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tIn the 
lassi
al Cramér-Lundberg model in risk theory the problem of maximizing the expe
ted
umulated dis
ounted dividend payments until ruin is a widely dis
ussed topi
. In the most general
ase within that framework it is proved (Gerber (1969), Az
ue & Muler (2005), S
hmidli (2007)) thatthe optimal dividend strategy is of band type. In the present paper we dis
uss this maximizationproblem in a generalized setting in
luding a 
onstant for
e of interest in the risk model. The valuefun
tion is identi�ed in the set of vis
osity solutions of the asso
iated Hamilton-Ja
obi-Bellmanequation and the optimal dividend strategy in this risk model with interest is derived, whi
h in thegeneral 
ase is again of band type and for exponential 
laim sizes 
ollapses to a barrier strategy.Finally, an example is 
onstru
ted for Erlang(2)-
laim sizes, in whi
h the bands for the optimalstrategy are expli
itly 
al
ulated.1 Introdu
tionLet (Ω,F , {Ft}, P ) be a �ltered probability spa
e on whi
h all random pro
esses and variables introdu
edin the sequel are de�ned. Consider the following sto
hasti
 model for the risk reserve pro
ess R = {Rt}t≥0of an insuran
e portfolio

Rt = x+ ct−
Nt
∑

k=1

Yk + i

∫ t

0

Rsds. (1)The number of 
laims N = {Nt}t≥0 is modelled as a homogeneous Poisson pro
ess with parameter
λ whi
h has the 
àdlàg property (Nt+ = Nt). The in
oming premiums are assumed to be 
olle
ted
ontinuously over time at a 
onstant rate c. The 
laim amounts {Yk}k∈N are an iid sequen
e of positiverandom variables with 
ontinuous distribution fun
tion FY . The integral term represents the additionalin
ome resulting from the 
onstant for
e of interest i > 0 on the free surplus (see for instan
e Paulsen [9℄,where the existen
e of su
h a pro
ess R is proved). A similar model was dealt with in Albre
her et al.[2℄ and Paulsen & Gjessing [10, 11℄. In this paper we are interested in identifying the optimal strategyto pay out dividends from pro
ess (1) to shareholders during the period of solven
y.Let Lt denote the a

umulated paid dividends up to time t. We 
all a dividend strategy L = {Lt}t≥0admissible if it is an adapted 
àglàd (previsible, Lt− = Lt) and non-de
reasing pro
ess. Further werequire Lt+ − Lt ≤ RLt su
h that paying dividends 
an not 
ause ruin, where the 
ontrolled pro
ess isde�ned via

RLt = x+ ct−
Nt
∑

k=1

Yk + i

∫ t

0

RLs ds− Lt.The 
àdlàg property of the reserve pro
ess and the 
àglàd property of the dividends pro
ess imply that
RLt− 6= RLt is always due to a 
laim and RLt+ 6= RLt is due to some singular dividend payment. Althoughnot standard in the literature, this 
àglàd assumption for the dividends will simplify the analysis (andthe previsibility of the 
ontrol is then also ensured by the 
àglàd property).The performan
e of an admissible strategy L is measured by the fun
tion

VL(x) = E

(

∫ τL

0

e−δs dLs

∣

∣

∣ RL0 = x

)

, (2)
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i.e. the expe
tation of the dis
ounted dividend payments until the time of ruin τL = inf{t|RLt < 0} of the
ontrolled pro
ess. Here δ > 0 denotes the dis
ount fa
tor, whi
h 
an also be interpreted as a measureof the preferen
e of shareholders to re
eive payments earlier rather than later during the lifetime of therisk pro
ess. The value fun
tion of the maximization problem is then given through
V (x) = sup

L∈Π
VL(x), (3)where the supremum is taken over the set Π of all admissible strategies.Optimization problems of the form (3) are a 
lassi
al topi
 in sto
hasti
 
ontrol theory (see for instan
eS
hmidli [13℄ for a re
ent survey). Under the assumption that the underlying risk pro
ess R is modelledby a Cramér-Lundberg pro
ess (i.e. (1) with i = 0), it was �rst shown in Gerber [7℄ by a dis
rete ap-proximation and then a limiting argument that the optimal dividend strategy a

ording to the 
riterion(2) is of so-
alled band type. This result was re
ently rederived by means of vis
osity theory in Az
ueand Muler [3℄. It is a natural question to ask for an analogous result in the presen
e of an interestfor
e i > 0 on the free surplus, not the least be
ause, from a pra
ti
al perspe
tive, the use of a dis
ountfa
tor δ > 0 for the dividends in the obje
tive fun
tion a
knowledging the time value of money should be
omplemented by su
h an e�e
t for the underlying risk pro
ess, too. It is intuitively not surprising thatthe dividend maximization problem is only well formulated for i < δ (for exponential 
laims we will alsodemonstrate this fa
t expli
itly in Se
tion 4).As in the 
lassi
al Cramér-Lundberg 
ase, one 
an not expe
t the value fun
tion (3) to be a 
lassi
alsolution of the asso
iated Hamilton-Ja
obi-Bellman (HJB) equation. Like Az
ue & Muler [3℄ in the 
ase

i = 0, we therefore use the methodology of vis
osity solutions to identify the optimal strategy for i > 0.The outline of the paper is as follows. After establishing some basi
 properties of the value fun
tion (3),the 
orresponding HJB equation is derived and the value fun
tion is identi�ed as a vis
osity solutionof this HJB equation (Proposition 2.3). Typi
ally, dividend maximization problems in the Cramér-Lundberg setting la
k an initial 
ondition (
f. Az
ue & Muler [3℄, Gerber [7℄, S
hmidli [13℄; Mnif &Sulem [8℄ 
ir
umvent this problem by 
onsidering a slightly di�erent risk model that does provide aninitial value for the maximization problem). Therefore we �rst prove uniqueness of the vis
osity solutionof the HJB equation for a given initial 
ondition via a 
omparison prin
iple (Proposition 2.4) and in ase
ond step we show that every vis
osity supersolution dominates the value fun
tion (Proposition 2.6).In that way we 
an 
hara
terize the value fun
tion as the vis
osity supersolution with the smallest initialvalue ful�lling the same growth 
onditions.The 
onstru
tion of the optimal strategy of band type needs some 
are 
on
erning the behaviour of thevalue fun
tion at points where di�erentiability may not be ful�lled (Propositions 2.11 and 2.12, whi
halso indi
ate already how to 
onstru
t the optimal solution along the arguments of S
hmidli [13℄).In Se
tion 3 the existen
e and uniqueness of the solution to the integro-di�erential part of the HJBequation in the respe
tive regions are established and properties of the 
ru
ial sets needed for the de�nitionof the optimal strategy are derived. Eventually the approriate band strategy is formulated and itsoptimality is proved (Proposition 3.3).In Se
tion 4.1 the 
ase of exponentially distributed 
laim sizes is investigated in more detail and it isshown that in this 
ase the optimal band strategy 
ollapses to a barrier strategy, in
luding a study of
onditions on parameter values under whi
h the optimal barrier is in fa
t in 0 (this 
omplements resultsof Paulsen & Gjessing [10℄, who investigated optimal barrier values for the risk pro
ess (1) within the
lass of barrier strategies).Finally, in Se
tion 4.2 an example for Erlang(2)-distributed 
laims is identi�ed for whi
h the optimalband strategy 
an be expli
itly 
al
ulated.2 Value fun
tion and vis
osity solutions2.1 Basi
 properties of the value fun
tionLet us �rst derive some bounds for the value fun
tion and its �rst derivative.2



Proposition 2.1. For i < δ we have
x+

c

δ + λ
≤ V (x) ≤

δx+ c

δ − i
.Proof. The 
ontrolled pro
ess

RLt = x+ ct−
Nt
∑

k=1

Yk + i

∫ t

0

RLs ds− Ltis 
learly upper-bounded by
RLt ≤ eit

(

x+ c

∫ t

0

e−isds

)and the growth rate in t of the right hand side is eit(ix + c). Be
ause payments due to an admissiblestrategy L 
an not 
ause ruin, the 
umulated dividends up to time t are bounded by the maximal possibleposition of the reserve at that time,
Lt ≤ x+

∫ t

0

eis(ix+ c) ds,and sin
e dividend payments stop at the time of ruin, by partial integration we arrive at
VL(x) = E

(∫ ∞

0

e−δs dLs

)

= E

(∫ ∞

0

δ e−δsLs ds

)

≤ x+

∫ ∞

0

δ e−δs
(
∫ s

0

eiu(ix+ c) du

)

ds

=
δx+ c

δ − i
.On the other hand, we get a lower bound for V (x) when we pay the initial surplus x and all in
omingpremia immediately as dividends and the �rst 
laim that o

urs (after an exponential time τ1) 
ausesruin:

V (x) ≥ VL0(x) = x+ c E

(∫ τ1

0

e−δtdt

)

= x+
c

δ + λ
.Proposition 2.2. For 0 ≤ x < y we have the following inequalities

y − x ≤ V (y) − V (x) ≤ V (x)

(

(

iy + c

ix+ c

)
δ+λ

i

− 1

)Proof. For ǫ > 0 let Lǫ be an ǫ-optimal strategy for initial 
apital x (i.e. VLǫ(x) ≥ V (x) − ǫ). For y > xde�ne L su
h that an amount y − x is paid as dividend immediately followed by using the strategy Lǫ.We have
V (y) ≥ y − x+ VLǫ

(x) ≥ y − x+ V (x) − ǫ.Be
ause this holds for all ǫ > 0 we get
V (y) − V (x) ≥ y − x.For the other dire
tion let 0 ≤ x < y and ǫ > 0. De�ne L̂ for initial 
apital x as follows. Nothing is doneas long as the reserve stays below y and then an ǫ-optimal strategy Lǫ for initial 
apital y is applied. Thereserve rea
hes y not before time t0 = 1

i log
(

iy+c
ix+c

) and it is further assumed that there is no paymentat all if a 
laim o

urs before t0. Hen
e
V (x) ≥ VL̂(x) ≥ e−(δ+λ)t0VLǫ

(y) ≥ e−(δ+λ)t0 (V (y) − ǫ) .3



Finally we arrive at
V (y) − V (x) ≤ V (x)

(

(

iy + c

ix+ c

)
δ+λ

i

− 1

)

.From the above and [15℄, we get that V (x) is in
reasing and lo
ally Lips
hitz on [0,∞) (apply a Taylorexpansion to the upper bound around x to see this) whi
h by Radema
her's Theorem ensures the existen
eof the derivative almost everywhere and then 1 ≤ V ′(x) ≤ δ+λ
ix+cV (x). Furthermore V (x) is Lips
hitz on
ompa
t sets whi
h implies that it is absolutely 
ontinuous.2.2 Representation as a vis
osity solutionThe value fun
tion V (x) ful�lls the dynami
 programming prin
iple for any stopping time γ,

V (x) = sup
L∈Π

E

(∫ τ∧γ

0

e−δsdLs + e−δ(τ∧γ)V (RLτ∧γ)

)

, (4)whi
h 
an be shown analogously to the proof of Proposition 3.1 of [3℄ (with xmax repla
ed by eiγ (x+ c
∫ γ

0 e
−isds

)).Now let us de�ne the operator
Lu(x) = (c+ ix)u′(x) − (δ + λ)u(x) + λ

∫ x

0

u(x− y)dFY (y).Standard arguments from sto
hasti
 
ontrol (see [6℄) imply the HJB equation
max {1 − u′(x),Lu(x)} = 0. (5)But, as mentioned in the introdu
tion, we 
an not expe
t the value fun
tion to be a 
lassi
al solution to(5). Therefore we need another 
on
ept of solutions for this type of equation. We 
hoose the 
on
ept ofvis
osity solutions whi
h is introdu
ed in the following.De�nition 2.1. A fun
tion u : [0,∞) → R is 
alled a vis
osity subsolution of (5) at x ∈ (0,∞) ifany 
ontinuously di�erentiable fun
tion ψ(x) : (0,∞) → R with ψ(x) = u(x) su
h that u − ψ rea
hes amaximum at x satis�es
max {1 − ψ′(x),Lψ(x)} ≥ 0.We say that a fun
tion u : [0,∞) → R is a vis
osity supersolution of (5) at x ∈ (0,∞) if any 
ontinuouslydi�erentiable fun
tion φ(x) : (0,∞) → R with φ(x) = u(x) su
h that u − φ rea
hes a minimum at xsatis�es
max {1 − φ′(x),Lφ(x)} ≤ 0.A fun
tion u(x) : [0,∞) → R is a vis
osity solution if it is both a vis
osity sub- and supersolution.Remark 2.1. At some points later on will also make use of a di�erent but equivalent (Sayah [12℄, Benthet al. [4℄) de�nition of a vis
osity sub- and supersolution: De�ne the modi�ed operator

