gaps to explore. This explo-
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Figure 1.1: Wadge hierarchy of A} sets: the state of the art.

ration, or at least the beginning of this exploration, is the main subject of
this thesis.

The difference hierarchies

It is well-known that increasing and decreasing differences do not coincide
in general. For example, all countable increasing differences of open sets are
included in the class of w decreasing differences of open sets, which coincide
with the TI9 class. This discrepancy relies on the fact that the open sets have
the generalized reduction property, a structural property not shared by the
closed sets. The situation is the same for the IT} and X} classes: the coan-
alytic sets, unlike the analytic sets, have the generalized reduction property,
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so that the increasing difference hierarchy of coanalytic sets is much finer
than the decreasing difference hierarchy of coanalytic sets. For a countable,
let D, (I1j) and D7 (II}) denote respectively the class of increasing and the
class of decreasing « differences of coanalytic sets.

In Chapter 4, we study the increasing differences of coanalytic sets. As-
suming coanalytic determinacy, our work provides the full description of the
Wadge hierarchy of (J,.,, Da(Il7) sets, both in terms of pointclasses (d la
Louveau) and complete sets (a la Duparc). Surprisingly enough, the set of
operations and methods used in the Borel case is sufficient for this task, we
so to speak only add the possibility for them to act on coanalytic sets. We
compute the height of the Wadge hierarchy of J, ., Da(II}), and we give
another proof of a result due to Andretta and Martin [5] which states that the
non-self-dual pointclasses closed under preimages by Borel functions included
in Uyep, Da(II}) are exactly the classes Do (IT}) and their duals. Zooming
in the general picture, our contribution is depicted in Fig. 1.2.
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Figure 1.2: Our contribution to the description of the Wadge hierarchy of
differences of coanalytic sets.
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The C-sets and the R-sets

The C-sets of Selivanovski constitute the smallest o-algebra of subsets of the
Baire space containing the open sets and closed under Suslin’s operation .A.
They are set up in a hierarchy as follows:
- XY =Xj; )
~ for 0 < a < wy, IS = B¢
c _ c
— for 1 <a<w, Xf —A(U£<QH§ )

The class ¢ contains all the decreasing differences of coanalytic sets, and the
class 0 Do (I1}) of countable unions of differences of two coanalytic sets. From
a complete coanalytic set, we define the operation (Dy(II€),-) which trans-
forms complete open sets to oDy(I1i)-complete sets, preserves the Wadge
ordering and is compatible with the operations already defined by Wadge
and Duparc for the study of the Borel sets. This allows us to unravel an in-
complete fragment of the Wadge hierarchy of the 3§ class. To climb further,
we generalize this operation, beginning with a TIS-complete sets instead of a
coanalytic set. This allows us to describe a cofinal but incomplete fragment
of the Wadge hierarchy of Selivanovski’s C-sets.

The R-sets of Kolmogorov are generated from the open sets by the opera-
tions of countable union and intersection, and closed under the transforma-
tion R. They can be spread into a hierarchy of length w; as follows

- X=X ]
— for 0 < a < wy, IMI? = TR,
—for 1 < a<wy, ¥R = R, (X9).

Where R, denotes the a-th superposition of the R-transform. The class XX
contains all C-sets and we can, as before, generalize the operation (D (IT¢), -)
to unravel a cofinal but incomplete fragment of the Wadge hierarchy of Kol-
mogorov’s R-sets. Our general contribution to the study of the Wadge hier-
archy of Al sets is depicted in Fig. 1.3.

1.4 From descriptive set theory to automata
theory

“Since the discovery of irrational numbers, the issue of impossibil-
ity has been one of the driving forces in mathematics. Computer
science brings forward a related problem, that of difficulty. The
mathematical expression of difficulty is complexity, the concept
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which affects virtually all subjects in computing science, taking
on various contents in various contexts.”

André Arnold, Jacques Duparc, Filip Murlak, and Damian
Niwitiski, [8].

Theoretical computer science is the study, from a mathematical point of
view, of models of computation. As such, its developments since the 1930s
with the works of Church, Godel, Klenne, Post and Turing, have always
been strongly connected to mathematics and logic, with deep foundational
questioning and motivations. In particular, the concept of complexity has
become prominent, and among complexity measures topological complexity
has grown to be more and more popular last decades [8, 41, 66, 95, 110].
One can indeed study and compare the expressive power, and thus in some
sense the complexity of different models of computation by looking at the
topological complexity of the tasks they can perform. Here we study tree
automata, that is finite devices whose inputs are infinite labeled binary trees
over a finite alphabet. For an automaton A and a tree ¢, A either accepts or
rejects t, and the set of trees accepted by A is called the language of A. A
set of trees is called regular if it is the language of a certain automaton. If
tree automata are finite devices that can appear to be quite rudimentary at
first sight, their expressive power is nonetheless surprisingly and interestingly
vast. Identifying the space of infinite trees with the Cantor space, Rabin [96]
proved that all regular languages are in the A} class. The works of Gogacz,
Michalewski, Mio and Skrzypczak [40], and Finkel, Lecomte, and Simonnet
[36, 103] provide the exact bound for the complexity of regular languages:
the class of R-sets of finite ranks. We can thus use our knowledge developed
on the R-sets of the Baire space to study the class of all regular languages.
Following and extending the works of Duparc, Facchini and Murlak [8, 32,
34, 85], we study the Wadge hierarchy of regular tree languages. To do
so, we adapt the operations used in the descriptive set theory framework
to construct a very long sequence (L,) of strictly more and more complex
regular languages. The length of this sequence is the ordinal ¢, (0), where
(pa) are the Veblen functions of basis w. This sequence is moreover cofinal:
for every regular language L, there exists an ordinal o < ¢, (0) such that
L <w L,.

