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“Mathematics is the only avant-garde remaining in the whole
province of art. It’s pure art, lad. Art and science. Art, sci-
ence and language. Art as much as the art we once called art.
It lost its wings after the Babylonians fizzled out. But emerged
again with the Greeks. Went down in the Dark Ages. Moslems
and Hindus kept it going. But now it’s back, bright as ever.”

Don DeLillo, Ratner’s Star.
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1 Introduction

This thesis is devoted to the study of non-Borel ∆1
2 pointclasses of the Baire

space, using reductions by continuous functions. This work is divided in three
main parts. In the first one, we generalise results obtained by Duparc [26, 27]
and Louveau [68] to provide a complete description of the Wadge hierarchy
of the class Diff(Π1

1), the class of increasing differences of coanalytic sets,
under some determinacy hypothesis. In a second part, we study some ∆1

2

pointclasses above Diff(Π1
1), and give a fragment of the Wadge hierarchy

for those classes. Finally, we apply our results and techniques to theoretical
computer science and more precisely to the study of regular tree languages,
that is sets of labeled binary trees that are recognized by tree automata.

1.1 The Borel sets and the emergence of
descriptive set theory: A brief historical
introduction

“Descriptive set theory is the definability theory of the continuum,
the study of the structural properties of definable sets of reals.”

Akihiro Kanamori, [51].

Over a century ago, the development of modern analysis by the french mathe-
maticians Émile Borel, René Baire and Henri Lebesgue induced a fundamen-
tal interest in the study of well-behaved subsets of the real line. Topology,
which developed about the same time, yielded the mathematical framework
for such a study. Borel sets were introduced by Borel [15, pp. 46–47] in
order to extend the notion of length of an interval to a measure on a wide
class of subsets of the real line, and are defined by recursion as follows. Be-
ginning with the intervals, we add at each stage sets whose complement was
previously defined or which are the union of a countable family of previously
defined set. The resulting family is stable under complementation and count-
able unions: it is the smallest σ-algebra containing the intervals. As soon as
the Borel sets where introduced, they were set up in a natural hierarchy of

1



1 Introduction

height ω1, the first uncountable ordinal. This hierarchy relies on counting the
number of successive operations of countable unions and complementations
that are necessary to produce a set, beginning with the class of all unions
of open intervals (Σ0

1), and its dual the class of closed intervals (Π0
1). The

class Σ0
α, for α countable, is thus obtained by taking unions of a countable

family of sets in Π0
β with β < α, and the class Π0

α is defined as its dual class,
the class of sets whose complements are in Σ0

α. Using a variant of Cantor’s
enumeration and diagonalization argument, Lebesgue [64] proved that this
hierarchy is proper. Moreover, the Borel sets are well-behaved: they are mea-
surable in the sense of Lebesgue [63], have the Baire property (BP) [11], which
states that they each have a meager symmetric difference with some open set,
and have the perfect set property [1], which states that they are all either
countable or of the size of the continuum. This nice behaviour, along with
their closure properties, made the Borel sets an appropriate domain for the
mathematical practice and study, and they are now quite well-understood.

“L’origine de tous les problèmes dont il va s’agir ici est une
grossière erreur [. . .]. Fructueuse erreur, que je fus bien inspiré
de la commettre!”

Henri Lebesgue, preface to [73].

In a seminal article, Lebesgue [64] gave a demonstration of the fact that the
projection of a Borel set of the plane is a Borel subset of the real line. A
decade later however, it was discovered by Suslin [106] that the published
proof was fallacious. The projection of a Borel set is not always Borel, so
that the class of Borel sets is not stable under projection. This led to the
definition of the class of analytic subsets (Σ1

1), which are the projections of
Borel sets. Suslin proved that every Borel set is analytic, that there is an
analytic set that is not Borel, and that a set of reals is Borel if and only if
both it and its complement are analytic. Luzin and Sierpiński [74, 75] proved
furthermore that the regular properties hold for the analytic sets, extending
thus the natural domain of analysis. Luzin [72] and Sierpiński [102], building
on the analytic sets, proposed another natural hierarchy above the Borel sets
by alternating complementation with projection: the projective hierarchy. Its
first level is this time formed by the class of analytic sets and the class of
their complements, the coanalytic sets (Π1

1). On the second level, the class
of projections of coanalytic sets is denoted by Σ1

2, and its dual class by Π1
2,

and so on and so forth. This hierarchy is, as in the Borel case, proper. A
natural question arose here: is it possible to extend the realm of analysis to
these classes? Do they enjoy the same regularity properties as the Borel sets
– or the analytic sets?

2



1.2 The Wadge hierarchy

“L’étude des ensembles analytiques a conduit naturellement à
celle des ensembles projectifs, dont les propriétés extrêmement
paradoxales nous obligent, à mon avis, à poser la question de la
légitimité même de ces ensembles.”

Nikolai N. Luzin, [73].

These questions would need decades to be settled, and would only meet
satisfactory answers in the second part of the twentieth century, thanks to
modern set theory, the development of powerful metamathematical methods
by Gödel and the invention of forcing by Cohen. Contrarily to the Borel case,
the questions concerning the regularity properties of the projective classes are
indeed independent of ZFC1. The frontier for the domain of analysis seems
thus to be definitely, in ZFC, the class of analytic sets.
In this thesis, we take a look beyond this frontier, for our main interest is

to study and describe non-Borel sets that are both in the classes Π1
2 and Σ1

2.

1.2 The Wadge hierarchy

One of the main concerns of descriptive set theory is the study of the com-
plexity of subsets of the Baire space ωω, the ”logician’s reals”, a space home-
omorphic to the irrationals. A natural measure of the relative complexity of
subsets of the Baire space is given by the reducibility by continuous functions.
Given two subsets A and B of the Baire space, A is said to be reducible to
B, and we write A ≤W B, if and only if A is the preimage of B for some
continuous function f from the Baire space to itself. If we understand the
complexity of A to mean the difficulty of determining membership in A, we
observe that if A is reducible to B then A is, in a certain sense, no more
complicated than B: if we wonder whether x belongs to A, then we just have
to compute f(x) and see if it is in B or not. Given that computing the value
of a continuous function is topologically simple, the second question is not
more complicated than the first one, and thus the membership problem for
A is not more complicated than the membership problem for B.
If A is reducible to its complement, we say that A is self-dual. The relation
≤W is merely by definition a preorder, and its initial segments are exactly the
pointclasses of the Baire space, that is the classes of sets closed under contin-
uous preimages. It thus refines all the well known hierarchies of pointclasses
such as the Borel hierarchy, or the projective hierarchy. When restricted
to a class with suitable determinacy properties, the partial order induced

1See for example Kanamori [51] for an exposition of these results.
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1 Introduction

by ≤W on its equivalence classes, known as the Wadge degrees, is in fact a
well-quasi-ordering: the Wadge hierarchy. This follows from two important
results: Wadge’s Lemma [115] and the Martin-Monk Theorem [112]. Both
are proved using a very powerful correspondence between the reducibility by
continuous function and a certain infinite two players game called the Wadge
Game. This is a two-player game with perfect information. In the Wadge
game W (A,B), with A,B ⊆ ωω, the players I and II take turn in choosing
integers. The second player may skip, while the first one cannot, in such a
way that after infinitely many moves, the first player has produced an infinite
sequence of integers x, and the second one has played an infinite sequence
y. The second player wins the game if and only if (x ∈ A ↔ y ∈ B). As
it turns out, the rules of the game were designed by Wadge so that a win-
ning strategy for II immediately yields a continuous function that witnesses
the reduction between A and B, and any continuous function f satisfying
(x ∈ A↔ f(x) ∈ B) for all x ∈ ωω can be turned into some winning strategy
for II in this game.
The Wadge hierarchy of the Borel subsets of the Baire space has been

thoroughly studied by Louveau [68] and Duparc [26, 27], in two different
manners that were both initiated by Wadge in his PhD thesis [115]. The
former relies on a Theorem proved by Wadge stating that all the non-self-
dual Borel pointclasses can be obtained by ω-ary Borel boolean operations
on open sets. Louveau’s work provides a description of all the Borel point-
classes, and thus of the whole Wadge hierarchy on the Borel sets, by means of
boolean operations. The use and study of boolean operations in this context
led to prominent results concerning the consistency strength of the Wadge
determinacy and structural properties of the Borel pointclasses by Louveau
and Saint-Raymond [69, 70, 71].
The latter approach, followed by Duparc, aims to define and make use of

operations on sets, such as the sum and the countable multiplication, in order
to give, for each non-self-dual Wadge class of Borel subsets, a canonical com-
plete set. It relies heavily on the peculiar characterization of the continuous
reducibility relation made available through the Wadge game. In an effort
to extend this approach, Duparc introduced the so-called conciliatory sets,
namely subsets of ω≤ω, as an ansatz. The shift from infinite sequences to
both finite and infinite sequences, and the definition of a preorder ≤c on the
subset of ω≤ω is motivated by natural game theoretic considerations, and in
particular by the will to symmetrize the Wadge game. For two subsets A,B
of ω≤ω, we indeed define A ≤c B to hold if and only if player II has a winning
strategy in the variant of the Wadge game where both players can skip, and
even stop playing after a finite number of moves. This ansatz places reliance

4



1.3 Wadge hierarchy and ∆1
2 sets

on the definition of a mapping C %−→ Cb from conciliatory sets to subsets
of the Baire space together with the preorder ≤c on the subsets of ω≤ω that
does not arise from a reduction relation, but rather from a game. For each
non-self-dual pointclass Γ of the Baire space, a class Γc of subsets of ω≤ω is
also defined. Duparc [26, 27] studies the conciliatory hierarchy, the hierar-
chy induced by ≤c, when restricted to the class corresponding to the Borel
pointclass, gives its complete description, and finally proves that the Wadge
hierarchy restricted to the non-self-dual Borel degrees and the fragment of
the conciliatory hierarchies coincide, via the function C %−→ Cb. Since there
is a straightforward and uniform procedure to derive the structure of self-dual
sets from the non-self-dual ones2, one can study indistinctively the Wadge
hierarchy or the conciliatory one. We give in Chapter 3, a topological inter-
pretation of the conciliatory ansatz and a direct proof of the correspondence
between the conciliatory and the Wadge hierarchy.

1.3 Wadge hierarchy and ∆1
2 sets

1.3.1 The state of the art

The concept defined by Wadge has given rise to a flourishing area of research
in descriptive set theory, with interesting applications to set theory and the-
oretical computer science. Aside from the authors and articles already cited,
we survey here some of the most important pieces of work related to the
Wadge hierarchy.
Until the end of the 80’s, most of the research on continuous reducibility

was concerned with the general theory of pointclasses of the Baire space un-
der (AD), as illustrated by the works of Becker, Jackson, Kechris, Martin,
Moschovakis and Steel [13, 49, 54, 81, 105]. In these papers, questions about
closure and structural properties of arbitrary pointclasses of the Baire space
are addressed, under the full axiom of determinacy (AD). Relationship be-
tween determinacy and the structure of the Wadge preorder have been also
investigated by Harrington [42], Hjorth [45], and Andretta [2, 3]. Interest in
generalizations of continuous reducibility on zero-dimensional Polish spaces
has rapidly grown last decades, as both more general reduction notions and
topological spaces outside the zero-dimensional Polish world were considered.
Lecomte [65] studied for example the descriptive complexity of subsets of
products of Polish spaces, whereas Andretta and Martin [5] defined and ana-

2Note that the converse is not true in general, so that the essence of the Wadge hierarchy
appears to be completely captured by the study of the non-self-dual degrees.
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1 Introduction

lyzed the Borel-Wadge preorder on the Baire space, the preorder induced by
Borel functions instead of continuous functions. Other generalizations of the
Wadge hierarchy were recently explored by Ikegami, Motto Ros, Pequignot,
Schlicht, Selivanov and Tanaka [47, 48, 83, 84, 93, 98, 100].
Regarding the Wadge hierarchy of the ∆1

2 sets of the Baire space, or equiv-
alently the pointclasses included in the ∆1

2 class, not much is known. Under
(AD), Martin and Steel [112] proved that the order type of the Wadge hi-
erarchy restricted to the ∆1

2 sets is the projective ordinal δ1
3, which turns

out to be ℵω+1 under this determinacy hypothesis by a result of Martin [79].
Some hierarchies of ∆1

2 sets have been considered, such as the hierarchy of
differences of coanalytic sets, the hierarchy of C-sets of Selivanovski [101],
and the hierarchy of R-sets of Kolmogorov [57, 58], but none of them ex-
hausts the ∆1

2 class. Moreover, the only piece of information on their Wadge
rank is given by a result from Kechris and Martin mentioned by Steel [105],
which states that, under (AD), the order type of the Wadge hierarchy of the
ω decreasing differences of co-analytic sets is ℵ2. Regarding the height of the
Wadge hierarchy of the Borel sets, Wadge [115] proved it to be V ω1(2), the
second value of the ω1-th Veblen function of basis ω1. The Veblen hierarchy
of basis ω1 consists of functions (V ξ)ξ<ω2 from ω2!{0} to ω2 that are defined
as follows:

(i) V 0 is almost the exponentiation of base ω1:

– V 0(1) = 1;

– V 0(α + 1) = V 0(α) · ω1 for all 0 < α < ω2;

– V 0(α) = ωα
1 for all α < ω2 limit of cofinality ω1;

– V 0(α) = ωα+1
1 for all α < ω2 limit of cofinality ω.

(ii) For λ > 0, V λ is the function that enumerates the fixpoints of cofinality
ω1 of the Veblen functions of lesser degrees:

– V λ(1) = 1;

– V λ(1+α) is the αth fixpoint of cofinality ω1 of all V ξ with ξ < λ.

So far, the general situation may thus be roughly depicted by Fig. 1.1. Note
that the inclusions are all provably strict in ZF + DC.

1.3.2 Our contribution

Just like in the Borel case with the Borel hierarchy or the Hausdorff-Kuratowski
hierarchies, the three classical hierarchies mentioned on the ∆1

2 class are very
coarse. If they provide benchmarks for the study of the Wadge hierarchy of
the ∆1

2 sets, they nonetheless leave tremendous gaps to explore. This explo-
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Figure 1.1: Wadge hierarchy of ∆1
2 sets: the state of the art.

ration, or at least the beginning of this exploration, is the main subject of
this thesis.

The difference hierarchies

It is well-known that increasing and decreasing differences do not coincide
in general. For example, all countable increasing differences of open sets are
included in the class of ω decreasing differences of open sets, which coincide
with the Π0

2 class. This discrepancy relies on the fact that the open sets have
the generalized reduction property, a structural property not shared by the
closed sets. The situation is the same for the Π1

1 and Σ1
1 classes: the coan-

alytic sets, unlike the analytic sets, have the generalized reduction property,
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1 Introduction

so that the increasing difference hierarchy of coanalytic sets is much finer
than the decreasing difference hierarchy of coanalytic sets. For α countable,
let Dα(Π1

1) and D∗
α(Π

1
1) denote respectively the class of increasing and the

class of decreasing α differences of coanalytic sets.
In Chapter 4, we study the increasing differences of coanalytic sets. As-

suming coanalytic determinacy, our work provides the full description of the
Wadge hierarchy of

⋃
α<ω1

Dα(Π1
1) sets, both in terms of pointclasses (à la

Louveau) and complete sets (à la Duparc). Surprisingly enough, the set of
operations and methods used in the Borel case is sufficient for this task, we
so to speak only add the possibility for them to act on coanalytic sets. We
compute the height of the Wadge hierarchy of

⋃
α<ω1

Dα(Π1
1), and we give

another proof of a result due to Andretta and Martin [5] which states that the
non-self-dual pointclasses closed under preimages by Borel functions included
in
⋃

α<ω1
Dα(Π1

1) are exactly the classes Dα(Π1
1) and their duals. Zooming

in the general picture, our contribution is depicted in Fig. 1.2.
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Figure 1.2: Our contribution to the description of the Wadge hierarchy of
differences of coanalytic sets.
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1.4 From descriptive set theory to automata theory

The C-sets and the R-sets

The C-sets of Selivanovski constitute the smallest σ-algebra of subsets of the
Baire space containing the open sets and closed under Suslin’s operation A.
They are set up in a hierarchy as follows:

– ΣC
1 = Σ1

1;

– for 0 < α < ω1, ΠC
α = Σ̌C

α ;

– for 1 < α < ω1, ΣC
α = A

(⋃
ξ<α Π

C
ξ

)
.

The classΣC
2 contains all the decreasing differences of coanalytic sets, and the

class σD2(Π1
1) of countable unions of differences of two coanalytic sets. From

a complete coanalytic set, we define the operation (D2(ΠC
1 ), ·) which trans-

forms complete open sets to σD2(Π1
1)-complete sets, preserves the Wadge

ordering and is compatible with the operations already defined by Wadge
and Duparc for the study of the Borel sets. This allows us to unravel an in-
complete fragment of the Wadge hierarchy of the ΣC

2 class. To climb further,
we generalize this operation, beginning with a ΠC

α -complete sets instead of a
coanalytic set. This allows us to describe a cofinal but incomplete fragment
of the Wadge hierarchy of Selivanovski’s C-sets.
The R-sets of Kolmogorov are generated from the open sets by the opera-

tions of countable union and intersection, and closed under the transforma-
tion R. They can be spread into a hierarchy of length ω1 as follows

– ΣR
1 = Σ1

1;

– for 0 < α < ω1, ΠR
α = Σ̌R

α ;

– for 1 < α < ω1, ΣR
α = Rα(Σ0

1).

Where Rα denotes the α-th superposition of the R-transform. The class ΣR
2

contains allC-sets and we can, as before, generalize the operation (D2(ΠC
1 ), ·)

to unravel a cofinal but incomplete fragment of the Wadge hierarchy of Kol-
mogorov’s R-sets. Our general contribution to the study of the Wadge hier-
archy of ∆1

2 sets is depicted in Fig. 1.3.

1.4 From descriptive set theory to automata
theory

“Since the discovery of irrational numbers, the issue of impossibil-
ity has been one of the driving forces in mathematics. Computer
science brings forward a related problem, that of difficulty. The
mathematical expression of difficulty is complexity, the concept

9



1 Introduction

which affects virtually all subjects in computing science, taking
on various contents in various contexts.”

André Arnold, Jacques Duparc, Filip Murlak, and Damian
Niwiński, [8].

Theoretical computer science is the study, from a mathematical point of
view, of models of computation. As such, its developments since the 1930s
with the works of Church, Gödel, Klenne, Post and Turing, have always
been strongly connected to mathematics and logic, with deep foundational
questioning and motivations. In particular, the concept of complexity has
become prominent, and among complexity measures topological complexity
has grown to be more and more popular last decades [8, 41, 66, 95, 110].
One can indeed study and compare the expressive power, and thus in some
sense the complexity of different models of computation by looking at the
topological complexity of the tasks they can perform. Here we study tree
automata, that is finite devices whose inputs are infinite labeled binary trees
over a finite alphabet. For an automaton A and a tree t, A either accepts or
rejects t, and the set of trees accepted by A is called the language of A. A
set of trees is called regular if it is the language of a certain automaton. If
tree automata are finite devices that can appear to be quite rudimentary at
first sight, their expressive power is nonetheless surprisingly and interestingly
vast. Identifying the space of infinite trees with the Cantor space, Rabin [96]
proved that all regular languages are in the ∆1

2 class. The works of Gogacz,
Michalewski, Mio and Skrzypczak [40], and Finkel, Lecomte, and Simonnet
[36, 103] provide the exact bound for the complexity of regular languages:
the class of R-sets of finite ranks. We can thus use our knowledge developed
on the R-sets of the Baire space to study the class of all regular languages.
Following and extending the works of Duparc, Facchini and Murlak [8, 32,
34, 85], we study the Wadge hierarchy of regular tree languages. To do
so, we adapt the operations used in the descriptive set theory framework
to construct a very long sequence (Lα) of strictly more and more complex
regular languages. The length of this sequence is the ordinal ϕω(0), where
(ϕα) are the Veblen functions of basis ω. This sequence is moreover cofinal:
for every regular language L, there exists an ordinal α < ϕω(0) such that
L ≤W Lα.
We also investigate the difference between two subclasses of tree automata:

the deterministic and the unambiguous automata. While the former class
is now quite well understood, thanks in particular to the work of Murlak
[8, 85], we do not know much about the expressive power of the latter. By
definition, all deterministic automata are unambiguous, and it was shown by
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1.5 Organization of the thesis

Niwiński and Walukiewicz [91] that unambiguous automata do not recognize
all regular languages. Building on an example due to Hummel [46] of an
unambiguous automaton recognizing a Σ1

1-complete language, and adapting
the operations used before, we prove that the height of the Wadge hierarchy
restricted to unambiguously recognizable tree languages is at least ϕ2(0).
Since Murlak [85] proved that the height of the Wadge hierarchy restricted to
deterministically recognizable tree languages is (ωω)3+3, our work illustrates
the discrepancy between these two classes of tree automata and proves that
unambiguous automata are much more complex than deterministic automata.

1.5 Organization of the thesis

Chapter 2: Preliminaries

This chapter is devoted to a quick recapitulation of descriptive set theory
notions, and to a rapid presentation of the Wadge theory. Basic knowledge
of set theory and topology is assumed, and can be found in books by Jech
[50], Kunen [60], and Kuratowski [61]. Classical references for descriptive
set theory are Moschovakis [80], Kechris [55], and Louveau [67]. Regarding
the Wadge theory, in addition to Wadge’s thesis [115] and Van Wesep [112]
seminal paper on the subject, we refer the reader to the survey wrote by
Andretta and Louveau [4] as an introduction to the third part of the Cabal
seminar anthology [56].

Chapter 3: The Baire space and reductions by relatively
continuous relations

In this chapter we prove that the conciliatory preorder is in fact induced by
reductions by relatively continuous relations, as defined by Pequignot [93],
when the set ω≤ω is endowed with the prefix topology, and we show that
under (AD) the conciliatory hierarchy and the Wadge hierarchy restricted to
non-self-dual classes coincide via the mapping C %→ Cb. All the proofs in
this chapter can be relativized to a pointclass with appropriate closure and
determinacy properties, so that e.g. in ZF + DC the conciliatory hierarchy
and the Wadge hierarchy restricted to non-self-dual Borel classes coincide,
which gives a direct proof to a results of Duparc [26, Theorem 3]. Results in
this chapter are part of a joint work with Jacques Duparc [29].
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1 Introduction

Chapter 4: Differences of coanalytic sets

This chapter is devoted to the extension of results obtained by Wadge [115],
Louveau [68] and Duparc [26, 27] for the Borel sets to a wider pointclass:
Diff(Π1

1), the class of increasing differences of coanalytic sets. We prove that,
assuming DET(Π1

1) and adding the analytic class – or an analytic complete
set, the operations and methods used in the Borel case give rise exactly to
the Wage hierarchy of Diff(Π1

1). We give a full description of the Wadge
hierarchy restricted to the class Diff(Π1

1), including its height. Results in
this chapter concerning the à la Louveau approach will appear in an article
by the author [38].

Chapter 5: A first glimpse above Diff(Π1
1)

In this chapter, we offer a glimpse into∆1
2 pointclasses that lie above Diff(Π

1
1).

First we consider decreasing differences of coanalytic sets that coincide with
the increasing differences only at the finite levels, but then become far more
complex. In particular, one can prove that the class of ω decreasing differ-
ences of coanalytic sets contains Diff(Π1

1), and that under (AD) its Wadge
rank is ω2. Climbing further up, we consider the class of Selivanovski’s C-
sets and the class of Kolmogorov’s R-sets. To unravel a fragment of their
Wadge hierarchy, we define for each non-self-dual pointclass a new operation
on sets denoted by (D2(Γ), ·). These new operations are designed to trans-
form an open set into a set that is a countable union of D2(Γ) sets. For Γ
with suitable closure properties, this operation preserves the Wadge ordering
and behaves well with respect to the other operations used in the study of
the Wadge hierarchy of Borel sets by Duparc. Using well chosen pointclasses
Γ, we unravel a fragment of the Wadge hierarchy of R-sets. More details
and references on C-sets can be found in Selivanovski [101], Burgess [19] and
Louveau [67]; concerning R-sets, we refer the reader to Kolmogorov [57, 58],
Burgess [18, 20] and Kanovei [52].

Chapter 6: Application to Automata Theory

We transport some of the techniques we developed in the descriptive set
theory framework to theoretical computer science and, more precisely, to au-
tomata theory. From definable subsets of the Baire space, we thus shift our
attention to sets of full binary trees that are recognizable by automata. In this
context, the use of topological tools has proved useful for the study of relative
complexity and characterization of regular languages. After an introduction
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1.5 Organization of the thesis

to this new framework and the formulation of relevant definitions and nota-
tions as well as classical results, we use operations on languages – inspired by
the operations used in the Baire space case, to construct a cofinal sequence of
strictly more and more complex regular tree languages. This fragment of the
Wadge hierarchy of regular tree languages has length ϕω(0), where (ϕα) are
the Veblen functions of basis ω, which provides a lower bound for the height
of this hierarchy. In the second part of this chapter, we study the discrep-
ancy between deterministically and unambiguously recognizable languages
by proving that the height of the Wadge hierarchy restricted to unambigu-
ously recognizable tree languages is at least ϕ2(0), an ordinal tremendously
larger than the height of the Wadge hierarchy restricted to deterministically
recognizable languages which is (ωω)3+3, as unraveled by Murlak [85]. Most
of the results in this chapter are part of joint works with Duparc [29], Duparc
and Hummel [31], and Duparc, Facchini and Michalewski [28].
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Figure 1.3: Our contribution to the study of the Wadge hierarchy of ∆1
2 sets.
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2 Preliminaries

2.1 The Borel and the Projective hierarchies

One of the main purposes of classical descriptive set theory is to describe
and classify definable subsets of Polish spaces, i.e. second countable and
completely metrizable topological spaces, by means of hierarchies, reducibil-
ities and set-theoretic operations. Given a Polish space X, the σ-algebra of
Borel sets B(X) is obtained from the open sets of X by the set-theoretical
operations of complementation and countable unions. This class can then
naturally be spread into a hierarchy of length ω1, called the Borel hierarchy.
More precisely, for every Polish space X and every countable ordinal 0 < ξ,
we define the classes Σ0

ξ(X), Π0
ξ(X) and ∆0

ξ(X) as follows:

– Σ0
1(X) is the class of all the open subsets of X,

– A ∈ Π0
ξ(X) if and only if A! ∈ Σ0

ξ(X),

– for 2 ≤ ξ, A ∈ Σ0
ξ(X) if and only if there is a sequence (An)n<ω of

elements of
⋃

η<ξ Π
0
η(X) such that A =

⋃
n<ω An,

– A ∈∆0
ξ(X) if and only if A ∈ Σ0

ξ(X) and A ∈ Π0
ξ(X).

By convention, we set Π0
0(X) = {X} and Σ0

0(X) = {∅}. Note that, for every
ξ < ω1, the following holds:

Σ0
ξ ⊆∆0

ξ+1 and Π0
ξ ⊆∆0

ξ+1.

This hierarchy provides a bottom-up description of the Borel sets since for
any Polish space

B(X) =
⋃

ξ<ω1

Σ0
ξ(X) =

⋃

ξ<ω1

Π0
ξ(X).

For X uncountable, this hierarchy is strict, i.e. for every countable ordinal
0 < ξ, Σ0

ξ\Π0
ξ ̸= ∅. Above the Borel class lie the projective sets, which are

obtained from the Borel sets by taking projection1 and complementation. If
B ⊆ X × Y , we denote by π′′(B) = {x ∈ X : ∃y(x, y) ∈ B} the projection

1Or equivalently direct image by continuous functions.
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2 Preliminaries

of B. Analogously to the case of Borel sets, the class P(X) of all projective
sets of a Polish space X ramifies in a hierarchy of length ω, starting with the
analytic sets. A subset of a Polish space X is analytic if it is the projection
of a Borel subset of X × ωω, where ωω denotes the Baire space. For every
Polish space X and every positive integer n, we define the classes Σ1

n(X),
Π1

n(X) and ∆1
n(X) as follows:

– A ∈ Σ1
1(X) if and only if A is an analytic subset of X,

– B ∈ Π1
n(X) if and only if B! ∈ Σ1

n(X),

– B ∈ Σ1
n+1(X) if and only if there is C ∈ Π1

n(X × ωω) such that
B = π′′(C),

– B ∈∆1
n(X) if and only if B ∈ Σ1

n(X) and B ∈ Π1
n(X).

Note that, by Suslin’s theorem, B(X) = ∆1
1(X), and that for every positive

integer n, the following holds:

Σ1
n ⊆∆1

n+1 and Π1
n ⊆∆1

n+1.