L∗
u,v(x) = (c+ ix)v′(x) − (δ + λ)u(x) + λ

∫ x

0

u(x− y)dFY (y).A fun
tion u : [0,∞) → R is a vis
osity subsolution of (5) at x ∈ (0,∞) if any 
ontinuously di�erentiablefun
tion ψ(x) : (0,∞) → R with ψ(x) = u(x) su
h that u− ψ rea
hes a maximum at x satis�es
max

{

1 − ψ′(x),L∗
u,ψ(x)

}

≥ 0.A fun
tion u : [0,∞) → R is a vis
osity supersolution of (5) at x ∈ (0,∞) if any 
ontinuously di�erentiablefun
tion φ(x) : (0,∞) → R with φ(x) = u(x) su
h that u− φ rea
hes a minimum at x satis�es
max

{

1 − φ′(x),L∗
u,φ(x)

}

≤ 0. (6)4



Later on we will need the following two properties of the derivatives of some test fun
tions.Remark 2.2. A 
ontinuously di�erentiable fun
tion ψ : (0,∞) → R su
h that u−ψ rea
hes a maximumat y > 0 with ψ′(y) = q exists if and only if
lim inf

x↑y

u(y) − u(x)

y − x
≥ q ≥ lim sup

x↓y

u(y) − u(x)

y − x
.A 
ontinuously di�erentiable fun
tion φ : (0,∞) → R su
h that u − φ rea
hes a minimum at y > 0 with

φ′(y) = q exists if and only if
lim inf

x↓y

u(y) − u(x)

y − x
≥ q ≥ lim sup

x↑y

u(y) − u(x)

y − x
. (7)Remark 2.3. Note that for a 
ontinuously di�erentiable test fun
tion ψ (as required in the de�nitionof vis
osity solutions) the operators Lψ and L∗

u,ψ are 
ontinuous fun
tions for x ≥ 0, so that we do nothave to work with the upper semi-
ontinuity as in Mnif and Sulem [8℄.The next proposition 
hara
terizes the value fun
tion as a vis
osity solution. The supersolution proof isin the spirit of [3℄, whereas the subsolution proof is related to the approa
h in [8℄.Proposition 2.3. The value fun
tion V is a vis
osity solution of the HJB equation (5).Proof. We start with showing that V is a vis
osity supersolution. Fix l ≥ 0 and let h > 0 be small enoughsu
h that eih (x+ (c− l)
∫ h

0 e
−isds

)

≥ 0. Let τ1 denote the time of the �rst 
laim o

urren
e. From thedynami
 programming prin
iple we derive
V (x) = sup

L∈Π
E

(

∫ τ1∧h

0

e−δs dLs + e−δ(τ1∧h) V
(

RLτ1∧h
)

)

≥e−λh
∫ h

0

e−δsl ds+ e−(δ+λ)h V

(

eih

(

x+ (c− l)

∫ h

0

e−is ds

))

+

∫ h

0

λe−λt

[

∫ t

0

e−δsl ds+ e−δt
∫ eit(x+(c−l)

R

t

0
e−is ds)

0

V

(

eit
(

x+ (c− l)

∫ t

0

e−is ds

)

− y

)

dFY (y)

]

dt.This further leads to
0 ≥

1 − e−(δ+λ)h

h(δ + λ)
l +

V
(

eih
(

x+ (c− l)
∫ h

0
e−is ds

))

− V (x)

h
−

1 − e−(δ+λ)h

h
V

(

eih

(

x+ (c− l)

∫ h

0

e−is ds

))

+
λ

h

∫ h

0

e−(δ+λ)t

∫ eit(x+(c−l)
R

t

0
e−is ds)

0

V

(

eit
(

x+ (c− l)

∫ t

0

e−is ds

)

− y

)

dFY (y) dt.Now let φ be a 
ontinuously di�erentiable test fun
tion with V (x) = φ(x) and V −φ attaining a minimumin x. We get
0 ≥

1 − e−(δ+λ)h

h(δ + λ)
l+

φ
(

eih
(

x+ (c− l)
∫ h

0 e
−is ds

))

− φ(x)

h
−

1 − e−(δ+λ)h

h
V

(

eih

(

x+ (c− l)

∫ h

0

e−is ds

))

+
λ

h

∫ h

0

e−(δ+λ)t

∫ eit(x+(c−l)
R

t

0
e−is ds)

0

V

(

eit
(

x+ (c− l)

∫ t

0

e−is ds

)

− y

)

dFY (y) dt.Using Taylor expansion w.r.t. h at h = 0 and negle
ting se
ond order terms,
eih

(

x+ (c− l)

∫ h

0

e−is ds

)

≈ x+ h(ix+ (c− l)),5



we get for h→ 0 and using 
ontinuity of V and di�erentiability of φ
0 ≥ l(1 − φ′(x)) + (ix+ c)φ′(x) − (δ + λ)V (x) + λ

∫ x

0

V (x− y)dFY (y). (8)Inequality (8) holds for an arbitrary l ≥ 0 (using a strategy Lt = tl). This gives 1 − φ′(x) ≤ 0 and for
l = 0 we get L∗

V,φ(x) ≤ 0. Therefore we have that V is a vis
osity supersolution of (5).Next we will identify the vis
osity subsolution property using De�nition 2.1. For some fun
tion ψ ∈
C1(0,∞) ful�lling

0 = V (x0) − ψ(x0) > V (x) − ψ(x) ∀x 6= x0, x ∈ (0,∞),for some x0 ∈ (0,∞), we have to show
max {1 − ψ′(x0),Lψ(x0)} ≥ 0.Assume the 
ontrary. Be
ause ψ, ψ′ and V are 
ontinuous, the operator Lψ is 
ontinuous, too. Thereforesome r > 0 and ξ > 0 exist with

max {1 − ψ′(x),Lψ(x)} < −δξ, ∀x ∈ (x0 − r, x0 + r) = B,and su
h that for x′ = x0 ± r we have
V (x′) ≤ ψ(x′) − ξ.Further 
hoose r su
h that B ⊂ (0,∞). Let {xn}n∈N be a sequen
e with xn → x0 and without loss ofgenerality assume xn ∈ B for all n ∈ N. Be
ause of the 
ontinuity of ψ and V we have | V (xn)−ψ(xn) | →

0. From now on we look at the reserve with initial 
apital xn whi
h is 
ontrolled by an arbitrary admissiblestrategy L ∈ Π, RL,xn = {RL,xn

t }t≥0. De�ne
τn = inf{t > 0 | RL,xn

t 6∈ B}and denote by τ∗ = τn ∧ T for some T > 0. Look now at the set {τ∗ = τn} �rst, leaving B beforetime T . We have, from the 
onstru
tion of the pro
ess, that either x0 + r is rea
hed whi
h implies
RL,xn

τ∗− = RL,xn

τ∗ = x0 + r, or a jump happens leading to RL,xn

τ∗− ≥ RL,xn

τ∗ and RL,xn

τ∗ ≤ x0 − r. Sin
e V isin
reasing and also ψ is in
reasing on B, we get from ψ′ > 1,
V (RL,xn

τ∗ ) ≤ V (x′) ≤ ψ(x′) − ξ ≤ ψ(RL,xn

τ∗− ) − ξ.On the set {τ∗ = T }, RL,xn

τ∗ ≤ RL,xn

τ∗− gives
V (RL,xn

τ∗ ) ≤ ψ(RL,xn

τ∗− ).Altogether
e−δτ

∗

V (RL,xn

τ∗ ) ≤ e−δτ
∗−ψ(RL,xn

τ∗ ) − e−δτ
∗

ξI{τn=τ∗}.Apply the It� formula to e−δτ∗

ψ
(

RL,xn

τ∗−

):
e−δτ

∗

ψ
(

RL,xn

τ∗−

)

− ψ(x) =

∫ τ∗

0

e−δs(c+ iRL,xn

s− )ψ′(RL,xn

s− )ds− δ

∫ τ∗

0

ψ(RL,xn

s− )e−δsds

−

∫ τ∗

0

ψ′(RL,xn

s− )e−δs dLcs +
∑

RL,xn
s− 6=RL,xn

s ∧s≤τ∗

(

ψ(RL,xn
s ) − ψ(RL,xn

s− )
)

e−δs

+
∑

RL,xn
s+ 6=RL,xn

s ∧s<τ∗

(

ψ(RL,xn

s+ ) − ψ(RL,xn
s )

)

e−δs. (9)
6



Note that RL,xn

s+ −RL,xn
s = −(Ls+−Ls) and therefore∑RL,xn

s+ 6=RL,xn
s ∧s<τ∗

(

ψ(RL,xn

s+ ) − ψ(RL,xn
s )

)

e−δs =

−
∑

Ls+ 6=Ls∧s<τ∗ e−δs
(

∫ Ls+−Ls

0 ψ′(RL,xn
s − u)du

). Be
ause ψ′(x) > 1 for x ∈ B we get
−





∫ τ∗

0

ψ′(RL,xn

s− )e−δs dLcs +
∑

Ls+ 6=Ls∧s<τ∗

e−δs

(

∫ Ls+−Ls

0

ψ′(RL,xn
s − u)du

)



 ≤

−





∫ τ∗

0

e−δs dLcs +
∑

Ls+ 6=Ls∧s<τ∗

e−δs (Ls+ − Ls)



 = −

∫ τ∗

0

e−δsdLs.The last equality holds be
ause the dividends pro
ess is left-
ontinuous. Plugging this into (9) we obtainthe inequality
e−δτ

∗

ψ(RL,xn

τ∗− ) ≤ψ(xn) −

∫ τ∗

0

e−δs dLs +

∫ τ∗

0

e−δs
(

(c+ iRL,xn

s− )ψ′(RL,xn

s− ) − δψ(RL,xn

s− )
)

ds

+
∑

RL,xn
s− 6=RL,xn

s ∧s≤τ∗

(

ψ(RL,xn
s ) − ψ(RL,xn

s− )
)

e−δs.Further we know (see e.g. [5℄) that
∑

RL,xn
s− 6=RL,xn

s ∧s≤τ∗

(

ψ(RL,xn
s ) − ψ(RL,xn

s− )
)

e−δs −

∫ τ∗

0

λe−δs

(

∫ RL,xn
s−

0

ψ(RL,xn

s− − y)dFY (y) − ψ(RL,xn

s− )

)

dsis a martingale. Therefore taking expe
tations on both sides yields
E

(

e−δτ
∗

ψ(RL,xn

τ∗− ) +

∫ τ∗

0

e−δs dLs

)

≤ ψ(xn) + E

(

∫ τ∗

0

e−δsLψ(RL,xn

s− )ds

)

.Be
ause of RL,xn

s− ∈ B for s ∈ [0, τ∗) we have Lψ(RL,xn

s− ) < −δξ. We 
an use this to derive
E

(

e−δτ
∗

V (RL,xn

τ∗ ) +

∫ τ∗

0

e−δs dLs

)

+ E

(

∫ τ∗

0

e−δsδξ ds+ e−δτ
∗

ξI{τn=τ∗}

)

≤ V (xn) + γn,where γn = ψ(xn) − V (xn) 
onverges to zero. Therefore 
hoose n large enough su
h that γn ≤
1
2E

(

∫ τ∗

0
e−δsδξ ds+ e−δτ

∗

ξI{τn=τ∗}

). For arbitrary L we arrive at
E

(

e−δτ
∗

V (RL,xn

τ∗ ) +

∫ τ∗

0

e−δs dLs

)

+
1

2
E

(

∫ τ∗

0

e−δsδξ ds+ e−δτ
∗

ξI{τn=τ∗}

)

≤ V (xn).This leads to the following 
ontradi
tion to the dynami
 programming prin
iple:
V (xn) +

1

2
E

(

∫ τ∗

0

e−δsδξ ds+ e−δτ
∗

ξI{τn=τ∗}

)

=

sup
L∈Π

E

(

e−δτ
∗

V (RL,xn

τ∗ ) +

∫ τ∗

0

e−δs dLs

)

