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We examined human deepfake detection performance (DDP) in relation to face identity processing  
ability among Berlin Police officers, including Super-Recognizers (SRs). While we find no relationship, 
further research into human DDP using state-of-the-art static deepfakes is needed to establish the 
potential value of SR-deployment.

T he present study is the first empirical investigation 
of the relationship between human deepfake detec-

tion performance (DDP) and individuals’ face identity 
processing (FIP) ability. Using videos from the Deepfake 
Detection Challenge, we investigated DDP in two unique 
observer groups: Super-Recognizers (SRs) and “normal” 
officers from within the 18,000 members of the Berlin 
Police. SRs were identified either via previously proposed 
lab-based procedures or the only existing tool for SR iden-
tification involving increasingly challenging authentic 
forensic material: the Berlin Test For Super-Recognizer 
Identification (beSure). Participants judged either pairs of 
videos or single videos in a two-alternative forced-choice 
(2AFC) decision setting (that is, which of the pair 
or whether a single video was a deepfake or not). We 
explored speed–accuracy tradeoffs and compared DDP 
between lab-identified SRs and non-SRs and police offi-
cers as a function of their independently measured FIP 

ability. Interestingly, we found no relationship between 
DDP and FIP ability. Further work using static deepfakes 
created with current state-of-the-art generative models 
is needed to determine the value of SR deployment for 
deepfake detection in law enforcement.

Introduction

Perception Versus Reality
Our perception of the world around us is highly subjec-
tive; presented with the same information, we interpret it 
in vastly different ways. Our perception is influenced by 
several factors, most of which operate without our knowl-
edge or control.1 Perceptual illusions provide compelling 
examples of the highly subjective nature of human per-
ception and of how it is influenced by both external stim-
uli and internal cognitive processes. Simply put, the world 
as we perceive it reflects a unique interaction between 
incoming information and the way it is processed 
depending on our abilities, prior experiences, and expec-
tations. Adding to this human complexity, technological 
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advances provide means to alter or even create entirely 
novel information (for a review, see Farid2). Whether 
consciously or not, all of us are likely to have already 
experienced some form of synthetic media—or deepfake.

Deepfakes have been used in the realm of art, for 
example, to (re)create characters or scenarios, including 
interactive installations to create immersive experiences.3 
In wider society, the word “deepfake” is typically associ-
ated with misinformation, that is, the intentional manip-
ulation of audio content or facial information. Facial 
deepfakes can take various forms, for example, swap-
ping the entire face or individual features or manipulat-
ing them—either in static 2D images or dynamic video 
sequences. Such manipulations can include masking or 
enhancing information or changing characteristics that 
are stable (for example, gender and ethnicity) or those 
that vary across different time scales (for example, age 
and expressions of emotion). These manipulations aside, 
facial deepfakes also encompass the creation of entirely 
new artificially generated synthetic facial identities.

Deepfake Detection in Real Life and 
Laboratory Conditions
In 2022, several European mayors, including those from 
Berlin, Madrid, and Vienna, were deceived into hold-
ing video calls with a deepfake impersonating Vitali 
Klitschko, the mayor of Kyiv.4 In the case of Berlin, 
Mayor Franziska Giffey became suspicious ~15 min 
into the call when the fake Klitschko started discussing 
controversial topics regarding Ukrainian refugees. The 
deception, which was confirmed through diplomatic 
channels, emphasizes the usage and impact of misinfor-
mation in the political realm.

Notwithstanding their importance, the known num-
ber of instances of deepfake deployment to influence 
politics is modest compared to the much more frequent 
targeting of celebrities, public figures, and everyday peo-
ple.5 Deepfakes are considered to pose crucial “risks to 
our democracy and to national security” as well as “indi-
viduals and businesses fac[ing] novel forms of exploita-
tion, intimidation, and personal sabotage.”6 Given the 
challenges associated with facial deepfakes, the increas-
ing number of studies emerging in this domain is not 
surprising. However, these studies typically report 
algorithmic approaches to tackle deepfake detection. 
Importantly, the speed of deep learning-based deep-
fake detection theoretically makes them suitable for 
large-scale implementation. However, human and 
machine-based processing operates based on different 
features, which remain to be clearly defined (Wich-
mann and Geirhos7). Differences between machines 
and humans aside, our understanding of humans’ abil-
ity for deepfake detection actually remains largely 
unexplored. Considering that humans will always be 

required to make final decisions, it is critical to under-
stand the limits of our ability to detect deepfakes.

