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Abstract (english)

The aim of genetics is to understand the genetic basis of traits by linking genetic variability to
phenotypic variability. In recent years, progress in the field of complex human trait genetics
led to the discovery of thousands of common genetic variants robustly associated with complex
human traits through genome-wide association studies (GWAS). However, it is currently unclear
how to best to tackle the challenge of interpreting variants in the context of the biology involved.
My work explored various avenues to help in this challenge.
One strategy for interpretation is pathway analysis, where prior biological knowledge is formalized
into sets of genes with annotated functions and results from genetics studies are searched for
enrichments. Using this approach, one can connect the biological processes to the investigated
trait. For this purpose, I developed a methodology to calculate pathway enrichments from
GWAS results in an efficient way and in agreement with statistical principles. As a first step,
the methodology combines results for SNPs in a gene region into a single gene wise p-value,
with methods that are both fast and have a high level of numerical precision. The speed allows
controlling the pathway enrichment step for potential correlation between genes leading to
statistically correct p-values. This methodology was implemented in a software tool called
Pascal. Its performance was tested on a large set of GWAS results and compared favorably to
other methods. Efforts were made to ensure that the software would be easy to use by a wider
community.
Another challenge in the interpretation of GWAS results is to understand the reasons a genetic
variant leads to changes in phenotype. Most uncovered variants seem to impact gene regulation.
Therefore, understanding chromatin architecture will be crucial to understand the regulatory
consequences of genetic variants. One feature of eukaryotic chromatin is that it can take the
form of a compacted state making it inaccessible to most regulatory factors. To help elucidate
which factors play a role in moving between compacted an open state, I developed an new
method of integrative data analysis for transcription factor motif, DNase1 hypersensitivity and
gene expression data. Transcription factor motif and DNase1 hypersensitivity were combined to
calculate chromatin accessibility scores. These in turn were associated to gene expression using a
linear mixed modeling approach. Applying this method on large public datasets predicted a set
of candidate chromatin accessibility regulators. This set was heavily enriched in ’pioneer factors’:
factors that can bind and open compacted chromatin, suggesting that the approach did indeed
uncover regulators of chromatin accessibility.
A major hindrance to the interpretation of human variants uncovered by GWAS is that it is
not possible to perform genetic manipulations to validate and build on the findings. Therefore,
investigations using model organisms remain relevant. To further the understanding of the
genetics of fly growth control, I helped in the statistical analysis of a GWAS data set in an
outbred fly population. The study is noteworthy for its extensive environmental control and
follow-up experiments on candidate genes.



Abstract (français)

La génétique cherche à comprendre la base génétique de caractères observables, dits phénotypes,
en liant la variabilité génétique à la variabilité phénotypique. Ces dernières années, les progrès
apportés à la génétique des phénotypes complexes ont amené à la découverte de milliers de
variations génétiques associées significativement à des phénotypes humains complexes, au moyen
de l’étude d’association pangénomique, communément appelée GWAS (de l’anglais Genome-Wide
Association Study). Cependant, interpréter ces associations dans leur contexte biologique reste
un défi. Mon travail a consisté à explorer différentes possibilités pour y répondre.
Une des stratégies pour relier un phénotype étudié aux processus biologiques est l’analyse par
voies moléculaires, où l’on recherche un enrichissement des associations GWAS parmi l’ensemble
de groupes de gènes de fonctions cohérentes. Cette analyse permet ainsi de relier des processus
biologiques au phénotype étudié. Dans ce but, j’ai développé une méthode calculant avec
efficacité l’enrichissement des voies moléculaires des associations GWAS. La méthode combine les
résultats des polymorphismes dans la région d’un gène en une probabilité pour un gène, au moyen
de méthodes rapides et précises. La vitesse permet de contrôler l’étape d’enrichissement des
voies pour une corrélation potentielle entre les gènes, menant à des probabilités statistiquement
correctes. J’ai implémenté cette méthode dans le logiciel Pascal. Sa performance a été testé sur
un large jeu de résultats GWAS et il surpasse les autres méthodes. Des efforts ont été fait afin
d’assurer que le logiciel soit facile d’utilisation pour la communauté scientifique.
Un autre défi lié à l’interprétation des résultats GWAS est de comprendre les raisons pour
lesquelles une variation génétique résulte en un changement phénotypique. La plupart des
variations découvertes semblent affecter la régulation des gènes. Ainsi, comprendre l’architecture
de la chromatine est crucial pour appréhender les conséquences régulatrices de ces variations. Une
des caractéristiques de la chromatine des eucaryotes est qu’elle peut être compactée, la rendant
inaccessible à la plupart des facteurs de régulations. Pour trouver quels sont les facteurs jouant
un rôle dans le passage entre états compacté et ouverts, j’ai développé une nouvelle méthode
intégrant l’analyse des motifs de facteurs de transcription, l’hypersensibilité de la Dnase1 et
les données d’expression des gènes. Les deux premiers critères ont été combiné pour calculer
des scores d’accessibilité de la chromatine. Ils ont ensuite été associés à l’expression des gènes
en utilisant un modèle linéaire mixte. L’application de cette méthode sur des larges données
publiques a prédit des régulateurs candidats d’accessibilité de la chromatine. Ce jeu était enrichi
en “facteurs pionniers”, qui s’accrochent et ouvrent la chromatine compactée, suggérant que
cette approche a en effet permis de découvrir des régulateurs d’accessibilité à la chromatine.
Un obstacle majeur dans l’interprétation des variations humaines découvertes par GWAS est qu’il
n’est pas possible de réaliser des manipulations génétiques permettant de valider ces découvertes,
d’où l’utilisation d’organismes modèles. Afin de comprendre davantage la génétique du contrôle
de croissance des mouches, j’ai aidé à l’analyse statistique de données de GWAS d’une population
de mouches consanguines. L’étude est remarquable pour son contrôle environnemental étendu et
ses expériences de suivi sur les gènes candidats.
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1. Introduction

The following pages document work that I have done with the help of others in the domain

of human generetics and integrative analysis of functional genomics under supervision of Prof.

Sven Bergmann and Prof. Zoltán Kutalik. After a general introduction, aimed to prepare

the reader, three projects are presented, two of which I spearheaded and one where I made

substantial contributions. All three of these efforts yielded publications. The first, titled ‘Fast

and Rigorous Computation of Gene and Pathway Scores from SNP-Based Summary Statistics’,

presented Pascal, a tool for pathway analysis as a downstream step GWAS analysis [1]. The

second, titled ‘Genome-wide association between transcription factor expression and chromatin

accessibility reveals chromatin accessibility regulators’, presented a method to integrate expression

data and chromatin accessibility [2]. The third, titled ‘A Genome-Wide Analysis Reveals Novel

Regulators of Growth in Drosophila melanogaster’, presented a GWAS analysis of drosophila

body size metrics [3]. Some final remarks will reflect on the commonalities and differences among

the projects, set the projects in their historical context and give some additional insights on the

methodological aspects of the work presented.

1.1. Recent development in genetics of complex traits

Recently, the drop in the cost of production of large amounts of biological and medical data

have opened up ways to conduct biomedical research in a hypothesis-free way. During the years

2000-2010 this development was best epitomized by the microarray [4]. This technology made

it possible to monitor gene expression comprehensively. It also allowed to cheaply genotype

individuals for common variants, leading to the discovery of numerous common genetic variants

affecting traits as diverse as height, facial appearance or expression of a particular gene through

GWAS (genome wide association studies) [5, 6, 7]. In GWAS, the phenotype in question is

regressed onto the genotypic state for a common genetic variant in the sample of individuals to
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decide whether this variant is associated with the phenotype or not. This approach is applied to

a large fraction of SNPs (single nucleotide polymorphisms) present in the population to get an

unbiased collection of SNPs showing a significant association.

The early successes of this approach were helped by the fact that humans are a relatively inbred

species having low genetic diversity compared to global population size, which is likely due

to population bottlenecks in the relatively recent past. Indeed, of all 3 ∗ 109 possible single

nucleotide variants in the human genome, less than 107 are observed as a common polymorphism

(meaning that the frequency of the allele less common in the general population (the minor

allele frequency; MAF) is above 5%)1 [9]. Another consequence of the relatively low number of

cross-over events since the last evolutionary bottleneck, is that neighbouring common variants

tend to be in linkage disequilibrium (LD), a measure of correlation between nearby SNPs [10].

The presence of LD implied that much fewer SNPs actually needed to be assayed and could

function as tagging SNPs for other un-assayed (and potentially unknown) variants. The power to

detect an association between a SNP and a trait depends on the allele frequency and the effect

size in the population under study. For traits under low selection pressure (and weak pleiotropy

with traits under selection), allele frequency and effect size should be close to independent because

evolutionary pressure will not drive large effect variants to different frequency in the population.

Therefore, the variants most strongly associating in a GWAS experiment should be common

variants. Although the assumption of independence turned out to be violated for most traits, the

dependence is often weak enough that variants most easily detected have relatively high frequency

[11]. Microarrays measuring 500’000-2 Mio common SNPs in parallel were well positioned to

detect these variants. Large investments went into genotyping the common variants of cohorts.

Simplicity of the statistical modeling (the workhorse being simple linear and logistic regression)

allowed for efficient meta analysis strategies of results from various cohorts, leading to studies

involving tens of thousands to hundreds of thousands of individuals.

1As an illustration, we counted the number of autosomal SNPs , with frequency above 0.05 in the european panel
from the phase 1 1000 genomes project[8]. We found 6.6 ∗ 106 SNPs with frequency above this threshold.
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Although many SNPs were found to have a reproducible impact on human traits, the impact of

a single variant was usually minuscule and summing the variance explained by all SNPs found in

GWAS only yielded a fraction of the genetic variation that was expected based on the results of

twin studies. The huge difference in genetic variance explained by GWAS results and expected

from twin studies was termed the missing heritability [12]. There were three popular hypotheses

put forward to explain this fact.

First, there was the hypothesis that low frequency variants (with MAF below 5%) were responsible

for most of the missing heritability. In hindsight this hypothesis has the difficulty that although

there are many more low frequency variants than common variants known, low frequency

variants have much lower variance in the population than common variants. Assuming complete

independence between allele frequency and effect size, the fraction of heritability associated with

each SNP group (i.e. high MAF SNPs and low MAF SNPs) would be approximately proportional

to the sum of the variances of all SNPs in the group. From sequencing data one can show

that the high MAF group dominates in this respect1. For traits under low selection pressure,

one therefore needs to assume very strong pleiotropic effects for the low frequency variants to

dominate. While there are of course traits under very strong selection pressure (for instance rare

Mendelian diseases that severely hamper fitness), for many traits such as diseases of old age,

strong selection pressure does not seem likely.

The second hypothesis centered around interaction effects. This hypothesis is that most of the

variation would be explained by interactions of SNPs that could not be found by regressing

single genotype values onto phenotypes. One appeal of this hypothesis was that it corresponded

nicely with a view of biology where gene products worked in concert to yield an effect. A forceful

1While it is difficult to estimate the variance of a single low frequency SNP, the sum of all variances of all low
frequency SNPs should be stably estimable. Note that as a SNPs MAF goes to 0, the variance of the SNP goes
to its mean (because p(p − 1) → p as p → 0). We can therefore estimate the sum of variances of low MAF
SNPs by the average number of low frequency SNPs an individual in the population carries. When comparing
the variance contributed by low MAF SNPs (below 2% frequency) to the variance contributed by high MAF
SNPs (above 2%) using the 1KG phase 3 release data, we see that the contribution by common SNPs is 11.7
times greater.
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critique of this hypothesis is that the additive fraction of heritability estimated from family

studies was also much larger than what was estimated from GWAS data. Since two non-linked

alleles carried by a parent only have a 25% chance to be inherited together, whereas each allele by

itself has a 50% chance of being inherited, one typically only inherits 25% of pairwise interaction

effects active in a parent but 50% of marginal effects. Higher order interaction effects dissipate

even faster across generations. Family data, therefore, allows to identify the contribution of

only the marginal effects by looking at phenotype correlations across multiple generations or

comparing monozygotic to dizygotic twins. While the estimated additive contributions vary from

trait to trait, GWAS results fell well short of explaining a substantial portion of the additive

heritability.

The third hypothesis was that effect sizes were in general very small and that current cohort

sizes were just too small to detect them. This hypothesis was bolstered by a seminal paper

which pointed out that, for height, genetic similarity of individuals measured by microarray was

correlated with phenotypic similarity [13]. The extent of this correlation was commensurate with

microarrays at the time tracking around 50% of the additive fraction, and that it was likely, that

adding common SNPs not well tagged yet would further increase this fraction.

Since then, the notion that increasing sample size would be more cost effective to uncover new

variants involved in common traits than measuring low frequency variants or interactions has

broadly held. For example, an upcoming study compares results for body heights in humans

obtained with regular genome wide microarrays to results obtained with exome chips. These

chips are designed to have deep coverage of low frequency and common variants in exome regions.

Again, the conclusions supported the importance of sample size over coverage although some

additional variants were found (Marouli et al. Nature, accepted). A further example is a recent

investigation into the genetic architecture of type 2 diabetes where whole genome and exome

sequencing was used to investigate the idea that low frequency variants contribute substantially

to the missing heritability. Again it was found that the data supported a model, where common
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variants contributed the bulk to heritability [14].

The cost-effectiveness of increasing sample size to look for additional signal in the additive

component has also to do with the economics and logistics involved in performing low frequency

variant and interaction studies for large sample sizes. However, these factors might change in

the near future. With regards to investigation of interactions, the current model of performing

association studies in a distributed fashion by meta-analysis is ill-suited. The reason is that

every analysis group would need access to powerful computational infrastructure and exchanging

the results between cohorts would need the exchange of very large data sets. Studies exploring

interactions are often performed on single cohorts and therefore tend to have limited power [15].

Systematic investigation of interactions therefore have been relatively few and results are often

controversial. For instance, a recent paper investigated interactions using gene expression as

the trait of interest. Expression seems well placed for investigating interactions because the

size of single cohorts are large compared to effect sizes [16]. The study reported 30 SNP-SNP

interactions with effects on 19 genes. This finding was challenged by Wood et al. suggesting that

many of the apparently interacting SNPs were both weakly tagging a third variant that was not

assayed in the original study [17]. However, there are efforts underway to assemble very large

cohorts in centralized databases such as the UK Biobank or the Estonian genome project [18, 19].

These resources make it easier to investigate interactions, be it interactions between genotypes or

between environment and genotypes. This is particularly interesting for traits with a relatively

large interaction component such as human intelligence and BMI [20, 21, 22]. Computational

and statistical power constraints however suggest that for interactions between genotypes, only

pairwise interaction will be amenable to comprehensive standard regression analysis in the near

future. (For an approach to determine what fraction of the heritability pairwise interactions

contribute see Appendix A). Apart from uncovering novel associations, interaction studies allow

to investigate interactions which might yield further biological insights as to how genes act in

concert.
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Also the costs for sequencing, the method of choice for performing low frequency variant studies,

have been historically much higher than genotyping costs, but might be cost effective in the near

future allowing for easier investigation of traits under strong selection pressure. Alternatively,

custom genotyping chips focused mainly on exome regions can be used to genotype variants

that are hard to impute using data from regular genotyping chips. These chips are cost effective

compared to sequencing. They have recently been used to investigate low frequency variants

influencing height using data from a large cohort and compared to results obtained from regular

genotyping chips (Marouli et al. Nature, accepted). Rare variant analysis has the potential

to improve detection of causal genes. Common variants affecting the phenotype often fall into

regulatory regions, which can make it hard to associate them to a specific gene. Rare variants

with strong impact are often found in the gene body, making it easier to determine the causal

gene. Also, low frequency variants typically have much lower LD than common variants, making

it easier to pinpoint causal variants. Therefore, studies of low frequency variants might be

interesting to further investigate genomic regions that are prioritized by GWAS, by providing

evidence which genes in the region are involved in the phenotype.

In short, the field of human genetics has changed enormously in last decade. Gene candidate

studies have been replaced by truly comprehensive approaches. These have helped to reproducibly

uncover variants with impact on human traits and disease. However, the revolution is far from

over. The assembly of large centralized repositories of genetic data seems like a preview of how

genetics might be done in the near future when genetic analysis informing medical decisions

could be commonplace. The questions answered might range from informing on drug dosage

requirements and drug sensitivities to isolate particular genetically at risk patient populations

[23, 24]. Large genetic datasets gathered in the process will allow to create ever more precise

and sophisticated models of how genetic variants impact individual humans.
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1.2. Gene set analysis

Since the beginning of high throughput biology, gene set analysis (often also referred to as

pathway analysis) has been used as a means to extract biological information from experiments,

in particular from differential expression experiments. Standard differential expression analysis

looks at each gene in isolation asking for each gene the question whether its expression levels

differ in cases versus controls. Results can be hard to interpret if the study is underpowered

to detect reproducible differential expression on the gene level. However, the results are also

difficult to interpret if a large numbers of genes are differentially expressed, because this can

make it hard to understand the biological context.

Gene set analysis is a strategy trying to answer both of these challenges. In gene set analysis,

predefined sets of genes are tested as a group. While each member of the gene set might not yield

a significant p-value, pooling the effects of all members can still lead to significant results. This

has the potential to extract significant results even from underpowered experiments, although

poor definition of biologically relevant gene sets can hamper this. Furthermore, knowledge about

the predefined gene sets can help in the interpretation of the results. Thus, gene set analysis

became a popular tool to analyse differential expression experiments. One strategy to define a

p-value for a gene set is to check whether more genes in the gene set are nominally significant

(i.e. above a given threshold) than is expected when drawing a random sample of genes. This

strategy is called hypergeometric enrichment [25]. This approach can be generalized. To check

enrichment, one can take some transformation of the gene-wise t-statistics (say the square to

upweight outliers) and sum the resulting scores for member genes to get a gene set score. Then,

one calculates multiple gene set scores for randomly sampled gene sets of the same size. The

p-value can be approximated by taking the fraction of random samples leading to a higher or at

least as high a gene set score as the original gene set.

While this strategy was popular, it had the fundamental drawback that it does not control for
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correlation between genes. Because genes within the same gene set are functionally related, they

also tend to have expression values that are more correlated than average gene pairs. Correlation

between expression values of two genes directly leads to correlation of the differential expression

statistics. However, when genes are randomly sampled one implicitly assumes that genes are

interchangeable in terms of correlation they have to other genes. One way to remedy this problem

is to look at expression arrays as the sampling unit instead of the genes. In this approach one

calculates the gene set scores analogously as above. One then generates random permutations of

the annotation labels in the experiment between cases and controls and calculates the gene set

score for each permutation. The p-value can be approximated by taking the fraction of permuted

samples leading to at least as high a gene set score as the original gene set. This approach

takes the correlation between genes into account: Correlations between genes remain the same in

permuted samples, since the only thing that gets permuted is the annotation of the microarray

experiments. However, this approach tests a different null hypothesis (hereafter often referred

to simply as ‘null’) than that tested in the gene randomization approach. Within the context

of a differential expression experiment, gene randomization tests the null that the genes in the

genes set are on average not more differentially expressed than a random sample of genes. The

annotation permutation approach tests the null that there is no differentially expressed genes at

all in the gene set. This means that the permutation approach can yield significance even if only

one gene in the gene set shows strong signal and is independent of the results of genes outside of

the gene set. It also means that the results are very sensitive to overdispersion of the t-statistics

due to confounding whereas the gene randomization approach is less sensitive to this problem.

Because of that, the two approaches are also called competitive (for the gene permutation

approach) and non-competitive (for the annotation permutation approach). To combine the

strengths of both approaches, sampling strategies were developed to take correlation into account

while still performing a competitive test [26, 27, 28]. Perhaps the most straight-forward approach

is due to Efron et al.: Permuted gene set scores are rescaled to account for the amount of

overdispersion seen for the gene wise scores [27].
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When new gene set analysis approaches for new kinds of data are devised, an important question

to ask is whether one wants to have a competitive or non-competitive test. If one opts for a

competitive test, it is vital to make sure that one accounts for potential correlation. In the

chapter on pathway analysis (chapter 2), we will see an example of a competitive test where

correlation is accounted for by a merging strategy between genes that are physical neighbours on

the genome. This is possible in this case because correlation in GWAS is local in the genome.

A further lesson that can be drawn from experience of differential expression analysis pertains

to the use of comparable statistics. Often, differential expression analysis report fold changes

between the two conditions while ignoring the variation within conditions for this gene. The

reason for this was that variation within conditions was often regarded as too noisy leading to

less stable results. This practice was criticized by Efron et al. since it leads to biased results for

null genes[29]. Genes with high variance would have large spreads in fold change when randomly

partitioned into conditions. This means that two genes both with zero effect might have not equal

probability of showing a false positive depending on the variation. Scaling with the standard

deviation ameliorates this problem. However genes with the same non-zero effect but non-equal

variability will not be detected with equal power due to scaling. When testing gene sets with a

competitive approach any bias in the composition of genes within a gene set with regards to a

factor influencing power can also bias enrichment results. In general it is regarded as crucial to

control such biases with regards to null genes because they will be very frequent. Therefore, one

typically uses test statistics that all show the same distribution in the case of absence of signal.

In the chapter on Pascal, we will use such statistics as a starting point for our competitive test.

However, it has to be pointed out that any such statistic can lead to a difference in power for

non-null genes. This bias can persist at the gene set enrichment stage if gene sets are biased

with regards to such a confounding factor.
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1.3. Confounding control in large-scale biology

Another subject that is of vital importance in high-throughput biology is confounding control.

It is a natural assumption for a high-throughput experiment, where thousands to millions of

hypotheses are tested, that for most of them the null hypothesis holds. However, for many high

throughput experiments, one could clearly see that the bulk of test statistics did not follow the

null but rather showed over- or under-dispersion [30]. One potential culprit for this effect can

be that that asymptotic arguments for convergence to normality of the test statistics do not

hold yet as the actual sample size might be low particularly for low frequency variants. The first

attempts to deal with this problem, was to scale the test statistics in such a way that the bulk of

the data again followed the prescribed null distribution. In GWAS this method was introduced

under the name of genomic control, whereas in differential expression analysis a similar method

was introduced under the name of empirical null estimation [30, 31].

It was realized that the main reason for overdispersion was unaccounted confounding: hidden

variables that showed an association with response variable as well as an association with many

explanatory variables. This lead to methods that tried to estimate these underlying variables from

the data [32]. It is clear that the confounding variables, that lead to overdispersion of p-values,

need to associate with the bulk of the independent variables that are tested and therefore explain

on average a lot of variation of the independent variables. The principal components of the

sample covariance matrix therefore are likely to associate very strongly with the confounding

variables leading to inflation and controlling for the largest principal components in a regression

approach could therefore control confounding. This indeed turned out to be the case in GWAS

applications. Furthermore, it turned out that the largest principal components in the case of

GWAS with mixed populations would associate with geographic origin, which is the main source

of confounding in GWAS [33].

A further advance in the control of population structure came with the use of linear mixed models.
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These models have their origin in animal studies which are typically much smaller in size and

often have a known confounding structure (through known kinship), making computationally

demanding mixed models both feasible and pertinent. This strategy allows to apply linear

regression to test the null for a particular SNP while at the same time allowing for the fact all

other SNPs have a nonzero effect. These models therefore model overdispersion directly. To avoid

overfitting, the assumption is made that these nonzero effects are normally distributed around

zero and the variance of this distribution is estimated. This is a general strategy of mixed models

where instead of fitting all effects separately only the distribution of effects are estimated leading

to a model with much lower number of parameters. These models are computationally more

demanding to fit but have advantages. First, they naturally incorporate lower order principal

components. Additionally, even in the case of no confounding whatsoever, these models can

be statistically more powerful. The reason is that the random effect can explain part of the

variability of the phenotype making it easier to detect associations. To improve power further

strategies that fit mixed effects models with more realistic distributional assumptions for the

random effect may be used [34]. Further improvements in power can be gained by excluding the

locus under investigation from contributing to the distribution of random effects.

In the chapter on fly growth control (chapter 4) we see an example use of mixed models as

confounding control strategy. The chapter on chromatin state regulators (chapter 3) contains

a use of such models in a new context. There, a complex correlation structure makes mixed

modeling advantageous. With regards to chapter 2, there is a connection between the sum

statistic used in Pascal and testing a random effects model for the gene region in question. We

show this connection in Appendix B. We follow this thread to propose a way to estimate the

pathway heritability via maximum likelihood from z-scores alone in Appendix C.
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1.4. Modern approaches to building genome wide protein-DNA binding maps

Just as the drop in the costs of DNA sequencing and genotyping have led to new strategies for

investigating the genetics of phenotypic traits a comprehensive untargeted fashion, it has also

allowed to scale up classical molecular biology assays to genome-wide levels. Examples of this are

the Chromatin-immunoprecipitation (ChIP) assay and the DNase1 hypersensitivity (DHS) assay

[35, 36]. Classical ChIP can be used to answer the question whether a protein of interest, be it a

transcription factor or a specifically modified histone, is binding to a DNA region of interest.

After reversibly cross-linking DNA and proteins, a specific protein antibody is used to bind and

extract the protein under investigation. If the DNA region of interest is extracted along with the

protein, one concludes that the region is bound by the protein. Cheap and reliable sequencing

has allowed to move from targeting specific chromatin regions to investigating the whole genome.

This approach is called ChIP-seq and since its inception almost 10 years ago it has become a very

heavily used technique in genomics studies [37, 38, 39]. Another classical assay that has upscaled

to genome wide levels is the DNase1 hypersensitivity assay. DNase1 hypersensitivity (DHS) relies

on high sensitivity of certain DNA regions to digestion with the endonuclease DNase1. These

regions of hypersensitivity to the enzyme were first discovered in drosophila heat shock genes

and SV40 [40, 41, 42]. In parallel, Dnase1 footprinting and other in vitro protection assays were

developed, to show sequence-specific DNA binding of a particular protein at base-pair resolution

[43]. The method relied on the fact that protein binding would protect DNA from digestion by

DNase1 and allowed to delineate where transcription factors and other DNA binding proteins

such as histones would bind. While this was at first an in vitro such as histones would bind.