We also investigate the difference between two subclasses of tree automata:
the deterministic and the unambiguous automata. While the former class
is now quite well understood, thanks in particular to the work of Murlak
[8, 85], we do not know much about the expressive power of the latter. By
definition, all deterministic automata are unambiguous, and it was shown by

10
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Niwinski and Walukiewicz [91] that unambiguous automata do not recognize
all regular languages. Building on an example due to Hummel [46] of an
unambiguous automaton recognizing a X1-complete language, and adapting
the operations used before, we prove that the height of the Wadge hierarchy
restricted to unambiguously recognizable tree languages is at least 9(0).
Since Murlak [85] proved that the height of the Wadge hierarchy restricted to
deterministically recognizable tree languages is (w*)?+3, our work illustrates
the discrepancy between these two classes of tree automata and proves that
unambiguous automata are much more complex than deterministic automata.

1.5 Organization of the thesis

Chapter 2: Preliminaries

This chapter is devoted to a quick recapitulation of descriptive set theory
notions, and to a rapid presentation of the Wadge theory. Basic knowledge
of set theory and topology is assumed, and can be found in books by Jech
[50], Kunen [60], and Kuratowski [61]. Classical references for descriptive
set theory are Moschovakis [80], Kechris [55], and Louveau [67]. Regarding
the Wadge theory, in addition to Wadge’s thesis [115] and Van Wesep [112]
seminal paper on the subject, we refer the reader to the survey wrote by
Andretta and Louveau [4] as an introduction to the third part of the Cabal
seminar anthology [56].

Chapter 3: The Baire space and reductions by relatively
continuous relations

In this chapter we prove that the conciliatory preorder is in fact induced by
reductions by relatively continuous relations, as defined by Pequignot [93],
when the set w=“ is endowed with the prefix topology, and we show that
under (AD) the conciliatory hierarchy and the Wadge hierarchy restricted to
non-self-dual classes coincide via the mapping C' +— C®. All the proofs in
this chapter can be relativized to a pointclass with appropriate closure and
determinacy properties, so that e.g. in ZF + DC the conciliatory hierarchy
and the Wadge hierarchy restricted to non-self-dual Borel classes coincide,
which gives a direct proof to a results of Duparc [26, Theorem 3]. Results in

this chapter are part of a joint work with Jacques Duparc [29].

11
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Chapter 4: Differences of coanalytic sets

This chapter is devoted to the extension of results obtained by Wadge [115],
Louveau [68] and Duparc [26, 27] for the Borel sets to a wider pointclass:
Diff (I1}), the class of increasing differences of coanalytic sets. We prove that,
assuming DET(IT}) and adding the analytic class — or an analytic complete
set, the operations and methods used in the Borel case give rise exactly to
the Wage hierarchy of Diff(IT{). We give a full description of the Wadge
hierarchy restricted to the class Diff(I1}), including its height. Results in
this chapter concerning the a [a Louveau approach will appear in an article
by the author [38].

Chapter 5: A first glimpse above Diff (II})

In this chapter, we offer a glimpse into Al pointclasses that lie above Diff (TT}).
First we consider decreasing differences of coanalytic sets that coincide with
the increasing differences only at the finite levels, but then become far more
complex. In particular, one can prove that the class of w decreasing differ-
ences of coanalytic sets contains Diff(IT}), and that under (AD) its Wadge
rank is wo. Climbing further up, we consider the class of Selivanovski’s C-
sets and the class of Kolmogorov’s R-sets. To unravel a fragment of their
Wadge hierarchy, we define for each non-self-dual pointclass a new operation
on sets denoted by (Ds(T'),-). These new operations are designed to trans-
form an open set into a set that is a countable union of Dy(I") sets. For T’
with suitable closure properties, this operation preserves the Wadge ordering
and behaves well with respect to the other operations used in the study of
the Wadge hierarchy of Borel sets by Duparc. Using well chosen pointclasses
[', we unravel a fragment of the Wadge hierarchy of R-sets. More details
and references on C-sets can be found in Selivanovski [101], Burgess [19] and
Louveau [67]; concerning R-sets, we refer the reader to Kolmogorov [57, 58],
Burgess [18, 20] and Kanovei [52].

Chapter 6: Application to Automata Theory

We transport some of the techniques we developed in the descriptive set
theory framework to theoretical computer science and, more precisely, to au-
tomata theory. From definable subsets of the Baire space, we thus shift our
attention to sets of full binary trees that are recognizable by automata. In this
context, the use of topological tools has proved useful for the study of relative
complexity and characterization of regular languages. After an introduction

12
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to this new framework and the formulation of relevant definitions and nota-
tions as well as classical results, we use operations on languages — inspired by
the operations used in the Baire space case, to construct a cofinal sequence of
strictly more and more complex regular tree languages. This fragment of the
Wadge hierarchy of regular tree languages has length ¢, (0), where (¢,) are
the Veblen functions of basis w, which provides a lower bound for the height
of this hierarchy. In the second part of this chapter, we study the discrep-
ancy between deterministically and unambiguously recognizable languages
by proving that the height of the Wadge hierarchy restricted to unambigu-
ously recognizable tree languages is at least ¢9(0), an ordinal tremendously
larger than the height of the Wadge hierarchy restricted to deterministically
recognizable languages which is (w*)3+ 3, as unraveled by Murlak [85]. Most
of the results in this chapter are part of joint works with Duparc [29], Duparc
and Hummel [31], and Duparc, Facchini and Michalewski [28].

