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b Graz University of Tehnology, Steyrergasse 30, A-8010 Graz, AustriaAbstratIn the lassial Cramér-Lundberg model in risk theory the problem of maximizing the expetedumulated disounted dividend payments until ruin is a widely disussed topi. In the most generalase within that framework it is proved (Gerber (1969), Azue & Muler (2005), Shmidli (2007)) thatthe optimal dividend strategy is of band type. In the present paper we disuss this maximizationproblem in a generalized setting inluding a onstant fore of interest in the risk model. The valuefuntion is identi�ed in the set of visosity solutions of the assoiated Hamilton-Jaobi-Bellmanequation and the optimal dividend strategy in this risk model with interest is derived, whih in thegeneral ase is again of band type and for exponential laim sizes ollapses to a barrier strategy.Finally, an example is onstruted for Erlang(2)-laim sizes, in whih the bands for the optimalstrategy are expliitly alulated.1 IntrodutionLet (Ω,F , {Ft}, P ) be a �ltered probability spae on whih all random proesses and variables introduedin the sequel are de�ned. Consider the following stohasti model for the risk reserve proess R = {Rt}t≥0of an insurane portfolio

Rt = x+ ct−
Nt
∑

k=1

Yk + i

∫ t

0

Rsds. (1)The number of laims N = {Nt}t≥0 is modelled as a homogeneous Poisson proess with parameter
λ whih has the àdlàg property (Nt+ = Nt). The inoming premiums are assumed to be olletedontinuously over time at a onstant rate c. The laim amounts {Yk}k∈N are an iid sequene of positiverandom variables with ontinuous distribution funtion FY . The integral term represents the additionalinome resulting from the onstant fore of interest i > 0 on the free surplus (see for instane Paulsen [9℄,where the existene of suh a proess R is proved). A similar model was dealt with in Albreher et al.[2℄ and Paulsen & Gjessing [10, 11℄. In this paper we are interested in identifying the optimal strategyto pay out dividends from proess (1) to shareholders during the period of solveny.Let Lt denote the aumulated paid dividends up to time t. We all a dividend strategy L = {Lt}t≥0admissible if it is an adapted àglàd (previsible, Lt− = Lt) and non-dereasing proess. Further werequire Lt+ − Lt ≤ RLt suh that paying dividends an not ause ruin, where the ontrolled proess isde�ned via

RLt = x+ ct−
Nt
∑

k=1

Yk + i

∫ t

0

RLs ds− Lt.The àdlàg property of the reserve proess and the àglàd property of the dividends proess imply that
RLt− 6= RLt is always due to a laim and RLt+ 6= RLt is due to some singular dividend payment. Althoughnot standard in the literature, this àglàd assumption for the dividends will simplify the analysis (andthe previsibility of the ontrol is then also ensured by the àglàd property).The performane of an admissible strategy L is measured by the funtion

VL(x) = E

(

∫ τL

0

e−δs dLs

∣

∣

∣ RL0 = x

)

, (2)
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i.e. the expetation of the disounted dividend payments until the time of ruin τL = inf{t|RLt < 0} of theontrolled proess. Here δ > 0 denotes the disount fator, whih an also be interpreted as a measureof the preferene of shareholders to reeive payments earlier rather than later during the lifetime of therisk proess. The value funtion of the maximization problem is then given through
V (x) = sup

L∈Π
VL(x), (3)where the supremum is taken over the set Π of all admissible strategies.Optimization problems of the form (3) are a lassial topi in stohasti ontrol theory (see for instaneShmidli [13℄ for a reent survey). Under the assumption that the underlying risk proess R is modelledby a Cramér-Lundberg proess (i.e. (1) with i = 0), it was �rst shown in Gerber [7℄ by a disrete ap-proximation and then a limiting argument that the optimal dividend strategy aording to the riterion(2) is of so-alled band type. This result was reently rederived by means of visosity theory in Azueand Muler [3℄. It is a natural question to ask for an analogous result in the presene of an interestfore i > 0 on the free surplus, not the least beause, from a pratial perspetive, the use of a disountfator δ > 0 for the dividends in the objetive funtion aknowledging the time value of money should beomplemented by suh an e�et for the underlying risk proess, too. It is intuitively not surprising thatthe dividend maximization problem is only well formulated for i < δ (for exponential laims we will alsodemonstrate this fat expliitly in Setion 4).As in the lassial Cramér-Lundberg ase, one an not expet the value funtion (3) to be a lassialsolution of the assoiated Hamilton-Jaobi-Bellman (HJB) equation. Like Azue & Muler [3℄ in the ase

i = 0, we therefore use the methodology of visosity solutions to identify the optimal strategy for i > 0.The outline of the paper is as follows. After establishing some basi properties of the value funtion (3),the orresponding HJB equation is derived and the value funtion is identi�ed as a visosity solutionof this HJB equation (Proposition 2.3). Typially, dividend maximization problems in the Cramér-Lundberg setting lak an initial ondition (f. Azue & Muler [3℄, Gerber [7℄, Shmidli [13℄; Mnif &Sulem [8℄ irumvent this problem by onsidering a slightly di�erent risk model that does provide aninitial value for the maximization problem). Therefore we �rst prove uniqueness of the visosity solutionof the HJB equation for a given initial ondition via a omparison priniple (Proposition 2.4) and in aseond step we show that every visosity supersolution dominates the value funtion (Proposition 2.6).In that way we an haraterize the value funtion as the visosity supersolution with the smallest initialvalue ful�lling the same growth onditions.The onstrution of the optimal strategy of band type needs some are onerning the behaviour of thevalue funtion at points where di�erentiability may not be ful�lled (Propositions 2.11 and 2.12, whihalso indiate already how to onstrut the optimal solution along the arguments of Shmidli [13℄).In Setion 3 the existene and uniqueness of the solution to the integro-di�erential part of the HJBequation in the respetive regions are established and properties of the ruial sets needed for the de�nitionof the optimal strategy are derived. Eventually the approriate band strategy is formulated and itsoptimality is proved (Proposition 3.3).In Setion 4.1 the ase of exponentially distributed laim sizes is investigated in more detail and it isshown that in this ase the optimal band strategy ollapses to a barrier strategy, inluding a study ofonditions on parameter values under whih the optimal barrier is in fat in 0 (this omplements resultsof Paulsen & Gjessing [10℄, who investigated optimal barrier values for the risk proess (1) within thelass of barrier strategies).Finally, in Setion 4.2 an example for Erlang(2)-distributed laims is identi�ed for whih the optimalband strategy an be expliitly alulated.2 Value funtion and visosity solutions2.1 Basi properties of the value funtionLet us �rst derive some bounds for the value funtion and its �rst derivative.2



Proposition 2.1. For i < δ we have
x+

c

δ + λ
≤ V (x) ≤

δx+ c

δ − i
.Proof. The ontrolled proess

RLt = x+ ct−
Nt
∑

k=1

Yk + i

∫ t

0

RLs ds− Ltis learly upper-bounded by
RLt ≤ eit

(

x+ c

∫ t

0

e−isds

)and the growth rate in t of the right hand side is eit(ix + c). Beause payments due to an admissiblestrategy L an not ause ruin, the umulated dividends up to time t are bounded by the maximal possibleposition of the reserve at that time,
Lt ≤ x+

∫ t

0

eis(ix+ c) ds,and sine dividend payments stop at the time of ruin, by partial integration we arrive at
VL(x) = E

(∫ ∞

0

e−δs dLs

)

= E

(∫ ∞

0

δ e−δsLs ds

)

≤ x+

∫ ∞

0

δ e−δs
(
∫ s

0

eiu(ix+ c) du

)

ds

=
δx+ c

δ − i
.On the other hand, we get a lower bound for V (x) when we pay the initial surplus x and all inomingpremia immediately as dividends and the �rst laim that ours (after an exponential time τ1) ausesruin:

V (x) ≥ VL0(x) = x+ c E

(∫ τ1

0

e−δtdt

)

= x+
c

δ + λ
.Proposition 2.2. For 0 ≤ x < y we have the following inequalities

y − x ≤ V (y) − V (x) ≤ V (x)

(

(

iy + c

ix+ c

)
δ+λ

i

− 1

)Proof. For ǫ > 0 let Lǫ be an ǫ-optimal strategy for initial apital x (i.e. VLǫ(x) ≥ V (x) − ǫ). For y > xde�ne L suh that an amount y − x is paid as dividend immediately followed by using the strategy Lǫ.We have
V (y) ≥ y − x+ VLǫ

(x) ≥ y − x+ V (x) − ǫ.Beause this holds for all ǫ > 0 we get
V (y) − V (x) ≥ y − x.For the other diretion let 0 ≤ x < y and ǫ > 0. De�ne L̂ for initial apital x as follows. Nothing is doneas long as the reserve stays below y and then an ǫ-optimal strategy Lǫ for initial apital y is applied. Thereserve reahes y not before time t0 = 1

i log
(

iy+c
ix+c

) and it is further assumed that there is no paymentat all if a laim ours before t0. Hene
V (x) ≥ VL̂(x) ≥ e−(δ+λ)t0VLǫ

(y) ≥ e−(δ+λ)t0 (V (y) − ǫ) .3



Finally we arrive at
V (y) − V (x) ≤ V (x)

(

(

iy + c

ix+ c

)
δ+λ

i

− 1

)

.From the above and [15℄, we get that V (x) is inreasing and loally Lipshitz on [0,∞) (apply a Taylorexpansion to the upper bound around x to see this) whih by Rademaher's Theorem ensures the existeneof the derivative almost everywhere and then 1 ≤ V ′(x) ≤ δ+λ
ix+cV (x). Furthermore V (x) is Lipshitz onompat sets whih implies that it is absolutely ontinuous.2.2 Representation as a visosity solutionThe value funtion V (x) ful�lls the dynami programming priniple for any stopping time γ,

V (x) = sup
L∈Π

E

(∫ τ∧γ

0

e−δsdLs + e−δ(τ∧γ)V (RLτ∧γ)

)

, (4)whih an be shown analogously to the proof of Proposition 3.1 of [3℄ (with xmax replaed by eiγ (x+ c
∫ γ

0 e
−isds

)).Now let us de�ne the operator
Lu(x) = (c+ ix)u′(x) − (δ + λ)u(x) + λ

∫ x

0

u(x− y)dFY (y).Standard arguments from stohasti ontrol (see [6℄) imply the HJB equation
max {1 − u′(x),Lu(x)} = 0. (5)But, as mentioned in the introdution, we an not expet the value funtion to be a lassial solution to(5). Therefore we need another onept of solutions for this type of equation. We hoose the onept ofvisosity solutions whih is introdued in the following.De�nition 2.1. A funtion u : [0,∞) → R is alled a visosity subsolution of (5) at x ∈ (0,∞) ifany ontinuously di�erentiable funtion ψ(x) : (0,∞) → R with ψ(x) = u(x) suh that u − ψ reahes amaximum at x satis�es
max {1 − ψ′(x),Lψ(x)} ≥ 0.We say that a funtion u : [0,∞) → R is a visosity supersolution of (5) at x ∈ (0,∞) if any ontinuouslydi�erentiable funtion φ(x) : (0,∞) → R with φ(x) = u(x) suh that u − φ reahes a minimum at xsatis�es
max {1 − φ′(x),Lφ(x)} ≤ 0.A funtion u(x) : [0,∞) → R is a visosity solution if it is both a visosity sub- and supersolution.Remark 2.1. At some points later on will also make use of a di�erent but equivalent (Sayah [12℄, Benthet al. [4℄) de�nition of a visosity sub- and supersolution: De�ne the modi�ed operator

L∗
u,v(x) = (c+ ix)v′(x) − (δ + λ)u(x) + λ

∫ x

0

u(x− y)dFY (y).A funtion u : [0,∞) → R is a visosity subsolution of (5) at x ∈ (0,∞) if any ontinuously di�erentiablefuntion ψ(x) : (0,∞) → R with ψ(x) = u(x) suh that u− ψ reahes a maximum at x satis�es
max