A few studies have investigated humans’ perception 
of deepfakes. For example, Groh et al.8 reported that 
“ordinary humans perform in the range of the leading 
machine learning model on a large set of minimal con-
text videos” (p. 1). Although the highest DDP could 
be achieved by combining human and model predic-
tions, humans often incorrectly updated their responses 
when exposed to inaccurate model predictions (that is, 
machine-based responses that were not correct). Thus, 
integrating human with model predictions can result in 
an increase or decrease in DDP. Moreover, the authors 
reported that manipulations that are known to disrupt 
human FIP, notably stimulus inversion, were associated 
with decreased human—but not model—performance. 
These findings were interpreted as supporting “a role 
for specialized cognitive capacities in explaining human 
deepfake detection performance” (Groh et al.8).

Knowledge Gap
An important question that remains unanswered is 
whether—and to what degree—deepfake detection per-
formance varies across observers. For instance, highly 
motivated trained law enforcement professionals might 
outperform neurotypical observers, who are not pro-
fessionally tasked with face or deepfake processing. On 
the other hand, it is possible that stable individual differ-
ences in FIP ability, notably superior abilities (for exam-
ple, Ramon9 and Ramon and Vowels10), may be a better 
predictor of DDP. Conceivably, compared to neurotypi-
cal observers, individuals with substantially inferior or 
exceptionally superior FIP ability may exhibit markedly 
different sensitivity to information manipulation.

Over the past decade, there has been a surging inter-
est in so-called Super-Recognizers, individuals with an 
apparently innate superiority in face identity process-
ing (Ramon,9 Ramon and Vowels,10 and Mayer and 
Ramon11). These individuals are of interest not only to 
cognitive (neuro)scientists but also to law enforcement 
and policing (Ramon9 and Ramon et al.12). The most 
consistent strategy for identifying these unique individu-
als has been proposed by Ramon9, whose diagnostic 
framework for lab-based SR identification comprises chal-
lenging behavioral tests assessing perception and recogni-
tion memory for facial identities. The only existing tool 
designed to identify law enforcement professionals using 
authentic police images was proposed by Ramon and 
Rjosk13. While empirical evidence into the mechanisms 
underlying SRs’ ability is mounting (for example, Nador 
et al.,14 Nador et al.,15 and Linka et al.16), to date, no study has 
investigated DDP in SRs or law enforcement professionals.

Understanding factors that influence our perception 
and detection of deepfakes is critical considering their 
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potentially wide-ranging societal implications. Such knowl-
edge is particularly pertinent for organizations that are 
expected to monitor and mitigate threats by deepfakes: 
law enforcement professionals. Therefore, in this study, we 
investigated the impact of human factors—professional 
occupation and individual differences in face identity pro-
cessing ability—on deepfake detection performance. We 
did so by testing two unique cohorts of observers: previ-
ously reported SRs (Ramon9) and law enforcement profes-
sionals from within the 18,000 officers of the Berlin Police 
(Ramon and Vowels10). Their performance was measured 
across using identical stimulus material, experimental set-
tings, and neurotypical control observers’ data as reported 
previously (Groh et al.8).

Methods
This research complies with all relevant ethical regula-
tions, and the Massachusetts Institute of Technology’s 
Committee on the Use of Humans as Experimental Sub-
jects approved the deepfake detection portion of this 
study as Exempt Category 3 – Benign Behavioral Inter-
vention. This study’s exemption identification number is 
E-3354. All procedures and protocols were approved by 
the University of Fribourg’s Ethics Committee (approval 
number 473) and conducted in accordance with both 
their guidelines as well as those set forth in the Declaration 

of Helsinki. All participants were healthy volunteers, were 
provided with informed written consent, and were not 
financially compensated for their participation.

Experiments
Participants were invited to participate in two deepfake 
detection tests reported previously by Groh et al.8 and 
exemplified in Figure 1(a). The first experiment involves 
presenting two stimuli in a 2AFC design; the second pres-
ents a single stimulus. Observers are required to decide 
which of the two stimuli in the 2AFC setting represents a 
deepfake and report their confidence in the single-video 
stimulus being a deepfake. Participants could com-
plete as many trials as they wished. The full 2AFC and 
single-video experiments comprised a total of 56 and 56 
trials, respectively (for full details, see Groh et al.8).