While this was at first an in vitro method, it was subsequently shown that DHS sites were indeed

depleted in histones, the most abundant DNA binding protein complex [44]. In vivo footprinting

methods allowing to define specific protein binding at bp resolution followed suit [45]. Again,

cheap and accurate sequencing allowed for these methods to be scaled up to the genome wide

level [46, 47]: Chromatin is digested by DNase1 and restriction site fragments are sequenced in
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a genome wide manner. Low sequencing depth uncovers DHS sites, regions of higher DNase1

sensitivity at the resolution of about 100 bp. Higher sequencing depths allow to find footprints

of transcription factor binding as dips and stereotypical patterns in the DNase cleavage pattern

at single bp resolution [48, 49]. Combining transcriptions factor binding motifs together with

general DNase hypersensitivity data allows to predict with high accuracy where transcription

factors are binding for a large fraction of transcription factors. However, whereas general DHS

sites seem to be well correlated with transcription factor binding [49, 50], the increased precision

yielded by detailed footprinting depends on the strength of binding interaction and will not work

for factors with low DNA residence time with rapid on-off cycles [51, 52]. Nevertheless, one

genome-wide DNase1 assay complemented with TF-motif information allows to approximate

a comprehensive genome-wide map of transcription factor binding to DNA that would take

hundreds of individual CHiP-Seq experiments to build.

The modern capabilities to generate comprehensive maps of protein-DNA binding histone and

DNA modifications as well as expression has led to multiple concerted efforts to build such

maps in a large array of cell types, cell lines, and tissues and use them to define functional

elements in the genome. The first large-scale endeavour of this kind was the ENCODE project

[53]. ENCODE mainly focused on cell lines relevant in research. The subsequent ROADMAP

project in turn focussed on tissue samples [54]. These public resources are used extensively as

reference data for new biological experiments, and continuous method development allows to

refine the built maps and add new dimensions to them [51]. The functional elements called are

also helpful in fine-mapping loci identified through GWAS [55, 56].
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2. Pathway Analysis for GWAS data

Genome-wide association studies (GWAS) typically generate lists of trait- or disease-associated

SNPs. Just as with differential expression studies, GWAS studies can be difficult to interpret

either because the study was underpowered or the number of variants found to associate with the

trait is overwhelming. for some highly complex traits, the number of relevant variants uncovered

ranges in the hundreds. This situation calls again for strategies to derive biological insight.

The following chapter presents a paper that was published in PLOS Computational Biology. It

focused on Pascal (Pathway scoring algorithm), a tool designed and implemented by me with the

help of my co-authors. The tool allows for gene and pathway-level analyses of GWAS association

results without the need to access the original genotypic data. Pascal was designed to be fast,

accurate and to have high power to detect relevant pathways. Importantly, the lessons learned

from differential expression analysis were not forgotten: Correlation between gene scores and

their impact on pathway scores was addressed. Also, just as using t-statistics instead of fold

changes for pathway analysis in differential gene expression can diminish subtle biases on the

pathway level, we aimed to minimize these biases by using genewise p-values as a starting point

for pathway scores. Simulation of realistic scenarios was used to show that pathway p-values

were indeed well calibrated.

The paper also shows results of extensive testing of the approach on a large collection of real

GWAS association results and saw better discovery of confirmed pathways than with other

popular methods.
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Abstract
Integrating single nucleotide polymorphism (SNP) p-values from genome-wide association

studies (GWAS) across genes and pathways is a strategy to improve statistical power and

gain biological insight. Here, we present Pascal (Pathway scoring algorithm), a powerful

tool for computing gene and pathway scores from SNP-phenotype association summary

statistics. For gene score computation, we implemented analytic and efficient numerical

solutions to calculate test statistics. We examined in particular the sum and the maximum of

chi-squared statistics, which measure the strongest and the average association signals

per gene, respectively. For pathway scoring, we use a modified Fisher method, which offers

not only significant power improvement over more traditional enrichment strategies, but

also eliminates the problem of arbitrary threshold selection inherent in any binary member-

ship based pathway enrichment approach. We demonstrate the marked increase in power

by analyzing summary statistics from dozens of large meta-studies for various traits. Our

extensive testing indicates that our method not only excels in rigorous type I error control,

but also results in more biologically meaningful discoveries.

Author Summary

Genome-wide association studies (GWAS) typically generate lists of trait- or disease-asso-
ciated SNPs. Yet, such output sheds little light on the underlying molecular mechanisms
and tools are needed to extract biological insight from the results at the SNP level. Pathway
analysis tools integrate signals from multiple SNPs at various positions in the genome in
order to map associated genomic regions to well-established pathways, i.e., sets of genes
known to act in concert. The nature of GWAS association results requires specifically tai-
lored methods for this task. Here, we present Pascal (Pathway scoring algorithm), a tool
that allows gene and pathway-level analysis of GWAS association results without the need
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to access the original genotypic data. Pascal was designed to be fast, accurate and to have
high power to detect relevant pathways. We extensively tested our approach on a large col-
lection of real GWAS association results and saw better discovery of confirmed pathways
than with other popular methods. We believe that these results together with the ease-of-
use of our publicly available software will allow Pascal to become a useful addition to the
toolbox of the GWAS community.

Introduction
Genome-wide association studies (GWAS) have linked a large number of common genetic var-
iants to various phenotypes. For most common phenotypes, high-powered meta-analyses have
revealed tens to hundreds of single nucleotide polymorphisms (SNPs) with robust associations.
However, deriving biological knowledge from these associations is often challenging[1,2].
Many genes function in multiple biological processes and it is typically not clear which of these
processes is related to the phenotype in question.

Pathway analysis aims to provide insight into the biological processes involved by aggregat-
ing the association signal observed for a collection of SNPs into a pathway level signal. This is
generally carried out in two steps: first, individual SNPs are mapped to genes and their associa-
tion p-values are combined into gene scores; second, genes are grouped into pathways and
their gene scores are combined into pathway scores. Existing tools vary in the methods
used for each step and the strategies employed to correct for correlation due to linkage
disequilibrium.

SNPs are usually mapped to genes based on physical distance[3], linkage disequilibrium
(LD)[4], or a combination of both[5]. Genes are commonly assigned to pathways using well-
established databases (such as Gene Ontology[6], KEGG[7], PANTHER[8], REACTOME[9],
BIOCARTA[10]) or in-house annotation (based on co-expression[4], for example).

Various methods have been developed to aggregate SNP summary statistics into gene scores
[3,11,12]. A common aggregation method is to use only the most significant SNP within a win-
dow encompassing the gene of interest, for example by assigning the maximum-of-chi-squares
(MOCS) as the gene score statistic[3,13] (the contributing chi-squared values can be obtained
from SNP p-values by using the inverse chi-squared quantile transformation). Another method
is to combine results for all SNPs in the gene region, for example by using the sum-of-chi-
squares (SOCS) statistic[14]. Both the MOCS and SOCS statistics are confounded by several
properties of the gene. Specifically, in both cases it is important to correct for gene size and LD
structure to obtain a well-calibrated p-value for the statistic. In the remainder of this paper, we
also refer to the p-values of the MOCS and the SOCS statistics asmax and sum gene scores,
respectively. P-values can be estimated by phenotype label permutation, but this method is
both computationally intensive and requires access to genotype data of the actual study, which
are rarely shared[15]. Thus, one often has access only to association summary statistics and not
the individual genotypes. In this case, one method is to regress out confounding factors[3].
This approach is employed in the popular MAGENTA tool, but provides only a partial solution
as substantial residual confounding still remains[3].

An alternative approach, which we take here, is to exploit the fact that the null distributions
of the MOCS and SOCS statistics depend solely on the pairwise correlation matrix of the con-
tributing genotypes. In the absence of the original genotypes, this correlation matrix can still be
estimated from ethnicity-matched, publicly available genotypic data, as has been proposed by
us and others for conditional multi-SNP analysis of GWAS results[16,17]. This approach has
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been implemented in the Versatile Gene-based Association Study (VEGAS) software and yields
results close to those from phenotype label permutation[11]. However, while VEGAS is faster
than estimation via phenotype label permutation, it still relies on a Monte Carlo method for
estimating the p-values. This limits its efficiency for highly significant gene scores.

Once gene scores have been computed, pathway analysis tools use various strategies to
aggregate them across sets of related genes. The most common approach used for analysing
GWAS meta-analysis results, as exemplified by the popular GWAS pathway analysis tool
MAGENTA, is based on binary enrichment tests, which rely on a threshold parameter to
define which genes are significantly associated with the trait[3,18]. However, with this strategy
potential contributions of weakly associated genes that just missed the threshold are lost and
there is no clear guidance on how the threshold parameter should be set. Indeed, it seems com-
mon practice to keep the default parameter without knowing whether other choices would pro-
duce better results[5].

In this work, we focus on improving two major aspects of pathway enrichment analysis (Fig
1). First, we incorporate numerical and analytic solutions for the p-value estimation of the
MOCS and SOCS statistics. This removes the need for phenotype permutations or Monte
Carlo simulations, thereby making the score computation faster. Second, we developed a rigor-
ous type I error control strategy and implemented a modified Fisher method to compute
parameter-free pathway scores[19]. While some elements of our algorithm have been proposed

Fig 1. Overview of the methodology to compute gene and pathway scores. a) We compute gene scores by aggregating SNP p-values from a GWAS
meta-analysis (without the need for individual genotypes), while correcting for linkage disequilibrium (LD) structure. To this end, we use numerical and
analytic solutions to compute gene p-values efficiently and accurately given LD information from a reference population (e.g. one provided by the 1000
Genomes Project[22]). Two options are available: the max and sum of chi-squared statistics, which are based on the most significant SNP and the average
association signal across the region, respectively. b) We use external databases to define gene sets for each reported pathway. We then compute pathway
scores by combining the scores of genes that belong to the same pathways, i.e. gene sets. The fast gene scoring method allows us to dynamically
recalculate gene scores by aggregating SNP p-values across pathway genes that are in LD and thus cannot be treated independently. This amounts to
fusing the genes and computing a new score that takes the full LD structure of the corresponding locus into account. We evaluate pathway enrichment of
high-scoring (possibly fused) genes using one of two parameter-free procedures (chi-squared or empirical score), avoiding any p-value thresholds inherent
to standard binary enrichment tests.

doi:10.1371/journal.pcbi.1004714.g001

Gene and Pathway Scores Computation from SNP-Based Summary Statistics
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in other fields of statistical genetics[20,21], the novelty of our method lies in the unique combi-
nation of sophisticated analytical methods employed for pathway analysis, which results in
improved computational speed, precision, type I error control and power.

In the following, we first evaluate the performance of our tool, demonstrating its speed
gains and robust control of type I error. Then, using precision-recall analyses, comparing small
to large GWAS results for lipid traits and Crohn’s disease, we demonstrate that our pathway
scoring approach exhibits a gain in power compared to binary enrichment. Finally, we apply
our method to dozens of large meta-analysis studies and evaluate power by counting the num-
ber of pathways passing the Bonferroni-corrected p-value threshold.

We provide this tool for gene and pathway scoring as a standalone, open-source software
package called Pascal.

Results

Pascal computes genes scores rapidly and to very high precision
First, we compared the run time and precision of Pascal to those of VEGAS[11], one of the cur-
rent state-of-the-art gene scoring tools. To this end, we applied both procedures to genome-
wide p-values obtained from two large-scale GWAS meta-analyses: The first used about 2.5
million HapMap imputed SNPs[23,24] and the second was based on about 6.4 million SNPs
imputed based on a common subset of 1000 Genomes Project (1KG) panel[22,25]. As bench-
mark we used the results from VEGAS for the former and VEGAS2 (a recent implementation
of VEGAS that uses pre-computed LD matrices from 1KG[26]) for the latter. We observed a
substantially smaller run time for our method in both cases (Fig 2A): for the HapMap imputed
data, VEGAS took 29 hours to compute 18,132 gene scores, while Pascal was considerably
faster, needing only about 30 minutes for either statistical test (sum or max) on a single core
(Intel Xeon CPU, 2.8GHz). For the 1KG imputed data, Pascal finished the computation in
under two hours for either statistic, whereas VEGAS2 took over ten days.

To compare the gene scores computed by the two methods, we increased the maximum
number of Monte Carlo runs for VEGAS to 108, at a high computational cost (about 9 days of
runtime). We observed excellent concordance between the gene scores of Pascal and VEGAS,

Fig 2. Comparing efficiency between VEGAS and Pascal. a) Run times of VEGAS and Pascal (both
options). Gene scores were computed on two GWAS (one HapMap imputed[23], one 1KG imputed[22,25])
for 18,132 genes on a single core. Pascalwas compared to VEGAS for the HapMap imputed study and
VEGAS2 for the 1KG-imputed study. For this plot, VEGAS and VEGAS2 were used with the default
maximum number of Monte Carlo samples of 106 for both studies and additionally with 108 Monte Carlo
samples for the HapMap imputed study. b) Scatter plot of -log10-transformed gene p-values for the sum gene
scores obtained by VEGAS and Pascal, respectively. P-values above 10−6 are in excellent concordance.
Below this value VEGAS could not give precise estimates, since it was run with the maximal number of Monte
Carlo samples set to 108.

doi:10.1371/journal.pcbi.1004714.g002
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except for scores below 10−6: since we restricted VEGAS to 108 Monte Carlo runs, it could not
estimate p-values smaller than 10−6 with good precision (Fig 2B). In contrast, Pascal can com-
pute gene scores with high precision for p-values down to 10−15. In summary, the analytic solu-
tions incorporated in the Pascal algorithm offer a dramatic increase in efficiency and precision.
Direct comparison of the sum and max gene scores of Pascal revealed good concordance
between the two scoring methods. In cases where the results of two methods disagree, max
scores tend to be more significant (S3 Fig).

The results reported here are all based on GWAS of European cohorts, thus we used the
European panel from 1KG as reference panel. To evaluate whether this panel approximates LD
matrices derived from other European cohorts sufficiently well, we compared results when
using genotypes taken from the CoLaus cohort as reference panel[27]. We saw good concor-
dance between the different reference panels for both the sum and the max gene scores for the
largest HDL blood lipid GWAS to-date[23] (S2 Fig).

Pascal controls for inflation due to neighbouring genes
In general, methods that compute pathway scores from gene scores assume independence of
these scores under the null hypothesis. However, neighbouring genes often have correlated scores
due to LD, and are sometimes part of the same pathway. This results in a non-uniform pathway
score p-value distribution under the null hypothesis. MAGENTA deals with this problem by
pruning gene scores based on LD and using only the highest gene score in the region. However,
this introduces a bias toward high gene scores into the calculation of pathway scores[3].

Our fast gene score calculation allows us to address this issue with a gene-fusion strategy. In
brief, for each pathway harbouring correlated genes, gene scores are recomputed jointly for
each correlated gene set (i.e. fusion-gene) using the same method as for individual genes (Fig
1B, Methods), thus taking the full LD structure of the corresponding region into account.

To see if our approach provides well-calibrated p-values, we simulated random phenotypes
and calculated association p-values for all 1KG SNPs. We then employed our pathway analysis
pipeline and checked if pathway p-values were uniformly distributed, as expected for random
phenotypes. We found that without the gene-fusion strategy, pathway p-values are indeed
inflated and, as expected, this inflation is stronger for pathways with many proximal genes (Fig
3A). In contrast, applying the gene-fusion strategy corrects the distribution of pathway score
p-values to be uniform irrespective of the number of proximal genes (Fig 3B). Importantly, we
did not see inflation for very small p-values with the gene-fusion strategy, which is essential for
type I error control.

Going one step further, we also simulated in-silico phenotypes influenced by randomly
selected causal SNPs. We explored two scenarios: one where 50 SNPs were randomly selected
from the entire genome and another where random sampling was applied to gene regions only.
The experiment was repeated 50 times and independent genetic data was used to generate the
estimated pairwise correlation. Although in this case gene scores naturally deviate from the
null distribution, we found that overall pathway p-values remain well calibrated (S14 and S15
Figs). Note that we explored only a limited set of simulation scenarios and cannot exclude that
some settings might produce less well-calibrated results (see legend of S15 Fig).

Pascal has higher sensitivity and specificity than hypergeometric
pathway enrichment tests
A commonly used statistic to derive pathway scores from a ranked list of genes (or SNPs) is to
first apply a fixed threshold in order to define a subset of elements that is considered to be sig-
nificantly associated with the given trait. The pathway statistic is then computed using a

Gene and Pathway Scores Computation from SNP-Based Summary Statistics
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hypergeometric test evaluating whether the pathway contains more significant elements than
expected. This approach is implemented, for example, in the tool MAGENTA[3]. Another
common strategy is to use the rank-sum (Wilcoxon) test[3,28,29].

As described above, Pascal computes aggregate statistics without the need for defining a set
of significant genes. We thus sought to compare this strategy with methods based on the hyper-
geometric or rank-sum tests. To this end, we tested performance on association results for four
blood lipid traits obtained from of the CoLaus cohort[27]. We used a large meta-analysis of
188,577 individuals to define a reference set of associated pathways for each of the four lipid
traits[23]. We then applied both pathway analysis methods to three non-overlapping, small
subsets (1500 individuals) of the CoLaus study and compared how well the resulting pathways
matched the reference set from the large study. We used the area under the precision-recall
curve (AUC-PR) to quantify the performance of each method. Note that our choice was driven
by the fact that precision-recall curves are preferred over receiver-operator-characteristic
(ROC) curves when only a small fraction of tested pathways are in the reference set[30]. Our
results show that Pascal outperforms both the hypergeometric and rank-sum based approaches
(Fig 4A). Importantly, the better performance of Pascal is observed across a range of thresholds
defining significant genes, including the optimal choice which is variable and a priori unknown
across the different lipid phenotypes.

We applied the same evaluation strategy for GWAS data on Crohn’s disease. We used the
currently largest GWAS for Crohn’s disease[31] to define a reference standard of associated

Fig 3. Pathway scores for random phenotypes. As input data we used 100 simulated instances of a
randomGaussian phenotype and genotype data for 379 individuals from the EUR-1KG panel. Using the
Pascal pipeline with sum gene scores and chi-squared pathway integration strategy we computed p-values
for 1,077 pathways from our pathway library (results for max gene scores are similar, see S4 Fig). Panel (a)
shows the p-value distributions without merging of neighbouring genes and (b) with merging of neighbouring
genes (gene-fusion strategy).P-value distributions are represented by QQ-plots (upper panels) and
histograms (lower panels). Results are colour-coded according to the fraction of genes in a given pathway
that have a neighbouring gene in the same pathway, i.e. that are located nearby on the genome (distance
<300kb). (a) P-values of pathways that contain genes in LD are strongly inflated without correction. (b) The
gene fusion approach provides well-calibrated p-values independently of the number of pathway genes in
LD.

doi:10.1371/journal.pcbi.1004714.g003
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pathways. We then applied both pathway analysis methods to results from two individual
cohorts participating in the meta-analysis that contained at least 1000 cases[31–33]. We
observed that the chi-squared-method performed at least as well as all other strategies in this
setting (Fig 4B). Overall, we saw similar results for both max and sum gene scores (S5 Fig).

Pascal has higher power than hypergeometric test based pathway
enrichment in a wide range of traits
Having established that Pascal accurately controls type I error rate for simulated phenotypes
and better recovers truly associated pathways for blood lipid traits as well as Crohn’s disease,
we next sought to evaluate its power when applied to large meta-analytic studies on a broad
range of traits, where no ground truth can be defined.

To this end, we compared Pascal with the methods based on the hypergeometric test (using
9 different threshold values) and the rank-sum test proposed by Segrè et al.[3] for 118 GWAS

Fig 4. Performance of pathway enrichment methods for blood lipid traits and Crohn’s disease.
Displayed is the mean area under the precision-recall curve (AUC) for pathways identified using Pascal, a
standard hypergeometric test at various gene score threshold levels, and a rank-sum test (vertical bars show
the standard error). We show results for the max gene scores (sum gene score results are similar, see S5
Fig). a) Results for four blood lipid traits. The gold standard pathway list was defined as all pathways that
show a significance level below 5×10−6 for any of the tested threshold parameters for hypergeometric tests in
the largest study of lipid traits to date[23]. The significance level of 5×10−6 corresponds to the Bonferroni
corrected, genome-wide significance threshold at the 0.5% level for a single method. For each phenotype,
error bars denote the standard error computed from three independent subsamples of theCoLaus study
(including 1500 individuals each). We see good overall performance of Pascal pathway scores, whereas
results for discrete gene sets vary widely with the particular choice for the threshold parameter of
hypergeometric test. b) Results for Crohn’s disease using the same approach as in (a). A reference standard
pathway list was defined as in (a) using the largest study of Crohn’s disease traits to date[31]. We observe
that the chi-squared strategy performs at least as well as all other strategies in this setting, whereas
performance of the hypergeometric testing strategy varies.

doi:10.1371/journal.pcbi.1004714.g004
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(S1 Table). All GWAS were derived from European populations justifying the use of the Euro-
pean 1KG genotypes as reference population. For a given GWAS, we asked how many tested
pathways reached genome-wide significance at the Bonferroni-corrected p-value threshold of
0.05. Our results indicate that globally our approach has higher power than either the methods
using the hypergeometric test (across all tested thresholds), or the rank-sum test (Figs 5A and
S6). For individual traits (Fig 5B), specific choices of the threshold parameter of the hypergeo-
metric test sometimes reveal more pathways, but again the value of the optimal threshold varies
across traits and cannot be known a priori.

When splitting the GWAS into high powered (more than 50,000 individuals) and low pow-
ered studies (less than 50,000 individuals), we saw that in both cases we gain power by using
Pascal although the effect was more pronounced for low powered GWAS (S7 Fig).

Hypergeometric enrichment testing is hampered by the fact that the optimal threshold is
not known in advance. A strategy to overcome this could be to merge hypergeometric pathway
scores coming from different sets of thresholds, further corrected for the effective size of the
threshold sets. While such an aggregated hypergeometric testing improved performance, it was
still outperformed by Pascal (S10 and S11 Figs).

Fig 5. Power of pathway scoringmethods across diverse traits and diseases. Bar heights represent the number of pathways found to be significant
after Bonferroni-correction. Within a given trait group, results are aggregated for all tested GWAS studies. 65 GWAS had at least one significant pathway in
one of the tested methods. For each GWAS, the raw number of significant pathways was divided by the number of pathways found by the best performing
method. This was done in order to avoid that a few studies with many emerging pathways dominate. We show results for the MOCS gene scores (SOCS
gene score results are similar, see S6 Fig). (a) Results are aggregated over all trait groups. (b) Results for different trait groups.

doi:10.1371/journal.pcbi.1004714.g005
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One of the proposed pathway scoring methods transforms the ranked gene p-values such
that they follow a chi-squared distribution. The chi-squared distribution is a special case of the
Gamma distribution with shape parameter 0.5. Thus we also examined whether using other
shape parameters of the Gamma distribution could improve performance (see Methods, S12
and S13 Figs). This analysis suggested that the chi-squared pathway scoring method represents
a good compromise for a wide range of genetic architectures.

We found numerous examples of biologically plausible pathways discovered by Pascal that
were not found by a standard binary enrichment analysis (Fig 6, S2 Table). For insulin resis-
tance[34] we found the REACTOME pathway insulin signal attenuation to be genome-wide
significant. Notably, none of the genes in this pathway was found to contain a genome-wide
significant SNP in the original publication. Another example is bone mineral density in
women (LS-BMD)[35]. We found the Hedgehog andWnt pathways to be significant, both of
which are known to be involved in osteoblast biology[36]. Again, standard binary enrichment
did not reach genome-wide significance. For smoking behaviour (measured in cigarettes per
day)[37], we found pathways related to nicotinic acetylcholine receptors. For macular degenera-
tion, we found lipoprotein and complement system involvement, which both have support in
the literature[38,39]. These examples illustrate that the improvements made by Pascal not only
lead to better performance on benchmarks, but may also have a dramatic impact on the inter-
pretation of GWAS results in practice.

Fig 6. Examples of pathway enrichments comparing Pascal (chi-squared method) to the hypergeometric method.Displayed are results for four
phenotypes showing improvement when using Pascal instead of the hypergeometric (binary) enrichment strategy at the 5% threshold level. Underlying gene
scores were calculated using the summethod. Dashed lines refer to the Bonferroni significance level when correcting for the number of pathways (1077).
Besides from few cancer-related pathways, all pathways highlighted by this analysis have been implied by prior research (see main text). (a) For the trait
insulin resistance, Pascal scored the pathway insulin signal attenuation first, followed by two other trait-relevant pathways (PI3K AKT activation and insulin
receptor signaling), while the hypergeometric test did not find any significant pathways. (b) For smoking amount (number of cigarettes per day), Pascal
revealed three significant pathways related to nicotinic acetylcholine receptors. (c) For osteoporosis, two cancer-related pathways scored significant using
both Pascal and the hypergeometric test, but only Pascal revealed theWNT and Hedgehog signaling pathways, which are known to be involved in osteoblast
biology. (d) Formacular degeneration, Pascal found three significant, trait-relevant pathways related to lipoproteins and the complement system.

doi:10.1371/journal.pcbi.1004714.g006
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Discussion
In this work, we presented a new tool called Pascal (Pathway scoring algorithm) that specifi-
cally addresses both gene scoring and pathway enrichment, making significant advancement
with respect to the state-of-the-art:

First, our gene score calculation combines analytical and numerical solutions to properly
correct for multiple testing on correlated data[21]. While some of these approaches have
already been applied within the rare variant field[20] (typically in a gene-wise fashion) we pro-
vide a streamlined implementation that can run genome-wide analyses without the need for
any Monte Carlo simulations (making it about 100 times faster and more precise than the
widely used software VEGAS).

Second, our pathway scoring integrates individual gene scores without the need for a tune-
able threshold parameter to dichotomize gene scores for binary membership enrichment
analysis (as done for example by MAGENTA). The choice of such a parameter is not straight-
forward and our method usually performs better, regardless of the chosen parameter.

Third, we show that the null distribution of enrichment p-values for pathways that contain
genes in linkage disequilibrium is non-uniform due to an “over-counting” of gene association
signals. This is a potential source of type I error underestimation and our method corrects for
this phenomenon using a gene fusion approach, which considers genes in LD as single entities.

We have extensively evaluated the performance of Pascal for several real data sets. These
comparisons demonstrated the rigorous control of type I error and superior predictive power
in a wide range of trait and power settings in terms of enhanced precision-recall curves.

As an additional global measure of power, we considered the number of significantly
enriched pathways for a large number of GWAS meta-analysis summary statistics. On average,
our approach resulted in higher numbers of significant pathway scores than any binary enrich-
ment strategy. Given its precise type I error control, this provides additional evidence of
increased power for a wide range of traits. Indeed, the elevated rate of putatively involved path-
ways produced by our method not only reflects its higher sensitivity, but also already generates
new hypotheses for further studies.