{

1 − ψ′(x),L∗
u,ψ(x)

}

≥ 0.A funtion u : [0,∞) → R is a visosity supersolution of (5) at x ∈ (0,∞) if any ontinuously di�erentiablefuntion φ(x) : (0,∞) → R with φ(x) = u(x) suh that u− φ reahes a minimum at x satis�es
max

{

1 − φ′(x),L∗
u,φ(x)

}

≤ 0. (6)4



Later on we will need the following two properties of the derivatives of some test funtions.Remark 2.2. A ontinuously di�erentiable funtion ψ : (0,∞) → R suh that u−ψ reahes a maximumat y > 0 with ψ′(y) = q exists if and only if
lim inf

x↑y

u(y) − u(x)

y − x
≥ q ≥ lim sup

x↓y

u(y) − u(x)

y − x
.A ontinuously di�erentiable funtion φ : (0,∞) → R suh that u − φ reahes a minimum at y > 0 with

φ′(y) = q exists if and only if
lim inf

x↓y

u(y) − u(x)

y − x
≥ q ≥ lim sup

x↑y

u(y) − u(x)

y − x
. (7)Remark 2.3. Note that for a ontinuously di�erentiable test funtion ψ (as required in the de�nitionof visosity solutions) the operators Lψ and L∗

u,ψ are ontinuous funtions for x ≥ 0, so that we do nothave to work with the upper semi-ontinuity as in Mnif and Sulem [8℄.The next proposition haraterizes the value funtion as a visosity solution. The supersolution proof isin the spirit of [3℄, whereas the subsolution proof is related to the approah in [8℄.Proposition 2.3. The value funtion V is a visosity solution of the HJB equation (5).Proof. We start with showing that V is a visosity supersolution. Fix l ≥ 0 and let h > 0 be small enoughsuh that eih (x+ (c− l)
∫ h

0 e
−isds

)

≥ 0. Let τ1 denote the time of the �rst laim ourrene. From thedynami programming priniple we derive
V (x) = sup

L∈Π
E

(

∫ τ1∧h

0

e−δs dLs + e−δ(τ1∧h) V
(

RLτ1∧h
)

)

≥e−λh
∫ h

0

e−δsl ds+ e−(δ+λ)h V

(

eih

(

x+ (c− l)

∫ h

0

e−is ds

))

+

∫ h

0

λe−λt

[

∫ t

0

e−δsl ds+ e−δt
∫ eit(x+(c−l)

R

t

0
e−is ds)

0

V

(

eit
(

x+ (c− l)

∫ t

0

e−is ds

)

− y

)

dFY (y)

]

dt.This further leads to
0 ≥

1 − e−(δ+λ)h

h(δ + λ)
l +

V
(

eih
(

x+ (c− l)
∫ h

0
e−is ds

))

− V (x)

h
−

1 − e−(δ+λ)h

h
V

(

eih

(

x+ (c− l)

∫ h

0

e−is ds

))

+
λ

h

∫ h

0

e−(δ+λ)t

∫ eit(x+(c−l)
R

t

0
e−is ds)

0

V

(

eit
(

x+ (c− l)

∫ t

0

e−is ds

)

− y

)

dFY (y) dt.Now let φ be a ontinuously di�erentiable test funtion with V (x) = φ(x) and V −φ attaining a minimumin x. We get
0 ≥

1 − e−(δ+λ)h

h(δ + λ)
l+

φ
(

eih
(

x+ (c− l)
∫ h

0 e
−is ds

))

− φ(x)

h
−

1 − e−(δ+λ)h

h
V

(

eih

(

x+ (c− l)

∫ h

0

e−is ds

))

+
λ

h

∫ h

0

e−(δ+λ)t

∫ eit(x+(c−l)
R

t

0
e−is ds)

0

V

(

eit
(

x+ (c− l)

∫ t

0

e−is ds

)

− y

)

dFY (y) dt.Using Taylor expansion w.r.t. h at h = 0 and negleting seond order terms,
eih

(

x+ (c− l)

∫ h

0

e−is ds

)

≈ x+ h(ix+ (c− l)),5



we get for h→ 0 and using ontinuity of V and di�erentiability of φ
0 ≥ l(1 − φ′(x)) + (ix+ c)φ′(x) − (δ + λ)V (x) + λ

∫ x

0

V (x− y)dFY (y). (8)Inequality (8) holds for an arbitrary l ≥ 0 (using a strategy Lt = tl). This gives 1 − φ′(x) ≤ 0 and for
l = 0 we get L∗

V,φ(x) ≤ 0. Therefore we have that V is a visosity supersolution of (5).Next we will identify the visosity subsolution property using De�nition 2.1. For some funtion ψ ∈
C1(0,∞) ful�lling

0 = V (x0) − ψ(x0) > V (x) − ψ(x) ∀x 6= x0, x ∈ (0,∞),for some x0 ∈ (0,∞), we have to show
max {1 − ψ′(x0),Lψ(x0)} ≥ 0.Assume the ontrary. Beause ψ, ψ′ and V are ontinuous, the operator Lψ is ontinuous, too. Thereforesome r > 0 and ξ > 0 exist with

max {1 − ψ′(x),Lψ(x)} < −δξ, ∀x ∈ (x0 − r, x0 + r) = B,and suh that for x′ = x0 ± r we have
V (x′) ≤ ψ(x′) − ξ.Further hoose r suh that B ⊂ (0,∞). Let {xn}n∈N be a sequene with xn → x0 and without loss ofgenerality assume xn ∈ B for all n ∈ N. Beause of the ontinuity of ψ and V we have | V (xn)−ψ(xn) | →

0. From now on we look at the reserve with initial apital xn whih is ontrolled by an arbitrary admissiblestrategy L ∈ Π, RL,xn = {RL,xn

t }t≥0. De�ne
τn = inf{t > 0 | RL,xn

t 6∈ B}and denote by τ∗ = τn ∧ T for some T > 0. Look now at the set {τ∗ = τn} �rst, leaving B beforetime T . We have, from the onstrution of the proess, that either x0 + r is reahed whih implies
RL,xn

τ∗− = RL,xn

τ∗ = x0 + r, or a jump happens leading to RL,xn

τ∗− ≥ RL,xn

τ∗ and RL,xn

τ∗ ≤ x0 − r. Sine V isinreasing and also ψ is inreasing on B, we get from ψ′ > 1,
V (RL,xn

τ∗ ) ≤ V (x′) ≤ ψ(x′) − ξ ≤ ψ(RL,xn

τ∗− ) − ξ.On the set {τ∗ = T }, RL,xn

τ∗ ≤ RL,xn

τ∗− gives
V (RL,xn

τ∗ ) ≤ ψ(RL,xn

τ∗− ).Altogether
e−δτ

∗

V (RL,xn

τ∗ ) ≤ e−δτ
∗−ψ(RL,xn

τ∗ ) − e−δτ
∗

ξI{τn=τ∗}.Apply the It� formula to e−δτ∗

ψ
(

RL,xn

τ∗−

):
e−δτ

∗

ψ
(

RL,xn

τ∗−

)

− ψ(x) =

∫ τ∗

0

e−δs(c+ iRL,xn

s− )ψ′(RL,xn

s− )ds− δ

∫ τ∗

0

ψ(RL,xn

s− )e−δsds

−

∫ τ∗

0

ψ′(RL,xn

s− )e−δs dLcs +
∑

RL,xn
s− 6=RL,xn

s ∧s≤τ∗

(

ψ(RL,xn
s ) − ψ(RL,xn

s− )
)

e−δs

+
∑

RL,xn
s+ 6=RL,xn

s ∧s<τ∗

(

ψ(RL,xn

s+ ) − ψ(RL,xn
s )

)

e−δs. (9)
6



Note that RL,xn

s+ −RL,xn
s = −(Ls+−Ls) and therefore∑RL,xn

s+ 6=RL,xn
s ∧s<τ∗

(

ψ(RL,xn

s+ ) − ψ(RL,xn
s )

)

e−δs =

−
∑

Ls+ 6=Ls∧s<τ∗ e−δs
(

∫ Ls+−Ls

0 ψ′(RL,xn
s − u)du

). Beause ψ′(x) > 1 for x ∈ B we get
−





∫ τ∗

0

ψ′(RL,xn

s− )e−δs dLcs +
∑

Ls+ 6=Ls∧s<τ∗

e−δs

(

∫ Ls+−Ls

0

ψ′(RL,xn
s − u)du

)



 ≤

−





∫ τ∗

0

e−δs dLcs +
∑

Ls+ 6=Ls∧s<τ∗

e−δs (Ls+ − Ls)



 = −

∫ τ∗

0

e−δsdLs.The last equality holds beause the dividends proess is left-ontinuous. Plugging this into (9) we obtainthe inequality
e−δτ

∗

ψ(RL,xn

τ∗− ) ≤ψ(xn) −

∫ τ∗

0

e−δs dLs +

∫ τ∗

0

e−δs
(

(c+ iRL,xn

s− )ψ′(RL,xn

s− ) − δψ(RL,xn

s− )
)

ds

+
∑

RL,xn
s− 6=RL,xn

s ∧s≤τ∗

(

ψ(RL,xn
s ) − ψ(RL,xn

s− )
)

e−δs.Further we know (see e.g. [5℄) that
∑

RL,xn
s− 6=RL,xn

s ∧s≤τ∗

(

ψ(RL,xn
s ) − ψ(RL,xn

s− )
)

e−δs −

∫ τ∗

0

λe−δs

(

∫ RL,xn
s−

0

ψ(RL,xn

s− − y)dFY (y) − ψ(RL,xn

s− )

)

dsis a martingale. Therefore taking expetations on both sides yields
E

(

e−δτ
∗

ψ(RL,xn

τ∗− ) +

∫ τ∗

0

e−δs dLs

)

≤ ψ(xn) + E

(

∫ τ∗

0

e−δsLψ(RL,xn

s− )ds

)

.Beause of RL,xn

s− ∈ B for s ∈ [0, τ∗) we have Lψ(RL,xn

s− ) < −δξ. We an use this to derive
E

(

e−δτ
∗

V (RL,xn

τ∗ ) +

∫ τ∗

0

e−δs dLs

)

+ E

(

∫ τ∗

0

e−δsδξ ds+ e−δτ
∗

ξI{τn=τ∗}

)

≤ V (xn) + γn,where γn = ψ(xn) − V (xn) onverges to zero. Therefore hoose n large enough suh that γn ≤
1
2E

(

∫ τ∗

0
e−δsδξ ds+ e−δτ

∗

ξI{τn=τ∗}

). For arbitrary L we arrive at
E

(

e−δτ
∗

V (RL,xn

τ∗ ) +

∫ τ∗

0

e−δs dLs

)

+
1

2
E

(

∫ τ∗

0

e−δsδξ ds+ e−δτ
∗

ξI{τn=τ∗}

)

≤ V (xn).This leads to the following ontradition to the dynami programming priniple:
V (xn) +

1

2
E

(

∫ τ∗

0

e−δsδξ ds+ e−δτ
∗

ξI{τn=τ∗}

)

=

sup
L∈Π

E

(

e−δτ
∗

V (RL,xn

τ∗ ) +

∫ τ∗

0

e−δs dLs

)

+
1

2
E

(

∫ τ∗

0

e−δsδξ ds+ e−δτ
∗

ξI{τn=τ∗}

)

≤ V (xn).If there is a positive probability for the event τ∗ = 0 whih is only possible if τ∗ = τn, then for theseond term above e−δτ∗

ξI{τn=τ∗} > 0. Therefore E

(

∫ τ∗

0
e−δsδξ ds+ e−δτ

∗

ξI{τn=τ∗}

)