13
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2 Preliminaries

2.1 The Borel and the Projective hierarchies

One of the main purposes of classical descriptive set theory is to describe
and classify definable subsets of Polish spaces, i.e. second countable and
completely metrizable topological spaces, by means of hierarchies, reducibil-
ities and set-theoretic operations. Given a Polish space X, the o-algebra of
Borel sets B(X) is obtained from the open sets of X by the set-theoretical
operations of complementation and countable unions. This class can then
naturally be spread into a hierarchy of length wy, called the Borel hierarchy.
More precisely, for every Polish space X and every countable ordinal 0 < &,
we define the classes X2(X), ITY(X) and A2(X) as follows:

— 39(X) is the class of all the open subsets of X,

— A€ I(X) if and only if A® € (X)),

—for 2 < ¢ A € ¥(X) if and only if there is a sequence (A, )n<, of

elements of |J, . IT)(X) such that A = J,_,, An,

— A€ A(X) if and only if A € X(X) and A € ITY(X).
By convention, we set II)(X) = {X} and X3(X) = {0}. Note that, for every
¢ < wyq, the following holds:

0 0 0 0
S0C Ay,  and  IDCAY,

This hierarchy provides a bottom-up description of the Borel sets since for
any Polish space

B(X)= | =x) = | m(X).

E<w E<w

For X uncountable, this hierarchy is strict, i.e. for every countable ordinal
0 <, Eg\Hg # (). Above the Borel class lie the projective sets, which are
obtained from the Borel sets by taking projection! and complementation. If
B C X xY, we denote by 7(B) = {x € X : Jy(z,y) € B} the projection

1Or equivalently direct image by continuous functions.
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of B. Analogously to the case of Borel sets, the class P(X) of all projective
sets of a Polish space X ramifies in a hierarchy of length w, starting with the
analytic sets. A subset of a Polish space X is analytic if it is the projection
of a Borel subset of X x w®, where w* denotes the Baire space. For every
Polish space X and every positive integer n, we define the classes 3} (X),
IT! (X) and Al(X) as follows:

~ A € X}(X) if and only if A is an analytic subset of X,

~ B eII'(X) if and only if Bt € 3! (X)),

— Be X!,  (X)if and only if there is C' € IT}(X x w*) such that

B =7"(0),

~ B e AlL(X) if and only if B € ¥} (X) and B € IT}, (X).
Note that, by Suslin’s theorem, B(X) = Al(X), and that for every positive
integer n, the following holds:

¥, C ALy and I, C AL,

This hierarchy provides a bottom-up description of the projective sets since
for any Polish space

P(X) = | Z¢(X).

n<w

2.2 Games and Determinacy

First considered by Russian and Polish mathematicians in the period be-
tween the two world wars, infinite games have played a prominent role in the
development of modern descriptive set theory. We refer the interested reader
to Larson [62], Mycielski [88], and Telgarsky [109] for a thorough historical
account on the interplay between descriptive set theory and infinite games.

Definition 2.1 (Gale-Stewart [39]). Let A be a subset of the Baire space.
The Gale-Stewart game G(A) is the following two-player infinite game:

I:

A2n+42

NN N

A2n—1

11 :

Player I plays ag € w, II then plays a; € w, etc. I wins if and only if
a = (ag,ay,...) € X.

16
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A strategy for player I is a map o : w<* — w. The beginning of a play
where player I follows the strategy o is

I: a(f

) o(a1) o(a1,as)
NN

We define mutatis mutandis a strategy for player II. A strategy for a player
is winning if the player wins every time he follows it, whatever his opponent
plays. We say that the game G(A), or just the set A, is determined, if
one of the two players has a winning strategy in this game. A pointclass is
determined if and only if all its elements are determined.

11 :

Qs

Clearly, using the axiom of Dependent Choices (DC), two players cannot
have both a winning strategy for the same game. But, contrarily to the
case of finite games®, Gale and Stewart [39] proved in their seminal article
on the subject that assuming the axiom of choice (AC), there exists a sub-
set of the Baire space which is not determined. Thus arose the questions
of establishing which subsets and which pointclasses of the Baire space are
determined. Whilst the first question might never meet a satisfying answer
— other than a slight refinement of the Lapalissade the class of determined
subsets of the Baire space is the class of all subsets of the Baire space that
are determined, the second one has been nicely settled by a combination of
works due to Martin and Harrington. First, Martin [78] proved that in ZFC
all the Borel subsets of the Baire space are determined, concluding twenty
years of cumulative work initiated by Gale and Stewart, and later pursued
by Wolfe [117], Davis [24], and Paris [92]. Then, Harrington [42] showed that
the determinacy of all analytic sets implied the existence of sharps, a large
cardinal hypothesis independent from ZFC. The largest provably determined
pointclass in ZFC is therefore the Borel sets.

From another perspective, assuming the determinacy of a pointclass with
appropriate closure properties is sufficient to prove its regularity. Proof of
these consequences of determinacy, such as measurability, the perfect set
property and the Baire property, were first given in a sequence of papers
by Mycielski [86, 87] and Mycielski and Swierczkowski [90]. The connection
between determinacy and regularity properties led to the introduction of
(AD), the Axiom of (full) Determinacy, by Mycielski and Steinhaus [89],
which asserts that every subset of the Baire space is determined. This axiom

2See Morgenstern and Von Neumann [114].
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contradicts (AC), but is consistent with ZF 4+ DC and has the goodness
of excluding annoying counterexamples, so that it has been argued to be a
natural alternative framework for descriptive set theory.