Taken together, our results demonstrate the superior performance of our approach com-
pared to standard binary enrichment and rank-sum tests. Although methods with tuneable
parameters might yield improved results in a particular setting, it is difficult to predict the opti-
mal parameter choice. Indeed, the optimal parameter depends on sample size, as well as com-
plexity and heritability of the phenotype. Another issue with binary enrichment tests is that the
hypergeometric distribution is discrete, which leads to conservative p-values, especially if the
expected number of successful draws is low. Our pathway scoring approach avoids this prob-
lem. Also, our approach lends itself to naturally extending pathway scoring in case genes have
probabilistic membership in predefined pathways.

Users of our method will still have to make two choices: how to convert SNP p-values to
gene scores (max or sum gene scores), and how to transform gene scores into pathway scores
(empirical or chi-squared). We do not see evidence that one gene scoring method systemati-
cally outperforms the other in the context of our chi-squared pathway scoring method, while
there seems to be a better performance for sum gene score when using the empirical approach
(S8 Fig). To investigate this phenomenon we winsorized p-values (i.e. extreme p-values below
10−12 were set to 10−12) and saw that the max gene score combined with empirical sampling
suffered far less performance loss (S9 Fig). We therefore conclude that the power loss is due to
outlier gene scores. The max gene-scores can lead to very high gene scores for high-powered
studies. In the extreme case one gene might reach scores so high that it precludes detection of
pathways not containing that gene when the empirical sampling strategy is used.
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Future work could attempt to enhance several other aspects of our pathway enrichment
analysis. For example, here we mapped SNPs to genes only based on physical distance, while
potential improvements could be attained by incorporating additional information, such as
eQTL data[40] and functional annotations, to assign weights to different association signals
within a locus. While our approach is amenable to such a weighting scheme, this would poten-
tially require the introduction of tuneable parameters, which we avoided so far. Furthermore,
one may attempt to redefine gene sets based on external unbiased large-scale molecular data,
such as expression data, while so far we only used the established (but likely biased) pathway
collections[4]. To this end, we already integrated Pascal into a pipeline to analyze the connec-
tivity between trait-associated genes across over 400 tissue-specific regulatory, co-expression
and protein-protein interaction networks, further demonstrating its value for network-based
analysis of GWAS results (Marbach et al., submitted).

As an additional caveat, we should mention that Pascal uses the European 1KG sample as
reference population per default. This choice may not be appropriate if the studied sample is
not of European origin. In this case the user is encouraged to supply Pascal with the appropri-
ate reference panel. Also, SNPs with low MAF are by default excluded from the analysis,
because the low number of individuals in the European 1KG sample limits the accuracy of the
LD estimate for low frequency variants. If the user wishes to include lower frequency variants,
the use of a reference sample containing more individuals is recommended.

To conclude, Pascal implements fast and rigorous analytical methods into a single analysis
pipeline tailored for gene scoring and pathway enrichment analysis that can be run on a desk-
top computer. We thus hope that Pascal will be useful to the GWAS community in a range of
applications and play a pivotal role in leveraging the rich information encoded in GWAS
results both for single traits and—given its efficiency and power—in particular also for high-
dimensional molecular traits.

Our tool is available as a single standalone executable java package containing all required
additional data at: http://www2.unil.ch/cbg/index.php?title=Pascal (short URL: http://goo.gl/
t4U5z6).

Materials and Methods

Gene scores
The Pascal gene scoring method consists of the following steps (Fig 1A). First, we assign SNPs
to genes if they are located within a given window around the gene body. For the experiments
reported in this paper, we used windows extending 50kb up and downstream from the gene. A
reference population is required to estimate the correlation structure between Z-scores of SNP
association values. Here, we used the European population of the 1000 Genomes Project (1KG)
[22], which allows us to apply our approach flexibly to summary statistics from diverse panels
(HapMap, 1KG imputed, metaboChip or ImmunoChip).

Under the null hypothesis, it can be shown that the Z-scores of n SNPs in our gene region as
multivariate normal:

z � N nð0;ΣÞ
where S is the pair-wise SNP-by-SNP correlation matrix (see Section ‘Derivation of the sum
score’ for details).

We define our base statistics, the SOCS (Tsum) and MOCS (Tmax), as:

Tsum ¼
Xn

i¼1

z2i
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and

Tmax ¼ maxðz2i Þ;

respectively. It can be shown that Tsum is distributed according to the weighted sum of w21-dis-
tributed random variables:

Tsum �
X

i

liw
2
1

where λi is the i-th eigenvalue of S. Its distribution function can be evaluated numerically (see
Section Algorithmic details for gene-score calculations for details). To estimate the null distri-
bution of Tmax we make use of the fact that

P½Tmax � t� ¼ P½maxðjzijÞ � t� ¼ 1� Pðjzij < t; i ¼ 1; 2; . . . nÞ:

This amounts to a rectangular integration over a multivariate normal, for which an efficient
algorithm is available[41]. The current implementation of this integration is suitable to esti-
mate p-values larger than 10−15. To approximate gene-wise p-values below this limit we multi-
ply the minimum p-value of SNPs in the region with the effective number of tests within the
gene (see Section Algorithmic details for gene-score calculation).

Gene fusion
Pathway analysis methods typically assume that the gene scores used to define pathway enrich-
ment are independent. However, functionally related genes often cluster on the genome and
harbor SNPs in LD, leading to correlated gene scores that violate this assumption. To circum-
vent this problem, we check for a given pathway if any of its genes that cluster physically close
on the chromosome are in LD. If so, for the calculation of the pathway score, we consider a sin-
gle entity (a so-called fusion-gene) consisting of all the SNPs of the gene cluster. We then
replace the genes in the cluster by this fusion-gene and calculate its gene score, but only for the
calculation of the score for this particular pathway. The pathway score is then computed from
the p-values of independent pathway genes and fusion genes that integrate the associational
signals from dependent pathway genes (Fig 1B). In this way, the LD structure of neighbouring
pathway genes is taken into account. Our gene scoring method facilitates this approach because
it is sufficiently fast and scalable for recomputing the scores of all fusion genes.

Pathway scores
For pathway analysis, we propose a parameter free enrichment strategy that does not require
the specification of a gene score threshold, and thus allows weakly associated genes to contrib-
ute to pathway enrichment. The general approach consists of three steps: (1) gene scores are
transformed so that they follow a target distribution, (2) a test statistic is computed by sum-
ming the transformed scores of pathway member genes and fusion-genes, and (3) analytic or
empirical methods are used to evaluate whether the observed test statistic is higher than
expected, i.e., the pathway is enriched for trait-associated genes. We considered two variants of
this approach for pathway scoring (see overview in S1 Fig). The first variant is termed as the
chi-squared method:

1. Gene score p-values are ranked such that the lowest p-value gets the highest rank. The rank
value is then divided by the number of genes plus one to obtain a uniform distribution.

2. Uniform distribution values are transformed by the w21-quantile function to obtain a w21-dis-
tribution of gene scores.
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3. w21–gene scores of a given pathway of sizem are summed and tested against a

w2m-distribution.

The second variant is the empirical samplingmethod:

1. Gene score p-values are directly transformed with the w21-quantile function to obtain new

gene scores: F�1
w2
1
ð1� pÞ.

2. A raw pathway score for a pathway of sizem is computed by summing the transformed
gene scores for all pathway genes.

3. A Monte Carlo estimate of the p-value is obtained by sampling random gene sets of sizem
and calculating the fraction of sets reaching a higher score than gene set of the given
pathway.

We also tested a generalization of the chi-squared method where the inverse w21-quantile
transformation of the p-value ranks was replaced by the inverse Gamma-quantile transforma-
tion with varying shape parameter. For shape parameter of 0.5, the results coincide with results
from the chi-squared method.

For our benchmarking procedures we created a pathway library by combining the results
from KEGG[7,42], REACTOME[9] and BIOCARTA[10] that we downloaded fromMsigDB
[43].

Derivation of the sum-score
Let z be the vector of Z-statistics coming from regressing the phenotype on each of the n SNPs
within a gene-region. By construction, each Z-statistic has zero mean under the null. When
both the outcome trait and the genotypes are standardized, the linear regression Z-statistics are
essentially the scalar products of the genotype and the phenotype vectors. In other words, each
Z-statistic in the region represents a weighted average of the same set of independent, identi-
cally distributed random variables. It can be shown that the correlation between two such mix-
tures, i.e. two Z-statistics, equals to the correlation between the weights, i.e. the correlation
between the corresponding SNPs. Thus, the covariance matrix of z is simply the pairwise SNP-
by-SNP correlation matrix, denoted by S. Furthermore, the central limit theorem ensures that
in case of sufficiently large sample size the Z-statistics are normally distributed. These facts put
together yield that–under the null-hypothesis that no signal is present–z follows a multivariate
normal distribution, z � N nð0;ΣÞ. For a detailed derivation see supplementary material in Xu
et al[44] for example. Note that the between SNP correlation matrix S can be estimated from
external data[17,45].

The eigenvalue decomposition of S is

S ¼ ΓΛΓT ;

where Γ and Λ are the matrices of eigenvectors and eigenvalues, respectively. We see that mul-
tiplying z with the inverse of the square-root of S leads to a vector of independent random var-
iables. Let y be defined as

y ¼ L�1=2GTz;

then

y � N nð0; InÞ:
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It follows that

zTz ¼ zTΓΓTz ¼ yTΛy �
X

i
liw

2
1;

where λi is the i-th eigenvalue of S and w2
1 represents the chi-squared distribution.

Parameter settings
If not stated otherwise, our tool was always used with the following settings. We extended gene
regions by 50kb upstream and downstream for gene scoring. Only SNPs that reached a MAF of
0.05 in European 1KG sample were used. For pathway score calculation, we removed the HLA-
region. The gene-fusion parameter was set to 1Mb, so that when calculating a particular path-
way score, all pathway-member genes less than 1Mb apart were fused for the calculation. We
also removed genes containing more than 3000 SNPs except during speed benchmarking (Fig
2) where all SNPs were used.

Simulation settings for type I error control of the pathway scores
We used genotypes for 379 individuals from the EUR-1KG cohort[22]. Corresponding pheno-
type values were simulated as independent, standard normally distributed variables. Univariate
Z-scores for each of the 2,692,429 tested SNPs were calculated using linear regression. Simula-
tions were repeated 100 times. Since we investigated the impact of gene-fusion, the LD matrix
was estimated from the same data set to avoid any influence that might come from out-of-sam-
ple LD estimation.

Algorithmic details for gene-score calculations
Max-score. The algorithm first tries to use Monte Carlo simulation to derive p-values.

Should the p-value be too small to be estimated within a few Monte Carlo draws, the procedure
makes use of an algorithm for rectangular multivariate normal integration[41]. The implemen-
tation of the integration algorithm that is used is suitable to estimate p-values larger than 10−15.
In addition, this implementation is limited to correlation matrices of size below 1000 due to
numerical stability concerns. Therefore, SNPs that are in very high LD (r2 > 0.98) are pruned
to lower the size of the correlation matrix. If more than 1000 SNPs fall into the gene or the
gene-wise p-value is below 10−15, we approximate the gene score by multiplying the minimal
SNP-wise p-value in the gene region by the effective number of tests. The effective number of
tests is calculated as the minimum number of principal components needed to explain 99.5%
of total variance[46].

Sum-score. The algorithm relies on the Davies algorithm to calculate distribution function
values of weighted sums of independent w21-distributed random variables[47]. In case of con-
vergence problems the Farebrother algorithm is used as a backup[48,49].

Web resources. A stand-alone executable for Pascal can be found at http://www2.unil.ch/
cbg/index.php?title=Pascal. The Pascal source code can be found at https://github.com/
dlampart/Pascal.

Supporting Information
S1 Fig. Overview of pathway scoring strategies in Pascal. Pathway scores are computed from
gene scores. The upper panel shows a typical gene score distribution, where the pathway gene
scores are indicated in black. In order to compute pathway scores, the original gene score p-val-
ues need to be transformed. To this end we use one of two strategies: in our empirical strategy
(lower left panel), gene score p-values are directly transformed with the inverse w21-quantile
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function F�1
w2
1
ð1� pÞ to obtain scores, which are then summed across all pathway genes. A

Monte Carlo estimate of the p-value is then obtained by sampling random gene sets of the
same size and calculating the fraction of sets reaching a higher score than that of the given
pathway. In the chi-squared method (bottom right panel), the gene score p-values are first
ranked such that the lowest p-value ranks highest. The rank values are then divided by the
number of genes plus one to define new p-values (prank) that are distributed uniformly by defi-
nition. From there, we proceed as for the empirical strategy just replacing p by prank. Also,
since the scores are guaranteed to be chi-squared distributed, the computation of their corre-
sponding p-value can be done analytically without any loss in precision.
(PDF)

S2 Fig. Comparison of results for different reference panels. Comparing p-values computed
using LD matrices from the European 1000 Genome reference panel and the CoLaus cohort.
GWAS summary statistics were taken from a large-scale blood-HDL level meta-analysis.
Results are compared for (a) max gene scores; (b) max gene scores excluding gene scores that
were computed with the effective number of tests approximation; and (c) sum gene scores.
There is good concordance in all cases.
(PDF)

S3 Fig. Comparison of max and sum gene scores.We compared max and sum gene scores
directly for a large-scale blood HDL level meta-analysis. Only gene scores up to 10−15 are dis-
played, which truncated 6 genes with very large max scores. R2 between the–log10-transformed
variables is 90%. Max scores tend to be larger when the two methods do not agree.
(PDF)

S4 Fig. Pathway scores for random phenotypes using max gene scores. P-values for 1077
pathways from our pathway library were computed for 100 random phenotypes using the Pas-
cal pipeline using max gene scores and chi-squared pathway integration strategy (a) without
merging of neighbouring genes and (b) with merging of neighbouring genes (gene-fusion strat-
egy). P-value distributions are represented by QQ-plots (upper panels) and histograms (lower
panels). Results are colour-coded according to the fraction of genes in a given pathway that
have a neighbouring gene in the same pathway, i.e. that are located nearby on the genome (dis-
tance<300kb). (a) P-values of pathways that contain genes in LD are strongly inflated without
correction. (b) The gene fusion approach provides well-calibrated p-values independently of
the number of pathway genes in LD.
(PDF)

S5 Fig. Performance of pathway enrichment methods for blood lipid traits and Crohn’s dis-
ease using sum of squares (SOCS) statistics for defining gene scores. Displayed is the mean
area under the precision-recall curve (AUC) for pathways identified using Pascal, a standard
hypergeometric test at various gene score thresholds, and a rank-sum test (vertical bars show
the standard error). We show results for the SOCS gene scores (MOCS gene score results are
similar, see Fig 4 in the main text). a) Results for four blood lipid traits. A reference standard
pathway list was defined as all pathways that show a significance level below 5×10−6, for any of
the tested threshold parameters for hypergeometric tests in the largest study of lipid traits to
date. The significance level of 5×10−6 corresponds to the Bonferroni corrected, genome-wide
significance threshold at the 0.5% level for a single method. For each phenotype, error bars
denote the standard error computed from three independent subsamples of the CoLaus study
(including 1500 individuals each). We see good overall performance of Pascal pathway scores,
whereas results for discrete gene sets vary widely with the particular choice for the threshold
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parameter of hypergeometric test. b) Results for Crohn’s disease using the same approach as in
(a). A reference standard pathway list was defined as all pathways that show a significance level
below 5×10−6 for any of the tested threshold parameters for hypergeometric tests in the largest
study of Crohn’s disease traits to date. We observe that the chi-squared strategy outperforms
all other strategies in this setting, whereas performance of the hypergeometric testing strategy
varies.
(PDF)

S6 Fig. Power of pathway scoring methods across diverse traits and diseases using sum of
squares (SOCS) statistics for defining gene scores. Bar heights represent the number of path-
ways found to be significant after Bonferroni correction. Within a given trait group, results are
aggregated for all tested GWAS studies. 65 GWAS had at least one significant pathway in one
of the tested method. For each GWAS, the raw number of significant pathways was divided by
the number of pathways found by the best performing method. This was done to avoid that a
few studies with many emerging pathways dominate. We show results for the SOCS gene
scores (MOCS gene score results are similar, see Fig 5). (a) Results are aggregated over all trait
groups. (b) Results for different trait groups.
(PDF)

S7 Fig. Power of pathway scoring methods stratified with respect to sample size. Only
GWAS studies for quantitative traits were used. Top panels (a,b) show results for max gene
scores and bottom panels (c,d) show results for sum gene scores. (a,c) Results for all studies
where the number of individuals was below 50,000. (b,d) Results for studies with sample sizes
above 50,000. We see power gains in all cases. The improvements are particularly pronounced
in lower powered GWAS.
(PDF)

S8 Fig. Power comparison max and sum gene scores for pathway analysis. Bar heights repre-
sent the number of pathways found to be significant after Bonferroni correction. Within a
given trait group, results are aggregated for all tested GWAS studies. For each GWAS, the raw
number of significant pathways was divided by the number of pathways found by the best per-
forming method. Results for SOCS and MOCS as well as the chi-square and empirical pathway
scores are displayed. We observe a drop in performance for the combination of MOCS gene
scores with empirical pathway scores.
(PDF)

S9 Fig. Power analysis for max gene scores with capped gene scores. Bar heights represent
the number of pathways found to be significant after Bonferroni correction. Within a given
trait group, results are aggregated for all tested GWAS studies. For each GWAS, the raw num-
ber of significant pathways was divided by the number of pathways found by the best perform-
ing method. Max gene scores using empirical sampling pathway scores (emp) and chi-squared
pathway scores (chi2) are compared to max gene scores combined with empirical sampling,
where outlier gene scores (p-value<10−12) are set to 10−12 (empCapped). We chose the cap-
ping value such that the maximum–log10 p-value was roughly in the middle between genome
wide significance threshold (8) and the maximum value that can be calculated for the sum sta-
tistic (15).
(PDF)

S10 Fig. Power of Pascal pathway scoring methods compared to aggregated hypergeomet-
ric scores (MOCS). The same data as in Fig 5 is plotted here. However, instead of comparing
Pascal pathway scoring methods with results for all hypergeometric threshold separately, we
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defined a new aggregated pathway score that picks the optimal threshold for each pathway
over a range of hypergeometric threshold and correcting for the multiple number of tests by
Bonferroni correction. Results for different sets of thresholds are displayed. Set1 refers to the
complete set of thresholds (i.e.: 25%, 15%, 10%, 5%, 2%, 1%, 0.25%, 0.1%). Set2 refers to a set
with thresholds more ‘spread out’ (i.e.: 25%, 5%, 1%, 0.25). We see that Pascal has better perfor-
mance, except when combining the ‘empirical sampling’ pathway scoring method with max
gene scores.
(PDF)

S11 Fig. Power of Pascal pathway scoring methods compared to aggregated hypergeomet-
ric scores (SOCS). The same data as in Fig 5 is plotted here. However, instead of comparing
Pascal pathway scoring methods with results for all hypergeometric threshold separately, we
defined a new aggregated pathway score that picks the optimal threshold for each pathway
over a range of hypergeometric threshold and correcting for the multiple number of tests by
Bonferroni correction. Results for different sets of thresholds are displayed. Set1 refers to the
complete set of thresholds (i.e.: 25%, 15%, 10%, 5%, 2%, 1%, 0.25%, 0.1%). Set2 refers to a set
with thresholds more ‘spread out’ (i.e.: 25%, 5%, 1%, 0.25). We see that Pascal has better perfor-
mance.
(PDF)

S12 Fig. Power of gamma distribution for pathway analysis (MOCS). Bar heights represent
the number of pathways found to be significant after Bonferroni correction. Different bars sig-
nify results for a different gamma shape parameter value. For each GWAS, the raw number of
significant pathways was divided by the number of pathways found by the best performing
method. Upper left panel ‘All’ refers to all traits stacked. We present here MOCS gene score
based results. 52 GWAS showed at least one significant pathway in one of the evaluated scenar-
ios.
(PDF)

S13 Fig. Power of gamma distribution for pathway analysis (SOCS). Bar heights represent
the number of pathways found to be significant after Bonferroni correction. Different bars sig-
nify results for a different gamma shape parameter value. For each GWAS, the raw number of
significant pathways was divided by the number of pathways found by the best performing
method. Upper left panel ‘All’ refers to all traits stacked. We present here MOCS gene score
based results. 60 GWAS showed at least one significant pathway in one of the evaluated scenar-
ios.
(PDF)

S14 Fig. Distribution of pathway scores for simulated phenotypes influenced by causal
SNPs in coding regions.We first sampled 50 random SNPs assayed in CoLaus in or close to
coding regions. Using the genotypes of the CoLaus study we then simulated phenotypes by
adding up the sampled 50 SNPs with a normally distributed effect size with a variance of 0.04
plus Gaussian noise (with a variance of 1). We then ran GWAS for the simulated phenotype to
obtain association summary statistics. The experiment was repeated 50 times. On average, this
resulted in 18 independent, genome-wide significant gene score hits for each simulated GWAS
(for the MOCS statistic). We applied Pascal to compute pathway scores for each of the 50 sim-
ulated GWAS. We found that the resulting pathway scores are well calibrated, i.e., they do not
show inflation or deflation regardless of the setting used (max or sum gene score, chi2 or
empirical enrichment test). The QQ-plots show the median value for each quantile across the
50 simulated GWAS. The shaded areas correspond to 95% confidence intervals for the median
(estimated from 2000 bootstrap samples of size 50, with replacements). Similar results were
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obtained when varying the type and number of simulated causal SNPs and their effect size.
(PDF)

S15 Fig. Distribution of pathway scores for simulated phenotype influenced by causal
SNPs in coding and non-coding regions. These QQ-plots correspond to an analysis equiva-
lent to that of S14 Fig but with 50 SNPs chosen uniformly from all SNPs assayed in CoLaus,
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3. Identifying chromatin accessibility regulators

In prokaryotes, binding of transcription factors to some DNA region is driven mainly by two

factors: The affinity of the DNA to the transcription factor and the abundance of the transcription

factor. In eukaryotes additional layers of regulation occur that complicate this picture. Most of

the DNA is compacted and therefore not accessible to TF binding. Consequently, just using the

presence of binding motif instance in a genomic region is typically poor predictor of transcription

factor binding even if the transcription factor is known to be expressed. As mentioned in the

introduction, genome-wide DNase1 assays, allow to identify regions of open (not compacted)

chromatin. These regions are typically accessible to TF binding. Together with transcription

factor motif information, open chromatin information allows to build predictors of TF binding

that are much better than using motif instances alone. However, this does not tell us how the

chromatin was opened in the first place and what leads it to be close up again, i.e. it does not tell

us whether transcription factor binding is the cause or the consequence of open chromatin. One

popular model is that members of a certain class of TFs called pioneer factors are indeed capable

of binding motif instances in closed chromatin and are instrumental in driving this transition.

Consequently these factors are thought to play a major role in cell type transitioning. From the

above, we see that in prokaryotes, TF binding and TF expression is tightly linked, whereas in

eukaryotes this relationship is further regulated through chromatin compaction and potentially

further regulatory mechanism. However, one can surmise that for a special class of TFs the

relationship still holds and these factors are instrumental in transitioning between open and

closed chromatin and also in turn driving cells into different states. In this chapter, we apply

this rationale to datasets on open chromatin and gene expression provided by the ENCODE

project to determine, which transcription factors drive transitions between open and closed

states. The signature of such factor is the correlation between expression values and average

open chromatin state at its motif across the same set of cell lines. Our method assesses this

correlation while accounting for the fact that some tested cell lines are more related than others.
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We find many transcription factors showing evidence of driving transitions and high proportion

of these transcription factors are known pioneer factors, i.e. play a role in opening up closed

chromatin.
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Abstract

To better understand genome regulation, it is important to uncover the role of transcription

factors in the process of chromatin structure establishment and maintenance. Here we pres-

ent a data-driven approach to systematically characterise transcription factors that are rele-

vant for this process. Our method uses a linear mixed modelling approach to combine

datasets of transcription factor binding motif enrichments in open chromatin and gene

expression across the same set of cell lines. Applying this approach to the ENCODE data-

set, we confirm already known and imply numerous novel transcription factors that play a

role in the establishment or maintenance of open chromatin. In particular, our approach

rediscovers many factors that have been annotated as pioneer factors.

Author Summary

Transcription factor binding occurs mainly in regions of open chromatin. For many tran-

scription factors, it is unclear whether binding is the cause or the consequence of open

chromatin. Here, we used datasets on open chromatin and gene expression provided by

the ENCODE project to predict which transcription factors drive transitions between

open and closed states. A signature of such a factor is that its expression values are corre-

lated to chromatin accessibility at its motif across the same set of cell lines. Our method

assesses this correlation while accounting for the fact that some tested cell lines are more

related than others. We find many transcription factors showing evidence of driving tran-

sitions and a high proportion of these transcription factors are known pioneer factors, i.e.,

they play a role in opening up closed chromatin.
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Introduction

In higher eukaryotes, certain sequence-specific transcription factors (TFs), which we will call

chromatin accessibility regulators (CARs), are responsible for establishing and maintaining

open chromatin configurations [1,2]. CARs therefore play a fundamental role in transcrip-

tional regulation, because open chromatin configurations are necessary for additional TFs to

bind and transcriptionally activate target genes.

CARs that can bind closed chromatin and open up chromatin are called pioneer TFs [3].

The comprehensive identification of pioneer TFs with high confidence still needs further

research. While some pioneer TFs are well studied, others have only preliminary evidence,

or are only computationally predicted. Some well studied examples include FOXA1, whose

winged helix domains disrupt DNA–histone contacts, and POU5F1, SOX2 and KLF4, which

are used in production of induced pluripotent stem cells (iPSC) [4,5]. Further pioneer TFs

such as ASCL1, SPI1 and the GATA factors are used in transdifferentiation, and PAX7 plays a

role in pituitary melanotrope development [5–7]. However, not all pioneer TFs are involved in

development and cell type conversions: the CLOCK-BMAL1heterodimer is part of the circa-

dian clock and the tumour suppressor TP53 is involved in the cell cycle, while its close homo-

log TP63 is involved in skin development [8–10].

Recent studies suggest that maintaining open chromatin is a dynamic process with pioneer

and other TFs binding and unbinding rapidly and continually recruiting additional chromatin

remodelling factors that are not sequence specific [2,11,12]. TFs vary in their ability to recruit

particular remodelling factors, for example the TFs STAT5A/B andMYOGmotifs enrich in

binding sites of the SWI/SNF remodelling complex but not in ISWI remodelling complex bind-

ing sites, whereas YY1motifs were found exclusively in ISWI complex binding sites [2]. A nat-

ural question then is which TFs are relevant to maintain open chromatin and can therefore be

called CARs.