> 0 holds andleads indeed to a ontradition. 7



2.3 UniquenessThe following omparison priniple allows us to deide whether a visosity supersolution dominates anon-ther visosity subsolution by looking at their initial value. Sine every visosity solution is both a sub-and supersolution, this will imply uniqueness for a given initial value. Atually in our situation we haveto modify the proof presented by Azue and Muler [3℄. Although quite tehnial, the arguments are basedon an appropriate ombination of standard arguments from visosity theory.Proposition 2.4. Let for all x > 0 the funtions u1(x) and u2(x) be a visosity sub- and supersolution,respetively, that satis�es the onditions ful�lled by the value funtion (loally Lipshitz, u(y)−u(x) ≥ y−xand some linear growth u(x) ≤ k1x+ k2). If u1(0) ≤ u2(0), then u1(x) ≤ u2(x) for all x ∈ [0,∞).Proof. The result will be shown by ontradition. Assume there exists some x0 > 0 suh that u1(x0) −
u2(x0) > 0. Let γ > 0 be a onstant and de�ne ũ1(x) = e−γxu1(x) and ũ2(x) = e−γxu2(x). Beause u1and u2 ful�ll a linear growth ondition, these funtions are positive and bounded. If we hoose γ smallenough we get by ontinuity that ũ1(x0) − ũ2(x0) > 0. Therefore

0 < max
x≥0

(

ũ1(x) − ũ2(x)
)

= M <∞,with a maximizing argument x∗. Further we have
ũ1(y) − ũ1(x)

y − x
≤ m,

ũ2(y) − ũ2(x)

y − x
≤ m, (10)for some m > 0. De�ne the set A by

A = {(x, y) | 0 ≤ x ≤ y}.In the following we need the funtion
φν(x, y) := ũ1(x) − ũ2(y) −

ν

2
(x− y)2 −

2m

ν2(y − x)2 + ν
,and

Mν := max
(x,y)∈A

φν(x, y),with the maximizer (xν , yν). We have
Mν ≥ φν(x

∗, x∗) = M −
2m

ν
,whih is positive for ν large enough, leading to

lim inf
ν→∞

Mν ≥M > 0.To ensure di�erentiability at the points xν and yν one needs to establish that (xν , yν) is not an elementof the boundary of A (the proof of whih is postponed to Lemma 2.5 after the end of this proof).In the next step we de�ne two test funtions, suh that we an use that ũ1 and ũ2 are visosity sub- andsupersolutions to a slightly modi�ed problem
ψ(x) = ũ2(yν) +

ν

2
(x − yν)

2 +
2m

ν2(yν − x)2 + ν
+ φν(xν , yν),

ϕ(y) = ũ1(xν) −
ν

2
(xν − y)2 −

2m

ν2(y − xν)2 + ν
− φν(xν , yν).

ψ and ϕ are ontinuously di�erentiable funtions. Further ũ1(x) − ψ(x) = φν(x, yν)− φν(xν , yν) reahesa maximum equal to zero in xν . On the other hand ũ2(y) − ϕ(y) = −φν(xν , y) + φν(xν , yν) reahes a8



minimum equal to zero in yν . Beause u1 and u2 are visosity sub- and supersolutions of the originalHJB equation, ũ1 and ũ2 are visosity sub- and supersolutions of the equation
max

{

1 − eγx(γu(x) + u′(x)), (c + ix)(γu(x) + u′(x)) − (δ + λ)u(x) + λ

∫ x

0

u(x− y)e−γydFY (y)

}

= 0.In the points xν and yν we get
max

{

1 − eγxν (γũ1(xν) + ψ′(xν)), (c + ixν)(γũ1(xν) + ψ′(xν)) − (δ + λ)ũ1(xν) + λ

∫ xν

0

ũ1(xν − y)e−γydFY (y)

}

≥ 0,

max

{

1 − eγyν (γũ2(yν) + ϕ′(yν)), (c+ iyν)(γũ2(yν) + ϕ′(yν)) − (δ + λ)ũ2(yν) + λ

∫ yν

0

ũ2(yν − y)e−γydFY (y)

}

≤ 0.In addition we have that ϕ′(yν) = ψ′(xν) = ν(xν − yν) + 4mν2(yν−xν)
ν2(yν−xν)2+ν .Notie that max{A,B} ≤ max{C,D} implies (A ≤ C) ∨ (B ≤ D). We start with looking at B ≤ D,

(c+iyν)

(

γũ2(yν) + ν(xν − yν) +
4mν2(yν − xν)

ν2(yν − xν)2 + ν

)

−(c+ixν)

(

γũ1(xν) + ν(xν − yν) +
4mν2(yν − xν)

ν2(yν − xν)2 + ν

)

+ (δ + λ)(ũ1(xν) − ũ2(yν)) ≤ λ

(∫ xν

0

ũ1(xν − y)e−γydFY (y) −

∫ yν

0

ũ2(yν − y)e−γydFY (y)

)

. (11)From
φν(xν , xν) + φν(yν , yν) ≤ 2φν(xν , yν)we immediately get

ũ1(xν) − ũ2(xν) + ũ1(yν) − ũ2(yν) −
4m

ν
≤ 2

(

ũ1(xν) − ũ2(yν) −
ν

2
(xν − yν)

2 −
2m

ν2(yν − xν)2 + ν

)

.This yields, together with (10),
ν(xν − yν)

2 ≤ ũ1(xν) − ũ1(yν) + ũ2(xν) − ũ2(yν) + 4m
(yν − xν)

2

ν(yν − xν)2 + 1

≤ 2m|yν − xν | + 4m(|yν − xν |)
2and in partiular, for ν large enough suh that 4m

ν < 1,
0 ≤ |yν − xν |

(

1 −
4m

ν

)

≤
2m

ν
. (12)Now let (νn)n∈N be suh that (xν , yν) onverges to (x, y) as νn → ∞. From (12) we get that x = y.Using (11) we get

(c+ ix)γ(ũ2(x) − ũ1(x)) + (δ + λ)(ũ1(x) − ũ2(x)) ≤ λ

(

∫ x

0

e−γy(ũ1(x − y) − ũ2(x− y))dFY (y)

)

.(13)The right-hand side of (13) is smaller than λM . If we hoose γ small enough we derive
M ≤ lim inf

ν→∞
Mν ≤ lim

n→∞
Mνn

= ũ1(x) − ũ2(x) ≤
λ

δ + λ
M,whih is a ontradition.Now we onentrate on A ≤ C and observe that

eγxν (γũ1(xν) + ϕ′(yν)) ≤ eγyν (γũ2(yν) + ϕ′(yν)).9



This implies
eγxν ũ1(xν ) − eγyν ũ2(yν) ≤

1

γ
ϕ′(yν) (eγyν − eγxν) .For γ small enough we have eγyν ũ2(yν) − eγxν ũ1(xν) ≈ ũ2(yν) − ũ1(xν) so that

0 < M ≤Mν = φν(xν , yν) ≤ ũ1(xν) − ũ2(yν) ≤
1

γ
ϕ′(yν)(e

γyν − eγxν). (14)If ϕ′(yν) ≤ 0 for some ν > 0 we are done, remember (xν , yν) ∈ A. Now look at ϕ′(yν) > 0, we have
|ϕ′(yν)| ≤ ν|yν − xν | +

∣

∣

∣

∣

4mν(yν − xν)

ν(yν − xν)2 + 1

∣

∣

∣

∣

. (15)Choose again a sequene (νn)n∈N suh that (xν , yν) onverges to (x, y) as νn → ∞, (12) gives x = y. If
limνn→∞ ϕ′(yν) is bounded the right hand side of (14) onverges to zero and also in this ase we obtaina ontradition. Applying (12) to (15) we get the boundedness of ϕ′(yν) for large ν,

|ϕ′(yν)| ≤
1

1 − 4m
ν

(2m+ 8m2).From the omments above, Proposition 2.4 implies the uniqueness of the visosity solution for a giveninitial ondition v(0) = v0.Lemma 2.5. (xν , yν) is not an element of the boundary of A.Proof. First look at
φν(0, 0) = ũ1(0) − ũ2(0) −

2m

ν
< 0,

lim
b→∞

φν(x, b) = ũ1(x) − ũ2(b) −
ν

2
(x− b)2 −

2m

ν2(b − x)2 + ν
= −∞.The next step is to examine the right-hand derivative, in y, at the boundary of A along the diagonal. Forall x > 0,

lim sup
h→0+

φν(x, x + h) − φν(x, x)

h
= lim sup

h→0+

1

h

(

ũ2(x) − ũ2(x+ h) +
2m

ν
−
ν

2
h2 −

2m

ν2h2 + ν

)

≤ lim sup
h→0+

(

− 1 −
ν

2
h+

2mh

νh2 + 1

)

= −1 < 0.The last inequality holds beause of the assumsptions on u2 stated in Proposition 2.4. By ontinuity itfollows from φν(0, 0) < 0 that φν(0, y) < 0 for y ∈ [0, ρν] and some ρν > 0. Now for y > ρν we observe
lim sup
h→0+

φν(0, y) − φν(h, y)

h
= lim sup

h→0+

1

h

(

ũ1(0) − ũ1(h) +
ν

2
h2 − νhy +

2mν2(y2 − (h− y)2)

(ν2(h− y)2 + ν)(νy2 + 1)

)

≤ lim sup
h→0+

(

−e−γh + u1(0)
(1 − e−γh)

h
+
ν

2
h− νy +

1

h

2mν2(y2 − (h− y)2)

(ν2(h− y)2 + ν)(νy2 + 1)

)

= γũ1(0) − 1 − νy +
4my

(νy2 + 1)2
, (16)whih is negative for ν large enough and γ small enough. Here the inequality in (16) holds beause thelower and upper linear growth onditions imply −h ≥ u1(0) − u1(h) and onsequently

ũ1(0) − ũ1(h) = u1(0) − e−γhu1(h) = e−γh(u1(0) − u1(h)) + u1(0)(1 − e−γh)

≤ −e−γhh+ u1(0)(1 − e−γh).Hene we have proved that (xν , yν) does not belong to the boundary of A (negative value in (0, 0) andin every diretion towards the boundary of A negative derivatives and a negative limit for the argument
(x, b) if b→ ∞). 10



2.4 Charaterization of the value funtionIn ontrast to some optimization problems in a di�usion framework the dividend maximization problemin our setup laks an initial ondition. In Proposition 2.6 we will prove that every visosity supersolutionto (5) whih fu�lls a linear growth ondition dominates the value funtion. This together with Proposition2.4 allows us to de�ne
V (0) = inf{u(0) | u is a visosity solution to the HJB equation and ful�lls a linear growth ondition}.Beause of the omparison priniple any other hoie of an initial value will lead to a ontradiition toProposition 2.6, sine for any suitable visosity solution u with u(0) < V (0) we would have u(x) < V (x)for at least x ∈ [0, ǫ) and u(x) ≤ V (x) for all x > 0.For a visosity supersolution u1 we have almost everywhere

u′1(x) ≤
1

c+ ix

(

(δ + λ)u1(x) − λ

∫ x

0

u1(x− y)dFY (y)

)

≤
δ + λ

c+ ix
u1(x).Throughout this setion we need a sequene of non-negative funtions {vn(x)}n∈N with the followingproperties:

• vn is ontinuously di�erentiable with
1 ≤ v′n(x) ≤

δ + λ

c+ ix
vn(x) (17)

• vn(x) ≤ k1x+ k2 for some positive onstants k1, k2

• vn onverges uniformly to the absolutely ontinuous supersolution u1 of (5) on ompat sets and
v′n onverges to u′1 almost everywhere. Further vn(x) = 0 for x < 0.Suh a sequene exists due to [15℄ and [3℄.Proposition 2.6. An absolutely ontinuous supersolution u1 of the HJB equation (5) ful�lling a lineargrowth ondition dominates the value funtion, u1(x) ≥ V (x).Proof. Let L = (Lt)t≥0 be an admissible strategy. The ontrolled proess is RL = (RLt )t≥0, R