Participants
The data reported in this study originated from different 
sources. First, data published previously by Groh et al.8 
included nonrecruited observers (who arrived at the website 
via organic links on the Internet) and observers recruited 
from Prolific.17 These data were considered as representing 
neurotypical controls (as no independent measure of their 
FIP ability was available). Second, data from lab-identified 
SRs reported previously (Ramon9) and thereafter using 

Figure 1. Stimuli and results for DDP. (a) Example stimuli presented in the 2AFC (left) and single-video (right) experiments. 
(Source: Adapted from Groh et al.8) (b) DDP for each of the two experiments for SRs and control observers (dark and light 
grey). (c) Relationship between different performance measures along the x-axis: performance across beSure (left) and 
both deepfake experiments (middle and right). Colors indicate beSure performance rank to visualize the (in)dependence 
between FIP ability measured by beSure, and observers’ performance for the deepfake experiments.
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the same lab criteria were invited to participate. Finally, 
Berlin Police officers who had previously participated in 
beSure (Ramon and Vowels10 and Ramon and Rjosk13), 
the only existing tool for SR identification with authentic 
police material (for details, see Ramon and Vowels10 and 
Ramon and Rjosk13), were invited to participate in the 
deepfake detection experiments. 

In total number, 193 individuals contributed data to 
the first experiment (decision: which video in a pair was 
a deepfake), and 132 contributed to the second experi-
ment (decision: whether individually presented videos 
were real or fake). Of these, 106 and 68 met the SR lab 
criteria (Ramon9). Note that the majority of SRs were 
thus not Berlin Police officers but from the ~90 indi-
viduals tested in the AFC Lab. Eighteen lab-identified 
SRs were from the sample of participating police offi-
cers. Note: Demographic information can be provided 
only for participating Berlin Police officers (Ramon 
and Vowels10) and are summarized in Table 1. [No 
information is available for the nonrecruited/recruited  
observers reported originally by Groh et al.8 or the SRs 
reported previously (Ramon9), and after this publica-
tion, using the same lab criteria as participation did not 
require the provision of personal information.]

Analyses
To investigate the relationship between FIP ability and 
DDP, we considered performance on lab- and police-based 
procedures (beSure; Ramon and Rjosk13) and deepfake 
stimuli across both the single-video and 2AFC experi-
ments. All such analyses were performed using the soft-
ware/language R (R Core Team18) by using a zero-and-one 
inflated beta regression model (BEINF), implemented 
using the gamlss package (Rigby and Stasinopoulos19), for 
the single-video experiment (each trial within which has a 
fractional [0,1] outcome) and a multilevel logistic model 
for the 2AFC experiment (each trial within which has a 
binary correct/not correct outcome). The BEINF model 
is generally employed in statistical analyses when the out-
come variable of interest is continuous but bounded within 
a specific interval and where the data also exhibit a nonstan-
dard distribution within the interval, such as a pronounced 
skewness or the presence of peaks at the boundaries, which 
are common in proportion or percentage data. For this 
model, we create an average of the individual trial results 
and regress it onto the group variable.

The multilevel binomial logistic regression model, 
implemented using the lme4 package (Bates et al.20), 
was employed to examine the effect of group mem-
bership on a binary outcome (that is, correct versus 
incorrect responses) while accounting for the noninde-
pendence of repeated measures within individuals. Spe-
cifically, the model incorporates a fixed effect for the 
group variable to assess its influence on the likelihood 

of a correct response and a random intercept for par-
ticipants to model the variability in baseline log odds of 
success across participants, thereby accommodating the 
repeated measures design.

A key characteristic of the BEINF model is its ability 
to accommodate data with excess zeros or ones, a phe-
nomenon often referred to as inflation at the boundar-
ies. Traditional models, such as the beta regression, are 
well suited for continuous outcomes constrained within 
(0, 1); however, they struggle with boundary inflation 
because they assume that the distribution of the out-
come variable is smooth across the entire interval. The 
BEINF model extends the Beta regression by incorpo-
rating parameters that explicitly model the probability 
of observing these boundary values, thus providing a 
more nuanced understanding of the data distribution.

A full set of comparisons can be found in the supple-
mentary materials. Given that we undertook multiple 
comparisons, we used an adjusted alpha level of 0.001. 
Reaction time (RT) data (measured in seconds) were 
winsorized (between the fifth and 95th percentiles to 
deal with outliers where participants left the response 
survey software open without participating) and then 
z-scored to improve model convergence. Altogether, our 
analyses aimed at answering three distinct questions.