+
1

2
E

(

∫ τ∗

0

e−δsδξ ds+ e−δτ
∗

ξI{τn=τ∗}

)

≤ V (xn).If there is a positive probability for the event τ∗ = 0 whi
h is only possible if τ∗ = τn, then for these
ond term above e−δτ∗

ξI{τn=τ∗} > 0. Therefore E

(

∫ τ∗

0
e−δsδξ ds+ e−δτ

∗

ξI{τn=τ∗}

)

> 0 holds andleads indeed to a 
ontradi
tion. 7



2.3 UniquenessThe following 
omparison prin
iple allows us to de
ide whether a vis
osity supersolution dominates anon-ther vis
osity subsolution by looking at their initial value. Sin
e every vis
osity solution is both a sub-and supersolution, this will imply uniqueness for a given initial value. A
tually in our situation we haveto modify the proof presented by Az
ue and Muler [3℄. Although quite te
hni
al, the arguments are basedon an appropriate 
ombination of standard arguments from vis
osity theory.Proposition 2.4. Let for all x > 0 the fun
tions u1(x) and u2(x) be a vis
osity sub- and supersolution,respe
tively, that satis�es the 
onditions ful�lled by the value fun
tion (lo
ally Lips
hitz, u(y)−u(x) ≥ y−xand some linear growth u(x) ≤ k1x+ k2). If u1(0) ≤ u2(0), then u1(x) ≤ u2(x) for all x ∈ [0,∞).Proof. The result will be shown by 
ontradi
tion. Assume there exists some x0 > 0 su
h that u1(x0) −
u2(x0) > 0. Let γ > 0 be a 
onstant and de�ne ũ1(x) = e−γxu1(x) and ũ2(x) = e−γxu2(x). Be
ause u1and u2 ful�ll a linear growth 
ondition, these fun
tions are positive and bounded. If we 
hoose γ smallenough we get by 
ontinuity that ũ1(x0) − ũ2(x0) > 0. Therefore

0 < max
x≥0

(

ũ1(x) − ũ2(x)
)

= M <∞,with a maximizing argument x∗. Further we have
ũ1(y) − ũ1(x)

y − x
≤ m,

ũ2(y) − ũ2(x)

y − x
≤ m, (10)for some m > 0. De�ne the set A by

A = {(x, y) | 0 ≤ x ≤ y}.In the following we need the fun
tion
φν(x, y) := ũ1(x) − ũ2(y) −

ν

2
(x− y)2 −

2m

ν2(y − x)2 + ν
,and

Mν := max
(x,y)∈A

φν(x, y),with the maximizer (xν , yν). We have
Mν ≥ φν(x

∗, x∗) = M −
2m

ν
,whi
h is positive for ν large enough, leading to

lim inf
ν→∞

Mν ≥M > 0.To ensure di�erentiability at the points xν and yν one needs to establish that (xν , yν) is not an elementof the boundary of A (the proof of whi
h is postponed to Lemma 2.5 after the end of this proof).In the next step we de�ne two test fun
tions, su
h that we 
an use that ũ1 and ũ2 are vis
osity sub- andsupersolutions to a slightly modi�ed problem
ψ(x) = ũ2(yν) +

ν

2
(x − yν)

2 +
2m

ν2(yν − x)2 + ν
+ φν(xν , yν),

ϕ(y) = ũ1(xν) −
ν

2
(xν − y)2 −

2m

ν2(y − xν)2 + ν
− φν(xν , yν).

ψ and ϕ are 
ontinuously di�erentiable fun
tions. Further ũ1(x) − ψ(x) = φν(x, yν)− φν(xν , yν) rea
hesa maximum equal to zero in xν . On the other hand ũ2(y) − ϕ(y) = −φν(xν , y) + φν(xν , yν) rea
hes a8



minimum equal to zero in yν . Be
ause u1 and u2 are vis
osity sub- and supersolutions of the originalHJB equation, ũ1 and ũ2 are vis
osity sub- and supersolutions of the equation
max

{

1 − eγx(γu(x) + u′(x)), (c + ix)(γu(x) + u′(x)) − (δ + λ)u(x) + λ

∫ x

0

u(x− y)e−γydFY (y)

}

= 0.In the points xν and yν we get
max

{

1 − eγxν (γũ1(xν) + ψ′(xν)), (c + ixν)(γũ1(xν) + ψ′(xν)) − (δ + λ)ũ1(xν) + λ

∫ xν

0

ũ1(xν − y)e−γydFY (y)

}

≥ 0,

max

{

1 − eγyν (γũ2(yν) + ϕ′(yν)), (c+ iyν)(γũ2(yν) + ϕ′(yν)) − (δ + λ)ũ2(yν) + λ

∫ yν

0

ũ2(yν − y)e−γydFY (y)

}

≤ 0.In addition we have that ϕ′(yν) = ψ′(xν) = ν(xν − yν) + 4mν2(yν−xν)
ν2(yν−xν)2+ν .Noti
e that max{A,B} ≤ max{C,D} implies (A ≤ C) ∨ (B ≤ D). We start with looking at B ≤ D,

(c+iyν)

(

γũ2(yν) + ν(xν − yν) +
4mν2(yν − xν)

ν2(yν − xν)2 + ν

)

−(c+ixν)

(

γũ1(xν) + ν(xν − yν) +
4mν2(yν − xν)

ν2(yν − xν)2 + ν

)

+ (δ + λ)(ũ1(xν) − ũ2(yν)) ≤ λ

(∫ xν

0

ũ1(xν − y)e−γydFY (y) −

∫ yν

0

ũ2(yν − y)e−γydFY (y)

)

. (11)From
φν(xν , xν) + φν(yν , yν) ≤ 2φν(xν , yν)we immediately get

ũ1(xν) − ũ2(xν) + ũ1(yν) − ũ2(yν) −
4m

ν
≤ 2

(

ũ1(xν) − ũ2(yν) −
ν

2
(xν − yν)

2 −
2m

ν2(yν − xν)2 + ν

)

.This yields, together with (10),
ν(xν − yν)

2 ≤ ũ1(xν) − ũ1(yν) + ũ2(xν) − ũ2(yν) + 4m
(yν − xν)

2

ν(yν − xν)2 + 1

≤ 2m|yν − xν | + 4m(|yν − xν |)
2and in parti
ular, for ν large enough su
h that 4m

ν < 1,
0 ≤ |yν − xν |

(

1 −
4m

ν

)

≤
2m

ν
. (12)Now let (νn)n∈N be su
h that (xν , yν) 
onverges to (x, y) as νn → ∞. From (12) we get that x = y.Using (11) we get

(c+ ix)γ(ũ2(x) − ũ1(x)) + (δ + λ)(ũ1(x) − ũ2(x)) ≤ λ

(

∫ x

0

e−γy(ũ1(x − y) − ũ2(x− y))dFY (y)

)

.(13)The right-hand side of (13) is smaller than λM . If we 
hoose γ small enough we derive
M ≤ lim inf

ν→∞
Mν ≤ lim

n→∞
Mνn

= ũ1(x) − ũ2(x) ≤
λ

δ + λ
M,whi
h is a 
ontradi
tion.Now we 
on
entrate on A ≤ C and observe that

eγxν (γũ1(xν) + ϕ′(yν)) ≤ eγyν (γũ2(yν) + ϕ′(yν)).9



This implies
eγxν ũ1(xν ) − eγyν ũ2(yν) ≤

1

γ
ϕ′(yν) (eγyν − eγxν) .For γ small enough we have eγyν ũ2(yν) − eγxν ũ1(xν) ≈ ũ2(yν) − ũ1(xν) so that

0 < M ≤Mν = φν(xν , yν) ≤ ũ1(xν) − ũ2(yν) ≤
1

γ
ϕ′(yν)(e

γyν − eγxν). (14)If ϕ′(yν) ≤ 0 for some ν > 0 we are done, remember (xν , yν) ∈ A. Now look at ϕ′(yν) > 0, we have
|ϕ′(yν)| ≤ ν|yν − xν | +

∣

∣

∣

∣

4mν(yν − xν)

ν(yν − xν)2 + 1

∣

∣

∣

∣

. (15)Choose again a sequen
e (νn)n∈N su
h that (xν , yν) 
onverges to (x, y) as νn → ∞, (12) gives x = y. If
limνn→∞ ϕ′(yν) is bounded the right hand side of (14) 
onverges to zero and also in this 
ase we obtaina 
ontradi
tion. Applying (12) to (15) we get the boundedness of ϕ′(yν) for large ν,

|ϕ′(yν)| ≤
1

1 − 4m
ν

(2m+ 8m2).From the 
omments above, Proposition 2.4 implies the uniqueness of the vis
osity solution for a giveninitial 
ondition v(0) = v0.Lemma 2.5. (xν , yν) is not an element of the boundary of A.Proof. First look at
φν(0, 0) = ũ1(0) − ũ2(0) −

2m

ν
< 0,

lim
b→∞

φν(x, b) = ũ1(x) − ũ2(b) −
ν

2
(x− b)2 −

2m

ν2(b − x)2 + ν
= −∞.The next step is to examine the right-hand derivative, in y, at the boundary of A along the diagonal. Forall x > 0,

lim sup
h→0+

φν(x, x + h) − φν(x, x)

h
= lim sup

h→0+

1

h

(

ũ2(x) − ũ2(x+ h) +
2m

ν
−
ν

2
h2 −

2m

ν2h2 + ν

)

≤ lim sup
h→0+

(

− 1 −
ν

2
h+

2mh

νh2 + 1

)

= −1 < 0.The last inequality holds be
ause of the assumsptions on u2 stated in Proposition 2.4. By 
ontinuity itfollows from φν(0, 0) < 0 that φν(0, y) < 0 for y ∈ [0, ρν] and some ρν > 0. Now for y > ρν we observe
lim sup
h→0+

φν(0, y) − φν(h, y)

h
= lim sup

h→0+

1

h

(

ũ1(0) − ũ1(h) +
ν

2
h2 − νhy +

2mν2(y2 − (h− y)2)

(ν2(h− y)2 + ν)(νy2 + 1)

)

≤ lim sup
h→0+

(

−e−γh + u1(0)
(1 − e−γh)

h
+
ν

2
h− νy +

1

h

2mν2(y2 − (h− y)2)

(ν2(h− y)2 + ν)(νy2 + 1)

)

= γũ1(0) − 1 − νy +
4my

(νy2 + 1)2
, (16)whi
h is negative for ν large enough and γ small enough. Here the inequality in (16) holds be
ause thelower and upper linear growth 
onditions imply −h ≥ u1(0) − u1(h) and 
onsequently

ũ1(0) − ũ1(h) = u1(0) − e−γhu1(h) = e−γh(u1(0) − u1(h)) + u1(0)(1 − e−γh)

≤ −e−γhh+ u1(0)(1 − e−γh).Hen
e we have proved that (xν , yν) does not belong to the boundary of A (negative value in (0, 0) andin every dire
tion towards the boundary of A negative derivatives and a negative limit for the argument
(x, b) if b→ ∞). 10



2.4 Chara
terization of the value fun
tionIn 
ontrast to some optimization problems in a di�usion framework the dividend maximization problemin our setup la
ks an initial 
ondition. In Proposition 2.6 we will prove that every vis
osity supersolutionto (5) whi
h fu�lls a linear growth 
ondition dominates the value fun
tion. This together with Proposition2.4 allows us to de�ne
V (0) = inf{u(0) | u is a vis
osity solution to the HJB equation and ful�lls a linear growth 
ondition}.Be
ause of the 
omparison prin
iple any other 
hoi
e of an initial value will lead to a 
ontradi
ition toProposition 2.6, sin
e for any suitable vis
osity solution u with u(0) < V (0) we would have u(x) < V (x)for at least x ∈ [0, ǫ) and u(x) ≤ V (x) for all x > 0.For a vis
osity supersolution u1 we have almost everywhere

u′1(x) ≤
1

c+ ix

(

(δ + λ)u1(x) − λ

∫ x

0

u1(x− y)dFY (y)

)

≤
δ + λ

c+ ix
u1(x).Throughout this se
tion we need a sequen
e of non-negative fun
tions {vn(x)}n∈N with the followingproperties:

• vn is 
ontinuously di�erentiable with
1 ≤ v′n(x) ≤

δ + λ

c+ ix
vn(x) (17)