L
0 = x withruin time τ . Let vn(x) be a ontinuously di�erentiable element from the sequene de�ned above. Wehave

vn(R
L
(t∧τ))e

−δ(t∧τ) = vn(x) +

∫ (t∧τ)

0

v′n(R
L
s ) e−δs dRLs − δ

∫ (t∧τ)

0

vn(R
L
s ) e−δs ds.having in mind that laim ourrenes lead to Rs− 6= Rs and singular dividend payments (lump sums)lead to Rs+ 6= Rs, we get from the onstrution of the reserve proess

∫ (t∧τ)

0

v′n(R
L
s ) e−δs dRLs =

∫ (t∧τ)

0

e−δs (c+ iRLs )v′n(R
L
s ) ds−

∫ (t∧τ)

0

v′n(R
L
s ) dLcs

+
∑

RL
s− 6=RL

s , s<(t∧τ)

(vn(RLs ) − vn(RLs−) e−δs +
∑

RL
s+ 6=RL

s , s<(t∧τ)

(vn(RLs+) − vn(RLs ) e−δs.Using the ontinuity of v′n and RLs+ −RLs = −(Ls+ − Ls) we an write
vn(R

L
s+) − vn(R

L
s ) = −

∫ Ls+−Ls

0

v′n(R
L
s − γ) dγ.Further we use the martingale (Mt)t≥0

Mt =
∑

RL
s− 6=RL

s , s<t

(vn(RLs ) − vn(RLs−) e−δs − λ

∫ t

0

e−δs

(

∫ RL
s−

0

vn(R
L
s− − y) dFY (y) − vn(R

L
s−)

)

ds,11



whih is the ompensated proess, see [5℄. We arrive at
vn(R

L
(t∧τ))e

−δ(t∧τ) = vn(x) +

∫ (t∧τ)

0

e−δs

[

(c+ iRLs )v′n(R
L
s ) − (δ + λ)Vn(RLs ) + λ

∫ RL
s−

0

vn(R
L
s− − y) dFY (y)

]

ds

−

∫ (t∧τ)

0

v′n(R
L
s ) dLcs −

∑

Ls+ 6=Ls, s<(t∧τ)

e−δs
∫ Ls+−Ls

0

v′n(RLs − γ) dγ +M(t∧τ).Now we use v′n ≥ 1 and an estimate
−

∫ (t∧τ)

0

v′n(RLs ) dLcs −
∑

Ls+ 6=Ls, s<(t∧τ)

e−δs
∫ Ls+−Ls

0

v′n(RLs − γ) dγ

≤ −

∫ (t∧τ)

0

dLcs −
∑

Ls+ 6=Ls, s<(t∧τ)

e−δs
∫ Ls+−Ls

0

dγ = −

∫ (t∧τ)

0

e−δsdLs,whih leads to
vn(RL(t∧τ))e

−δ(t∧τ) ≤ vn(x) +

∫ (t∧τ)

0

e−δsLvn
(RLs ) ds−

∫ (t∧τ)

0

e−δsdLs +M(t∧τ).The next steps are taking expetations, examining the validity of taking the limit t → ∞ and letting
n→ ∞. This will give the desired result.Starting with

E

(

vn(R
L
(t∧τ))e

−δ(t∧τ)
)

≤ vn(x) + E

(

∫ (t∧τ)

0

e−δsLvn
(RLs ) ds

)

− E

(

∫ (t∧τ)

0

e−δsdLs

)

, (18)we have to �nd integrable bounds for every summand to justify the interhange of limit and integration.Beause Ls is inreasing, we get by monotone onvergene
lim
t→∞

E

(

∫ (t∧τ)

0

e−δsdLs

)

= E

(∫ τ

0

e−δsdLs

)

= VL(x).Next we look at the seond summand on the right hand side, use the estimates for the �rst derivative(17), the linear growth and the reserve from above to get the integrable upper bound
(c+ ix)v′n(x) − (λ + δ)vn(x) + λ

∫ y

0

vn(x− y) dFY (y) ≤ λ

∫ y

0

vn(x− y) dFY (y) ≤ λ vn(x),whih gives
∫ (t∧τ)

0

e−δsLvn
(RLs ) ds ≤

∫ (t∧τ)

0

e−δsλvn(RLs ) ds ≤

∫ (t∧τ)

0

e−δsλ

(

k1 e
is

(

x+ c

∫ s

0

e−ih dh

)

+ k2

)

ds

<

∫ ∞

0

e−δsλ

(

k1 e
is

(

x+ c

∫ s

0

e−ih dh

)

+ k2

)

ds <∞(reall that we have i < δ), so that by dominated onvergene
lim
t→∞

E

(

∫ (t∧τ)

0

e−δsLvn
(RLs ) ds

)

= E

(∫ τ

0

e−δsLvn
(RLs ) ds

)

.The left hand side of (18 onverges to zero by
0 ≤ E

(

vn(R
L
(t∧τ))e

−δ(t∧τ)
)

= E

(

vn(R
L
(t∧τ))e

−δ(t∧τ) I{t<τ}

)

≤ E
(

vn(RLt )e−δt
)

≤ E

(

e−δt
(

k1 e
is

(

x+ c

∫ s

0

e−ih dh

)

+ k2

))

→ 012



(reall vn(x) = 0 for x < 0). Further v′n → u′1 almost everywhere (at points where u1 is di�erentiable)and limn→∞ Lvn
(x) = Lu1(x) holds.We need again an integrable upper bound for | Lvn

(RLs ) − Lu1(R
L
s ) |. This an be obtained from (17)and the linear growth onditions on vn and u1:

| Lvn
(RLs ) − Lu1 (R

L
s ) | e−δs

≤

(

(c+ iRLs )v′n(RLs ) + (δ + λ)vn(RLs ) + λ

∫ RL
s

0

vn(RLs − y) dFY (y)

+(c+ iRLs )u′1(R
L
s ) + (δ + λ)u1(R

L
s ) + λ

∫ RL
s

0

u1(R
L
s − y) dFY (y)

)

e−δs

≤ 2(δ + λ)vn(RLs ) + λ

∫ RL
s

0

vn(R
L
s − y) dFY (y) + 2(δ + λ)u1(R

L
s ) + λ

∫ RL
s

0

u1(R
L
s − y) dFY (y)

≤ K (u1(R
L
s ) + vn(RLs )) e−δs ≤ K

(

k1 e
is

(

x+ c

∫ s

0

e−ih dh

)

+ k2

)

e−δs.Altogether we arrive at
lim
n→∞

E

(∫ τ

0

e−δs Lvn
(RLs ) ds

)

= E

(∫ τ

0

e−δs Lu1(R
L
s ) ds

)

≤ 0.Finally we arrive at
VL(x) ≤ u1(x) + E

(∫ τ

0

e−δs Lu1(R
L
s ) ds

)

≤ u1(x),whih holds for every admissible strategy L resulting in V (x) ≤ u1(x).The next proposition follows immediately.Proposition 2.7. An admissible strategy L with assoiated return funtion VL whih is an absolutelyontinuous supersolution of the HJB equation ful�lls V = VL. Consequently, L is an optimal dividendstrategy.Now we state several auxiliary results whih haraterize the value funtion at points of potentiallyproblemati di�erentiability behaviour. The proofs are in the spirit of Azue and Muler in [3℄.If it is optimal to pay out an amount a immediately, then V (x) = a + V (x − a) so that V ′(x−) = 1.If it is optimal to keep the surplus at a level x until the next laim ourrene at time τ1 and pay outeverything exeeding this level we have
V (x) = E

(∫ τ1

0

(c+ ix) e−δs ds+ e−δτ1V (x − Y1)

)

=
1

δ + λ

(

c+ ix+ λ

∫ x

0

V (x− y) dFY (y)

)

.The following assertions are needed to prove ertain properties of the optimal strategy.For some z > 0, the set Πz will denote the set of admissible strategies L ∈ Π for whih the ontrolledreserve stays below z, i.e. RLt ≤ z for L ∈ Πz and t ≥ 0.De�ne the operator
Λ(x) = c+ ix− (δ + λ)V (x) + λ

∫ x

0

V (x − y) dFY (y).Lemma 2.8. If there is an x > 0 suh that Λ(x) = 0, then V (x) = supL∈Πx
VL(x) for x ∈ [0, x).Proof. The proof is done by indution. Let Π(n) be the set of admissible strategies suh that for initialreserve x < x the laim proess stays below x till the ourrene of the nth laim. The idea of the proofis to onstrut an ǫ-optimal strategy L̂ ∈ Πx̄ from a ertain ǫ/2-optimal strategy Ln ∈ Π(n) for some nlarge enough. Beause of disounting and δ > i we get that |VLn

(x) − VL̂(x)| will be small enough to13



derive the desired result.First we want to show
V (x) = sup

L∈Π(n)

VL(x) (19)for all n ≥ 0. This will be done by indution. Clearly Π(0) = Π and we have that V (x) = supL∈Π(0)
Vl(x).Let n > 1, ǫ > 0 and (19) be ful�lled for n − 1. By the indution hypothesis, Ln−1 ∈ Π(n−1) suh that

V (x) − VLn−1(x) <
ǫ
2 . Now we look for a strategy Ln ∈ Π(n) suh that 0 ≤ VLn−1(x) − VLn

(x) ≤ ǫ
2 . Inview of Λ(x) = 0, Ln is de�ned as follows. Starting at x < x apply Ln−1 as long as the reserve staysbelow x. When reahing x pay out c + ix until a laim ours and use again Ln−1 with initial apital

x− Y , where Y denotes the random laim size.As �rst step we show VLn
(x) ≥ VLn−1(x) −

ǫ
2 . The initial apital is RLn

0 = x; Y1, τ1 denote amount andourrene time of the �rst laim. For 0 ≤ t < τ1 we have RLn

t = x, Ln,t = (c+ ix)t and RLn
τ1 = x− Y1.We get

VLn
(x) = E

(∫ τ1

0

e−δs(c+ ix) ds+ e−δτ1VLn−1(x− Y1)

)

=
1

δ + λ

(

c+ ix+ λ

∫ x

0

VLn−1(x− y) dFY (y)

)

≥
1

δ + λ

(

c+ ix+ λ

∫ x

0

(V (x− y) −
ǫ

2
dFY (y)

)

=
1

δ + λ

(

Λ(x) + (δ + λ)V (x) −
λǫ

2
F (x)

)

≥ V (x) −
ǫ

2
.From the following two inequalities we get the required result,

V (x) ≥ VLn−1(x) ≥ V (x) −
ǫ

2
,

V (x) ≥ VLn
(x) ≥ V (x) −

ǫ

2
,whih gives

VLn
(x) − VLn−1(x) ≥ V (x) −

ǫ

2
− V (x) = −

ǫ

2
.Now we deal with the ase 0 ≤ x < x. We have to distiguish between paths of the proess ontrolled by

Ln whih reah x in �nite time (the set of these paths is denoted by P1) and those whih do not. Let τbe the �rst time a path from P1 reahes x. We an split the value of the strategy Ln as follows
VLn

(x) = E

(

IP1

∫ τLn

0

e−δsdLn,s

)

+ E

(

IPc
1

∫ τLn

0

e−δsdLn,s

)

= E

(

IP1

∫ τ

0

e−δsdLn,s

)

+ E
(

e−δτ
)

VLn
(x) + E

(

IPc
1

∫ τLn

0

e−δsdLn,s

)

.Beause of the de�nition of the strategy Ln we have that in Pc1 and in P1 for t < τ the paths RLn

t and
R
Ln−1

t are idential. Therefore we arrive at
VLn−1(x) − VLn

(x) = E
(

IP1e
−δτ
) (

VLn−1(x) − VLn
(x)
)