First, we investigated whether there is a relation-
ship between DDP and processing duration, that is, a 
correlation between accuracy and RTs in the newly 
acquired data (lab-identified SRs and Berlin Police offi-
cers). This served to determine the potential presence 
of speed–accuracy tradeoffs that could account for the 
obtained findings.

Second, labeling observers categorically, we asked 
whether individuals identified as lab-identified SRs 
(Ramon9) excel at deepfake detection relative to neuro-
typical observers reported previously (Groh et al.8 and 
Ramon and Vowels10). We combine all available data 
and consider those observers as SRs who met the pro-
posed lab-based criteria for SR identification (Ramon9), 
including those among Berlin Police officers. Note that 
additional analyses performed for all subgroup-wise 

Table 1. Demographic information for participating  
Berlin Police officers.

n (Sample 
Size)

Mean 
Age

Standard 
Deviation

Handedness 
(Right/Left/
Ambidextrous)

Gender 
(Female/
Male/
Diverse)

2AFC 89 42 9 75/12/2 27/62/0 

Single 
video 

65 42 9 56/7/2 21/41/0 
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comparisons are provided in the supplementary materials 
in the accompanying OSF project.  

Third, and finally, we sought to determine the 
potential relationship between FIP ability and DDP 
by considering police officers’ FIP ability in a continu-
ous manner through their previously measured perfor-
mance across all five subtests of the bespoke police tool 
beSure (Ramon and Vowels10 and Ramon and Rjosk13). 
To this end, we first performed linear regressions for 
performance in deepfake experiments and beSure per-
formance. Additionally, given the possibility that the rela-
tionships may be nonlinear, we also explored whether a 
data-driven approach would indicate predictive potential. 
To this end, we undertook the same regressions for the 
single-video and 2AFC experiments—but this time with 
a random forest (Breiman21). Random forests are a type 
of data-adaptive, nonparametric, and tree-based machine 
learning algorithm that learn a function that maps from 
the predictors to the dependent variable. The forest ele-
ment refers to the fact that multiple trees are used, each 
of which is trained on a bootstrapped subsample of the 
input data and input variables. This bootstrapping pro-
cess helps to prevent overfitting, a phenomenon whereby 
data-adaptive approaches tend to learn ungeneralizable 
functions that exhibit only good performance on the data 
on which they are trained. 

For the random forest, we use the sklearn implemen-
tation (Pedregosa et al.22) with its default values, which 
have been shown to yield consistently good performance 
across a range of tasks without needing hyperparameter 
tuning (Probst et al.23). Specifically, the core hyperpa-
rameters were as follows: number of estimators, 100; 
maximum features, all; maximum depth, unlimited; min-
imum sample split, two; and criterion, squared error. No 
experiments were undertaken to evaluate whether better 
hyperparameters could be identified (we assume that the 
algorithm is already substantially more flexible than the 
alternative linear regressors under comparison). We fol-
low a leave-one-out cross-validation process to evaluate 
the out-of-sample mean-squared-error performance of 
the random forest and compare it to a “dummy” regressor, 
which simply predicts the average value of the outcome.

Results

Relationship Between Performance and RTs
First, we explored the extent to which RTs in both 
experiments would be predictive of DDP. Specifically, 
we aimed to determine whether higher performance 
accuracy could be accounted for by prolonged RTs, that 
is, a speed–accuracy tradeoff.

To this end, for the 2AFC experiment, we fit the mul-
tilevel logistic model to the data to assess the relationship 
between DDP (correct/incorrect) and a standardized RT 

while accounting for random intercepts associated with 
individual users. In terms of the fixed effects, the (stan-
dardized) RT was negatively associated with the log odds 
of correct deepfake detection (B = −0.373, SE = 0.029, 
z = −12.97, p < 0.001). Here, “B” represents the fixed effect 
regression coefficient for the standardized RT, indicating its 
effect on the log odds of correctly detecting a deepfake. “SE” 
is the standard error of the estimate for “B,” quantifying the 
uncertainty/variability. The “z” value serves as the test sta-
tistic for assessing the significance of the effect, and the asso-
ciated “p” value indicates the probability of observing such 
an effect (or stronger) under the assumption that there is, in 
fact, no association. 