Most of the results in this thesis depend on determinacy hypotheses, and
these assumptions will be made clear every time they are needed. In general,
our ambient theory is ZFC, to which we add the hypothesis that a certain
pointclass I" is determined, in symbol DET(I"). Sometimes, the full axiom of
determinacy (AD) is needed: in this case it is understood that we work in
ZF + DC + AD. Although the tension between choice and determinacy will
not be discussed here, it is worth noticing their subtle interaction all along
this work.

2.3 The Wadge hierarchy, pointclasses and
boolean operations

“The Wadge Hierarchy is the ultimate analysis of P(w®“) in terms
of topological complexity [...]”

Alessandro Andretta, Alain Louveau, [4].

The Wadge theory is in essence the theory of pointclasses. Let X be a
topological space. A pointclass is a collection of subsets of X that is closed
under continuous preimages. For I a pointclass, we denote by T its dual class
containing all the subsets of X whose complements are in I', and by A(T")
the ambiguous class T NT. If I' = ', we say that T is self-dual.

We only consider the Baire space in this thesis, with the usual topology.
The Wadge preorder <y, on P(w®) is defined as follows: for A, B C w¥,
A <y B if and only if there exists f : w* — w® continuous such that
f7YB) = A. For A,B C w“, we write A <y B if and only if A <y B
but B £y A. The Wadge preorder induces an equivalence relation =y,
whose equivalence classes are called the Wadge degrees, and denoted by [A]y .
We say that the set A C w* is self-dual if it is Wadge equivalent to its
complement, that is if A =y AL, and non-self-dual if it is not. We use the
same terminology for the Wadge degrees.

A useful game characterization is provided by the Wadge game, a two
players infinite game. Let A, B C w*, in the Wadge game W (A, B) player
I plays first an integer xy, I answers with an integer gy, and so on and so
forth. Player II has the possibility to skip, even w times, provided she also
plays infinitely often. At the end of the game, each player has constructed
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an infinite sequence, x for I and y for II. Player II wins the game if and
only if (x € A <» y € B). Noticing that strategies for II can be viewed as
continuous functions, we have:

IT has a winning strategy in W(A,B) <+— A <y B.

Given a pointclass I" with suitable closure properties, the assumption of the
determinacy of I' is sufficient to prove that I is semi-linearly ordered by <y,
denoted SLO(T), i.e. that for all A, B €T,

A SW B or B SW AB.

and that <y is well founded when restricted to sets in I'.*> Under these
conditions, the Wadge degrees of sets in I' with the induced order is thus a
hierarchy called the Wadge hierarchy. There exists a unique ordinal, called
the height of the I'-Wadge hierarchy, and a mapping d. from the I-Wadge
hierarchy onto its height, called the Wadge rank, such that, for every A, B
non-self-dual in T, d% (A) < d%,(B) if and only if A <y B and d\,(A) = d., (B)
if and only if A =y B or A =y BE. The wellfoundedness of the ~-Wadge
hierarchy ensures that the Wadge rank can be defined by induction as follows:

— d,(0) = d,(0°) =1
— d5(B) = sup {d},(A) +1: A is non-self-dual, A <y B} for A >y 0.
Note that given two pointclasses I' and IV, for every A e 'N 1Y,

d,(A) = i (A).

Under sufficient determinacy assumptions, we can therefore safely speak of
the Wadge rank of a subset of the Baire space, denoted by d,,, as its Wadge
rank with respect to any topological class with suitable closure and determi-
nacy properties including it.

The general diamond-like shape of the Wadge hierarchy is depicted below.
At the bottom of the hierarchy lie the empty set and the whole Baire space,
dual and mutually incomparable. Then self-dual and non-self-dual degrees
alternate, with self-dual degrees at limit levels of cofinality w, and non-self-

3For more details about the relation between determinacy and the Wadge preorder, see
Andretta [2, 3].
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2 Preliminaries

dual degrees at limit levels of cofinality strictly greater.

[0]w ° ° °

(1) (w) (wi)

There is a strong connection between pointclasses included in I' and Wadge
degrees of sets in I' since all non-self-dual pointclasses are of the form

{B g w“: B SW A}
for some non-self-dual set A, while self-dual pointclasses are all of the form
{BCuw“:B <y A},

for some A C w*. We say that a pointclass is a Wadge class if it is of the
form {B Cw¥: B <y A} for some A C w®. Observe that the non-self-dual
Wadge classes are exactly the non-self-dual pointclasses. Moreover, notice
that all self-dual pointclasses that are not Wadge classes are of the form
I" UT" for some non-self-dual pointclass I".

We have a direct correspondence between (P(w*), <y ) restricted to T’
and the pointclasses included in I' with the inclusion: the pointclasses are
exactly the initial segments of the Wadge hierarchy. The semi-linear ordering
property becomes then: for any pointclasses IV and I included in T,

I"CTor I CTV.
We can define the Wadge rank counterpart for pointclasses:
IT"|, = sup {d,(A) + 1 : A is non-self-dual and in I''} .

In his thesis, Wadge begins the analysis of the hierarchy when restricted
to the Borel subsets of the Baire space and initiates two approaches for its
study, based on the correspondence between (P(w*),<w) and the point-
classes with the inclusion. The first one, later completed by Louveau [68],
relies on boolean operations.
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2.4 The conciliatory sets

An w-ary operation O is a function:
O:Pw”)” — Pw®).

which assigns a set to a countable sequence of sets. The truth table Ty for
an operation O is a subset of P(w) such that for any sequence of subsets of
the Baire space (A, )new, and for all x € w*,

€O ((Anew) & {new:zeA,} €Tp.