One approach to test whether a given TF is a CAR is to perform a knock-down of this TF

followed by an open chromatin assay to see whether chromatin regions containing the respec-

tive motif preferentially change from open to closed [13]. However, this approach is very time

consuming because it requires a separate knock-down experiment for each TF. To define pio-

neer TFs specifically, one can check if the TF has the ability to bind nucleosomal DNA in vitro
and validate the results in vivo [14]. Recently, a computational method called Protein interac-
tion Quantification (PIQ) has been published that aims to recover pioneer TFs by estimating

both TF binding and ensuing chromatin changes from the same Dnase1 hypersensitivity

(DHS) experiments [15]. However, PIQ did not predict some well known pioneer TFs such as

FOXA1, SOX2 and POU5F1 showing that further improvements are possible [3].

Here we introduce a data driven approach to predict CARs. Our approach relies on the

joint analysis of a large collection of DHS and coordinated gene expression data to estimate TF

activity independently of DHS data. We first define themotif accessibility score for a given TF

for each cell line based on the enrichment of its binding motif in regions with open chromatin.

We then associate these scores with gene expression values across all available cell lines. This

should allow us to predict which factors have a role either in establishment or maintenance of

open chromatin, although it will not reveal which mode predominates (to determine this, fur-

ther experiments will be necessary).

We used our approach on data generated as part of the ENCODE project [16,17]. This

uncovered numerous TFs whose motif accessibility is robustly associated with mRNA expres-

sion across 109 cell lines suggesting either a role in the establishment or maintenance of open

chromatin. Also, we see that our uncovered TFs are strongly enriched for known pioneer TFs.

This suggests that the TFs we identified are good candidates for CARs.
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Results

A linear mixed model approach to predict chromatin accessibility

regulators

Our approach rests on the assumption that the activity of a CAR is correlated with the amount

of open chromatin in the vicinity of its potential binding sites. Both quantities can be estimated

from genomic data: For the CAR activity we use its gene expression level as a proxy for the

active protein concentration. The effect of this activity is approximated by the open chromatin

fraction of the genome around its binding motif instances (Fig 1). Specifically, we count the

number of instances of the binding motif of a given TF in the open chromatin fraction of the

genome to define a motif accessibility score. A naive approach would be to use standard linear

regression between the motif accessibility score and the expression level of a given TF to iden-

tify CAR candidates. Yet, this method has an elevated type I error rate, as it does not account

for confounding due to cell line relatedness or batch effects. To overcome this limitation, we

use here a linear mixed model (LMM) framework, where a random effect accounts for such

confounding factors (which has been shown to work well in genetic association studies [18–

20]). For a given motif, we use the linear mixed model framework to find the association p-

value between its accessibility score and the measured expression of the TF gene. We then

compare this p-value to the p-values calculated using the measured expression of each of the

other genes as regressors. If confounding is controlled for, most association p-values should

follow a uniform [0,1] distribution. Furthermore, if the TF is a CAR, its p-value should be low

Fig 1. Mixed model approach for identification of chromatin accessibility regulators. For a TF binding motif, we search for all its instances in the

genome. For each cell line, we calculate the accessibility score by counting how many motif instances are found in the open chromatin fraction of the genome.

After further normalization, these accessibility scores are compared to gene expression values for all genes via regression (Methods). To account for

confounding, we use mixed model regression, where an additional random component is used with the same covariance structure as the gene expression

matrix. To be considered a CAR candidate, motif accessibility of a TF must show strong association (low p-value) with the expression of the corresponding TF

gene compared to other genes. The gene-level CAR rank of a TF is defined as the rank of its association p-value among the p-values for all genes.

doi:10.1371/journal.pcbi.1005311.g001
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compared to other genes. We thus define the CAR rank of a TF as the rank of its association p-

value among all genes (see example in Fig 1). Low CAR ranks indicate strong association

between motif accessibility and TF expression, suggesting that the TF is a CAR.

Specifically, we used DHS data as well as mRNA expression data across 109 cell lines. To

calculate motif accessibility scores we used 325 TF binding motifs from the HOCOMOCO

database [21]. As expected, we observed severe confounding when using standard linear

regression, which was controlled using linear mixed effect model regression (Fig 2).

ChIP-seq shows widespread binding of homologous TFs to each other’s

motifs

Our method relies on TF motif accessibility and expression data to predict CARs. However,

evolutionarily related TFs have similar binding motifs [23]. Motif accessibility may therefore

associate not only with the expression of the annotated TF, but also with the expression of a

homologous TF with a similar motif. Therefore, we mapped TFs into subfamilies using the

homology-based clustering TFClass [24]. The 1,557 TFs were grouped into 397 subfamilies.

Using a collection of 329 ChIP-seq profiles from ENCODE, we saw strong enrichment of TF

motifs in ChIP-seq peaks of the TF as well as its subfamily members (Fig 3). We therefore con-

sider any strong association between a motif and a member of the subfamily of its TF as a sig-

nal for a CAR.

Comprehensive prediction of chromatin accessibility regulators

Next, we used the linear mixed model strategy to predict CARs among TFs. We used 325

motifs from HOCOMOCO (after filtering motifs showing low overlap with DHS signal, see

Methods). For each motif, we used a linear mixed effect model to compute its association with

Fig 2. Association between motif accessibility and mRNA expression for the putative chromatin accessibility regulator EBF1. Three different

regression models (a-c) were used to compute association p-values between the accessibility of a given TF motif (here EBF1) and mRNA expression for

each of the assayed 15K protein-coding genes. Results are visualized as qq-plots showing the -log10 transformed p-values. (a) Association p-values obtained

using standard linear regression. Due to confounding, p-values are strongly inflated and EBF1 motif accessibility does not show strong association with EBF1

expression compared to other genes. (b) The linear mixed model (LMM) successfully corrects for confounding, with most p-values following the null distribution

as expected. The association between EBF1 motif accessibility and EBF1 expression now ranks second among all genes and first among all TFs, although it

does not pass the Bonferroni significance threshold. (c) Additionally controlling for the first principal component of the motif accessibility matrix corrects for a

strong batch effect (Methods), which further improves the signal. Using this approach, EBF1 motif accessibility showed the strongest association precisely with

EBF1 expression (i.e., the gene-level CAR rank equals one), suggesting that EBF1 may be a CAR, in agreement with the literature [22]. As a further illustration

for the improvements achieved using the mixed model approach S1 Fig shows the analogous plot for FOXA1, the first discovered pioneer factor [4,5].

doi:10.1371/journal.pcbi.1005311.g002
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mRNA expression for 1,188 known TFs. Due to the redundancy of motifs within the same TF

subfamily (see preceding section), we also computed CAR ranks at the level of TF subfamilies.

To this end, we retained the most significant association p-value within each subfamily cor-

rected for subfamily size (see Methods and S2 Fig). Under the null model (when TFs are not

CARs), CAR ranks should be uniformly distributed across all subfamilies, so that deviation

from uniformity indicates presence of CARs.

We found strong enrichment of low CAR ranks at the subfamily level (Fig 4, S1 Table). The

enrichment was stronger when using mixed modelling instead of standard linear regression,

underlining again the importance of proper control for confounding factors. When looking at

the threshold that leads to 10-fold enrichment of low CAR ranks compared to uniformity (i.e.,

10% false discovery rate), we found that 25% of all subfamilies have a CAR rank that falls

below that threshold. These results show that many TFs do have an impact on the open chro-

matin fraction and can be defined as CARs.

To validate our results based on the ENCODE dataset, we applied our CAR calling strategy

to data from another large scale effort, the ROADMAP Epigenomics consortium [26]. Co-

ordinated open chromatin and expression data have been released for 56 samples. For 29 of

these samples, open chromatin was assayed directly. For the other samples, open chromatin

Fig 3. Enrichment of bound motifs for a given TF and its subfamily members. All TF ChIP-seq

experiments from the Myers-lab released as part of the ENCODE project were downloaded. For each TF

ChIP-seq experiment we also obtained the corresponding TF motif from the HOCOMOCO database [25]. For

a given ChIP-seq experiment, we looked at the processed DHS peaks in the same cell line. We partitioned

DHS peaks into two groups depending on whether they were bound by the TF (overlap with a ChIP-seq peak)

or not. We then calculated both the fraction of bound and unbound DHS peaks containing a given motif. The

enrichment of bound motifs was defined as the ratio of these two fractions. Results are shown from left to right

for: the motifs of the TFs that were assayed in the corresponding ChIP-seq experiments (Correct TF motifs),

motifs of other TFs from the same subfamily (TF subfamily motifs), and randomly sampled motifs (Random

motifs). During sampling, each motif was sampled as often as the number of ChiP-seq experiment available

for that motif. We see strong enrichment of TF motifs in ChIP-seq peaks of the TF as well as its subfamily

members.

doi:10.1371/journal.pcbi.1005311.g003

Revealing Chromatin State Regulator via a Genome-Wide Association Approach

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005311 January 24, 2017 5 / 19



information was imputed from other available epigenetic measurements. The ROADMAP col-

lection is derived mainly from human tissue samples and primary cell lines (whereas ENCODE

is biased towards immortalized cell lines). Further differences are that expression was measured

using RNA sequencing. We applied our method to these datasets and compared results to the

results derived in ENCODE. Most subfamilies predicted to be CARs in ROADMAP were re-

covered in ENCODE (see S3 Fig). Furthermore, while subfamilies predicted to be CARs in

ENCODE showed enrichment for low CAR ranks in ROADMAP, subfamilies not predicted to

be CARs in ENCODE did not show enrichment for low CAR ranks in ROADMAP (see S4 Fig).

These results are concordant with both datasets, pointing toward the same factors being CARs

and the higher power of the ENCODE data to detect CARs, potentially due to higher sample

size, reliance on direct measurements of DHS and lower fraction of complex tissue samples.

To evaluate the impact of the motif search strategy, we investigated the robustness of the

pipeline with respect to the motif search. Results were stable and power was only affected by

varying motif cutoffs (S5 Fig, S6 Fig). Additionally, we investigated whether choosing the cut-

off based on ChIP-seq data changed results. For each TF with available ChIP-seq data, we used

an individual cutoff such that all called binding sites have fixed true positive rate (using the

ChIP-seq data as the ground truth). Again, results were stable no matter how the cutoff was

assigned (S7 Fig and S8 Fig).

Pioneer TF subfamilies enrich in predicted chromatin accessibility

regulators

As mentioned above, one well-defined class of CARs are pioneer TFs that can bind and open

closed chromatin. Therefore, subfamilies annotated to known pioneer TFs should have low

Fig 4. Method comparison across all subfamilies. Cumulative distribution of CAR ranks at the subfamily

level for the 147 tested subfamilies using the three different modelling strategies: ‘standard linear regression’,

‘mixed model regression’ and ‘mixed model PC corrected’ (see legend of Fig 2 and Methods). We see strong

enrichment of low ranks implying deviation from the null hypothesis. The linear mixed modelling increases

enrichment of low CAR ranks.

doi:10.1371/journal.pcbi.1005311.g004
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CAR ranks. To test enrichment formally, we used a recently published list of established pioneer

TF subfamilies (Methods) [3]. We asked whether these subfamilies were predicted as CARs

using our methodology. For eight subfamilies in the list for which we had the motif, six showed

at least ten-fold enrichment (i.e. having a CAR rank at the subfamily level below ten) (Fig 5). To

assess significance, we used the Wilcoxon ranksum test leading to a p-value of 0.0087. When

using the hypergeometric test with 10-fold enrichment cutoff (Fig 4), the p-value was even

lower (P = 0.0016). Because our approach to uncover CARs is biased towards TFs with large

mRNA expression variability (S9 Fig), we sought to control for potential confounding intro-

duced by the fact that the tested pioneer factors might also have large expression variability.

Controlling for expression variability only slightly increased the p-values from 0.0087 to 0.024

and from 0.0016 to 0.0027, respectively.

Downstream genes can show strong associations for activating

chromatin accessibility regulators

It is known that the activity of some TFs is mainly regulated by the level of their cofactors

rather than their own protein concentration [27]. These TFs are often present in their inactive

form in the cell, which can then be quickly activated upon binding of the cofactor. This allows

the cell to rapidly respond to environmental cues. An example of this phenomenon are steroid

receptor TFs, which initiate transcriptional changes upon steroid hormone binding [28]. In

such cases, one would not expect a strong association between the mRNA expression level of a

Fig 5. Known pioneer TF subfamilies strongly enrich in predicted chromatin accessibility regulators.

Shown in grey is a scaled cumulative distribution plot for subfamily level CAR ranks of subfamilies not

annotated as pioneers in Iwafuchi-Doi et al. [3]. In black, we see the cumulative number of pioneer subfamilies

that reached at least a given CAR rank. Six out of eight subfamilies show a low CAR rank, which is more than

three times as many as one would expect on average when sampling from non-pioneer subfamilies.

doi:10.1371/journal.pcbi.1005311.g005
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receptor TF and its motif accessibility because mRNA expression would rather be correlated to

the amounts of inactive TF protein in the cell, while TF activity should depend on the strength

of the environmental stimulus. However, if the TF strongly activates mRNA expression of

other genes, it might be possible to predict whether the TF is a chromatin accessibility regula-

tor by looking at associations between the motif accessibility of the TF and the expression of its

downstream genes.

To explore this strategy, we looked at associations across all genes and motifs that were

below the overall Bonferroni threshold (9.6 x 10−9). For five out of 13 such motifs, members of

the corresponding subfamily had top scores. In four further cases, a gene from a TF subfamily

was ranked close to the top that was highly related (i.e. part of the same family [24]) to the

motifs’ corresponding subfamily but not identical with it. This suggests that the TF subfamily

clustering was too fine-grained in these cases. Surprisingly, for one motif, the significant asso-

ciation had a negative effect size (the negative association was observed between NUDT11

and the motif for RARG), which might reflect an indirect effect. The remaining three motifs

were all annotated to the GR-like receptors, which encompass four TFs (AR, NR3C1, NR3C2,

PGR). The accessibilities of these three motifs all associated strongly with the expression of

three genes (FKBP5, ZBTB1, TSC22D3). When using the STRING database to check for func-

tional links between these genes, all genes had links to a GR-like receptor (Fig 6) [29]. In fact,

all three genes are known to be glucocorticoid response genes. These results suggest that some

GR-like receptors might act as a CAR. For strongly activating factors, the power of the analysis

can therefore be strengthened by incorporating results from downstream genes.

Fig 6. Strong associations between GR-like receptor motif and glucocorticoid response genes. a) Association results for motif accessibility of the TF

NR3C1, which belongs to the GR-like receptor subfamily, and mRNA expression across all genes. -Log10 transformed p-values are shown in a QQ-plot.

NR3C1 motif accessibility shows strong association with mRNA expression of three glucocorticoid response genes (orange), but only weak association with

expression of NR3C1 and other GR-like receptor TFs (green). In this example, motif accessibility is strongly associated with downstream gene expression,

but only weakly with expression of the TF itself. b) The network shows functional relationships among the GR-like receptor TFs (green) and the three most

strongly associated genes (orange), which are all glucocorticoid response genes. The strength of links shows confidence in functional relationship given in the

STRING database. We see numerous links between the downstream glucocorticoid response genes and the GR-like receptor TFs in the STRING database,

confirming their functional relatedness, where NR3C1 has the most links to associated genes.

doi:10.1371/journal.pcbi.1005311.g006
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Discussion

It is well known that TF binding correlates with open chromatin [17]. However, for many TFs,

it is not clear whether their binding is the cause or the consequence of open chromatin. Here,

we used datasets provided by ENCODE to predict chromatin accessibility regulator candi-

dates, i.e., TFs that are able to establish or maintain open chromatin configurations. We

devised an approach using linear mixed models to deal with the extensive confounding that

one encounters in genome-wide data from heterogeneous sources. Our method uncovers a set

of TFs whose expression is associated with their motif accessibility, suggesting a role in mainte-

nance of an open chromatin configuration.

Potentially our methodology could be extended to histone modification data instead of

DHS data. We applied our method to H3K4me3 data for cell-lines but did not see strong

enrichment (S10 Fig).

Because pioneer TFs are by definition CARs, our predictions should be enriched for known

pioneer TFs. We tested this formally for a list of pioneer TF subfamilies recently published by

Iwafuchi-Doi et al. [3]. Six out of eight pioneer subfamilies were indeed predicted by our method

to be CARs: FOXA1,GATA6, KLF4, SOX2, SPI1 and TP63were the pioneer TFs driving these

signals. The two subfamilies not predicted to be CARs were POU5 and CLOCK. SOX2was the

gene most strongly associated with POU5F1 motif accessibility with a low p-value of 5 x 10−6

(S11 Fig). POU5F1 acts together with SOX2 to maintain undifferentiated states [30]. The two

TFs also physically interact and a recent study proposed a model where SOX2 guides POU5F1 to

target sites [31]. The CLOCK subfamily members have a role in the cell cycle, acting as TFs for

the circadian pacemakers [32]. It is possible that average mRNA expression of these TFs in

unsynchronized cell lines is not a meaningful measure for their activity. In addition to the eight

aforementioned factors we found further factors discussed in the pioneer TF literature such as

TFAP2C, EBF1,CEBPD/B,OTX2,NFKB and STAT5 (Table 1) [22,33–37]. In addition, when

combining our predictions with those from the PIQ method[15], we observed substantial perfor-

mance improvement compared to either method alone (S12 Fig).

One limitation of our approach is that it cannot discern between open chromatin establish-

ing TFs and open chromatin maintaining TFs. A way to discern the relative roles could be to

Table 1. Predicted pioneer factors. Shown are the CAR ranks of factor subfamilies that were discussed in the main text. These included subfamilies

labelled pioneers in [3] and consequently used as a member of the true positive set used in Fig 5 (these subfamilies are set in bold face). Additionally, subfami-

lies are shown that are predicted to be CARs and for which there exist limited literature evidence for pioneer activity. For each subfamily, the top-scoring gene

among all genes in the subfamily is mentioned. A complete table for all tested subfamilies is given in S1 Table.

Subfamily name Top gene in subfamily CAR rank (subfamily level) Pioneer evidence

C/EBP CEBPD 1 [34]

AP-2 TFAP2C 1 [3,33]

Krüppel-like factors KLF4 1 [3,4]

FOXA FOXA1 1 [3–5]

Group B SOX2 1 [3,4]

NF-kappaB p65 subunit-like factors RELB 1 [38]

Early B-Cell Factor-related factors EBF1 1 [22]

Two zinc-finger GATA factors GATA6 2 [3,5]

STAT factors STAT5B 2 [37]

OTX OTX2 3 [35]

Spi-like factors SPI1 5 [1,7]

Arnt-like factors ARNTL2 76 [3]

POU5 (Oct-3/4-like factors) POU5F1 197 [3,4]

doi:10.1371/journal.pcbi.1005311.t001
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perform overexpression and knock-down experiments followed by an open chromatin assay

for the TFs found by our approach. While this is out of the scope for the current study, we

hope that our method can help in prioritizing such experimental efforts.

Further, by its very nature, our methodology cannot with certainty resolve between TFs

that belong to the same sub-family. It shares this weakness with almost any method relying on

TF motifs. The procedure associates the expression values of each TF separately to the motif

accessibilities and one strong association is enough to lead to low CAR ranks for the subfamily.

The TF in the subfamily whose expression is the most strongly associated to one of the subfam-

ily motif is naturally also the strongest candidate for CAR activity. (This information is given

in Table 1 as well as in S1 Table). However, if the expression values of the subfamily members

are also strongly correlated, we cannot be sure which ones are driving the association.

It is also clear that multiple conditions have to be met for the approach to work. First and

foremost, mRNA expression has to be correlated sufficiently with protein concentration of the

CAR. Typically, only a fraction of the variation in protein concentration can be explained by

variation in mRNA abundances [39]. Nevertheless, better power of our approach can always

be achieved by increasing sample size, as long as there is at least some correlation. Further, it is

reasonable to assume that our approach will perform better on TFs with a large dynamic range

across cell types. This seems indeed to be the case, since most TFs predicted to be CARs tend

to have large mRNA expression variance (S9 Fig). Sampling more and diverse cell lines could

address this issue, because it should increase the dynamic range.

This restriction would also suggest that our approach is biased against cell type specific TFs.

However, when looking at tissue expression patterns (www.gtexportal.org [40]) of the pre-

dicted CARs, we found both: TFs that showed expression in a large proportion of cell lines

such as EBF1 and STAT5B as well as quite specific TFs. Examples of specific CARs are SPI1,

which only showed expression in whole blood, and OTX2, which only showed expression in

some brain regions. It is possible that the use of immortalized cell lines leads to larger gene

expression variability in the sample facilitating the detection of such tissue-specific CARs.

For some TFs, activity mainly depends on cofactors. For example, for steroid hormone

receptors, hormone molecules activate a pool of inactive TF already present in the cell. In such

cases measuring TF activity with gene expression measures can be misleading and one would

not expect an association between the expression of a TF and the accessibility of its motif. For

example, for the accessibility score of NR3C1, we saw much stronger associations with the

expression levels of a small set of glucocorticoid response genes (ZBTB16, FKBP5, TSC22D3)
than that of NRC1 itself [41–43]. This difference in signal strength is in line with the activity of

NR3C1 being mainly regulated by glucocorticoid binding and not NR3C1 gene expression lev-

els. Of note, NR3C1was reported to have pioneer activity [1].

In summary, we exploited the rich data source of ENCODE to find TFs whose mRNA

expression levels are directly linked to the open chromatin fraction of the genome. Although

our approach in its current form is able to find TFs with strong associations, it is also clear that

increasing power by adding more cell lines would find more TFs with an association. From the

current data, we would estimate that at least 25% of TF subfamilies show a low CAR rank at

the subfamily level, suggesting that the regulation of chromatin accessibility is a pervasive phe-

nomenon amongst TFs.

Materials and Methods

Motif accessibility score creation

Annotated open chromatin (FDR<0.01) peaks were downloaded from the EBI website

(see URL section) and trimmed to the top 90,000 peaks for each cell line. 426 motifs were
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downloaded from the HOCOMOCO website and aligned to the reference genome with FIMO

[21,44]. Motif occurrences with a p-value below 10−5 were kept for processing. For each motif,

we counted the number of DHS peaks overlapping a motif instance in a given cell line using

bedops [45]. Results were filtered to motifs that were present in at least 150 DHS peaks on aver-

age, leaving 344 motifs. For a given motif, we quantile-normalized the values to follow a normal

distribution yielding the raw motif-activity matrix with rows corresponding to motifs and col-

umns corresponding to cell lines. The resulting matrix was iteratively scaled to zero mean and

unit standard deviation, first row-wise (across cell lines) then column-wise, until convergence

[46,47]. Next, we saw that the cell-line wise covariance matrix had a very large first eigenvalue,

with a corresponding eigenvector that did not track well the different tissue origins of the vari-

ous cell lines. Assuming that this leading principal component largely captured batch effects, we

chose to regress out the first eigenvector from each row of the matrix, leading to better agree-

ment between expression and motif accessibility correlation matrices (S13 Fig). After this step,

we quantile-normalized the data per motif to follow a normal distribution to ensure that the

assumptions of the applied statistical model were met. To map motifs to TFs and TF subfami-

lies, we used the TfClass hierarchy [24]. Of the 344 tested motifs, we mapped 330 to a TF and its

subfamily. Of these, 325 had expression data available for a subfamily member.

Expression matrix creation

We downloaded raw expression microarray data from the GEO repository (GSE1909 and

GSE15805). (ENCODE micro-array data was used instead of RNA-seq because to-date more

cell lines with DHS information have also RNA expression measured by micro-array than

RNA-seq). We background corrected and normalized using the RMA-algorithm implemented

in the oligo package to process all arrays for which DHS data was also available [48,49]. Only

the core set data was used. The data were summarized to gene level [50]. Only results that had

a one-to-one mapping between genes and gene probesets were kept. 15,119 genes could be

annotated in this fashion. Because for many cell lines more than one experiment was con-

ducted, we summarized multiple plates by averaging gene results across experiments. The

resulting matrix was iteratively scaled to zero mean and unit standard deviation, first row-wise

(across cell lines) then column-wise, until convergence [46,47].

Linear mixed effect model

The model proposed is

y ¼ xib
i
þ d

i
þ εi:

Where y is a vector of motif accessibility scores across n cell lines, xi is the expression vector of

gene, i, βi is the effect size of gene i:

εi� Nnð0; s
2

r InÞ

and

d
i
� Nnð0; s

2

eCeÞ:

Ce is the covariance matrix of the n x p expression matrix:

Ce ¼
1

p

Xp

i¼1

xix
T
i :
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For each gene i, βi, σr, and σe are estimated via maximum likelihood and the null hypothesis

βi = 0 is tested via a likelihood ratio test [18,20]. More details on this procedure are given in S1

Appendix.

Calculating CAR ranks at the subfamily level

For each motif in HOCOMOCO, we used the mixed model association results across all 1,188

known TFs for which we had mRNA expression data [21]. This yielded a matrix of association

p-values for all pairs of 325 motifs (belonging to 147 TFClass subfamilies) and 1188 TFs (be-

longing to 368 TFClass subfamilies). Due to the fact that homologous TFs have similar binding

motifs, we sought to aggregate results into CAR ranks at the subfamily level (S1 Fig). To

achieve this, we reduced the 325 x 1188 motif-TF association matrix to a 147 x 368 matrix of

associations between motif subfamilies and TF subfamilies. In practice, for each motif subfam-

ily-TF subfamily pair we collected the most significant p-value among all motif-TF pairs in

these subfamilies and multiplied it with the total number of such motif-TF pairs to correct for

subfamily size. Finally, for each motif subfamily, we ranked the adjusted p-values across all TF

subfamilies and defined its CAR rank as the rank of its corresponding TF subfamily.

Calculating pioneer subfamily enrichment

To get an external annotation of pioneer factors, we used a recently published list of estab-

lished and predicted pioneer factors (Table 1 in Iwafuchi-Doi et al. [3]). We used a hypergeo-

metric test at the 10-fold enrichment cut-off (Fig 4), as well as a ranksum enrichment test. To

derive a ranksum statistic, we summed the CAR ranks of the eight subfamilies annotated as

pioneers. To assess significance of this statistic, we used permutation tests: For each of the

50,000 permutation samples, we picked eight CAR ranks from the set of subfamilies not anno-

tated as pioneers and summed them to derive 50,000 permutation sample statistics. The p-

value was approximated as the fraction of permutation sample statistics of greater or equal size

as the statistic derived for the annotated pioneers. To control pioneer enrichment for mRNA

expression variation, we first calculated the expression variance of each TF across all cell lines.

