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Simple Summary: Muscle-invasive bladder cancer (MIBC) accounts for 25% of bladder cancer cases.
Despite the broader usage of immune checkpoint blockades targeting the PD-1/PD-L1 axis, the
response rate and survival of patients remain low for this disease. Redirecting these patients swiftly
toward alternative therapeutic strategies upon immunotherapy failure should be a priority. So far, no
marker allows the early outcome of the treatment to be precisely determined. The aim of our study
was to determine to what extent a whole blood transcriptomic analysis could reflect the efficiency
of immunotherapy in a well-established MIBC genetic mouse model. We report that it is a valuable
approach to predict the response to immunotherapy in our model.

Abstract: Blood-based biomarkers represent ideal candidates for the development of non-invasive
immuno-oncology-based assays. However, to date, no blood biomarker has been validated to
predict clinical responses to immunotherapy. In this study, we used next-generation sequencing
(RNAseq) on bulk RNA extracted from whole blood and tumor samples in a pre-clinical MIBC mouse
model. We aimed to identify biomarkers associated with immunotherapy response and assess the
potential application of simple non-invasive blood biomarkers as a therapeutic decision-making assay
compared to tissue-based biomarkers. We established that circulating immune cells and the tumor
microenvironment (TME) display highly organ-specific transcriptional responses to ICIs. Interestingly,
in both, a common lymphocytic activation signature can be identified associated with the efficient
response to immunotherapy, including a blood-specific CD8+ T cell activation/proliferation signature
which predicts the immunotherapy response.

Keywords: bladder cancer; blood biomarkers; immunotherapy

1. Introduction

An immune checkpoint blockade has become a standard of treatment for several types
of cancer and led to some tremendous progress in anti-tumor therapy [1]. Blocking the
programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) axis has
improved the prognosis of numerous patients with advanced and metastatic cancer since
its approval by the FDA in 2014 [2]. However, a large proportion of treated patients fail
to display clinical benefits from the blocking antibodies, and the response rate largely
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varies between different cancer types [3,4]. Biomarkers to predict the response to anti-
PD-1/PD-L1 therapy are thus highly desirable to better identify patients who will show
clinical benefits and those who should be referred to other therapeutic paths. Today, tissue-
based PD-L1 expression is the only FDA-approved biomarker to guide clinicians’ treatment
decision-making. Although it is generally considered that a high PD-L1 expression is
associated with a favorable prognosis, its limited performance and requirement for high-
quality sampling make it an imperfect biomarker of response. Furthermore, in bladder
cancer, PD-L1’s association with the response to an immune checkpoint blockade remains
controversial [5,6]. Alternative biomarkers that are more specific and less invasive are
desperately needed.

Bladder cancer is the fourth most common cancer type in men and eleventh in women,
with more than 200,000 people dying from the disease yearly (World Health Organization,
WHO). A better outcome is reached at early diagnosis; however, 25% of patients are
diagnosed at later stages, when the cancer has metastasized [7]. Patients with metastatic
bladder cancer are directed to cisplatin-based chemotherapy as a first-line treatment, if
eligible, and PD-1/PD-L1 immunotherapy as a second-line treatment [5]. However, only
15–24% of patients show durable benefit from ICIs and need to be redirected to taxane-
based chemotherapy, combination ICI therapy, or newer therapeutic agents. Biomarkers
that can predict the clinical outcome of anti-PD-(L)1 are urgently needed, especially for
metastatic bladder cancer patient management.

Blood-based biomarkers represent ideal candidates for the development of non-
invasive immuno-oncology-based assays [8]. Unfortunately, to date, no blood biomarker
has been validated to predict clinical responses to immunotherapy. One major limitation to
the development of blood-based assays has been the trade-off between high-depth analysis
to retrieve tumor-derived signals and their cost-effective implementation in standard clini-
cal settings. This typically limits the use of circulating tumor cell (CTC)-based analyses.
One workaround is to measure the immune system’s reaction to tumor evolution rather
than tumor signals themselves. We previously demonstrated the use of the circulating im-
mune system’s transcriptional response to develop colorectal cancer screening biomarkers
and identify early responses to anti-PD-1 in patients with metastatic bladder cancer [9–11].

In this study, we aimed to identify biomarkers associated with responses to im-
munotherapy in blood and neoplastic tissue to assess the potential application of simple,
non-invasive blood biomarkers as a therapeutic decision-making assay compared to tissue-
based biomarkers. To answer this question, we performed a bulk RNA-seq analysis of
the whole-blood and matched primary tumor immune transcriptome in a genetic murine
model of MIBC. Our results illustrated that although the circulating immune cells and the
TME display highly organ-specific transcriptional responses to ICIs, a common CD8+ T cell
activation signature can be identified in both, associated with responses to immunotherapy.