This hierarchy provides a bottom-up description of the projective sets since
for any Polish space

P(X) =
⋃

n<ω

Σ1
ξ(X).

2.2 Games and Determinacy

First considered by Russian and Polish mathematicians in the period be-
tween the two world wars, infinite games have played a prominent role in the
development of modern descriptive set theory. We refer the interested reader
to Larson [62], Mycielski [88], and Telgársky [109] for a thorough historical
account on the interplay between descriptive set theory and infinite games.

Definition 2.1 (Gale-Stewart [39]). Let A be a subset of the Baire space.
The Gale-Stewart game G(A) is the following two-player infinite game:

I : a0

!!❄
❄❄

❄❄
❄❄

❄
a2

!!❄
❄❄

❄❄
❄❄

❄
a2n

""❋
❋❋

❋❋
❋❋

❋❋
a2n+2

···

II : a1

##⑧⑧⑧⑧⑧⑧⑧⑧
a3

···

a2n−1

$$✈✈✈✈✈✈✈✈✈✈

Player I plays a0 ∈ ω, II then plays a1 ∈ ω, etc. I wins if and only if
a = (a0, a1, . . .) ∈ X.
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2.2 Games and Determinacy

A strategy for player I is a map σ : ω<ω −→ ω. The beginning of a play
where player I follows the strategy σ is

I : σ(∅)

%%❈
❈❈

❈❈
❈❈

❈❈
σ(a1)

""❉
❉❉

❉❉
❉❉

❉❉
σ(a1, a3)

&&❍
❍❍

❍❍
❍❍

❍❍
❍

II : a1

''③③③③③③③③③
a3

···

a5

···

We define mutatis mutandis a strategy for player II. A strategy for a player
is winning if the player wins every time he follows it, whatever his opponent
plays. We say that the game G(A), or just the set A, is determined, if
one of the two players has a winning strategy in this game. A pointclass is
determined if and only if all its elements are determined.

Clearly, using the axiom of Dependent Choices (DC), two players cannot
have both a winning strategy for the same game. But, contrarily to the
case of finite games2, Gale and Stewart [39] proved in their seminal article
on the subject that assuming the axiom of choice (AC), there exists a sub-
set of the Baire space which is not determined. Thus arose the questions
of establishing which subsets and which pointclasses of the Baire space are
determined. Whilst the first question might never meet a satisfying answer
– other than a slight refinement of the Lapalissade the class of determined
subsets of the Baire space is the class of all subsets of the Baire space that
are determined, the second one has been nicely settled by a combination of
works due to Martin and Harrington. First, Martin [78] proved that in ZFC
all the Borel subsets of the Baire space are determined, concluding twenty
years of cumulative work initiated by Gale and Stewart, and later pursued
by Wolfe [117], Davis [24], and Paris [92]. Then, Harrington [42] showed that
the determinacy of all analytic sets implied the existence of sharps, a large
cardinal hypothesis independent from ZFC. The largest provably determined
pointclass in ZFC is therefore the Borel sets.
From another perspective, assuming the determinacy of a pointclass with

appropriate closure properties is sufficient to prove its regularity. Proof of
these consequences of determinacy, such as measurability, the perfect set
property and the Baire property, were first given in a sequence of papers
by Mycielski [86, 87] and Mycielski and Świerczkowski [90]. The connection
between determinacy and regularity properties led to the introduction of
(AD), the Axiom of (full) Determinacy, by Mycielski and Steinhaus [89],
which asserts that every subset of the Baire space is determined. This axiom

2See Morgenstern and Von Neumann [114].
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2 Preliminaries

contradicts (AC), but is consistent with ZF + DC and has the goodness
of excluding annoying counterexamples, so that it has been argued to be a
natural alternative framework for descriptive set theory.
Most of the results in this thesis depend on determinacy hypotheses, and

these assumptions will be made clear every time they are needed. In general,
our ambient theory is ZFC, to which we add the hypothesis that a certain
pointclass Γ is determined, in symbol DET(Γ). Sometimes, the full axiom of
determinacy (AD) is needed: in this case it is understood that we work in
ZF + DC + AD. Although the tension between choice and determinacy will
not be discussed here, it is worth noticing their subtle interaction all along
this work.

2.3 The Wadge hierarchy, pointclasses and
boolean operations

“The Wadge Hierarchy is the ultimate analysis of P(ωω) in terms
of topological complexity [...]”

Alessandro Andretta, Alain Louveau, [4].

The Wadge theory is in essence the theory of pointclasses. Let X be a
topological space. A pointclass is a collection of subsets of X that is closed
under continuous preimages. For Γ a pointclass, we denote by Γ̌ its dual class
containing all the subsets of X whose complements are in Γ, and by ∆(Γ)
the ambiguous class Γ ∩ Γ̌. If Γ = Γ̌, we say that Γ is self-dual.
We only consider the Baire space in this thesis, with the usual topology.

The Wadge preorder ≤W on P(ωω) is defined as follows: for A,B ⊆ ωω,
A ≤W B if and only if there exists f : ωω −→ ωω continuous such that
f−1(B) = A. For A,B ⊆ ωω, we write A <W B if and only if A ≤W B
but B "W A. The Wadge preorder induces an equivalence relation ≡W

whose equivalence classes are called theWadge degrees, and denoted by [A]W .
We say that the set A ⊆ ωω is self-dual if it is Wadge equivalent to its
complement, that is if A ≡W A!, and non-self-dual if it is not. We use the
same terminology for the Wadge degrees.
A useful game characterization is provided by the Wadge game, a two

players infinite game. Let A,B ⊆ ωω, in the Wadge game W (A,B) player
I plays first an integer x0, II answers with an integer y0, and so on and so
forth. Player II has the possibility to skip, even ω times, provided she also
plays infinitely often. At the end of the game, each player has constructed
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2.3 The Wadge hierarchy, pointclasses and boolean operations

an infinite sequence, x for I and y for II. Player II wins the game if and
only if (x ∈ A ↔ y ∈ B). Noticing that strategies for II can be viewed as
continuous functions, we have:

II has a winning strategy in W (A,B) ←→ A ≤W B.

Given a pointclass Γ with suitable closure properties, the assumption of the
determinacy of Γ is sufficient to prove that Γ is semi-linearly ordered by ≤W ,
denoted SLO(Γ), i.e. that for all A,B ∈ Γ,

A ≤W B or B ≤W A!.

and that ≤W is well founded when restricted to sets in Γ.3 Under these
conditions, the Wadge degrees of sets in Γ with the induced order is thus a
hierarchy called the Wadge hierarchy . There exists a unique ordinal, called
the height of the Γ-Wadge hierarchy, and a mapping dΓw from the Γ-Wadge
hierarchy onto its height, called the Wadge rank, such that, for every A,B
non-self-dual in Γ, dΓw(A) < dΓw(B) if and only if A <W B and dΓw(A) = dΓw(B)
if and only if A ≡W B or A ≡W B!. The wellfoundedness of the Γ-Wadge
hierarchy ensures that the Wadge rank can be defined by induction as follows:

– dΓw(∅) = dΓw(∅!) = 1

– dΓw(B) = sup
{
dΓw(A) + 1 : A is non-self-dual, A <W B

}
for A >W ∅.

Note that given two pointclasses Γ and Γ′, for every A ∈ Γ ∩ Γ′,

dΓw(A) = dΓ
′

w (A).

Under sufficient determinacy assumptions, we can therefore safely speak of
the Wadge rank of a subset of the Baire space, denoted by dw, as its Wadge
rank with respect to any topological class with suitable closure and determi-
nacy properties including it.

The general diamond-like shape of the Wadge hierarchy is depicted below.
At the bottom of the hierarchy lie the empty set and the whole Baire space,
dual and mutually incomparable. Then self-dual and non-self-dual degrees
alternate, with self-dual degrees at limit levels of cofinality ω, and non-self-

3For more details about the relation between determinacy and the Wadge preorder, see
Andretta [2, 3].
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dual degrees at limit levels of cofinality strictly greater.

[∅]W • • •

• ··· • ··· • ···

[ωω]W • • •

(1) (ω) (ω1)

There is a strong connection between pointclasses included in Γ and Wadge
degrees of sets in Γ since all non-self-dual pointclasses are of the form

{B ⊆ ωω : B ≤W A}

for some non-self-dual set A, while self-dual pointclasses are all of the form

{B ⊆ ωω : B <W A} ,

for some A ⊆ ωω. We say that a pointclass is a Wadge class if it is of the
form {B ⊆ ωω : B ≤W A} for some A ⊆ ωω. Observe that the non-self-dual
Wadge classes are exactly the non-self-dual pointclasses. Moreover, notice
that all self-dual pointclasses that are not Wadge classes are of the form
Γ′ ∪ Γ̌′ for some non-self-dual pointclass Γ′.
We have a direct correspondence between (P(ωω),≤W ) restricted to Γ

and the pointclasses included in Γ with the inclusion: the pointclasses are
exactly the initial segments of the Wadge hierarchy. The semi-linear ordering
property becomes then: for any pointclasses Γ′ and Γ′′ included in Γ,

Γ′ ⊆ Γ′′ or Γ̌′′ ⊆ Γ′.

We can define the Wadge rank counterpart for pointclasses:

|Γ′|w = sup {dw(A) + 1 : A is non-self-dual and in Γ′} .

In his thesis, Wadge begins the analysis of the hierarchy when restricted
to the Borel subsets of the Baire space and initiates two approaches for its
study, based on the correspondence between (P(ωω),≤W ) and the point-
classes with the inclusion. The first one, later completed by Louveau [68],
relies on boolean operations.
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An ω-ary operation O is a function:

O : P(ωω)ω −→ P(ωω).

which assigns a set to a countable sequence of sets. The truth table TO for
an operation O is a subset of P(ω) such that for any sequence of subsets of
the Baire space (An)n∈ω, and for all x ∈ ωω,

x ∈ O ((An)n∈ω)↔ {n ∈ ω : x ∈ An} ∈ TO.

Not all operations admit a truth table, but each truth table completely de-
termines an operation. Operations that admit a truth table are said to be
(ω-ary) boolean operations , and were first defined and studied by Kantorovich
and Livenson [53]4, and Lyapunov [76]5. We say that a boolean operation is
of a certain complexity (Borel, Π1

1, etc.) if its truth table is of this complexity
as a subset of the Cantor space 2ω.
Wadge proved that all the non-self-dual Borel pointclasses can be obtained

by ω-ary Borel boolean operations on open sets – a result later generalized
to all non-self-dual pointclasses of the Baire space by Van Wesep [111] under
(AD), using of course arbitrary ω-ary boolean operations. Louveau’s work
provides a description of all the Borel Wadge classes, and thus of the whole
Wadge hierarchy on the Borel sets, by means of boolean operations.
The second approach to the study of the Wadge hierarchy aims to define

and make use of operations on sets, such as the sum and the countable multi-
plication, in order to give, for each non-self-dual Wadge class of Borel subsets,
a canonical complete set. It relies heavily on the peculiar characterization of
the continuous reducibility relation made available through the Wadge game.
In an effort to extend this approach, Duparc [26, 27] introduces the so-called
conciliatory sets, namely subsets of ω≤ω, as an ansatz. We give more details
about this approach in the next section.

2.4 The conciliatory sets

Conciliatory sets are sets of finite or infinite sequences of integers, that is
sets included in ω≤ω. From a conciliatory set B ⊆ ω≤ω, one defines the set
Bb ⊆ (ω ∪ {b})ω of infinite sequences by

Bb =
{
α ∈ (ω ∪ {b})ω : α[ /b] ∈ B

}
,

4who call them analytic operations.
5who calls them set-theoretical operations.
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where b is an extra symbol that stands for “blank”, and α[ /b] is the sequence
obtained from α once all occurrences of b have been removed. To lighten the
notations, we write ωb to denote the set ω ∪ {b}. Since (ωb)ω endowed with
the product of the discrete topology is homeomorphic to the Baire space, we
identify these two spaces via the following isometry

h : (ωb)
ω −→ ωω

(x0, x1, . . .) %−→ (x′
0, x

′
1, . . .)

where

x′
i =

{
0 if xi = b;

xi + 1 else.

The use of h is always implicit and, depending on the context, we consider
Bb to be a subset of (ωb)ω or of ωω via this homeomorphism. We define
no topology at all on conciliatory sets, but for any pointclass Γ we allow
ourselves to say that B ⊆ ω≤ω is in Γc if and only if Bb ∈ Γ.

Example 2.2. The conciliatory set {⟨0⟩} ∈ (Σ0
2)c, for

{⟨0⟩}b =
⋃

n∈ω
bn"0"bω

is Σ0
2.

The shift from infinite sequences to both finite and infinite sequences, and
the definition of a preorder ≤c on the subsets of ω≤ω is motivated by natural
game theoretic considerations, and in particular by the will to symmetrise the
Wadge game. Let A and B be two conciliatory sets. The conciliatory game
C(A,B) is the following: both players play integers, I begins, II answers, and
so on and so forth. The winning conditions for II are: if the sequence of I is
in A, then she has to produce a sequence in B, and if it is not in A, she has to
produce a sequence not in B. But in the conciliatory game, I can also skip,
and both players do not have to produce an infinite sequence, so that at the
end of the game, they might even have played only finitely many integers.
From this game we define the conciliatory preorder : for any conciliatory sets
A and B, we say that A ≤c B if and only if II has a winning strategy in
C(A,B).

Lemma 2.3. Let A and B be two conciliatory sets. The games C(A,B)
and W (Ab, Bb) are equivalent, i.e. player I (respectively II) has a winning
strategy in the game C(A,B) if and only if player I (respectively II) has a
winning strategy in the game W (Ab, Bb).
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2.4 The conciliatory sets

Proof. By replacing “skips” in the conciliatory game by “blanks” in the
Wadge game, a winning strategy for a player in one game gives rise to a
winning strategy for the same player in the other game. Notice that a win-
ning strategy for II in C(A,B) provides a winning strategy for II inW (Ab, Bb)
which never requires her to skip.

Hence the determinacy of the conciliatory game for a certain class Γc is
equivalent to the determinacy of the Wadge game for the corresponding
pointclass, and the map C %−→ Cb is an embedding from (P(ω≤ω),≤c) to
(P(ωω),≤W ). Observe moreover that there is no self-dual set with respect
to the conciliatory preorder, since player I always has the following strategy
in the game C(A,A!): at first he skips, and then simply copies II’s moves,
so that the range of C %−→ Cb is included in the non-self-dual degrees of the
Wadge hierarchy. A main purpose of Chapter 3 is to prove Theorem 3.10 stat-
ing that, assuming (AD), all non-self-dual degrees are reached by C %−→ Cb.
More precisely, we will show that A ⊆ ωω is non-self-dual if and only if there
exists some conciliatory set B ⊆ ω≤ω such that A ≡W Bb. Therefore, thanks
to the following fact, one can indistinctively study either the Wadge hierarchy
or the conciliatory hierarchy.

Fact 2.4. Let A ⊆ ωω be such that A ≡W A!. Then there exists a family
(An)n∈ω of non-self-dual subsets of the Baire space such that

A ≡W

⋃

n∈ω
n"An =

⋃

n∈ω

{
n"x ∈ ωω : x ∈ An

}
.

The conciliatory counterpart of the Wadge rank is naturally defined as
follows.

Definition 2.5. For any conciliatory set C, we define:

dc(C) =

{
1 iff C or C! is the empty set;

sup{dc(C ′) + 1 : C ′ <c C} else.

It is a consequence of Theorem 3.10 that the Wadge and the conciliatory
ranks are compatible, i.e. dc(C) = dw(Cb) for all conciliatory set C.
The aim of the approach initiated by Duparc is to give a complete set for

each conciliatory degree of the considered pointclass. In order to do so, one
can define set theoretical counterparts to the following ordinal operations
on conciliatory sets: the sum, the multiplication by a countable ordinal and
the countable supremum. First, denote by shift the map from (ωb)≤ω to
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(ωb ! {0})≤ω that shifts each entry of the sequence by one but keeps the
blanks, i.e.

shift : (ωb)
≤ω −→ (ωb ! {0})≤ω

x %−→ shift(x)

where shift(x) and x have the same length, and are such that for every n
strictly smaller than the length of x,

shift(x)(n) =

{
b if xn = b;

xn + 1 else.

For all C ⊆ ω≤ω, let shift(C) denote the set of all shifted sequences of C:

shift(C) = {shift(x) : x ∈ C} .

Note that for every A,B ⊆ ωω, A ≤W B if and only if shift(A) ≤W shift(B).
Moreover, for any conciliatory set D,

shift(Db) ≡W shift(D)b.

We can now define the counterparts to the ordinal sum and countable supre-
mum. Let (Ai)i∈ω be a family of conciliatory sets.

(a) A0 + A1 = shift(A1) ∪
{
u"⟨0⟩"x : u ∈ (ω ! {0})<ω, x ∈ A0

}
;

(b) supi∈ω{Ai} =
{
⟨i⟩"x : x ∈ Ai

}
.

From these operations, we can define by induction the counterpart to the
ordinal multiplication by a countable ordinal. Let A be a conciliatory set.

– A · 1 = A;

– A · (ν + 1) = (A · ν)+ A, for ν countable;

– A · γ = supi∈ω A · γi, for γ = supi∈ω γi countable and limit.

These operations are defined to behave well with respect to the conciliatory
rank.

Proposition 2.6 ([26, Theorem 4]). Let (Ai)i∈ω be any family of conciliatory
sets, and ν < ω1.

(a) dc(A0 + A1) = dc(A0) + dc(A1);

(b) dc(A0 · ν) = dc(A0) · ν;
(c) dc(supi∈ω{Ai}) = sup{dc(Ai) : i ∈ ω}.

These operations allow us tu construct from the empty set the ω1 first
degrees of the conciliatory hierarchy. To go further, we need a counterpart
to the exponentiation of basis ω1 and beyond that, to the Veblen functions.
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2.4 The conciliatory sets

Definition 2.7. The Veblen hierarchy of base ω1 consists of functions (V ξ)ξ<ω2

from ω2 ! {0} to ω2 which are defined as follows:

(i) V 0 is almost the exponentiation of base ω1:

– V 0(1) = 1;

– V 0(α + 1) = V 0(α) · ω1 for all 0 < α < ω2;

– V 0(α) = ωα
1 for all α < ω2 limit of cofinality ω1;

– V 0(α) = ωα+1
1 for all α < ω2 limit of cofinality ω.

(ii) For λ > 0, V λ is the function that enumerates the fixpoints of cofinality
ω1 of the Veblen functions of lesser degrees:

– V λ(1) = 1;

– V λ(1+α) is the αth fixpoint of cofinality ω1 of all V ξ with ξ < λ.

The set theoretical counterparts to this ordinal hierarchy come from a
generalization of the eraser game [26]. We denote by ω# the set ω ∪ {#},
and from a set A ⊆ ω≤ω, we define the set A≈ ⊆ (ω#)≤ω by

A≈ =
{
α ∈ (ω#)≤ω : α$ ∈ A

}

where $ is the operation that realizes “#” into an eraser. It is inductively
defined in the following way:

– ε$ = ε, where ε stands for the empty sequence;

– for α finite with |α$| = k:

(i) (α"i)$ = α$"i, if i ∈ ω;
(ii) (α" #)$ = α$ % (k − 1), if k > 0;

(iii) (α" #)$ = ε, if k = 0.

– for α infinite, α$ = limn∈ω(α % n)$.

We once again make a slight abuse of notation, identify (ω#)≤ω and ω≤ω,
and write also A≈ for the corresponding conciliatory set. One can prove that
for any conciliatory set O in (Σ0

1)c ! (Π0
1)c,

O≈ ∈ (Σ0
2)c ! (Π0

2)c.

Setting ≈ for ≈1 , the iteration of this idea provides us with a family of oper-
ations ≈ξ , for ξ < ω1 which enjoys the following property.

Proposition 2.8 ([27, Proposition 34]). Let O be a conciliatory set in (Σ0
1)c!

(Π0
1)c. Then for all 0 < ξ < ω1:

O≈ξ ∈ (Σ0
1+ξ)c ! (Π0

1+ξ)c.
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These operations preserve the conciliatory ordering: for any conciliatory
sets A and B and any 0 < ξ < ω1:

A ≤c B =⇒ A≈ξ ≤c B
≈ξ ;

and their compositions behave also well, since for every conciliatory A and
0 < ξ, ν < ω1:

(A≈ξ)≈ν ≤c A
≈ξ+ν .

Now setting
Vν(A) = A≈ων

for A ⊆ ω≤ω and ν < ω1, the following correspondence between the opera-
tions ≈ξ and the ranks can be proved.

Proposition 2.9 ([27, Proposition 41]). For all conciliatory set A and ordi-
nal ν < ω1:

dc
(
Vν(A)

)
= V ν

(
dc(A)

)
.

It is one of the main results of [27] that (⊕, (⊙ν)ν<ω1 , sup, (Vξ)ξ<ω1) gener-
ates, up to complement, the whole conciliatory hierarchy of Borel sets from
the empty set.
For all ξ < ω1, there exists a kind of inverse for the ≈ξ operation, denoted

by #ξ , which is defined on the subsets of the Baire space. Recall that for
any sequence of Borel subsets B = (Bn)n∈ω of the Baire space, there exists
a Polish zero-dimensional topology T ′ on ωω, finer than the original one but
with the same Borel sets, such that each Bn is open in (ωω, T ′). Let ϕB

be the continuous function from (ωω, T ′) to the Baire space given by the
identity on the underlying set. For any A ⊆ ωω, we can observe the effect on
A of the change of topology by looking at ϕ−1

B (A). Duparc [26, 27] defines
question trees to encode the change of topology in a particular way that fits
the game point of view, by means of auxiliary questions. To a ξ-question tree
T is associated a family of Borel subsets (Tn)n∈ω ⊆ Σ0

1+ξ, and each sequence
of Σ0

1+ξ subsets of the Baire space is coded by a ξ-question tree. For T a
ξ-question tree and A ⊆ ωω, we denote by AT the set ϕ−1

T (A) obtained from
A after the modification of the topology induced by T . We only give the
formal definition of the 1-question trees here, the general case can be found
in [27, Definition 21].

Definition 2.10 ([26, Definition 25]). Given A ⊆ ωω and (Fu)u∈(ω<ω!∅) a
family of closed subsets of the Baire space abbreviated by (Fu), we define
A(Fu) ⊆ [TA(Fu) ], where TA(Fu) is a non-empty pruned tree on the alphabet

Λ = ω ∪
{
⟨1⟩"v : v ∈ ω<ω

}
.
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A sequence x ∈ (Λ)ω is in [TA(Fu) ] if and only if, for all integer n,

(a) x(2n) ∈ ω;
(b) x(2n+ 1) = 0 or x(2n+ 1) = ⟨1⟩"v with v ∈ ω<ω.

Moreover, setting u = ⟨x(2i) : i ≤ n⟩ and x′ = ⟨x(2i) : i ∈ ω⟩, the following
conditions must hold:

– if x(2n+ 1) = 0, then x′ ∈ Fu;

– if x(2n + 1) = ⟨1⟩"v, then u"v must be an initial segment of x′ which
verifies u"v"y /∈ Fu for any y ∈ ωω.

Now A(Fu) ⊆ [TA(Fu) ] is defined by

x ∈ A(Fu) ⇔ x′ ∈ A.

For all ξ < ω1, we set:

A#ξ = a <W -minimal element of {AT : T is a ξ-question tree}.

It is well-defined and satisfies the following properties.

Proposition 2.11. Let ξ < ω1 and (Bn)n∈ω be a sequence of Σ0
1+ξ subsets

of the Baire space. Then for all i ∈ ω,

B
#ξ

i ∈ Σ0
1,

and there exists a ξ + 1-question tree T such that for all i ∈ ω:

BT
i ∈ Σ0

1.

These operations preserve the Wadge ordering. Indeed for every sets A, B
and any ordinal 0 < ξ < ω1:

A ≤W B =⇒ A#ξ ≤W B#ξ .

The operation #ξ is not exactly the inverse of ≈ξ , but the following holds.

Proposition 2.12 ([27, Proposition 28 and Proposition 31]). Let A ⊆ ωω,
B ⊆ ω≤ω and 0 < ξ < ω1. Then

A#ξ ≤W Bb =⇒ A ≤W (B≈ξ)b ;

and
Bb ≡W

(
(B≈ξ)b

)#ξ .
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3 The Baire space and reductions
by relatively continuous
relations

In an attempt to give a meaning to the conciliatory approach, we use the
concept of admissible representation, which is the starting point of the devel-
opment of computable analysis from the Type-2 theory of effectivity point
of view (see Weihrauch [116]). This simple yet fundamental idea arises from
the wish to code points of a topological space by elements of the Baire space.
In other words: to represent a topological space via the Baire space. In this
chapter we prove that the conciliatory preorder is in fact induced by reduc-
tions by relatively continuous relations when the set ω≤ω is endowed with the
prefix topology, and we show that under (AD) the conciliatory hierarchy and
the Wadge hierarchy restricted to non-self-dual classes coincide via the map-
ping C %→ Cb. Note that all the proofs in this chapter can be relativized to a
pointclass with appropriate closure and determinacy properties, so that e.g.
in ZF + DC the conciliatory hierarchy and the Wadge hierarchy restricted
to non-self-dual Borel classes coincide. Results in this chapter are part of a
joint work with Jacques Duparc [29].

3.1 Representations and reduction by continuous
relations

Recall that a topological space X is second countable if it admits a countable
basis of open sets, and that it is T0 if for any two points x, y of X, there
exists an open set that contains one of these points but not the other. Let
X be a second countable T0 space, and f, g two partial functions from the
Baire space to X. We say that f ≼ g if and only if there exists a continuous
function h : dom(f)→ dom(g) such that for all x ∈ dom(f), g ◦h(x) = f(x).
Notice that the set of partial continuous functions from ωω to X is downward
closed with respect to ≼.
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Definition 3.1. Let X be a second countable T0 space. A partial continuous
function ρ from ωω to X is called an admissible representation of X if for
every partial continuous function f from ωω to X, f ≼ ρ holds.

Notice that any admissible representation of X must be onto, for it must
be above all constant functions.

Fact 3.2. Every second countable T0 space admits an admissible representa-
tion.

Admissible representations can be used to define the reductions by relatively
continuous relations, a notion introduced by Pequignot [93] to generalize the
Wadge hierarchy to second countable T0 spaces.
Let X, Y be two second countable T0 spaces, we say that R ⊆ X × Y is

a total relation from X to Y if for all x ∈ X there exists y ∈ Y such that
(x, y) ∈ R.

Definition 3.3. Let X, Y be two second countable T0 spaces, and a total
relation R from X to Y . We say that R is relatively continuous if for some
admissible representations ρX of X and ρY of Y , there exists a continuous
realizer f : dom(ρX)→ dom(ρY ) such that for every z ∈ dom(ρX) we have

(
ρX(z), ρY ◦ f(z)

)
∈ R.

Relatively continuous relations were first studied by Brattka and Hertling
[17]. Observe that if R and S are total relations from X, to Y such that R
is relatively continuous and R ⊆ S, then S is also relatively continuous.

Definition 3.4 ([93]). Let X, Y be two second countable T0 spaces, A ⊆ X
and B ⊆ Y . We say that A is reducible to B, and write A &W B, if
there exists a total relatively continuous relation R from X to Y which is a
reduction of A to B, i.e.:

∀x ∈ X ∀y ∈ Y
[
R(x, y)→ (x ∈ A↔ y ∈ B)

]
.

The relation &W is merely by definition a quasi-order, and is strongly
connected to ≤W .

Fact 3.5. Let X, Y be two second countable T0 spaces with fixed admissible
representations ρX and ρY . For every A ⊆ X and B ⊆ Y , the following are
equivalent:

(1) A &W B;
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(2) there exists a continuous function f : dom(ρX)→ dom(ρY ) such that

f−1(ρ−1
Y (B)) = ρ−1

X (A).

The definition of &W does not depend on the choice of the admissible
representation. It is intrinsic to the topology, and provides us with a general-
ization of the Wadge hierarchy for the second countable T0 spaces, as argued
by Pequignot [93].

3.2 The conciliatory space

It cannot be found in the work of Duparc, but the set ω≤ω can be endowed
with a very natural topology – the so-called prefix topology. The resulting
topological space, the conciliatory space Conc, appears in domain theory as
a classical example of an ω-algebraic domain1 and of a reflective complete
countably based f0-space2.

Definition 3.6. The conciliatory space Conc is the topological space (ω≤ω, τC)
whose topology τC is induced by the basis {Os : s ∈ ω<ω}, where

Os =
{
t ∈ ω≤ω : s ⊆ t

}
.