The distribution of variance values was transformed to follow a standard normal distribution.

We then used the maximal expression variance observed for any TF in each subfamily. To

assess significance, we used permutation tests: we sampled eight non-pioneer subfamily level

CAR ranks 50,000 times. However, subfamilies were not sampled uniformly: We sampled four

non-pioneer subfamilies with maximal expression variance between the 0th and the 50th

quantile of the eight pioneer subfamilies, and four non-pioneer subfamilies with maximal

expression variance between the 50th and the 100th quantile of the eight pioneer subfamilies.

Processing ROADMAP data

RNA-seq data were downloaded from the ROADMAP website (see section ‘URLS’) for 56 cell

lines. We used only genes with average read count above 50, which removed 12% of genes.

The number of reads plus a pseudo-count of one to were log-transformed. Samples were then

quantile normalized to the average mean distribution [51]. The resulting matrix was iteratively

scaled to zero mean and unit standard deviation, first row-wise (across cell lines) then col-

umn-wise, until convergence [46,47].

To derive motif accessibility scores, imputed DHS data were downloaded for 56 cell lines

from the ROADMAP website (see section ‘URLs’). From these datasets motif accessibility

scores were derived in the same fashion as for the ENCODE DHS data. To derive CAR ranks,

the same strategy was employed as for the ENCODE dataset.

Revealing Chromatin State Regulator via a Genome-Wide Association Approach

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005311 January 24, 2017 12 / 19



Defining ChiP-seq guided motif cutoff

To compare fixed motif cutoffs to a variable motif cutoff guided by ChIP-seq, the following

procedure was used. ChIP-seq data from the Myers and Snyder lab in the ENCODE collection

for which dnase1 and expression data were available were downloaded and each ChiP-seq

experiment was mapped to a dnase1 experiment based on cell line and to the motif of the TF,

yielding mappings to 75 motifs (belonging to 50 subfamilies). For a given motif and cell line

pair for which ChIP-seq data (as well as DHS data) was available, each DHS region was anno-

tated with the p-value of its most significant motif instance (given that they contained a motif

with p-value below 5x10-5) as well as whether it overlapped with a ChIP-seq peak. The motif p-

value cutoff was defined such that a fixed fraction of peaks with motifs below that cutoff would

validate in the ChIP-seq experiment. Three true positive rates were chosen for this comparison

0.3, 0.5 and 0.7 (see S7 Fig, S8 Fig). Only experiments were used for which it was possible to

choose a motif cutoff such that the highest validation rate (i.e. 0.7) could be reached. If multiple

ChIP-seq experiments were available per motif, the median p-value cutoff was chosen for each

validation rate. We compared these strategies using a fixed cutoff for all motifs of 10−5, which

was used throughout the rest of the paper. Results obtained are similar when using ChIP-seq

guided cutoffs or fixed cutoffs.

URLs

Code for reproduction (including scripts for data download) is available at: https://github.

com/dlampart/csrproject

ENCODE DHS peaks were downloaded from: http://ftp.ebi.ac.uk/pub/databases/

ensembl/encode/integration_data_jan2011/byDataType/openchrom/jan2011/fdrPeaks/

ROADMAP expression data were downloaded from: http://egg2.wustl.edu/roadmap/

data/byDataType/rna/expression/57epigenomes.N.pc.gz

ROADMAP imputed DHS peaks were downloaded from: http://egg2.wustl.edu/roadmap/

data/byFileType/peaks/consolidatedImputed/narrowPeak/

ENCODE histone files were downloaded from: ftp://hgdownload.cse.ucsc.edu/

goldenPath/hg19/encodeDCC/wgEncodeUwHistone/

Supporting Information

S1 Appendix. Supporting methods.

(PDF)

S1 Table. Results for comprehensive prediction of chromatin accessibility regulators. The

table shows CAR ranks at subfamily level for each motif in the HOCOMOCO library. Subfam-

ily identifiers correspond to the identifier used in TFClass. Additionally, the gene in the anno-

tated subfamily with the highest gene wise CAR rank is given.

(XLSX)

S1 Fig. Association between motif accessibility and mRNA expression for the bona fide

pioneer factor FOXA1. Three different regression models (a-c) were used to compute associa-

tion p-values between the accessibility of a given TF motif (here FOXA1) and mRNA expres-

sion for each of the assayed 15K protein-coding genes. Results are visualized as QQ-plots

showing the–log10 transformed p-values. (a) Association p-values obtained using standard lin-

ear regression. Due to confounding, p-values are strongly inflated and FOXA1motif accessibil-

ity shows only mild association with FOXA1 expression compared to other genes. (b) The

linear mixed model (LMM) successfully corrects for confounding, with most p-values follow-

ing the null distribution as expected. The association between FOXA1motif accessibility and
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FOXA1 expression now ranks second among all genes and first among all TFs, although it

does not pass the Bonferroni significance threshold. (c) Additionally controlling for the first

principal component of the motif accessibility matrix corrects for a strong batch effect (Meth-

ods) and further lowers the CAR rank. Using this approach, FOXA1motif accessibility showed

the strongest association precisely with FOXA1 expression (i.e., the gene-level CAR rank equals

one), in line with literature on FOXA1 being a pioneer factor(Cirillo et al. 2002)(Cirillo et al.

2002; Soufi et al. 2015).

(PNG)

S2 Fig. Overview of procedure to calculate CAR ranks on the subfamily level. We cluster

TFs and motifs according to subfamily definitions given in TFClass. For each bicluster, we

define the bicluster score as the most significant p-value between any TF and motif members

of the bicluster corrected for bicluster size. We then rank bicluster scores across the TF sub-

families. If the bicluster joining a TF cluster and its corresponding motifs is ranked low, this is

an indication of CAR activity.

(PNG)

S3 Fig. CARs predicted from ENCODE data enrich in subfamilies with low CAR ranks in

the ROADMAP dataset. DHS and expression data available for 56 samples (29 with assayed

DHS and 27 with imputed DHS) as part of the ROADMAP data collection were used to pre-

dict CARs. Shown are CAR enrichment curves for ENCODE results stratified by CAR ranks

derived from ROADMAP. Displayed are the following strata: ROADMAP CAR rank<10

(N = 9 observations in total), ROADMAP CAR rank <20 (N = 20 observations in total),

ROADMAP CAR rank <30 (N = 25 observations in total), ROADMAP CAR rank<60 (N =

38 observations in total), ROADMAP CAR rank<100 (N = 58 observations in total), ROAD-

MAP CAR rank > = 100 (N = 86 observations in total). We see that subfamilies with low

ROADMAP CAR rank also tend to be predicted to be CARs when using the ENCODE data.

This enrichment gets weaker for subfamilies with lower ROADMAP CAR ranking.

(PNG)

S4 Fig. CARs ranks from ROADMAP data enrich only in subfamilies predicted to be CARs

in ENCODE. DHS and expression data, available as part of the ROADMAP data collection, were

used to predict CARs. Shown are CAR enrichment curves for ROADMAP results stratified by

CAR predictions derived from ENCODE. Displayed are the following strata: ENCODE CAR rank

<10 (N = 37 observations in total), ENCODE CAR rank> = 10 (N = 107 observations in total).

While we see enrichment for low ROADMAP CAR rank in subfamilies predicted to be CARs via

the ENCODE data, we see no enrichment in low ROADMAP CAR ranks for other subfamilies.

(PNG)

S5 Fig. CAR detection power is stable to changes in motif cutoffs. Cumulative distribution

of CAR ranks at the subfamily level using the three different motif cutoffs: 10−5 (used through-

out the paper) is compared to 10−6 (yielding 9.3 fewer motifs on average [median]) and 5�10−5

(yielding 5.2 more motifs assigned on average). For each setting, we filtered motifs that did not

overlap at least 150 DHS regions per cell line on average. Only subfamilies passing this filter in

all settings were included (62 subfamilies in total). Power mildly increased at low CAR ranks

for more stringent cutoffs at the cost of fewer motifs passing filtering. However, at false discov-

ery rate of 10% power was nearly identical.

(PNG)

S6 Fig. CAR prediction is stable with respect to changes in motif cutoffs. Shown are pair-

wise comparisons of different motif cutoffs. For each cutoff we derived CAR ranks for all tested
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subfamilies yielding one CAR rank list per cutoff. Pairwise comparisons of these lists were per-

formed in the following manner: For each pair of rank lists, the first list was used to split the

tested subfamilies into a ‘CAR set’ and its complement based on whether a subfamily had CAR

rank below 10. For the second results list, two separate CAR enrichment curves were drawn,

one curve for the ‘CAR set’ defined via the first list (black) and its complement (grey). Rows

denote the cutoff used to derive the ‘CAR set’ and columns denote the cutoff used to draw the

enrichment curves. For each setting, we filtered motifs that did not overlap at least 150 DHS

regions per cell line on average. Only subfamilies passing this filter in all settings were included

(62 subfamilies in total). We see that CARs predicted are stable with respect to varying motif

cutoffs.

(PNG)

S7 Fig. CAR detection power does not improve systematically when guiding motif cutoffs

via ChIP-seq. Shown are cumulative distribution of CAR ranks at the subfamily level compar-

ing fixed motif cutoff of 10−5 (used throughout the paper) is compared to variable motif cutoffs

guided by ChIP-seq data, where motif cutoffs are adjusted such that called binding sites (i.e.

DHS sites containing a motif instance) have a fixed validation rate compared to a gold stan-

dard defined by ChiP-seq. Chosen validation rates are 0.3, 0.5 and 0.7. For each setting, we

filtered motifs that did not overlap at least 150 DHS regions per cell line on average. Only sub-

families passing this filter in all settings were included (32 subfamilies in total). While we see

some variation in power, the variation is not systematic.

(PNG)

S8 Fig. ChiP-seq data guiding motif cutoffs yields similar CAR predictions as regular

motif cutoff. Shown are pairwise comparisons of different motif cutoff methods. For each cut-

off method we derived CAR ranks for all tested subfamilies yielding one CAR rank list per

method. Pairwise comparisons of these lists were performed in the following manner: For

each pair of rank lists, the first list was used to split the tested subfamilies into a ‘CAR set’ and

its complement based on whether a subfamily had CAR rank below 10. For the second results

list, two separate CAR enrichment curves were drawn, one curve for the ‘CAR set’ defined via

the first list (black) and its complement (grey). Rows denote the cutoff method used to derive

the ‘CAR set’ and columns denote the cutoff method used to draw the enrichment curves. A

fixed motif cutoff of 10−5 (also used throughout the paper) is compared to variable motif cut-

offs guided by ChIP-seq data, where motif cutoffs are adjusted such that called binding sites

(i.e. DHS sites containing a motif instance) have a fixed validation rate when compared to

ChiP-seq. Chosen validation rates are 0.3, 0.5 and 0.7. For each setting, we filtered motifs that

did not overlap at least 150 DHS regions per cell line on average. Only subfamilies passing this

filter in all settings were included (32 subfamilies in total). We see that CARs predicted are sta-

ble with respect to varying motif cutoffs.

(PNG)

S9 Fig. Predicted chromatin accessibility regulators tend to have higher expression varia-

tion. We derived the variance of expression for all transcription factors across micro-arrays

after RMA normalization and averaging expression values for experiments derived from the

cell types. Displayed is a density distribution of the maximal expression variance observed in

each subfamily. We partitioned TF subfamilies into two groups depending on whether they

had family level CAR ranks of 1 or not. We observe that top ranked subfamilies do have sub-

stantially higher variance on average than other subfamilies (linear regression p-value <10−3).

(PNG)
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S10 Fig. Histone-wise motif activities do not substantially associate with TF expression val-

ues. H3K4me3 peak data for 51 cell lines were downloaded from ENCODE and histone-wise

motif activity was computed and normalized analogously to for DHS data, regressing out the

first principal component. We performed the mixed model regression where H3K4me3-based

motif accessibility data are regressed on gene expression adding a random effect with the same

covariance structure as the expression matrix (denoted ‘histone’). To assess the DHS-indepen-

dent contribution of H3K4me3 histone activities, we added DHS-based motif accessibility as a

covariate (denoted ‘DHS-adjusted histone’). We see that subfamily ranks for both of these

strategies do not substantially enrich in low ranks. While ‘histone’ performs mildly better, this

is likely due to correlation between the histone activity and DHS activity. In contrast, when

DHS-based motif accessibility data was adjusted for H3K4me3-based motif accessibility, we

see a still substantial enrichment (see “histone-adjusted DHS” curve). This experiment was

performed by regressing DHS motif accessibility on gene expression while adding H3K4me3--

based motif accessibilities as a covariate plus a random effect with the same covariance struc-

ture as the expression matrix. This shows that of the two activity measures, only DHS activity

substantially associates with expression.

(PNG)

S11 Fig. SOX2 expression associates strongly with POU5F1 motif accessibility. The QQ-

plot shows the p-value distribution obtained from the LMM associating the accessibility of the

POU5F1motif to gene expression values across all genes. We see the strongest association to

SOX2 expression.

(PNG)

S12 Fig. precision-recall curves of CAR ranks and PIQ pioneer scores and their combina-

tion. Displayed are the precision-recall curves using annotation from Iwafuchi-Doi et al.

(2014) as true set. Motif wise PIQ pioneer scores were extracted from Sherwood et al. (2014).

For each subfamily, we defined its PIQ pioneer score as the maximal pioneer score for its sub-

family members. For 77 subfamilies, data were available from both approaches of which 7

were in the true set. For both CAR ranks and PIQ pioneer scores, precision-recall curves were

drawn (CAR rank precision-recall curve starts at 0.43 recall, because many subfamilies share

CAR rank of one). Additionally, both scores were combined: For each scoring method, results

were ranked (rank ties was replaced by the minimum). For each subfamily, its combined rank

is the maximal rank across both methods. A low rank can therefore only be achieved when

both methods yielded low ranks. We see that the combined strategy outperforms both base

strategies.

(PNG)

S13 Fig. Removing first principal component from motif accessibility matrix leads to simi-

lar correlation structures between motif accessibility and expression. Displayed are pair-wise

correlation matrices with squared entries across cell lines for motif accessibilities (a); motif

accessibilities with the first principal component removed (b) and (c) for expression values. Fur-

ther, the first 25 eigenvalues of these matrices are shown in (d). The motif accessibility matrix

has a very dominant first principal component. After removal of the first principal component,

the correlation structure of motif accessibility and expression show a similar structure.

(PNG)
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4. Investigation of the genetic control of Drosophila body size

Animal models have long been a dominant object of study in genetics, long before cheap

genotyping made unbiased investigation of the human genetics feasible. The reason is mainly the

ability to perform experimental manipulations. Instead of relying on the natural variation in

outbred population, in animal models, one can also modify the genetic variation. Examples are

random knockdown screens or experimental setups where inbred strains are cross-bred to perform

linkage studies [57, 58]. Not only can the genetics be controlled but also the environment leading

to studies where genetics almost completely explains the phenotypic variation. Furthermore,

results obtained can be followed up with additional experiments in the same model organism (and

when using inbred species even the same genotype) with relative ease. It is clear however, that

studies using artificially controlled genetics will have limited information on the genetics of the

natural out-bred population. The following study is an investigation of the genetics of Drosophila

body size measures. In contrast to the bulk of genetic studies investigating Drosophila growth

control, a natural population of outbreeding Drosophila was sampled randomly to allow for better

inference of the genetics of a natural drosophila population. The study is noteworthy for being

the first GWAS of Drosophila on body size traits. It made use of extensive environmental control

and confounding correction, with the use of mixed models to better model the phenotypes. It

further is notable for the fact that follow-up experiments were performed on candidate genes.

The study was spearheaded by Dr. Sybille Vonesch, who gathered the data and had conceived the

experiment together with her supervisor Prof. Ernst Hafen. I contributed various computational

and statistical analyses of the data. Specifically, I helped establish and perform the statistical

modeling of the phenotypes and established a GWAS analysis strategy. Further, I performed

gene-wise analysis as well as epistatic analysis and devised and implemented a computational

strategy to detect gene set enrichment in epistatic analysis results. The results were published

in PLOS Genetics in a paper written by Vonesch. To the text, I contributed sections on the
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technical details of the analysis performed. This paper is reproduced below.
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Abstract
Organismal size depends on the interplay between genetic and environmental factors.

Genome-wide association (GWA) analyses in humans have implied many genes in the con-

trol of height but suffer from the inability to control the environment. Genetic analyses in Dro-
sophila have identified conserved signaling pathways controlling size; however, how these

pathways control phenotypic diversity is unclear. We performed GWA of size traits using

the DrosophilaGenetic Reference Panel of inbred, sequenced lines. We find that the top

associated variants differ between traits and sexes; do not map to canonical growth path-

way genes, but can be linked to these by epistasis analysis; and are enriched for genes and

putative enhancers. Performing GWA on well-studied developmental traits under controlled

conditions expands our understanding of developmental processes underlying phenotypic

diversity.

Author Summary

Genetic studies in Drosophila have elucidated conserved signaling pathways and environ-
mental factors that together control organismal size. In humans, hundreds of genes are
associated with height variation, but these associations have not been performed in a con-
trolled environment. As a result we are still lacking an understanding of the mechanisms
creating size variability within a species. Here, under carefully controlled environmental
conditions, we identify naturally occurring genetic variants that are associated with size
diversity in Drosophila. We identify a cluster of associations close to the kek1 locus, a well-
characterized growth regulator, but otherwise find that most variants are located in or
close to genes that do not belong to the conserved pathways but may interact with these in
a biological network. We validate 33 novel growth regulatory genes that participate in
diverse cellular processes, most notably cellular metabolism and cell polarity. This study is
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the first genome-wide association analysis of natural variants underlying size in Drosophila
and our results complement the knowledge we have accumulated on this trait from muta-
tional studies of single genes.

Introduction
How animals control and coordinate growth among tissues is a fundamental question in devel-
opmental biology. A detailed mechanistic but global understanding of the processes taking
place during normal physiological development is furthermore relevant for understanding
pathological growth in cancers. Classical genetic studies in Drosophila have revealed core
molecular mechanisms governing growth control and have shed light on the role of humoral
factors and the environment on adult size [1–4]. Two major pathways regulate size, the Insu-
lin/TOR pathway, which couples systemic growth to nutrient availability; and the Hippo
tumor suppressor pathway, which controls cell survival and proliferation in developing organs
[5–7]. However, growth control is complex [8–10], and the interactions between components
of these pathways with each other and with unknown molecules and extrinsic factors remain
poorly understood. Studies focusing on single or a few genes can only capture individual
aspects of the entire system of networks underlying this trait, which is especially problematic
when individual alleles have subtle and context-dependent effects [11, 12]. Therefore, global
genome-wide approaches are needed for a better understanding of the genetic control of size.
One genome-wide approach is to study multifactorial natural genetic perturbations as they
occur in a segregating, phenotypically diverse population.

Artificial selection experiments have revealed that naturally occurring populations of Dro-
sophila melanogaster show abundant genetic variation for size, with heritabilities approaching
50% [13]. Usually selection for size results in correlated responses in the same direction for all
body parts and overall weight, indicating a common genetic architecture [14]. Selection
responses differ between populations but not between sexes [15]. Body size is an important
component of fitness in D.melanogaster since there are parallel clines in body size and corre-
lated traits clines across different continents [16, 17]. Loci on chromosome 3R and 2R are,
respectively, associated with body size and wing area [16, 17]; interestingly, the majority of the
3R loci seem to be located within the polymorphic chromosomal inversion In(3R)Payne [18,
19] Candidate genes and variants associated with size within In(3R)Payne include hsr-omega,
the microsatellite loci DMU25686 and AC008193, and genes in the Insulin signaling pathway
(InR, Tsc1, Akt1) [20, 21]. Similarly, the frequency of the polymorphic inversion In(2L)t is asso-
ciated with a body size cline across several continents; genes in the IIS/TOR pathway (chico,
Pten, Tor) are located in the inversion region and Pi3K21B and Idgfs 1–3 are located immedi-
ately proximal to it [21]. Naturally segregating alleles in smp-30 (Dca) and InR have been caus-
ally associated with body weight [22, 23]. Recently, a long-term selection experiment identified
hundreds of loci with allele frequency differences between large and small populations [24],
indicating that the genetic basis of naturally occurring variation in size is highly polygenic.
Candidate loci were enriched for genes implicated in post-embryonic development, metamor-
phosis and cell morphogenesis. The genes included components of the EGFR, Hippo and
many other growth pathways, as well as canonical IIS/TOR signaling genes. Therefore, dissect-
ing the genetic basis of naturally occurring variation in body size has the potential to uncover
novel variants in known loci affecting body size as well as identify novel genes.

The advent of next-generation sequencing technology has enabled the rapid and relatively
cheap acquisition of complete genome sequences, and thereby the generation of very dense
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genotype information that enables genome-wide association (GWA) mapping with a much
higher resolution than previously possible. GWA studies aim to link variation in quantitative
traits to underlying genetic loci in populations of unrelated individuals genome-wide [25, 26].
GWAS have been pioneered [27, 28] and widely applied in humans and are now a routinely
used tool in model organisms such as Arabidopsis [29, 30], Drosophila [31–33] and mouse [34]
as well as in various crop [35, 36] and domestic animal species [37–41], where they have sub-
stantially broadened our understanding of the genetics of complex traits. To date there are no
GWA analyses of size in Drosophila, but GWA studies of height have revealed that many loci
with small effect contribute to size variation in human populations [9,10,42,43], which con-
trasts with a much simpler genetic architecture of size in domestic animals, where as a conse-
quence of breeding few loci have relatively large effect sizes that jointly explain a large
proportion of size variation [38, 44]. Although many loci affecting human height have been
identified by GWA analyses, deducing the underlying molecular mechanisms by which they
affect size is challenging. Larger genome regions and not single genes are mapped; uncontrolled
environmental variability makes it difficult to identify causal links between genotype and phe-
notype; and functional validation cannot be performed in humans [12, 28, 45–47].

In contrast to human studies, GWA studies in model organisms benefit from the feasibility
of functional validation, more stringent environmental control and, when using inbred strains,
the possibility of measuring many genetically identical individuals to obtain an accurate esti-
mate of the phenotype for a given trait and genotype. All three factors can substantially
improve the power of a GWA analysis. The establishment of the inbred, sequenced lines of the
Drosophila Genetic Reference Panel (DGRP) [48, 49] has made GWA analysis in Drosophila
widely applicable. The DGRP lines harbor the substantial natural genetic variation present in
the original wild population and show copious phenotypic variation for all traits assayed to
date [31–33, 48, 50, 51].

Here, we used the DGRP to perform single- and two-locus associations for size-related
developmental traits in Drosophila. We find pervasive trait and sex-specificity of top variants,
validate a substantial number of novel growth regulators, and extend our knowledge of the
genetic control of size beyond existing growth regulatory networks.

Results

Quantitative genetic analysis of size
We cultured 143 DGRP lines under conditions we had previously shown to reduce environ-
mental influences on size (S1 Table, Fig 1A) and measured five body and 21 wing traits (S1
Table, Fig 1B). The cross trait genetic correlations were positive and generally high among all
features except small veins and areas that were difficult to quantify accurately, indicating
shared genetic architecture of the various size measures. We observed two modules of higher
correlation, one formed by wing traits and the second by head/thorax traits (Figs 1C and S1),
indicating that the genetic architecture is more similar among wing features and among head/
thorax features than between traits of the wing and head/thorax. Principal component analysis
(PCA) of 23 of the 26 size traits (L1, L6 and iarea8 were excluded since measuring these traits
accurately was very difficult) revealed that the first two PCs explained nearly 75% of the
observed phenotypic variation. The first component reflected an overall size element and the
second component separated wing from head/thorax traits (Figs 1D–1F and S1).

Given the observed redundancy of the phenotypes, we chose only one trait from each high-
correlation module for further in-depth analysis: centroid size (CS, reflecting growth processes
in the wing disc), and interocular distance (IOD, reflecting eye disc growth), respectively
(Fig 2A and 2B). IOD showed the lowest genetic correlation with CS of all head/thorax traits
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(0.46 in females and 0.51 in males). Interestingly, the allometric coefficient b describing the
relationship CS = a�Xb (where X = IOD or TL) varied substantially between lines, from near
independence (b = 0) to hyperallometry (positive allometry b>1) (S2 Fig, S1 Table). We

Fig 1. Analysis of 26 size traits in the DGRP. (a) StandardizedDrosophila culture conditions for the quantification of morphometric traits. The protocol
extends over three generations and efficiently controls known covariates of size, such as temperature, humidity, day-night-cycle and crowding. Additionally,
effects of other environmental covariates, such as intra-vial environment, light intensity and incubator position, are randomized. (b) Illustration of the wing
features. L2_AP and L5_AP are not illustrated; they comprise the area between the AP boundary and L2 or L5, respectively, and serve as measures for the
size of the anterior and posterior part of the wing. (c) Genetic correlation between morphometric traits in females. Two modules of higher correlation are
clearly visible (bright yellow): one encompassing almost all wing features and one comprising all head/thorax traits. (d) Cumulative variance explained in
female data by increasing number of principal components. (e) Variables factor map. PC1 and PC2 separate the data into two groups. (f) Correlation between
PCs and traits. PC1 reflects a general size component and PC2 is highly correlated with head/thorax traits, effectively splitting the data into two groups.

doi:10.1371/journal.pgen.1005616.g001
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observed extensive phenotypic and genetic variation in both phenotypes (Fig 2A and 2B, S1
and S2 Tables), which was reflected in the substantial broad-sense heritabilities (H2

CS = 0.63,
H2

IOD = 0.69). Furthermore, both traits showed significant genetic variation in sex dimorphism
but similar heritability estimates for males and females and high cross-sex genetic (rMF) and
phenotypic correlation (S1 Table). 15% of phenotypic variance in centroid size could be attrib-
uted to raising flies on different food batches, which only differed by the day on which they
were prepared (according to the same protocol) (S1 Table). Though nutrition is a well-studied
size-determining factor [52], we were surprised at the substantial phenotypic effects elicited by
even such a small nutritional variation. Although the environmental effect of food batch was
markedly lower for IOD (3%), we used batch-mean corrected phenotypes in all subsequent
analyses to remove this effect.