2. Materials and Methods
2.1. Mouse Model of Bladder Cancer

Tp53Fl/FlPtenFl/Fl mice were obtained as previously described [12]. To initiate bladder
tumor development, a volume of 5 µL of DMEM/hexadimethrine bromide (8 mg/mL) mixed
with 2.5 × 108 plaque-forming units of Cre-expressing adenoviral vector (#AVL(VB181004-
1095pzc)-K1, VectorBuilder, Chicago, IL, USA) was surgically injected into the bladder lumen
of Tp53Fl/FlPtenFl/Fl mice as previously described [13].

2.2. Therapeutic Schedule and Treatment Groups

Therapeutic treatments were initiated 9 to 11 weeks after vector injection. In short-term
trials, mice were euthanized 9 days after the beginning of the treatments, either to analyze
the immune microenvironment or for an RNA sequencing analysis. The administration
of anti-PD-1 (300 µg/dose, RMP1-14 clone, BioXcell, Lebanon, NH, USA) or an isotype
control (IsoCT; 300 µg/dose, 2A3 clone, BioXcell) was carried out via intraperitoneal (i.p.)
injections at intervals of 2 to 3 days for 8 days. One i.p. injection of anti-CD40 (100 µg/dose,
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FGK45 clone, BioXcell) or IsoCT (100 µg/dose, 2A3 clone, BioXcell) was performed at the
beginning of the treatment. For the long-term survival experiment, 14 mice were treated
with an isotype control, 9 mice were treated with anti-PD-1 monotherapy, and 30 mice
were treated with the combination therapy anti-PD-1 + anti-CD40, pooled from several
experiments. For the 9-day treatment intervention, 4 mice per group were treated with
either anti-PD-1 or anti-PD-1 + anti-CD40. We collected blood samples at baseline and
at day 9 for each mouse and collected tumor tissue from 3 out of 4 mice per group. The
RNAseq data from these samples were then used for biomarker identification and response
prediction modeling. In the flow cytometry validation experiments, we used between 6
and 7 anti-PD-1-treated animals and 5 anti-PD-1 + anti-CD40-treated animals, respectively.

2.3. RNA Sequencing and Bioinformatic Analysis

Whole bladders were harvested and processed using gentleMACS M tubes (#130-
094-392, Miltenyi Biotec, Bergisch Gladbach, Germany). Total RNA was then extracted
using the RNeasy Plus Mini Kit (#74134, Qiagen, Hilden, Germany) according to the
manufacturer’s instructions. Mouse blood was collected from the submandibular vein
9 days after treatment and put into RNAprotect Animal Blood Tubes (76544, Qiagen),
and total RNA was extracted using the RNeasy Protect Animal Blood Kit (73224, Qiagen)
according to the manufacturer’s instructions. Libraries were prepared using the NEBNext
Ultra II Directional RNA Library Prep Kit for Illumina (NEB). For samples extracted from
blood, a globin removal step was included using the QiaSeq FastSelect globin kit (Qiagen).
First-strand cDNA synthesis was followed by second-strand synthesis and the purification
of double-stranded cDNA with AMPure XP beads (Beckman Coulter, Brea, CA, USA).
Subsequently, cDNA was end-prepped, adaptor-ligated, and amplified through index PCR
with index primers from NEBNext Multiplex Oligos for Illumina (Unique Dual Index
Primer Pairs) (NEB, Ipswich, MA, USA). The samples were subjected to a total of 13 PCR
cycles. Prior to PCR amplification, a qPCR was performed to determine the optimal PCR
cycle number. The PCR products were purified with AMPure XP beads. To avoid index
hopping on the NovaSeq sequencing platform, adapter dimers present in the libraries were
excluded through size selection on 2% E-Gel EX agarose gels. The concentration of the final
libraries was measured on a Fluostar Optima plate reader (BMG Labtech, Champigny-sur-
Marne, France) using the Quant-iT Picogreen dsDNA assay kit (ThermoFisher Scientific,
Waltham, MA, USA) at 480/520 nm, while the quality was determined on an Agilent
Tapestation 4200 with the High-Sensitivity D5000 ScreenTape Assay (Agilent, Santa Clara,
CA, USA). Based on these measurements, the libraries were multiplexed into a total of
9 pools. High-coverage sequencing was performed on the Novaseq 6000 system with the
S4 flowcell and PE150 configuration. An average coverage of 67 million reads per sample
was achieved.