The conciliatory space is a second countable T0 space, but it is not Haus-
dorff since every open set containing a finite sequence contains also all the
sequences extending it. One can wonder if the conciliatory relation ≤c is
induced by the continuous reductions for the prefix topology. By the work
of Selivanov [100], it is not the case. Even though they are identical if we
restrict ourselves to ∆0

2 sets, and share the property that all degrees are non-
self-dual, the Wadge hierarchy of Conc does not satisfies the Wadge duality
principle SLO.

Fact 3.7 (Folklore). Let A ⊆ Conc be the set of all sequences of length 1,
and B ⊆ Conc be the set of all infinite sequences. The sets A, B and their
complements are pairwise Wadge incomparable.

Proof. We only prove one of the twelve cases here, the others are similar.
Suppose that there exists a reduction from B to A, i.e. a continuous function
f : Conc → Conc such that x ∈ B if and only if f(x) ∈ A. Let n and m be

1See e.g. Becher and Grigorieff [12].
2See e.g. Selivanov [99].
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3 The conciliatory ansatz disclosed

two integers and notice that the set f−1(⟨n,m⟩"ω≤ω) has to be both open
and contained in ω<ω. Since the empty set is the only open set contained in
ω<ω, the image of f is a subset of ω≤1, the set of sequences of length at most
1. Now let ⟨n⟩ be in the image of f . Then f−1(⟨n⟩"ω≤ω) has to be both
open and contained in ωω, the set of infinite sequences. But there is no such
open subset of the conciliatory space, which prevents any reduction of B to
A from happening.

Hence the conciliatory hierarchy does not coincide with the Wadge hierar-
chy of the conciliatory space.

Question. Is there a topology on the set ω≤ω such that the conciliatory re-
lation coincides with the reduction by continuous functions?

The conciliatory space allows us nonetheless to interpret in a satisfactory
way the approach used by Duparc [26, 27].

Lemma 3.8. An admissible representation of the conciliatory space is given
by the following application:

ρ : (ωb)
ω −→ Conc

x %−→ x[ /b]

Proof. To show that it is admissible, we let f : ωω → Conc be a partial
continuous function, and we define the reduction g : ωω → (ωb)ω via the map
on the finite sequences g′ it arises from. First set

dom<ω(f) = {s ∈ ω<ω : s"ωω ∩ dom(f) ̸= ∅},

and observe that, since f is continuous, for every finite sequence s ∈ dom<ω(f)
there exists a finite sequence t such that f(s"ωω) ⊆ t"ω≤ω. Two cases arise:
either s"ωω ∩dom(f) is a singleton, and we denote by ts its image by f , or it
contains at least two points, and we set ts to be the maximal finite sequence
such that f(s"ωω) ⊆ ts"ω≤ω. Now we define g′(s) by induction on the length
of s in dom<ω(f). Set g′(ε) = ε, and suppose s is of length n+ 1. Then

g′(s) =

{
g′(s%n)"b if ts = g′(s%n)[ /b];

g′(s%n)"ts(
∣∣g′(s%n)[ /b]

∣∣+ 1) else .

The map g is partial, continuous and realizes the reduction since for all
x ∈ dom(f), f(x) = g(x)[ /b] = ρ ◦ g(x). The map ρ is thus an admissible
representation of Conc.
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3.3 Conciliatory hierarchy vs. Wadge hierarchy

Notice that for A ⊆ Conc, Ab = ρ−1(A). The mapping C %→ Cb that links
the conciliatory sets to subsets of the Baire space can thus be seen as the
inverse of an admissible representation for the space Conc. By reformulating
Lemma 2.3, the conciliatory hierarchy is nothing but the generalized Wadge
hierarchy of the conciliatory space.

Lemma 3.9. Let A,B ⊆ Conc, then the following are equivalent:

(1) ρ−1(A) ≤W ρ−1(B);

(2) II has a winning strategy in C(A,B).

From Fact 3.5 we obtain that for all A,B ⊆ Conc, II has a winning strategy
in the game C(A,B) if and only if A &W B, so that ≤c and &W coincide.
Hence, the study of the conciliatory hierarchy is not only a technical for-
mulation for the study of the Wadge hierarchy of the Baire space, but it
also provides a description of the generalized Wadge hierarchy defined by
Pequignot [93] for the conciliatory space.

3.3 The correspondence between the conciliatory
and the Wadge hierarchies

Using Lemma 3.9, the inverse map of the representation gives us an em-
bedding from (P(ω≤ω),&W ) to (P(ωω),≤W ). Since no set is self-dual with
respect to the conciliatory preorder, its range is included in the non-self-dual
degrees. We prove that under (AD) it is actually onto these degrees - modulo
Wadge equivalence.

Theorem 3.10. Let A ⊆ ωω be non-self-dual. Then there exists C ⊆ ω≤ω

such that:
A ≡W ρ−1(C).

The proof is by induction on the Wadge rank of A. As we have

∅ ≡W ρ−1(∅) and ωω ≡W ρ−1
(
ω≤ω

)
,

the Theorem holds for the first Wadge degrees.

Let A ⊆ ωω such that for every A′ ⊆ ωω non-self-dual with A′ <W A, there
exists a conciliatory set B′ ⊆ ω≤ω such that A′ ≡W ρ−1(B′). Then we have
two cases depending on wether A is initializable or not.
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3 The conciliatory ansatz disclosed

Definition 3.11. Let A and B be subsets of the Baire space. We define:

A→ B = shift(A) ∪
{
u"⟨0⟩"x : u ∈ (ω ! {0})<ω , x ∈ B

}
.

If A ≡W A → A, we say that A is initializable. It is a reinforcement of the
notion of non-self-dualness.

3.3.1 The uninitializable case.

We recall the following result concerning uninitializable subsets of the Baire
space.

Fact 3.12 ([26, Proposition 14]). Let A ⊆ ωω be non-self-dual and uninitial-
izable. Then there exists B ⊆ ωω initializable, I ⊆ ω<ω a maximal antichain,
and (Ci)i∈I , each Ci ⊆ ωω non self dual such that, for all i ∈ I, Ci <W A,
B <W A and

A ≡W B →
∑

i∈I

Ci,

where:

B →
∑

i∈I

Ci = shift(B) ∪
{
u"⟨0⟩"i"α : u ∈ (ω ! {0})<ω , i ∈ I,α ∈ Ci

}
.

Let A ⊆ ωω be non-self-dual and uninitializable. By Fact 3.12 and our
induction hypothesis, there exist conciliatory sets B′ and C ′

i for each i ∈ I
such that

B ≡W ρ−1(B′) and Ci ≡W ρ−1(C ′
i).

Now consider the conciliatory set Ã defined as follows:

x ∈ Ã↔

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x ∈ shift(B′) or

x = u"⟨0⟩"i"x′, where u ∈ (ω ! {0})<ω , i ∈ I, and x′ ∈ C ′
i, or

x ∈ (shift(B′) ∩ ω<ω) "⟨0⟩, or

x ∈ (shift(B′) ∩ ω<ω) "⟨0⟩" {i′ : i′ ∈ I ′} .

where t ∈ I ′ ⊆ ω<ω if and only if there exists s ∈ I such that t ⊂ s, and t is
not the empty sequence.

Claim.
B →

∑

i∈I

Ci ≡W ρ−1
(
Ã
)
.
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3.3 Conciliatory hierarchy vs. Wadge hierarchy

Proof. We prove first that B →
∑

i∈I Ci ≤W ρ−1
(
Ã
)
. We denote by σB the

winning strategy for II in the game W
(
shift(B), ρ−1(shift(B′))

)
, and for each

i ∈ I, σi the winning strategy for II in the game W (Ci, ρ−1(C ′
i)). A winning

strategy for II in the game W
(
B →

∑
i∈I Ci, ρ−1

(
Ã
))

is thus the following.

As long as player I does not play “0”, II follows σB. If I plays ⟨0⟩"i with
i ∈ I, II plays ⟨0⟩"i and follows ultimately σi. Since σB and σi are winning,
the strategy described is winning for II.

We prove now that ρ−1
(
Ã
)
≤W B →

∑
i∈I Ci. We denote by σ′

B the

winning strategy for II in the game W
(
ρ−1(shift(B′)), shift(B)

)
, and for each

i ∈ I, σ′
i the winning strategy for II in the game W (ρ−1(C ′

i), Ci). A winning

strategy for II in the game W
(
ρ−1

(
Ã
)
, B →

∑
i∈I Ci

)
is thus the following.

As long as player I does not play “0”, II follows σ′
B. If I plays “0”, II continues

to follow σ′
B, interpreting “0” as a “b”. As long as I does not play a sequence

i ∈ I, II continues to follow σ′
B, interpreting each move of her opponent as

a “b”. When I has constructed a sequence i ∈ I (if he does), II plays ⟨0⟩"i
and then follows σi.

Since A ≡W B →
∑

i∈I Ci holds, we have:

A ≡W ρ−1
(
Ã
)
,

which completes the proof of the uninitializable case.

3.3.2 The initializable case

If A is initializable, we distinguish two cases depending on whether A is
strongly non-self-dual or not. The set A is strongly non-self-dual, if and only
if player II has a winning strategy σ# in the game W (A≈, A). Because σ#
is winning, we have that, for any x, x′ ∈ (ω#)

ω:

x$ ∈ A⇐⇒ σ#(x) ∈ A.

Take a ∈ ω and define the continuous mapping

τ : (ωb)
ω −→ (ω#)ω

induced by the following strategy. As long as player I does not play “b”, player
II copies his moves. If I plays “b”, II answers by playing “a” repeatedly until
player I stops to play “b”. If it ever happens, and whatever I plays next, II
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3 The conciliatory ansatz disclosed

plays enough “#” to erase all the “a” she has just played, and then copies
I moves until he plays a “b”, and so on. It defines a continuous map from
(ωb)ω to (ω#)ω such that for all x ∈ ωω:

τ(x)$ =

{
ρ(x)"aω if ρ(x) is finite;

ρ(x) otherwise.

Moreover, this application behaves well with regards to the interpretations
of “b” and “#”, since we have that for all x, x′ ∈ ωω:

ρ(x) = ρ(x′) =⇒ τ(x)$ = τ(x′)$.

In fact, we even have the equivalence if we restrict ourselves to sequences x
such that ρ(x) is infinite. Set Ã = ρ ◦ (σ# ◦ τ)−1(A).

Claim.
A ≡W ρ−1(Ã).

Proof. We have directly that ρ−1(Ã) ≤W A holds since ρ−1(Ã) = (σ# ◦
τ)−1(A), and σ# ◦ τ is continuous. In order to prove that A reduces to
ρ−1(Ã), let g : ωω → (ωb)ω be the inclusion, and observe that for all x ∈ ωω:

g(x) ∈ ρ−1(Ã)↔ ρ ◦ g(x) ∈ Ã

↔ g(x) ∈ (σ# ◦ τ)−1(A)

↔ σ# ◦ τ ◦ g(x) ∈ A

↔ σ#(x) ∈ A

↔ x ∈ A.

Hence A ≤W ρ−1(Ã) also holds, and the claim is proved.

Suppose now that A is initializable but not strongly non-self-dual. Since
A is initializable, A#1 is non-self-dual [26, Proposition 28].

Claim.
A#1 <W A

Proof. Since A is not strongly non-self-dual, player I has a winning strategy
in the game W (A≈, A). Therefore, player II has a winning strategy σ#
in the game W

(
A!, A≈). For any finite sequence u ∈ (ω#)

<ω, define the
closed set Fu = σ−1

#
(
σ#(u)"ωω

)
. We construct a winning strategy for II

in W
(
(A!)(Fu), A

)
. In this game, each odd move of player I is devoted to
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3.3 Conciliatory hierarchy vs. Wadge hierarchy

answer a question. Suppose he has already played a main run u ∈ ω<ω. If
he answers 0, he guarantees that his main run will be in σ−1

#
(
σ#(u)"ωω

)
, it

means that in the game W
(
A!, A≈), if II follows σ# and I has already played

u, II won’t need to use her eraser afterwards to win. Thus, supposing II has
always skipped from the beginning, she has the following winning strategy:
she plays (σ#(u))

$, and then follows σ#. If I does not answer 0, since σ# is
winning, we know that his main run will nevertheless reach a finite sequence
v0 ∈ ω<ω such that (σ#(v0))

$ is not the empty sequence, and in the game
W
(
A!, A≈), where player I has already played v0 and II follows σ#, II will

not erase her first move (σ#(v0))
$ (0). Supposing II has always skipped

from the beginning, she then has the following winning strategy: she plays
(σ#(v0))

$ (0), and then waits for I to play in his main run a finite sequence
v1 extending v0 such that (σ#(v1))

$ has length at least two, and such that
II will not erase her second move (σ#(v1))

$ (1) when she follows σ# in the
game W

(
A!, A≈), where player I has already played v1, and so on, and so

forth. Since σ# is winning in W
(
A!, A≈), this strategy will provide as the

game goes along an infinite sequence for II, which will be in A if and only if
the main run of player I is in A!, thus being a winning strategy for II.
By minimality of (A!)#1 , we have (A!)#1 ≤W A. Since (A!)#1 ≡W (A#1)!,

(A#1)! ≤W A and A#1 ≤W A,

so that A#1 <W A.

By induction hypothesis, there exists then a conciliatory set B ⊆ ω≤ω such
that

A#1 ≡W ρ−1(B).

But this last statement is equivalent to

ρ−1 (B≈) ≡W A.

This completes the proof of Theorem 3.10.
Notice that Theorem 3.10 can be relativized to any pointclass with ap-

propriate determinacy and closure properties. In particular, it gives a direct
proof in ZF + DC of the equivalence between the conciliatory hierarchy and
the Wadge hierarchy when restricted to non-self-dual Borel sets, as stated by
Duparc [26, 27].

Corollary 3.13. Let A ⊆ ωω be non-self-dual. Then there exists F ⊆ ω<ω

such that:
A ≡W ρ−1(A ∪ F ).
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3 The conciliatory ansatz disclosed

Proof. By Theorem 3.10, there exists a conciliatory set B such that A ≡W

ρ−1(B). Let σ be a winning strategy for player II in W (A, ρ−1(B)), we define
F as follows:

– the empty sequence ε is in F if and only if ε ∈ B;

– a finite non-empty sequence u is in F if and only if σ(u) ∈ B.

The fact that B ≤c (A ∪ F ) is direct, and in fact does not depend on F .
For the converse, a strategy for II in C(A ∪ F,B) is the following: II skips
whenever I skips, and otherwise applies σ, replacing “blanks” by “skips”.
Thus, B ≡c (A ∪ F ), and A ≡W ρ−1(A ∪ F ).

One can also prove the following characterization of the Γc classes inside
the conciliatory space.

Corollary 3.14. A pointclass Γ is non-self-dual if and only if there exists a
subset A ⊆ Conc such that

Γc = {C ⊆ Conc : C &W A} .

Proof. The first implication is essentially given by Theorem 3.10. Suppose
Γ is a non-self-dual pointclass, then there exists A ⊆ ωω non-self-dual such
that

Γ = {B ⊆ ωω : B ≤W A} .

By Theorem 3.10, there exists A′ ⊆ Conc such that A ≡W ρ−1(A′). By
Lemma 3.9 we then conclude that Γc = {C ⊆ Conc : C &W A′}.
Conversely, let A ⊆ Conc and consider the pointclass

Γ =
{
B ⊆ ωω : B ≤W ρ−1(A)

}
.

Since ρ−1(A) is non-self-dual, it is a non-self-dual pointclass. We then use
Lemma 3.9 to conclude that

Γc = {C ⊆ Conc : C &W A} .

This point of view allows us to define the Γc classes directly in the con-
ciliatory space, i.e. without references to the Baire space, for the Borel and
Hausdorff-Kuratowski classes. Here we use the following generalized defi-
nitions of the Borel classes for non-metrizable spaces, as defined by Tang
[107, 108], Selivanov [100], and de Brecht [25].
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3.3 Conciliatory hierarchy vs. Wadge hierarchy

Definition 3.15. Let X be a topological space. For each positive ordinal
α < ω1 we define by induction

Σ0
1(X) = {O ⊆ X | O is open},

Σ0
α(X) =

{
⋃

i∈ω

Bi ∩ C!
i

∣∣∣∣∣ Bi, Ci ∈
⋃

β<α

Σ0
β(X) for each i ∈ ω

}
,

Π0
α(X) =

{
A! ∣∣ A ∈ Σ0

α(X)
}
,

∆0
α(X) = Σ0

α(X) ∩Π0
α(X).

Notice that if α > 2, then

Σ0
α(X) =

{⋃

i∈ω

Bi

∣∣∣∣ Bi ∈
⋃

β<α

Π0
β(X) for each i ∈ ω

}
.

And if X is metrizable the previous statement holds also for α = 2, i.e.

Σ0
2(X) =

{⋃

i∈ω

Bi

∣∣∣∣ Bi ∈ Π0
1(X) for each i ∈ ω

}
.

Hence this definition of the Borel classes coincides with the classical one when
we restrict ourselves to metrizable spaces.
Notice that every ordinal θ can be written as θ = λ + n, where λ is limit

and n < ω. We call θ even if n is even, and odd if n is odd.

Definition 3.16. Let (Aη)η<θ be an increasing sequence of subsets of the
Baire space, with θ < ω1. Define the set Dθ((Aη)η<θ) by

Dθ((Aη)η<θ) =

{
x ∈

⋃

η<θ

Aη : the least η < θ with x ∈ Aη

has parity opposite to that of θ

}
.

For θ < ω1, and Γ a pointclass, let

Dθ(Γ) = {Dθ((Aη)η<θ)|Aη ∈ Γ, η < θ} .

It is also a pointclass.

Theorem 3.17 ([25, Theorem 78]). For all non-zero countable ordinals η
and ξ, (

Dη(Σ
0
ξ)
)
c
= Dη(Σ

0
ξ)(Conc).

Note that the proof of Theorem 3.17 relies on a lemma proved by Saint-
Raymond [97, Lemma 17], and does not require the Axiom of Determinacy.
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4 Differences of coanalytic sets

In this chapter, we extend the results obtained by Wadge, Louveau and Du-
parc for the Borel sets to a wider pointclass: Diff(Π1

1), the class of increasing
differences of coanalytic sets. From the works of Martin [77] and Harrington
[42], we know that the class D∗

ω2(Π1
1) of all decreasing ω2 differences of co-

analytic sets is determined under DET(Π1
1). Since Diff(Π

1
1) ⊆ D∗

ω(Π
1
1) – see

Proposition 5.4, this determinacy hypothesis is sufficient for our work and
is assumed all along this chapter. Results in Section 4.1 will appear in an
article by the author [38].

4.1 Pointclasses and boolean operations

4.1.1 General Observations

We begin with some general observations on the difference hierarchy of co-
analytic sets. We denote the class of all countable differences of coanalytic
sets by

Diff(Π1
1) =

⋃

α<ω1

Dα(Π
1
1).

Merely by definition, we have Dα(Π1
1) ⊆ Dβ(Π1

1) and Dα(Π1
1) ⊆ Ďβ(Π1

1)
for all α < β. Moreover, since there exists a ωω-universal set for Π1

1, the
hierarchy does not collapse, i.e. for all α < ω1, Dα(Π1

1) ! Ďα(Π1
1) ̸= ∅. We

have thus the following classical diamond-shape diagram:

Π1
1 D2(Π1

1) D3(Π1
1)

∆(D2(Π1
1)) ∆(D3(Π1

1)) · · ·

Σ1
1 Ď2(Π1

1) Ď3(Π1
1)

where the pointclasses are strictly included in each other from the left to the
right.
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4 Differences of coanalytic sets

4.1.2 The ambiguous classes

To describe the pointclasses included in ∆(Dα(Π1
1)), we need a characteriza-

tion of the Dα(Π1
1) classes.

The successor case

Proposition 4.1. For every countable ordinal α, we have:

(a) Dα+1(Π1
1) = Ďα(Π1

1) ∩Π1
1 =

{
D ∩ C | D ∈ Ďα(Π1

1) and C ∈ Π1
1

}
;

(b) Ďα+1(Π1
1) = Dα(Π1

1) ∪Σ1
1 = {D ∪ C | D ∈ Dα(Π1

1) and C ∈ Σ1
1}.

Proof. We only prove the first assertion for the finite differences, the other
follows by considering the complements, and the generalization to the transfi-
nite is straightforward. Let n = 2k for k ≥ 1. Observe that for any increasing
family (Ai)i<n of coanalytic subsets of the Baire space, we have:

Dn((Ai)i<n) = An−1 !Dn−1((Ai)i<n−1);

and therefore Dn(Π1
1) ⊆ Ďn−1(Π1

1) ∩Π1
1.

For the other inclusion, let D ∈ Ďn−1(Π1
1) and B ∈ Π1

1. Then there exists
an increasing family of coanalytic sets (Ai)i<n−1 such that:

D = Dn−1((Ai)i<n−1)
!.

We obtain:

D ∩ B =
k−1⋂

i=1

(A!
2i ∪ A2i−1) ∩ A!

0 ∩ B

= (B ∩ A!
2k−2) ∪

k−2⋃

i=0

(B ∩ A!
2i ∩ A2i+1)

= Dn((A0 ∩B,A1 ∩ B, . . . , An−2 ∩ B,B)),

where the second equality relies on the fact that the family (Ai)i<n−1 is
increasing. Thus D ∩ B ∈ Dn(Π1

1) and Dn(Π1
1) = Ďn−1(Π1

1) ∩Π1
1. The odd

case is similar.

This result can be illustrated by the following diagram.

Σ1
1

∩Π1
1

▼
▼

▼
▼

((▼
▼

▼

⊆ Ď2(Π1
1) ⊆ Ď3(Π1

1) ⊆ · · ·

Π1
1 ⊆ D2(Π1

1)

∪Σ1
1♦♦♦♦

))♦♦♦♦

⊆ D3(Π1
1) ⊆ · · ·
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4.1 Pointclasses and boolean operations

This inductive definition for the successor classes Dα(Π1
1) and Ďα(Π1

1) allows
us to adapt a result from Louveau [68].

Proposition 4.2 (Louveau’s trick I).
Let α < ω1, and D ∈ ∆(Dα+1(Π1

1)). Then there exists B ∈∆1
1, X ∈ Ďα(Π1

1)
and Y ∈ Dα(Π1

1) such that

D = (X ∩B) ∪ (Y !B).

Proof. The set D is both in Dα+1(Π1
1) and in Ďα+1(Π1

1). Proposition 4.1
gives X ′ ∈ Π1

1, X ∈ Ďα(Π1
1), Y

′ ∈ Σ1
1 and Y ∈ Dα(Π1

1) such that

D = X ′ ∩X and D = Y ′ ∪ Y.

D

X

X 0

Y 0 Y

In particular, we have that Y ′ ∩X ′! = ∅. By the separation property for
the analytic sets, there exists a Borel subset B such that

Y ′ ⊆ B and B ∩X ′! = ∅.

D

X

X 0

Y 0 Y
B

Hence,
D = (X ∩B) ∪ (Y !B).
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The limit case

A similar description of the ambiguous classes can be provided for the limit
case, using a countable Borel partition instead of just one Borel set and its
complement.

Proposition 4.3 (Louveau’s trick II).
Let D ⊆ ωω be in the ∆(Dδ(Π1

1)) class with δ < ω1 limit. Then there exists
a countable Borel partition (Ci)i∈ω of the Baire space such that, for all j < ω,

D ∩ Cj ∈ Dαj(Π
1
1),

with αj < δ.

Proof. We only prove it for δ = ω. Let D ⊆ ωω be in the ∆(Dδ(Π1
1))

class. By definition there exists two increasing families (Bi)i∈ω and (B′
i)i∈ω

of coanalytic subsets of the Baire space such that

D =
⋃

i∈ω

(B2i+1 ! B2i) and D! =
⋃

i∈ω

(B′
2i+1 !B′

2i).

By the generalized reduction property of the class of coanalytic sets, there
exists a disjoint coanalytic family (Ci)i∈ω such that

– for all i < ω, C2i ⊆ Bi and C2i+1 ⊆ B′
i, and

–
⋃

i∈ω Ci =
⋃

i∈ω Bi ∪
⋃

i∈ω B
′
i.

Since
⋃

i∈ω Bi ∪
⋃

i∈ω B
′
i = D ∪ D! = ωω, the family (Ci)i∈ω is in fact an

analytic, thus Borel, partition of the Baire space. In addition, the fact that
C2i ⊆ Bi and C2i+1 ⊆ B′

i hold for all i ∈ ω implies that D∩C2i and D!∩C2i+1

are in the class Di+1(Π1
1). To prove that our partition is indeed as required,

it only remains to show that for all i ∈ ω, D ∩ C2i+1 is a finite differences of
coanalytic sets. Fix i ∈ ω, we have

D ∩ C2i+1 = C2i+1 ∩
(
D! ∩ C2i+1

)!
.

But D! ∩C2i+1 is a finite difference of analytic sets, so that D ∩C2i+1 is also
a finite difference of coanalytic sets.

Louveau’s tricks I and II provide a bottom up description of the ambiguous
classes, and from them we can now derive the complete description à la
Louveau of the Wadge hierarchy of the class Diff(Π1

1).
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4.1.3 Boolean operations and descriptions

We recall the definitions of the operations used by Louveau in [68]. Besides
the differences that we have already introduced, four more operations are
needed.

(a) Separated Unions . Let Γ and Γ′ be two pointclasses. The set A is in
SU(Γ,Γ′) if and only if there exists a disjoint family (Cn)n∈ω of sets in
Γ, and a family (An)n∈ω of sets in Γ′ such that

A = SU((Cn)n∈ω, (An)n∈ω) =
⋃

n∈ω
An ∩ Cn.

(b) One-sided Separated Unions . Let Γ and Γ′ be two pointclasses. The
set A is in Sep(Γ,Γ′) if there exists C ∈ Γ, B1 ∈ Γ̌′ and B2 ∈ Γ′ such
that

A = Sep(C,B1, B2) = (C ∩ B1) ∪ (B2 ! C).

(c) Two-sided Separated Unions . Let Γ, Γ′ and Γ′′ be three pointclasses.
The set A is in Bisep(Γ,Γ′,Γ′′) if there exists C1, C2 in Γ disjoint,
A1 ∈ Γ̌′, A2 ∈ Γ′, and B ∈ Γ′′ such that

A = Bisep(C1, C2, A1, A2, B) = (C1∩A1)∪ (C2∩A2)∪ (B! (C1∪C2)).

If Γ′′ = {∅}, we just write Bisep(Γ,Γ′).

(d) Separated Differences . Let Γ, Γ′ and Γ′′ be three pointclasses, and ξ ≥ 2
be countable. The set A is in SDξ((Γ,Γ′),Γ′′) if there is an increasing
family (Cη)η<ξ in Γ, an increasing family (Aη)η<ξ in Γ′ and B ∈ Γ′′ such
that, for all η < ξ, Aη ⊆ Cη ⊆ Aη+1 and

A = SDξ((Cη)η<ξ, (Aη)η<ξ, B) =
⋃

η<ξ

(Aη !
⋃

η′<η

Cη′) ∪ (B !
⋃

η<ξ

Cη).

These operations, combined and applied in certain ways to certain classes
give us all the non-self-dual pointclasses included in Diff(Π1

1). But first we
need to introduce some notation. Let u0, u1 ∈ (ω1+1)ω, we denote by ⟨u0, u1⟩
the sequence u ∈ (ω1 + 1)ω such that, for all n ∈ ω, u(2n) = u0(n), and
u(2n+1) = u1(n). Similarly, if (ui)i∈ω ⊆

(
(ω1+1)ω

)ω
, we denote by ⟨(ui)i∈ω⟩

the sequence u ∈ (ω1 + 1)ω such that for all n,m ∈ ω, u(⟨n,m⟩) = un(m),
where (n,m) %→ ⟨n,m⟩ is a bijection between ω × ω and ω. We now define
inductively the set of descriptions D ⊆ (ω1 + 1)ω, and for each u ∈ D, the
class Γu it describes.
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4 Differences of coanalytic sets

Definition 4.4. The set of descriptions D ⊆ (ω1+1)ω is the least satisfying
the following conditions:

(a) If u(0) = 0, then u ∈ D and Γu = {∅}.
(b) If u(0) = ξ < ω1 with ξ ̸= 0, u(1) = 1 and u(2) = η < ω1, then u ∈ D

and Γu = Dη(Σ0
ξ).

(c) If u(0) = ω1, u(1) = 1 and u(2) = η < ω1, then u ∈ D and Γu =
Dη(Π1

1).

(d) If u = ξ"2"η"u∗, where 1 ≤ ξ < ω1, 1 ≤ η ≤ ω1, u∗ ∈ D and u∗(0) > ξ,
then u ∈ D and Γu = Sep(Dη(Σ0

ξ),Γu∗).