Taking the exponent of the fixed effect “B,” we get an 
odds ratio of approximately 0.69. In other words, for every 
one-standard-deviation increase in the RT, the odds of cor-
rectly detecting a deepfake are decreased by about 31% rela-
tive to the odds of someone reacting in an average amount 
of time. It is important to note that this association between 
an increased RT and the decreased detection accuracy does 
not imply causality. The observed relationship might sug-
gest that longer RTs are linked to greater uncertainty in 
distinguishing deepfakes, potentially because more chal-
lenging decisions require longer deliberation. However, this 
interpretation is speculative, and further research would be 
necessary to explore the underlying mechanisms.

On the other hand, for the single-video tasks, which 
have a fractional performance measure [0,1], we use a 
zero-and-one inflated beta generalized additive regres-
sion model (Stasinopoulos et al.24), which we fit to, 
again, assess the association between the standardized 
RT and performance. The main coefficient to be evalu-
ated is n  (estimate = −0.013, SE = 0.048, t = −0.272, p = 
0.786). An interpretation of these results follows in a sim-
ilar manner to those for the multilevel model. Here, “t” 
is the test statistic rather than “z.” These results indicate 
that there is no significant relationship between the RT 
and the expected score—the threshold for significance is 
taken to be .0 05,a =  and the value of “p” is above this.

Taken together, analyses for both the single-video 
and the 2AFC experiment have ruled out speed–accu-
racy tradeoffs. If anything, we observed the opposite 
pattern—lower performance associated with prolonged 
RTs. Therefore, only performance accuracy was consid-
ered in further analyses.

Group Differences: SRs Versus Controls
The relationship between independently measured 
FIP ability and DDP was first investigated by catego-
rizing observers according to their SR status. Recall 
that observers originated from different groups: 1) 
previously reported SRs (Ramon9) Berlin Police offi-
cers who met the lab criteria and those who did not 
and 2) recruited and nonrecruited observers reported 
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previously (Groh et al.8). We combined all non-SR and 
SR data, respectively, to investigate potential group dif-
ferences in DDP. A bar and scatter plot for the compari-
son can be seen in Figure 1.

In addition, for the 2AFC experiment, we fit a gener-
alized linear mixed model (with binomial/logistic link 
function) to the data to assess the relationship between 
DDP (correct/incorrect) and SR status while account-
ing for random effects associated with individual users. 
The likelihood of a correct response for SRs was not sig-
nificantly different from the reference group (B = 0.082,  
SE = 0.082, z = 1.001, p = 0.317).

Similarly, for the single-video tasks, which have a frac-
tional performance measure [0,1], we use a zero-and-one 
inflated beta generalized additive regression model (Sta-
sinopoulos et al.24). For the n  component, which rep-
resents the mean of the average score, and recalling our 
adjusted alpha level of 0.001 in light of the complete set of 
group comparisons undertaken and presented in the sup-
plementary materials, the likelihood of a correct response 
for SRs was not significantly different from the reference 
group (B = 0.156, SE = 0.077, t = 2.019, p = 0.046).

Individual Differences: Continuous  
Measure of FIP via beSure
Finally, focusing on Berlin Police officers, we investi-
gated the relationship between individual differences in 
DDP and their FIP ability as measured by the five sub-
tests of beSure (Ramon and Vowels10).

First, we investigated potential linear relationships 
via Spearman correlations between the z-standardized 
averages across the beSure subtest rank perfor-
mances and observers’ ranking in the single-video and 
2AFC experiments. For this analysis, results from the 
single-video and 2AFC trials were averaged to generate 
a singular summary score for each participant’s perfor-
mance, which then served as the dependent variable in 
the respective regression. For the single-video experi-
ment, the rank-order correlation with the beSure per-
formance ranking was −0.03 (p = 0.84). For the 2AFC 
experiment, the rank-order correlation with the beSure 
performance ranking was 0.12 (p = 0.27). As such, no 
significant relationship was identified. Comprehensive 
multiple regression outcomes for both experiments are 
presented in Tables 2 and 3, respectively. The sole signif-
icant predictor was the beSure Subtest 4 accuracy per-
formance for the single-video experiment, B = −0.032, 
t(5) = −2.790, p = 0.007—however, with an effect in 
the opposite direction as one might expect. Neverthe-
less, due to the modest R2 values for both single-video 
and 2AFC experiments (0.123 and 0.053, respectively), 
we abstain from interpreting this specific finding.