≤ E
(

IP1e
−δτ
) ǫ

2
≤
ǫ

2
.In the end we have to show that for every ǫ > 0 there exists a strategy L̂ ∈ Πx suht that V (x)−VL̂(x) < ǫfor x ∈ [0, x]. First de�ne t1 suh that

e−δt1 <
ǫ

8V (x)
,14



and n ≥ 1 large enough suh that
P (Nt1 ≥ n) =

∑

k≥n

e−λt1(λt1)
k

k!
≤

ǫ

8V (x)
.Let Ln ∈ Π(n) be an ǫ/2-optimal strategy for all x ∈ [0, x]. Let τ̂ the �rst time a path of (RLn

t )t≥0 exeeds
x. The set P2 onsists of all paths suh that τ̂ <∞. For t < τ̂ we de�ne L̂ = Ln, if t = τ̂ the strategy L̂pays out immediately x and the inoming premiums till the next laim ourrene whih leads to ruin.As before the value of the strategy Ln as well as for L̂ an be written in the following form,

VLn
(x) = E

(

IPc
2

∫ τLn

0

e−δs dLn,s

)

+ E

(

IP2

∫ τLn

0

e−δs dLn,s

)

= E

(

IPc
2

∫ τLn

0

e−δs dLn,s

)

+ E

(

IP2

∫ τ̂

0

e−δs dLn,s

)

+ E
(

IP2e
−δτ̂
)

VLn
(x)

≤ E

(

IPc
2

∫ τLn

0

e−δs dLn,s

)

+ E

(

IP2

∫ τ̂

0

e−δs dLn,s

)

+ E
(

IP2e
−δτ̂
)

V (x).Sine RLn

t and RL̂t are idential on Pc2 and for t < τ̂ we get
|VLn

(x) − VL̂(x)| ≤ 2 E
(

IP2e
−δτ̂
)

V (x).Beause Ln ∈ Π(n) we have {τ̂ < t1} ⊂ {Nt1 ≥ n}, furthermore we have P2 = {τ̂ < ∞} ⊂ {τ̂ ≥
t1} ∪ {Nt1 ≥ n}. We get

E
(

IP2e
−δτ̂
)

≤ E
(

I{τ̂≥t1}e
−δτ̂
)

+ E

(

I{Nt1≥n}
e−δτ̂

)

≤ e−δt1 + P ({Nt1 ≥ n}) <
ǫ

4V (x)
,whih gives

|VLn
(x) − VL̂(x)| <

ǫ

2
.The required result follows from

V (x) − VL̂(x) ≤ V (x) − VLn
(x) + |VLn

(x) − VL̂(x)| < ǫ.Lemma 2.9. If there is an x > 0 suh that V ′(x) = 1, then V (x) = supL∈Πx
VL(x) for all x ∈ [0, x].Proof. We have to show that for every ǫ > 0 we are able to �nd a strategy L̂ ∈ Πx suh that 0 ≤

V (x) − VL̂(x) < ǫ for all x ∈ [0, x]. Let
D =

c+ ix

δ
ln

(

2V (x)

ǫ

)and de�ne a sequene {xn}n∈N with
xn = x−

D

n
.Further we need a sequene {hn}n∈N de�ned by

hn =
V (xn) − V (x)

xn − x
− 1.Beause of V ′(x) = 1 we have that hn → 0 for n → ∞. Choose n0 suh that hn0 <

ǫ
8D . A furtherspei�ation of the size of n0 will be needed in the end of the proof.15



The proof needs two steps: �rst one �xes a sequene of strategies suh that on a ertain level we get an
ǫ
2 -optimal strategy and the di�erenes of the values of these strategies form a dereasing sequene. In aseond step these ingredients are used to de�ne an ǫ-optimal strategy within the set Πx.Step 1:Take a strategy L ∈ Π suh that V (x) − VL(x) < ǫ

8n0
. Now de�ne in a reursive way the following set ofstrategies (Ln)n≥0. For n = 0 set L0 = L. For n > 0 and initial apital x ≤ xn0 follow the strategy L aslong as RLt < x and as RLt reahes x, pay out immediately the di�erene x − xn0 and follow Ln−1 withinitial apital xn0 . If x ∈ (xn0 , x], pay out x− xn0 and follow Ln−1.The idea behind this proedure is to �nd an estimate for the time the proess stays below x beforerossing x. Under the strategy Ln the intervall [xn0 , x] has to be passed more than n times.The �rst thing to show is V (x) − VLn0

(x) < ǫ
2 for all x ∈ [0, x].We start with showing that V (x) − VL1(x) <
ǫ

2n0
for all x ∈ [0, x].For x = x we have

V (x) − VL1(x) ≤ V (xn0) + (1 + hn0)(x− xn0) − ((x − xn0) + VL0(xn0))

= V (xn0) − VL(xn0 ) + hn0(x− xn0) ≤
ǫ

4n0
,beause of x− xn0 = D

n0
, hn0 ≤ ǫ

8D , (1 + hn0)(x− xn0) = V (x) − V (xn0 ) and V (x) ≥ x− x+ V (x).If x ∈ [xn0 , x] we get with V (x) = (1 + hn0)(x− xn0) + V (xn0),
V (x) − VL1(x) ≤ V (x) − (x− x) − (x− xn0 + VL(xn0))

= V (xn0) + hn0(x− xn0) + x− xn0 − x+ x− x+ xn0 − VL(xn0 )

= V (xn0) − VL(xn0 ) + hn0(x− xn0) ≤
ǫ

4n0
,with the same arguments as above.In the end we look at x ∈ [0, xn0). Let P3 be the set of paths of RL with initial apital x suh that xn0is reahed in �nite time, let τx be the �rst time suh that this is done by a path from P3. We derive

VL1(x) = E

(

IP3

∫ τL1

0

e−δs dL1,s

)

+ E

(

IPc
3

∫ τL1

0

e−δs dL1,s

)

= E

(

IP3

∫ τx

0

e−δs dL1,s

)

+ E
(

IP3e
−δτx

)

VL1(xn0 ) + E

(

IPc
3

∫ τL1

0

e−δs dL1,s

)

.Beause the paths of RL and RL1 oinide in Pc3 and in P3 for t < τx we get
| VL1(x) − VL(x) | = E

(

IP3e
−δτx

)

| VL1(xn0) − VL(xn0 ) |.This together with the above estimates, E
(

IP3e
−δτx

)

≤ 1, yields
| V (x) − VL1(x) | ≤ | V (x) − VL(x) | + | VL(x) − VL1(x) |

≤ | V (x) − VL(x) | + | VL(xn0) − VL1(xn0 ) |

≤ | V (x) − VL(x) | + | V (xn0 ) − VL(xn0) | + | V (xn0) − VL1(xn0 ) | ≤
ǫ

2n0
.Now we want for n ≥ 2 and x ∈ [0, x] that | VLn

(x) − VLn−1(x) | ≤ | VLn−1(xn0) − VLn−2(xn0 ) | holds.For x ∈ [xn0 , x] and n ≥ 1 we get the result immediately from VLn
(x) = x− xn0 + VLn−1(xn0 ).Let x ∈ [0, xn0) and denote by P4 the set of paths of RL suh that x is reahed in �nite time, τx denotingthe �rst time of suh an event. We obtain

VLn
(x) = E

(

IP4

∫ τLn

0

e−δs dLn,s

)

+ E

(

IPc
4

∫ τLn

0

e−δs dLn,s

)

= E

(

IP4

∫ τx

0

e−δs dLn,s

)

+ E
(

IP4e
−δτx

)

(VLn−1(xn0) + x− xn0) + E

(

IDc

∫ τLn

0

e−δs dLn,s

)

.16



As before the paths of RLn and RLn−1 oinide on Pc4 and on P4 for t < τx. Therefore
| VLn

(x) − VLn−1(x) | = E
(

e−δτx
)

| VLn−1(xn0 ) − VLn−2(xn0) | ≤ | VLn−1(xn0 ) − VLn−2(xn0 ) |.We arrive at
V (x) − VLn0

(x) = V (x) − VL1(x) +

n0
∑

n=2

(

VLn−1(x) − VLn
(x)
)

≤ V (x) − VL1(x) + (n0 − 1)| VL1(xn0) − VL(xn0) |

≤
ǫ

2n0
+ (n0 − 1)(| VL1(xn0) − V (xn0) | + | V (xn0) − VL(xn0) |)

≤
ǫ

2n0
+ (n0 − 1)(

ǫ

4n0
+

ǫ

8n0
) ≤

ǫ

2
.Step 2:Now we identify a strategy L ∈ Πx suh that VLn0

(x) − VL(x) < ǫ
2 for all x ∈ [0, x]. In order to reah xfrom xn0 it takes at least 1

i ln
(

ix+c
ixn0+c

) time units. For x ∈ [0, x] let τ = inf{t > 0 | R
Ln0
t > x}. Fromthe de�nition of the strategy Ln0 we get that the proess has to go through the interval [xn0 , x] at least

n0 times. We get
δτ ≥

n0δ

i
ln

(

ix+ c

ixn0 + c

)

,and subsequently
E
(

e−δτ
)

≤

(

ix+ c

i(x− D
n0

) + c

)

−δn0
i

=

(

1 +
iD

n0(i(x− D
n0

) + c)

)

−δn0
i

≈ e−
Dδ

c+ix ≤
ǫ

2V (x)
,for n0 large enough. Let P5 be the set of paths of RLn0 with �nite τ . Now we de�ne the strategy L ∈ Πx,with L = Ln0 as long as t < τ , and at t = τ pay out x immediately and distribute the inoming premiumsas dividends till the next laim ourrene auses ruin. Again we an write

VLn0
(x) = E

(

IPc
5

∫ τLn0

0

e−δsdLn0,s

)

+ E

(

IP5

∫ τLn0

0

e−δsdLn0,s

)

≤ E

(

IPc
5

∫ τLn0

0

e−δsdLn0,s

)

+ E
(

IP5e
−δτ
)

V (x) + E

(

IP5

∫ τ

0

e−δsdLn0,s

)

.Similarly we get
VL(x) = E

(

IPc
5

∫ τL

0

e−δsdLs

)

+ E

(

IP5

∫ τL

0

e−δsdLs

)

≥ E

(

IPc
5

∫ τL

0

e−δsdLs

)

+ E

(

IP5

∫ τ

0

e−δsdLs

)

+ E
(

e−δτ
)

x.Beause on the sets Pc5 and P the paths of RLn0 and RL oinide for t < τ̄ , we arrive at
VLn0

(x) − VL(x) ≤ E
(

e−δτ
)

(V (x) − x) ≤ E
(

e−δτ
)

V (x) ≤
ǫ

2
.This �nishes the proof sine

0 ≤ V (x) − VL(x) = V (x) − VLn0
(x) + VLn0

(x) − VL(x) ≤ ǫ.Finally, the following is a onsequene of the proof of Proposition 2.6:17



Lemma 2.10. Let x > 0 and u1(x) be an absolutely ontinuous supersolution of the HJB equation forall x ∈ [0, x). If L is an admissible strategy suh that RLt ≤ x for all t ≥ 0 then u1(x) ≥ VL(x) for all
x ∈ [0, x).These three lemmas imply the following two propositions (the results resemble a similar loal harater-ization of the value funtion in Shreve et al. [14℄, where the intermediate step with onstrained ontrols
Πx were used for a dividend maximization problem in a general di�usion setup).Proposition 2.11. If either Λ(x) = 0 or V ′(x) = 1 for some x > 0 and u1(x) is an absolutely ontinuoussupersolution of the HJB equation for all x ∈ [0, x) then u1(x) ≥ V (x) in [0, x]. Hene, if L ∈ Πx suhthat VL is an absolutely ontinuous supersolution to the HJB equation for all x ∈ [0, x) then V (x) = VL(x)for all x ∈ [0, x].De�ne for any y > 0

Uy(x) =

{

V (x) x ≤ y,
V (y) + x− y x > y.The following proposition will be the key in the numerial onstrution of a solution and we will see howit mathes some properties of the optimal strategy.Proposition 2.12. (i) If Uy is a supersolution to the HJB equation in (y,∞), then Uy = V in [0,∞).(ii) If either Λ(x) = 0 or V ′(x) = 1 for some x > 0 and there exists y < x suh that Uy is a supersolutionof the HJB equation in (y, x], then Uy = V in [0, x].Proof. (i) If we prove that Uy is a supersolution in y > 0 we immediately have that Uy ≥ V in [0,∞).From the de�nition we have Uy(y) = V (y) and therefore the supersolution property of V implies that