(e) If u = ξ"3"η" ⟨u0, u1⟩, where 1 ≤ ξ < ω1, 1 ≤ η ≤ ω1, u0, u1 ∈ D,
u0(0) > ξ, u1(0) ≥ ξ or u1(0) = 0, and Γu1 ⊂ Γu0 , then u ∈ D and
Γu = Bisep(Dη(Σ0

ξ),Γu0 ,Γu1).

(f) If u = ξ"4" ⟨(un)n∈ω⟩, where 1 ≤ ξ < ω1, each un ∈ D, and either
un(0) = ξ1 > ξ for all n ∈ ω, and the Γun are strictly increasing, or
un(0) = ξn and the ξn are strictly increasing with ξ < supn∈ω ξn, then
u ∈ D and Γu = SU(Σ0

ξ ,
⋃

n∈ω Γun).

(g) If u = ξ"5"η" ⟨u0, u1⟩, where 1 ≤ ξ < ω1, 2 ≤ η ≤ ω1, u0, u1 ∈ D,
u0(0) = ξ, u0(1) = 4, u1(0) ≥ ξ or u1(0) = 0, and Γu1 ⊂ Γu0 , then
u ∈ D and Γu = SDη((Σ0

ξ ,Γu0),Γu1).

For a description u ∈ D, we call the first element u(0) of u the level of the
class Γu. Notice that compared to the Borel case, we only add the classes
Dη(Π1

1), which are given the level ω1. Observe also that if the level seems to
depend on the description of the class rather than on the class itself, it is not
the case – see Louveau and Saint-Raymond [70].

Proposition 4.5. Let u ∈ D with u(0) = ξ ̸= 0.

(a) If ξ < ω1, then

– Γu is closed under union with a ∆0
ξ set.

– SU(Σ0
ξ ,Γu) = Γu, and we say that Γu is closed under Σ0

ξ − SU.

(b) If ξ = ω1, then

– Γu is closed under union with a ∆1
1 set.

– SU(Π1
1,Γu) = Γu, and we say that Γu is closed under Π1

1 − SU.

Proof. The only thing left to verify is the case where Γu = Dη(Π1
1), the rest

is by the same induction as in [68]. Let 0 < η < ω1, we have to prove that the
class Dη(Π1

1) is closed under union with a Borel set, and under Π1
1−SU. The

first comes from the fact that the class Π1
1 is closed under union with a Borel

set. For the second, let (Cn)n∈ω be a disjoint family of Π1
1 sets, and (An)n∈ω
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4.1 Pointclasses and boolean operations

a family of Dη(Π1
1) sets. For all integer n, there exists a family (Aα

n)α<η such
that An = Dη((Aα

n)α<η). Thus:

SU((Cn)n∈ω, (An)n∈ω) =
⋃

n∈ω
An ∩ Cn

=
⋃

n∈ω
Dη((A

α
n)α<η) ∩ Cn

=
⋃

n∈ω
Dη((A

α
n ∩ Cn)α<η)

= Dη((
⋃

n∈ω
(Aα

n ∩ Cn))α<η).

Notice that the last equality holds because for all α < η and all integers n and
m, if n ̸= m then (Aα

n ∩Cn)∩ (Aα
m∩Cm) = ∅. Hence SU((Cn)n∈ω, (An)n∈ω) ∈

Dη(Π1
1) and the class Dη(Π1

1) is closed under Π1
1 − SU.

Proposition 4.6. Let u ∈ D. Then Γu is a non-self-dual pointclass included
in Diff(Π1

1).

Proof. The classes Γu are pointclasses merely by definition, as results of
Boolean operations on pointclasses. The fact that they are all in Diff(Π1

1)
is a consequence of the closure properties proved in Proposition 4.5. The
existence of universals for the classes Γu provides the non-self-dualness.

We now give to each description u a type. These types reveal informa-
tion on the structural properties of the class described. For example the
descriptions of type 1 share the property that the classes they describe can
be written as Bisep(Σ0

ξ ,Γu′) or Bisep(Π1
1,Γu′) for some ξ and some descrip-

tion u′; the descriptions of type 2 share the property that the classes they
describe can be written as SU(Σ0

ξ ,
⋃

n∈ω Γun) or SU(Π
1
1,
⋃

n∈ω Γun) for some
ξ and some family of descriptions (un)n∈ω, etc.

Definition 4.7. Let u ∈ D. The type t(u) of u is 0 if u(0) = 0. If u(0) ≥ 1
then the type t(u) of u is

(a) 1 if:

– u(1) = 1 and u(2) is successor;

– u(1) = 3, t(u1) = 0 and u(2) is successor;

– u(1) = 3, t(u1) = 1 and u1(0) = u(0);

– u(1) = 5, t(u1) = 1 and u1(0) = u(0).

(b) 2 if:
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4 Differences of coanalytic sets

– u(1) = 1 and u(2) is limit;

– u(1) = 3, t(u1) = 0 and u(2) is limit;

– u(1) = 3, t(u1) = 2 and u1(0) = u(0);

– u(1) = 4;

– u(1) = 5 and t(u1) = 0;

– u(1) = 5, t(u1) = 2 and u1(0) = u(0).

(c) 3 if:

– u(1) = 2;

– u(1) = 3 and u1(0) > u(0);

– u(1) = 3, t(u1) = 3 and u1(0) = u(0);

– u(1) = 5 and u1(0) > u(0);

– u(1) = 5, t(u1) = 3 and u1(0) = u(0).

Thanks to these types, we can now sort the descriptions in four groups,
depending on the position in which their associated class lies in the Wadge
hierarchy. D0 = {u ∈ D : t(u) = 0} is the set of descriptions that code
the class {∅}, which is at the bottom of the hierarchy. D+ = {u ∈ D :
u(0) = 1 and t(u) = 1} is the set of descriptions that code classes which
are at a successor position in the Wadge hierarchy. Dω = {u ∈ D : u(0) =
1 and t(u) = 2} is the set of descriptions that code classes which are at a limit
of cofinality ω position in the Wadge hierarchy. Dω1 = D!(D0∪D+∪Dω) =
{u ∈ D : u(0) = 1 and t(u) = 3} ∪ {u ∈ D : u(0) > 1} is the set of
descriptions that code classes which are at a limit of cofinality ω1 position in
the Wadge hierarchy.

Theorem 4.8. Let W = {Γu : u ∈ D} ∪ {Γ̌u : u ∈ D} ∪ {∆(Γu) : u ∈ D}.
Then W is exactly the set of all Wadge classes included in Diff(Π1

1).

The strategy for the proof is the same as the original one by Louveau [68],
and relies on the determinacy of the class Diff(Π1

1). For each description u
that is not in D0, we find a code that describes the immediate predecessor
of Γu if it is at a successor position, or a sequence of codes that describe a
sequence of classes that is cofinal under Γu if it is at a limit position. Formally
we have the following.

Lemma 4.9. Let u be a description.

(a) If u ∈ D+, there exists ū ∈ D such that, for any Wadge class Γ,
Γū ⊂ Γ ⊂ Γu implies that Γ = ∆(Γu).

(b) If u ∈ Dω, there exists a sequence of descriptions (ūn)n∈ω such that
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4.1 Pointclasses and boolean operations

– for all integer n, Γūn ⊂ Γu; and

– for any Wadge class Γ, if for all integer n Γūn ⊂ Γ ⊂ Γu, then
Γ = ∆(Γu).

(c) If u ∈ Dω1, there exists a set of descriptions Qu of cardinality ω1 such
that ∆(Γu) =

⋃
{Γū : ū ∈ Qu}.

The proof of Theorem 4.8 now goes as follows. Suppose, towards a con-
tradiction, that the collection W̃ of Wadge classes included in Diff(Π1

1) that
are not in W is not empty. Using our determinacy hypothesis, the SLO
property holds for Diff(Π1

1), and the pointclasses included in Diff(Π1
1) are

well-founded for the inclusion. By the definition of W , there is thus either
a self-dual Wadge class Γ that is the ⊂-least class in W̃ , or a couple of non-
self-dual classes Γ and Γ̌ such that for all Γ′ ∈ W̃ , Γ ⊆ Γ′ or Γ̌ ⊆ Γ′ holds.
Both situations lead to the same argument: since the classes Dη(Π1

1) are in
W and cofinal in Diff(Π1

1), there exists a description u such that Γu is the
least Wadge class described above Γ, and we have three cases:

– u ∈ D+, and then Γ = ∆(Γu) or Γ = Γ̌ū;

– u ∈ Dω, and then Γ = ∆(Γu);

– u ∈ Dω1 , and then Γ = ∆(Γu).

Thus Γ ∈W in each case, and we reach a contradiction.
So the only thing left to prove here is Lemma 4.9. But most cases are

already covered by the proofs in [68], or straightforward extension of those
using Proposition 4.5. We do not go through them again here and only take
care of the Dη(Π1

1) classes.

4.1.4 The successor case

In this section we look at the classesDη+1(Π1
1), with η < ω1. These classes are

described by descriptions u such that u(0) = ω1, u(1) = 1 and u(2) = η + 1,
and are of type 1.

Lemma 4.10. Let η < ω1 and u be a description of the class Dη+1(Π1
1).

Then:

(a) Γu = Bisep(Π1
1, Dη(Π1

1));

(b) ∆(Γu) = Bisep(∆1
1, Dη(Π1

1)).

Proof.

(a) By Proposition 4.1, we know that Dη+1(Π1
1) = Ďη(Π1

1) ∩ Π1
1 so that

Dη+1(Π1
1) ⊆ Bisep(Π1

1, Dη(Π1
1)). For the other inclusion, we use Propo-

sition 4.5.
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4 Differences of coanalytic sets

(b) By Proposition 4.2, we know that if D ∈ ∆(Dη+1(Π1
1)), then there

exists B ∈∆1
1, X ∈ Ďη(Π1

1) and Y ∈ Dη(Π1
1) such that

D = (X ∩ B) ∪ (Y ! B).

Thus D = Bisep(B,B!, X, Y, ∅), so that the inclusion from left to right
holds. Since Dη+1(Π1

1) is closed under Π1
1 − SU, the classDη+1(Π1

1)
contains the class Bisep(∆1

1, Dη(Π1
1)). What remains to prove is that

the dual class of Bisep(∆1
1, Dη(Π1

1)) is also included inDη+1(Π1
1). Let A

be such that A! ∈ Bisep(∆1
1, Dη(Π1

1)). There exists thus A1 ∈ Ďη(Π1
1),

A2 ∈ Dη(Π1
1), and B1, B2 two disjoint Borel sets such that:

A! = (A1 ∩ B1) ∪ (A2 ∩B2).

Therefore A = (B1 ∩A!
1)∪ (B2 ∩A!

2)∪ (B1 ∪B2)! is in Dη+1(Π1
1) since

this class is closed under Π1
1−SU, and the class ∆(Dη+1(Π1

1)) contains
the class Bisep(∆1

1, Dη(Π1
1)).

This allows us to define the set Qu for a description u of the classDη+1(Π1
1):

Qu = {ξ"3"1"
〈
ω1

"1"η"0ω, 0ω
〉
: ξ < ω1}.

We prove now that the family of classes described by Qu is cofinal below
∆(Γu).

Proposition 4.11. Let η < ω1, and u be a description for the class Dη+1(Π1
1).

Then:
∆(Dη+1(Π

1
1)) =

⋃

u′∈Qu

Γu′ .

Proof. Using Lemma 4.10, we have to prove:

Bisep(∆1
1, Dη(Π

1
1)) =

⋃

ξ<ω1

Bisep(Σ0
ξ , Dη(Π

1
1)).

The inclusion from right to left is immediate since each Bisep(Σ0
ξ , Dη(Π1

1)) is
included in Bisep(∆1

1, Dη(Π1
1)). For the other inclusion, we just have to come

back to the definition of the operation Bisep. Let A ∈ Bisep(∆1
1, Dη(Π1

1)),
then there exists C1, C2 two disjoint Borel sets such that:

A = (A ∩ C1) ∪ (A ∩ C2),

with A ∩ C1 ∈ Ďη(Π1
1) and A ∩ C2 ∈ Dη(Π1

1). But if C1 and C2 are Borel,
there exists ξ < ω1 such that C1 and C2 are both in the class Σ0

ξ ! Thus
A ∈ Bisep(Σ0

ξ , Dη(Π1
1)), and the other inclusion holds.

This finishes the successor case.
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4.1 Pointclasses and boolean operations

4.1.5 The limit case

In this section we look at the classes Dγ(Π1
1), with γ < ω1 limit. These

classes are described by descriptions u such that u(0) = ω1, u(1) = 1 and
u(2) = γ, and are of type 2. First we define a new operation and give a
reformulation of Louveau’s Trick II.

Definition 4.12. Let Γ and Γ′ be two pointclasses. The set A is in PU(Γ,Γ′)
if and only if there exists a partition (Cn)n∈ω of sets in Γ, and a family (An)n∈ω
of sets in Γ′ such that

A = PU((Cn)n∈ω, (An)n∈ω) =
⋃

n∈ω
An ∩ Cn.

This operation is called the Partitioned Union. It is of course a special case
of SU.

Lemma 4.13. Let γ < ω1 be a limit ordinal, and u be a description of the
class Dγ(Π1

1). Then:

(a) Γu = SU(Π1
1,Γ);

(b) ∆(Γu) = PU(Π1
1,Γ).

where Γ =
⋃

η<γ Dη(Π1
1).

Proof.

(a) Since Dγ(Π1
1) is closed under Π1

1 − SU, the inclusion from right to left
is immediate. For the other one, let (Aα)α<γ be an increasing family of
Π1

1 sets, and D = Dγ((Aα)α<γ). By the generalized reduction property
of the class of coanalytic sets, there exists a disjoint coanalytic family
(Cα)α<γ such that

– for all α < γ, Cα ⊆ Aα;

–
⋃

α<γ Cα =
⋃

α<γ Aα.

Now we have D ∩ Cα ⊆ Aα for all α < γ, and thus D ∩ Cα ∈ Γ ∩Π1
1.

Since
D =

⋃

α<γ

D ∩ Cα,

D ∈ SU(Π1
1,Γ) and the second inclusion is proven.

(b) By Louveau’s Trick II, we know that if D ∈ ∆(Dγ(Π1
1)), there exists a

countable Borel partition (Ci)i∈ω of the Baire space such that, for all
j < ω,

D ∩ Cj ∈ Dηj(Π
1
1),
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4 Differences of coanalytic sets

with ηj < γ. Thus D ∈ PU(Π1
1,Γ), so that ∆(Dγ(Π1

1)) ⊆ PU(Π1
1,Γ).

Since Dγ(Π1
1) is closed under Π1

1 − SU, PU(Π1
1,Γ) ⊆ Dγ(Π1

1). What
remains to prove is that the dual class of PU(Π1

1,Γ) is also included in
Dγ(Π1

1). Let A be such that A! ∈ PU(Π1
1,Γ). There exists a partition

in coanalytic sets (Ci)i∈ω such that

A! =
⋃

i∈ω

A! ∩ Ci,

with A! ∩ Ci ∈ Dαi(Π
1
1) and αi < γ. Notice that, for all integer i,

A ∩ Ci = (A! ∩ Ci)
! ∩ Ci.

By Proposition 4.1, (A! ∩ Ci)! ∩ Ci ∈ Dαi+1(Π1
1) which is still in-

cluded in Dγ(Π1
1)! The set A is therefore in Dγ(Π1

1), and PU(Π1
1,Γ) ⊆

∆(Dγ(Π1
1)).

This allows us to define the set Qu for a description u of the class Dγ(Π1
1),

it is the set of descriptions

ξ"4" ⟨(u′
n)n∈ω⟩

for ξ < ω1, where u′
n = ω1

"1"γn"0ω, and (γn)n∈ω is cofinal in γ. We prove
now that the family of classes described by Qu is cofinal below ∆(Γu).

Proposition 4.14. Let γ < ω1 be limit, and u be a description for the class
Dγ(Π1

1). Then

∆(Dγ(Π
1
1)) =

⋃

u′∈Qu

Γu′ .

Proof. Using Lemma 4.13, we have to prove:

PU(Π1
1,Γ) =

⋃

ξ<ω1

SU(Σ0
ξ ,Γ

′),

where Γ =
⋃

η<γ Dη(Π1
1) and Γ′ =

⋃
n∈ω Dγn(Π

1
1). First notice that Γ = Γ′,

so that we actually only have to prove:

PU(Π1
1,Γ) =

⋃

ξ<ω1

SU(Σ0
ξ ,Γ).

For the first inclusion, from left to right, notice that any coanalytic countable
partition is in fact a Borel and hence a Σ0

ξ partition for a certain ξ < ω1. For
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4.2 Complete canonical sets

the other inclusion, let ξ < ω1 and D ∈ SU(Σ0
ξ ,Γ). By definition there exists

a disjoint family (Cn)n∈ω of Σ0
ξ sets and a family (An)n∈ω in Γ such that

D = SU((Cn)n∈ω, (An)n∈ω).

But then we have

D =
⋃

n∈ω
Cn ∩ An

=

(
(
⋃

n∈ω
Cn)

! ∩ ∅
)
∪
⋃

n∈ω
Cn ∩ An

= PU((C ′
n)n∈ω, (A

′
n)n∈ω);

where C ′
0 = (

⋃
n∈ω Cn)!, C ′

n+1 = Cn, A′
0 = ∅ and A′

n+1 = An. Since ∅ ∈ Γ
and C ′

0 ∈ Π0
ξ , D ∈ PU(Π1

1,Γ) and the other inclusion follows.

This finishes the limit case, and the proof of Lemma 4.9.

4.2 Complete canonical sets

After the description à la Louveau of the pointclasses included in the class
Diff(Π1

1), we turn our attention to complete elements of these classes. Follow-
ing Duparc’s approach and using the conciliatory sets, we define a complete
set for each non-self-dual Wadge degree in the class Diff(Π1

1).

4.2.1 Canonical Dα(Π1
1)-complete sets

In this section, we construct from a Π1
1-complete set A a family (DA

ξ )1<ξ<ω1

such that for any 1 < α < ω1, DA
α is Dα(Π1

1)-complete.

The finite levels

Definition 4.15. Let m,n ∈ ω be two integers such that m < n. Using the
euclidian division, we define the m modulo n projection by

πm(n) : ω
ω −→ ωω

(uj)j∈ω %−→ (ujn+m)i∈ω.
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4 Differences of coanalytic sets

Definition 4.16. Let A ⊆ ωω, and n be a positive integer. Define the sets
Ak

n ⊆ ωω for k < n by

Ak
n =

k⋃

i=0

π−1
i(n)(A).

It forms an increasing family, and we will denote byDA
n the setDn((Ak

n)0≤k<n).

Notice that since for all k < n− 1:

Ak+1
n ! Ak

n = π−1
k+1(n)(A)! Ak

n,

we have another expression for DA
n :

DA
n =

⎧
⎨

⎩

⋃
2k+1<n

(
π−1
2k+1(n)(A)! A2k

n

)
, if n is even;

π−1
0(n)(A) ∪

⋃
0<2k<n

(
π−1
2k(n)(A)! A2k−1

n

)
, if n is odd.

Fact 4.17. Let A ⊆ ωω, and n be a positive integer. If A is Π1
1-complete,

then for every k < n, Ak
n is Π1

1-complete.

Proof. Fix k < n. It is clear that Ak
n is Π1

1. To prove that it is complete, we
show that II has a winning strategy in the game W (A,Ak

n). Suppose that I
plays along a sequence x = (x0, x1, . . .), then II answers by the sequence

x′ = (
k+1︷ ︸︸ ︷

x0, . . . , x0, 0, . . . , 0︸ ︷︷ ︸
n−(k+1)

,
k+1︷ ︸︸ ︷

x1, . . . , x1, 0, . . . , 0︸ ︷︷ ︸
n−(k+1)

, . . .).

If x ∈ A, then πi(n)(x′) ∈ A for all i ≤ k, so that x′ ∈ Ak
n. If x /∈ A, then

πi(n)(x′) /∈ A for all i ≤ k, so that x′ /∈ Ak
n. This shows that the strategy is

winning for player II, and completes the proof.

Lemma 4.18. Let n be a positive integer and (fi)i<n be a family of n
functions from the Baire space to itself. There exists a unique function
g : ωω −→ ωω such that for all i < n:

fi = πi(n) ◦ g.

We will denote it by comb((fi)i<n), and call it the combination of (fi)i<n.

Proof. Define it by

comb((fi)i<n) : ω
ω −→ ωω

x %−→
n−1⋂

i=0

π−1
i(n)(fi(x)),
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4.2 Complete canonical sets

so that for all integer p, x ∈ ωω, and j < n

comb((fi)i<n)(x)(pn+ j) = fj(x)(p).

Lemma 4.19. Let n be a positive integer and (fi)i<n a family of n contin-
uous functions from the Baire space to itself. Then comb((fi)i<n) is also
continuous.

Proof. Let s ∈ ω<ω be a finite sequence, and Ns = {x ∈ ωω | s ⊆ x} its
associated basic clopen set. Then:

comb((fi)i<n)
−1(Ns) =

⋃

i<n

f−1
i (Nπi(n)(s)),

which is open since all the fi are continuous. The function comb((fi)i<n) is
thus also continuous.

Proposition 4.20. Let A ⊆ ωω be Π1
1-complete, and n a positive integer.

Then the set DA
n ⊆ ωω is Dn(Π1

1)-complete.

Proof. We only do the proof for n even here, the odd case is similar. Consider
D = Dn((Bk)0≤k<n) ∈ Dn(Π1

1), with (Bk)0≤k<n an increasing sequence of co-
analytic subsets of the Baire space. We have, for all 0 ≤ k < n, a continuous
function fk from the Baire space to itself such that Bk = f−1

k (A). We show
that the combination of the (fk)k<n verifies:

Dn((Bk)0≤k<n) = comb((fk)k<n)
−1(DA

n ).

Let x ∈ Dn((Bk)0≤k<n). Thus x ∈ B2k+1 !B2k = B2k+1 !
⋃

j≤2k Bj for some
2k + 1 < n. Then π2k+1(n) ◦ comb((fi)i<n)(x) = f2k+1(x) ∈ A and, for all
j ≤ k, πj(n) ◦ comb((fi)i<n)(x) = fj(x) /∈ A. Thus

comb((fi)i<n)(x) ∈ π−1
2k+1(n)(A)!

⋃

j≤2k

π−1
j(n)(A) ⊆ DA

n .

Now, let x /∈ Dn((Bk)0≤k<n). There are three cases:

– x /∈
⋃

k<n Bk,

– x ∈ B0,

– x ∈ B2k ! B2k−1 for some 0 < 2k < n.

If x /∈
⋃

k<n Bk, then for all k < n, comb((fi)i<n)(x) /∈ π−1
k(n)(A), and thus

comb((fi)i<n)(x) /∈ DA
n . If x ∈ B0, then comb((fi)i<n)(x) ∈ π−1

0(n)(A) = A0
n,
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and thus comb((fi)i<n)(x) /∈ DA
n . If there exists 0 < 2k < n such that

x ∈ B2k ! B2k−1, then x ∈ B2k !
⋃

j≤2k−1Bj. Thus

comb((fi)i<n)(x) ∈ π−1
2k(n)(A)!

⋃

j≤2k−1

π−1
j(n)(A) = A2k

n ! A2k−1
n ,

and comb((fi)i<n)(x) /∈ DA
n .

Hence Dn((Bk)0≤k<n) = comb((fk)k<n)−1(DA
n ), so that D ≤W DA

n , which
proves that DA

n is Dn(Π1
1)-complete.

The transfinite levels

Set a bijection φ between ω and ω × ω. It induces the following bijection ϕ:

ϕ : ωω −→ ωω×ω

a %−→ (a(φ(i, j)))i,j∈ω.

Let ξ be a countable ordinal, and ψξ a bijection between ξ and ω. Then for
any ν < ξ we have the following continuous function:

ϕν
ξ : ωω −→ ωω

a %−→ (ϕ(a)(ψξ(ν), j))j∈ω.

This construction is a generalization of the projections defined before. They
allow us indeed to partition an infinite sequence into ξ infinite sequences.
Mutatis mutandis, we get the same results that in the finite case.

Definition 4.21. Let ξ be a countable ordinal, and A a subset of the Baire
space. Define the sets Aν

ξ ⊆ ωω for ν < ξ by

Aν
ξ =

⋃

η≤ν

(ϕη
ξ)

−1(A)

We will denote by DA
ξ the set Dξ((Aν

ξ )ν<ξ).

Lemma 4.22. Let ω ≤ ξ < ω1 be a countable ordinal and (fν)ν<ξ be a family
of functions from the Baire space to itself. There exists a unique function
g : ωω → ωω such that for all ν < ξ:

fν = ϕν
ξ ◦ g.

We will denote it by comb((fξ)ν<ξ), and call it the combination of (fν)ν<ξ.
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4.2 Complete canonical sets

Proof. Define it by

comb((fν)ν<ξ) : ω
ω −→ ωω

x %−→
⋂

ν<ξ

(ϕν
ξ )

−1(fν(x)),

so that
ϕ(comb((fν)ν<ξ)(x))(ψξ(ν), j) = fν(x)(j).

Likewise the finite case, one can show that if the functions of the family
(fν)ν<ξ are all continuous, so is comb((fν)ν<ξ).

Proposition 4.23. Let ξ be a countable ordinal, and A a Π1
1-complete subset

of the Baire space. Then DA
ξ is Dξ(Π1

1)-complete.

Proof. Consider D = Dξ((Bν)ν<ξ), with (Bν)ν<ξ an increasing family of co-
analytic subsets of the Baire space. For each ν < ξ, we have a continuous
function fν from the Baire space to itself such that Bν = f−1

ν (A). Observe
that the combination of the (fν)ν<ξ verifies thus:

Dξ((Bν)ν<ξ) = comb((fν)ν<ξ)
−1(DA

ξ ).

Hence D ≤W DA
ξ , which proves that DA

ξ is Dξ(Π1
1)-complete.

We can now sketch a first overview of the Wadge hierarchy above the Borel
sets:

[A]W
[
DA

2

]
W

[
DA

α

]
W

· · · · · · · · ·

[A!]W
[
(DA

2 )
!]

W

[
(DA

α )
!]

W

whereA is aΠ1
1-complete set. What remains to describe is thus the ∆(Dα(Π1

1))
classes.

4.2.2 Cofinal sequences for the ambiguous classes

The description of the ambiguous classes provided by Louveau’s Tricks, Propo-
sitions 4.2 and 4.3, will be our main tool to prove that the Veblen operations
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4 Differences of coanalytic sets

are sufficient to climb up the Wadge Hierarchy of the Diff(Π1
1) sets. We begin

with the successor case.
Let ⊖ denote the empty set, and O the following Σ0

1-complete subset of
the Baire space:

O = {α ∈ ωω | ∃n α(n) = 0} .

Proposition 4.24. Let A ⊆ ωω be a Π1
1-complete set, and θ < ω1. Let

C ⊆ ωω be in the ∆(Dθ+1(Π1
1)) class. Then there exists ξ < ω1 such that

C ≤W ((DA
θ +⊖)≈1+ξ)b.

Proof. By Louveau’s Trick I, there exists a countable ordinal ξ < ω1 such
that C ∈ Sep(Σ0

1+ξ, Dθ(Π1
1)). Thus, we have X ∈ Ďθ(Π1

1)), Y ∈ Dθ(Π1
1) and

B ∈ Σ0
1+ξ such that

C = (X ∩ B) ∪ (Y ! B).

Notice that II has a winning strategy τ in the game W (B#ξ, Ob). II has also
two winning strategies σ1 and σ2 respectively in the games W (Y T , DA

θ +⊖)
and W (XT , DA

θ + ⊖), where T is the ξ-tree such that BT = B#ξ. To prove
that C ≤W ((DA

θ +⊖)≈1+ξ)b, we show that II has a winning strategy σ in the
game W (CT , ((DA

θ + ⊖)≈)b). Suppose I plays along a sequence of integers
x0, x1, . . .; II first follows σ1 as long as τ(x0, . . . , xk) is different of 0. If ever
τ(x0, . . . , xk) = 0 for an integer k, then II erases everything she has played,
and then follows σ2. We show now that the strategy σ is winning. Suppose
that x ∈ CT , then we have two distinct cases: either x ∈ BT , or it is not.
If it is in BT , then it is in CT if and only if it is in XT . But in this case,
(σ ∗x)$ = σ2 ∗x, and since σ2 is winning for II in the game W (XT , DA

θ +⊖),
x is in CT if and only if (σ ∗x)$ is in DA

θ +⊖. If x is not in BT , then it is in
CT if and only if it is in Y T . But in this case, σ ∗ x = σ1 ∗ x, and since σ1 is
winning for II in the game W (Y T , DA

θ +⊖), x is in CT if and only if σ∗x is in
DA

θ +⊖. The strategy σ is thus winning in the game W (CT , ((DA
θ +⊖)≈)b).