• vn(x) ≤ k1x+ k2 for some positive 
onstants k1, k2

• vn 
onverges uniformly to the absolutely 
ontinuous supersolution u1 of (5) on 
ompa
t sets and
v′n 
onverges to u′1 almost everywhere. Further vn(x) = 0 for x < 0.Su
h a sequen
e exists due to [15℄ and [3℄.Proposition 2.6. An absolutely 
ontinuous supersolution u1 of the HJB equation (5) ful�lling a lineargrowth 
ondition dominates the value fun
tion, u1(x) ≥ V (x).Proof. Let L = (Lt)t≥0 be an admissible strategy. The 
ontrolled pro
ess is RL = (RLt )t≥0, R

L
0 = x withruin time τ . Let vn(x) be a 
ontinuously di�erentiable element from the sequen
e de�ned above. Wehave

vn(R
L
(t∧τ))e

−δ(t∧τ) = vn(x) +

∫ (t∧τ)

0

v′n(R
L
s ) e−δs dRLs − δ

∫ (t∧τ)

0

vn(R
L
s ) e−δs ds.having in mind that 
laim o

urren
es lead to Rs− 6= Rs and singular dividend payments (lump sums)lead to Rs+ 6= Rs, we get from the 
onstru
tion of the reserve pro
ess

∫ (t∧τ)

0

v′n(R
L
s ) e−δs dRLs =

∫ (t∧τ)

0

e−δs (c+ iRLs )v′n(R
L
s ) ds−

∫ (t∧τ)

0

v′n(R
L
s ) dLcs

+
∑

RL
s− 6=RL

s , s<(t∧τ)

(vn(RLs ) − vn(RLs−) e−δs +
∑

RL
s+ 6=RL

s , s<(t∧τ)

(vn(RLs+) − vn(RLs ) e−δs.Using the 
ontinuity of v′n and RLs+ −RLs = −(Ls+ − Ls) we 
an write
vn(R

L
s+) − vn(R

L
s ) = −

∫ Ls+−Ls

0

v′n(R
L
s − γ) dγ.Further we use the martingale (Mt)t≥0

Mt =
∑

RL
s− 6=RL

s , s<t

(vn(RLs ) − vn(RLs−) e−δs − λ

∫ t

0

e−δs

(

∫ RL
s−

0

vn(R
L
s− − y) dFY (y) − vn(R

L
s−)

)

ds,11



whi
h is the 
ompensated pro
ess, see [5℄. We arrive at
vn(R

L
(t∧τ))e

−δ(t∧τ) = vn(x) +

∫ (t∧τ)

0

e−δs

[

(c+ iRLs )v′n(R
L
s ) − (δ + λ)Vn(RLs ) + λ

∫ RL
s−

0

vn(R
L
s− − y) dFY (y)

]

ds

−

∫ (t∧τ)

0

v′n(R
L
s ) dLcs −

∑

Ls+ 6=Ls, s<(t∧τ)

e−δs
∫ Ls+−Ls

0

v′n(RLs − γ) dγ +M(t∧τ).Now we use v′n ≥ 1 and 
an estimate
−

∫ (t∧τ)

0

v′n(RLs ) dLcs −
∑

Ls+ 6=Ls, s<(t∧τ)

e−δs
∫ Ls+−Ls

0

v′n(RLs − γ) dγ

≤ −

∫ (t∧τ)

0

dLcs −
∑

Ls+ 6=Ls, s<(t∧τ)

e−δs
∫ Ls+−Ls

0

dγ = −

∫ (t∧τ)

0

e−δsdLs,whi
h leads to
vn(RL(t∧τ))e

−δ(t∧τ) ≤ vn(x) +

∫ (t∧τ)

0

e−δsLvn
(RLs ) ds−

∫ (t∧τ)

0

e−δsdLs +M(t∧τ).The next steps are taking expe
tations, examining the validity of taking the limit t → ∞ and letting
n→ ∞. This will give the desired result.Starting with

E

(

vn(R
L
(t∧τ))e

−δ(t∧τ)
)

≤ vn(x) + E

(

∫ (t∧τ)

0

e−δsLvn
(RLs ) ds

)

− E

(

∫ (t∧τ)

0

e−δsdLs

)

, (18)we have to �nd integrable bounds for every summand to justify the inter
hange of limit and integration.Be
ause Ls is in
reasing, we get by monotone 
onvergen
e
lim
t→∞

E

(

∫ (t∧τ)

0

e−δsdLs

)

= E

(∫ τ

0

e−δsdLs

)

= VL(x).Next we look at the se
ond summand on the right hand side, use the estimates for the �rst derivative(17), the linear growth and the reserve from above to get the integrable upper bound
(c+ ix)v′n(x) − (λ + δ)vn(x) + λ

∫ y

0

vn(x− y) dFY (y) ≤ λ

∫ y

0

vn(x− y) dFY (y) ≤ λ vn(x),whi
h gives
∫ (t∧τ)

0

e−δsLvn
(RLs ) ds ≤

∫ (t∧τ)

0

e−δsλvn(RLs ) ds ≤

∫ (t∧τ)

0

e−δsλ

(

k1 e
is

(

x+ c

∫ s

0

e−ih dh

)

+ k2

)

ds

<

∫ ∞

0

e−δsλ

(

k1 e
is

(

x+ c

∫ s

0

e−ih dh

)

+ k2

)

ds <∞(re
all that we have i < δ), so that by dominated 
onvergen
e
lim
t→∞

E

(

∫ (t∧τ)

0

e−δsLvn
(RLs ) ds

)

= E

(∫ τ

0

e−δsLvn
(RLs ) ds

)

.The left hand side of (18 
onverges to zero by
0 ≤ E

(

vn(R
L
(t∧τ))e

−δ(t∧τ)
)

= E

(

vn(R
L
(t∧τ))e

−δ(t∧τ) I{t<τ}

)

≤ E
(

vn(RLt )e−δt
)

≤ E

(

e−δt
(

k1 e
is

(

x+ c

∫ s

0

e−ih dh

)

+ k2

))

→ 012



(re
all vn(x) = 0 for x < 0). Further v′n → u′1 almost everywhere (at points where u1 is di�erentiable)and limn→∞ Lvn
(x) = Lu1(x) holds.We need again an integrable upper bound for | Lvn

(RLs ) − Lu1(R
L
s ) |. This 
an be obtained from (17)and the linear growth 
onditions on vn and u1:

| Lvn
(RLs ) − Lu1 (R

L
s ) | e−δs

≤

(

(c+ iRLs )v′n(RLs ) + (δ + λ)vn(RLs ) + λ

∫ RL
s

0

vn(RLs − y) dFY (y)

+(c+ iRLs )u′1(R
L
s ) + (δ + λ)u1(R

L
s ) + λ

∫ RL
s

0

u1(R
L
s − y) dFY (y)

)

e−δs

≤ 2(δ + λ)vn(RLs ) + λ

∫ RL
s

0

vn(R
L
s − y) dFY (y) + 2(δ + λ)u1(R

L
s ) + λ

∫ RL
s

0

u1(R
L
s − y) dFY (y)

≤ K (u1(R
L
s ) + vn(RLs )) e−δs ≤ K

(

k1 e
is

(

x+ c

∫ s

0

e−ih dh

)

+ k2

)

e−δs.Altogether we arrive at
lim
n→∞

E

(∫ τ

0

e−δs Lvn
(RLs ) ds

)

= E

(∫ τ

0

e−δs Lu1(R
L
s ) ds

)

≤ 0.Finally we arrive at
VL(x) ≤ u1(x) + E

(∫ τ

0

e−δs Lu1(R
L
s ) ds

)

≤ u1(x),whi
h holds for every admissible strategy L resulting in V (x) ≤ u1(x).The next proposition follows immediately.Proposition 2.7. An admissible strategy L with asso
iated return fun
tion VL whi
h is an absolutely
ontinuous supersolution of the HJB equation ful�lls V = VL. Consequently, L is an optimal dividendstrategy.Now we state several auxiliary results whi
h 
hara
terize the value fun
tion at points of potentiallyproblemati
 di�erentiability behaviour. The proofs are in the spirit of Az
ue and Muler in [3℄.If it is optimal to pay out an amount a immediately, then V (x) = a + V (x − a) so that V ′(x−) = 1.If it is optimal to keep the surplus at a level x until the next 
laim o

urren
e at time τ1 and pay outeverything ex
eeding this level we have
V (x) = E

(∫ τ1

0

(c+ ix) e−δs ds+ e−δτ1V (x − Y1)

)

=
1

δ + λ

(

c+ ix+ λ

∫ x

0

V (x− y) dFY (y)

)

.The following assertions are needed to prove 
ertain properties of the optimal strategy.For some z > 0, the set Πz will denote the set of admissible strategies L ∈ Π for whi
h the 
ontrolledreserve stays below z, i.e. RLt ≤ z for L ∈ Πz and t ≥ 0.De�ne the operator
Λ(x) = c+ ix− (δ + λ)V (x) + λ

∫ x

0

V (x − y) dFY (y).Lemma 2.8. If there is an x > 0 su
h that Λ(x) = 0, then V (x) = supL∈Πx
VL(x) for x ∈ [0, x).Proof. The proof is done by indu
tion. Let Π(n) be the set of admissible strategies su
h that for initialreserve x < x the 
laim pro
ess stays below x till the o

urren
e of the nth 
laim. The idea of the proofis to 
onstru
t an ǫ-optimal strategy L̂ ∈ Πx̄ from a 
ertain ǫ/2-optimal strategy Ln ∈ Π(n) for some nlarge enough. Be
ause of dis
ounting and δ > i we get that |VLn

(x) − VL̂(x)| will be small enough to13



derive the desired result.First we want to show
V (x) = sup

L∈Π(n)

VL(x) (19)for all n ≥ 0. This will be done by indu
tion. Clearly Π(0) = Π and we have that V (x) = supL∈Π(0)
Vl(x).Let n > 1, ǫ > 0 and (19) be ful�lled for n − 1. By the indu
tion hypothesis, Ln−1 ∈ Π(n−1) su
h that

V (x) − VLn−1(x) <
ǫ
2 . Now we look for a strategy Ln ∈ Π(n) su
h that 0 ≤ VLn−1(x) − VLn

(x) ≤ ǫ
2 . Inview of Λ(x) = 0, Ln is de�ned as follows. Starting at x < x apply Ln−1 as long as the reserve staysbelow x. When rea
hing x pay out c + ix until a 
laim o

urs and use again Ln−1 with initial 
apital

x− Y , where Y denotes the random 
laim size.As �rst step we show VLn
(x) ≥ VLn−1(x) −

ǫ
2 . The initial 
apital is RLn

0 = x; Y1, τ1 denote amount ando

urren
e time of the �rst 
laim. For 0 ≤ t < τ1 we have RLn

t = x, Ln,t = (c+ ix)t and RLn
τ1 = x− Y1.We get

VLn
(x) = E

(∫ τ1

0

e−δs(c+ ix) ds+ e−δτ1VLn−1(x− Y1)

)

=
1

δ + λ

(

c+ ix+ λ

∫ x

0

VLn−1(x− y) dFY (y)

)

≥
1

δ + λ

(

c+ ix+ λ

∫ x

0

(V (x− y) −
ǫ

2
dFY (y)

)

=
1

δ + λ

(

Λ(x) + (δ + λ)V (x) −
λǫ

2
F (x)

)

≥ V (x) −
ǫ

2
.From the following two inequalities we get the required result,

V (x) ≥ VLn−1(x) ≥ V (x) −
ǫ

2
,

V (x) ≥ VLn
(x) ≥ V (x) −

ǫ

2
,whi
h gives

VLn
(x) − VLn−1(x) ≥ V (x) −

ǫ

2
− V (x) = −

ǫ

2
.Now we deal with the 
ase 0 ≤ x < x. We have to distiguish between paths of the pro
ess 
ontrolled by

Ln whi
h rea
h x in �nite time (the set of these paths is denoted by P1) and those whi
h do not. Let τbe the �rst time a path from P1 rea
hes x. We 
an split the value of the strategy Ln as follows
VLn

(x) = E

(

IP1

∫ τLn

0

e−δsdLn,s

)

+ E

(

IPc
1

∫ τLn

0

e−δsdLn,s

)

= E

(

IP1

∫ τ

0

e−δsdLn,s

)

+ E
(

e−δτ
)