2.4. Data Processing and Quality Check

The sequence data quality was evaluated using FastQC (version 0.11.8) combined with
MultiQC (version 1.4). Atropos (version 1.1.7) was used to remove any remaining Illumina
adapters or sequences longer than expected. Reads were aligned to the MOUSE genome
assembly (UCSC Mus musculus mm10) along with its corresponding annotation. The pro-
gram Hisat2 (version 2.2.0) was used to align a proportion of the reads to the genome using
default parameters. The quantification of the transcript abundance of the RNA-Seq reads
was carried out using Salmon (version 1.4.0) with default parameters. After alignment and
quantification, a comprehensive QC analysis was performed, considering the following
parameters: sample alignment statistic metrics such as the total number of mapped reads,
secondary alignments, non-unique alignments, reads aligned to genes, alignments with-
out any feature (intronic and intergenic), ambiguous alignments, unmapped reads, and
coverage profiles. The global distribution of counts in each sample: this metric helped
evaluate the distribution of gene expression levels across the samples. The proportion
of features with low counts in the sample: the number of features with low counts was
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assessed to understand the data quality. Per-gene biotype count distribution, including
residual ribosomal RNA quantification: this analysis provided insights into the distribution
of counts based on gene biotypes and included the quantification of ribosomal RNA. This
extensive QC process ensured that the data used for the downstream analysis were of high
quality and accurately represented the biological samples under investigation.

2.5. Data Transformation and Exploratory Analysis

Normalization for gene length was conducted as a step downstream in our analysis of
Transcripts Per Million (TPM) values. Then, we imported the gene pseudo-counts from
Salmon into the R statistical computing environment (version 4.0.0), and subsequently, we
applied filtering criteria, excluding genes with less than 1 count per million (CPM) across
all samples and with a coefficient of variance (cv) of 100. This gene filtering process was
implemented by using the filtered.data function within the NOISeq R package (version
2.31.0). Following the initial gene data treatment, we proceeded with a forward normaliza-
tion step. This involved employing the variance-stabilizing transformation using the vst
function, which is a feature of the DeSeq2 R package (version 1.28.1). Our primary focus for
the exploratory data analysis was centered on the vst-transformed values and the selected
subset of genes from NOISeq. For a comprehensive understanding of our data, we utilized
a Principal Component Analysis (PCA) and scatter plots to visualize the similarities and
differences among our samples. Moreover, to gain insight into the sources of variation
within our dataset, we performed a Variance Partitioning Analysis (VPA) with the PVCA R
package (version 1.28.0). This analysis allowed us to quantify the contributions of various
confounding variables, highlighting the percentage of variation attributable to each factor.

2.6. Differential Expression Analysis (DEA)

We performed a comprehensive analysis of differential gene expression using three
distinct methods available in the Bioconductor R packages DESeq2 (version 1.28.1), edgeR
(version 3.30.3), and limma (version 3.44.3). All the methods took a read count matrix
and a condition label vector as input. The parameters were set based on the guides of the
corresponding R packages. A differential expression analysis was executed, accounting for
factors such as batch biases and sample-specific covariates, to identify genes that exhibited
significant expression changes across different conditions (details in Section 3). The results
from these three methods were compared and integrated to ensure robust and reliable
findings in our investigation of gene expression differences. A p-value cutoff ≤ 0.01 was
used to identify the differentially expressed genes (DEGs) for each of the three methods,
and the combination of all DEGs was used for the subsequent analysis to broaden our
initial biomarker pool. Functional and network analyses of the DEGs were carried out
with STRING [12] and Cluster-Profiler 4.2.2 [13] to perform an over-representation analysis
(ORA), which allowed us to identify central biological pathways and biomarkers of re-
sponses. Significantly enriched ORA pathways were defined by an adjusted p-value ≤ 0.05.
Additionally, we extrapolated the DEGs attributed to any enriched terms from the ORA
results output, which allowed us to identify the functionally relevant genes among all
DEGs. Plots were created with RStudio version 4.2.1, ggplot2 package version 3.4.3, and
UpSetR package 1.4.0.

2.7. Modeling

For response group prediction modelling, three distinct groups were used, comprising
8 blood samples undergoing treatment (4 samples with anti-PD-1 and 4 samples with
anti-PD-1 + anti-CD40) and 8 tumor samples (4 samples with anti-PD-1 and 4 samples
with anti-PD-1 + anti-CD40). To ensure accuracy, the modeling phase employed counts
after post-filtering and normalization using a variance-stabilized transformation (vst),
resulting in a count matrix encompassing 15,444 genes. Acknowledging the limitation of
working with a small dataset of only 8 samples, our modeling approach employed the
machine learning random forest algorithm. This algorithm is renowned for its effectiveness
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in handling limited datasets. To evaluate our model, we implemented a 3-fold cross-
validation methodology. This involved dividing the available data into two sets: 4 samples
for training and 4 samples for testing. We assessed the model’s performance by plotting
the True Positive Rate (TPR) against the False Positive Rate (FPR) at a sensitivity specificity
threshold of 90%. To classify samples as responders or non-responders, we used a 55%
probability cut-off. This systematic approach allowed us to comprehensively evaluate the
model’s performance despite the constraints imposed by the small sample size.