Second, we addressed potential nonlinear rela-
tionships via regressions performed with a random 

forest (Breiman21) for both experiments. For the 
single-video experiment regression, we find that the 
random forest has an out-of-sample mean-squared 
error of 0.0072, while the mean-squared error for the 
dummy is 0.0067. Similarly, the random forest out-of-
sample mean-squared error for the 2AFC experiment 
was 0.0121, while that of the dummy regression was 
0.0104. As such, in both cases, the dummy regression 
was better than the random forest (lower mean-squared 
error). These results suggest that even a relatively pow-
erful data-adaptive algorithm is able to predict neither 
single-video nor 2AFC experiment performance via an 
independent and continuous measure of FIP ability, 
derived from all five beSure subtests (Ramon and Vow-
els10 and Ramon and Rjosk13).

Discussion
Society is confronted with increasing amounts of digi-
tal misinformation and a lack of solutions for their 

Table 2. Linear regression results for the single-video experiment 
performance as the dependent variable with beSure subtest 
performance as predictors. 

Coefficient SE t-Value p-Value 

Constant 0.755 0.01 77.09 <0.001

Subtest 1 accuracy 0.004 0.013 0.265 0.792

Subtest 2 accuracy 0.01 0.015 0.712 0.48 

Subtest 3 accuracy 0.004 0.013 0.298 0.767 

Subtest 4 accuracy −0.032 0.012 −2.790 0.007 

Subtest 5 accuracy 0.006 0.012 0.516 0.608 

R2 0.123

Adjusted R2 0.049

Table 3. Linear regression results of 2AFC experiment 
performance as the dependent variable with beSure subtest 
performance as predictors.

Coefficient SE t-Value p-Value 

Constant 0.804 0.011 74.61 <0.001

Subtest 1 accuracy 0.004 0.015 0.25 0.803

Subtest 2 accuracy 0.012 0.015 0.824 0.412 

Subtest 3 accuracy 0.002 0.014 0.169 0.866 

Subtest 4 accuracy −0.013 0.013 −0.969 0.335 

Subtest 5 accuracy 0.017 0.013 1.301 0.197 

R2 0.053

Adjusted R2 −0.004
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detection. Compared to the number of studies reporting 
automatic solutions developed toward this end, empirical 
studies of human ability for deepfake detection remain 
severely limited. Moreover, existing studies have not con-
sidered two potential determinants of deepfake detection 
performance: stable individual differences in face iden-
tity processing ability and professional occupation. To 
address this knowledge gap, we leveraged access to two 
unique groups of human observers: previously reported 
SRs and motivated officers from within the entire group 
of ~18,000 employed by the Berlin Police (Ramon,9 
Ramon and Vowels,10 and Mayer and Ramon11). The 
latter had participated in beSure (Ramon and Vowels10 
and Ramon and Rjosk13)—the only existing police FIP 
assessment tool using authentic police material. In this 
manner, we could relate DDP to two independent, chal-
lenging, and complementary means of FIP assessment. 
In light of the challenges that synthetic misinformation 
represents, we sought to expand our understanding of the 
human limits for facial deepfake detection.

No Evidence of Speed–Accuracy Tradeoffs
Independently of FIP ability, we sought to determine 
whether DDP is characterized by speed–accuracy trad-
eoffs. It is conceivable that high performance could be 
attributed to the depth with which individuals opt to 
process information. In this case, high performance 
would come at the expense of prolonged RTs. On the 
other hand, an absence of such speed–accuracy tradeoffs 
would suggest that other factors may be more meaningful 
determinants of observers’ deepfake detection. Overall, 
across diverse cohorts, we did not find a speed–accuracy 
tradeoff, that is, improved performance due to associated 
with prolonged processing (that is, response) time. If 
anything, for the 2AFC experiment, performance dete-
riorated with processing time, while no relationship was 
found for the single-video experiment.

SRs Versus Controls
Next, we sought to determine whether stable differ-
ences in FIP ability might affect DDP. To this end, we 
examined if individuals categorized as SRs according to 
previously proposed lab-based diagnostic procedures 
(Ramon9) would outperform those who did not. Indeed, 
recent evidence has demonstrated that SRs excel at foren-
sic perpetrator identification (Mayer and Ramon11). 
Moreover, they outperform non-SRs in challenging 
identity-matching scenarios measured via beSure, the 
only FIP assessment tool that involves authentic police 
material (Ramon and Vowels10 and Ramon and Rjosk13). 
It is thus conceivable that SRs’ superiority extends to the 
detection of synthetic disinformation.