L∗
Uy,φ

(y) ≤ 0 for an appropriate funtion φ. The right-hand derivative in y is given through
lim
x↓y

Uy(x) − Uy(y)

x− y
= 1.Remark 2.2 shows that there exists a test funtion φ with the supersolution property if and only if

lim
x↑y

V (x) − V (y)

x− y
= lim

x↑y

Uy(x) − Uy(y)

x− y
= 1.But in this ase we get φ′(y) = 1 showing in addition to V also Uy has the supersolution property. Uy ≤ Vfollows from the de�nition of Uy and Proposition 2.2. For (ii) use Proposition 2.11 instead of the generalsupersolution property. Then the same arguments as above give the desired result.The following settles the question of di�erentiability at points swithing from the non-pay- to the pay-regime.Remark 2.4. From the proof of Proposition 2.12 (i) and equation (7) of Remark 2.2, we obtain thatat points y > 0 where a barrier strategy with height y is applied, we have di�erentiability of the valuefuntion: Below y we use V , in some interval above y we have V desribed by Uy. From Proposition 2.2and the monotoniity of Uy we get (for x < y < x′ suh |x− y| ≥ |x′ − y|),

1 ≤
V (x) − V (y)

x− y
=
Uy(x) − Uy(y)

x− y
≤
Uy(x

′) − Uy(y)

x′ − y
→ 1,for x′ → y. This shows that in suh hange points the left-hand derivative is (by the visosity solutionproperty) bounded by the right-hand derivative, giving 1 as an upper and lower bound and thereforeproving di�erentiability in these points.
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3 Constrution of the optimal strategy3.1 The IDE part of the HJB equationIn intervals where V ′ exists and is greater than 1 we have to ful�ll the seond part of the HJB equation(5). Reall that in intervals where it is optimal to do nothing the generator A of the ontrolled proessapplied to V gives
AV (x) = (c+ ix)V ′(x) − (δ + λ)V (x) + λ

∫ x

0

V (x− y) dFY (y).Let us therefore look for a solution of the following integro-di�erential equation with a given initialondition,
0 = (c+ ix)f ′(x) + λ

∫ x

0

f(x− y)dFY (y) − (λ+ δ)f(x), (20)
1 = f(0).As for eah solution f(x) of (20), C f(x) is again a solution for arbitrary onstant C, any boundaryondition an be ful�lled.Let f(x) be a solution to (20) and de�ne for some b ≥ 0

Vb(x) =

{

f(x)/f ′(b) x ≤ b,
x− b+ Vb(b) x > b.

(21)An analogue of [13, Lemma 2.49℄ shows that Vb is equal to the value of the expeted disounted dividendswhen a onstant barrier strategy with barrier height b is applied. Hene maximizing Vb(x) over all b ≥ 0is equivalent to �nding a minimum of f ′(x).We will now prove the existene of a solution of a generalized version of (20). If it is optimal to pay outdividends following a barrier strategy only in a bounded interval (V ′ = 1) and for higher surplus x > x0it is optimal to pay nothing in some area (V ′ > 1), then we would need a solution to the equation
0 = (c+ ix)u′(x) − (δ + λ)u(x) + λ

∫ x−x0

0

u(x− y) dFY (y) + λ

∫ x

x−x0

f(x− y) dFY (y) (22)
f(x0) = u(x0),where f : [0, x0] → [0,∞) is a given ontinuous and inreasing funtion. Note that hoosing x0 = 0 andtaking u(0) = 1 as initial ondition leads to the existene proof of a solution to (20).Lemma 3.1. Let x0 ≥ 0. For a ontinuous and inreasing funtion f : [0, x0] → [0,∞) there existsa unique, in (x0,∞) di�erentiable and stritly inreasing solution u : [x0,∞) → [0,∞) to (22) with

u(x0) = f(x0).Proof. For ǫ = c
2(δ+2λ) , we will show that there exists a solution with the required properties on [x0, x0+ǫ)and sine ǫ does not depend on x0 this will establish the existene on [x0,∞).The set of all ontinuous and inreasing funtions u : [x0, x0 + ǫ) → [0,∞) is denoted by CI[x0, x0 + ǫ),further let for a u ∈ CI[x0, x0 + ǫ),
u(x) =

(δ + λ)u(x) − λ
∫ x−x0

0 u(x− y) dFY (y) − λ
∫ x

x−x0
f(x− y) dFY (y)

c+ ix
.As u and f are ontinuous, u is ontinuous for x ≥ 0. Now we de�ne for u ∈ CI[x0, x0 + ǫ)

Tu(x) =

∫ x

x0

u(s) ds+ f(x0).Beause of the monotoniity of u and f and f(x0) = u(x0) we get
λ

∫ x−x0

0

u(x− y) dFY (y) + λ

∫ x

x−x0

f(x− y) dFY (y)

≤ λu(x) FY (x − x0) + λf(x0)(FY (x) − FY (x− x0)) ≤ λ u(x).19



This argument gives the following lower bound for u
0 <

δ

c+ ix
u(x) ≤ u(x) ≤

δ + λ

c+ ix
u(x).Here the upper bound follows from the fat that u and f are positive. This implies that Tu is inreasing,positive and ontinuous for x ∈ [x0, x0 + ǫ). Now for u1, u2 ∈ CI[x0, x0 + ǫ), we get

u1(x) − u2(x) =
(δ + λ)(u1(x) − u2(x)) − λ

∫ x−x0

0 (u1(x− y) − u2(x − y)) dFY (y)

c+ ix

≤
1

c
((δ + λ)‖u1 − u2‖ + λ‖u1 − u2‖FY (x− x0)) ≤

δ + 2λ

c
‖u1 − u2‖,where ‖ · ‖ denotes the supremum norm. This implies

Tu1(x) − Tu2(x) ≤ ǫ
δ + 2λ

c
‖u1 − u2‖ ≤

1

2
‖u1 − u2‖.Interhanging u1 and u2 results in ‖Tu1 − Tu2‖ ≤ 1

2‖u1 − u2‖, proving that T is a ontration on
CI[x0, x0 + ǫ). Therefore there exists a u ∈ CI[x0, x0 + ǫ) suh that

u(x) =

∫ x

x0

(δ + λ)u(s) − λ
∫ s−x0

0 u(s− y) dFY (y) − λ
∫ s

s−x0
f(s− y) dFY (y)

c+ is
ds+ f(x0).Further we have from above that u′(x) = u(x) holds everywhere in [x0, x0 + ǫ). This gives the existeneof a unique solution to (22) with the required properties on [x0, x0 + ǫ).Remark 3.1. From the HJB (5) equation we get that at points of di�erentiablity we have that either

V ′(x) = 1 or LV (x) = 0 holds. Lemma 3.1 reveals that di�erentiability an only be violated at someswithing points. Eah equation part of (5) has a di�erentiable solution.3.2 Cruial sets and the optimal strategyThis subsetion deals with the onstrution of a andidate strategy L∗ for the optimal one. Although it isnot possible to diretly show that V L∗ is a supersolution of (5) and verify its optimality with Proposition2.6, it is possible to prove that V L∗

= V via a �xed point argument, proving the optimality of the strategy
L∗. Atually a full haraterization of the value funtion is needed to obtain the orret solution with theonstrution of L∗ (another solution of (5) with an arbitrary initial value for the de�nition of L∗ wouldnot lead to the solution of the maximization problem).The following three sets will play a ruial role in the de�nition of the optimal strategy.

• A = {x ∈ [0,∞) | Λ(x) = 0},
• B = {x ∈ (0,∞) | V ′(x) = 1 and Λ(x) < 0},
• C = (A ∪ B)c.Let us identify some properties of these sets.Proposition 3.2. 1. B is a left-open set, i.e. for eah x ∈ B ∃ δ > 0 suh that (x− δ, x] ⊂ B.2. A is a losed set.3. If (x0, x] ⊂ B and x0 6∈ B then x0 ∈ A.4. ∃ x̂ suh that (x̂,∞) ⊂ B.5. C is a right-open set, i.e. for eah x ∈ C ∃ δ > 0 suh that [x, x+ δ) ⊂ C.6. A,B 6= ∅. 20



Proof. 1. The idea is as follows: if for su�iently small h > 0 we are able to show that Ux−h is asupersolution in (x−h, x], then we get from Proposition 2.12 (ii) that Ux−h = V in [0, x], and hene
V ′ = 1 in (x− h, x] implying (x− h, x] ⊂ B.Let y ∈ (x− h, x) and reall from the de�nition of B that LV (x) < 0,
LUx−h

(y) = (c+ iy) − (δ + λ)(y − x+ h+ V (x− h)) + λ

∫ y

0

Ux−h(y − z) dFY (z)

≤ (c+ ix)V ′(x) − (δ + λ)V (x) + (δ + λ)(V (x) − (y − x+ h+ V (x − h)) + λ

∫ y

0

Ux−h(y − z) dFY (z)

≤ (c+ ix)V ′(x) − (δ + λ)V (x) + (δ + λ)(V (x) − V (x− h)) + λ

∫ y

0

Ux−h(y − z) dFY (z)

≤ LV (x) + (δ + λ)(V (x) − V (x − h)) < 0.The last step holds for h small enough beause of the ontinuity of V , y < x and the followingestimates,
V (y − z) ≥ y − z − x+ h+ V (x− h), for y − z ≥ x− h,

∫ y

0

Ux−h(y − z) dFY (z) =

∫ y−x+h

0

(y − z − x+ h+ V (x− h))dFY (z) +

∫ y

y−x+h

V (y − z) dFY (z)

≤

∫ x

0

V (x− z) dFY (z).We proved that Ux−h is indeed a supersolution in (x− h, x] and therefore the statement holds.2. Beause Λ is ontinuous in x and Λ(x) ≤ 0 for all x ∈ [0,∞), the region where it equals 0 is losed.Assume that there is some x0 suh that Λ(x0) > 0 then beause of the ontinuity there is a x1 > x0suh that Λ > 0 in [x0, x1). Let y ∈ (x0, x1) suh that V ′(y) exists. Beause V ′ ≥ 1 we get
LV (y) = (c+ iy)V ′(y) − (δ + λ)V (y) + λ

∫ y

0

V (y − z) dFY (z)

≥ (c+ iy) − (δ + λ)V (y) + λ

∫ y

0

V (y − z) dFY (z) = Λ(y) > 0,whih is a ontradition to the fat that V is a visosity supersolution to the HJB equation (5).3. First we deal with the ase x0 = 0. We know that V (0) ≥ c
δ+λ . This will also be an upper bound,implying that Λ(0) = 0 (x0 ∈ A). Beause (0, x] ⊂ B we have that V (x) = x + V (0) in [0, x]. For

x ∈ (0, x) we have from Lemma 2.9 that V (0) = supL∈Πx
VL(0).Let L ∈ Πx, the time of the �rst laim ourrene be τ1 and its size Y1. For all t < τ1 we have

Lt ≤
∫ t

0 (c+ ix)ds, Lt ≤ ct+ i
∫ t

0 R
L
s ds ≤ (c+ ix)t due to L ∈ Πx and the de�nition of an admissiblestrategy. We get the obvious upper bound

VL(0) = E

(

∫ T1

0

e−δs dLs + e−δT1V

(

∫ T1

0

(cT1 + i

∫ T1

0

RLs ds− LT1 − Y1

))

≤ E

(

∫ T1

0

e−δs(c+ ix)ds

)

+ E
(

e−δT1V (x− Y1)
)