Single-marker and gene based GWAS identify novel loci associated with
size variation
To identify common loci contributing to size variation in Drosophila, we performed single
marker GWA analyses for 1,319,937 SNPs for a wing disc derived (CS) and an eye disc derived
(IOD) size measure using Fast-LMM [53]. This association method uses a linear mixed model

Fig 2. Phenotypic variation in the DGRP for two size traits. Plots showmean phenotypic values for (a) centroid size and (b) interocular distance. Each dot
represents the mean phenotype per line of males (black) and corresponding females (red), with error bars denoting one standard deviation. Lines are ordered
on the x-axis according to male trait value, from lowest to highest: consequently, the order of lines is different for each plot. Raw phenotypes and line means
are listed in S2 Table. To the right are illustrations of both measures.

doi:10.1371/journal.pgen.1005616.g002
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to capture confounders such as population structure and cryptic relatedness. As the genetic
correlation between CS and IOD was moderate (0.46 and 0.51 for females and males, respec-
tively), we expected to map both shared and trait-specific SNPs. To find loci that specifically
affect variation in wing size unrelated to the overall organismal size variation we constructed
an additional phenotype (rCS) that had the effect of IOD on CS removed via regression. In
addition to the effect of the food batch, two cosmopolitan inversions, In(2L)t and In(3R)Mo,
were correlated with both CS and IOD and we addressed their effect on size by modeling their
presence in the homozygous state (S2 Fig), yielding the inversion-corrected phenotypes CSIC
and IODIC. In(3R)P, which is known to be correlated with Drosophila size [19], was present in
the homozygous state in only one line; therefore, we could not estimate its effect on size.

Only for one trait (IOD in females) did we observed significantly associated SNPs when
applying a stringent Bonferroni corrected p-value threshold of 3.8x10-08. However, the signifi-
cance of these six SNPs dropped below the genome-wide level when we applied GWAS on
rank-normalized IOD, which was probably due to an outlier line (>4SD) in the minor allele
class of all six SNPs. Overall, the p-values between normalized and non-normalized GWAS
showed good correlation and the locus clearly segregates with size, as 75% of the major allele
class lines had a smaller IOD than the lines of the minor allele class (S3 Fig).The six SNPs were
all located in a cluster on chromosome 2L (2L: 12’805’398–12’806’812), 12-13kb upstream of
the gene encoding the EGFR pathway regulator kek1 (Fig 3A and 3C). Three more SNPs in this
locus were annotated to kek1, but did not survive Bonferroni correction. All nine SNPs formed
a haplotype, with lines having either all minor or all major alleles of these SNPs, and the minor
allele haplotype was associated with an increased IOD (Figs 3B, 3D and S3). In total, 198 SNPs
are located in the 20 kb genomic region upstream of the kek1 transcript start site. This region
showed high conservation between species (DGRP Freeze 2 genome browser, http://genome.
ucsc.edu) and several blocks of higher LD are formed across it (Figs 3B and S3), which could be
attributable to its proximity to In(2L)t (2L: 2’225’744–13’154’180) [54]. However, none of the
lines with the minor allele haplotype was either homo- or heterozygous for this inversion, and
they were distributed across all four food batches (S3 Fig). Interestingly, a noncoding RNA,
CR43818, was located in the 20kb region upstream of kek1, and the region was spanned by the
intron of CG9932, a poorly characterized gene that interacts genetically with Bx and Chi during
wing development [55]. Clearly there are signs for functionality of this locus, and several good
candidates for causal variants. Further experiments are required to elucidate the molecular
mechanism of this association and its potential connection to In(2L)t.

As QQ-plots showed a departure from uniformity for p-values below 10−05 (S4 and S5 Figs)
we picked candidate loci using this nominal significance threshold for hypothesis generation
and functional validation. The corresponding q-values for each SNP are listed in S3 Table. This
yielded between 31 and 51 SNPs for females and between 17 and 36 SNPs for males, with little
overlap between top associations and moderate correlation of overall SNP ranks between sexes
(S3 and S4 Tables; S6, S7 and S8 Figs), consistent with significant sex by line variances and
departure of the cross-sex genetic correlations from unity in the quantitative genetic analyses.

Correcting for the segregation of polymorphic inversions generally enhanced the power of
the GWA analyses, as was evident by more loci reaching nominal significance. Nevertheless,
the majority (65–86%) of SNPs from the GWA analysis with uncorrected trait values remained
candidates in the GWA analysis with corrected phenotypes. Somewhat surprisingly, despite
the significant genetic correlation between CS and IOD, no candidate SNPs were shared
between these phenotypes (Fig 3E, S4 Table). In both sexes, approximately one-third of top
SNPs was shared between the absolute and relative CS GWA analyses, suggesting variation in
relative versus absolute organ size may be achieved through genetic variation at both shared
and private loci.
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Fig 3. Genome-wide association of size traits. (a) Manhattan plot of the SNP p-values from the IOD GWAS in females shows that nominally associated
SNPs are distributed over all chromosomes. Negative log10 p-values are plotted against genomic position, the black horizontal line denotes the nominal
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Nominally associated variants predominantly mapped to intergenic regions, but were never-
theless enriched in gene regions (p<0.001, hypergeometric test) (Fig 3F, S5 Table), demonstrat-
ing that associations were not randomly distributed across the genome. For gene-level analyses
we determined candidates for each phenotype as genes having a nominally significant SNP in
or within 1kb of their transcribed region, yielding a total of 107 genes over all phenotypes.
Only the candidate gene sets for rCS were enriched for STRING curated interactions and only
the candidate list for CSF was enriched for functional categories (positive regulation of Rho sig-
nal transduction and melanotic encapsulation of foreign target), though growth was among the
top categories for CSMIC (FDR corrected p = 0.08) [56]. Given the large number of genes
already known to play a role in growth control we were surprised that only few canonical
growth genes contained or were close to nominally associated SNPs. Exceptions included sev-
eral SNPs near or in the genes coding for Ilp8, TOR and EGFR pathway components and regu-
lators of tissue polarity and patterning. However, some SNPs that narrowly missed the
candidate reporting threshold localized to further growth regulatory genes, such as the Hippo
pathway components ex and wts.

The small number of canonical growth pathway genes detected might be explained by the
lack of SNPs with large effects in these genes, which is plausible considering the essential role
of many growth regulators. We therefore wanted to test whether the combined signal of SNPs
with small effects (each too small to reach significance on its own) across known growth genes
might be significant. To this end we determined gene-based statistics using the sum of chi-
squares VEGAS method [57], which computes a p-value for each gene considering all SNPs
within a gene while correcting for gene length and linkage disequilibrium between SNPs. None
of the genes reached genome-wide significance (p<3.75x10-06) (S6 Table). The overlap between
the 20 top scoring genes from this analysis with our GWA candidate genes was small for each
individual phenotype and even when combining the VEGAS analyses from all phenotypes only
11 of our 97 VEGAS top scoring genes contained a SNP that reached significance on its own in
one of our GWA analyses. We did not find GO or interaction enrichment [56] and as in the
individual GWA analyses, top candidates were largely novel with respect to growth control.

Functional validation of candidate genes reveals novel regulators of size
We selected a subset (41% to 69%) of candidates identified by each of our six wing size GWAS
(CS, CSIC and rCS in both sexes) for functional validation by tissue-specific RNAi. A total of
64% to 79% of tested genes had significant effects on wing area (p<0.001, Wilcoxon rank sum
test, S7 Table, Figs 4A and S9). We achieved similar validation rates for gene-based candidates.
In contrast, only 42% of a set of 24 randomly selected genes had significant effects on wing size
in females (S7 Table). The overall proportion of validated candidates versus random genes was
significantly different (p = 0.02, Fisher’s exact test) andWilcoxon test p-values showed different
distributions between candidate and random knockdowns (p = 0.02, Wilcoxon test, S10 Fig).

significance threshold of 10−05 and the black box marks the location of the cluster of Bonferroni-significant SNPs upstream of kek1 on 2L. (b) Correlation
between SNPs nominally associated with female IOD. The cluster of Bonferroni-significant SNPs on 2L shows high correlation among individual SNPs over a
larger region, whereas most other SNPs except a few in a narrow region on 3L represent individual associations. Blue = No correlation, orange = complete
correlation. Pixels represent individual SNPs and black lines divide chromosomes. (c) Locus zoom plot of the region 20kb upstream of kek1 hat harbors the
genome-wide significant associations. The black horizontal line denotes the genome-wide significance threshold (p = 3.8x10-08) and the locations of kek1
and the ncRNACR43818 are marked by broad black lines. (d) Lines with the minor allele genotype at the most significantly associated locus have a larger
IOD than lines with the major allele. (e) Overlap in the number of nominally associated SNPs for different wing traits in females. The overlap is bigger between
the absolute wing size phenotypes and only a few SNPs are candidates for all traits. (f) Nominally associated SNPs are most abundant in the intergenic
space and in regulatory regions. Boxes show the distribution of negative log10 p-values of the SNPs nominally associated to rCS in females among site
classes. Numbers of SNPs belonging to each site class are denoted above the boxes. As a SNP can fall into multiple classes, the sum of SNPs from all site
classes is higher than the total number of nominally associated SNPs.

doi:10.1371/journal.pgen.1005616.g003
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This combined evidence suggests an advantage in power for identifying growth regulators by
GWA over randomly testing genes. The validated candidates constitute 33 functionally diverse
novel growth regulators (S11 Fig).

Knockdown of genes in the whole eye disc often affects eye area, which in turn leads to a
bigger or smaller head area between the eyes. As we used exactly this area for determining
IOD, we were concerned that effects of knockdown on compound eye development could not
be discerned from effects on IOD specifically. For this reason we chose not to perform valida-
tion for IOD candidates. However, since we observed similar coefficients of variation, effect

Fig 4. Associated SNPs overlap 33 functionally diverse novel candidate genes for wing size determination and localize within putative enhancer
elements. (a) Validated genes in females. Bars show the percent change in median wing area compared toCG1315RNAi upon wing-specific knockdown of
candidate genes. Only the lines yielding a significant wing size change (p<0.001, Wilcoxon rank sum test) are depicted. (b) Alignment of the 2kb region on
chromosome arm 2L upstream of the D.melanogaster ex locus that shows sequence conservation across Drosophila species. The position of the SNP is
indicated by the vertical blue line. The D.melanogaster sequence is represented by the dark grey bar at the top (“Sequence”). The respective sequences of
each compared species are represented below. Light grey regions are matches to the D.melanogaster sequence, red regions are mismatches, gaps in the
alignment are denoted by horizontal red lines and insertions by black lines and arrows.

doi:10.1371/journal.pgen.1005616.g004
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sizes, and q-values for IOD and CS (S1 and S3 Tables) we would expect the proportion of vali-
dated genes to be similar for IOD.

Two-locus association reveals novel interactions
To place novel genes within the network of known growth pathways, we next performed tests
for two-locus associations [58] to CSIC, IODIC and rCS in both sexes with SNPs in 306 growth
genes as focal SNPs (S8 Table). This gene list was combined from genes listed as influencing
wing development (The Interactive Fly, http://www.sdbonline.org/sites/fly/aimorph/wing.
htm), commonly known growth genes from the IIS/TOR, EGFR and Hippo pathways, and
growth regulators identified in screens by our group. This list is not comprehensive but should
serve as a rough framework for the most relevant growth pathways. Overall, 15 interactions
reached Bonferroni-corrected significance (p<7.9x10-13), but we observed none of our GWA
candidates among the significant epistasis partners. Generally, more interactions reached
genome wide significance in males than in females. The most significant interaction (CSMIC,
p = 5.79x10-15) occurred betweenmask, a positive regulator of JAK/STAT signaling [59] and
tutl, a JAK/STAT target gene during optic lobe development [60] (Fig 5). Furthermore, among
the top five interactions we found one between nkd, a downstream target of Dpp [60, 61], and
the tyrosine phosphatase Ptp99A (CSFIC, p = 8.79x10-14), which has been shown to interact
with InR and the Ras signaling pathway [62, 63]. Furthermore, though we detected none of the
significant interactions on DroID [64, 65]mask and tutl, and PtP99A and nkd shared more
DroID interactors than 95% of all possible pairs of the 32 genes involved in the significant
interactions. Due to their already known growth-related functions we consider the interactions
between these genes as prime candidates for future functional validation.

To investigate whether our GWA candidates or genes from the ‘previously known’ catalog
would be enriched further down the list, we lowered the stringency for reporting interactions
to a discovery threshold of p<10−09. Counting only those interactions where the interacting
SNP lay in or within 1kb of a gene (S8 Table, total 1,353 interactors across all phenotypes) we
found enrichment for development, morphogenesis and signaling categories (Bonferroni cor-
rected p<0.001) [56], which supports a role of these genes in growth control. Notably, the
rCSM list (Fig 5) was additionally enriched for genes involved in regulation of metabolic pro-
cesses. Among them were 73 of the 306 genes in the ‘previously known’ catalog and 35 of our
107 overall GWAS candidates. However, these overlaps did not reach significance (p-value of
0.46 and 0.22, respectively). We next asked whether the candidate gene sets identified by nor-
mal GWAS and the epistasis approach were nevertheless biologically related to each other. To
this end we used the STRING database [56], which revealed that the number of observed
curated interactions between the two gene sets was much larger than expected by chance
(p<<0.001). Analyzing pairwise interactions may thus help to place genes into pre-established
networks.

Intergenic SNPs are preferentially located in regions with enhancer
signatures and overlap lincRNA loci
Intergenic SNPs may be functional by changing the sequence of more distant regulatory ele-
ments or noncoding RNAs. We therefore tested whether intergenic GWAS candidate SNPs
located to putative functional regions. We found enrichment (p<0.01, hypergeometric test) of
SNPs lying in regions with H3K4Me1 or H3K27Ac, epigenetic signatures of active enhancers
(S5 Table) [66], and in lincRNA loci [67], which have been implied in developmental regula-
tion and are often enriched for trait-associated loci [68]. Though only loci associated with IOD
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in females were enriched for SNPs localizing to lincRNA loci, we found one SNP lying in a
lincRNA among the top variants for rCSF and IODFIC (S5 Table).

A SNP 2kb upstream (position 2L: 429144) of the Hippo pathway regulator ex narrowly
missed the reporting threshold (p = 1.7x10-05, CSM). However, its genomic location suggests
this variant could affect a novel regulatory region for this gene. The region surrounding it was

Fig 5. Pairwise interactions between focal genes and DGRP SNPs for male wing size (rCSM). The plot shows the focal genes annotated in black and
the interactors in red. Interaction lines are colored according to the chromosome the focal gene is located on and the thick black lines denote Bonferroni-
significant interactions. The outer circle demarks the chromosome arms (2L = orange, 2R = yellow, 3L = green, 3R = purple, X = blue). The colored bars
inside the inner circle demark the locations of cosmopolitan inversions (orange: In(2L)t; yellow: In(2R)NS; purple: In(3R)K, In(3R)P, In(3R)Mo).

doi:10.1371/journal.pgen.1005616.g005
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annotated with the enhancer methylation signatures H3K4Me1 and H3K27Ac and had
assigned state 4 of the 9 state chromatin model suggestive of a strong enhancer [66, 69]. Further
annotations included H3K9Ac, a mark of transcriptional start sites, histone deacetylase binding
sites and an origin of replication. To further assess functionality, we investigated whether the
sequence around this SNP was conserved across taxa by performing multiple sequence align-
ment using BLAST [70] (S9 Table). Indeed, the region immediately upstream of the D.melano-
gaster ex gene showed high similarity to ~3kb regions slightly more upstream of expanded
orthologs in the genomes of D. sechellia, D. yakuba and D. erecta (S9 Table, Fig 4B). This com-
bined evidence suggests a functional region immediately upstream of the D.melanogaster ex
gene, but additional experiments are required to corroborate functionality and to establish an
involvement in growth control and a mechanism for influencing size.

Human orthologs of candidate genes are associated with height, obesity
and a variety of other traits
To investigate conservation to humans and further elucidate putative functions of candidate
genes, we searched for orthologous proteins in humans. We found human orthologs [71] for
62 of our 107 GWA candidate genes, of which seven had a good confidence ortholog
(score� 3) associated with height, pubertal anthropometrics or growth defects (S10 Table).
Of the 423 loci involved in human height mapped in a more recent meta analysis [10], five
contained a gene that was orthologous to one of our GWAS candidates. Using all human-
Drosophila ortholog relationships reported by DIOPT-DIST [71] as background, this results
in an enrichment p-value of 0.001. However, given the large number of genes implicated in
height in humans, which is likely to further increase with the number of individuals used for
association and the small overlap of five genes with our loci, the reported link is tenuous and
needs more support from better-powered studies. Nevertheless, the evidence for an involve-
ment in growth control from GWAS in both organisms and experimental support from vali-
dation in Drosophila corroborates a biological function of these genes in the determination of
body size.

Discussion
We applied several GWAmethods to developmental traits that have been extensively studied
by single gene analyses in Drosophila as a complementary approach for identifying loci under-
lying size variation. Our single-marker GWAS revealed only one SNP cluster close to the
known growth gene kek1 to be significantly associated with body size when using a conserva-
tive Bonferroni correction. Yet, in contrast to human GWA analyses, which require indepen-
dent replication, we exploited the fact that our model organism is amenable to direct validation
strategies and tested candidates corresponding to a much lower significance threshold of 10−05

for an involvement in size determination. Using tissue-specific RNAi, we validated 33 novel
genes affecting Drosophila wing size. Nominally significant intergenic associations were prefer-
entially located in regions with an enhancer signature and overlapped lincRNA loci. A SNP
upstream of the expanded locus was in an evolutionarily conserved region, indicating the pres-
ence of a putatively functional element. A two-locus epistasis screen identified several genome-
wide significant interactions between known growth genes and novel loci, showing that tar-
geted epistasis analysis can be used to extend existing networks. Our study shows that despite
limited statistical power, insights into the genetic basis of trait variation can be gained from
analyzing nominal associations through functional and enrichment analyses and performing
targeted locus-locus interaction studies.
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Single-marker and two-locus GWA of size
Our study adds 33 novel growth genes and 15 genomic loci that may interact with known
growth genes to the extensive number of loci already implied in size regulation from single
gene studies. That only a few bona fide growth genes were among the nominally significant
candidates could be due to selection against functional variation in natural populations and/or
during subsequent inbreeding and/or that the effect sizes of SNPs in these genes are too small
to be detected in the DGRP. Though it has been shown for other phenotypes that the identified
loci seldom overlap between mutational and GWA approaches, we expected a higher overlap
for size as this trait has been exceptionally intensively studied in Drosophila and as a result we
have extensive prior knowledge on the underlying genes. Our validation of a substantial num-
ber of novel genes underscores the complementarity of the GWA approach to classical genetics
and highlights the importance of probing natural variants. However, future studies would ben-
efit from utilizing bigger population sizes in order to improve statistical power and from inves-
tigating populations with different geographic origins, to address population specificity of
associated variants.

With the exception of the kek1 cluster, all the most significant wing size associations
mapped to putative novel growth genes: CG6091, a de-ubiquitinating enzyme whose human
ortholog has a role in innate immunity; CG34370, which was recently identified in a GWA
analysis of lifespan and lifetime fecundity in Drosophila [72]; and, surprisingly, dsx, a gene well
characterized for its involvement in sex determination, fecundity and courtship behavior. dsx
showed a significant effect on wing size in both sexes, CG6091 was only validated in males
despite reaching a smaller p-value in the female GWAS, and CG34370 did not show a signifi-
cant wing size change in either sex. Due to the obvious limitations of RNAi as a validation
approach for SNPs we think it important to investigate the roles of CG6091 and CG34370 in
growth control by other approaches before discarding them as false associations. As genes
affecting growth also impact on general and reproductive fitness of organisms it is not surpris-
ing that most of the candidate variants in or close to genes lie in regulatory regions, potentially
modulating splicing, RNA turnover or RNA/protein abundance. Our data support the general
notion that intergenic SNPs can impact phenotypes, either by affecting transcript abundance
of protein coding genes (e.g. through distal enhancer elements) or via noncoding RNAs, which
have been shown to regulate many biological functions including cellular processes underlying
growth [73–75].

There are few nonsense and missense SNPs among our candidates (one and six, respec-
tively); these variants are prime contenders for effects on protein function. However, confirm-
ing such effects requires testing the SNP in an isogenic background. Knockdown of most
candidate genes resulted in a small change in median wing size (-19.4% to 10.1%), indicating a
redundant or mildly growth enhancing or suppressing role in this tissue, which may explain
why they were not discovered by classical mutagenesis screens. However, larger effects might
be observed upon ubiquitous knockout, knockdown or overexpression.

Epistasis analysis revealed 15 loci showing Bonferroni-significant interactions with SNPs in
previously known growth genes, demonstrating the usefulness of this approach for extending
existing biological networks. In addition to the interactions described in the main text, we note
there is an interesting interaction between eIF2D (ligatin) and SNF4agamma [76]. Further-
more, we found putative biological interactors for several GWA candidates among the top
interactions that did not reach genome-wide significance e.g. Lar with InR. Lar can phosphory-
late InR [62], so polymorphisms at these two loci could act synergistically to modulate InR
activity. The enrichment of annotated interactions between our GWA candidates and epistasis
partners shows that different analyses yielding different top associations uncover common
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underlying genetic networks. A similar combinatorial approach has been successful in study
using the DGRP [33], underscoring that combinatorial approaches can help placing candidates
from different analyses into a joint biological network, and provide a basis for further hypothe-
sis driven investigation of the roles and connectivity of novel and known genes.

The kek1 locus
The region upstream of kek1 is the only locus where a larger genome region shows association.
The minor allele frequency of this haplotype was between 4.7% and 6.2% (present in 7–10
lines). We explain the large effect of this locus by the fact that most lines with the minor alleles
of the significant SNPs have an IOD that exceeds the 75th percentile of the IOD distribution in
lines with the major allele. Obviously the effect may be overestimated due to relatively few lines
having the minor allele, and due to effects of the genetic background. Nevertheless, the region
contains some prime contenders for an effect on size: the SNPs lie in a region that could serve
as a regulatory element for kek1 or the poorly characterized CG9932, which has been implied
in wing disc development in another study [55]. Furthermore, an uncharacterized noncoding
RNA lies close by and could be linked to the SNP haplotype, due to generally higher LD in this
region. Also, the region is spanned by In(2L)t, which itself shows association to size, and the
observed effect could be due to this inversion. None of the lines with the minor allele haplotype
had any copy of the inversion, which agrees with the observation that In(2L)t homozygous flies
are relatively smaller than lines without the arrangement. On the other hand, only two lines in
our dataset were homozygous for In(2L)t (DGRP_350 and DGRP_358), leaving many of the
lines with the major allele with none or only one copy (nine lines) of the inversion, and we cor-
rected for its presence, so we would not expect this to cause the association.

Biological roles of novel growth genes
Apart from expected processes like signaling, transcription, translation and morphogenesis, we
validated genes involved in transmembrane transport, planar cell polarity (PCP), metabolism
and immunity. A total of 24 single marker or two way interaction candidate genes from our
GWA analyses were discovered to be enhancers or suppressors of major growth pathways in
another study [77] (S11 Table) and 15 were associated with nutritional variation in Drosophila
[78], supporting their role in growth control. We did not see a large overlap between our candi-
dates and the candidates identified by artificial selection on body size by Turner et al. [24], who
identified many classical growth genes. We explain this discrepancy by the different methods
to recover underlying genetic loci. Selection can enrich for rare alleles, while these cannot be
probed in GWAS. If these also had large effects, they would be strongly differentially selected
for in the Turner study. In contrast, we would expect large effect alleles of canonical growth
genes to be mostly rare in the DGRP lines due to pleiotropic effects of these genes on fitness
traits, and thus not evaluated in the GWA. Furthermore, Turner et al. used a population from
California, which likely has a different allele composition from our North Carolina population.
A minor factor may be the rather coarse and general size measure used by Turner et al. Sieving
selected for generally bigger flies, with no distinction between flies with bigger wings, heads,
thoraxes, or legs that obstructed passage through the sieve. As growth of individual body parts
is controlled by both systemic and organ intrinsic factors [1–4], and measuring overall size
likely identifies the systemic, general factors, this could explain some of the discrepancy. Like-
wise, we do not identify two previously reported large effect alleles of InR or smp-30 [23, 24].
The smp-30 allele was identified in a population of different geographic origin and could thus
simply not be present in the DGRP lines. The InR allele is an indel, whereas we only analyzed
single nucleotide polymorphisms in this study. Although both genes likely contain further
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polymorphisms that are present in the DGRP, their effects may be far smaller and thus not
detectable given the restricted size of the DGRP. In terms of chromosomal loci, we do identify
SNPs on 3R, several of them located in the region spanned by In(3R)P (3R: 12,257,931–
20,569,732) [54]. Furthermore, our data show a tre.d of In(3R)P correlating with size, However,
the inversion was present in too few lines of our dataset to reliably estimate its effect in a
model.

Most of the loci we validated have not been previously linked with growth in Drosophila.
The yeast ortholog ofMid1 (validated only in females but stronger association in males), is a
stretch activated Ca2+ channel with a role in the polarized growth of mating projections [79,
80]). As mechanical tension plays a role during growth of imaginal discs, this channel could act
in translating such signals to intracellular signaling pathways via the second messenger Ca2+.
The human ortholog of another candidate, the transmembrane channel Trpm (associated and
validated only in females), showed association with anthropometric traits during puberty, indi-
cating a role during the postnatal growth phase. The mucinMuc68Ca, identified in the top 20
of the gene-based association to rCSF, showed one of the largest knockdown effects (14 and
15% reduction in size in females and males, respectively). Mucins form a protective layer
around vital organs, and the expression pattern ofMuc68Ca in the larval midgut concurs with
a putative effect on growth via the control of intestinal integrity [81].

A dual role in PCP, the establishment of cell polarity within a plane in an epithelium, and
growth control has been shown for many genes, which regulate these two processes via distinct
but coordinated downstream cascades [82, 83]. Lar (no significant effect on size in validation),
aPKC, the Fz target Kermit [84] and the motor proteins Dhc64C (not included in validation
but contained a nonsense SNP reaching nominal significance) and Khc-73 (validated in males
but stronger association in females, though with positive effect size), whose human ortholog is
significantly associated with height, are implied in PCP establishment. Kermit and motor pro-
teins act downstream in the PCP cascade and likely have specialized roles for this process, but
PCP can itself impact on growth, as proper establishment of polarity provides the orientation
of cell division, and loss of a PCP component in zebrafish causes a reduction in body length
[85]. Interestingly, kermit was a candidate interactor of EGFR, which acts in a combinatorial
manner with Fz signaling in PCP [86], providing a biological basis for this interaction.