2.8. Single Cell Preparation, FACS Staining and Analysis

Tumor-bearing bladders were digested for 30 min at 37 ◦C in complete RPMI (RP-
MIc, 10% FCS, and 1% penicillin/streptomycin), 0.1 mg/mL of DNase I (#D4527, Sigma,
Waltham, MA, USA), and 1 mg/mL of Colagenase I (#17100017, ThermoFisher Scientific,
Waltham, MA, USA). Tissues were then mashed through a 70 µm cell strainer. Leucocytes
were isolated through sample centrifugation in a density gradient of 40%/70% Percoll
for 30 min at 2000 rpm. Cells from the interphase were harvested and washed in RPMIc
before staining.

Blood was collected from the submandibular vein, and erythrocytes were eliminated
with homemade red blood lysis buffer (H2O, 156 mmol/L of NH4Cl, 12 mmol/L of
NaHCO3, and 0.1 mmol/L of EDTA) for 2 min before staining. FcγR blocking was then
performed at room temperature (RT) with anti-CD16/32 (1/1000, #101320, Biolegend, San
Diego, CA, USA). Following extracellular marker staining, cell viability was assessed using
the Zombie NIR Fixable Viability Kit (#423105, Biolegend) following the manufacturer’s
instructions. Cells were then fixed and permeabilized with the Foxp3 Transcription Factor
Staining Buffer Set (#00-5523-00, eBiosciences, Villebon-sur-Yvette, France) according to
the manufacturer’s instructions. Intracellular staining was carried out in permeabilizing
buffer from the Foxp3 Transcription Factor Staining Buffer Set. The specific antibodies
used for the flow cytometry analysis include SparkUV387 CD8 at 1:200 (53.6.7 from Biol-
gened), BUV496 CD4 at 1:200 (GK1.5 from BD, Franklin Lakes, NJ, USA), BUV737 CD44 at
1:100 (IM7 from Invitrogen, Waltham, MA, USA), BUV805 CD45.2 at 1:50 (104 from BD),
eFl506 CD3 at 1:50 (17A2 from Invitrogen), BV570 CD45R at 1:50 (RA3-6B2 from Biolegend),
BV650 CX3CR1 at 1:200 (SA011F11 from Biolegend), FITC CD48 at 1:100 (HM48-1 from
Biolegend), PE/Dazzle594 CD223 at 1:200 (C9B7W from Biolegend), PECy7 CD279 at
1:100 (29F.1A12 from Biolegend), APC CD161 at 1:100 (PK136 from Invitrogen), eFluor450
FoxP3 at 1:100 (FJK-16s from Invitrogen), and BV421 Ki67 at 1:100 (16A8 from Biolegend).
Data were acquired on a Cytek AURORA machine and analyzed with FlowJo software V10.