CT ≤W ((DA
θ +⊖)≈)b,

which implies, by minimality:

C#ξ ≤W ((DA
θ +⊖)≈)b,

so that
C ≤W ((DA

θ +⊖)≈1+ξ)b.
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4.2 Complete canonical sets

Proposition 4.24 shows that the Veblen operations applied to (DA
θ +⊖) pro-

vide a complete backbone to the ∆(Dθ+1(Π1
1)) class. The same phenomenon

occurs for the limit stages.

Proposition 4.25. Let D ⊆ ωω be in the ∆(Dδ(Π1
1)) class, with δ < ω1

limit. Then there exists ξ < ω1 and a sequence (αi)i∈ω ⊂ δ such that

D ≤W

((
⋃

i∈ω

i"DA
αi

)≈ξ
)b

where A ⊆ ωω is Π1
1-complete.

Proof. By Louveau’s Trick II, there exists a countable Borel partition (Ci)i∈ω
of the Baire space such that for all j < ω:

D ∩ Cj = Dj ∈ Dαj(Π
1
1),

with αj < δ. Since the partition is countable, there exists an ordinal ξ < ω1

such that (Ci)i∈ω ⊆ Σ0
ξ . Thus, there is a ξ+1-tree T such that for any i ∈ ω:

CT
i ≤W Ob.

For all i, denote by σi the winning strategy for player II in the gameW (CT
i , O

b),
and by σαi her winning strategy in the game W (DT

i , D
A
αi
). To prove that

D ≤W

((⋃
i∈ω i

"DA
αi

)≈ξ
)b
, we prove first that II has a winning strategy τ in

the game

W

⎛

⎝DT ,

(
⋃

i∈ω

(i"DA
αi
)

)b
⎞

⎠ .

Suppose I plays along a sequence (x0, x1, . . .). As long as for all i ∈ ω,
σi(x0, x1, . . . , xj) is not 0, II skips. If and when there is some i ∈ ω such that
σi(x0, x1, . . . , xj) is 0, player II plays along σαi . Since all the σαi are winning,
τ is also winning. We have thus:

DT ≤W (
⋃

i∈ω

i"DA
αi
)b,

which implies, by minimality:

D#ξ+1 ≤W (
⋃

i∈ω

i"DA
αi
)b,
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4 Differences of coanalytic sets

so that:

D ≤W

((
⋃

i∈ω

i"DA
αi

)≈ξ+1
)b

.

The situation is thus the best possible, since given ⊖ and the family
(DA

ξ )ξ<ω1 , the operations defined for the Borel sets by Duparc [26, 27] suffice
at least to climb up the hierarchy on Diff(Π1

1). We will prove in the next
section that it describes in fact exactly the whole hierarchy of the Diff(Π1

1)
sets.

4.2.3 A normal form

In the manner of Duparc [27], in order to complete the description of the
Wadge Hierarchy of the Diff(Π1

1) sets, we now define an application

Ω : (V ω1(ω1)! {0}) −→ P(ω≤ω)

which will verify that for all 0 < α < V ω1(ω1), dw(Ω(α)b) = α, and that for
all non-self-dual B ∈ Diff(Π1

1), there exists α < V ω1(ω1) such that either
Ω(α)b ≡W B or Ω(α)b ≡W B!. Before stating the definition of Ω, we need a
technical result on the Veblen hierarchy.

Lemma 4.26. Let 0 < β < V ω1(ω1), and consider the set

Iβ =
{
ν < ω1 | ∃γ < ωβ

1

(
V ν(γ) = ωβ

1

)}
.

There exists α < ω1 such that ωβ
1 = V ω1(1+α) if and only if cof(β) ̸= ω and

Iβ = ∅.

Proof. Suppose first that ωβ
1 = V ω1(1 + α). By definition, cof(ωβ

1 ) = ω1,
which implies that cof(β) ̸= ω. Moreover, ωβ

1 is also a fixpoint of all the
Veblen functions V ξ, with ξ < ω1. In other words, there exists no ν < ω1

and no γ < ωβ
1 such that V ν(γ) = ωβ

1 , proving that Iβ = ∅.
Suppose now that Iβ = ∅, and that cof(β) ̸= ω. Then cof(ωβ

1 ) = ω1

and ωβ
1 is a fixpoint of all the Veblen functions V ξ, with ξ < ω1. Thus

ωβ
1 = V ω1(1 + α), with α < ω1 since β < V ω1(ω1).

Definition 4.27. Let A be a Π1
1−complete subset of the Baire space,and

0 < α < V ω1(ω1). The ordinal α admits a unique Cantor Normal Form of
base ω1:

α = ωαn
1 · νn + · · ·+ ωα0

1 · ν0,
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4.2 Complete canonical sets

with
V ω1(ω1) > αn > · · · > α0, and 0 < ηi < ω1 for all i ≤ n.

Set:
Ω(α) = Ω(ωαn

1 ) · ηn + · · ·+ Ω(ωα0
1 ) · η0,

where Ω(ωβ
1 ) is defined by

– If β = 0 then
Ω(ω0

1) = ∅.

– If β = α + 1 is successor, then 0 ∈ Iβ. Denote by γ0 the ordinal such
that V 0(γ0) = ωβ

1 . Then set

Ω(ωβ
1 ) = V0(Ω(γ0)).

– If β is limit of cofinality ω, there exists a sequence (βi)i∈ω of ordinals
strictly less than β such that β = supi∈ω{βi}. Then set:

Ω(ωβ
1 ) = supi∈ω

{
Ω(ωβi

1 )
}
.

– If β is limit of cofinality ω1, then we have two cases: either Iβ is empty,
or not. If it is not empty, then as in the successor case, we set

Ω(ωβ
1 ) = Vν0(Ω(γ0)),

where ν0 < ω1 and γ0 < ωβ
1 are the minimal ordinals such that V ν0(γ0) =

ωβ
1 . If it is empty, then there exists ξ < ω1 such that ωβ

1 = V ω1(1 + ξ)
and we set

Ω(ωβ
1 ) = DB

ξ ,

where DB
ξ is a conciliatory set such that (DB

ξ )
b ≡W DA

ξ .

Notice that the function Ω is the extension of the function defined by Duparc
[27].

We now prove that the sets obtained by this function constitute a hierarchy
that describes up to complement the whole Wadge hierarchy on Diff(Π1

1). To
do so, we prove that the family (Ω(α))α<V ω1 (ω1) is well ordered by <c, and
that there is no gap in our construction.

Facts 4.28. Let A be a Π1
1−complete subset of the Baire space, and, for all

ξ < ω1, let DB
ξ be a conciliatory set such that (DB

ξ )
b ≡W DA

ξ . Let also (Ci)i∈ω
be a family of conciliatory sets. The following hold:

(a) if C1, C2 <c DB
ξ , then C1 + C2 <c DB

ξ ;
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(b) if Ci <c DB
ξ for all i ∈ ω, then supi∈ω Ci <c DB

ξ ;

(c) if C1 <c DB
ξ , then Vν(C1) <c DB

ξ for all ν < ω1.

Proof. It is sufficient to notice that since each Dα(Π1
1) class is closed un-

der preimages by Borel functions, the sets DB
ξ are fixpoints for the Veblen

operations, that is for all 0 < ξ, ν < ω1,

Vν(D
B
ξ ) ≡c D

B
ξ .

Now we prove that the family (Ω(α))α<V ω1 (ω1) is well ordered by <c.

Lemma 4.29. For 0 < β < α < V ω1(ω1),

Ω(β) ≤c Ω(α) and Ω(β)! ≤c Ω(α).

Proof. Since Ω is the extension of the function defined by Duparc [27], the
only remaining case to check is if α = V ω1(1 + ξ), with 0 < ξ < ω1, and if β
is of the form ωβ0

1 . By induction on ξ we have:

– If ξ = 1, then Ω(α) = B, and for all β < α, Ω(β) and Ω(β)! are Borel.
Thus for all β < α, Ω(β) <c Ω(α).

– If ξ = µ + 1, then Ω(α) = DB
µ+1. By the induction hypothesis and

transitivity of <c, we have that if β ≤ V ω1(1 + µ), then Ω(β) <c Ω(α).
For V ω1(1 + µ) < β < V ω1(1 + µ + 1), we have two cases: either
cof(β) = ω, or Iβ0 ̸= ∅. If cof(β) = ω, there exists a sequence ζi of
ordinals such that supi∈ω ζi = β, and then we use Facts 4.28 to conclude.
If Iβ0 ̸= ∅, there exist ν < ω1 and γ < β such that V ν(γ) = β, and then
we use Facts 4.28 to conclude.

– if ξ = γ is limit, then Ω(α) = DB
γ . By the induction hypothesis and

transitivity of <c, we have that if β ≤ V ω1(1 + δ) with δ < γ, then
Ω(β) <c Ω(α). If V ω1(1 + δ) < β < Ω(α) for all δ < γ, then we are
exactly in the same situation as before: either cof(β) = ω, or Iβ0 ̸= ∅,
and we can conclude in the same way.

We prove now that there is no gap in our construction.

Lemma 4.30. Let C ⊆ ωω be non-self-dual and 0 < α < V ω1(ω1) such that

C ≤W Ω(α)b and C! ≤W Ω(α)b.

Then there exists β < α so that

C ≤W Ω(β)b or C! ≤W Ω(β)b.
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Proof. Since Ω is the extension of the function defined by Duparc [27], the
only remaining case to check is if α = V ω1(1 + ξ), with 0 < ξ < ω1. By
induction on ξ we have:

– If ξ = 1, then Ω(α)b ≡W A and if C <W Ω(α)b then C is Borel and
there exists β < V ω1(2) such that C ≡W Ω(β)b or C! ≡W Ω(β)b.1

– If ξ = µ + 1, then Ω(α)b ≡W DA
µ+1, and if C <W Ω(α)b then C ∈

∆(Dµ+1(Π1
1)) and by Proposition 4.24, there exists ν < ω1 such that

C ≤W Vν(DA
µ +⊖)b. But DA

µ ≡W Ω(ωβ′

1 )b, where ωβ′

1 = V ω1(1 + µ), so

that Vν(DA
µ +⊖)b = Vν(Ω(ωβ′

1 )+⊖)b = Ω(V ν(ωβ′

1 + 1))b by definition

of Ω. Notice that V ν(ωβ′

1 + 1) < V ω1(1 + ξ), thus C ≤W Ω(β)b with
β < α.

– if ξ = γ limit, then Ω(α)b ≡W DA
γ , and if C <W Ω(α)b then C ∈

∆(Dγ(Σ1
1)), and by Proposition 4.25, there exists ν < ω1 and a sequence

(αi)i∈ω ⊂ δ such that C ≤W Vν

(⋃
i∈ω i

"DA
αi

)b
. But for all i ∈ ω

DA
αi
≡W Ω(ωβi

1 )b, where ωβi
1 = V ω1(1 + αi), so that Vν

(⋃
i∈ω i

"DA
αi

)b
=

Vν

(
supi∈ω

{
Ω(ωβi

1 )
})b

= Vν

(
Ω(ω

supi∈ω{βi}
1 )

)b
= Ω

(
V ν(ω

supi∈ω{βi}
1 )

)b
.

Notice that V ν(ω
supi∈ω{βi}
1 ) < V ω1(γ), thus C ≤W Ω(β)b with β < α.

The sets obtained by this function constitute a hierarchy that describes up
to complement the whole Wadge hierarchy on Diff(Π1

1).

Theorem 4.31. Let C ∈ Diff(Π1
1) be non-self dual. Then there exists a

unique ordinal 0 < α < V ω1(ω1) such that:

C ≡W Ω(α)b or C! ≡W Ω(α)b.

Proof. Since C and C! are in Diff(Π1
1), there exists a countable ordinal δ

such that both C and C! are in Dδ(Π1
1). Thus, C ≤W Ω(V ω1(1 + δ)) and

C! ≤W Ω(V ω1(1+δ)). Using Lemma 4.30, take the least α < V ω1(1+δ) such
that C ≤W Ω(α)b or C! ≤W Ω(α)b. By minimality, one has C "W Ω(α)b or
C! "W Ω(α)b. Without loss of generality, assume that C! "W Ω(α)b, then
by determinacy we have Ω(α)b ≤W C. Therefore C ≡W Ω(α)b. Uniqueness
is an immediate consequence of the fact that (Ω(α))α<V ω1(ω1) is well ordered
by <c as proved in Lemma 4.29.

1See [27, Theorem 38].
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Theorem 4.32. Let OTDiff(Π1
1)

be the order type of the Wadge hierarchy on
Diff(Π1

1). We have:
OTDiff(Π1

1)
= V ω1(ω1).

This description of the Wadge hierarchy of Diff(Π1
1) provides another proof

of a result by Andretta and Martin [5] on Borel-Wadge degrees.

Corollary 4.33. In the Baire space, the classes Dα(Π1
1) and Ďα(Π1

1) are the
only non-self-dual pointclasses below Diff(Π1

1) that are closed under preimages
by Borel functions.

Proof. Suppose that Γ is a non-self-dual pointclass closed under preimages
by Borel functions that is included in Diff(Π1

1), but none of the above. Then
there exists D ⊆ ωω non-self-dual of degree dw(D) = δ, such that

Γ = {B ⊆ ωω | B ≤W D} ,

with D <W DA
α for some α < ω1 and DA

β <W D for all β < α. Thus
V ω1(1 + β) < δ < V ω1(1 + α) for all β < α. Since V ω1(1 + α) is limit, there
exists an ordinal δ′ such that:

D <W (Ω(δ′))b <W DA
α

Suppose first that α is successor. Since

dw((D
A
α−1 +⊖)b) = dw(D

A
α−1) + 1 ≤ dw(D),

(DA
α−1 + ⊖)b is in Γ. By Proposition 4.24, there exists a ξ < ω1 such that

Ω(δ′))b ≤W ((DA
θ + ⊖)≈1+ξ)b. The set ((DA

θ + ⊖)≈1+ξ)b is thus not in Γ,
contradicting the fact that it is closed under preimages by Borel functions.
Suppose now that α is limit. By Proposition 4.25, there exists a ξ < ω1

and a sequence (αi)i∈ω ⊆ α such that

(Ω(δ′))b ≤W

((
⋃

i∈ω

i"DA
αi

)≈ξ
)b

.

The set
((⋃

i∈ω i
"DA

αi

)≈ξ
)b

is thus not in Γ. But since for all β < α, DA
β <W

D, we have: ⋃

i∈ω

i"DA
αi
≤W D,

so that
⋃

i∈ω i
"DA

αi
is in Γ, contradicting the fact that Γ is closed under

preimages by Borel functions.
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5 A first glimpse above Diff(Π1
1)

The Diff(Π1
1) class is the limit we can reach by using the same operations

and methods that were developed for the study of the Borel sets, and by just
adding the coanalytic sets. In this chapter, we take a glimpse into ∆1

2 point-
classes that lie above. First we consider decreasing differences of coanalytic
sets that coincide with the increasing differences only at the finite levels, but
then become far more complex. In particular, one can prove that the class of
ω decreasing differences of coanalytic sets contains Diff(Π1

1), and that under
(AD) its Wadge rank is ω2. Climbing further up, we consider the class of
Selivanovski’s C-sets and the class of Kolmogorov’s R-sets. To unravel a
fragment of their Wadge hierarchy, we define for each non-self-dual point-
class a new operation on sets denoted by (D2(Γ), ·). These new operations
are designed to transform an open set into a set that is a countable union of
D2(Γ) sets. For Γ with suitable closure properties, this operation preserves
the Wadge ordering and behaves well with respect to the Veblen operations
used in the study of the Wadge hierarchy of Borel sets by Duparc. Using
well chosen pointclasses Γ, we unravel a fragment of the Wadge hierarchy of
R-sets.

5.1 Decreasing differences of coanalytic sets

There is another standard way to introduce differences, namely by considering
decreasing sequence of sets. If (Bη)η<θ is a decreasing sequence of subsets of
the Baire space, with 1 ≤ θ, we define the set D∗

θ((Bη)η<θ) by

D∗
θ((Bη)η<θ) =

⋃

η<θ
η even

(Bη \Bη+1) ,

where if θ is odd, we let Bθ = ∅ by convention.1 These two definitions coincide
up to a certain point.

1The notation θ − Π1
1 can also be found in the literature for the class of θ decreasing

differences of coanalytic sets.
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Facts 5.1. Let Γ be a pointclass.

(a) For every positive integer n, Dn(Γ) = D∗
n(Γ).

(b) For every positive integer n, D2n(Γ) = D2n(Γ̌), and D2n+1(Γ) = Ď2n+1(Γ̌).

(c) For every ordinal 0 < θ,

D∗
θ(Γ̌) =

{
Dθ(Γ), if θ is even;

Ďθ(Γ), if θ is odd.

In this section, we discuss the discrepancy between the pointclasses of
differences using increasing sequences of coanalytic sets, and differences using
decreasing sequences of coanalytic sets. We prove that the situation is the
following:

⋃
n∈ω Dn(Π1

1)

∥ ⊂ Dω(Π1
1) ⊂ . . . ⊂ Diff(Π1

1) ⊆ ∆(D∗
ω(Π

1
1))⋃

n∈ω D
∗
n(Π

1
1)

This at first sight quite intriguing situation can be explained by a fundamen-
tal dissymmetry between the two classes of analytics and coanalytic sets. The
latter enjoys indeed the generalized reduction property, whereas the former
does not.

Lemma 5.2. Let (Di)i∈ω be a family of subsets of the Baire space and
(αi)i∈ω ⊆ ω1 such that:

– for all i ∈ ω, Di = D∗
αi
((Ai

β)β<αi) ∈ D∗
αi
(Π1

1);

– if i ̸= j, then Ai
0 ∩ Aj

0 = ∅.
Then ⋃

i∈ω

Di ∈ D∗
α(Π

1
1),

where α = supi∈ω αi.

Proof. It is sufficient to notice that:

⋃

i∈ω

Di =
⋃

β<α
β odd

((
⋃

i∈ω

Ai
β

)
\
(
⋃

i∈ω

Ai
β+1

))
.

In fact the classes D∗
α(Π

1
1) are closed under Π1

1 − SU.
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Lemma 5.3. For all 0 < α < ω1, the class D∗
α(Π

1
1) is closed under Π1

1−SU.

Proof. Let (Di)i∈ω be a family of D∗
α(Π

1
1) sets. By definition, there exists

for each integer i a decreasing family of Π1
1 sets (Ai

ξ)ξ<α such that Di =
D∗

α((A
i
ξ)ξ<α). Let now (Ci)i∈ω be a disjoint family of Π1

1 sets.

SU((Ci)i∈ω, (Di)i∈ω) =
⋃

i∈ω

(Ci ∩Di)

=
⋃

i∈ω

(D∗
α((Ci ∩ Ai

ξ)ξ<α),

And we conclude by Lemma 5.2.

We now give the proof of the inclusion of the classes Dα(Π1
1) in the class

D∗
ω(Π

1
1).

Proposition 5.4. For every α < ω1, Dα(Π1
1) ⊆ D∗

ω(Π
1
1).

Proof. We proceed by induction on α < ω1. If α is finite, we conclude by
Facts 5.1.
For ω, let (Ai)i∈ω be an increasing sequence of coanalytic sets, and con-

sider Dω((Ai)i∈ω). Using the generalized reduction property on the family
(A2i+1)i∈ω, we get a new sequence of coanalytic sets (Bi)i∈ω which is disjoint
and such that:

– for all i ∈ ω, Bi ⊆ A2i+1;

–
⋃

i∈ω Bi =
⋃

i∈ω A2i+1.

Thus, we have:

Dω((Ai)i∈ω) =
⋃

i∈ω

(
Bi ∩

(
⋃

j∈ω

A2j+1 \ A2j

))

=
⋃

i∈ω

(Bi ∩ (
⋃

j≤i

A2j+1 \ A2j)

︸ ︷︷ ︸
∈D2i+1⊆D∗

2i+2

).

Since the coanalytic family (Bi)i∈ω is disjoint, we conclude by Lemma 5.3.
The general proof for γ < ω1 limit is mutatis mutandis the same.
Suppose now that there exists β < ω1 such that Dα(Π1

1) ⊆ D∗
ω(Π

1
1) for

all α < β + 1. Since the odd case is similar, we assume that β + 1 is even.
Let (Aα)α∈β+1 be an increasing sequence of coanalytic sets, and consider
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Dβ+1((Aα)α<β+1). By our induction hypothesis, there exists a decreasing
sequence of coanalytic sets (Bi)i∈ω such that:

Dβ−1((Aα)α<β−1) = D∗
ω((Bi)i∈ω).

In particular since the family (Aα)α∈β+1 is increasing, Dβ−1((Aα)α<β−1), and
thus D∗

ω((Bi)∈ω) are included in Aβ−1. Hence:

Dβ+1((Aα)α<β+1) = D∗
ω((Bi)i∈ω) ∪ Aβ \ Aβ−1

= D∗
ω((Bi ∩ Aβ−1)i∈ω) ∪ Aβ \ Aβ−1

= D∗
ω((Aβ, Aβ−1, B0 ∩ Aβ−1, B1 ∩ Aβ−1, . . .)),

which completes the proof.

Our determinacy hypothesis for Chapter 4 is therefore sufficient, since by
the works of Martin [77] and Harrington [42] the co-analytic deteminacy
implies the determinacy of the D∗

ω(Π
1
1) class. Moreover, it follows from the

composition of these works by Harrington and Martin that the determinacy
of the Wadge games of coanalytic sets is equivalent to DET(Π1

1), so that
DET(Π1

1) is in fact optimal for the work done on the class Diff(Π1
1).

The gap between Diff(Π1
1) and ∆(D∗

ω(Π
1
1)) has, to our knowledge, not

been investigated yet. The only piece of information on that matter is given
by a result from Kechris and Martin mentioned by Steel [105].

Theorem 5.5 (Kechris - Martin).
Under (AD), the order type of the Wadge hierarchy on ∆(D∗

ω(Π
1
1)) subsets

of the Baire space is ω2.

Combined with our results, it appears thus that under (AD) the inclusion
between Diff(Π1

1) and ∆(D∗
ω(Π

1
1)) is strict.

Question. Is the equality Diff(Π1
1) = ∆(D∗

ω(Π
1
1)) consistent under weaker

determinacy hypotheses?

5.2 The C-sets

5.2.1 Suslin’s operation A and the hierarchy of C-sets

Let Γ be a non-self-dual pointclass. The class Bor(Γ) is defined as the least
σ-algebra containing all Γ sets, that is the least family containing the Γ sets
and closed under countable unions and complements.
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Definition 5.6. A Suslin scheme is a sequence (As)s∈ω<ω of subsets of the
Baire space, indexed by the set ω<ω of finite sequences of integers. The result
of Suslin’s operation A on the Suslin scheme (As)s∈ω<ω , in notation A((As)),
is defined by:

A((As)) =
⋃

α∈ωω

⋂

n

Aα%n

i.e.
A((As)) =

{
x ∈ X : ∃α ∈ ωω ∀n x ∈ Aα%n

}

For Γ a pointclass, we denote A(Γ) the class of all A((As)), for (As)s∈ω<ω a
Suslin scheme with As ∈ Γ for all s ∈ ω<ω. Notice that A is a ω-ary Boolean
operation.

Facts 5.7 (Suslin [106]). Let Γ be a pointclass. Then the following hold.

(1) A(A(Γ)) = A(Γ);

(2) A(Γ) is closed under countable unions and intersections;

(3) A(Π0
1) = Σ1

1.

Building on this operation, we introduce a hierarchy of sets, called Seli-
navovski’s hierarchy of C-sets , by

– ΣC
1 = Σ1

1;

– for 0 < α < ω1, ΠC
α = Σ̌C

α ;

– for 1 < α < ω1, ΣC
α = A

(⋃
ξ<α Π

C
ξ

)
;

and we let C =
⋃

ξ<ω1
ΣC

ξ . Let also ∆
C
α denote the ambiguous classΠC

α ∩ΣC
α

for all 1 ≤ α < ω1.

Proposition 5.8.

(1) The class C is the least σ-algebra containing the open sets and closed
under operation A.

(2) For any 0 < ξ < ω1, Bor(ΣC
ξ ) ⊆∆C

ξ+1.

(3) The class C is closed under preimage by C-measurable functions.

(4) For any 0 < ξ < ω1, the class ΣC
ξ is closed under preimage by Borel

functions.

Proof.

(1) It is clear from the definition that any σ-algebra containing the open
sets and closed under A must contain all C-sets. For the other di-
rection, note that the family (ΣC

ξ )ξ<ω1 is increasing. Suppose now
(As)s∈ω<ω is a Suslin scheme of C-sets. Then the sets As are in ΣC

ξ
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for some 0 < ξ < ω1. Then A!
s ∈ ΣC

ξ+1 and finally A(As) ∈ ΣC
ξ+2 is

a C-set. So C is closed under A and complement. And as countable
union is a particular case of the operation A, the class C is a σ-algebra.

(2) We already noticed that ΣC
ξ ⊆ ΣC

ξ+1. Also clearly ΠC
ξ ⊆ ΣC

ξ+1. Now
by Facts 5.7, the class ΣC

ξ+1 is closed under operation A and under
countable unions and intersections. Observe that Bor(ΣC

ξ ) is the least
family containing ΣC

ξ ∪ ΠC
ξ and closed under countable unions and

intersections, hence it is included in ΣC
ξ+1. Moreover Bor(ΣC

ξ ) is self-
dual, it is thus included in ∆(ΣC

ξ+1) = ∆C
ξ+1.

(3) Let f : ωω → ωω be C-measurable, and A ∈ ΣC
ξ . We prove by in-

duction on 0 < ξ < ω1 that f−1(A) ∈ C. Suppose first A ∈ ΣC
1 , i.e.

A = A(As) with closed sets As. Then each f−1(A!
s) is a C-set, hence

for some 0 < ξ1 < ω1, A!
s ∈ ΣC

ξ1 . But then f−1(A) = A(f−1(As)) ∈
A(ΠC

ξ1) = ΣC
ξ+1. If now A ∈ ΣC

ξ , we get A = A(As), with As ∈ ΠC
η(s)

for some η(s) < ξ. Then by the induction hypothesis f−1(As) ∈ C,
and hence f−1(A) = A(f−1(As)) is in C too.

(4) Let f : ωω → ωω be a Borel function, and A ∈ ΣC
ξ . We prove by

induction on 0 < ξ < ω1 that f−1(A) ∈ ΣC
ξ . Suppose first A ∈ ΣC

1 , i.e.

A = A(As) with closed sets As. Then each f−1(A!
s) is a Borel set, and

f−1(A) = A(f−1(As)) ∈ A(∆1
1) ⊆ A(Σ1

1) = ΣC
1 .

If now A ∈ ΣC
ξ , we get A = A(As), with As ∈ ΠC

η(s) for some η(s) < ξ.

Then by the induction hypothesis f−1(As) ∈ ΠC
η(s), and hence f−1(A) =

A(f−1(As)) is in ΣC
ξ too.

5.2.2 Unions of D2(Π1
1) sets

As long as we deal with finite unions (or intersections) of D2(Π1
1) sets, we

stay in the class Diff(Π1
1).

Fact 5.9. Let k be a non negative integer, and (Di)i<k a family of D2(Π1
1)

sets. Then there exists an integer n such that:
⋃

i<k

Di ∈ Dn(Π
1
1).

To be more precise:

D2k(Π
1
1) ⊆

⋃

i<k

D2(Π
1
1) ⊆ D2(2k−1)(Π

1
1);
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where
⋃

i<k D2(Π1
1) =

{⋃
i<k Di | (Di)i<k ⊂ D2(Π1

1)
}
.

It is not the same story when we go to countable operations. Let Γ be a
non-self-dual pointclass, and let σD2(Γ) the class of all countable reunions of
D2(Γ) sets:

σD2(Γ) =

{
⋃

i∈ω

Di : Di ∈ D2(Γ)

}
.

This is a pointclass which contains, merely by definition, all the classes
Dα(Γ) and D∗

α(Γ) for α < ω1, and which is closed under finite intersec-
tions and countable unions. Moreover, it is included in Bor(Γ). If we con-
sider the case where Γ is Π1

1, one could wonder if it is the class just above⋃
α<ω1

D∗
α(Π

1
1). It is a consequence of a theorem by Steel [105, Theorem 1.2]

that under AD, this is not the case.