VLn
(x) + E

(

IPc
1

∫ τLn

0

e−δsdLn,s

)

.Be
ause of the de�nition of the strategy Ln we have that in Pc1 and in P1 for t < τ the paths RLn

t and
R
Ln−1

t are identi
al. Therefore we arrive at
VLn−1(x) − VLn

(x) = E
(

IP1e
−δτ
) (

VLn−1(x) − VLn
(x)
)

≤ E
(

IP1e
−δτ
) ǫ

2
≤
ǫ

2
.In the end we have to show that for every ǫ > 0 there exists a strategy L̂ ∈ Πx su
ht that V (x)−VL̂(x) < ǫfor x ∈ [0, x]. First de�ne t1 su
h that

e−δt1 <
ǫ

8V (x)
,14



and n ≥ 1 large enough su
h that
P (Nt1 ≥ n) =

∑

k≥n

e−λt1(λt1)
k

k!
≤

ǫ

8V (x)
.Let Ln ∈ Π(n) be an ǫ/2-optimal strategy for all x ∈ [0, x]. Let τ̂ the �rst time a path of (RLn

t )t≥0 ex
eeds
x. The set P2 
onsists of all paths su
h that τ̂ <∞. For t < τ̂ we de�ne L̂ = Ln, if t = τ̂ the strategy L̂pays out immediately x and the in
oming premiums till the next 
laim o

urren
e whi
h leads to ruin.As before the value of the strategy Ln as well as for L̂ 
an be written in the following form,

VLn
(x) = E

(

IPc
2

∫ τLn

0

e−δs dLn,s

)

+ E

(

IP2

∫ τLn

0

e−δs dLn,s

)

= E

(

IPc
2

∫ τLn

0

e−δs dLn,s

)

+ E

(

IP2

∫ τ̂

0

e−δs dLn,s

)

+ E
(

IP2e
−δτ̂
)

VLn
(x)

≤ E

(

IPc
2

∫ τLn

0

e−δs dLn,s

)

+ E

(

IP2

∫ τ̂

0

e−δs dLn,s

)

+ E
(

IP2e
−δτ̂
)

V (x).Sin
e RLn

t and RL̂t are identi
al on Pc2 and for t < τ̂ we get
|VLn

(x) − VL̂(x)| ≤ 2 E
(

IP2e
−δτ̂
)

V (x).Be
ause Ln ∈ Π(n) we have {τ̂ < t1} ⊂ {Nt1 ≥ n}, furthermore we have P2 = {τ̂ < ∞} ⊂ {τ̂ ≥
t1} ∪ {Nt1 ≥ n}. We get

E
(

IP2e
−δτ̂
)

≤ E
(

I{τ̂≥t1}e
−δτ̂
)

+ E

(

I{Nt1≥n}
e−δτ̂

)

≤ e−δt1 + P ({Nt1 ≥ n}) <
ǫ

4V (x)
,whi
h gives

|VLn
(x) − VL̂(x)| <

ǫ

2
.The required result follows from

V (x) − VL̂(x) ≤ V (x) − VLn
(x) + |VLn

(x) − VL̂(x)| < ǫ.Lemma 2.9. If there is an x > 0 su
h that V ′(x) = 1, then V (x) = supL∈Πx
VL(x) for all x ∈ [0, x].Proof. We have to show that for every ǫ > 0 we are able to �nd a strategy L̂ ∈ Πx su
h that 0 ≤

V (x) − VL̂(x) < ǫ for all x ∈ [0, x]. Let
D =

c+ ix

δ
ln

(

2V (x)

ǫ

)and de�ne a sequen
e {xn}n∈N with
xn = x−

D

n
.Further we need a sequen
e {hn}n∈N de�ned by

hn =
V (xn) − V (x)

xn − x
− 1.Be
ause of V ′(x) = 1 we have that hn → 0 for n → ∞. Choose n0 su
h that hn0 <

ǫ
8D . A furtherspe
i�
ation of the size of n0 will be needed in the end of the proof.15



The proof needs two steps: �rst one �xes a sequen
e of strategies su
h that on a 
ertain level we get an
ǫ
2 -optimal strategy and the di�eren
es of the values of these strategies form a de
reasing sequen
e. In ase
ond step these ingredients are used to de�ne an ǫ-optimal strategy within the set Πx.Step 1:Take a strategy L ∈ Π su
h that V (x) − VL(x) < ǫ

8n0
. Now de�ne in a re
ursive way the following set ofstrategies (Ln)n≥0. For n = 0 set L0 = L. For n > 0 and initial 
apital x ≤ xn0 follow the strategy L aslong as RLt < x and as RLt rea
hes x, pay out immediately the di�eren
e x − xn0 and follow Ln−1 withinitial 
apital xn0 . If x ∈ (xn0 , x], pay out x− xn0 and follow Ln−1.The idea behind this pro
edure is to �nd an estimate for the time the pro
ess stays below x before
rossing x. Under the strategy Ln the intervall [xn0 , x] has to be passed more than n times.The �rst thing to show is V (x) − VLn0

(x) < ǫ
2 for all x ∈ [0, x].We start with showing that V (x) − VL1(x) <
ǫ

2n0
for all x ∈ [0, x].For x = x we have

V (x) − VL1(x) ≤ V (xn0) + (1 + hn0)(x− xn0) − ((x − xn0) + VL0(xn0))

= V (xn0) − VL(xn0 ) + hn0(x− xn0) ≤
ǫ

4n0
,be
ause of x− xn0 = D

n0
, hn0 ≤ ǫ

8D , (1 + hn0)(x− xn0) = V (x) − V (xn0 ) and V (x) ≥ x− x+ V (x).If x ∈ [xn0 , x] we get with V (x) = (1 + hn0)(x− xn0) + V (xn0),
V (x) − VL1(x) ≤ V (x) − (x− x) − (x− xn0 + VL(xn0))

= V (xn0) + hn0(x− xn0) + x− xn0 − x+ x− x+ xn0 − VL(xn0 )

= V (xn0) − VL(xn0 ) + hn0(x− xn0) ≤
ǫ

4n0
,with the same arguments as above.In the end we look at x ∈ [0, xn0). Let P3 be the set of paths of RL with initial 
apital x su
h that xn0is rea
hed in �nite time, let τx be the �rst time su
h that this is done by a path from P3. We derive

VL1(x) = E

(

IP3

∫ τL1

0

e−δs dL1,s

)

+ E

(

IPc
3

∫ τL1

0

e−δs dL1,s

)

= E

(

IP3

∫ τx

0

e−δs dL1,s

)

+ E
(

IP3e
−δτx

)

VL1(xn0 ) + E

(

IPc
3

∫ τL1

0

e−δs dL1,s

)

.Be
ause the paths of RL and RL1 
oin
ide in Pc3 and in P3 for t < τx we get
| VL1(x) − VL(x) | = E

(

IP3e
−δτx

)

| VL1(xn0) − VL(xn0 ) |.This together with the above estimates, E
(

IP3e
−δτx

)

≤ 1, yields
| V (x) − VL1(x) | ≤ | V (x) − VL(x) | + | VL(x) − VL1(x) |

≤ | V (x) − VL(x) | + | VL(xn0) − VL1(xn0 ) |

≤ | V (x) − VL(x) | + | V (xn0 ) − VL(xn0) | + | V (xn0) − VL1(xn0 ) | ≤
ǫ

2n0
.Now we want for n ≥ 2 and x ∈ [0, x] that | VLn

(x) − VLn−1(x) | ≤ | VLn−1(xn0) − VLn−2(xn0 ) | holds.For x ∈ [xn0 , x] and n ≥ 1 we get the result immediately from VLn
(x) = x− xn0 + VLn−1(xn0 ).Let x ∈ [0, xn0) and denote by P4 the set of paths of RL su
h that x is rea
hed in �nite time, τx denotingthe �rst time of su
h an event. We obtain

VLn
(x) = E

(

IP4

∫ τLn

0

e−δs dLn,s

)

+ E

(

IPc
4

∫ τLn

0

e−δs dLn,s

)

= E

(

IP4

∫ τx

0

e−δs dLn,s

)

+ E
(

IP4e
−δτx

)

(VLn−1(xn0) + x− xn0) + E

(

IDc

∫ τLn

0

e−δs dLn,s

)

.16



As before the paths of RLn and RLn−1 
oin
ide on Pc4 and on P4 for t < τx. Therefore
| VLn

(x) − VLn−1(x) | = E
(

e−δτx
)

| VLn−1(xn0 ) − VLn−2(xn0) | ≤ | VLn−1(xn0 ) − VLn−2(xn0 ) |.We arrive at
V (x) − VLn0

(x) = V (x) − VL1(x) +

n0
∑

n=2

(

VLn−1(x) − VLn
(x)
)

≤ V (x) − VL1(x) + (n0 − 1)| VL1(xn0) − VL(xn0) |

≤
ǫ

2n0
+ (n0 − 1)(| VL1(xn0) − V (xn0) | + | V (xn0) − VL(xn0) |)

≤
ǫ

2n0
+ (n0 − 1)(

ǫ

4n0
+

ǫ

8n0
) ≤

ǫ

2
.Step 2:Now we identify a strategy L ∈ Πx su
h that VLn0

(x) − VL(x) < ǫ
2 for all x ∈ [0, x]. In order to rea
h xfrom xn0 it takes at least 1

i ln
(

ix+c
ixn0+c

) time units. For x ∈ [0, x] let τ = inf{t > 0 | R
Ln0
t > x}. Fromthe de�nition of the strategy Ln0 we get that the pro
ess has to go through the interval [xn0 , x] at least

n0 times. We get
δτ ≥

n0δ

i
ln

(

ix+ c

ixn0 + c

)

,and subsequently
E
(

e−δτ
)

≤

(

ix+ c

i(x− D
n0

) + c

)

−δn0
i

=

(

1 +
iD

n0(i(x− D
n0

) + c)

)

−δn0
i

≈ e−
Dδ

c+ix ≤
ǫ

2V (x)
,for n0 large enough. Let P5 be the set of paths of RLn0 with �nite τ . Now we de�ne the strategy L ∈ Πx,with L = Ln0 as long as t < τ , and at t = τ pay out x immediately and distribute the in
oming premiumsas dividends till the next 
laim o

urren
e 
auses ruin. Again we 
an write

VLn0
(x) = E

(

IPc
5

∫ τLn0

0

e−δsdLn0,s

)

+ E

(

IP5

∫ τLn0

0

e−δsdLn0,s

)

≤ E

(

IPc
5

∫ τLn0

0

e−δsdLn0,s

)

+ E
(

IP5e
−δτ
)

V (x) + E

(

IP5

∫ τ

0

e−δsdLn0,s

)

.Similarly we get
VL(x) = E

(

IPc
5

∫ τL

0

e−δsdLs

)

+ E

(

IP5

∫ τL

0

e−δsdLs

)

≥ E

(

IPc
5

∫ τL

0

e−δsdLs

)

+ E

(

IP5

∫ τ

0

e−δsdLs

)

+ E
(

e−δτ
)

x.Be
ause on the sets Pc5 and P the paths of RLn0 and RL 
oin
ide for t < τ̄ , we arrive at
VLn0

(x) − VL(x) ≤ E
(

e−δτ
)

(V (x) − x) ≤ E
(

e−δτ
)

V (x) ≤
ǫ

2
.This �nishes the proof sin
e

0 ≤ V (x) − VL(x) = V (x) − VLn0
(x) + VLn0

(x) − VL(x) ≤ ǫ.Finally, the following is a 
onsequen
e of the proof of Proposition 2.6:17



Lemma 2.10. Let x > 0 and u1(x) be an absolutely 
ontinuous supersolution of the HJB equation forall x ∈ [0, x). If L is an admissible strategy su
h that RLt ≤ x for all t ≥ 0 then u1(x) ≥ VL(x) for all
x ∈ [0, x).These three lemmas imply the following two propositions (the results resemble a similar lo
al 
hara
ter-ization of the value fun
tion in Shreve et al. [14℄, where the intermediate step with 
onstrained 
ontrols
Πx were used for a dividend maximization problem in a general di�usion setup).Proposition 2.11. If either Λ(x) = 0 or V ′(x) = 1 for some x > 0 and u1(x) is an absolutely 
ontinuoussupersolution of the HJB equation for all x ∈ [0, x) then u1(x) ≥ V (x) in [0, x]. Hen
e, if L ∈ Πx su
hthat VL is an absolutely 
ontinuous supersolution to the HJB equation for all x ∈ [0, x) then V (x) = VL(x)for all x ∈ [0, x].De�ne for any y > 0