3. Results
3.1. Identification of Biomarkers Correlating with Immunotherapy Response in Bladder Cancer

To identify blood biomarkers correlating with the clinical benefits of immune check-
point inhibitor (ICI) therapy, we used a genetic mouse model recapitulating the various
steps of bladder cancer (BC) [12,13]. Briefly, Tp53Fl/FlPtenFl/Fl mice received adenoviral
vectors encoding for cre-recombinase in the bladder, leading to the development of tumors
that progressed from non-muscle-invasive (NMIBC) to muscle-invasive BC (MIBC) at the
metastatic stage 10 to 13 weeks after tumor induction [12,13]. The transcriptomic profiles ob-
tained from these mice show strong similarities to a basal-squamous subtype, representing
35% of MIBC patients [12]. This model is resistant to anti-PD-1 blocking monotherapy, but
dual anti-PD-1/anti-CD40 therapy restores the anti-PD1 blockade potential and strongly
increases mouse survival [12] (Figure 1A). To identify biomarkers correlated with responses
to immunotherapy, we induced tumors in Tp53Fl/FlPtenFl/Fl mice and waited for them to
progress to the MIBC/metastatic stage. We then split the cohort into two groups: one group
receiving monotherapy (anti-PD-1, n = 4) and one group receiving combination therapy
(anti-PD1/anti-CD40, n = 4) (Methods). Both groups were treated with corresponding
therapy regimens until sacrifice. Whole-blood samples were collected after the treatment
from the submandibular vein, and bladder tissue was also collected at the end of the
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treatment, showing increased weight when tumors were induced but no difference in
weight between the two treatment conditions 9 days post-treatment (Figure 1B). A subset
of the biological samples were analyzed by RNA-sequencing (RNA-seq), and differential
expression analyses (DEAs) were performed between the different treatment groups to
identify differentially expressed genes (DEGs) in the blood and tumors, respectively, at
the on-treatment timepoint (day 9). We performed DEAs between the on-treatment (day
9) blood samples from the responder mice (treated with combination therapy) and the
non-responder mice (treated with monotherapy) (Figure 2A). The DEA results led to the
identification of 507 genes that were found to be differentially expressed between the two
treatment groups (see Section 2 for the DEA details). Among these, 257 genes were found
to be upregulated in the blood from the mice that received the combination therapy, while
250 genes were found to be downregulated (Figure 2A, Supplementary Table S1). In the
responder mice’s upregulated genes, a bioinformatic analysis using the gene ontology
annotations of the over-representation analysis (GO ORA) showed a strong enrichment
in terms associated with cell proliferation (the regulation of the cell cycle process, the
regulation of mitotic sister chromatid separation, mitotic cell cycle phase transition, and
others; Figure 2B). Among the downregulated genes, we found an enrichment in GO
terms associated with RNA metabolism (RNA splicing, mRNA processing; Figure 2C).
To obtain a more complete picture of the pathways emerging from our data, we used a
Protein–Protein Interaction Network Functional Enrichment Analysis (STRING) to put
forward other potential networks. For the upregulated genes, on top of genes involved
in proliferation (Aurkb, Top2a, Cdca8, Ccnb; Figure 2D), we found genes associated with
lymphocyte activation (Pdcd1, Lag3, Cd48, Cx3cr1, Ccl5, or Gzmk; Figure 2E). We also
found a small cluster of genes associated with type I IFN system activation (Ifi44, Oasl2,
Isg15; Figure 2F). Among the downregulated genes, this analysis also led to the identifica-
tion of a cluster of genes involved in chaperone-mediated protein folding (Hsph1, Hspa8,
Dnajb1, Fkbp4, Fkbp5, Ptges3) or the regulation of cell death (Hsp90b1, Herpud1, Dnaja1,
Zbtb16; Figure 2G). Altogether, this analysis of whole-blood RNA revealed the presence
of proliferating immune cells expressing lymphocyte activation markers associated with
effective immunotherapy in the MIBC setting.
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Figure 1. Mouse model of anti-PD-1-resistant MIBC. (A) Survival curves of control MIBC mice
treated with isotype control Ab (IsoCT, black, n = 14) and mice treated with either anti-PD-1 (red,
n = 9) or anti-PD-1 + anti-CD40 (green, n = 30). **** p < 0.001 by log-rank test. (B) Bladder weight
9 days post-treatment for the indicated conditions. Each dot represents the bladder from one mouse
(2 pooled experiments).
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Figure 2. Gene signatures in the blood characterized a successful response to immunotherapy.
(A) Representative volcano plot of the differentially expressed gene analysis using the DEseq2
method in bulk RNA-seq comparing whole blood from MIBC mice treated with anti-PD-1 + anti-
CD40 (n = 4) to those treated with anti-PD-1 alone (n = 4). Statistically significant differentially
expressed genes (p-value ≤ 0.01) between the two treatment groups at 9 days post-treatment are
highlighted (downregulated genes in blue; upregulated genes in orange). (B,C) Gene ontology
overrepresentation analysis (ORA) performed on upregulated (B) or downregulated (C) genes from
MIBC mice treated with combination therapy compared to anti-PD-1 alone. The top 10 significant
pathways are shown (based on an enrichment adjusted p-value ≤ 0.05) (D–F) STRING analysis on
upregulated genes from MIBC mice treated with combination therapy compared to anti-PD-1 alone.
Most biologically relevant clusters are shown. (G) STRING analysis on downregulated genes from
MIBC mice treated with combination therapy compared to anti-PD-1 alone.
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3.2. Tumor Analysis Outlined the Complexity of the TME Response to Immunotherapy

To identify tumor tissue biomarkers associated with the response to immunotherapy,
we performed DEAs between the responder mice treated with combination therapy and
the non-responder mice treated with monotherapy (Figure 3A, Supplementary Table S2).
Using the same DEA approach as for the blood sample analysis, 269 genes were found
to be differentially expressed. Among the genes highly expressed after the combination
treatment, the GO ORA bioinformatic analysis showed enriched terms for T cell and
myeloid cell activation as well as the production of cytokines (Figure 3B). This enrichment
was confirmed with the STRING analysis, with an enrichment for genes associated with
T cell activation (Tnfrsf9, Lilrb4, Sirpb1c, SIrb1d), inflammatory response (Ccl6, Ccl9,
Ccr1, Ccr2, Ccr5), and myeloid cell activation (Pirb, Lilrb4, Fcgr3, Fcgr4) (Figure 3D).
Additionally, the STRING analysis highlighted the upregulation of genes associated with
oxidative phosphorylation (Cox5a, Cox7a1, Cox7b, Cycs) and mitochondrion organization
(Bnip3, Mief2, Ndufaf5, Ndufb8, Dna2) (Figure 3E). Among the downregulated genes,
the enriched GO terms comprised smooth muscle contraction, the vascular process in the
circulatory system, blood vessel diameter maintenance, and wound healing (Figure 3C).
Overall, this analysis showed the more complex nature of the response found in the tumor,
with increased lymphocyte activation, and its effect on myeloid cells and other cell types
present in the tumor microenvironment.