=

∫ ∞

0

λe−λt
∫ t

0

e−δs(c+ ix)ds dt+

∫ ∞

0

λe−(δ+λ)t

∫ x

0

V (x− y) dFY (y) dt

=

∫ ∞

0

e−(δ+λ)t

(

(c+ ix) + λ

∫ x

0

V (x− y) dFY (y)

)

dt.Using V (x) = x+ V (0) in the spei� area, we arrive at
V (0) ≤ lim inf

x→0

1

δ + λ

(

(c+ ix) + λV (0)FY (x) + λxFY (x) − λ

∫ x

0

y FY (y)

)

=
c

δ + λ
,21



whih proves the statement for x0 = 0.Now we deal with the ase x0 > 0 following [3℄. If V ′(x0) = 1 and x0 6∈ B we get that Λ(x0) = 0 andtherefore by de�nition x0 ∈ A. We have limx↓x0

V (x)−V (x0)
x−x0

= 1. Suppose lim infx↑x0

V (x)−V (x0)
x−x0

=
q > 1. Then we have from Remark 2.2 for all 1 < p ≤ q

max{1 − p, (c+ ix0)p− (δ + λ)V (x0) + λ

∫ x0

0

V (x0 − y) dFY (y)} ≥ 0,whih implies
(c+ ix0)p− (δ + λ)V (x0) + λ

∫ x0

0

V (x0 − y) dFY (y) ≥ 0.The limit p→ 1 gives Λ(x0) ≥ 0 whih implies Λ(x0) = 0.Now we assume lim infx↑x0

V (x)−V (x0)
x−x0

= 1. There is a sequene {xn}n∈N with xn → x0 suh that
limn→∞ V ′(xn) = 1. Choose a sequene {hn}n∈N with hn ↓ 0 suh that limn→∞

V (x0)−V (x0−hn)
hn

= 1.Take an = V (x0)−V (x0−hn)
hn

− 1 and let An denote the set of all x ∈ [0, hn] suh that V ′ exists and
V ′(x) ≥ 1 + 2an. Beause of the inequalities for the �rst derivative, see Proposition 2.2, we anassume an ≥ 0. If for some n we would have an = 0 we get V (x0)−V (x) = x0−x for x ∈ [x0−hn, x0]and therefore V ′(x0) = 1. Therefore assume an > 0, and we an write by the absolute ontinuity,
|An| ≤ hn and Acn = [0, hn]\An,

an + 1 =

∫

An
V ′(z) dz +

∫

Ac
n
V ′(z) dz

hn
≥

|An|(1 + 2an) + (hn − |An|)

hn
.This gives the estimates |An| ≤ hn

2 → 0. So we an hoose a sequene xn ր x0 with 1 ≤ V ′(xn) ≤
1 + 2an suh that V ′(xn) exists. In the end we get limn→∞ V ′(xn) = 1.If there is a subsequene xnj

→ x0 with V ′(xnj
) > 1 implying Λ(xnj

) = 0 we would have Λ(x0) = 0beause A is a losed set. Suppose V ′(xn) = 1 for all n ∈ N and Λ(x0) < 0. Then we an �ndan xn lose enough to x0 (Λ is ontinuous) suh that Uxn
is a supersolution for x ∈ [xn, x0] butProposition 2.12 yields that Uxn

= V in [0, x]. This gives a ontradition beause V would bedi�erentiable at x0,
LUxn

(x) = (c+ ix) − (δ + λ)Uxn
(x) + λ

∫ x

0

Uxn
(x− y) dFY (y)

≤ (c+ ix0) − (δ + λ)Uxn
(x) + λ

∫ x0

0

(V (x0 − y) dFY (y)

= Λ(x0) + (δ + λ)(V (x0) − (x− xn + V (xn)))

≤ Λ(x0) + (δ + λ)(V (x0) − V (xn)) < 0.The last inequality holds due to the ontinuity of V for n large enough. This proves the third point.4. We want to show that for y > 0 large enough Uy is a supersolution for all x ∈ (y,∞). We alreadyhave U ′
y = 1 in this interval, it is left to show that LUy

(x) < 0. We have
LUy

(x) = (c+ ix) − (δ + λ)(x − y + V (y)) + λ

∫ x

0

Uy(x− z) dFY (z)

≤ (c+ ix) − (δ + λ)(x − y + V (y)) + λUy(x)

= (c+ ix) − (δ + λ)(x − y + V (y)) + λ(x− y + V (y))

= c+ (i− δ)x+ δ(y − V (y)) ≤ c+ (i− δ)x−
c

δ + λ
< 0.This holds for every x ∈ (y,∞) if y is large enough, beause Uy is an inreasing funtion and

∫ x

0

Uy(x− z) dFY (z) ≤ Uy(x),

y +
c

δ + λ
≤ V (y).22



5. For some x ∈ C we have Λ(x) < 0. Beause of ontinuity we get the existene of a δ > 0 suh that
[x, x + δ) ⊂ Ac. If there would be some x1 ∈ B within this interval we would derive the existeneof an x0 ∈ A smaller than x1 suh that (x0, x1] ⊂ B, but beause x 6∈ B this x0 also has to be inthe interval (x, x + δ). Therefore we have [x, x+ δ) ⊂ Bc and [x, x+ δ) ⊂ C.6. The statement follows from the third and fourth point.At this stage we are able to de�ne the optimal strategy.De�nition 3.1. The optimal strategy L∗ is stationary, i.e. it depends only on x = RL

∗

t− ≥ 0, and is givenas follows:
• If x ∈ A, everything exeeding x is paid out immediately as dividend (with rate c+ ix).
• For x ∈ B, we know from Proposition 3.2 that there is a x1 ∈ A suh that (x1, x] ⊂ B, and dividendsare paid with the amount x− x1.
• For x ∈ C no dividends are paid.From [3℄ one knows that the strategy as de�ned above is admissible.The following proposition shows that this band strategy is indeed optimal.Proposition 3.3. The strategy L∗ de�ned in De�nition 3.1 is optimal, i.e. V (x) = VL∗(x) for all x ≥ 0.Proof. From Proposition 3.2 we know that there exists some x̂ = inf{x | (x,∞) ⊂ B}. We want to de�ne aontration map on the set of all funtions f : R → [0,∞) with f(x) = 0 for x < 0 and f(x) = x− x̂+f(x̂)for x > x̂ whih are ontinuous on R

+. The used distane measure is d(f1, f2) = maxx≥0 |f1(x) − f2(x)|.The operator T is de�ned as follows,
Tf (x) = E

(

∫ τ1

0

e−δsdL∗
s + e−δτ1f

(

eiτ1(x +

∫ τ1

0

(c− l∗s)e
−is ds) −

∑

s<t

∆L∗
s − Y1

))

,where τ1 denotes the time of the �rst laim ourrene and Y1 its size.Notie the similarity to the dynami programming priniple (4) with RL
∗

t = eit(x +
∫ t

0 (c − l∗s) ds) −
∑

s<t ∆L
∗
s where l∗ denotes the density of the absolutely ontinuous part of L∗. From De�nition 3.1 wehave that l∗ = 0 for x ∈ B ∪ C and l∗ = c+ ix for x ∈ A.One gets

|Tf1 − Tf2 | = E

(

e−δτ1

(

f1

(

eiτ1(x+

∫ τ1

0

(c− l∗s)e
−is ds) −

∑

s<t

∆L∗
s − Y1

)

−f2

(

eiτ1(x +

∫ τ1

0

(c− l∗s)e
−is ds) −

∑

s<t

∆L∗
s − Y1

)))

≤
λ

δ + λ
max
x≥0

|f1(x) − f2(x)|,therefore T is a ontration and has a unique �xed point. The de�nition of L∗ ensures that Tf is in thesame spae as f . Clearly VL∗ is a �xed point beause of the dynami programming priniple and thede�nition of L∗. Now we are going to show that V is also a �xed point whih gives V = VL∗.We start with x ∈ A, then
TV (x) = E

(∫ τ1

0

(c+ ix)e−δsds+ e−δT1V (x − Y1)

)

=
1

δ + λ

(

(c+ ix) + λ

∫ x

0

V (x− y) dFY (y)

)

= V (x),beause Λ(x) = 0 for x ∈ A.Next, we look at x ∈ B. Let x1 suh that (x1, x] ⊂ B and x1 ∈ A. We get from the de�nitions of L∗ and
B,

TV (x) = x− x1 + TV (x1) = x− x1 + V (x1) = V (x).23



Finally, we know that C is a right-open set. Therefore some x1 exists suh that [x, x1) ⊂ C and x1 6∈ C.Denote
xt = eit

(

x+ c

∫ t

0

e−isds

)

,and let t1 suh that xt1 = x1.Beause V is a di�erentiable solution to (c + iz)V ′(z) − (δ + λ)V (z) + λ
∫ z

0 V (z − y) dFY (y) = 0 for
z ∈ (x, x1), d

dtxt = c+ ixt and
d

dt
e−(δ+λ)tV (xt) = −(δ + λ)e−(δ+λ)tV (xt) + e−(δ+λ)t(c+ ixt)V

′(xt).So we get
T (V )(x) = E

(

I{τ1≥t1}
)

e−δt1V (x1) + E
(

I{τ1<t1} e
−δτ1V (xτ1 − Y1)

)

= e−(δ+λ)t1V (x1) +

∫ t1

0

e−(δ+λ)t λ

∫ xt

0

V (xt − y) dFY (y) dt

= e−(δ+λ)t1V (x1) +

∫ t1

0

e−(δ+λ)t ((δ + λ)V (xt) − (c+ ixt)V
′(xt)) dt

= e−(δ+λ)t1V (x1) + V (x) − e−(δ+λ)t1V (x1) = V (x).From Remark 2.4 we know that V ′ an not have any downward jumps and further that (22) has adi�erentiable solution. Therefore the only possibility of not being di�erentiable is at points where theoptimal strategy hanges from paying a lump sum to paying no dividends.The similarity to the optimal strategy for the ase i = 0 as it is dealt with in [3℄ and [13℄ allows us touse an algorithm from [13℄ to determine the value funtion pieewise. As mentioned in Setion 3.1 andbeause of the onstrution of the band strategy there is a lose relation to barrier strategies. For smallinitial apital the �rst thing to do is to �nd a loal optimal barrier, i.e �nd the smallest point in the set
A denoted by x0. Notie that it is possible that 0 ∈ A. Let f0 be the solution of (20) and hoose thesmallest point in A as x0 = sup{x ≥ 0 | f ′

0(x) = infy≥0 f
′
0(y)}. Then de�ne

v0(x) =

{

f0(x)/f
′
0(x0) x ≤ x0,

x− x0 + f0(x0)/f
′
0(x0) x > x0.If v0 ful�lls the HJB equation (5) we are done, if not the solution is onstruted reursively: In the nthstep (n ≥ 1), �nd some interval belonging to B of the form (xn, a) (f. Proposition 3.2). Then it ispossible that some adjoining interval [a, xn+1) belongs to the set C; then it is neessary to alulate asolution to (22). The points a and xn+1 are determined in the following way. For given vn(x) and xn,let fn+1(x; y) be a solution of (22) for x ≥ y and equal to vn(x) for x < y. We have to �nd the smallest

y > xn suh that f ′
n+1(x̄; y) = 1 for some x̄ > y,

a = inf{y ≥ xn | inf
z>y

f ′
n+1(z, y) = 1}.If a is hosen too small or too large then the derivative of f ′

n+1(x; ·) will either take a minimum greaterthan 1 or smaller than 1. Due to Proposition 2.2 and the fat that V ′ an not have downward jumps awrong hoie would not lead to a solution of the maximization problem.Then we obtain xn+1 := sup{x ≥ a | f ′(x, a) = 1} and
vn+1(x) :=

{

fn+1(x, a), x ≤ xn+1,
x− xn+1 + fn+1(xn+1, a), x > xn+1.If vn+1(x) ful�lls (5) we have onstruted the value funtion, otherwise we restart the proedure.24