Not all operations admit a truth table, but each truth table completely de-
termines an operation. Operations that admit a truth table are said to be
(w-ary) boolean operations, and were first defined and studied by Kantorovich
and Livenson [53]*, and Lyapunov [76]°. We say that a boolean operation is
of a certain complexity (Borel, IT}, etc.) if its truth table is of this complexity
as a subset of the Cantor space 2%.

Wadge proved that all the non-self-dual Borel pointclasses can be obtained
by w-ary Borel boolean operations on open sets — a result later generalized
to all non-self-dual pointclasses of the Baire space by Van Wesep [111] under
(AD), using of course arbitrary w-ary boolean operations. Louveau’s work
provides a description of all the Borel Wadge classes, and thus of the whole
Wadge hierarchy on the Borel sets, by means of boolean operations.

The second approach to the study of the Wadge hierarchy aims to define
and make use of operations on sets, such as the sum and the countable multi-
plication, in order to give, for each non-self-dual Wadge class of Borel subsets,
a canonical complete set. It relies heavily on the peculiar characterization of
the continuous reducibility relation made available through the Wadge game.
In an effort to extend this approach, Duparc [26, 27] introduces the so-called
conciliatory sets, namely subsets of w=“, as an ansatz. We give more details
about this approach in the next section.

2.4 The conciliatory sets

Conciliatory sets are sets of finite or infinite sequences of integers, that is
sets included in w=¥. From a conciliatory set B C w=*, one defines the set
B® C (wU {b})* of infinite sequences by

B*={a € (wU{b}):a € B},

4who call them analytic operations.
Swho calls them set-theoretical operations.
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2 Preliminaries

where b is an extra symbol that stands for “blank”, and oy s is the sequence
obtained from « once all occurrences of b have been removed. To lighten the
notations, we write wj, to denote the set w U {b}. Since (wp)* endowed with
the product of the discrete topology is homeomorphic to the Baire space, we
identify these two spaces via the following isometry

h:(wp) — w”
(.1'0,1'1, .. ) — (Q?,O,l'/l, . )

, 0 it x; =0,
r; +1 else.

The use of h is always implicit and, depending on the context, we consider
B to be a subset of (wp)* or of w* via this homeomorphism. We define
no topology at all on conciliatory sets, but for any pointclass I' we allow
ourselves to say that B C w=* is in I, if and only if B® € T..

Example 2.2. The conciliatory set {(0)} € (X9),, for

{oy=Juow

new

where

is 339.

The shift from infinite sequences to both finite and infinite sequences, and
the definition of a preorder <. on the subsets of w=“ is motivated by natural
game theoretic considerations, and in particular by the will to symmetrise the
Wadge game. Let A and B be two conciliatory sets. The conciliatory game
C(A, B) is the following: both players play integers, I begins, II answers, and
so on and so forth. The winning conditions for II are: if the sequence of I is
in A, then she has to produce a sequence in B, and if it is not in A, she has to
produce a sequence not in B. But in the conciliatory game, I can also skip,
and both players do not have to produce an infinite sequence, so that at the
end of the game, they might even have played only finitely many integers.
From this game we define the conciliatory preorder: for any conciliatory sets

A and B, we say that A <. B if and only if II has a winning strategy in
C(A, B).

Lemma 2.3. Let A and B be two conciliatory sets. The games C(A, B)
and W (A®, B®) are equivalent, i.e. player I (respectively 11) has a winning
strateqy in the game C(A, B) if and only if player 1 (respectively 11) has a
winning strateqy in the game W (A®, BY).
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2.4 The conciliatory sets

Proof. By replacing “skips” in the conciliatory game by “blanks” in the
Wadge game, a winning strategy for a player in one game gives rise to a
winning strategy for the same player in the other game. Notice that a win-
ning strategy for IT in C'(A, B) provides a winning strategy for IT in W (A®, B?)
which never requires her to skip. O]

Hence the determinacy of the conciliatory game for a certain class I'. is
equivalent to the determinacy of the Wadge game for the corresponding
pointclass, and the map C — C? is an embedding from (P(w=*),<,.) to
(P(w¥), <w). Observe moreover that there is no self-dual set with respect
to the conciliatory preorder, since player I always has the following strategy
in the game C(A, AC): at first he skips, and then simply copies II's moves,
so that the range of C'— C? is included in the non-self-dual degrees of the
Wadge hierarchy. A main purpose of Chapter 3 is to prove Theorem 3.10 stat-
ing that, assuming (AD), all non-self-dual degrees are reached by C' s C°.
More precisely, we will show that A C w* is non-self-dual if and only if there
exists some conciliatory set B C w=* such that A =y B’. Therefore, thanks
to the following fact, one can indistinctively study either the Wadge hierarchy
or the conciliatory hierarchy.

Fact 2.4. Let A C w® be such that A =y AL. Then there exists a family
(Ap)new of non-self-dual subsets of the Baire space such that

A=w Un“An:U{n“xEW“’:.CEEAn}.

new new

The conciliatory counterpart of the Wadge rank is naturally defined as
follows.

Definition 2.5. For any conciliatory set C', we define:

4(C) = 1 iff C' or CP is the empty set;
T sup{d(C) +1:C" <. C}  else.

It is a consequence of Theorem 3.10 that the Wadge and the conciliatory
ranks are compatible, i.e. d.(C) = d,,(C?) for all conciliatory set C.