3.3. Shared Transcriptional Response to ICIs between Blood and TME

To assess the potential and extent of overlap between the tissue and peripheral blood
transcriptional responses to immunotherapy, we extracted the overlap between the differen-
tially expressed gene lists from the responder and non-responder comparisons for both the
blood and tumors (Figure 3F). By comparing the previously identified DEG lists (507 DEGs
in blood and 269 DEGs in tumors), we only found a few genes to be commonly regulated in
the blood and the bladder (Tinagl1, Adgre4, Mphosph9, Nacad, Gm7334, Gm4841, Galnt3,
Akap12, Gm4117, C920009, B18Rik) (Figure 3F). Despite the low number of shared genes,
we hypothesized that similar biological processes might be affected in both blood and
tumor tissue. The treatments target immune cells, and we reasoned that immune cells will
be affected similarly, to some extent, in both organs, even though this signal will be harder
to find in a bladder tumor, as many non-immune cell types, including tumor cells, are
also present. Therefore, we broadened our research to the enriched GO terms of both the
blood and tumors. This approach highlighted shared biological pathways, and specifically,
we found 11 common GO terms in the upregulated genes (Figure 3G) and none in the
downregulated genes (Figure 3H). Interestingly, the commonly enriched GO terms from
the blood and bladder included several terms associated with T cell biology (the regulation
of cytokine production, cell adhesion, adaptive immune response, T cell activation, the
regulation of leukocyte cells,), proliferation (the regulation of nuclear division), and inflam-
mation (inflammatory response), indicating that the central processes of the therapeutic
response in the responder mice can be detected in both the liquid and tissue biopsies.

3.4. Prediction of Immunotherapy Response Using Blood or Bladder Signature

We determined clear biological signatures emerging from the bulk RNA-seq from
the blood and tissue, which varied between the responder and non-responder animals
(Figures 2 and 3). To determine whether these signatures could be predictive of the response,
we built machine-learning-based therapy prediction models from either the blood- or tumor-
derived signatures. Receiver operating characteristic (ROC) curves were generated, and the
model performance was assessed by evaluating the area under the curve (AUC). First, we
examined whether two broad gene signatures derived from the overall GO ORA analysis
could be predictive of the response (Figure 4A,B). The broad GO signatures were prepared
by extrapolating the DEGs that were attributed to any enriched terms, which allowed us to
identify which genes were functionally relevant to the enriched pathways. Both signatures
showed the ability to separate the responder mice from the non-responder mice when tested
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on blood or tumor samples. Then, we assessed the biology-specific signatures that were
previously identified (Figures 2 and 3). Specifically, we created three predictive models
based on blood-derived signatures linked to cell proliferation, T cell activation, and type I
interferon (Figure 4A) and two models based on the tumor-derived signatures’ oxidative
phosphorylation and tumor inflammation (Figure 4B). The blood-derived signature models
showed a trend toward better performance than the tumor-derived ones, highlighting the
potential of capturing gene expression signals in whole-blood samples related to responses
to ICI therapy. Last, we tested the performance of literature-derived signatures associated
with responses to immunotherapy in this specific pre-clinical intervention setting. We
queried a pan-cancer-derived signature and created a predictive model based on its gene
list (Figure 4C) [14]. Interestingly, this model allowed us to discriminate between therapy
responses with a similar ability to the blood-derived models.