Uy(x) =

{

V (x) x ≤ y,
V (y) + x− y x > y.The following proposition will be the key in the numeri
al 
onstru
tion of a solution and we will see howit mat
hes some properties of the optimal strategy.Proposition 2.12. (i) If Uy is a supersolution to the HJB equation in (y,∞), then Uy = V in [0,∞).(ii) If either Λ(x) = 0 or V ′(x) = 1 for some x > 0 and there exists y < x su
h that Uy is a supersolutionof the HJB equation in (y, x], then Uy = V in [0, x].Proof. (i) If we prove that Uy is a supersolution in y > 0 we immediately have that Uy ≥ V in [0,∞).From the de�nition we have Uy(y) = V (y) and therefore the supersolution property of V implies that

L∗
Uy,φ

(y) ≤ 0 for an appropriate fun
tion φ. The right-hand derivative in y is given through
lim
x↓y

Uy(x) − Uy(y)

x− y
= 1.Remark 2.2 shows that there exists a test fun
tion φ with the supersolution property if and only if

lim
x↑y

V (x) − V (y)

x− y
= lim

x↑y

Uy(x) − Uy(y)

x− y
= 1.But in this 
ase we get φ′(y) = 1 showing in addition to V also Uy has the supersolution property. Uy ≤ Vfollows from the de�nition of Uy and Proposition 2.2. For (ii) use Proposition 2.11 instead of the generalsupersolution property. Then the same arguments as above give the desired result.The following settles the question of di�erentiability at points swit
hing from the non-pay- to the pay-regime.Remark 2.4. From the proof of Proposition 2.12 (i) and equation (7) of Remark 2.2, we obtain thatat points y > 0 where a barrier strategy with height y is applied, we have di�erentiability of the valuefun
tion: Below y we use V , in some interval above y we have V des
ribed by Uy. From Proposition 2.2and the monotoni
ity of Uy we get (for x < y < x′ su
h |x− y| ≥ |x′ − y|),

1 ≤
V (x) − V (y)

x− y
=
Uy(x) − Uy(y)

x− y
≤
Uy(x

′) − Uy(y)

x′ − y
→ 1,for x′ → y. This shows that in su
h 
hange points the left-hand derivative is (by the vis
osity solutionproperty) bounded by the right-hand derivative, giving 1 as an upper and lower bound and thereforeproving di�erentiability in these points.
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3 Constru
tion of the optimal strategy3.1 The IDE part of the HJB equationIn intervals where V ′ exists and is greater than 1 we have to ful�ll the se
ond part of the HJB equation(5). Re
all that in intervals where it is optimal to do nothing the generator A of the 
ontrolled pro
essapplied to V gives
AV (x) = (c+ ix)V ′(x) − (δ + λ)V (x) + λ

∫ x

0

V (x− y) dFY (y).Let us therefore look for a solution of the following integro-di�erential equation with a given initial
ondition,
0 = (c+ ix)f ′(x) + λ

∫ x

0

f(x− y)dFY (y) − (λ+ δ)f(x), (20)
1 = f(0).As for ea
h solution f(x) of (20), C f(x) is again a solution for arbitrary 
onstant C, any boundary
ondition 
an be ful�lled.Let f(x) be a solution to (20) and de�ne for some b ≥ 0

Vb(x) =

{

f(x)/f ′(b) x ≤ b,
x− b+ Vb(b) x > b.

(21)An analogue of [13, Lemma 2.49℄ shows that Vb is equal to the value of the expe
ted dis
ounted dividendswhen a 
onstant barrier strategy with barrier height b is applied. Hen
e maximizing Vb(x) over all b ≥ 0is equivalent to �nding a minimum of f ′(x).We will now prove the existen
e of a solution of a generalized version of (20). If it is optimal to pay outdividends following a barrier strategy only in a bounded interval (V ′ = 1) and for higher surplus x > x0it is optimal to pay nothing in some area (V ′ > 1), then we would need a solution to the equation
0 = (c+ ix)u′(x) − (δ + λ)u(x) + λ

∫ x−x0

0

u(x− y) dFY (y) + λ

∫ x

x−x0

f(x− y) dFY (y) (22)
f(x0) = u(x0),where f : [0, x0] → [0,∞) is a given 
ontinuous and in
reasing fun
tion. Note that 
hoosing x0 = 0 andtaking u(0) = 1 as initial 
ondition leads to the existen
e proof of a solution to (20).Lemma 3.1. Let x0 ≥ 0. For a 
ontinuous and in
reasing fun
tion f : [0, x0] → [0,∞) there existsa unique, in (x0,∞) di�erentiable and stri
tly in
reasing solution u : [x0,∞) → [0,∞) to (22) with

u(x0) = f(x0).Proof. For ǫ = c
2(δ+2λ) , we will show that there exists a solution with the required properties on [x0, x0+ǫ)and sin
e ǫ does not depend on x0 this will establish the existen
e on [x0,∞).The set of all 
ontinuous and in
reasing fun
tions u : [x0, x0 + ǫ) → [0,∞) is denoted by CI[x0, x0 + ǫ),further let for a u ∈ CI[x0, x0 + ǫ),
u(x) =

(δ + λ)u(x) − λ
∫ x−x0

0 u(x− y) dFY (y) − λ
∫ x

x−x0
f(x− y) dFY (y)

c+ ix
.As u and f are 
ontinuous, u is 
ontinuous for x ≥ 0. Now we de�ne for u ∈ CI[x0, x0 + ǫ)

Tu(x) =

∫ x

x0

u(s) ds+ f(x0).Be
ause of the monotoni
ity of u and f and f(x0) = u(x0) we get
λ

∫ x−x0

0

u(x− y) dFY (y) + λ

∫ x

x−x0

f(x− y) dFY (y)

≤ λu(x) FY (x − x0) + λf(x0)(FY (x) − FY (x− x0)) ≤ λ u(x).19



This argument gives the following lower bound for u
0 <

δ

c+ ix
u(x) ≤ u(x) ≤

δ + λ

c+ ix
u(x).Here the upper bound follows from the fa
t that u and f are positive. This implies that Tu is in
reasing,positive and 
ontinuous for x ∈ [x0, x0 + ǫ). Now for u1, u2 ∈ CI[x0, x0 + ǫ), we get

u1(x) − u2(x) =
(δ + λ)(u1(x) − u2(x)) − λ

∫ x−x0

0 (u1(x− y) − u2(x − y)) dFY (y)

c+ ix

≤
1

c
((δ + λ)‖u1 − u2‖ + λ‖u1 − u2‖FY (x− x0)) ≤

δ + 2λ

c
‖u1 − u2‖,where ‖ · ‖ denotes the supremum norm. This implies

Tu1(x) − Tu2(x) ≤ ǫ
δ + 2λ

c
‖u1 − u2‖ ≤

1

2
‖u1 − u2‖.Inter
hanging u1 and u2 results in ‖Tu1 − Tu2‖ ≤ 1

2‖u1 − u2‖, proving that T is a 
ontra
tion on
CI[x0, x0 + ǫ). Therefore there exists a u ∈ CI[x0, x0 + ǫ) su
h that

u(x) =

∫ x

x0

(δ + λ)u(s) − λ
∫ s−x0

0 u(s− y) dFY (y) − λ
∫ s

s−x0
f(s− y) dFY (y)

c+ is
ds+ f(x0).Further we have from above that u′(x) = u(x) holds everywhere in [x0, x0 + ǫ). This gives the existen
eof a unique solution to (22) with the required properties on [x0, x0 + ǫ).Remark 3.1. From the HJB (5) equation we get that at points of di�erentiablity we have that either

V ′(x) = 1 or LV (x) = 0 holds. Lemma 3.1 reveals that di�erentiability 
an only be violated at someswit
hing points. Ea
h equation part of (5) has a di�erentiable solution.3.2 Cru
ial sets and the optimal strategyThis subse
tion deals with the 
onstru
tion of a 
andidate strategy L∗ for the optimal one. Although it isnot possible to dire
tly show that V L∗ is a supersolution of (5) and verify its optimality with Proposition2.6, it is possible to prove that V L∗

= V via a �xed point argument, proving the optimality of the strategy
L∗. A
tually a full 
hara
terization of the value fun
tion is needed to obtain the 
orre
t solution with the
onstru
tion of L∗ (another solution of (5) with an arbitrary initial value for the de�nition of L∗ wouldnot lead to the solution of the maximization problem).The following three sets will play a 
ru
ial role in the de�nition of the optimal strategy.

• A = {x ∈ [0,∞) | Λ(x) = 0},
• B = {x ∈ (0,∞) | V ′(x) = 1 and Λ(x) < 0},
• C = (A ∪ B)c.Let us identify some properties of these sets.Proposition 3.2. 1. B is a left-open set, i.e. for ea
h x ∈ B ∃ δ > 0 su
h that (x− δ, x] ⊂ B.2. A is a 
losed set.3. If (x0, x] ⊂ B and x0 6∈ B then x0 ∈ A.4. ∃ x̂ su
h that (x̂,∞) ⊂ B.5. C is a right-open set, i.e. for ea
h x ∈ C ∃ δ > 0 su
h that [x, x+ δ) ⊂ C.6. A,B 6= ∅. 20



Proof. 1. The idea is as follows: if for su�
iently small h > 0 we are able to show that Ux−h is asupersolution in (x−h, x], then we get from Proposition 2.12 (ii) that Ux−h = V in [0, x], and hen
e
V ′ = 1 in (x− h, x] implying (x− h, x] ⊂ B.Let y ∈ (x− h, x) and re
all from the de�nition of B that LV (x) < 0,
LUx−h

(y) = (c+ iy) − (δ + λ)(y − x+ h+ V (x− h)) + λ

∫ y

0

Ux−h(y − z) dFY (z)

≤ (c+ ix)V ′(x) − (δ + λ)V (x) + (δ + λ)(V (x) − (y − x+ h+ V (x − h)) + λ

∫ y

0

Ux−h(y − z) dFY (z)

≤ (c+ ix)V ′(x) − (δ + λ)V (x) + (δ + λ)(V (x) − V (x− h)) + λ

∫ y

0

Ux−h(y − z) dFY (z)

≤ LV (x) + (δ + λ)(V (x) − V (x − h)) < 0.The last step holds for h small enough be
ause of the 
ontinuity of V , y < x and the followingestimates,
V (y − z) ≥ y − z − x+ h+ V (x− h), for y − z ≥ x− h,

∫ y

0

Ux−h(y − z) dFY (z) =

∫ y−x+h

0

(y − z − x+ h+ V (x− h))dFY (z) +

∫ y

y−x+h

V (y − z) dFY (z)

≤

∫ x

0

V (x− z) dFY (z).We proved that Ux−h is indeed a supersolution in (x− h, x] and therefore the statement holds.2. Be
ause Λ is 
ontinuous in x and Λ(x) ≤ 0 for all x ∈ [0,∞), the region where it equals 0 is 
losed.Assume that there is some x0 su
h that Λ(x0) > 0 then be
ause of the 
ontinuity there is a x1 > x0su
h that Λ > 0 in [x0, x1). Let y ∈ (x0, x1) su
h that V ′(y) exists. Be
ause V ′ ≥ 1 we get
LV (y) = (c+ iy)V ′(y) − (δ + λ)V (y) + λ

∫ y

0

V (y − z) dFY (z)

≥ (c+ iy) − (δ + λ)V (y) + λ

∫ y

0

V (y − z) dFY (z) = Λ(y) > 0,whi
h is a 
ontradi
tion to the fa
t that V is a vis
osity supersolution to the HJB equation (5).3. First we deal with the 
ase x0 = 0. We know that V (0) ≥ c
δ+λ . This will also be an upper bound,implying that Λ(0) = 0 (x0 ∈ A). Be
ause (0, x] ⊂ B we have that V (x) = x + V (0) in [0, x]. For

x ∈ (0, x) we have from Lemma 2.9 that V (0) = supL∈Πx
VL(0).Let L ∈ Πx, the time of the �rst 
laim o

urren
e be τ1 and its size Y1. For all t < τ1 we have

Lt ≤
∫ t

0 (c+ ix)ds, Lt ≤ ct+ i
∫ t

0 R
L
s ds ≤ (c+ ix)t due to L ∈ Πx and the de�nition of an admissiblestrategy. We get the obvious upper bound

VL(0) = E

(

∫ T1

0

e−δs dLs + e−δT1V

(

∫ T1

0

(cT1 + i

∫ T1

0

RLs ds− LT1 − Y1

))