The aim of the approach initiated by Duparc is to give a complete set for
each conciliatory degree of the considered pointclass. In order to do so, one
can define set theoretical counterparts to the following ordinal operations
on conciliatory sets: the sum, the multiplication by a countable ordinal and
the countable supremum. First, denote by shift the map from (w,)=* to
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2 Preliminaries

(wp ~ {0})=¥ that shifts each entry of the sequence by one but keeps the
blanks, i.e.

shift : (wy)=* — (wp ~ {0})=
x — shift(z)

where shift(z) and = have the same length, and are such that for every n
strictly smaller than the length of x,

b if x, = b;

T, +1 else.

shift(z)(n) = {

For all C' C w=¥, let shift(C') denote the set of all shifted sequences of C':
shift(C') = {shift(z) : z € C}.

Note that for every A, B C w*, A <y B if and only if shift(A) <y shift(B).
Moreover, for any conciliatory set D,

shift(D®) =y shift(D)’.

We can now define the counterparts to the ordinal sum and countable supre-
mum. Let (4;);e, be a family of conciliatory sets.

(a) Ag~+ Ay = shift(A) U{u (0) 2 :u € (w~ {0})<“,z € A };

(b) sup;c, {4;} = {(i) "z :z € A}
From these operations, we can define by induction the counterpart to the
ordinal multiplication by a countable ordinal. Let A be a conciliatory set.

- A-1=A,

-~ A-(v+1)=(A-v)+ A, for v countable;

— Ay =sup;, A, for v = sup,, 7; countable and limit.
These operations are defined to behave well with respect to the conciliatory
rank.

Proposition 2.6 (|26, Theorem 4]). Let (A;)ic., be any family of conciliatory
sets, and v < wy.

(a) de(Ao+ Ay) = de(Ag) + de(Ay);

(b) d.(Ap-v)=d.(Ag) - v;

(¢) de(sup,e,{Ai}) = sup{d.(A4;) : i € w}.

These operations allow us tu construct from the empty set the w; first

degrees of the conciliatory hierarchy. To go further, we need a counterpart
to the exponentiation of basis w; and beyond that, to the Veblen functions.
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2.4 The conciliatory sets

Definition 2.7. The Veblen hierarchy of base w; consists of functions (V*)¢y,
from wy \ {0} to wy which are defined as follows:

(i) V? is almost the exponentiation of base w;:
- V(1) = 1;
~ V% a+1)=V%a) - w; for all 0 < a < ws;
— V9a) = wf for all @ < w; limit of cofinality ws;
~ VOa) = w?*! for all @ < wy limit of cofinality w.
(ii) For A > 0, V* is the function that enumerates the fixpoints of cofinality
wy of the Veblen functions of lesser degrees:
- VA1) =1;
— VX1 +«) is the o' fixpoint of cofinality w; of all V& with £ < .

The set theoretical counterparts to this ordinal hierarchy come from a
generalization of the eraser game [26]. We denote by w. the set w U {«},
and from a set A C w=* we define the set A~ C (w._)=¥ by

A¥ ={a € (w)¥:a” e A}

where ¥ is the operation that realizes “«” into an eraser. It is inductively
defined in the following way:
— &P = ¢, where ¢ stands for the empty sequence;
— for « finite with || = k:
(i) (i)F =a™ i, if i € w;
(i) (a~ «)P=a® | (k—1),if k> 0;
(ili) (o~ « )P =¢ it k=0.
— for « infinite, o™ = limy,¢, (v | ).

We once again make a slight abuse of notation, identify (w. )=* and w=%,

and write also A~ for the corresponding conciliatory set. One can prove that
for any conciliatory set O in (X9). ~ (I19),,

O~ € (2. ~ (I19)..

Setting ~ for ®!, the iteration of this idea provides us with a family of oper-
ations ¢, for £ < w; which enjoys the following property.

Proposition 2.8 ([27, Proposition 34]). Let O be a conciliatory set in (X9).~
(I1%).. Then for all 0 < & < wy:

O~ ¢ (E?+§)C ~ (H?+§)C.
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These operations preserve the conciliatory ordering: for any conciliatory
sets A and B and any 0 < £ < wy:

A SCB - A~ Sc Bz&v

and their compositions behave also well, since for every conciliatory A and
0<&v<wr:
(Azg)zl, <. ARetv

Now setting

V,(A) = A%

for A C w=¥ and v < wy, the following correspondence between the opera-
tions ~¢ and the ranks can be proved.

Proposition 2.9 ([27, Proposition 41]). For all conciliatory set A and ordi-
nal v < wy:

0oV, (4)) = V" (de(A)).

It is one of the main results of [27] that (&, (OV)y<w,, sup, (Ve)e<w, ) gener-
ates, up to complement, the whole conciliatory hierarchy of Borel sets from
the empty set.

For all £ < wy, there exists a kind of inverse for the ¢ operation, denoted
by *¢, which is defined on the subsets of the Baire space. Recall that for
any sequence of Borel subsets B = (B),)ne, of the Baire space, there exists
a Polish zero-dimensional topology 7' on w®, finer than the original one but
with the same Borel sets, such that each B, is open in (w¥,T’). Let ¢p
be the continuous function from (w*,7’) to the Baire space given by the
identity on the underlying set. For any A C w®“, we can observe the effect on
A of the change of topology by looking at ' (A). Duparc [26, 27] defines
question trees to encode the change of topology in a particular way that fits
the game point of view, by means of auxiliary questions. To a &é-question tree
T is associated a family of Borel subsets (T},),e., C X9 +¢» and each sequence
of Z}(l)Jrf subsets of the Baire space is coded by a &-question tree. For T a
&-question tree and A C w®, we denote by AT the set go}l(A) obtained from
A after the modification of the topology induced by T. We only give the
formal definition of the 1-question trees here, the general case can be found
in [27, Definition 21].