Cancers 2024, 16, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 3. Gene signatures in the bladder after a successful response to immunotherapy. (A) Repre-
sentative volcano plot of the differentially expressed gene analysis with the DEseq2 method in bulk 
RNAseq comparing whole bladder from MIBC mice treated with anti-PD-1 + anti-CD40 (n = 3) to those 
treated with anti-PD-1 alone (n = 3) 9 days post-treatment. Differentially regulated genes (with a p-
value ≤ 0.01) are highlighted (downregulated genes in blue; upregulated genes in orange) (B,C) Gene 
ontology overrepresentation analysis (ORA) performed on upregulated (B) and downregulated (C) 
genes from MIBC mice treated with combination therapy compared to anti-PD-1 alone. The top 10 
significant pathways are shown (based on an enrichment adjusted p-value ≤ 0.05) (D,E) STRING anal-
ysis of upregulated genes from MIBC mice treated with combination therapy compared to anti-PD-1 
alone. Most biologically relevant clusters are shown. (F) Upset plot comparing the differentially ex-
pressed genes (DEGs) in tumor and blood biopsies, indicating an overlap of 10 genes. (G,H) Upset plot 
showing the number of significantly enriched gene ontology (GO) terms found by performing an 
overrepresentation analysis (ORA) of (G) the upregulated DEGs or the (H) downregulated DEGs in 
blood or tumors. In the upregulated pathways (G), 11 shared GO terms were found. 

Figure 3. Gene signatures in the bladder after a successful response to immunotherapy. (A) Repre-
sentative volcano plot of the differentially expressed gene analysis with the DEseq2 method in bulk
RNAseq comparing whole bladder from MIBC mice treated with anti-PD-1 + anti-CD40 (n = 3) to
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those treated with anti-PD-1 alone (n = 3) 9 days post-treatment. Differentially regulated genes
(with a p-value ≤ 0.01) are highlighted (downregulated genes in blue; upregulated genes in or-
ange) (B,C) Gene ontology overrepresentation analysis (ORA) performed on upregulated (B) and
downregulated (C) genes from MIBC mice treated with combination therapy compared to anti-PD-1
alone. The top 10 significant pathways are shown (based on an enrichment adjusted p-value ≤ 0.05)
(D,E) STRING analysis of upregulated genes from MIBC mice treated with combination therapy
compared to anti-PD-1 alone. Most biologically relevant clusters are shown. (F) Upset plot comparing
the differentially expressed genes (DEGs) in tumor and blood biopsies, indicating an overlap of
10 genes. (G,H) Upset plot showing the number of significantly enriched gene ontology (GO) terms
found by performing an overrepresentation analysis (ORA) of (G) the upregulated DEGs or the
(H) downregulated DEGs in blood or tumors. In the upregulated pathways (G), 11 shared GO terms
were found.
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Figure 4. Therapy response prediction modeling. (A,B) Receiver operating characteristic (ROC)
curves of therapy predictive models based on different gene signatures derived from the (A) blood
or (B) tumor gene expression analysis. The GO signatures include all genes that were attributed to
the enriched GO terms, while the other signatures have been manually annotated based on specific
biologically relevant enriched processes. (C) ROC curve of a model based on a publicly available
pan-cancer signature of response to immunotherapy [14].

3.5. CD8 T Cells Are the Main Cell Type Showing Increased Proliferation and Expression of
Lymphocyte Activation Markers

The cell cycle signature and lymphocyte activation were among the most efficient
signatures to predict immunotherapy responses in our settings. To validate the bioin-
formatic analysis and machine-learning-based predictive models and understand which
cell types are responsible for these signatures, we monitored the immune responses of
several immune cell types in the blood and the bladder by flow cytometry. Focusing on
lymphocytes, we did not measure significant changes in the proportion of B cells (B220+),
CD4 T cells (CD3+ CD4+), regulatory T cells (Foxp3+ CD3+ CD4+), or NK cells (CD3-
NK1.1+) but found an increased number of CD8+ T cells in the blood and bladder after
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combined treatment (Figure 5A). We then focused on the expressions of some lymphocyte
activation molecules found in the lymphocyte activation cluster (Figure 2). In the blood,
we found significant changes in the expressions of PD-1, CX3CR1, LAG3, and CD48 in
several of the studied populations, but only CD8+ T cells consistently upregulated the four
molecules, with the highest fold change (Figure 5B). To assess cell proliferation, we stained
the blood samples with anti-Ki67. CD4+ T cells and CD8+ T cells had increased staining
for Ki67, but CD8+ T cells showed the highest fold change again (2.5-fold vs. 1.4-fold).
Additionally, we found higher levels of Ccl5 in the serum of the responsive mice compared
to the unresponsive mice (Figure 5C), as found in our transcriptomic analysis (Figure 2F).
Altogether, the number of CD8+ T cells increased after successful immunotherapy, together
with an increased expression of activation markers and increased proliferation, and they
are therefore likely to be the main cell population contributing to the gene expression signal
measured in the blood.
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the indicated population of lymphocytes in the bladder and the blood. (B) Representative FACS
histograms and percentages of the indicated markers for the indicated lymphocyte populations.
(C) Concentration (pg/mL) of CCL5 in the serum of mice. Mice were treated at MIBC stage with
either anti-PD-1 and isoCT isotype control (grey, n = 7) or anti-PD-1 and anti-CD40 (orange, n = 7).
Analyses were performed 9 days after the beginning of the treatments. For scatter plots, each dot
represents an individual mouse, and bars represent the mean. * p < 0.05; ** p < 0.01; *** p < 0.005,
**** p < 0.0001 by ANOVA test, followed by a Sidak test.