Metabolic genes are prime candidates for improving our understanding of growth, which
depends on the amount of energy and precursors available for biosynthesis, and thus to meta-
bolic coordination. The recent findings that the growth and PCP regulator Fat can couple
growth and metabolism and mitochondrial proteins can causally affect growth pathway activity
[87] underscore the importance of metabolic coordination. A missense SNP in the validated
candidate Cep89, a gene involved in mitochondrial metabolism and growth in Drosophila and
humans [88] was associated with most wing phenotypes. Elucidating the function of Cep89
and other validated candidates with putative roles in metabolism, e.g. CG3011, CG6084 and
Fbp2, whose human ortholog has been linked to growth defects and cancer [e.g. 89], may pro-
vide further insight into this coordination.

Sexual dimorphism of size
Of the top 100 SNPs for each trait only 25% - 43% are shared between the sexes, a surprisingly
small overlap given the high genetic and phenotypic correlations between sexes. In some cases
the SNPs still lie in the same gene, implying that this gene differentially affects size in both
sexes, but the responsible SNP is different. In other cases, we only detect associated SNPs for a
gene in one sex. Here, the gene may affect size in both sexes but genetic variation in this gene
affects size differentially in only one sex. As we have a low powered study this is only a hint and

Genome-Wide Analysis of Growth in Drosophila melanogaster

PLOSGenetics | DOI:10.1371/journal.pgen.1005616 January 11, 2016 15 / 29



these results need to be further analyzed in a bigger population or by allele replacements using
e.g. the CRISPR/Cas9 system to be corroborated. Unfortunately we cannot conclude anything
about sex-specificity of our variants from the knockdown results. A knockdown is a very differ-
ent perturbation from the effects of, for example, a regulatory variant. The knockdowns are
performed in a different background than the one the association was discovered in, and they
have much larger effect on the levels of a gene than a regulatory variant. So even though RNAi
on a gene might show effects in males and females it does not exclude that different alleles of a
SNP in this gene only affect wing size differentially in one sex.

Interestingly, an intronic SNP in the sex determination gene dsx had the lowest p-value in
the female relative wing size GWAS but had a smaller effect size in males. Dsx is a transcription
factor with sex-specific isoforms, and has many targets with sex- and tissue specific effects [90].
We also observed sex-specificity for the genome-wide significant two-locus interactions.

Considering that males use their wings to produce a courtship song that is instrumental for
mating success, it may well be possible that selection pressure is different for male and female
wing size or wing size in relation to other body parts. Indeed, the selection response for wing
length seems to be more constrained in males [91]. In our dataset, wing length is highly corre-
lated with CS, our main wing size measure. Menezes et al. observed males with more elongated
wings but also smaller males had the highest mating successes [92]. These studies and our data
suggest there may be subtle differences in the genetic networks underlying size determination
in males and females in natural populations, a possibility that is neglected in single gene studies
and thus would be worthwhile exploring.

Conclusions and future perspectives
Growth control has been well studied, particularly in Drosophila, where many genes and path-
ways affecting growth have been documented by mutational analyses. However, such screens
are far from saturation and do not scale well to investigating effects of combinations of muta-
tions. Here we took advantage of naturally occurring, multifactorial perturbations genome-
wide to identify novel genes affecting growth and to place them in genetic interaction networks.
Rather than deepening our understanding of growth control, the identification of ever more
growth regulators raises new questions about how all these loci interact to govern growth. The
challenge for the future will be to shift our focus from studying genes in isolation towards
investigating them in the context of developmental networks, and to assess the effects of net-
work perturbations on intermediate molecular phenotypes of transcript, protein and metabo-
lite levels.

Materials and Methods

Drosophilamedium and strains
Fly food was prepared according to the following recipe: 100 g fresh yeast, 55 g cornmeal, 10 g
wheat flour, 75 g sugar, 8 g bacto-agar and 1 liter tap water. Experiments were performed with
149 of the DGRP lines. RNAi lines used are listed in S7 Table.

Standardized culture conditions
Lines were set up in duplicate vials, with five males and five females per vial. After seven days,
the parental flies were removed. From the F1, five males and five females were put together in
duplicate vials and discarded after seven days of egg laying. From the F2, thirty males and thirty
females were mated in a laying cage with an apple juice agar plate plus a yeast drop as food
source and allowed to acclimatize for 24 hours. A fresh plate of apple juice agar plus yeast drop
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was then applied and flies were left to lay eggs for another 24 hours. From this plate, F3 L1 lar-
vae were picked with forceps and distributed into three replicate vials, with 40 larvae per vial.
The food surface in the vials was scratched and 100μl of ddH2O added prior to larvae transfer.
The adult F3 flies were pooled from the three vials and frozen at -20°C approximately 1–2 days
after eclosion. The whole experiment was performed in a dedicated incubator (DR-36VL, CLF
Plant Climatics GmbH) with a 12-hour day-night cycle, constant humidity of 65–68% and con-
stant temperature of 25.5°C +/- 1°C. Vials were shuffled every two days during the first and sec-
ond round of mating but left at a fixed position in the incubator for the duration of the
development of the F3 generation.

For the parental generation, lines were all set up on the same day on the same food batch.
For the F1 matings, different food batches had to be used due to different developmental timing
of the lines. F2 matings were set up using the same batch of apple agar plates and yeast for all
lines. F3 larvae were distributed on four different food batches and the batch number was
recorded for each line.

The control experiment (S1 Table) was performed using the same procedure as above,
except that the same food batch was used for all flies of a generation. We used the DGRP lines
DGRP_303, DGRP_732, DGRP_721 and DGRP_908 for this experiment because they had
comparable generation times and set up ten replicates of each of these lines according to the
standardized culture conditions.

Phenotyping and morphometric measurements
Depending on the number of flies available, between five and twenty-five flies per sex and line
were measured for the dataset (median 25 flies per sex and line, mean 23 (CSfemales, CSmales,
IODmales) and 24 for IODfemales; exact numbers are given in S2 Table). For the experimental
generation we distributed a total of 19,200 larvae in four batches spaced throughout 1.5 weeks
according to developmental timing, and the final dataset consisted of morphometric data of
6,978 flies, 3,500 females and 3,478 males. For the control experiment we phenotyped 25 flies
per replicate, sex and line, resulting in a total of 2,000 flies (1,000 males, 1,000 females). Flies
were positioned on a black apple agar plate and photographed using a VHX-1000 digital light
microscope (KEYENCE). Morphometric body traits were measured manually using the VHX-
1000 dedicated measurement software. If intact the right and otherwise the left wing was
removed and mounted in water on a glass slide for wing image acquisition. Morphometric
measurements were extracted from the wing images using WINGMACHINE [93] and
MATLAB (MATLAB version R2010b Natick, Massachusetts: The MathWorks Inc.)

Centroid size was measured as the square root of the summed squared distances of 14 land-
marks from the center of the wing (Fig 1). Interocular distance was measured from eye edge to
eye edge along the anterior edge of the posterior ocelli and parallel to the base of the head.

Quantitative genetic analysis
All analyses were performed in R Studio using the R statistical language version 2.15 (http://
www.R-project.org). PCA was performed on data of individual flies using the package FactoMi-
neR. Allometric coefficients (b) were determined for each line and sex from the model log(y) =
log(a) + b � log(x), where y = CS and x = IOD or TL, using the lm() function in the stats pack-
age. 95% confidence intervals for the parameter b were computed using the confint() function
in the stats package. The total phenotypic variance in the control experiment was partitioned
using the mixed model Y = S + L + SxL + R(L) + ε, where S is the fixed effect of sex, L is the ran-
dom effect of line (genotype), SxL is the random effect of line by sex interaction, R is the ran-
dom effect of replicate and ε is the within line variance. The brackets represent that replicate is
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nested within line. The total phenotypic variance in the dataset was partitioned using the
mixed model Y = S + L(F) + SxL(F) + F + ε, where S is the fixed effect of sex, L is the random
effect of line (genotype), SxL is the random effect of line by sex interaction, F is the random
effect of food batch and ε is the within line variance. The random effects of line and line by sex
are nested within food batch, as each line was raised only on one of the four food batches. Mod-
els of this form were fitted using the lmer() function in the lme4 package in R. We also ran
reduced models separately for males and females. The rand() function in the lmerTest package
was used to assess significance of the random effects terms in the dataset.

Relative contributions of the variance components to total phenotypic variance (σ2P) was
calculated as σ2i / σ

2
P where σ

2
i represents any of σ

2
L, σ

2
LxS, σ

2
F, σ

2
R, σ

2
E, and σ

2
P = σ2L + σ2LxS +

σ2C + σ2E. σ
2
C stands for σ

2
R in the control dataset and for σ2F in the analysis of the GWAS data-

set. σ2L = variance due to genotype, σ2LxS = variance due to genotype by sex interactions, σ2F =
variance due to food, σ2R = variance due to replicate and σ2E = residual (intra-line) variance.
The broad sense heritability for each trait was estimated as

H2 = σ2G / σ2P = (σ2L + σ2LxS) / (σ
2
L + σ2LxS + σ2C + σ2E). The cross-sex genetic correlation

was calculated as rMF = σ2L/ (σLF σLM) where σ
2
L is the variance among lines from the analysis

pooled across sexes, and, σLF and σLM are, respectively, the square roots of the among line vari-
ance from the reduced models of females and males. Similarly, cross-trait genetic correlations
were calculated as rAB = σ2G(AB)/(σGA σGB) where σ

2
G(AB) is the genetic covariance between traits

A and B, and σGA and σGB are the square roots of the genetic variance for traits A and B, respec-
tively. The phenotypic correlation between sexes was determined using the cor() function with
method = “spearman” in R.

Phenotypes for GWAS
We found a large effect of food batch on CS, and inversions In(2L)t and In(3R)Mo were associ-
ated with IOD and to a lesser extent CS. We modeled these covariates using a mixed model.
The food batch was modeled by a random effect and the rearrangements were coded as (0,1,2)
depending on whether both, one or no inversion was present in the homozygous state. We did
not observe correlation betweenWolbachia infection status and any trait and thus did not
include this as a covariate in the model. Specifically, the models used were: CSraw = α + X1β1 +
X2β2 + Fu + ε, where X1 refers to the sex covariate, X2 refers to the inversion covariate, ε~Nn(0,
σε In

2) with n being the number of lines, u~Nk(0, σu
2Ik) with k being the number of food batches

and Fu an (n,k)-indicator matrix, associating each line to its respective food batch. The GWA
analyses were performed using the estimated residual of this model (CS = ε).

To find loci that specifically affected variation in wing size unrelated to the overall body size
variation we constructed an additional phenotype (rCS) that had the effect of IOD on CS
removed via regression: CSraw = α + IOD + X1β1 + Fu + ε, where X1 and Fu refer again to the
sex-effect and the food batch effect. We did not model the inversions because the residuals of
this model were not correlated with the inversions. The residuals ε from this regression were
used as relative size phenotypes. All phenotypes were rank normalized before GWAS.

Association analyses
We performed GWA analyses using male and female line means. Genotypes for 143 of the 149
lines were obtained from the DGRP Freeze 2 website (http://dgrp2.gnets.ncsu.edu). Only SNPs
that were missing in a maximum of ten lines and occurred in at least ten lines (7% of the mea-
sured lines, 1,319,937 SNPs in total) were used. GWA was performed using FaST-LMM [53]
for separate sexes. This association method uses a linear mixed model to capture confounders
such as population structure and cryptic relatedness. Association results were visualized using
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themanhattan() function in the R package qqman [94]. To determine correlation between
SNPs for a given phenotype we extracted the genotype of the top n SNPs (p<10−05) and calcu-
lated the correlation between genotypes at these loci across all DGRP lines used in the GWA
analyses. We used the FaST-LMM SNP p-values to apply the sum of chi-squares VEGAS
method [57] to calculate gene wise statistics. Gene boundaries were defined using annotation
from popDrowser (http://popdrowser.uab.cat/gb2/gbrowse/dgrp/), but we included also SNPs
lying within 1,000 bp up- or downstream of these margins. The correlation matrix was calcu-
lated from the genotypes themselves.

GO annotation and interaction enrichment
To determine enrichment of functional classes, annotate genes with functions and curated
interactions among our candidate genes, we used the functional annotation and protein inter-
action enrichment tools from STRING [56].

RNAi validation
SNPs with an association p-value<10−05 lying in a gene region or ± 1 kb from a gene were
mapped to that gene. From the gene based VEGAS analysis, we chose the top 20 genes from
each list as candidates. RNAi lines for a subset of candidate genes for each wing phenotype
were ordered from VDRC [95]. For one gene, chinmo, there was no appropriate line available
from VDRC and we instead tested two Bloomington lines (26777 (y[1] v[1]; P{y[+t7.7] v
[+t1.8] = TRiP.JF02341}attP2) and 33638 (y[1] v[1]; P{y[+t7.7] v[+t1.8] = TRiP.HMS00036}
attP2/TM3, Sb[1]), indicated in S7 Table with (BL)). For the random control knockdowns we
tested a set of 24 genes that did not contain a significant SNP in or within 1 kb of their tran-
scribed region. We did the random knockdowns only in females to more effectively assess
more genes for the same labor. As we wanted to address the controls like an additional pheno-
type (random) we chose a number of genes comparable to the numbers of candidates for other
phenotypes. We chose females because we generally had more candidate genes in females than
in males. All RNAi lines used are listed in S7 Table. For wing size candidates, validation was
performed by crossing males of the respective RNAi line to virgin females carrying the GAL4
transcriptional activator under the control of the nubbin (nub) promoter. The VDRC line con-
taining a UAS-RNAi construct against the CG1315 (GD library, transformant ID 47097) gene
served as a negative control for the knockdowns. We decided to use this line as reference
because it was in the same background as most of our tester lines, an essential factor to consider
when assessing genes that presumably only have a small effect on size upon knockdown. The
CG1315 knockdown had never shown an effect in any setting and it allowed us to evaluate
unspecific effects of RNAi knockdown on wing size. Prior to the experiment, driver lines were
bred under controlled density to eliminate cross-generational effects of crowding on size.
Wings were phenotyped as described above and wing area used as a phenotypic readout.
Change in median wing area relative to the control was tested with a Wilcoxon rank sum test
(function wilcoxon.test() in R) for each line and for separate sexes. If possible, 25 flies per cross
and sex were phenotyped for statistical analysis, however sometimes the number of progeny
was lower. The number of phenotyped flies per cross and sex is given in S7 Table. We used the
fisher.test() function in R to determine if the proportion of validated genes was different among
candidates and random lines, and the wilcoxon.test() function to test for a difference in median
p-value between candidates and random lines. The comparison between candidate and random
knockdowns was done for females exclusively as only this sex was measured for the random
lines. Only genes not previously implied in wing development or growth control were included
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in the analysis, which excluded chinmo, aPKC, tws and Ilp8 from the candidates and EloA and
spz5 from the random list.

Epistatic analyses
We explored epistatic interactions between SNPs lying within and 1 kb around genes that were
previously found to be involved in growth or wing development in Drosophila against all
DGRP SNPs with missingness<11 and present in at least 10% of the lines. We compiled a list
of SNPs within and 1 kb up- or down-stream of genes that were previously known to play a
role in growth control (14,137 SNPs) or wing development (43,498 SNPs) and used these as
focal SNPs (S8 Table). All phenotypes were normalized to follow a standard normal distribu-
tion for this analysis to make sure that no severely non-normal distributions occurred within
any of the four marker classes per locus. We used FasT-Epistasis [58] calculating interactions
for all pairs between the focal SNPs and the set of all SNPs satisfying the above criteria
(1,100,811 SNPs). Bonferroni corrected significance would thus require p<7.9x10-13. Interac-
tions were visualized using Circos [96]. To calculate significance for the overlap between genes
found via epistasis and a given gene list, we first positionally indexed all n SNPs that were used
in the epistasis analysis. We recorded the set of indices of SNPs with p<10−09) yielding set K:
K = {k: SNPk is an epistasis hit}. We then generated random samples.

For random sample j, do:
For all elements in K, add a random integer rj between 0 and n-1. Define new index as the

modulo n: ki
j = mod(ki + rj, n), which yields Kj = {ki

j; j = 1,..,m}. Given the shifted positions Kj,
we look up the SNP positions PKj. For a given gene list, we record the number xj of gene regions
that overlap a position in PKj. Let x be number of gene regions overlapping an epistasis hit. Our
p-value estimate is then Papprox � 1/m ∑1{xj � x}.

Intergenic element enrichment analysis
We determined the number of SNPs from each GWA candidate list and the overall number of
SNPs that located within modENCODE [66] elements annotated with Histone 3 lysine 4 mono-
methylation (H3K4Me1) or Histone 3 lysine 27 acetylation (H3K27Ac) or lincRNA loci. For the
H3K4Me1/H3K27Ac enrichments we restricted ourselves to three developmental stages (L2, L3,
pupae), which we considered to be the most relevant interval for gene activity affecting growth of
imaginal discs. We obtained a table with lincRNAs in theDrosophila genome from the study of
Young et al. [67] and searched for enrichment of SNPs located in those lincRNA loci. Enrich-
ment was tested using a hypergeometric test (function phyper()) in R).

BLAST alignment
We downloaded the sequence of the region 10 kb upstream of the annotated transcription start
site of the expanded locus (2L: 421227..431227) from FlyBase [97], as well as the sequence of
the same relative region for seven of the twelve Drosophila species [98], which contained the
ortholog of the expanded gene in the same orientation in the genome. We performed multiple
sequence alignment using the discontiguous megablast option on NCBI BLAST [70].

Annotation with human orthologs
We combined candidate genes from GWA analyses of all phenotypes and searched for ortho-
logs in humans using DIOPT-DIST [71]. Enrichment of GWA candidates for genes with
human orthologs associated with height [10] was determined with a hypergeometric test (func-
tion phyper() in R). We determined Drosophila orthologs of gene annotations of all associated
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SNPs in Wood et al. (total 697), resulting in 374 ortholog pairs supported by at least 3 predic-
tion tools, and searched for overlap of these orthologs with the 62 of our GWAS candidate
genes that had a human ortholog supported by at least 3 prediction tools, which resulted in 12
matches. Of those, only five matches were supported by three or more prediction tools (score
> = 3) and we used only those for enrichment calculation. As background we used the total
number of Drosophila-Human ortholog relationships (= 28,605) [71].

Supporting Information
S1 Fig. Analysis of the male dataset. a) Genetic correlation between morphometric traits in
males. The two modules of higher correlation observed in females are still visible (bright yellow in
the upper left and lower right corners) but the overall clustering is more influenced by the more
inaccurately measured smaller veins and areas. b) Cumulative variance explained in male data by
increasing number of principal components. As in the female dataset, the first two PCs explain
almost 75% of the variance in the data. c) Factor map for the variables. PCs 1 and 2 split the data
into two groups. d) Correlation between PCs and traits. PC1 reflects a general size component and
PC2 is highly correlated with head/thorax traits, effectively splitting the data in two groups.
(PDF)

S2 Fig. Allometry and inversions.Histograms of the estimates for the allometric coefficient b
for the relationship between CS and IOD in females (a), in males (b) and between CS and TL in
females (c) and males(d). e) Boxplot and individual datapoints of the data in a-d.
Red = females and black = males. 95% confidence intervals for b (S1 Table) are very broad for
some lines due to few datapoints used for fitting, so these are just very rough estimates for the
allometric relationship. Nevertheless there is variation among lines for all evaluated relation-
ships. f) The effect of cosmopolitan inversions on wing size. Lines are plotted according to the
number of homozygous inversion arrangements they have: 0 (red) = neither In(2L)t nor In(3R)
Mo present, 1 (green) = homozygous for either In(2L)t or In(3R)Mo, 2 (blue) = homozygous
for both In(2L)t and In(3R)Mo. Datapoints are individual flies.
(PDF)

S3 Fig. The minor and major haplotype of genome-wide significant SNPs show differential
association with female IOD. a) The minor allele haplotype of the genome-wide significant
cluster is associated with an increased IOD in females. Boxplots of female IOD by genotype at
the nine SNPs annotated to kek1. SNPs marked by a star pass Bonferroni correction.
Grey = major allele, white = minor allele. b) Lines with the minor haplotype are distributed
across all four foodbatches. Black dots = major allele, blue dots = minor allele. The IOD distri-
bution for each foodbatch is plotted for females for the most significant SNP. The distribution
is the same for all other SNPs of the cluster as all minor alleles form a haplotype. c) Correlation
between p-values from GWAS with normalized IOD (y-axis) and non-normalized iod (x-axis)
in females. Axes are on the–log10 scale. d) Several blocks of higher LD are visible in the region
20kb upstream of kek1. Blue = no correlation, orange = complete correlation.
(PDF)

S4 Fig. QQ-plots from GWA in females for all traits show a departure from uniformity of
top associations.Observed association p-values are–log10 transformed (y-axis) and plotted
against the–log10 transformed theoretically expected p-values under the assumption of no
association (uniform distribution, x-axis). Centroid size (a), inversion corrected centroid size
(b), interocular distance (c), inversion corrected interocular distance (d) and relative centroid
size (e).
(PDF)
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S5 Fig. QQ-plots from GWAS in males for all traits show a departure from uniformity of
top associations.Observed association p-values are–log10 transformed (y-axis) and plotted
against the–log10 transformed theoretically expected p-values under the assumption of no
association (uniform distribution, x-axis). Centroid size (a), inversion corrected centroid size
(b), interocular distance (c), inversion corrected interocular distance (d) and relative centroid
size (e).
(PDF)

S6 Fig. Correlation between associated (p<10−05) SNPs in females. The SNPs are ordered
according to chromosome arm (2L, 2R, 3L, 3R, X) and black dividers separate chromosomes.
Within one chromosome arm SNPs are ordered according to their position on that chromo-
some with each tile representing one SNP. The color code is depicted on the right:
orange = complete correlation (1) and blue = no correlation (0). Centroid size (a), inversion
corrected centroid size (b), interocular distance (c), inversion corrected interocular distance (d)
and relative centroid size (e).
(PDF)

S7 Fig. Correlation between associated (p<10−05) SNPs in males. The SNPs are ordered
according to chromosome arm (2L, 2R, 3L, 3R, X) and black dividers separate chromosomes.
Within one chromosome arm SNPs are ordered according to their position on that chromo-
some with each tile representing one SNP. The color code is depicted on the right:
orange = complete correlation (1) and blue = no correlation (0). Centroid size (a), inversion
corrected centroid size (b), interocular distance (c), inversion corrected interocular distance (d)
and relative centroid size (e).
(PDF)

S8 Fig. Correlation of SNP p-values between the sexes. SNP p-values in females (x-axis) are
plotted against their respective p-values in males (y-axis). The Spearman rank correlation is
given for each trait and the red lines denote the significance cutoff. a = CS, b = CSIC, c = IOD,
d = IODIC, e = rCS.
(PDF)

S9 Fig. RNAi knockdown results males. Percent change in median wing area compared to
CG1315 RNAi upon wing-specific knockdown of the validated candidate genes in males. Only
the lines yielding a significant wing size change (p<0.001, Wilcoxon rank sum test) are
depicted. Median, 25th and 75th percentile for each are given in S7 Table.
(PDF)

S10 Fig. Comparison of p-values and effect sizes between candidate and control RNAi. a:
-log10 transformed p-value densities of the candidate (black) and combined control (red) data
sets. The two p-value distributions differ by a location shift that is not zero (i.e. are not the
same); specifically, the–log10 transformed control p-value distribution (red) is shifted towards
the left of the–log10 transformed candidate p-value distribution (black) (one sided Wilcoxon
rank sum test p = 0.02). b: The distribution of candidate effect sizes (percent change in wing
size upon knockdown) is shifted towards positive effect sizes (white boxes), whereas the control
knockdown effect size distribution (red) is more centered on 0. The two exceptions at -28%
(CG17646) and -42% (CG3704) are lines whose wings not only show a size reduction but also
considerable morphological defects (c). N = 43 candidates (white), N = 22 control (red); only
data from females was used for these analyses.
(PDF)
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S11 Fig. Functional annotation of the 33 validated candidate genes based on DAVID GO
annotation.
(PDF)

S1 Table. Quantitative genetic analysis. Control experiment: Only 2% of total population var-
iance in CS and IOD was due to flies coming from replicate vials, a negligible fraction com-
pared to the 78% and 71% attributable to differences in genotype. This indicates that the
standardized culture protocol sufficiently deals with confounding effects on size phenotypes.
N = 2000, 25 flies/sex of 10 replicates of four DGRP lines. Allometry: Allometric coefficients
(b) calculated from the equation log(CS) = log(a) + b�log(trait) and their 95% confidence inter-
val (CI) are given for the allometric relationships between CS and IOD and CS and TL for each
line and sex. Though the CI varies substantially for some lines due to few data points used for
fitting the models, the upper CI boundary is close to 0 for some (e.g. 28157 females (RAL228)
for the CS-IOD relationship). QGA Dataset: Quantitative genetic analysis of CS and IOD in
the dataset consisting of N = 6978 flies from 149 DGRP lines. pSex = significance of fixed effect
of sex, pLine = significance of random effect of Line, pSex x Line = significance of random effect of
Line by sex interaction, pReplicate = significance of random effect of replicate, pFood = signifi-
cance of random effect of foodbatch. Estimated parameters are variance due to genotype (VG),
genotype by sex interaction (VGxS), food (VF), replicate (VR) and intra-line variance (VE), as
well as the cross-sex genetic (rMF) and phenotypic correlation between sexes. H2 = broad-sense
heritability and VP = total phenotypic variance. Phenotypic variation: Smallest and largest trait
values and the percent difference are given per sex for each phenotype. Population means
(Mean) and standard deviations (STD) are used to calculate the coefficient of variation (CV).
(XLSX)

S2 Table. Phenotypic data. Raw data for all traits and line means (Mean), standard deviations
(STD) and number of phenotyped flies (N) listed by sex for centroid size (CS) and interocular
distance (IOD).
(XLS)

S3 Table. GWAS results. Nominally significant SNPs (p<10−05) from GWAS for Centroid
size (CS), inversion modeled centroid size (CSIC), interocular distance (IOD), inversion mod-
eled interocular distance (IODIC) and relative centroid size (rCS) in both sexes.
(XLS)