≤ E

(

∫ T1

0

e−δs(c+ ix)ds

)

+ E
(

e−δT1V (x− Y1)
)

=

∫ ∞

0

λe−λt
∫ t

0

e−δs(c+ ix)ds dt+

∫ ∞

0

λe−(δ+λ)t

∫ x

0

V (x− y) dFY (y) dt

=

∫ ∞

0

e−(δ+λ)t

(

(c+ ix) + λ

∫ x

0

V (x− y) dFY (y)

)

dt.Using V (x) = x+ V (0) in the spe
i�
 area, we arrive at
V (0) ≤ lim inf

x→0

1

δ + λ

(

(c+ ix) + λV (0)FY (x) + λxFY (x) − λ

∫ x

0

y FY (y)

)

=
c

δ + λ
,21



whi
h proves the statement for x0 = 0.Now we deal with the 
ase x0 > 0 following [3℄. If V ′(x0) = 1 and x0 6∈ B we get that Λ(x0) = 0 andtherefore by de�nition x0 ∈ A. We have limx↓x0

V (x)−V (x0)
x−x0

= 1. Suppose lim infx↑x0

V (x)−V (x0)
x−x0

=
q > 1. Then we have from Remark 2.2 for all 1 < p ≤ q

max{1 − p, (c+ ix0)p− (δ + λ)V (x0) + λ

∫ x0

0

V (x0 − y) dFY (y)} ≥ 0,whi
h implies
(c+ ix0)p− (δ + λ)V (x0) + λ

∫ x0

0

V (x0 − y) dFY (y) ≥ 0.The limit p→ 1 gives Λ(x0) ≥ 0 whi
h implies Λ(x0) = 0.Now we assume lim infx↑x0

V (x)−V (x0)
x−x0

= 1. There is a sequen
e {xn}n∈N with xn → x0 su
h that
limn→∞ V ′(xn) = 1. Choose a sequen
e {hn}n∈N with hn ↓ 0 su
h that limn→∞

V (x0)−V (x0−hn)
hn

= 1.Take an = V (x0)−V (x0−hn)
hn

− 1 and let An denote the set of all x ∈ [0, hn] su
h that V ′ exists and
V ′(x) ≥ 1 + 2an. Be
ause of the inequalities for the �rst derivative, see Proposition 2.2, we 
anassume an ≥ 0. If for some n we would have an = 0 we get V (x0)−V (x) = x0−x for x ∈ [x0−hn, x0]and therefore V ′(x0) = 1. Therefore assume an > 0, and we 
an write by the absolute 
ontinuity,
|An| ≤ hn and Acn = [0, hn]\An,

an + 1 =

∫

An
V ′(z) dz +

∫

Ac
n
V ′(z) dz

hn
≥

|An|(1 + 2an) + (hn − |An|)

hn
.This gives the estimates |An| ≤ hn

2 → 0. So we 
an 
hoose a sequen
e xn ր x0 with 1 ≤ V ′(xn) ≤
1 + 2an su
h that V ′(xn) exists. In the end we get limn→∞ V ′(xn) = 1.If there is a subsequen
e xnj

→ x0 with V ′(xnj
) > 1 implying Λ(xnj

) = 0 we would have Λ(x0) = 0be
ause A is a 
losed set. Suppose V ′(xn) = 1 for all n ∈ N and Λ(x0) < 0. Then we 
an �ndan xn 
lose enough to x0 (Λ is 
ontinuous) su
h that Uxn
is a supersolution for x ∈ [xn, x0] butProposition 2.12 yields that Uxn

= V in [0, x]. This gives a 
ontradi
tion be
ause V would bedi�erentiable at x0,
LUxn

(x) = (c+ ix) − (δ + λ)Uxn
(x) + λ

∫ x

0

Uxn
(x− y) dFY (y)

≤ (c+ ix0) − (δ + λ)Uxn
(x) + λ

∫ x0

0

(V (x0 − y) dFY (y)

= Λ(x0) + (δ + λ)(V (x0) − (x− xn + V (xn)))

≤ Λ(x0) + (δ + λ)(V (x0) − V (xn)) < 0.The last inequality holds due to the 
ontinuity of V for n large enough. This proves the third point.4. We want to show that for y > 0 large enough Uy is a supersolution for all x ∈ (y,∞). We alreadyhave U ′
y = 1 in this interval, it is left to show that LUy

(x) < 0. We have
LUy

(x) = (c+ ix) − (δ + λ)(x − y + V (y)) + λ

∫ x

0

Uy(x− z) dFY (z)

≤ (c+ ix) − (δ + λ)(x − y + V (y)) + λUy(x)

= (c+ ix) − (δ + λ)(x − y + V (y)) + λ(x− y + V (y))

= c+ (i− δ)x+ δ(y − V (y)) ≤ c+ (i− δ)x−
c

δ + λ
< 0.This holds for every x ∈ (y,∞) if y is large enough, be
ause Uy is an in
reasing fun
tion and

∫ x

0

Uy(x− z) dFY (z) ≤ Uy(x),

y +
c

δ + λ
≤ V (y).22



5. For some x ∈ C we have Λ(x) < 0. Be
ause of 
ontinuity we get the existen
e of a δ > 0 su
h that
[x, x + δ) ⊂ Ac. If there would be some x1 ∈ B within this interval we would derive the existen
eof an x0 ∈ A smaller than x1 su
h that (x0, x1] ⊂ B, but be
ause x 6∈ B this x0 also has to be inthe interval (x, x + δ). Therefore we have [x, x+ δ) ⊂ Bc and [x, x+ δ) ⊂ C.6. The statement follows from the third and fourth point.At this stage we are able to de�ne the optimal strategy.De�nition 3.1. The optimal strategy L∗ is stationary, i.e. it depends only on x = RL

∗

t− ≥ 0, and is givenas follows:
• If x ∈ A, everything ex
eeding x is paid out immediately as dividend (with rate c+ ix).
• For x ∈ B, we know from Proposition 3.2 that there is a x1 ∈ A su
h that (x1, x] ⊂ B, and dividendsare paid with the amount x− x1.
• For x ∈ C no dividends are paid.From [3℄ one knows that the strategy as de�ned above is admissible.The following proposition shows that this band strategy is indeed optimal.Proposition 3.3. The strategy L∗ de�ned in De�nition 3.1 is optimal, i.e. V (x) = VL∗(x) for all x ≥ 0.Proof. From Proposition 3.2 we know that there exists some x̂ = inf{x | (x,∞) ⊂ B}. We want to de�ne a
ontra
tion map on the set of all fun
tions f : R → [0,∞) with f(x) = 0 for x < 0 and f(x) = x− x̂+f(x̂)for x > x̂ whi
h are 
ontinuous on R

+. The used distan
e measure is d(f1, f2) = maxx≥0 |f1(x) − f2(x)|.The operator T is de�ned as follows,
Tf (x) = E

(

∫ τ1

0

e−δsdL∗
s + e−δτ1f

(

eiτ1(x +

∫ τ1

0

(c− l∗s)e
−is ds) −

∑

s<t

∆L∗
s − Y1

))

,where τ1 denotes the time of the �rst 
laim o

urren
e and Y1 its size.Noti
e the similarity to the dynami
 programming prin
iple (4) with RL
∗

t = eit(x +
∫ t

0 (c − l∗s) ds) −
∑

s<t ∆L
∗
s where l∗ denotes the density of the absolutely 
ontinuous part of L∗. From De�nition 3.1 wehave that l∗ = 0 for x ∈ B ∪ C and l∗ = c+ ix for x ∈ A.One gets

|Tf1 − Tf2 | = E

(

e−δτ1

(

f1

(

eiτ1(x+

∫ τ1

0

(c− l∗s)e
−is ds) −

∑

s<t

∆L∗
s − Y1

)

−f2

(

eiτ1(x +

∫ τ1

0

(c− l∗s)e
−is ds) −

∑

s<t

∆L∗
s − Y1

)))

≤
λ

δ + λ
max
x≥0

|f1(x) − f2(x)|,therefore T is a 
ontra
tion and has a unique �xed point. The de�nition of L∗ ensures that Tf is in thesame spa
e as f . Clearly VL∗ is a �xed point be
ause of the dynami
 programming prin
iple and thede�nition of L∗. Now we are going to show that V is also a �xed point whi
h gives V = VL∗.We start with x ∈ A, then
TV (x) = E

(∫ τ1

0

(c+ ix)e−δsds+ e−δT1V (x − Y1)

)

=
1

δ + λ

(

(c+ ix) + λ

∫ x

0

V (x− y) dFY (y)

)

= V (x),be
ause Λ(x) = 0 for x ∈ A.Next, we look at x ∈ B. Let x1 su
h that (x1, x] ⊂ B and x1 ∈ A. We get from the de�nitions of L∗ and
B,

TV (x) = x− x1 + TV (x1) = x− x1 + V (x1) = V (x).23



Finally, we know that C is a right-open set. Therefore some x1 exists su
h that [x, x1) ⊂ C and x1 6∈ C.Denote
xt = eit

(

x+ c

∫ t

0

e−isds

)

,and let t1 su
h that xt1 = x1.Be
ause V is a di�erentiable solution to (c + iz)V ′(z) − (δ + λ)V (z) + λ
∫ z

0 V (z − y) dFY (y) = 0 for
z ∈ (x, x1), d

dtxt = c+ ixt and
d

dt
e−(δ+λ)tV (xt) = −(δ + λ)e−(δ+λ)tV (xt) + e−(δ+λ)t(c+ ixt)V

′(xt).So we get
T (V )(x) = E

(

I{τ1≥t1}
)

e−δt1V (x1) + E
(

I{τ1<t1} e
−δτ1V (xτ1 − Y1)

)

= e−(δ+λ)t1V (x1) +

∫ t1

0

e−(δ+λ)t λ

∫ xt

0

V (xt − y) dFY (y) dt

= e−(δ+λ)t1V (x1) +

∫ t1

0

e−(δ+λ)t ((δ + λ)V (xt) − (c+ ixt)V
′(xt)) dt

= e−(δ+λ)t1V (x1) + V (x) − e−(δ+λ)t1V (x1) = V (x).From Remark 2.4 we know that V ′ 
an not have any downward jumps and further that (22) has adi�erentiable solution. Therefore the only possibility of not being di�erentiable is at points where theoptimal strategy 
hanges from paying a lump sum to paying no dividends.The similarity to the optimal strategy for the 
ase i = 0 as it is dealt with in [3℄ and [13℄ allows us touse an algorithm from [13℄ to determine the value fun
tion pie
ewise. As mentioned in Se
tion 3.1 andbe
ause of the 
onstru
tion of the band strategy there is a 
lose relation to barrier strategies. For smallinitial 
apital the �rst thing to do is to �nd a lo
al optimal barrier, i.e �nd the smallest point in the set
A denoted by x0. Noti
e that it is possible that 0 ∈ A. Let f0 be the solution of (20) and 
hoose thesmallest point in A as x0 = sup{x ≥ 0 | f ′

0(x) = infy≥0 f
′
0(y)}. Then de�ne

v0(x) =

{

f0(x)/f
′
0(x0) x ≤ x0,

x− x0 + f0(x0)/f
′
0(x0) x > x0.If v0 ful�lls the HJB equation (5) we are done, if not the solution is 
onstru
ted re
ursively: In the nthstep (n ≥ 1), �nd some interval belonging to B of the form (xn, a) (
f. Proposition 3.2). Then it ispossible that some adjoining interval [a, xn+1) belongs to the set C; then it is ne
essary to 
al
ulate asolution to (22). The points a and xn+1 are determined in the following way. For given vn(x) and xn,let fn+1(x; y) be a solution of (22) for x ≥ y and equal to vn(x) for x < y. We have to �nd the smallest

y > xn su
h that f ′
n+1(x̄; y) = 1 for some x̄ > y,

a = inf{y ≥ xn | inf
z>y

f ′
n+1(z, y) = 1}.If a is 
hosen too small or too large then the derivative of f ′

n+1(x; ·) will either take a minimum greaterthan 1 or smaller than 1. Due to Proposition 2.2 and the fa
t that V ′ 
an not have downward jumps awrong 
hoi
e would not lead to a solution of the maximization problem.Then we obtain xn+1 := sup{x ≥ a | f ′(x, a) = 1} and
vn+1(x) :=