Proposition 5.10. Suppose AD and let Γ be a non-trivial pointclass closed
under intersection with a Π1

1 and under union with a Σ1
1. Then the cofinality

of the Wadge rank of Γ is at least ω2.

Proof. The proof we present here is due to Louveau. Given its closure prop-
erties, Γ is not self-dual, and its Wadge rank is not successor. Thus cof(|Γ|W )
is greater or equal to ω1. Suppose it is ω1, and let ϕ : ω1 → |Γ|W be cofinal.
Let W ⊆ ωω×ωω be a universal set for Γ, and consider the following Solovay
game: player I plays α ∈ ωω, II plays (β, γ) ∈ ωω × ωω, and II wins if and
only if

α ∈WO→
(
Wβ = W !

γ ∧ ϕ(|α|) ≤ dw(Wβ)
)
,

where WO is the set of codes of wellorderings, and |α| denote the ordinal
coded by α.2 Suppose first that I has a winning strategy σ. Then σ(ωω) is
a Σ1

1 in WO, and by the boundedness theorem, there exists a ξ < ω1 such
that sup {|x| : x ∈ σ(ωω)} ≤ ξ. But ϕ(ξ) < |Γ|W ! Player II can thus play
(β, γ) such that Wβ = W !

γ and dw(Wβ) > ϕ(ξ), and win the game. Hence,
I does not have a winning strategy in this game. Suppose now that II has a
winning strategy τ . We define the set R ⊆ ωω × ωω such that:

R(α, x)←→ α ∈WO∧x ∈ W(τ∗α)0

←→ α ∈WO∧x /∈ W(τ∗α)1 .

By the closure properties of Γ, R is both in Γ and Γ̌, so that R is in ∆. But
dw(R) is greater than or equal to sup {dw(Rα) : α ∈WO}, so that dw(R) ≥
supϕ. Hence ϕ is not cofinal, a contradiction.

2See e.g. Moschovakis [80, Chapter 4].
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The Wadge rank of σD2(Π1
1) is thus, under AD, of cofinality at least ω2,

so that
∆(σD2(Π

1
1)) ̸=

⋃

α<ω1

D∗
α(Π

1
1).

Observe that we can construct a σD2(Π1
1)-complete set fairly easily from a

complete coanalytic set. Let φ : ω × ω → ω be the Cantor bijection between
ω × ω and ω defined by:

φ(n,m) =
(n+m)(n+m+ 1)

2
+ 1.

It induces a bijection:

ϕ : ωω −→ ωω×ω

a %−→ a(φ(i, j))i,j∈ω.

For all i ∈ ω, we denote by ϕi the i-th projection of ϕ:

ϕi : ω
ω −→ ωω

a %−→ a(φ(i, j))j∈ω.

Define for all A ⊆ ωω:

σD
A
2 =

{
x ∈ ωω | ∃i ∈ ω(ϕi(x) ∈ DA

2 )
}
.

Fact 5.11. Let Γ be a non-self-dual class and A be a subset of the Baire
space complete for this class. Then the set σDA

2 is σD2(Γ) complete.

5.2.3 The D2 unfolded game

Inspired by the definition of the set σDA
2 from A, we define a new operation

on conciliatory sets. Let ϕ be a bijection between ωω and ωω×ω as above, and
denote by x+ the final subsequence (x(1), x(2), . . .) of x in ω≤ω. We denote
by x− the set of all sequences such that (x−)+ = x. The (D2(Γ), ·) operation
is the following.

Definition 5.12. Let Γ be a non-self-dual pointclass, A ⊆ ωω be complete in
Γ, and B a conciliatory set. Let (D2(Γ), B) denote the following conciliatory
set:

(D2(Γ), B) =
{
x ∈ ω≤ω | (x$)[ /b] ∈ B

}

where

x$(i) =

{
ϕi(x)(0) , if ϕi(x)+ ∈ DA

2 ;

b , else.

If ϕi(x)+ /∈ DA
2 , we say that the i-th column is killed.
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Observe that this operation is designed so that if O is a conciliatory set
such that Ob ∈ Σ0

1, then (D2(Γ), O)b is in the σD2(Γ) class. Moreover, if Γ
is closed under finite unions and intersections, and if its complete sets are
initializable, then the operation (D2(Γ), ·) preserves the conciliatory preorder
≤c.

Theorem 5.13. Let Γ be a non-self-dual pointclass closed under finite unions
and intersections, and such that its complete sets are initializable. Let B0 and
B1 be conciliatory sets. The following hold:

(i) (D2(Γ), B!
0) ≡c (D2(Γ), B0)!.

(ii) If B0 ≤c B1, then (D2(Γ), B0) ≤c (D2(Γ), B1).

(iii) If B0 <c B1, then (D2(Γ), B0) <c (D2(Γ), B1).

Proof. The proof of the first statement is straightforward, while the demon-
stration of the second relies on a variation of the remote control technique
first introduced by Duparc [26]. Let (βi)i∈ω be an enumeration of 4<ω \ {ϵ}
such that for any integers n and m, if n ≤ m, then |βn| ≤ |βm|. We call βi
the i-th bet. For any integer i, we also define the sets:

βj
i = {n ∈ ω | βi(n) = j}

for j = 0, . . . , 3. A bet encodes information on the auxiliary moves of player I:
its length determines the number of columns it takes into account, and its n-
th value, whether the D2(Π1

1) condition is true or not in the n-th column, and
why. The value 0 means that the n-th column is not killed, i.e. ϕn(x)+ ∈
DA

2 , where x is the sequence played by player I. The value 1 means that
π0(ϕn(x)+) /∈ A and π1(ϕn(x)+) /∈ A, the value 2 means that π0(ϕn(x)+) ∈
A and π1(ϕn(x)+) ∈ A, and the value 3 means that π0(ϕn(x)+) /∈ A and
π1(ϕn(x)+) ∈ A. We say that a bet βj is fulfilled if for all n < |βj|, βj(n) is
true. Notice that it is, so to speak, a D2(Γ) condition; βj is indeed fulfilled
by the sequence x if and only if

x ∈
⋂

l∈β0
j∪β2

j

ϕ−1
l (π−1

0 (A)−) ∩
⋂

k∈β2
j∪β3

j

ϕ−1
l (π−1

1 (A)−) = A
βj

1

and
x ∈

⋂

l∈β3
j∪β1

j

ϕ−1
l (π−1

0 (A!)−) ∩
⋂

k∈β0
j∪β1

j

ϕ−1
l (π−1

1 (A!)−) = A
βj

0 .

If we consider A, A
βj

0 and A
βj

1 in ωω, then A
βj

0 is in Γ̌ and A
βj

1 is in Γ. Thus

A
βj

0 ∩ A
βj

1 ≤W DA
2 ,
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and, since DA
2 is initializable, II has a winning strategy σ′

j that never requires

her to skip in the Wadge game C(A
βj

0 ∩ A
βj

1 , DA
2 ). For any finite sequence

u ∈ ω<ω and any integer i such that |u| ≤ |βi|, we denote uβi the finite
sequence u % β0

i , that is u with all the killed values, according to the bet,
deleted.
Suppose now that II has a winning strategy σ in C(B0, B1), we describe

a winning strategy σ′ for II in C((D2(Γ), B0), (D2(Γ), B1)). Without loss of
generality, we can consider that σ is a winning strategy in the conciliatory
game where I can play finite sequences. Suppose I plays along a sequence
x ∈ ω≤ω. On her main run, II follows σ, modulo the bets and the skips, i.e
her ϕi(0) move is σ(uβi) if it is not a skip, where u is the beginning of the
main run already played by I. If σ(uβi) is a skip, then II plays 0 and kills the
column. For the i-th column, if it is not killed to avoid a skip in the main
run, σ′ realizes the i-th bet by playing along σi. At the end of the game, II
has played an infinite sequence. She has killed exactly all the columns which
correspond to bets that are not fulfilled by I, so that on the main run remains
σ((x$)[ /b]). Since σ is winning, σ′ is winning too.
The proof of the last statement relies on the fact that mutatis mutandis

strategies for I can also be remote controlled.

If moreover Γ contains Borel sets and is closed under preimage by Borel
functions, (D2(Γ), ·) turns out to produce fixpoints of the Veblen operations.

Theorem 5.14. Let Γ be a non-self-dual pointclass containing the Borel sets,
closed under finite unions and intersections, closed under preimage by Borel
functions, and such that its complete sets are initializable. Then for every
conciliatory set B and every ordinal 0 < ξ < ω1, the following holds:

(Vξ ((D2(Γ), B)))b ≤W (D2(Γ), B)b.

Proof. Let A be Γ-complete. Notice first that in the game

C((Vξ ((D2(Γ), B))), (D2(Γ), B)),

to know whether the column i is killed or not for a certain integer i is a D2(Γ)
condition: it is indeed equivalent to knowing whether the play x of I belongs
to ϕ−1

i (Vξ(DA
2 )−) or not. Furthermore, recall that to know whether a given

finite sequence u will be erased or not is a Borel condition. Now we describe
a strategy σ for II in the game

C((Vξ ((D2(Γ), B))), (D2(Γ), B)).
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Suppose I plays along a sequence x ∈ (ω ∪ {#ι: ι < ξ})≤ω. On her main
run II plays along x[ /{#ι:ι<ξ}], just removing the arrows from the play of her
opponent. On her auxiliary moves, say on column i, she checks whether,
after the application of the erasers, both:

– the corresponding move in her main run will appear or not in the main
run of her opponent, and

– its column will be killed or not.

For example, assume the first move of I that is not an eraser is a0. Then II
plays a0, and follows along the first column a winning strategy she has in the
game

C
(
ϕ−1
0

(
Vξ(D

A
2 )−
)
∩ Vξ[a0], D

A
2

)
,

where Vξ[a0] is the set of sequences in which a0 is not erased, so that her
first column will be killed if a0 is erased by I or if he kills his first column.
Suppose now that the second move of I that is not an eraser is a1. Then II
plays a1, and follows along the second column a winning strategy she has in
the game

C
((
ϕ−1
0

(
Vξ(D

A
2 )−
)
∩ Vξ[a1]

)
∪
(
ϕ−1
1

(
Vξ(D

A
2 )−
)
∩ Vξ[a0, a1]

)
, DA

2

)
,

where Vξ[a1] and Vξ[a0, a1] are respectively the set of sequences where a1 and
(a0, a1) are the first sequences not erased, so that her second column will be
killed if a1 is erased by I or if he kills the column where it appears. Continuing
this way, we get a strategy σ such that for every x ∈ (ω ∪ {#ι: ι < ξ})≤ω:

σ(x)$ = (x$)$ .

Hence σ is winning.

Corollary 5.15. Let Γ be a non-self-dual pointclass with the same properties
as above. Let B, C be conciliatory sets, and 0 < ξ be a countable ordinal.

(i) If Cb ≤W (D2(Γ), B)b, then (Vξ (C))b ≤W (D2(Γ), B)b.

(ii) If Cb <W (D2(Γ), B)b, then (Vξ (C))b <W (D2(Γ), B)b.

Observe that the classes ΠC
α contain the Borel sets, and are closed un-

der countable unions and intersections. Moreover, as they are closed under
preimage by Borel function, their complete sets are initializable. Hence the
operations (D2(ΠC

α ), ·) preserve the conciliatory preorder and their images
are fixpoints of the Veblen operations.

Proposition 5.16. Let α and β be non-zero countable ordinals such that
α < β, and let B be a conciliatory sets. Then the following holds

(
D2(Π

C
α ), (D2(Π

C
β ), B)

)
≤c (D2(Π

C
β ), B).
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Proof. The argument is very similar to the one used in the proof of Theo-
rem 5.14, and we omit it here.

Corollary 5.17. Let α and β be non-zero countable ordinals such that α < β,
and let B0 and B1 be conciliatory sets. If B0 ≤c (D2(ΠC

β ), B1), then

(D2(Π
C
α ), B0) ≤c (D2(Π

C
β ), B1).

These results allow us to combine the operations (D2(ΠC
α ), ·) with the

ones we used to describe the Wadge hierarchy of the class Diff(Π1
1), and to

extend the function Ω to C-sets. Notice that it does not provide us with the
whole Wadge hierarchy this time, but only with a fragment of it – consider for
example the potentially huge untouched interval between the classes Diff(Π1

1)
and σD2(Π1

1).

Definition 5.18. Let A be a Π1
1−complete subset of the Baire space and

0 < α < V ω1+ω1(2). The ordinal α admits a unique Cantor Normal Form of
base ω1:

α = ωαn
1 · νn + · · ·+ ωα0

1 · ν0,
with

V ω1+ω1(2) > αn > · · · > α0, and 0 < ηi < ω1 for all i ≤ n.

Set:
Ω(α) = Ω(ωαn

1 ) · ηn + · · ·+ Ω(ωα0
1 ) · η0,

where Ω(ωβ
1 ) is defined as follows.

– If β = 0 then
Ω(ω0

1) = ∅.
– If β = α + 1 is successor, then 0 ∈ Iβ. Denote by γ0 the ordinal such
that V 0(γ0) = ωβ

1 . Then set

Ω(ωβ
1 ) = V0(Ω(γ0)).

– If β is limit of cofinality ω, there exists a sequence (βi)i∈ω of ordinals
strictly less than β such that β = supi∈ω{βi}. Then set:

Ω(ωβ
1 ) = supi∈ω

{
Ω(ωβi

1 )
}
.

– If β is limit of cofinality ω1, then we have two cases: either Iβ is empty,
or not. If it is not empty, then as in the successor case, we set

Ω(ωβ
1 ) = Vν0(Ω(γ0)),
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where ν0 < ω1 and γ0 < ωβ
1 are the minimal ordinals such that V ν0(γ0) =

ωβ
1 . If it is empty, then there are again two cases: either there exists
ξ < ω1 such that ωβ

1 = V ω1(1 + ξ) and we set

Ω(ωβ
1 ) = DB

ξ ,

where DB
ξ is a conciliatory set such that (DB

ξ )
b ≡W DA

ξ ; or there exist

some ordinals 0 < β′ < β and ζ < ω1 such that ωβ
1 = V ω1+ζ(β′) and we

set
Ω(ωβ

1 ) = (D2(Π
C
1+ζ),Ω(2 + β′)).

One can prove that the sets defined are well-ordered with respect to the
conciliatory hierarchy.

Proposition 5.19. Assume the determinacy of all C-sets. For 0 < β < α <
V ω1+ω1(2),

Ω(β) ≤c Ω(α) and Ω(β)! ≤c Ω(α).

Proof. It is mutatis mutandis the same as the proof of Lemma 4.29. The
remaining cases are treated using Theorems 5.13 and 5.14 and Proposi-
tion 5.16.

Observe that it is a consequence of Proposition 5.16 that for all 0 < α <
β < ω1 and any conciliatory set B such that Bb ∈ σD2(ΠC

β ), we have

(D2(Π
C
α ), B)b ∈ σD2(Π

C
β ),

so that the operations (D2(ΠC
α ), ·) preserve the σD2(ΠC

β ) classes.

Question. Let 0 < β < ω1, and B a conciliatory set such that Bb ∈ ΠC
β .

Do we have
(D2(Π

C
α ), B)b ∈ ΠC

β

for every α < β? In other words, do the operations (D2(ΠC
α ), ·) preserve the

ΠC
β classes, with α < β?

5.3 The Kolmogorov hierarchy of R-sets

The R-sets were introduced by Kolmogorov [57, 58] as the family generated
from the closed sets by the operations of countable union and intersection,
and closed under the transformation R. This class of sets is strictly included
in ∆1

2, and contains all the C-sets.
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5.3.1 The δs-operations and their transformations

Recall that an ω-ary operation O is a function:

O : P(ωω)AO −→ P(ωω),

where AO, the arena of O, is a countable set of indices. The operation O
assigns a set to a countable sequence of sets indexed by AO. A basis for the
operation O is a set NO ⊆ P(AO) such that

O ((As)s∈AO) =
⋃

S∈NO

⋂

s∈S

As,

for every sequence (As)s∈AO of subsets of the Baire space. Observe that
not all operations have a basis, but that a basis completely determines an
operation. The operations that admit a basis are called the δs-operations,
and were introduced independently by Kolmogorov [57] and Hausdorff [44].

Example 5.20. Both the operation countable union
⋃

and the operation
countable intersection

⋂
are δs-operations, with arena A⋃ = A⋂ = ω and

basis
N⋃ = {{n} : n ∈ ω} and N⋂ = {ω}.

Notice that all δs-operations are boolean operations, but some boolean
operations are not δs-operations: “taking the complement” for example is not
a δs-operation. Kantorovich and Livenson [53] proved that the δs-operations
are exactly the positive boolean operations, that is the boolean operations
which preserve the inclusion.
There are three classical transformations of δs-operations: passage to the

complementary (or dual) operation, superposition, and the R-transform, all
introduced by Kolmogorov [57, 58].

The complementary operation

Let O be a δs-operation with arena AO and basis NO. We define the dual,
or the complementary, operation co-O with the same arena and with basis

Nco-O = {S ⊆ AO : for all T ∈ NO, T ∩ S ̸= ∅} .
It satisfies the following property: for every family (As)s∈AO of subsets of the
Baire space

co-O
(
(A!

s)s∈AO

)
= A! ←→ O ((As)s∈AO) = A.

Observe that the operations
⋃

and
⋂

are mutually complementary:

co-
⋃

=
⋂

and co-
⋂

=
⋃

.
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5.3 The Kolmogorov hierarchy of R-sets

The composition and the superposition

Given two operations O and O′, their composition O′ ◦ O is the operation
with arena AO × AO′ defined as:

O′ ◦O
(
(A(s,s′))(s,s′)∈AO×AO′

)
= O′

((
O((A(s,s′))s∈AO)

)
s′∈AO′

)

Notice that the composition of two δs-operations is a δs-operation.

Example 5.21. The composition of
⋂

and
⋃
, the operation

⋃
◦
⋂

with arena
ω × ω, is the following:

⋃
◦
⋂(

(Ai,j)(i,j)∈ω×ω

)
=
⋃

i∈ω

⋂

j∈ω

Ai,j.

Its basis is given by
N⋃

◦
⋂ = {{i}× ω : i ∈ ω} .

A generalization of the composition transform is given by the superposi-
tion. Let O be a δs-operation, and let (Os)s∈AO be a family of δs-operations.
The superposition of (Os)s∈AO with outer operation O is a δs-operation
(O | (Os)s∈AO), with arena

A(O|(Os)s∈AO)
=

{
(k, l) ∈

(
AO ×

⋃

s∈AO

AOs

)
: l ∈ AOk

}

and defined as follows

(O | (Os)s∈AO)
(
(A(k,l))(k,l)∈A(O|(Os)s∈AO )

)
= O

((
Os

(
(A(k,l))l∈AOs

))
s∈AO

)
.

Observe that if for all s ∈ AO, the operation Os is identically some fixed δs-
operation O′, the superposition of (Os)s∈AO with outer operation O is exactly
the composition of O′ and O:

(O | (Os)s∈AO) = O ◦O′.

The R-transform

The R-transform is considered to be one of the most important contribution
of Kolmogorov in the field of operations on set3, and arose as a variant of the
infinite iteration of the substitution. The R-transform of a δs-operation O
is the δs-operation RO with arena (AO)<ω and basis:

NRO =
{
S ⊆ (AO)

<ω : ∃T ⊆ S, ε ∈ T ∧ ∀t ∈ T {v ∈ AO : t"v ∈ T} ∈ NO
}
.

3See for example Kanovei [52].
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Example 5.22. Suslin’s operation A is the R-transform of
⋃
:

A = R
⋃

.

5.3.2 The Kolmogorov hierarchy of R-sets

For any countable ordinal ξ, let
⋂

ξ denote the δs-operation which produces
the intersection of a sequence of length ξ of sets. We define a sequence of
δs-operations (Rα)α<ω1 by induction.

– R0 =
⋃
,

– Rα = R
(⋂

α | (co-Rγ)γ<α

)
, for 0 < α.

We denote by R the class of R-sets, which is the smallest class of subsets of
the Baire space containing all open sets and closed under all the operations
Rα and co-Rα. They can be naturally spread in a hierarchy, the Kolmogorov
hierarchy of R-sets . For every α < ω1, we set

ΣR
α = Rα(Σ

0
1) and ΠR

α = co-Rα(Π
0
1),

and denote by ∆R
α their ambiguous class:

∆R
α = ΣR

α ∩ΠR
α .

Observe that ΣR
0 and ΠR

0 coincide respectively with the classes of open and
closed sets, and that ΣR

1 = Σ1
1 and ΠR

1 = Π1
1.

Facts 5.23.

(1) If γ < α < ω1, then ΣR
γ ∪ΠR

γ ⊆∆R
γ .

(2) Every R-set belongs to one of the classes ΣR
α , Π

R
α .

(3) All the C-sets are included in the class ∆R
2

(4) For all α < ω1, the classes ΣR
α and ΠR

α are pointclasses closed under
the operations Rα and co − Rα. In particular, for 0 < α, the classes
ΣR

α and ΠR
α are closed under countable union and intersection.

(5) For all α < ω1, the classes ΣR
α and ΠR

α are closed under preimages by
Borel functions.

Proof. Folklore. See for example Kanovei [52].

It was proved by Lyapunov [76] that all the R-sets are in the class ∆1
2,

and by Burgess [18, 19, 20, 21] that the class of all R-sets and the ∆1
2 class

do not coincide.
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5.3 The Kolmogorov hierarchy of R-sets

5.3.3 A fragment of the Wadge hierarchy of R-sets

The properties of the classes ΠR
α allow us, like in the C−sets case, to define

the operations (D2(ΠR
α ), ·).

Proposition 5.24. Let α and ξ be non-zero countable ordinals, and let B0

and B1 be conciliatory sets. The following hold:

(i) (D2(ΠR
α ), B

!
0) ≡c (D2(ΠR

α ), B0)!.

(ii) If B0 ≤c B1, then (D2(ΠR
α ), B0) ≤c (D2(ΠR

α ), B1).

(iii) If B0 <c B1, then (D2(ΠR
α ), B0) <c (D2(ΠR

α ), B1).

(iv)
(
Vξ

(
(D2(ΠR

α ), B0)
))b ≡W (D2(ΠR

α ), B0)b.

(v) For every 0 < β < α,
(
D2(Π

R
β ),
(
(D2(Π

R
α ), B0)

))b ≡W (D2(Π
R
α ), B0)

b.

(vi) For every countable 0 < β,
(
D2(Π

C
β ),
(
(D2(Π

R
α ), B0)

))b ≡W (D2(Π
R
α ), B0)

b.

Hence the operations (D2(ΠR
α ), ·) behave well with respect to the Wadge

preorder. Moreover, they do not overlap, neither with themselves nor with
the Veblen operations, nor with the (D2(ΠC

α ), ·) operations. Now we can
extend the fragment of the Wadge hierarchy defined in Section 5.2, and give
a first description of the Wadge hierarchy of R-sets.

Definition 5.25. Let 0 < α < V ω1+ω1+ω1(2). The ordinal α admits a unique
Cantor Normal Form of base ω1:

α = ωαn
1 · νn + · · ·+ ωα0

1 · ν0,

with

V ω1+ω1+ω1(2) > αn > · · · > α0, and 0 < ηi < ω1 for all i ≤ n.

Set:
Ω(α) = Ω(ωαn

1 ) · ηn + · · ·+ Ω(ωα0
1 ) · η0,

where Ω(ωβ
1 ) is defined as follows.

– If β = 0 then
Ω(ω0

1) = ∅.
– If β = α + 1 is successor, then 0 ∈ Iβ. Denote by γ0 the ordinal such
that V 0(γ0) = ωβ

1 . Then set

Ω(ωβ
1 ) = V0(Ω(γ0)).
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– If β is limit of cofinality ω, there exists a sequence (βi)i∈ω of ordinals
strictly less than β such that β = supi∈ω{βi}. Then set:

Ω(ωβ
1 ) = supi∈ω

{
Ω(ωβi

1 )
}
.

– If β is limit of cofinality ω1, then we have two cases: either Iβ is empty,
or not. If it is not empty, then as in the successor case, we set

Ω(ωβ
1 ) = Vν0(Ω(γ0)),

where ν0 < ω1 and γ0 < ωβ
1 are the minimal ordinals such that V ν0(γ0) =

ωβ
1 . If it is empty, then there are three cases: either there exists ξ < ω1

such that ωβ
1 = V ω1(1 + ξ) and we set

Ω(ωβ
1 ) = DB

ξ ,

where DB
ξ is a conciliatory set such that (DB

ξ )
b ≡W DA

ξ ; or there exist

some ordinals 0 < β′ < β and ζ < ω1 such that ωβ
1 = V ω1+ζ(β′) and we

set
Ω(ωβ

1 ) = (D2(Π
C
1+ζ),Ω(2 + β′));

or there exist some ordinals 0 < β′ < β and ζ < ω1 such that ωβ
1 =

V ω1+ω1+ζ(β′) and we set

Ω(ωβ
1 ) = (D2(Π

R
2+ζ),Ω(2 + β′)).

One can prove that the sets defined are well-ordered with respect to the
conciliatory hierarchy.

Proposition 5.26. Assume the determinacy of all R-sets. For 0 < β < α <
V ω1+ω1(2),

Ω(β) ≤c Ω(α) and Ω(β)! ≤c Ω(α).

Proof. It is mutatis mutandis the same as the proof of Proposition 5.19. The
remaining cases are treated using Proposition 5.24.

Like in the C sets case, notice that for all 0 < α < β < ω1 and all
conciliatory set B such that Bb ∈ σD2(ΠR

β ), we have

(D2(Π
R
α ), B)b ∈ σD2(Π

R
β ),

so that the operations (D2(ΠR
α ), ·) preserve the σD2(ΠR

β ) classes.

Question. Let 0 < β < ω1, and B a conciliatory set such that Bb ∈ ΠR
β .

Do we have
(D2(Π

R
α ), B)b ∈ ΠR

β

for every α < β? In other words, do the operations (D2(ΠR
α ), ·) preserve the

ΠR
β classes, with α < β?
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6 Application to Automata
Theory

“ I was, oh, better than some. But no hope for true greatness.
Mathematics is the wrong discipline for people doomed to non-
greatness. However, that’s not why I switched. I didn’t switch to
computers because I missed the world or because I was haunted
by my own inadequacy per se. It was all too occult for me. I’m
the type of person who’s willing to confront moderately awesome
phenomena. Beyond that I lose my bearings. Chipping away
at gigantic unproved postulates. Investigating the properties of
common whole numbers and ending up in the wilds of analysis.
Intoxicating theorems. Nagging little symmetries. The secrets
hidden deep inside the great big primes. The way one formula or
number or expression keeps turning up in the most unexpected
places. The infinite. The infinitesimal. Glimpsing something,
then losing it. The way it slides off the eyeball. The unfinished
nature of the thing. ”

Don DeLillo, Ratner’s Star.

In this chapter, we transport some of the techniques we developed in the
descriptive set theory framework to theoretical computer science and, more
precisely, to automata theory. From definable subsets of the Baire space, we
thus shift our attention to sets of full binary trees that are recognizable by
automata. In this context, the use of topology tools has proved useful for the
study of relative complexity and characterization of regular languages.
After an introduction to this new framework and the formulation of rele-

vant definitions and notations as well as classical results, we use operations
on languages – inspired by the operations used in the sequence case, to con-
struct a sequence of strictly more and more regular tree languages. This
fragment of the Wadge hierarchy of regular tree languages has length ϕω(0),
where (ϕk) are the Veblen functions of basis ω, which provides a lower bound
for the height of this hierarchy. In the second part of this chapter, we study
the discrepancy between deterministically and unambiguously recognizable
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languages by proving that the height of the Wadge hierarchy restricted to un-
ambiguously recognizable tree languages is at least ϕ2(0), an ordinal tremen-
dously larger than the height of the Wadge hierarchy restricted to determin-
istically recognizable languages which is (ωω)3 + 3, as unraveled by Murlak
[85].
Results in Sections 6.2 and 6.3 are part of a joint work with Jacques Duparc

[30]. Results in Section 6.4 are part of a joint work with Jacques Duparc and
Szczepan Hummel [31].