4 Examples4.1 Exp(α) distributed laim amountsIn the �rst example onsider exponential laim amounts with FY = 1 − e−αy. We will see that in thease 0 < i < δ a barrier strategy is optimal, an analogous result for i = 0 was �rst shown in [7℄. To �ndan element of A we need to solve Λ(x) = 0, beause of the properties of the set B some of these elementsare lower boundaries of subsets of B. Looking for a solution to Λ(x) = 0 we observe that we have to solve
V (x) =

c+ ix

δ + λ
+

λ

δ + λ
e−αx

∫ x

0

V (y)αeαy dy. (23)If a point a ∈ A is a boundary point of a onnetion omponent of B we have V ′(a+) = 1. From V ′ ≥ 1and the fat that V ′ an not have downward jumps (see Remark 2.4) we get V ′(a) = 1. Therefore, by
B 6= ∅ we an additionally use the ondition V ′(x) = 1 for at least one element of A. From (23) and
V ′ = 1 we get,

1 = V ′(x) =
i

δ + λ
−

α2λ

δ + λ
e−αx

∫ x

0

V (y)eαy dy +
αλ

δ + λ
V (x).Using (23) again to eliminate the integral we derive,

δ + λ

α
−
i

α
= c+ ix− δV (x).Sine i < δ and V (x) ≥ x+ c

δ+λ (Proposition 2.1) we further have that ix− δV (x) is dereasing. Thereexists at most one positive point on the real axis whih ful�lls these onditions. This is equivalent to thestatement that a barrier strategy b∗ is the optimal one in the ase of Exp(α) distributed laim amounts.In the following we identify the ase b∗ > 0. The ase of an optimal barrier equal to zero is then treatedin Setion 4.1.2.4.1.1 The ase b∗ > 0For the determination of the optimal barrier we an use some results from [10℄. As a by-produt we anshow why only the ase i < δ makes sense mathematially. The struture of a onstant barrier strategy isas follows. Given a barrier at level b, all surplus above this level will be immediately paid out as dividend.We denote the expeted disounted dividends for a barrier b with Vb(x). Assuming di�erentiability of
Vb(x) we get the following well-known IDE (see [10℄), for x < b

0 = (c+ ix)V ′(x) + λ

∫ x

0

V (x − y)dFY (y) − (λ + δ)V (x), (24)
1 = V ′

b (b). (25)From the nature of a barrier strategy we have for x > b

Vb(x) = x− b+ Vb(b).Beause (24) is homogenous and linear in V we an look for a solution f of it with a modi�ed initialondition f(0) = 1. By saling we get that Vb = f(x)/f ′(b) for 0 ≤ x ≤ b. Following [10℄ we have to solve
0 = (c+ ix)f ′′(x) + (α(c+ ix) + i− (δ + λ))f ′(x) − αδf(x) = 0,

1 = f(0),

0 = cf ′(0) − (δ + λ)f(0).The general solution is of the form
f(x) = e−αx

(

x+
c

i

)(λ+δ)/i
(

B1 F

(

1 +
δ

i
, 1 +

λ+ δ

i
, α(u+

c

i
)

)

+B2 U

(

1 +
δ

i
, 1 +

λ+ δ

i
, α(u+

c

i
)

))

,25



where B1 and B2 are onstants determined by the boundary onditions and F and U are on�uenthypergeometri funtions of the �rst and seond kind, respetively. Beause maximizing Vb is equivalentto minimizing f ′ we take a look on the asymptotis of f and f ′. From [1℄ we have
F (a, b, z) ∼

Γ(b)

Γ(a)
ezza−b

(

1 +O(|z|−1
)

,

U(a, b, z) ∼ z−a
(

1 +O(|z|−1
)

.So we get
f(x) ∼

Γ(1 + δ+λ
i )

Γ(1 + δ
i )

B1 e
α c

i (x+
c

i
)

δ
i (1 +O((α(x +

c

i
))−1)).We an use the same asymptotis to obtain the behaviour of f ′(x) for large x and it su�es to onsiderthe terms in onnetion to F (a, b, z). Therefore we get

f ′(x) ∼ B1
δ + λ

i

Γ(1 + δ+λ
i )

Γ(1 + δ
i )

eα
c
i α− λ

i (x+
c

i
)

δ
i
−1 K +O((α(x +

c

i
))

δ
i
−2),with some onstant K. Furthermore

lim
x→∞

f ′(x) =







0, δ < i,
∞, δ > i,
const, δ = i.and as a onsequene for a �xed argument x

lim
b→∞

Vb(x) = lim
b→∞

f(x)

f ′(b)
=







∞, δ < i,
0 δ > i,
f(x)
const , δ = i.Sine Vb(x) ≤ V (x) the value funtion is unbounded for i > δ and does not ful�ll limb→∞ Vb(x) = 0 for

δ = i. Therefore only the ase δ > i is interesting and leads to a well-formulated dividend maximizationproblem. If b∗ > 0, then alulate f and determine b∗ = argmax{f ′(b) | b > 0} numerially. Then
V (x) = Vb∗(x) =

{

f(x)/f ′(b∗) 0 ≤ x ≤ b∗,
x− b∗ + f(b∗)/f ′(b∗) x > b∗.As an illustration Figure 1 shows the value funtion when the optimal barrier strategy with height

b∗ = 4.41 is applied together with the two linear bounds from Proposition 2.1 (whih are obviously nottight). The hosen parameters are α = 2, λ = 2, i = 0.05, δ = 0.1 and c = 2.5.4.1.2 The ase b∗ = 0We need to determine parameter settings for whih b∗ = 0 is optimal. For b∗ = 0, V (x) = V0(x) = x+ c
δ+λ .Beause in this ase V ′

0 = 1 for x ≥ 0, we only have to hek when
(c+ ix) − (δ + λ)V0(x) + λ

∫ x

0

V0(x− y)αe−αy dy ≤ 0holds. Evaluating this equation, it turns out that for
Z(x) :=

(δ + λ− αc)λe−αx + x(i− δ)α(δ + λ) − λ(δ + λ− αc)

α(δ + λ)
, (26)we have to hek when Z(x) ≤ 0 for all x ≥ 0. Further

Z ′(x) = (i− δ) −
λ

δ + λ
e−αx (δ + λ− αc) .26
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Figure 1: Value funtion for α = 2, λ = 2, i = 0.05, δ = 0.1 and c = 2.5.If δ + λ ≥ αc we have Z ′ ≤ 0 for all x ≥ 0 and Z(0) = 0 is a maximum of Z. Therefore V0 ful�lls theHJB equation and V0 = V .If δ + λ < αc we have that Z is onave,
Z ′′(x) =

αc(δ + λ− αc)

δ + λ
e−αx.Therefore we get

Z(x) ≤ 0 for x ∈ [0,∞) ⇐⇒ Z ′(0) ≤ 0 ⇐⇒ αλc + i(δ + λ) ≤ (δ + λ)2.If on the other hand αλc+ i(δ + λ) > (δ + λ)2, we get that Z has a global maximum at
x̂ =

1

α
log

(

1 +
αλc + i(δ + λ) − (δ + λ)2

(δ − i)(δ + λ)

)

> 0.We want to show that
Z(x̂) =

αλc+ i(δ + λ) − (δ + λ)2 − (δ − i)(δ + λ) log
(

1 + αλc+i(δ+λ)−(δ+λ)2

(δ−i)(δ+λ)

)

α(δ + λ)
> 0.An easy disussion of the funtion h(x) = x − log(1 + x) for x > 0 gives the required result. Therefore

b∗ = 0 if and only if
• δ + λ ≥ αc or
• δ + λ < αc and Z ′(0) ≤ 0.If none of these ases holds, alulate V = Vb∗ as desribed in Setion 4.1.1.4.2 Gamma(2, γ) distributed laim amountsIn this setion we will identify an expliit example where a band strategy is optimal. In ontrast to thease i = 0 (of [3℄ and [13℄) an expliit solution to

(c+ ix)f ′(x) − (δ + λ)f(x) + λ

∫ x

0

f(x− y) dγ(y)dy = 0is not available, where dγ(y) = yγ2 eγy denotes the Gamma(2, γ) density funtion. Therefore we neednumerial solutions to (20) and (22) for applying the algorithm presented in [13℄. A natural approah is27



to use the ontration argument from Lemma 3.1 for determining a numerial solution but that turns outto be too time onsuming and inaurate. So here we implement another approah to obtain a reasonablyaurate solution of (22).Assume that the value funtion is determined up to a point xn. Following the algorithm from [13℄ (seeSetion 3.2) we have to alulate fn+1(x; y) as a solution to (22) with x0 replaed by y. In terms of thealgorithm the initial ondition is given by vn(y) = fn+1(y; y). First we �x a step width h > 0 and hoosea set of points {xy}0≤k≤K with yk = y + kh. Then we de�ne pieewise linear funtions {ωk(x)}0≤k≤Ksuh that ωk(yk−1) = 0, ωk(yk) = 1, ωk(yk+1) = 0 and ωy(x) = 0 for x /∈ [yk−1, yk + 1]. Let the sequene
{uk}0≤k≤K denote the unknown values of a solution to (22) at the points yk. The numerial solution weare looking for is of the form

u(x) =

K
∑

k=0

ukωk(x).Plugging u(x) into (22) and evaluating this expression at every yk leads to a linear system of equationsfor the unknowns uk.Finally we give a onrete example for a situation where a band strategy is optimal. Choose the parametersby λ = 10, δ = 0.1, γ = 1, c = 21.4 (f. [3℄) but now with a positive interest rate i = 0.02. First observethat if we look at a solution to (20), the derivative is minimized in zero. On the other hand x+ c
δ+λ doesnot ful�ll (5) on R

+. Therefore we have to hoose x0 = 0 and apply the numerial method presentedabove. We get that the sets A, B and C are given by
A = {0, 12.96},

B = (0, 0.96) ∪ (12.96,∞)

C = [0.96, 12.96).A sample path of the reserve proess ontrolled by the optimal strategy L∗ is illustrated in Figure 2.Starting with initial apital x ∈ B the amount x − x1, x1 = 12.96, is immediately paid out as dividend(this lump sum payment is indiated as the left bold downward arrow). Then up to the �rst laim o-urrene whih puts the proess into region C, dividends are paid ontinuously at a rate c + ix1. In theset C there are no ontrol ations on the reserve proess, so that (in the absene of further laims) itinreases again to x1 and stays there (with again dividends paid with intensity c+ ix1) until the seondlaim happens. As the seond laim puts the reserve proess into the set B, the reserve is immediatelyfurther redued by a dividend payment to the next point in the set A whih is x0 = 0. The proess staysat this level, i.e. dividends are paid with intensity c, until ruin is aused by the third laim of the riskproess. Figure 3 shows the value funtion for i = 0.02 in omparison to the value funtion with i = 0(dashed line, as alulated in [3℄). It an be observed that for low initial apital both follow the samestrategy, but from 0.96 onwards, the ase with i > 0 dominates the one with i = 0. Further we obtainthat the value funtion is not di�erentiable at x = 0.96, V ′(0.96+) ≈ 1.16 > 1 = V ′(0.96−), where thederivative from the right is a numerial approximation alulated from the sheme desribed above.Aknowledgement. We would like to thank Hanspeter Shmidli for stimulating disussions on the topiand an anonymous referee for valuable remarks to improve the presentation of the manusript.Referenes[1℄ M. Abramowitz and I. A. Stegun. Handbook of mathematial funtions with formulas, graphs, andmathematial tables, volume 55 of National Bureau of Standards Applied Mathematis Series. Forsale by the Superintendent of Douments, U.S. Government Printing O�e, Washington, D.C., 1964.[2℄ H. Albreher, J. L. Teugels, and R. F. Tihy. On a gamma series expansion for the time-dependentprobability of olletive ruin. Insurane Math. Eonom., 29(3):345�355, 2001.[3℄ P. Azue and N. Muler. Optimal reinsurane and dividend distribution poliies in the Cramér-Lundberg model. Math. Finane, 15(2):261�308, 2005.28
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