4. Discussion

Monitoring the response to immunotherapy quickly, reliably, and efficiently remains
an unmet need to redirect patients rapidly towards other treatments in cases of response
failure. In patients, it is much more convenient to obtain blood samples than biopsies of
the tumors, making blood the compartment of choice to study. Moreover, the circulating
immune compartment, together with extracellular vesicles and low-frequency circulating
tumor cells, are exquisitely sensitive sensors integrating the systemic responses to primary
tumors and metastases. This represents a unique advantage over the limited sampling
offered by tumor biopsies. To understand whether we could monitor an efficient response
to immunotherapy in the blood, we used a well-characterized genetic model of muscle-
invasive bladder cancer that recapitulates the various steps of the human disease [12].
In this anti-PD-1-resistant model, a combination of agonistic anti-CD40 together with an
anti-PD-1 immune checkpoint blockade induced a good immune response, leading to
tumor control through the recruitment of newly activated CD8+ T cells in the tumor and
a modification of the tumor microenvironment [12]. The comparison of the blood bulk
RNAseq samples from the responding and non-responding mice led to the identification
of a clear subset of genes associated with the response, comprising genes associated with
proliferation, lymphocyte activation, and Type I IFN activation. All three of these signatures
could predict the response in our model. These data were confirmed at the protein level
for some activation markers and for proliferation. It appeared that CD8+ T cells are the
major cell type responding to the treatment, confirming what we already published in this
mouse model [12]. Previously, some genes associated with cell proliferation were shown
to be upregulated in patients with bladder cancer responding to anti-PD-1 treatment [9].
Interestingly, LAG3, which we found to be upregulated specifically on CD8+ T cells after
immunotherapy, was associated with the response to anti-PD-1 immunotherapy within the
tumors of patients with urothelial carcinoma [15]. This suggests that the T cell response in
the blood of patients with bladder cancer can be a sensitive readout that also predicts an
efficient response to immunotherapy. Additionally, IFN-responsive genes such as Ifi44 and
Isg15 (Figure 2F) are part of a cluster of genes identified in the Cancer Genome Atlas and
four immunotherapy cohorts as predictors of the evolution of the disease and the response
to immunotherapy [16]. The ability of whole-blood immunotranscriptomics to detect the
increased expression of these genes in the blood constitutes an interesting perspective for
response prediction. When looking at bulk RNAseq in the bladder, we found fewer genes
differentially regulated and a more complex signature, consistent with the complexity
of the tumor microenvironment composed of tumor cells, stromal cells, vascular cells,
and immune cells [17]. T cell activation is still found as an overrepresented GO term,
but none of the activation markers found in blood were also found in the bladder. Our
work has several limitations. The first one is that we compared two different therapies
as responder and non-responder treatments. Ideally, we should have compared a similar
treatment with two different outcomes. As all mice respond to the anti-CD40/anti-PD-
1 combo and none to anti-PD-1 alone, this was not possible in our study. The second
limitation is that we worked with a mouse model with a limited number of animals for
the transcriptomic study. We recognize that the limited dataset of only four samples for
training and four samples for testing may not provide adequate grounds for a thorough
evaluation of a model’s performance using ROC curves. Assessing a model’s performance
robustly through ROC curves typically demands a more extensive dataset for both training
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and testing purposes. This highlights the importance of acknowledging the need for larger
datasets in future evaluations to ensure a more comprehensive analysis of the model’s
performance. Yet, our model is very reproducible and well characterized, which allowed
us to answer our questions with this limited number of animals. Lastly, we studied the
response in blood at a given time point, day 9 post-treatment. A longitudinal analysis
would be interesting investigate for how long our markers of interest can be detected
and associated with the response to the treatment. The next step will be to translate our
observations to patients by monitoring blood samples post-immunotherapy treatment and
to associate them with treatment outcomes to obtain a more precise list of biomarkers
useful for predicting responses to immunotherapy in bladder cancer to rapidly redirect
unresponsive patients toward alternative therapeutic strategies.

5. Conclusions

Overall, monitoring immune responses in whole blood is a valuable approach to
determining whether a patient is responding or not to immunotherapy. A longitudinal
study of patients should be performed to confirm the potential of this monitoring, but it
would also open up the possibility of rapidly knowing how the patient is responding to
immunotherapy and whether alternative treatments should be started. This approach is
amenable to robust process development, upscaling, and integration into clinical trials and
oncology clinical practice.
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