6.1 Tree languages and tree automata

6.1.1 Full and conciliatory trees

A conciliatory binary tree over a finite set Σ is a partial function t : {0, 1}<ω →
Σ with a prefix-closed domain. Those trees can have both infinite and finite
branches. A tree is called full if dom(t) = {0, 1}∗. Let T ≤ω

Σ and TΣ denote,
respectively, the set of all conciliatory binary trees and the set of full binary
trees over Σ. Given x ∈ dom(t), we denote by tx the subtree of t rooted at
x. Let {0, 1}n denote the set of words over {0, 1} of length n, and let t be
a conciliatory tree over Σ. We denote by t[n] the finite initial binary tree of
height n+ 1 given by the restriction of t to

⋃
0≤i≤n{0, 1}i. A subset of TΣ is

called a (full) language over Σ.
The space TΣ equipped with the standard Cantor topology is a Polish space

and is in fact homeomorphic to the Cantor space1. We can thus adapt the
tools developed and the results obtained on the Wadge hierarchy for the Baire
space to the space of full trees. As in the sequences case, one can define a very
useful game characterization for the Wadge preorder. Let L,M ⊆ TΣ, the
two-player infinite game W (L,M) is defined as follows. Along the play, each
player builds a tree, say tI and tII. At every round, player I plays first, and
both players add a finite number of children to the terminal nodes of their
tree. Player II is allowed to skip its turn, but has to produce a tree in TΣ at
the end of the game. Player II wins the game if and only if tI ∈ L⇔ tII ∈M .
This game is designed in such a way that L ≤W M if and only if player II has
a winning strategy in the game W (L,M). In this chapter, we write A <W B
when II has a winning strategy in W (A,B) and I has a winning strategy in
W (B,A). This is in general stronger than the usual A <W B if and only
if A ≤W B and B ̸≤W A, but the two definitions coincide when the classes
considered are determined.

1See for example [8].
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For conciliatory languages L,M we define the conciliatory version of the
Wadge game: C(L,M) [32]. The rules are similar, except for the fact that
both players are now allowed to skip and to produce trees with finite branches
– or even finite trees. For conciliatory languages L,M we use the notation
L ≤c M if and only if II has a winning strategy in the game C(L,M). In this
chapter, we write A <c B when II has a winning strategy in C(A,B) and I
has a winning strategy in C(B,A).
As in the sequences case, there is a strong connection between conciliatory

and full languages. From a conciliatory language L over Σ, one defines the
corresponding language Lb of full trees over Σ ∪ {b} by

Lb =
{
t ∈ TΣ∪{b} : t[ /b] ∈ L

}
,

where b is an extra symbol that stands for “blank”, and t[ /b], the undressing
of t, is informally the conciliatory tree over Σ obtained once all the occur-
rences of b have been removed in a top-down manner. More precisely, if
there is a node v such that t(v) = b, we ignore this node and replace it with
v0. If, for every integer n, t(v0n) = b, then v /∈ dom(t[ /b]). This process is
illustrated by Fig. 6.1.

c c c ba a a a

c

bb c b
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ac a b

b

c c c b c a a a
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c a c ac a c a

b

ac c b
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aa c a

c

a c c a c a c c

a

b

b
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(a) A tree t with blanks
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c c c b c a a a
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aa c a
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a c c a c a c c

a

b

b
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(b) The blanks are deleted in a top-down manner.

c

aa a c

c

a

(c) The resulting tree t[ /b].

Figure 6.1: The undressing process.
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Formally, for each v ∈ {0, 1}∗ we consider two (possibly infinite) sequences
(wi) and (ui) in {0, 1}<ω:

– w0 = ε, u0 = v,

– for 0 ≤ i:

– if t(wi) = b, we set ui+1 = ui and wi+1 = wi0;

– if t(wi) ̸= b and ui = au′
i for a ∈ {0, 1}, we set

ui+1 = u′
i and wi+1 = wia;

– if t(wi) ̸= b and ui = ε, we halt the construction at step i.

If the construction is halted at some step i, then v ∈ dom(t[ /b]) and t[ /b](v) =
t(wi). Otherwise, v /∈ dom(t[ /b]). If Γ is a pointclass of full trees, we say
that a conciliatory language L is in Γ if and only if Lb is in Γ.

Lemma 6.1. Let L and M be conciliatory languages. Then

L ≤c M if and only if Lb ≤W M b.

Proof. A strategy in one game can be translated directly into a strategy in
the other game: arbitrary skipping in C(L,M) gives the same power as the
b labels in W (Lb,M b). In particular, in W (Lb,M b), II does not need to skip
at all.

The mapping L %→ Lb gives thus a natural embedding of the preorder ≤c

restricted to conciliatory sets in Γ into the Γ-Wadge hierarchy, exactly like
in the Baire space case.

6.1.2 Automata on trees

In this chapter, we are not interested in all the subset of the space of full
trees, not even in all the definable ones, but only in those that are called
regular, i.e. those who can be defined via finite devices called tree automata.

Parity games

We choose to work with automata that have the parity condition as accep-
tance condition, and whose semantics can be defined in terms of parity games ,
a sort of game that has been introduced by Emerson and Jutla [33] and inde-
pendently by Mostowski [82]. A parity game is a game between two players,
∃ and ∀, and is defined by a bipartite labeled graph G = (V, V∃, V∀, E, p0, r).
The sets of vertices V∃ and V∀ are disjoints sets of positions for ∃ and ∀ re-
spectively, with V = V∃∪V∀. The relation E ⊆ V ×V is the set of edges, the
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relation of possible moves. The initial position in a play is p0. The ranking
function is r : V → ω, and its range is finite. A vertex v ∈ V is a successor of
a vertex v′ ∈ V if (v′, v) ∈ E. The game proceeds as follows: the player who
owns the initial vertex chooses a successor of p0, say p1. Then the player who
owns p1 chooses one of its successors, and so on, and so forth. If they reach
a position with no successor the game stops, otherwise they keep playing.
A play is thus a sequence, possibly infinite, of positions (p0, p1, . . .). If the
play is infinite, ∃ wins the game if and only if lim supn→∞ r(pn) is even. If
the play is finite, ∃ wins the game if and only if the rank of the last position
visited is even. It is well known that parity games are determined, and that
a positional winning strategy can always be found for those games. For more
details, see e.g. [41].

Parity tree automata

A nondeterministic parity tree automaton A = ⟨Σ, Q, I, δ, r⟩ consists of a
finite input alphabet Σ, a finite set Q of states, a set of initial states I ⊆ Q,
a transition relation δ ⊆ Q× Σ× Q× Q and a priority function r : Q → ω.
A run of the automaton A on a binary conciliatory input tree t ∈ T ≤ω

Σ is a
conciliatory tree ρt ∈ T ≤ω

Q with dom(ρt) = {ε}∪{va : v ∈ dom(t)∧a ∈ {0, 1}}
such that the root of this tree is labeled with a state q ∈ I, and for each
v ∈ dom(t), transition (ρt(v), t(v), ρt(v1), ρt(v1)) ∈ δ. The run ρt is accepting
if parity condition is satisfied on each infinite branch of ρt, i.e. if the highest
rank of a state occurring infinitely often on the branch is even, and if the
rank of each leaf node in ρt is even. We say that a parity tree automaton A
accepts a conciliatory tree t if it has an accepting run on t. The language
recognized by A, denoted L(A) is the set of trees accepted by A. We let
Lω(A) denote the set of full trees recognized by A, i.e. Lω(A) = L(A) ∩ TΣ.
We use the following conventions in the diagrams. Nodes represent states
of the automaton, and labels correspond to state ranks. A red edge shows
the state that is assigned to the left successor node of a transition, and a
green edge goes to the right successor node. In order to lighten the notation,
transitions that are not depicted on a diagram lead to some all-accepting
state. Given automata A and B, we write A ≤c B for L(A) ≤c L(B), and
same with <c,≤W , <W . A parity tree automaton is called deterministic if
the transition relation is the graph of a total function from Q×Σ to Q×Q.
Observe that given a deterministic parity tree automaton A and a tree t,
there is a unique possible run of A on t.
Notice that as the set of states is finite, the priority function is bounded.

Moreover, shifting all ranks by an even number does not change the language
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6 Application to Automata Theory

recognized by a parity tree automaton. It is thus sufficient to consider parity
tree automata whose priorities are restricted to intervals [ι,κ], for ι ∈ {0, 1}.
We say that an automaton is of index [ι,κ] if its priorities are restricted to
intervals [ι,κ]. A language is of index [ι,κ] if there is an automaton of index
[ι,κ] that recognizes it. For an index [ι,κ], we denote by [ι,κ] the dual index,
i.e. [0,κ] = [1,κ+1] and [1,κ] = [0,κ−1]. Let us define the following partial
order on indices:

[ι,κ] ⊑ [ι′,κ′] if and only if

{
{ι, . . . ,κ} ⊆ {ι′, . . . ,κ′} or;

{ι+ 2, . . . ,κ+ 2} ⊆ {ι′, . . . ,κ′}.

The above ordering induces a hierarchy, the nondeterministic Mostowski-
Rabin index hierarchy. If a language L is recognized by a nondeterministic
parity tree automaton of index [ι,κ] and [ι,κ] ⊑ [ι′,κ′] then L is also recog-
nized by a nondeterministic parity tree automaton of index [ι′,κ′]. Moreover,
if a language is of index [ι,κ], then its complement is of index [ι,κ].

Corollary 6.2. The mapping L %→ Lb embeds the conciliatory hierarchy for
∆1

2-sets restricted to languages of index [ι,κ] into the ∆1
2-Wadge hierarchy

restricted to languages of index [ι,κ].

Proof. By Lemma 6.1 it is enough to prove that each automaton A can be
transformed into an automaton A′ such that Lω(A′) = L(A)b. Given any
automaton A, this is done by adding an all-accepting state ⊤ to the set of
states QA, and the set {(q, b, q,⊤) : q ∈ QA} to the transition relation δA, as
depicted in Fig. 6.2. The obtained automaton A′ is such that Lω(A′) = L(A)b.

i

b

0
b

⇤

⇤

Figure 6.2: The added b transitions.

Alternating parity tree automata

The alternating parity tree automata are a generalization of the nondetermin-
istic parity tree automata where the set of states Q is divided into two parts
Q = Q∃∪Q∀. The acceptance by such an automaton A of a conciliatory tree
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6.1 Tree languages and tree automata

t is defined via a parity game P(A, t) between two players, ∃ and ∀. During a
play, players construct a run of an automaton. If a given node is labelled by a
state from Q∃, during this construction, then the next transition is chosen by
∃. Otherwise it is chosen by ∀. Player ∃ wins the game if in the constructed
run on each infinite branch the parity condition holds, and if the rank of each
leaf node is even. A tree t is accepted by the automaton A if and only if ∃ has
a winning strategy in the game P(A, t). As in the nondeterministic case, we
say that an alternating parity tree automaton is of index [ι,κ] if its priorities
are restricted to intervals [ι,κ], which gives rise to the alternating version of
the Mostowski-Rabin index hierarchy. If a language L is recognized by an
alternating parity tree automaton of index [ι,κ] and [ι,κ] ⊑ [ι′,κ′] then L
is also recognized by an alternating parity tree automaton of index [ι′,κ′].
Moreover, if a language is of alternating index [ι,κ], then its complement is
of alternating index [ι,κ]. Note that nondeterministic automata are special
cases of alternating parity tree automata, so that a language of index [ι,κ] is
also of alternating index [ι,κ].

Game languages

Consider the alphabet Σ[ι,κ] = {∃, ∀}× {ι, . . . ,κ} with ι ∈ {0, 1} and ι ≤ κ.
For each tree t ∈ TΣ[ι,κ]

we define the parity game Gt = (V, V∃, V∀, E, p0, r) as
follows:

– V∃ = {v ∈ {0, 1}<ω : t(v)0 = ∃};
– V∀ = {v ∈ {0, 1}<ω : t(v)0 = ∀};
– E = {(w,wi) : w ∈ {0, 1}<ω and i ∈ {0, 1}};
– p0 = ε;

– r(v) = t(v)1, for each v ∈ {0, 1}<ω.

The game language of index [ι,κ], denoted by W[ι,κ], corresponds to the class
of full trees in TΣ[ι,κ]

for which player ∃ has a winning strategy in the cor-
responding parity game Gt. Each language W[ι,κ] is recognized by a nonde-
terministic parity tree automaton of index [ι,κ]. It is worth noticing that
the game languages witness the strictness of the index hierarchy of alternat-
ing tree automata [16], and that if [ι,κ] ⊑ [ι′,κ′], then W[ι,κ] ≤W W[ι′,κ′] [9].
Moreover, they are in some sense complete for their class of index, i.e. if A
is an alternating parity tree automaton of index [ι,κ], then L(A) ≤W W[ι,κ]

[7, 9].
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Topological complexity of regular languages

The topological approach to the complexity problem for regular languages
has proved extremely fruitful. We recall some basic facts binding automata
and classical topological hierarchies.
First, observe that nondeterministic parity tree automata recognize some

sets that are neither analytic, nor coanalytic, but their expressive power is
bounded by the second level of the projective hierarchy. Namely, by Rabin’s
complementation result [96], all nondeterministic languages are in the ∆1

2

class.

Theorem 6.3. Each language recognized by a parity tree automaton is in the
class ∆1

2.

One can compute the exact topological complexity of the first non-trivial
game languages.

Fact 6.4. The languages W[0,1] and W[1,2] are respectively Π1
1-complete and

Σ1
1-complete.

It has been proved by Finkel and Simonnet [37] that every game lan-
guage W[ι,κ] with [ι,κ] strictly above [0, 1] is not in the class D∗

α(Π
0
1) for all

α < ωω. A stronger and more precise result by Gogacz, Michalewski, Mio
and Skrzypczak [40] relates game languages to the Kolmogorov hierarchy of
R-sets.

Theorem 6.5. Let k > 0, the game language W[k−1,2k−1] is complete for the
k-th level of the Kolmogorov hierarchy of R-sets.

Hence we can refine Theorem 6.3 to get a sharp complexity bound for
regular languages.

Corollary 6.6. Each language recognized by a parity tree automaton is in
the class

⋃
n∈ω Σ

R
n .

This last result was independently established by Simonnet [103] and dis-
cussed by Finkel, Lecomte, and Simonnet [36], but with other methods that
did not provide the sharpness of the bound. Since the R-sets are strictly in-
cluded in the ∆1

2 class, the bound given by Rabin’s complementation result
was not optimal.
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6.2 Operations on languages and their automatic
counterparts

In this section, we present classical operations defined by Duparc and Murlak
[32] on conciliatory tree languages that allow us to construct more and more
complicated languages. Without loss of generality, we may choose the alpha-
bet Σ = {a, c}.

6.2.1 The sum

For L,M ⊆ T ≤ω
Σ , we define L+M (the sum of L and M) as the language

formed of all those trees t ∈ T ≤ω
Σ such that one of the following conditions

holds:

– t(10n) = a for each integer n and t0 ∈M ;

– the node 10n is the first on the path 10<ω labeled with c and either
t(10n0) = a and t10n00 ∈ L, or t(10n0) = c and t10n00 ∈ L!.

This operation behaves well regarding the conciliatory hierarchy.

Facts 6.7 ([26, 32]). Given L, M , and M ′ any conciliatory tree languages
over Σ,

(1) (L+M)! ≡c L+M !.

(2) The operation + preserves the conciliatory ordering: if M ′ ≤c M , then

L+M ′ ≤c L+M.

(3) Assuming enough determinacy:

dc(L+M) = dc(L) + dc(M).

Let A and B be two automata that recognize, respectively, the concilia-
tory languages M and L. Then the automaton B + A depicted in Fig. 6.3
recognizes the sum of L and M . In this picture, C is any automaton that
recognizes a language equivalent to L!, and the parity i and j are defined as
follows:

– i = 0 if and only if the empty tree is accepted by A;

– j = 1 if and only if L(A) is equivalent to L(A)→ ❣, where ❣denotes
any automaton that rejects all trees.2

2A player in charge of L(A) → ❣in a conciliatory game is like a player in charge of
L(A), but with the extra possibility at any moment of the play to reach a definitively
rejecting position.
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i

A
0 1

B
1 j

⇤
⇤ c

⇤a

⇤

a

c a

c C ⌘W B{

Figure 6.3: The automaton B +A that recognizes L(B)+ L(A). The values
of i and j depend on properties of A.

Notice that if A and B are parity tree automata of index [0, 2] such that
L(B)! can be recognized by an automaton of index [0, 2], then B + A is a
parity tree automaton of index [0, 2].

Lemma 6.8. Let L, L′, M and M ′ be conciliatory languages such that L <c

L′ and M ≤c M ′. Then the following hold.

(1) M + L <c M ′ + L′;

(2) M <c M + L.

Proof.

(1) It is clear that M + L ≤c M ′ + L′, what remains to prove is thus that
I has a winning strategy in C(M ′ + L′,M + L). Let τ be the winning
strategy for I in C(L′, L). Observe that, since M ≤c M ′, player I has
a winning strategy τ ′ in C(M ′,M !). A strategy σ for I in the game
C(M ′ + L′,M + L) is the following. First I plays a on the node ε,
and then, as long as player II does not play a c on the branch 10<ω, I
follows τ on the left subtree 0{0, 1}<ω. If ever II plays a c on a node
10n, then I copies II’s moves for the branch 10n0, and then follows τ ′

on the subtree 10n0{0, 1}<ω. Since τ and τ ′ are winning, σ is a winning
strategy for I in C(M ′ + L′,M + L). Thus M + L <c M ′ + L′.

(2) It is clear that M ≤c M+L: a winning strategy for II in C(M,M+L)
is indeed to play a at ε, c at the node 1, a at the node 010, and then
copy I’s moves in the subtree 010{0, 1}<ω. The winning strategy σ
for I in the game C(M + L,M) is similar. First, I plays a at ε, c at
the node 1, c at the node 010, and then copy I’s moves in the subtree
010{0, 1}<ω.
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6.2 Operations on languages and automata

6.2.2 Multiplication by a countable ordinal

In order to define the multiplication of a language by a countable ordinal,
we first introduce the operation supn<ω. Let (Ln)n∈ω ⊆ T ≤ω

Σ be a countable
family of conciliatory languages. Define supn<ω Ln as the conciliatory tree
language containing all of those trees t ∈ T ≤ω

Σ such that one of the following
conditions holds:

– t(1n) = a for all integer n;

– the node 1n is the first on the path 1<ω labeled with c and t1n0 ∈ Ln.

The multiplication by a countable ordinal is now defined as an iterated sum.
For L ⊆ T ≤ω

Σ , we define:

– L · 1 = L;

– L · (α + 1) = (L · α)+ L;

– L · λ = supα<λ L · α, for λ limit.

Let A be an automaton that recognizes the conciliatory languages L. Then
the automaton A • ω depicted in Fig. 6.4a recognizes a language equivalent
to L · ω. In this picture, C is any automaton that recognizes a language
equivalent to L!. The automaton A • ω that recognizes the complement of
L(A • ω), and thus a language equivalent to the complement of L · ω, is
depicted in Fig. 6.4b. Notice that if A is of index [0, 2], and if there exists an
automaton that recognizes L(A)! of index [0, 2], then both A • ω and A • ω
are parity tree automata of index [0, 2]. Hence, for every ordinal 0 < α < ωω

A
1

0

0
A{

a

c a

a
c

a

a
1 0 1

a

a

0
⇤

(a) The automaton A • ω.

A
1

1

1
A{

a

c a

a
c

a

a
1 1 1

a

a

0
⇤

(b) The automaton A • ω.

Figure 6.4: Automata that recognize respectively a language equivalent to
L · ω and a language equivalent to its complement.

and for every automaton A, there exists an automaton A•α that recognizes
L(A) · α. Moreover, if A is of index [0, 2], and if there exists an automaton
that recognizes L(A)! of index [0, 2], then A • α is a parity tree automaton
of index [0, 2].
As a corollary of Lemma 6.8 and Facts 6.7, the multiplication by a count-

able ordinal behaves well regarding the conciliatory hierarchy.

Corollary 6.9. Let L and M be conciliatory languages such that L <c M .
Then for every countable ordinals 0 < α < β < ωω:
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6 Application to Automata Theory

(1) L · α <c L · β;
(2) L · α <c M · α.

6.2.3 The pseudo-exponentiation

Let P ⊆ T ≤ω
Σ be a conciliatory tree language. For t ∈ T ≤ω

Σ , let:

iP (t)(a1, a2, . . . , an) =

{
t(a1, 0, a2, 0, . . . , 0, an, 0), if ta1,0,a2,0,...,0,an,1 ∈ P ;

b, otherwise.

This process is illustrated in Fig. 6.5. The nodes in blue are called the main
run. The blue arrows denote the dependency of a node of the main run on
a subtree of auxiliary moves. If the auxiliary subtree of a main run node is
not in P , then we say that the node is killed.

c a c ca a a a

c

cc c c

a

ac a a

a

c c c a c a a a

c

a

c

a

c a c ac a c a

c

ac c c

a

aa c a

c

a c c a c a c c

a

c

a

a

a

Figure 6.5: Main run and auxiliary moves.

Let L ⊆ T ≤ω
Σ , we define the action of P on L, in symbols (P, L), by

{
t ∈ T ≤ω

Σ : iP (t)[ /b] ∈ L
}
.

Let PΠ0
1
be the complete closed set of all full trees over Σ with all nodes on

the leftmost branch 0<ω labelled by a. For L ⊆ T ≤ω
Σ , we denote by (Π0

1, L)
the action of PΠ0

1
on L. This operation (Π0

1, ·) behaves well regarding the
conciliatory hierarchy.

Facts 6.10 ([26, 32]). Let L and M be conciliatory tree languages over Σ.
Then the following hold.

(1) (Π0
1, L)

! ≡c (Π0
1, L

!).

(2) If L ≤c M , then (Π0
1, L) ≤c (Π0

1,M).

(3) If L <c M , then (Π0
1, L) <c (Π0

1,M).
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6.2 Operations on languages and automata

(4) Assuming enough determinacy, dc((Π0
1, L)) = ωdc(L)+ε

1 , where

ε =

⎧
⎪⎨

⎪⎩

−1 if dc(L) < ω;

0 if dc(L) = β + n and cof(β) = ω1;

1 if dc(L) = β + n and cof(β) = ω.

Without assuming any determinacy hypothesis, we can nonetheless prove
the following Proposition that links (Π0

1, ·) to +.

Proposition 6.11. Let L, L′ and M be conciliatory languages such that
L <c (Π0

1,M) and L′ <c (Π0
1,M). Then

(1) L+ L′ <c (Π0
1,M);

(2) L · α <c (Π0
1,M), for any α < ωω.

Proof. We only prove the first part of the Proposition here, the other is mu-
tatis mutandis the same. The fact that L + L′ ≤c (Π0

1,M) is clear: if σ0,
σ1 and σ′ are winning strategies respectively in the games C(L, (Π0

1,M)),
C(L!, (Π0

1,M)) and C(L′, (Π0
1,M)), a winning strategy for II in C(L +

L′, (Π0
1,M)) is the following. As long as player I does not play a c on the

branch 10<ω, II does not kill any nodes and follows σ′ to what I plays in the
subtree 0{0, 1}<ω to get her main run. If ever II plays a c on a node 10n,
then II kills all the nodes of the main run she had already played (by playing
c on the leftmost branches of appropriate auxiliary subtrees), and begins to
play along a tree not in M in her main run, without killing any node. If
I plays a on the node 10n0, she kills every node in the main run she had
already played, and then follows σ0 on the subtree 10n0{0, 1}<ω. If I plays
c on the node 10n0, she kills every node in the main run she had already
played, and then she follows σ1 on the subtree 10n0{0, 1}<ω. The proof that
I has a winning strategy τ in the game C((Π0

1,M), L + L′) is mutatis mu-
tandis the same, given that I has a winning strategy for each of the games
C((Π0

1,M), L), C((Π0
1,M), L!) and C((Π0

1,M), L′).

Given any automaton A recognizing L ⊆ T ≤ω
Σ , the conciliatory language

(Π0
1, L) is recognized by the automaton (ωω)A defined from A by replacing

each state of A by a “gadget”, as depicted in Fig. 6.6. By replacing a state
by a gadget we mean that all transitions ending in this state should now end
in the initial state of the gadget, and that all the transitions leaving this state
should now leave from the final state of the gadget. This sort of gadget first
appeared in [32]. Notice that if L ⊆ T ≤ω

Σ is of index [0, 2], then (Π0
1, L) is

also of index [0, 2]. Observe also that for each positive integer n, the game
languages W[0,n] is a fixed points for pseudo-exponentiation, i.e.

(Π0
1,W[0,n])

b ≡W W[0,n].
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Figure 6.6: The gadget to replace a state in A

6.2.4 The operation (D2(Π1
1), ·)

The D2(Π1
1) class

We define a conciliatory language that is D2(Π1
1)-complete and such that

its complement and itself are both recognizable by parity tree automata
whose priorities are restricted to {0, 1, 2}. Their definitions are given via
the automata that recognize them. The abstract idea behind our construc-
tion is depicted by Fig. 6.7 which represents a general form of automata
that would recognize languages that are D2(Π1

1)-complete (Fig. 6.7a), and
Ď2(Π1

1)-complete (Fig. 6.7b).

⌃1
1

0

⇤ ⇤

⇧1
1

(a) A1

⌃1
1

1

⇤ ⇤

⇧1
1

⇤ ⇤⇤ ⇤

(b) A2

Figure 6.7: Sketch of automata, where Π1
1 and Σ1

1 denote automata that rec-
ognize respectively a Π1

1-complete language and the complement
of this language.

The automaton A1, indeed, recognizes a tree t ∈ T ≤ω
Σ if and only if t0 is in a

given conciliatory Π1
1-complete language (say A) and t1 is in its complement

which is Σ1
1-complete. Since the maps t %→ t0 and t %→ t1 are continuous, the

language recognized by the automaton is thus D2(Π1
1). Moreover, if M ∈ Π1

1

and M ′ ∈ Σ1
1, M ∩M ′ ≤c L(A1): a winning strategy for player II in the

game C(M ∩M ′, L(A1)) is indeed to glue together her winning strategies in
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the games C(M,A) and C(M ′, A!). Hence, the language recognized by A1

is D2(Π1
1)-complete. The reasoning for A2 is similar. We now define two

automata: the first one recognizes a Σ1
1-complete language, and the other

one recognizes the complement of the first one, i.e. a Π1
1-complete language.

They are depicted in Fig. 6.8.

1
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2 c
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a

aa

(a) AΣ1
1

0

c
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1 c

cc

a

aa

(b) AΠ1
1

Figure 6.8: Automata that recognize respectively a Σ1
1-complete and its com-

plement

We denote by AΣ1
1
and AΠ1

1
the conciliatory languages recognized respec-

tively by AΣ1
1
and AΠ1

1
. Combining these constructions, we can now define an

unambiguously recognizable conciliatory language that is D2(Π1
1)-complete

(Fig. 6.9a) and such that its complement (Fig. 6.9b) is also recognizable, via
the automata that recognize each of them.
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(b) AĎ2(Π1
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Figure 6.9: Automata that recognize respectively a D2(Π1
1)-complete and its

complement.

We denote by AD2(Π1
1)

and AĎ2(Π1
1)

the conciliatory languages recognized
respectively by AD2(Π1

1)
and AĎ2(Π1

1)
.
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The operation (D2(Π1
1), ·)

The operations defined in Section 6.2 are Borel in the sense that when we
apply them to Borel languages, the resulting language is still Borel. In order
to describe the most of the Wadge hierarchy of languages recognized by parity
tree automata we need to climb higher.
For M ⊆ T ≤ω

Σ , we denote by (D2(Π1
1),M) the action of L(AD2(Π1

1)
) on

M . Observe that this operation is highly non-Borel, since if we apply it to a
Σ0

1-complete conciliatory language, the resulting language will be complete
for the pointclass of all the countable unions of D2(Π1

1) languages. The
operation (D2(Π1

1), ·) behaves well with respect to ≤c.

Theorem 6.12. Let M,M ′ ⊆ T ≤ω
Σ . If M ≤c M ′, then

(1) (D2(Π1
1),M)! ≡c (D2(Π1

1),M
!);

(2) (D2(Π1
1),M) ≤c (D2(Π1

1),M
′).

Proof. The first point holds merely by definition of the operation (D2(Π1
1), ·).