Definition 2.10 ([26, Definition 25]). Given A C w* and (F,)uc(w<vg) @
family of closed subsets of the Baire space abbreviated by (F,), we define
AR C [T 4P|, where Ty(r,) is a non-empty pruned tree on the alphabet

A=wU{()v:vew™}.
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2.4 The conciliatory sets

A sequence x € (A)¥ is in [Tyr,] if and only if, for all integer n,
(a) x(2n) € w;
(b) z(2n+1)=0o0r z(2n+1) = (1)"v with v € W<,
Moreover, setting u = (x(2i) : i < n) and 2’ = (x(2i) : i € w), the following
conditions must hold:
— if x(2n + 1) = 0, then 2’ € F;
—if x(2n + 1) = (1)"v, then v~ v must be an initial segment of =’ which
verifies u~v"y ¢ F, for any y € w¥.
Now A¥w) C [T y(r,)] is defined by

ze A o1 e A
For all £ < wy, we set:
A™¢ = a <y -minimal element of {A” : T'is a ¢-question tree}.

It is well-defined and satisfies the following properties.

Proposition 2.11. Let £ < wy and (By)new be a sequence of 2(1)+£ subsets
of the Baire space. Then for all i € w,

Bf €3,
and there exists a £ + 1-question tree T such that for all 1 € w:
Bl e &Y.

These operations preserve the Wadge ordering. Indeed for every sets A, B
and any ordinal 0 < £ < wy:

A <w B =4 A~e <w B¢,
The operation *¢ is not exactly the inverse of ¢, but the following holds.

Proposition 2.12 ([27, Proposition 28 and Proposition 31]). Let A C w*,
BCws and 0 < £ <w;. Then

A* <y B® = A <y (B™)";

and
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3 The Baire space and reductions
by relatively continuous
relations

In an attempt to give a meaning to the conciliatory approach, we use the
concept of admissible representation, which is the starting point of the devel-
opment of computable analysis from the Type-2 theory of effectivity point
of view (see Weihrauch [116]). This simple yet fundamental idea arises from
the wish to code points of a topological space by elements of the Baire space.
In other words: to represent a topological space via the Baire space. In this
chapter we prove that the conciliatory preorder is in fact induced by reduc-
tions by relatively continuous relations when the set w=* is endowed with the
prefix topology, and we show that under (AD) the conciliatory hierarchy and
the Wadge hierarchy restricted to non-self-dual classes coincide via the map-
ping C' + C®. Note that all the proofs in this chapter can be relativized to a
pointclass with appropriate closure and determinacy properties, so that e.g.
in ZF + DC the conciliatory hierarchy and the Wadge hierarchy restricted
to non-self-dual Borel classes coincide. Results in this chapter are part of a
joint work with Jacques Duparc [29].

3.1 Representations and reduction by continuous
relations

Recall that a topological space X is second countable if it admits a countable
basis of open sets, and that it is 7j if for any two points x,y of X, there
exists an open set that contains one of these points but not the other. Let
X be a second countable Ty space, and f, g two partial functions from the
Baire space to X. We say that f < ¢ if and only if there exists a continuous
function h : dom(f) — dom(g) such that for all x € dom(f), goh(z) = f(z).
Notice that the set of partial continuous functions from w* to X is downward
closed with respect to <.
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3 The conciliatory ansatz disclosed

Definition 3.1. Let X be a second countable T} space. A partial continuous
function p from w* to X is called an admissible representation of X if for
every partial continuous function f from w® to X, f < p holds.

Notice that any admissible representation of X must be onto, for it must
be above all constant functions.

Fact 3.2. Fvery second countable Ty space admits an admissible representa-
tion.

Admissible representations can be used to define the reductions by relatively
continuous relations, a notion introduced by Pequignot [93] to generalize the
Wadge hierarchy to second countable T spaces.

Let X,Y be two second countable Tj spaces, we say that R C X x Y is
a total relation from X to Y if for all x € X there exists y € Y such that
(z,y) € R.

Definition 3.3. Let X,Y be two second countable T spaces, and a total
relation R from X to Y. We say that R is relatively continuous if for some
admissible representations pyx of X and py of Y, there exists a continuous
realizer f :dom(px) — dom(py) such that for every z € dom(px) we have

(px(2),py o f(2)) € R.

Relatively continuous relations were first studied by Brattka and Hertling
[17]. Observe that if R and S are total relations from X, to Y such that R
is relatively continuous and R C S, then S is also relatively continuous.

Definition 3.4 ([93]). Let X,Y be two second countable Tj spaces, A C X
and B C Y. We say that A is reducible to B, and write A <y B, if
there exists a total relatively continuous relation R from X to Y which is a
reduction of A to B, i.e.:

Vo e X Vy €Y [R(z,y) = (x € A<y € B)].

The relation <y  is merely by definition a quasi-order, and is strongly
connected to <yy.

Fact 3.5. Let X,Y be two second countable Ty spaces with fixed admaissible
representations px and py. For every A C X and B CY, the following are
equivalent:
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3.2 The conciliatory space

(2) there exists a continuous function f : dom(px) — dom(py) such that
o' (B) = px' (A).

The definition of <y does not depend on the choice of the admissible
representation. It is intrinsic to the topology, and provides us with a general-
ization of the Wadge hierarchy for the second countable Tj spaces, as argued
by Pequignot [93].