We analyzed an extensive dataset of single-trial 
responses solicited in a single-video and a 2AFC 

experiment, respectively. Observers belonged to two 
groups: 1) civilians or Berlin Police officers identified 
as SRs via lab tests (Ramon9 and Ramon and Vowels10) 
who represent the core of a deep-data neuroscientific 
research agenda pursued in the Applied Face Cogni-
tion Lab (https://afclab.org/) and 2) non-SRs who 
were previously reported neurotypical observers 
(Groh et al.8) and officers of the Berlin Police who did 
not meet the SR criteria (Ramon9). The results indicate 
that DDP was not related to group membership.

These findings may be accounted for by the stimu-
lus material presented and used. SRs outperform con-
trols when the processing of static images of faces is 
required (Ramon,9 Ramon and Vowels,10 and Ramon 
and Rjosk13). Here, however, observers judged dynamic 
stimuli. The availability of motion information may 
have leveled the field across observers.

Individual Differences in FIP in Police Officers
To complement the categorical approach comparing 
SRs to non-SRs, our final analysis concentrated on 
police officers, who had undergone testing of FIP abil-
ity via a novel bespoke police tool: beSure (Ramon and 
Vowels10 and Ramon and Rjosk13). This was done to 
address whether a potential association between FIP 
ability and DDP would require a more sensitive indi-
vidual differences approach. This continuous analytical 
approach again provided a null finding; officers’ DDP 
was unrelated to their FIP ability rank determined via 
the challenging five subtests of beSure (Ramon and 
Vowels10 and Ramon and Rjosk13).

Limitations and Future Outlook
Collectively, our results suggest that neither increased 
processing time, which can be considered a proxy for 
motivation, nor FIP ability measured via two indepen-
dent approaches are associated with DDP. These find-
ings emerge within a large, diverse, and unique group of 
observers, which we believe represent society at large as 
well as motivated law enforcement professionals.

An important consideration concerns the different 
number of trials completed across participants’ sub-
groups. For the first two analyses, we combined the 
previously reported dataset (Groh et al.8) with our 
newly acquired one. According to Groh et al.,8 “[r]
ecruited participants [were] asked to view 20 videos 
while nonrecruited participants [could] view up to 45 
videos.”  Provided uninterrupted participation, observ-
ers of the present cohort were exposed to the complete 
set of deepfake stimuli. As such, we cannot rule out a 
greater learning effect for these observers. However, 
these considerations do not hold for the third analy-
sis, which was performed exclusively on Berlin Police 
officers’ data. Here, we also did not find any significant 

https://afclab.org/
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association between ability and DDP. [However, since 
we did not know a priori whether any differences 
would emerge, further work testing for null effects (for 
example, via equivalence tests; Lakens25) is required.]

One obvious caveat is that our findings are linked to the 
stimulus material used, which represents a subsample of 
instances submitted to the Deepfake Detection Challenge 
(https://www.kaggle.com/c/deepfake-detection-chal 
lenge) (see Groh et al.8). Since this challenge, the number 
of solutions available for deepfake creation has increased 
substantially. This means that today’s deepfakes will vary 
much more in terms of their quality and likely detection 
difficulty. Indeed, it is possible that facial deepfake stimuli 
created using state-of-the-art approaches might be pro-
cessed more proficiently by individuals with high(er) FIP 
ability. However, the stimuli used here are arguably the 
most extensively studied among humans (Groh et al.8).

A nother open question concerns within-observer 
reliability—or consistency in judging the same 

deepfake stimulus. Given repeated exposure to the same 
stimuli, it is possible that the consistency of observers’ 
judgments is related to their FIP ability (Ramon9). Relat-
edly, previous work has shown that severely impaired 
individuals especially benefit from instructions that 
reveal task-relevant diagnostic information (for exam-
ple, Ramon and Rossion26). Thus, future work should 
address the extent to which judgments are influenced by 
prior information on or familiarity with deepfakes could 
affect observers’ performance—and potentially interact 
with individual differences in FIP ability. Finally, facial 
deepfakes may be combined with audio content, which 
in isolation can facilitate or hamper DDP (Groh et al.27). 
Potentially, the detection of deepfakes involving both 
audio and visual information could relate to stable indi-
vidual differences in multisensory integration. 
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