The proof of the second point relies on a variation of the remote control
strategy and is the tree counterpart of the demonstration of Theorem 5.13.
Let t be a finite binary tree over {0, 1, 2, 3}. We say that t is coherent if
for every node v ∈ dom(t), t(v) ∈ {1, 2, 3} implies that all the nodes in
v1{0, 1}<ω∩dom(t) have the same label, t(v). Let (βn)n∈ω be an enumeration
of the set of coherent trees, such that if ti is a subtree of tj, then i ≤ j.
We call βi the i-th bet. A bet encodes informations on the auxiliary moves
of I in the game C((D2(Π1

1),M), (D2(Π1
1),M

′)): its underlying binary tree
determines the part of the main run taken into account, and the values at
the nodes whether this node will be killed or not, and how. Suppose I plays a
conciliatory tree t. For v = v0 . . . vj ∈ dom(βi), βi(v) = 0 means that the node
0v00v1 . . . 0vj stays alive, i.e. that t0v00v1...0vj1 ∈ AD2(Π1

1)
. The value 1 means

that the node 0v00v1 . . . 0vj is killed because t0v00v1...0vj10 and t0v00v1...0vj11
belong to AΠ1

1
, so that t0v00v1...0vj1 ∈ AĎ2(Π1

1)
. The value 2 means that the

node 0v00v1 . . . 0vj is killed because t0v00v1...0vj10 ∈ AΣ1
1
and t0v00v1...0vj11 ∈

AΠ1
1
, and the value 3 means that it is killed because both t0v00v1...0vj10 and

t0v00v1...0vj11 belong to AΣ1
1
. We say that a bet βi is fulfilled if at the end of the

game, for all v ∈ dom(βi), βi(v) is true with respect to the conciliatory tree
played by I. Notice that it is a D2(Π1

1) condition (it is a finite intersection
of Σ1

1 and Π1
1 sets), so that II can check if a bet is fulfilled or not with an

auxiliary move.
Suppose now that II has a winning strategy σ in C(M,M ′). We describe a

winning strategy σ′ for II in the game C((D2(Π1
1),M), (D2(Π1

1),M
′)). Each
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level of II’s main run correspond to a bet: suppose at some point I has
constructed a finite tree t for his main run, and let βi be a bet such that
dom(t) = dom(βi). On the level i of her main run, II follows σ modulo βi, in
the sense that she plays along σ as if at all the levels j < i of her main run
such that βj is not a subtree of βi, the nodes were killed, and she checks with
her auxiliary moves for the nodes of the main run at this level whether βi is
fulfilled or not, so that all the nodes of her main run at this level are killed
if the bet is not fulfilled. At the end of the game, a unique sequence of bets
forming a chain for the inclusion is fulfilled, which contains all information
about the way player I used his auxiliary moves, and which nodes he killed.
Hence,

i
AD2(Π

1
1)(σ′ ∗ t)[ /b] = σ ∗ iAD2(Π

1
1)(t)[ /b].

What completes the proof.

A winning strategy for I in in C(M,M ′) can also be “remote controlled”
to a winning strategy for I in C((D2(Π1

1),M), (D2(Π1
1),M

′)), so that the
following holds.

Corollary 6.13. Let M and M ′ be conciliatory languages such that M <c

M ′. Then
(D2(Π

1
1),M) <c (D2(Π

1
1),M

′)

The operation (D2(Π1
1), ·) is much stronger than (Π0

1, ·), and is in some
sense a fixed point of it.

Proposition 6.14. Let M ⊆ T ≤ω
Σ . Then

(
Π0

1, (D2(Π
1
1),M)

)
≡c (D2(Π

1
1),M).

Let A be an automaton that recognizes M ⊆ T ≤ω
Σ . Then the conciliatory

tree language (D2(Π1
1),M) is recognized by the automaton εA defined from

A by replacing each state of A by a “gadget”, as depicted in Fig. 6.10. As in
the pseudo-exponentiation case, by replacing a state by the gadget we mean
that all transitions ending in this state should now end in the initial state of
the gadget, and that all the transitions starting from this state should now
start from the final state of the gadget. Notice that if M ⊆ T ≤ω

Σ is of index
[0, 2], then (D2(Π1

1),M) is also of index [0, 2], and that W[0,2] is a fixed point
of this operation. In particular the game language W[0,2] is above all the
differences of coanalytic sets, which is a strengthening of a result obtained
by Finkel and Simonnet [37].

99



6 Application to Automata Theory

i

i

⇤
i

i

⇤

⇤

⇤

0

c

a

1

c

c

c
a

a

a

1

c

a

2

c

c

c
a

a

a

1

⇤

⇤

⇤
⇤

⇤

⇤

0

⇤

⇤

⇤

Figure 6.10: The gadget to replace a state in A.

6.2.5 The operations (D2([W[0,n]]), ·)
Let L,M be two conciliatory languages over Σ, and let L(M denote the
conjunctive product of L and M , that is

L(M =
{
t ∈ T ≤ω

Σ : t0 ∈ L and t1 ∈M
}
.

Notice that the conjunctive product preserves the regularity and the index of
languages, so that L and M are, respectively, of index [ι,κ] and [ι′,κ′], then
L(M is of index [min{ι, ι′},max{κ,κ′}].
Recall that the game languagesW[0,1] andW[1,2] are, respectively,Π1

1-complete
andΣ1

1-complete. The languageW[0,1](W[1,2] is thusD2(Π1
1)-complete. Hence

the operation (D2(Π1
1), ·) is equivalent to the application of W[0,1](W[1,2].

Building on this idea, we define for each positive integer n the operation
(D2([W[0,n]]), ·) as the application of W[0,n](W[1,n+1].

Lemma 6.15. For every positive integer n, the following holds.

W[0,n](W[0,n] ≡W W[0,n] and W[1,n+1](W[1,n+1] ≡W W[1,n+1]

Proof. It is clear that W[0,n] ≤W W[0,n](W[0,n]. For the converse, notice that
the language W[0,n](W[0,n] is of index [0, n], so that by completeness of W[0,n],
we have also W[0,n](W[0,n] ≤W W[0,n]. The proof for W[1,n+1] is similar.

Thanks to this Lemma, we can generalize the results proved for the oper-
ation (D2(Π1

1), ·) by adapting the proof of Theorem 6.12.

Proposition 6.16. Let M,M ′ ⊆ T ≤ω
Σ , and n a positive integer. If M <c M ′,

then
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6.3 A fragment of the Wadge hierarchy of regular tree languages

(1) (D2(W[0,n]),M)! ≡c (D2(W[0,n]),M !);

(2) (D2(W[0,n]),M) <c (D2(W[0,n]),M ′);

(3)
(
Π0

1, (D2(W[0,n]),M)
)
≡c (D2(W[0,n]),M);

(4)
(
D2(W[0,m]), (D2(W[0,n]),M)

)
≡c (D2(W[0,n]),M), for all 0 < m < n.

Let A be an automaton that recognizes L ⊆ T ≤ω
Σ . Then the conciliatory

tree language (D2([W[0,n]]), L) is recognized by an automaton defined from A
by replacing each state of A by a “gadget”, as depicted in Fig. 6.11, where
W[0,n] and W[1,n+1] are automata that recognize respectively the game lan-
guagesW[0,n] andW[1,n+1]. As in the pseudo-exponentiation case, by replacing
a state by the gadget we mean that all transitions ending in this state should
now end in the initial state of the gadget, and that all the transitions starting
from this state should now start from the final state of the gadget. Observe
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i

i
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⇤
1

⇤
⇤⇤

⇤
⇤

⇤

0

⇤

⇤

⇤

W[0,n]

W[1,n+1]

Figure 6.11: The gadget to replace a state in A.

moreover that if L is of index [ι,κ] with ι ∈ {0, 1}, then (D2([W[0,n]]), L)
is of index [0,max{κ, n + 1}]. In particular, languages of index [ι,κ] with
ι ∈ {0, 1} are preserved by all the operations (D2([W[0,n]]), L), with n < κ.

6.3 A fragment of the Wadge hierarchy of
regular tree languages

Thanks to the operations defined above, we construct a sequence of strictly
more and more complex regular languages. First, we recall the definition of
the Veblen hierarchy of base ω, as introduced by Veblen [113].

Definition 6.17. The Veblen hierarchy of base ω consists of functions (ϕξ)ξ<ω1

from ω1 to itself which are defined as follows:

(i) ϕ0 is the exponentiation of base ω:

– ϕ0(0) = 1;
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6 Application to Automata Theory

– ϕ0(α) = ωα for all 0 < α < ω1.

(ii) For λ > 0, ϕλ is the function that enumerates the fixed points of the
Veblen functions of lesser degrees. The ordinal ϕλ(α) is the (1 + α)-th
fixed point of all ϕξ with ξ < λ.

Every ordinal α > 0 admits a unique Cantor normal form of base ωω which
is an expression of the form

α = (ωω)αk · νk + · · ·+ (ωω)α0 · ν0,

where k < ω, 0 < νi < ωω for any i ≤ k, and α0 < · · · < αk < α.
For every ordinal 0 < α < ϕω(0), we inductively define a pair of languages

(Lα, Lα) that are incomparable through the conciliatory ordering. If the
Cantor normal form of α is α = (ωω)αk · νk + · · ·+ (ωω)α0 · ν0, we set

Lα = L(ωω)αk · νk + · · ·+ L(ωω)α0 · ν0,

and
Lα = L(ωω)αk · νk + · · ·+ L(ωω)α0 · ν0,

where L(ωω)αi and L(ωω)αi are respectively

– the empty language ❣and the full language ❣if αi = 0;

– (Π0
1, Lαi) and (Π0

1, Lαi) if αi < (ωω)αi ;

– (D2([W[0,k]]), L2+β) and (D2([W[0,k]]), L2+β) if αi = (ωω)αi holds and
αi = ϕk(β) for some 0 < β < αi;

– W[0,k] and W[1,k+1] if αi = ϕk(0) for some positive integer k.

Lemma 6.18. For 0 < α < β < ϕω(0), we have

(1) Lα ̸≤c Lα and Lα ̸≤c Lα.

(2) Lα <c Lβ ; Lα <c Lβ ; Lα <c Lβ and Lα <c Lβ.

Proof. The proof of the first part of the lemma, by induction on α, relies on
the fact that the operations considered “commute” with taking the comple-
ment, see Facts 6.7 and 6.10, Proposition 6.16, and Corollary 6.9.
The proof of the second part of the lemma is also by induction on α and

β, and relies on the fact that the operations preserve the relation <c, see
Lemma 6.8, Facts 6.10, and Corollary 6.13, and on the fact that they do not
“overlap”, see Propositions 6.11, 6.14 and 6.16.

Applying the embedding L %→ Lb, we have thus generated a family
(
Lb

α

)
of

regular languages that respects the strict Wadge ordering. Hence the main
result follows.
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6.4 Unambiguity vs. Determinism

Theorem 6.19. There exists a family
(
Lb

α

)
α<ϕω(0)

of regular tree languages

such that α < β holds if and only if Lb
α <W Lb

β holds as well.

The height of the Wadge hierarchy restricted to regular languages is thus
at least ϕω(0).

6.4 Unambiguity vs. Determinism

An unambiguous automaton is a nondeterministic automaton that admits at
most one accepting run on each input. By definition, the class of languages
recognized by unambiguous automata includes the class of languages recog-
nized by deterministic automata and is included in the class of languages
recognized by nondeterministic automata. Depending on the context, some
of these inclusions may be strict. For example, in the case of finite automata
on finite words, none of these inclusions is strict, because every regular lan-
guage is recognized by a deterministic finite automaton. The picture is still
trivial for infinite words if we consider the parity condition, but becomes
more interesting for Büchi automata. While not every regular language is
recognized by deterministic Büchi automaton, it always can be recognized
by an unambiguous automaton [6].
On the one hand, it is easy to observe that unambiguous automata are more

expressive than the deterministic ones in this context: consider for example
the language “exists exactly one branch with infinitely many labels a”. On
the other hand, it took a while to determine whether there are languages
that are inherently ambiguous: it was shown by Niwiński and Walukiewicz
[91] (later described in [22] and [23]) that unambiguous automata do not
recognize all nondeterministic languages.
It is well-known that deterministic parity tree automata recognize only

coanalytic sets. Since nondeterministic automata recognize some sets that
are neither analytic, nor coanalytic, we use the Wadge hierarchy, the finest
topological complexity measure, to address the question of the position of
unambiguous languages in between deterministic and nondeterministic. By
showing that some of the operations we defined, or slight modifications of
them, preserve unambiguousness, we construct a sequence of unambiguous
automata that recognize strictly more and more complex languages, and
whose length is far beyond (ωω)3 + 3, which is the height of the Wadge
hierarchy of deterministic tree languages uncovered by Murlak [85]. Results
in this section are a joint work with Jacques Duparc and Szczepan Hummel
[31].
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6 Application to Automata Theory

6.4.1 Operations and unambiguity

The sum and the pseudo-exponentiation

The operation sum is in itself unambiguous, so that if A and B are unam-
biguous, and if there exists an unambiguous C equivalent to the complement
of B, their sum B+A is equivalent to an unambiguous language that we will
denote by B +u A. Moreover, if L and M are unambiguously recognizable
conciliatory languages, and if the complement of M is equivalent to an unam-
biguously recognizable language M̌ , the complement of L+M is equivalent
to L + M̌ , which is unambiguously recognizable. We also define for every
positive integer n:

B •u n = B +u · · ·+u B︸ ︷︷ ︸
n times

.

Notice that if A is unambiguous, then (ωω)A is also unambiguous, so that
the operation (Π0

1, ·) preserves the unambiguity of tree languages.

The operation (Du
2 (Π

1
1), ·)

Regarding the operation (D2(Π1
1), ·), we have to modify the conditions on the

auxiliary moves to make it unambiguous preserving. To do so, we use the
unambiguous automaton G defined by Hummel [46] and depicted in Fig. 6.12
that recognizes a Σ1

1-complete language. Notice that the complement of the
language recognized by G is itself unambiguous.

1⇤

a

c
2a

a

a

a

1

a

0a

a

a

a

0

c

1

c

c

Figure 6.12: The automaton G.

From these automata we construct, in the same way that in Section 6.2.4,
two unambiguous automata Au

D2(Π1
1)
and Au

Ď2(Π1
1)
that recognize respectively

a D2(Π1
1)-complete language and its complement. Now we define the opera-

tion (Du
2 (Π

1
1), ·) as the application of L(Au

D2(Π1
1)
). This operation is equivalent

to (D2(Π1
1), ·), i.e. if L and M are two languages equivalent with respect to

the conciliatory preorder, then (Du
2 (Π

1
1), L) and (D2(Π1

1),M) are also equiv-
alent. Thus all the results proved in Section 6.2.4 hold for (Du

2 (Π
1
1), ·). If A
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6.4 Unambiguity vs. Determinism

is an unambiguous automaton that recognizes the language L, we denote by
uεA the unambiguous automaton that recognizes the language (Du

2 (Π
1
1), L)

obtained from A by replacing each state of A by a “gadget”, as depicted in
Fig. 6.13.
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Figure 6.13: The gadget to replace a state in A.

6.4.2 A fragment of the Wadge hierarchy of unambiguous
tree languages

For every ordinal 0 < α < ϕ2(0), we inductively define a pair of unambiguous
automata (Bα, B̄α) whose languages are both non-self-dual and incomparable
through the conciliatory ordering. If the CNF of α is

α = ωαk · nk + · · ·+ ωα0 · n0,

we set
Bα = Bωαk •u nk +

u · · ·+u Bωα0 •u n0

and
B̄α = Bωαk •u nk +

u · · ·+u B̄ωα0 •u n0,

where Bωαi and B̄ωαi are respectively
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6 Application to Automata Theory

• the unambiguous automaton ❣that recognizes ❣, and the unambiguous
automaton ❣that recognizes ❣if αi = 0;

• (ωω)Bαi and (ωω)B̄αi if αi < ωαi ;

• uεB2+β
and uεB̄2+β

if αi = ωαi and αi = εβ for some β < αi.

Lemma 6.20. Let 0 < α < β < ϕ2(0),

(1) Bα ̸≤c B̄α and B̄α ̸≤c Bα.

(2) Bα <c Bβ ; B̄α <c Bβ ; Bα <c B̄β and B̄α <c B̄β.

Proof. It is essentially the same as the proof of Lemma 6.18.

Applying the embedding L %→ Lb which preserves trivially the unambiguity
of languages, we have thus generated a family

(
Bb
α

)
α<ϕ2(0)

of unambiguous

automata that respects the strict Wadge ordering: α < β if and only if
Bb
α <W Bb

β.

Theorem 6.21. There exists a family
(
Bb
α

)
α<ϕ2(0)

of unambiguous parity tree

automata whose priorities are restricted to {0, 1, 2} such that

(1) they recognize languages of full trees over the alphabet {a, b, c};
(2) α < β holds if and only if Bb

α <W Bb
β holds as well.

Even though the exact Wadge rank of this family is unknown, this frag-
ment of the ∆1

2-Wadge hierarchy restricted to unambiguously recognizable
languages climbs far above theΣ1

1 class. Moreover its length, ϕ2(0) is tremen-
dously larger than (ωω)3 + 3, which is the height of the Wadge hierarchy of
deterministic tree languages uncovered by Murlak [85]. The gap between the
respective topological complexity of the two considered classes of languages,
measured by the difference between the height of their respective Wadge
hierarchies, illustrates the discrepancy between these classes.
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7 Conclusion

Throughout this thesis, our aim has been to extend the fine topological anal-
ysis of the Baire space beyond the Borel world. If a complete description
of the whole Wadge hierarchy of the ∆1

2 sets seems far out of reach for the
time being, we have nonetheless been able to unravel the complete Wadge
hierarchy of the class of increasing differences of coanalytic sets, and to give
a fragment of the Wadge hierarchy of R-sets. Moreover, we have provided
an interpretation of the conciliatory ansatz used by Duparc, and applied the
tools developed in the framework of descriptive set theory to automata the-
ory. A lot of questions emerged from this work, as each answer leads us to
new interrogations. A selection of those which seem to be the most immediate
and promising is proposed below.

Reductions by relatively continuous relations

We proved in Chapter 3 that the conciliatory preorder is induced by reduc-
tions by relatively continuous relations, as defined by Pequignot [93], when
the set ω≤ω is endowed with the prefix topology, and that it is not induced
by reductions by continuous functions.

Question 1. Is there a natural topology on the set ω≤ω such that the concil-
iatory relation would coincide with the reduction by continuous functions?

The conciliatory hierarchy and the Wadge hierarchy restricted to non-self-
dual classes coincide, so that one can also wonder if this is a characteristic
property of Conc, or if it is shared by a wider class of topological spaces. We
say that a topological space X has the property (C) if for every non-self-dual
Borel subset A of the Baire space, there exists a subset A′ of X such that

A &W A′ and A′ &W A.

Question 2. Does the class of all topological spaces that have the property
(C) coincide with a natural class of topological spaces?
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7 Conclusion

Pequignot conjectured in his PhD thesis [94, Problem 6] that all uncount-
able quasi-Polish spaces have the property (C).
Another question arising from our analysis of Conc is whether we can

generalize Theorem 3.17 to all the Borel Wadge classes. Does the result due
to Wadge and which links non-self-dual pointclasses with boolean operations
still hold if we move from pointclasses to initial segments for &W ?

Question 3. Let X be a second countable T0 space. Can every non-self-dual
initial segment for &W be defined in terms of Boolean operations on open
sets?

The gap between Diff (Π1
1) and D∗

ω(Π
1
1)

Remember that from the works of Martin [77] and Harrington [42], we know
that the class D∗

ω2(Π1
1) is determined under DET(Π1

1). Hence the deter-
minacy hypothesis DET(Π1

1) is sufficient to fix the structure of the Wadge
hierarchy of the class D∗

ω2(Π1
1). The fact that the natural extension of the

methods used in the Borel case provides the full description of the Wadge
hierarchy of the class Diff(Π1

1) only might thus seem quite disappointing. It
is nonetheless worth mentioning that the only result about the Wadge hier-
archy above Diff(Π1

1), that is Theorem 5.5 due to Kechris and Martin and
which states that the Wadge rank of the class D∗

ω(Π
1
1) is ℵ2, relies on (AD).

It could thus very well be the case that even though the general structure
of the Wadge hierarchy of the class D∗

ω2(Π1
1) is fixed under DET(Π1

1), the
precise content of the Wadge degrees and the ranks depend on the amount of
determinacy and/or choice assumed. In particular, one can wonder whether
a consequence of Theorem 5.5 regarding the gap between the classes Diff(Π1

1)
and D∗

ω(Π
1
1) still holds if we assume the axiom of choice and weak determi-

nacy hypotheses.

Question 4. Is the equality Diff(Π1
1) = ∆(D∗

ω(Π
1
1)) consistent under weaker

determinacy hypothesis?

The game quantifier

We recall the definition of the game quantifier

G

. Let P ⊆ ωω × ωω, we put

G

P = {x ∈ ωω : player I has a winning strategy in the game G(Px)} ,
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where Px = {y ∈ ωω : (x, y) ∈ P} is the projection of P along x. For Γ a
pointclass we set G

Γ = {

G

P : P ∈ Γ} .

Observe that

G

Γ is also a pointclass, and that

G

preserves the inclusion of
pointclasses. Moreover, if Γ ⊂ Γ′ are Borel non-self-dual pointclass, then

G

Γ
and

G

Γ′ are non-self-dual pointclasses, and

G

Γ ⊂

G

Γ′ (see for example [36]).
This operation on sets, also called the game-theoretical projection, links

together the class of Borel sets and the class of ∆1
2 sets.

Theorem 7.1 (Burgess [18, 19, 20]).

–

G

∆0
1 = ∆1

1;

–

G

Dη(Σ0
1) = ΠC

η , for all 0 < η < ω1;

–

G

∆0
2 = C;

–

G

Dη(Σ0
2) = ΠR

1+η, for all 0 < η < ω1;

–

G

∆0
3 = R;

–

G

∆1
1 ⊂∆1

2.

Note that the last inclusion is strict. This correspondence provides us with
a new formulation of our work, but also opens other perspectives. First,
we can wonder whether the fragment of the Wadge hierarchy of R-sets we
describe in Section 5.3 allows us to complete the correspondence for all the
∆0

3 non-self-dual pointclasses.

Question 5. Is there, for every ∆0
3 non-self-dual pointclass Γ that contains

the classes Σ0
2 and Π0

2, an ordinal 0 < α < V ω1+ω1+ω1(2) such that Ω(α)b or
(Ω(α)b)! is

G

Γ-complete?

If the answer to this question is negative, we could add these “new” point-
classes to our fragment, and maybe apply our operations to them to generate
a finer fragment of the Wadge hierarchy of R-sets. Applying the game quan-
tifier to the Borel pointclasses above ∆0

3 would also provide benchmarks for
the study of the Wadge hierarchy of the ∆1

2 sets above the R-sets.

Automata theory and regular languages

In Chapter 6, we have unraveled a fragment of the Wadge hierarchy restricted
to regular languages. This fragment is incomplete: one can prove1 indeed that
the non-self-dual language D2 defined by Arnold and Santocanale [10], and

1See Duparc, Facchini, Fournier and Michalewski [28].
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7 Conclusion

which is strictly below W[0,2] but not in the class Comp1, is not reached by
our construction. One can nonetheless conjecture that our bound for the
Wadge rank of the class of regular languages is sharp.

Question 6. Is the Wadge rank of all the regular languages exactly ϕω(0)?

A lot of questions remain open on the class of regular tree languages. For
example, Skurczyński [104] proved that, for every positive integer n, there
exist a Σ0

n-complete and a Π0
n-complete regular tree languages, but it is still

an open question to know whether there exists some regular tree languages
which are of infinite Borel rank. Concerning decidability, Bojańczyk and
Place [14] proved that one can decide whether a language recognized by a
tree automaton is a Boolean combination of open sets, a result extended to
the ∆0

2 class by Facchini and Michalewski [35], but the question remains open
for larger pointclasses.
Regarding unambiguous languages, the lack of examples of higher com-

plexity, and in particular of index greater than [0, 2], blocks our investiga-
tions. But if some unambiguous languages above our constructions were to
be found, we could apply our methods and operations to derive a longer
sequence of unambiguous regular languages. Our constructions nonetheless
provide benchmarks for the study of unambiguous languages, and could lead
to algorithmic results for this class. It might, for example, help determine
whether the unambiguity of a given language is decidable. The result also
could contribute to the resolution of the unambiguous index problem as it
can help in characterizing unambiguous languages of index [0, 2].

Game languages of infinite rank

Finally let us consider the following variant of the parity game where the
codomain of the ranking function r is ω1, and its range may be infinite. If a
play in this game is infinite, player ∃ wins the game if and only if the lowest
rank occurring infinitely often is even. We call these games generalized parity
games, and they allow us to construct game languages of infinite rank.
Consider the alphabet Σ[ι,κ] = {∃, ∀} × {ι, . . . ,κ} with ι ∈ {0, 1} and

ι ≤ κ < ω1. For each tree t ∈ TΣ[ι,κ]
we define the generalized parity game

G ′
t = (V, V∃, V∀, E, p0, r) as follows:

– V∃ = {v ∈ {0, 1}∗ : t(v)0 = ∃};
– V∀ = {v ∈ {0, 1}∗ : t(v)0 = ∀};
– E = {(w,wi) : w ∈ {0, 1}∗ and i ∈ {0, 1}};
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– p0 = ε;

– r(v) = t(v)1, for each v ∈ {0, 1}∗.
The generalized game language of index [ι,κ], denoted by W ′

[ι,κ], corresponds
to the class of full trees in TΣ[ι,κ]

for which player ∃ has a winning strategy
in the corresponding generalized parity game G ′

t. Notice that for κ finite we
have

W[ι,κ] = W ′
[ι,κ]

,

and that for κ finite or infinite, if [ι,κ] ) [ι′,κ′], then W ′
[ι,κ] <W W ′

[ι′,κ′].
Of course, the languages W ′

[ι,κ] are not regular when κ is infinite. It would
be nonetheless interesting to study their topological complexity. One could
guess that they are all in the ∆1

2 class, but we can hope for more and maybe
to generalize the result of Gogacz, Michalewski, Mio and Skrzypczak [40].

Question 7. Let κ > 0, is the game language W ′
[0,κ] complete for the κ-th

level of the Kolmogorov hierarchy of R-sets?

111





Index

A, see Suslin’s operation
Admissible representation, 30
Automaton

parity tree automaton, 87
alternating parity tree automaton,

88
deterministic, 87
unambiguous, 103

Bisep(Γ,Γ′,Γ′′), see Two-sided Sepa-
rated Unions

Borel sets, 15

Conciliatory
binary tree, 84
game, 22
preorder, 22
rank, 23
sets, 21
space, 31

Dα, see increasing differences
D∗

α, see decreasing differences
Difference hierarchy

decreasing differences, 65
increasing differences, 41

Game
conciliatory, 22
determinacy, 17
Gale-Stewart, 16
language, 89
parity game, 86

strategy, 17
Wadge, 18

Initializable set, 34

Kolmogorov’s hierarchy of R-sets, 80

Louveau’s trick
I, 43
II, 44

Operations
boolean, 21
δs-operations, 78
One-sided Separated Unions, 45
Partitioned Unions, 51
Separated Differences, 45
Separated Unions, 45
Suslin’s operation, 69
Two-sided Separated Unions, 45

Pointclass, 18
Projective sets, 15
PU(Γ,Γ′), see Partitioned Unions

R-transform, 79

SDξ((Γ,Γ′),Γ′′), see Separated Differ-
ences

Selivanovski’s hierarchy of C-sets, 69
Sep(Γ,Γ′), see One-sided Separated

Unions
σD2(Γ), 71
SU(Γ,Γ′), see Separated Unions
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Pura ed Applicata, 3(1):1–123, 1899. 2

115



BIBLIOGRAPHY

[12] Verónica Becher and Serge Grigorieff. Borel and Hausdorff hierarchies
in topological spaces of Choquet games and their effectivization. Math-
ematical Structures in Computer Science, FirstView:1–30, 2 2015. 31

[13] Howard S. Becker. More closure properties of pointclasses. In Kechris
et al. [56], pages 154–159. First published in 1988. 5
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[41] Erich Grädel, Wolfgang Thomas, and Thomas Wilke. Automata, logics,
and infinite games: a guide to current research, volume 2500 of Lecture
Notes in Computer Science. Springer, 2002. 10, 87

[42] Leo A. Harrington. Analytic determinacy and 0#. The Journal of
Symbolic Logic, 43(4):685 – 693, 1978. 5, 17, 41, 68, 108

[43] Stanis(law Hartman et al., editors. Wac"law Sierpiński, Œvres Choisies,
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et de norme pour les classes de Boréliens. Fundamenta Mathematicae,
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“Che io forse abbia amato tanto la sigaretta per poter riversare su
di essa la colpa della mia incapacità? Chissà se cessando di fumare
io sarei divenuto l’uomo ideale e forte che m’aspettavo? Forse fu
tale dubbio che mi legò al mio vizio perché è un modo comodo di
vivere quello di credersi grande di una grandezza latente.”

Italo Svevo, La coscienza di Zeno.

“What we’re really doing is imposing our own conceptual limi-
tations on a subject that defies inclusion within the borders of
our present knowledge. We’re talking around it. We’re making
sounds to comfort ourselves. We’re trying to peel skin off a rock.
But this [...] is simply what we do to keep from going mad.”

Don DeLillo, Ratner’s Star.
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