3.2 The conciliatory space

It cannot be found in the work of Duparc, but the set w<“ can be endowed
with a very natural topology — the so-called prefix topology. The resulting
topological space, the conciliatory space Conc, appears in domain theory as
a classical example of an w-algebraic domain! and of a reflective complete
countably based fy-space?.

Definition 3.6. The conciliatory space Conc is the topological space (w=*, 7¢)
whose topology 7¢ is induced by the basis {O; : s € w<“}, where

OS:{tEwS‘“:sgt}.

The conciliatory space is a second countable Tj space, but it is not Haus-
dorff since every open set containing a finite sequence contains also all the
sequences extending it. One can wonder if the conciliatory relation <. is
induced by the continuous reductions for the prefix topology. By the work
of Selivanov [100], it is not the case. Even though they are identical if we
restrict ourselves to AJ sets, and share the property that all degrees are non-
self-dual, the Wadge hierarchy of C'onc does not satisfies the Wadge duality
principle SLO.

Fact 3.7 (Folklore). Let A C Conc be the set of all sequences of length 1,
and B C Conc be the set of all infinite sequences. The sets A, B and their
complements are pairwise Wadge incomparable.

Proof. We only prove one of the twelve cases here, the others are similar.
Suppose that there exists a reduction from B to A, i.e. a continuous function
f : Conc — Conc such that x € B if and only if f(z) € A. Let n and m be

See e.g. Becher and Grigorieff [12].
2See e.g. Selivanov [99)].
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two integers and notice that the set f~!({n,m)"w=*) has to be both open
and contained in w<*. Since the empty set is the only open set contained in
w<¥, the image of f is a subset of w=!, the set of sequences of length at most
1. Now let (n) be in the image of f. Then f~!({n)"w=*) has to be both
open and contained in w®, the set of infinite sequences. But there is no such
open subset of the conciliatory space, which prevents any reduction of B to
A from happening. n

Hence the conciliatory hierarchy does not coincide with the Wadge hierar-
chy of the conciliatory space.

Question. Is there a topology on the set w=“ such that the conciliatory re-

lation coincides with the reduction by continuous functions?

The conciliatory space allows us nonetheless to interpret in a satisfactory
way the approach used by Duparc [26, 27].

Lemma 3.8. An admissible representation of the conciliatory space is given
by the following application:

p: (wp)” — Conc
T = T /]

Proof. To show that it is admissible, we let f : w* — Conc be a partial
continuous function, and we define the reduction ¢ : w* — (wp)* via the map
on the finite sequences ¢’ it arises from. First set

dom_,(f) = {s € w : s"w* Ndom(f) # 0},

and observe that, since f is continuous, for every finite sequence s € dom_,,(f)
there exists a finite sequence ¢ such that f(s”w®) C t"w=*. Two cases arise:
either s"w® Ndom(f) is a singleton, and we denote by t its image by f, or it
contains at least two points, and we set t, to be the maximal finite sequence
such that f(s"w®) C t,"w=*. Now we define ¢'(s) by induction on the length
of s in dom_,(f). Set ¢'(¢) = ¢, and suppose s is of length n + 1. Then

o (s if £, = g/ (1)) o
7te) {g%srn)“ts(\g'(srn)[ ml+1)  else .

The map ¢ is partial, continuous and realizes the reduction since for all
xr € dom(f), f(z) = g(x); sy = po g(x). The map p is thus an admissible
representation of Conc. 0
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3.3 Conciliatory hierarchy vs. Wadge hierarchy

Notice that for A C Cone, A® = p~1(A). The mapping C' +— C® that links
the conciliatory sets to subsets of the Baire space can thus be seen as the
inverse of an admissible representation for the space Conc. By reformulating
Lemma 2.3, the conciliatory hierarchy is nothing but the generalized Wadge
hierarchy of the conciliatory space.

Lemma 3.9. Let A, B C Conc, then the following are equivalent:

(1) p~(A) <w p~'(B);
(2) 1I has a winning strategy in C(A, B).

From Fact 3.5 we obtain that for all A, B C Conc, II has a winning strategy
in the game C(A, B) if and only if A 5y B, so that <, and <y coincide.
Hence, the study of the conciliatory hierarchy is not only a technical for-
mulation for the study of the Wadge hierarchy of the Baire space, but it
also provides a description of the generalized Wadge hierarchy defined by
Pequignot [93] for the conciliatory space.

3.3 The correspondence between the conciliatory
and the Wadge hierarchies

Using Lemma 3.9, the inverse map of the representation gives us an em-
bedding from (P(w=*),<w) to (P(w¥), <w). Since no set is self-dual with
respect to the conciliatory preorder, its range is included in the non-self-dual
degrees. We prove that under (AD) it is actually onto these degrees - modulo
Wadge equivalence.

Theorem 3.10. Let A C w¥ be non-self-dual. Then there exists C C w=¥
such that:
A =W p_1(0>

The proof is by induction on the Wadge rank of A. As we have
0 =w p~ 1 (0) and w? =y p (W),
the Theorem holds for the first Wadge degrees.

Let A C w* such that for every A" C w® non-self-dual with A" <y A, there
exists a conciliatory set B’ C w=* such that A’ =y p~'(B’). Then we have
two cases depending on wether A is initializable or not.
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Definition 3.11. Let A and B be subsets of the Baire space. We define:
A — B =shift(A) U {u"(0)"z:u € (w~ {0})~*,z € B}.

If A=y A — A, we say that A is initializable. 1t is a reinforcement of the
notion of non-self-dualness.

3.3.1 The uninitializable case.

We recall the following result concerning uninitializable subsets of the Baire
space