{

fn+1(x, a), x ≤ xn+1,
x− xn+1 + fn+1(xn+1, a), x > xn+1.If vn+1(x) ful�lls (5) we have 
onstru
ted the value fun
tion, otherwise we restart the pro
edure.24



4 Examples4.1 Exp(α) distributed 
laim amountsIn the �rst example 
onsider exponential 
laim amounts with FY = 1 − e−αy. We will see that in the
ase 0 < i < δ a barrier strategy is optimal, an analogous result for i = 0 was �rst shown in [7℄. To �ndan element of A we need to solve Λ(x) = 0, be
ause of the properties of the set B some of these elementsare lower boundaries of subsets of B. Looking for a solution to Λ(x) = 0 we observe that we have to solve
V (x) =

c+ ix

δ + λ
+

λ

δ + λ
e−αx

∫ x

0

V (y)αeαy dy. (23)If a point a ∈ A is a boundary point of a 
onne
tion 
omponent of B we have V ′(a+) = 1. From V ′ ≥ 1and the fa
t that V ′ 
an not have downward jumps (see Remark 2.4) we get V ′(a) = 1. Therefore, by
B 6= ∅ we 
an additionally use the 
ondition V ′(x) = 1 for at least one element of A. From (23) and
V ′ = 1 we get,

1 = V ′(x) =
i

δ + λ
−

α2λ

δ + λ
e−αx

∫ x

0

V (y)eαy dy +
αλ

δ + λ
V (x).Using (23) again to eliminate the integral we derive,

δ + λ

α
−
i

α
= c+ ix− δV (x).Sin
e i < δ and V (x) ≥ x+ c

δ+λ (Proposition 2.1) we further have that ix− δV (x) is de
reasing. Thereexists at most one positive point on the real axis whi
h ful�lls these 
onditions. This is equivalent to thestatement that a barrier strategy b∗ is the optimal one in the 
ase of Exp(α) distributed 
laim amounts.In the following we identify the 
ase b∗ > 0. The 
ase of an optimal barrier equal to zero is then treatedin Se
tion 4.1.2.4.1.1 The 
ase b∗ > 0For the determination of the optimal barrier we 
an use some results from [10℄. As a by-produ
t we 
anshow why only the 
ase i < δ makes sense mathemati
ally. The stru
ture of a 
onstant barrier strategy isas follows. Given a barrier at level b, all surplus above this level will be immediately paid out as dividend.We denote the expe
ted dis
ounted dividends for a barrier b with Vb(x). Assuming di�erentiability of
Vb(x) we get the following well-known IDE (see [10℄), for x < b

0 = (c+ ix)V ′(x) + λ

∫ x

0

V (x − y)dFY (y) − (λ + δ)V (x), (24)
1 = V ′

b (b). (25)From the nature of a barrier strategy we have for x > b

Vb(x) = x− b+ Vb(b).Be
ause (24) is homogenous and linear in V we 
an look for a solution f of it with a modi�ed initial
ondition f(0) = 1. By s
aling we get that Vb = f(x)/f ′(b) for 0 ≤ x ≤ b. Following [10℄ we have to solve
0 = (c+ ix)f ′′(x) + (α(c+ ix) + i− (δ + λ))f ′(x) − αδf(x) = 0,

1 = f(0),

0 = cf ′(0) − (δ + λ)f(0).The general solution is of the form
f(x) = e−αx

(

x+
c

i

)(λ+δ)/i
(

B1 F

(

1 +
δ

i
, 1 +

λ+ δ

i
, α(u+

c

i
)

)

+B2 U

(

1 +
δ

i
, 1 +

λ+ δ

i
, α(u+

c

i
)

))

,25



where B1 and B2 are 
onstants determined by the boundary 
onditions and F and U are 
on�uenthypergeometri
 fun
tions of the �rst and se
ond kind, respe
tively. Be
ause maximizing Vb is equivalentto minimizing f ′ we take a look on the asymptoti
s of f and f ′. From [1℄ we have
F (a, b, z) ∼

Γ(b)

Γ(a)
ezza−b

(

1 +O(|z|−1
)

,

U(a, b, z) ∼ z−a
(

1 +O(|z|−1
)

.So we get
f(x) ∼

Γ(1 + δ+λ
i )

Γ(1 + δ
i )

B1 e
α c

i (x+
c

i
)

δ
i (1 +O((α(x +

c

i
))−1)).We 
an use the same asymptoti
s to obtain the behaviour of f ′(x) for large x and it su�
es to 
onsiderthe terms in 
onne
tion to F (a, b, z). Therefore we get

f ′(x) ∼ B1
δ + λ

i

Γ(1 + δ+λ
i )

Γ(1 + δ
i )

eα
c
i α− λ

i (x+
c

i
)

δ
i
−1 K +O((α(x +

c

i
))

δ
i
−2),with some 
onstant K. Furthermore

lim
x→∞

f ′(x) =







0, δ < i,
∞, δ > i,
const, δ = i.and as a 
onsequen
e for a �xed argument x

lim
b→∞

Vb(x) = lim
b→∞

f(x)

f ′(b)
=







∞, δ < i,
0 δ > i,
f(x)
const , δ = i.Sin
e Vb(x) ≤ V (x) the value fun
tion is unbounded for i > δ and does not ful�ll limb→∞ Vb(x) = 0 for

δ = i. Therefore only the 
ase δ > i is interesting and leads to a well-formulated dividend maximizationproblem. If b∗ > 0, then 
al
ulate f and determine b∗ = argmax{f ′(b) | b > 0} numeri
ally. Then
V (x) = Vb∗(x) =

{

f(x)/f ′(b∗) 0 ≤ x ≤ b∗,
x− b∗ + f(b∗)/f ′(b∗) x > b∗.As an illustration Figure 1 shows the value fun
tion when the optimal barrier strategy with height

b∗ = 4.41 is applied together with the two linear bounds from Proposition 2.1 (whi
h are obviously nottight). The 
hosen parameters are α = 2, λ = 2, i = 0.05, δ = 0.1 and c = 2.5.4.1.2 The 
ase b∗ = 0We need to determine parameter settings for whi
h b∗ = 0 is optimal. For b∗ = 0, V (x) = V0(x) = x+ c
δ+λ .Be
ause in this 
ase V ′

0 = 1 for x ≥ 0, we only have to 
he
k when
(c+ ix) − (δ + λ)V0(x) + λ

∫ x

0

V0(x− y)αe−αy dy ≤ 0holds. Evaluating this equation, it turns out that for
Z(x) :=

(δ + λ− αc)λe−αx + x(i− δ)α(δ + λ) − λ(δ + λ− αc)

α(δ + λ)
, (26)we have to 
he
k when Z(x) ≤ 0 for all x ≥ 0. Further

Z ′(x) = (i− δ) −
λ

δ + λ
e−αx (δ + λ− αc) .26
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Figure 1: Value fun
tion for α = 2, λ = 2, i = 0.05, δ = 0.1 and c = 2.5.If δ + λ ≥ αc we have Z ′ ≤ 0 for all x ≥ 0 and Z(0) = 0 is a maximum of Z. Therefore V0 ful�lls theHJB equation and V0 = V .If δ + λ < αc we have that Z is 
on
ave,
Z ′′(x) =

αc(δ + λ− αc)

δ + λ
e−αx.Therefore we get

Z(x) ≤ 0 for x ∈ [0,∞) ⇐⇒ Z ′(0) ≤ 0 ⇐⇒ αλc + i(δ + λ) ≤ (δ + λ)2.If on the other hand αλc+ i(δ + λ) > (δ + λ)2, we get that Z has a global maximum at
x̂ =

1

α
log

(

1 +
αλc + i(δ + λ) − (δ + λ)2

(δ − i)(δ + λ)

)

> 0.We want to show that
Z(x̂) =

αλc+ i(δ + λ) − (δ + λ)2 − (δ − i)(δ + λ) log
(

1 + αλc+i(δ+λ)−(δ+λ)2

(δ−i)(δ+λ)

)

α(δ + λ)
> 0.An easy dis
ussion of the fun
tion h(x) = x − log(1 + x) for x > 0 gives the required result. Therefore

b∗ = 0 if and only if
• δ + λ ≥ αc or
• δ + λ < αc and Z ′(0) ≤ 0.If none of these 
ases holds, 
al
ulate V = Vb∗ as des
ribed in Se
tion 4.1.1.4.2 Gamma(2, γ) distributed 
laim amountsIn this se
tion we will identify an expli
it example where a band strategy is optimal. In 
ontrast to the
ase i = 0 (of [3℄ and [13℄) an expli
it solution to

(c+ ix)f ′(x) − (δ + λ)f(x) + λ

∫ x

0

f(x− y) dγ(y)dy = 0is not available, where dγ(y) = yγ2 eγy denotes the Gamma(2, γ) density fun
tion. Therefore we neednumeri
al solutions to (20) and (22) for applying the algorithm presented in [13℄. A natural approa
h is27



to use the 
ontra
tion argument from Lemma 3.1 for determining a numeri
al solution but that turns outto be too time 
onsuming and ina

urate. So here we implement another approa
h to obtain a reasonablya

urate solution of (22).Assume that the value fun
tion is determined up to a point xn. Following the algorithm from [13℄ (seeSe
tion 3.2) we have to 
al
ulate fn+1(x; y) as a solution to (22) with x0 repla
ed by y. In terms of thealgorithm the initial 
ondition is given by vn(y) = fn+1(y; y). First we �x a step width h > 0 and 
hoosea set of points {xy}0≤k≤K with yk = y + kh. Then we de�ne pie
ewise linear fun
tions {ωk(x)}0≤k≤Ksu
h that ωk(yk−1) = 0, ωk(yk) = 1, ωk(yk+1) = 0 and ωy(x) = 0 for x /∈ [yk−1, yk + 1]. Let the sequen
e
{uk}0≤k≤K denote the unknown values of a solution to (22) at the points yk. The numeri
al solution weare looking for is of the form

u(x) =

K
∑

k=0

ukωk(x).Plugging u(x) into (22) and evaluating this expression at every yk leads to a linear system of equationsfor the unknowns uk.Finally we give a 
on
rete example for a situation where a band strategy is optimal. Choose the parametersby λ = 10, δ = 0.1, γ = 1, c = 21.4 (
f. [3℄) but now with a positive interest rate i = 0.02. First observethat if we look at a solution to (20), the derivative is minimized in zero. On the other hand x+ c
δ+λ doesnot ful�ll (5) on R

+. Therefore we have to 
hoose x0 = 0 and apply the numeri
al method presentedabove. We get that the sets A, B and C are given by
A = {0, 12.96},

B = (0, 0.96) ∪ (12.96,∞)

C = [0.96, 12.96).A sample path of the reserve pro
ess 
ontrolled by the optimal strategy L∗ is illustrated in Figure 2.Starting with initial 
apital x ∈ B the amount x − x1, x1 = 12.96, is immediately paid out as dividend(this lump sum payment is indi
ated as the left bold downward arrow). Then up to the �rst 
laim o
-
urren
e whi
h puts the pro
ess into region C, dividends are paid 
ontinuously at a rate c + ix1. In theset C there are no 
ontrol a
tions on the reserve pro
ess, so that (in the absen
e of further 
laims) itin
reases again to x1 and stays there (with again dividends paid with intensity c+ ix1) until the se
ond
laim happens. As the se
ond 
laim puts the reserve pro
ess into the set B, the reserve is immediatelyfurther redu
ed by a dividend payment to the next point in the set A whi
h is x0 = 0. The pro
ess staysat this level, i.e. dividends are paid with intensity c, until ruin is 
aused by the third 
laim of the riskpro
ess. Figure 3 shows the value fun
tion for i = 0.02 in 
omparison to the value fun
tion with i = 0(dashed line, as 
al
ulated in [3℄). It 
an be observed that for low initial 
apital both follow the samestrategy, but from 0.96 onwards, the 
ase with i > 0 dominates the one with i = 0. Further we obtainthat the value fun
tion is not di�erentiable at x = 0.96, V ′(0.96+) ≈ 1.16 > 1 = V ′(0.96−), where thederivative from the right is a numeri
al approximation 
al
ulated from the s
heme des
ribed above.A
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