S4 Table. Between-sex and -phenotype overlap of nominally significant SNPs. GWAS SNPs:
Number of nominally significant SNPs (p<10−05) identified in each of the GWAS and percent
overlap between sexes. SNPs F = number of SNPs nominally significant in females, SNPs
M = number of SNPs nominally significant in males, Common MF = number of SNPs nomi-
nally significant in both sexes, % M in F = percent nominally significant male SNPs also nomi-
nally significant in females, % F in M = percent nominally significant female SNPs also
nominally significant in males. Between sex overlap: SNP and gene level overlap between sexes
for different thresholds. Percent overlap of SNPs (exact associated positions), annotated SNPs
(including annotation of SNPs located in intergenic regions where the annotation is often not
reliable, as the next genes are frequently more than 20kb away), and genes (only includes SNPs
that locate within or 1kb around a gene). A consistent difference in associated loci in terms of
the exact SNP that is associated (top block) is detectable between sexes, though the loci appar-
ently are located more or less in a similar region (middle block). For SNPs in or close to genes,
the differences between sexes are more pronounced: of the top 100 associated genes about 50%
overlap, while the other 50% are private to one sex but this percentage increases with inclusion
of more genes (bottom block, top 10,000 is>90% overlap, in total there are around 14,000
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genes in these lists). Between phenotype overlap: Proportion of nominally significant SNPs
that are shared between phenotypes.
(XLS)

S5 Table. Enrichment analysis. Enrichment: Enrichment p-values for SNPs localizing to dif-
ferent genomic regions. LincRNA: LincRNA loci that overlap significant SNPs and their
expression during different developmental stages. LincRNA data from Young et al. [67].
(XLS)

S6 Table. Top 20 genes for each trait identified by the VEGAS method. Last column indi-
cates the percent change in median wing size of genes tested by RNAi, and asterisks (���) indi-
cate significant change (p<0.001).
(XLS)

S7 Table. Validation results candidates and random genes. The lines are ordered according
to decreasing significance of the change in median wing area upon knockdown (Wilcoxon
rank sum test). Crosses in columns pigmentation, bristles, veins indicate a slightly abnormal
corresponding phenotype. N = number of individuals tested, Median = median wing area, Q25
and Q75 = first and third quartile of wing area distribution. MAF 3 or MAF 5 in brackets
means a SNP in or near this gene was found among the top associated genes in a GWAS for
wing size with a lower MAF cut-off (SNPs present in min. 3% or 5% of lines). This gene was
tested for wing size since a SNP in it showed association to body size with the used MAF cutoff
and thus a corresponding RNAi line was available. Overview: Overview validation results.
Number of SNPs that were tested and the number and percentage that were validated for each
trait. We tested the known genes chinmo, aPKC, tws and Ilp8 as positive controls, but did not
include them in the calculation of these percentages. Fisher’s exact test: We performed a two-
sided Fisher’s exact test to determine if the proportions of validated genes was different
between candidates and random genes. The results are shown for different Wilcoxon test p-
value validation thresholds. Only not previously known candidates and random lines were
used (Ncandidates = 43, Nrandom = 22)
(XLS)

S8 Table. Epistasis results. Focal genes: Genes previously implied in growth regulation or
wing development that were used as focal genes for epistasis. Top interactions (p<10−09) for
female absolute inversion corrected wing size (CSFIC), male absolute inversion corrected wing
size (CSMIC), female absolute inversion corrected body size (IODFIC), male absolute inversion
corrected body size (IODMIC), female relative wing size (rCSF) and male relative wing size
(rCSM). X is the interactor locus and Y the focal (= previously known) locus.
(XLS)

S9 Table. Multiple sequence alignment (MSA) results. Expanded orthologs: Genomic loca-
tion of ex orthologs in 12 Drosophila species [98]. Name of the ortholog, its genomic location
and orientation are shown. For the MSA we only used species that contained the gene in the
same orientation as D.melanogaster (+). MSA details: Details of MSA of the 10kb region
upstream of D.melanogaster ex gene. Sequence = genomic region in each species used in the
MSA, Identity = percent identical nucleotides, Aligned Length = length of alignment, Query
Cover = percent of the query sequence (D.melanogaster sequence) aligned to the sequence in
the respective species, E-value = significance of alignment (expected number of high scoring
pairs with score at least as high as the score of the current alignment), Score = strength of align-
ment.
(XLS)
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S10 Table. Human orthologs of putative and validated Drosophila growth regulators and
their association to human complex traits.
(XLS)

S11 Table. GWAS/epistasis candidates reported by other studies. Candidates found as sup-
pressors or enhancers of major growth pathways by Schertel et al. [77]. Candidates associated
with nutritional indices in the study of Unckless et al. [78].
(XLS)
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5. Discussion

5.1. How it all fits together: Interpretation of GWAS findings

The aim of genetics is to understand the genetic basis of traits by linking genetic variability

to phenotypic variability. The genetic variability studied can be either artificially introduced

(such as in knock-out studies) or the naturally occurring variability can be exploited. While

many studied traits have a clear medical implication, some are of interest as models of traits

with a particular genetic architecture because they are easy to study. In the field of genetics

of complex phenotypes, one model trait of considerable interest is human height: It is easy to

measure, allowing to assemble very large cohorts making in depth study feasible. Furthermore, it

is highly heritable, extremely polygenic and driven to a large extent by common variants [13].

Therefore, lessons learned from studying human height can inform us about what will be needed

to fully elucidate the genetics of complex diseases with similar architectures. These investigation,

while very successful at uncovering new variants involved in the genetics of height, have also

revealed that only a fraction of all contributing genetic variants have been uncovered so far [5].

One can expect that sample size will continue to increase leading to ever more annotated variants.

However, even if all genetic variants influencing a complex trait such as human height were

discovered, it is currently unclear how to best tackle the challenge of interpreting variants in

the context of the biology involved. Compared to the problem of uncovering all variants that

contribute to the heritability of a trait, the problem of biological interpretation is very multi-

faceted and much less clearly defined, but is nevertheless crucial to reap the full benefit from the

revolution in genetics currently underway. One strategy for interpretation is pathway analysis

where prior biological knowledge is formalized into sets of genes with annotated functions and

results from genetics studies are searched for enrichments, which in turn connects the biological

function to the investigated trait. Chapter 2 showed work that follows this general reasoning.
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A particularly attractive feature of genetics studies is that experimental perturbations are

not necessarily required, making them a powerful tool to study human biology. However, to

investigate the molecular mechanistic details of the genetic impact of a variant, experiments are

often performed in model organisms because of the need for perturbation. A crucial question

therefore is, how well a model organisms’ phenotype may serve as a model for the human

phenotype of interest. This question is of great practical importance. For example, to develop a

pharmacological manipulation strategy of a phenotype, one typically needs an animal model of

said phenotype on which to test potential treatments. The study of the genetics of animal model

is therefore relevant not only for its own sake but also to see how generalizable results between

different organisms are. The effort described in Chapter 4, an investigation into the genetics of

drosophila growth control, can be seen under this aspect.

Another strategy to interpret genetic variants affecting complex phenotypes is to find simpler

phenotypes that are affected by the variant and see the former as a consequence of the latter.

In particular, gene expression regulation has emerged as a less complex phenotype in terms

of which complex effects such as changes in body size can be investigated. But even though

gene regulation as a phenotype is simpler, it is not fully understood. However, joint modelling

of different molecular data types allows to investigate this process. The classical example is

the expression quantitative trait locus (eQTL) where expression and genotypes are modeled

together. eQTL mapping has been successful at finding SNPs in cis to gene loci affecting the

expression levels for a substantial fraction of genes in a wide variety of tissues and cell types

[59, 60]. While discovering SNPs that have an impact on gene expression in trans has been

more challenging due to generally smaller effect sizes and multiple testing burden, studies with

larger sample sizes did discover numerous trans-eQTLs suggesting that comprehensive regulatory

maps might be constructed in the near future using this approach [7, 60]. However, there is

a clear need for further integrative data analysis strategies to deepen the understanding of

gene regulation. Chapter 3 showed such a method to elucidate effects of expression of TFs on
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chromatin accessibility, an important layer of gene regulation.

These approaches can therefore be seen as attempts of providing context for regular GWAS

analysis; by investigating how GWAS results cluster into functional categories, how well the

genetics of a model organism generalizes to human genetics, or by deepening our understanding

of the regulatory processes on the chromatin level which is a prerequisite for a full understanding

of how genetic variation leads to variation in gene regulation.

5.2. Methodology overview of each project

While none of the three approaches are classical human GWAS, they drew inspiration from it,

as in the case of the investigation of the genetics of drosophila body measures and the method

developed to investigate chromatin state regulators, or were using GWAS results as their starting

point.

Drosophila growth control Of the three projects, the investigation of the genetics of drosophila

body measures was perhaps the closest to a traditional GWAS setup: A naturally occurring

population was genotyped and phenotyped, and it was investigated which SNPs would associate

to the phenotype. Still, there is a number of idiosyncrasies to the analysis that are specific to

this experimental setup. The first is that, although a naturally occurring population is sampled,

stable in-bred lines are then produced. The reason is experimental logistics: In-bred lines can be

maintained in perpetuity allowing for additional phenotyping being performed later by other

scientists. The downside is that it alters somewhat the genetic composition of the lines compared

to the natural lines: The dominant genetic component will be amplified and will not be separable

from the additive component. However, it is still much closer to the natural genetic variability

than more traditional knock-out screens. Another advantage of using model organisms is that

one can impose strict environmental control. This demands additional efforts in experimental
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setup and statistical modeling as can be seen in the related chapter. Follow up studies to validate

variants or genes can be performed in the actual model system whereas in human GWAS, one has

to rely on proxy systems for validation. Again, our study provides an example of this principle.

Further, animal studies are not plagued by privacy concerns as human studies are. This implies

that genotypes and phenotypes can be made available for re-analysis and meta-analysis taking

account of more complex modeling. This also applies to our study, as the phenotypes are freely

available.

Chromatin state regulators In the second investigation we tried to uncover chromatin state

regulators: transcription factors that are direct drivers between open and closed chromatin states,

by developing novel methodology and applying it to repositories of public data [53, 54]. While

parts of the pipeline have resemblance with a GWAS-type setup, the data set used, is of a very

different nature. Genotypes and Phenotypes are replaced by two kinds of functional genomics

measurements: gene expression and transcription factor motif accessibility (approximated by

motif enrichment in open chromatin). Furthermore, instead of individuals from a population,

the sampling units are various cell lines. To minimize confounding, we made use of multiple

techniques discussed below in detail. While measuring genome-wide expression is well established,

the motif accessibility measures in open chromatin relies on assays that have a much shorter

history, making the claim that motif enrichment in open chromatin can function as a proxy

for motif accessibility in terms of total binding events more controversial [46]. It seems clear

from the literature and our own analysis, that for most TFs chromatin binding occurs mainly in

open chromatin regions [49], though the literature also suggests that open chromatin and motif

strength alone are not the only determinants of binding [52]. However, averaging across all TF

motifs in the genome should yield an adequate motif accessibility measure, a conclusion that is

also supported by our investigation using ChiP-seq data.
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GWAS pathway analysis Further, we developed an approach to help analyse the results derived

from GWAS while making sure that on the one hand the lessons learnt from pathway analysis for

gene expression data are incorporated and on the other hand that the special properties of GWAS

summary results data are accounted for. We used gene-wise p-values as basis of our pathway

enrichment, making use of external genotype data to estimate the correlation structure between

SNPs necessary to calculate said p-values. Independence between gene scores is a prerequisite

of typical enrichment strategies, as enrichment tests assume that gene scores in a pathway are

just an independent sample from all available gene scores. While GWAS summary statistics are

correlated, their correlation (bar confounding) is only genomically local allowing for a correction

strategy where neighbouring genes in the same pathway are fused for the duration of pathway

gene score calculation. While this step ensures independence, it incurs further computational

cost. We therefore made sure that all developed p-value calculation strategies were sufficiently

fast and accurate to limit the analysis time even in settings where many genes are fused. In

addition to deriving and implementing the methodology, we performed extensive testing on real

data to make sure that the method performed comparatively well in high and low power settings

alike, as usability in different settings was a major concern.

5.3. Confounding: A problem revisited in each project

While statistical significance testing methodologies can vary a lot in the type of questions asked

and the modeling strategies employed to answer them, there are some fundamental challenges that

most have to deal with. Perhaps the biggest is the issue of confounding. Confounding happens,

when a statistical association between two variables is observed due to a third unmeasured

variable. In GWAS, the most common form of confounding variable is population structure,

where the third unmeasured variable, confounding genotype and phenotype, is origin. Fortunately,

the amount of confounding, as well as the confounding variable, can be estimated to a certain

extent from the data itself, a boon made possible by the genome-wide era [32, 61]. All the covered
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investigations had to tackle the problem of confounding in some way. The drosophila body

measure GWAS used an approach of modeling general population structure via mixed modeling

and additionally model the occurrence of large inversions separately, after evaluating their impact

on the phenotype. In the investigation on chromatin accessibility regulators, confounding was

probably most severe. Both functional genomics measurements are heavily driven by cell line

origin leading to very strong confounding (as can be assessed by p-value inflation). Surprisingly,

the mixed model and data cleaning strategy were remarkably successful at controlling confounding

as evaluated by p-value inflation. While the mixed model strategy works well to correct for

confounding variables that affect most tested genes, this confounding control strategy does not

work, if there is a small number of confounded genes because they will not contribute substantially

to the spectral distribution of the relationship matrix. Unfortunately, this type of confounding is

also hard to diagnose, because it does not impact the bulk of the p-value distribution1. We

circumvented this problem by leveraging substantial prior biological knowledge. Per investigated

motif, we are only interested in one hypothesis: whether some TF having this motif shows a

strong association. That particular hypothesis, compared to all other hypothesis, cannot be

influenced systematically by confounding. Therefore we can be confident that the bulk of our

results are not driven by spurious confounding.

In the case of the enrichment strategies for pathway analysis, confounding can be subtle and

has a connection to comparability and biased pathway collections. Comparability refers to the

fact that gene scores should not be biased with regards to variables other than their actual

involvement in the trait of interest [64]. For instance, taking the raw minimum p-value of all

1Interestingly, a similar problem occurs in GWAS confounding control of low frequency variants, where very local
population structure affects a limited number of low frequency variants but is not sufficiently represented in
the spectral distribution [62]. In this case, the solution offered by Listgarden et al. consisted in constructing a
relationship matrix using only variants with strong associations to the phenotype, thereby biasing the genetic
relationship matrix toward affected low frequency variants [63]. One also needs to exclude all SNPs in the locus
that is currently tested from genetic relationship matrix construction as they would contribute substantially
to the much lower dimensional genetic relationship matrix. However, this solution is difficult to apply to
our situation because for expression data, it is much more difficult to know which genes can be regarded as
statistically independent in the absence of confounding, as this would necessitate detailed knowledge of the
causal gene regulatory network.
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SNPs in gene region for each gene as its gene score would lead to a bias, where longer genes

had lower gene scores, which would bias any pathway analysis towards pathways containing

many long genes. This is particularly problematic if the pathway collection is biased in terms

of that same variable. For instance in the above example, if a certain pathway contains mainly

short genes while another is mainly composed of long genes their enrichment scores would not be

comparable. In the case of only null genes one can ensure comparability by using p-values as

the basis for the underlying gene scores. If there are non-null genes, comparability is very hard

to ensure because one would need to show that the pathway collection is unbiased in terms of

factors affecting power. Continuing our example above, even if we are using genewise p-values as

the basis for our enrichments, if there are many non-null genes, and gene size affects power to

detect a gene as significant, again the two pathways would not be comparable. While this is a

problem in theory, in our exploration of that issue via simulation did not show a bias for the

genetic architectures and the pathway collections that we tested. However, our results cannot be

readily generalized to other pathway collections and other genetic architectures.

5.4. Causality

A common problem in statistical data analysis is to decide how much can be learned from a

statistical association about causality. This is a question where domain knowledge can help, but

a conservative statistician prefers perturbation data in a randomized trial. Among the sciences,

genetics is in the enviable position of being able to find causal relationships without the need

for perturbation data because all genetic variants are fixed at birth and their segregation in the

germ line can be regarded as statistically independent of other factors that could influence the

phenotype. However, for common variants, this is not true for SNPs within the same locus. They

can be strongly correlated, albeit in a predictable fashion, making it difficult to isolate the causal

variant. On the gene level, the problem can persist and can be further complicated by the fact

that causal SNPs might fall in regulatory regions with unclear connections to the gene of action.
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In the in investigation of drosophila growth control, this problem is less acute as the effective

population size is much larger and LD much lower. In our pathway investigation, the use of

human data and the need for gene level scores makes the annotation of SNPs to genes a relevant

question. We opted to err on the side of low false negatives, allowing for the opportunity of the

pathway enrichments to prioritize genes in loci with multiple genes.

The problem of causality is of particular interest in the chromatin accessibility study. Because

we do not use genotype data in this case, causality statements have to be justified much more

carefully. One way to do so is domain knowledge: A model, where the transcription factor

expression level affects transcription factor binding measured across the genome is the most

parsimonious one for the observed associations. However, the final test will be carefully designed

perturbation experiments.

5.5. Future work

Our investigation into the genetics of drosophila growth control can be seen as a pilot study

into the genetics of natural drosophila populations, which hopefully, will be built upon in the

future with further samples to reap the full benefits of the advantages of working with a model

system. One attractive feature of working with wild populations of model organism that has

been potentially underexplored, is the opportunity for detailed regulatory studies. As mentioned

above, LD blocks are much smaller, which would make it particularly easy to pinpoint causal

SNPs. Finding variants affecting molecular phenotypes such as expression and epigenetic marks

could be of particular interest, because it would allow to precisely model what properties a SNP

must have to lead to changes in expression.

With regards to the chromatin accessibility investigation, the work would clearly benefit from

further experimental validation by experimental biologists as is common for purely computational

data analysis. Further, the questions asked and potentially answered by our approach could
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be refined if further genomics assays would be added. For example one could investigate the

question which transcription factors change neighbouring histone methylation states upon binding

in open chromatin regions by associating average histone methylation state in motif-carrying

open chromatin regions with TF expression. While we attempted such an analysis, the current

collections available did not yield positive results, probably due to low power. Further, it could

be of interest to study whether changes in CAR expression levels have medical consequences.

The fact that expression changes impact chromatin accessibility globally, could suggest that

changes in CAR levels might have an increased likelihood of affecting health outcomes compared

to changes in non-CAR TFs. Collocalisation, of SNPs affecting CAR expression and SNPs being

disease relevant could be a test of this hypothesis. However, one has to bear in mind, that the

variation in expression changes seen in eQTL studies are much smaller, than between different

cell lines and extrapolation between the different regimes might not be straight forward.

More generally, the study uses a novel strategy for integrative data analysis of functional

genomics data, where different types of functional genomics data is collected across multiple cell

lines of various origins. The strategy for confounding control in particular could potentially be

used to associate various functional elements across cell lines, depending on the interest of the

researcher. For example, associating specific enhancer regions to gene expression could be of

interest, because the mapping of enhancers to promoters is still a challenging problem [65].

With regards to Pascal, the method was featured in other genetics investigations, be it the

analysis and evaluation of regulatory networks [66], for the analysis of a large exome study on

human height (Marouli et al. Nature, accepted), and the forthcoming analysis and evaluation

of module calling algorithms in a DREAM challenge. The results from this challenge might

inform further avenues. One can, for example, envision that modules called from contestants

might help refine predefined pathway sets in a cell type specific manner. Other extensions and

use cases could be of interest. On the methodological side, one interesting feature would be to

move from statistical testing to statistical estimation: Currently, pathways can only be tested

95



for significance. A question of interest might be how much heritability can be attributed to the

pathway of interest. As is shown in Appendix C, one can derive the maximum likelihood of the

heritability captured by SNPs within a pathway from the summary statistics alone.

On the side of use cases, plans exist to build a web portal for allowing users to supply gene lists

to test for enrichment across a large list of GWAS. This setup would mesh well with a typical

work-flow of experimental biologists generating gene lists of interest via literature review or high

throughput experiments and has the potential to open the results derived from GWAS to a much

wider community helping to fulfill the promise of GWAS to provide a framework to link medical

traits of interest to fundamental molecular biology in a methodologically systematic way.
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A. Estimating the contribution of pairwise interactions to the

genetic variance

A.1. A computationally efficient estimation strategy

In the following, we will develop a simple strategy to estimate the heritability contribution of all

SNP-SNP interactions. We will then investigate the power of the approach in a simplified setting

and compare it to the power of estimating the additive heritability. These considerations will

suggest that the number of individuals needs to be of the order of 106 but that lower numbers

are needed if only a subset of SNP-SNP pairs are investigated.

We assume we are given a n× 1 phenotype vector y normalized such that
∑

i yi = 0 and yTy = n.

Further, we have m n× 1 SNP genotype vectors, all of which are normalized in the same fashion

as the phenotype vector. m might be the number of all SNPs in a genome-wide panel. Define S

as the set of all ordered pairs of SNP indices (i.e. S contains m2 elements). We will try to fit the

following random effects model:

y =
∑

i

(xi)bi +
∑

(i,j)∈S

(xi · xj)bij + ε,

where bi ∼ N(0,σg), bij ∼ N(0,σh), ε ∼ N(0,σe) and · refers to the point-wise or Hadamard

product. This is equivalent to estimating two random components additionally to the noise term

with covariance matrices

σ2
gC

g = σ2
g

∑
i

(xix
T
i )

and

σ2
hC

h = σ2
h

∑
(i,j)∈S

(xi · xj)(xi · xj)T .

Direct computation of Ch might seem prohibitive because S might contain on the order of 1012

elements. However, the computation can be easily reduced to the computation of Cg.
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Proposition 1. Define Ch and Cg as above, then

Ch = Cg ·Cg.

Proof. For any pair of genotype vectors xi,xj it holds that

(xi · xj)(xi · xj)T = (xix
T
i ) · (xjx

T
j ).

Plugging this relationship into the definition of Ch, we get

∑
(i,j)∈S

(xi · xj)(xi · xj)T =
∑

(i,j)∈S

(xix
T
i ) · (xjx

T
j )

=
∑

i

(xix
T
i ) ·

∑
j

(xjx
T
j )

= Cg ·Cg.

One can also remove from S all ordered pairs of SNP indices for SNP pairs in LD. This would

remove dominance effects. The factor to remove is easily calculated by applying the same trick

as above to consecutive blocks of SNPs. Define Bk as the set of SNP indices in the kth block

and Cg
k as

Cg
k =

∑
i∈Bk

(xix
T
i )

then we can remove all dominance effects by calculating

Cd =
∑

k

Cg
k ·C

g
k ·+2

∑
k

Cg
k ·C

g
k+1.

and removing it from Ch:

Ch∗ = Ch −Cd

To estimate σ2
g and σ2

h, we can employ a variant of Haseman-Elston regression which is computa-
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tionaly very efficent. Note that

E[YiYj ] = σ2
gC

g
ij + σ2

hC
h
ij + σ2

eδij

where δij = 1 if i = j and 0 else. We then perform a regression across all individual pairs.

In short: the time complexity to estimate the genetic variance of pairwise interactions, if we

are prepared to use Haseman-Elston regression, is the same as calculating the regular genetic

relationship matrix.2

A.2. Power considerations

We will try to estimate the power of the maximum-likelihood estimator of the random effects

model.

y ∼ Nn(σ2
gC + σ2

eIn),

We will use this model to investigate how the power to estimate θ = (σ2
g ,σ2

e)T depends on C.

To simplify the situation, we assume that σ2
g → 0 and that σ2

e → 1. This assumption while not

reasonable for the marginal genetic component should be reasonable for the genetic components

capturing interactions as the total contribution to heritability should be low. Because the

covariance matrix of the maximum-likelihood estimate converges to the inverse of the information

matrix, we can investigate the power by looking at the fisher information matrix. Low values on

the diagonal of the inverse of the fisher information matrix imply a low variance estimator and

high values imply a high variance estimator. We can show the following:

2Simulation was used to test the interaction variant of the Haseman-Elston regrssion. 100 independent SNPs
(normally distributed for ease of simulation) and 2′000 observations where sampled. The parameters were
set to σ2

e = 2,σ2
g = 0.02 and σ2

h = 0.0002, and observations were simulated from the model 50 times. The
Haseman-Elston approach outlined above (only using upper triangular values of the covariance matrices) was
used to estimate the parameters. The mean of σ2

g estimates was 0.01909 and their standard deviation 0.00267.
The mean of σ2

h estimates was 0.000202 and their standard deviation 0.000108.
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Proposition 2. For the model above, assuming σ2
g → 0 and σ2

e → 1, then

I−1
1,1 (θ)→ 2∑

ij c
2
ij − (

∑
i cii)2/n

,

where cij is the ij-th element of C.

Proof. Since the Fisher information matrix of the multivariate normal distribution Nn(0, Σ) is

Im,n = 1
2 tr(Σ−1 ∂Σ

∂θm
Σ−1 ∂Σ

∂θn
)

We have

I1,1(θ) = 1
2
∑

i

λ2
i

(σ2
gλi + σ2

e)2 ,

I2,2(θ) = 1
2
∑

i

1
(σ2

gλi + σ2
e)2 ,

and

I1,2(θ) = 1
2
∑

i

λi

(σ2
gλi + σ2

e)2 ,

where λi is the i-th eigenvalue of Σ. From

I−1
1,1 (θ) = I2,2(θ)

I2,2(θ)I1,1(θ)− I2
1,2(θ)

follows that when σ2
g → 0 and σ2

e → 1

I−1
1,1 (θ)→ 2∑

i λ
2
i − (

∑
i λi)2/n

We have
∑

i λi = tr(C) and because
∑

i λ
2
i = tr(CC), we can sum the squares of all entries of

C to get
∑

i λ
2
i .

A.3. Power of the pairwise interaction covariance matrix

When applying this reasoning to the pairwise interaction covariance matrix, we see that the

variance of the estimator is approximately inversely proportional to the sum of the entries of C
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each raised to the fourth power. We will investigate how large the expectation of this quantity

is assuming m independent markers. (This is obviously an unreasonable assumption, However,

since dependence between markers will lead to slower convergence of off-diagonal elements in C

to 0 this will yield an lower bound for
∑

ij c
2
ij . Therefore, m can be thought of as the effective

number of independent markers.)

Proposition 3. Assume that genotypes of different SNPs are independent e.g. E[xkixkj ] =

E[xki]E[xkj ] for all k if i 6= j and that there is no population structure or cryptic relatedness e.g.

E[xkixli] = E[xki]E[xli] for all i if k 6= l, then

E[
∑
i<j

c2
ij ] = (n2 − n)

2m ,

where cij is th ij-th element in Cg
ij

Proof. We have

E[
∑
i<j

c2
ij ] =

∑
i<j

E[c2
ij ]

=
∑
i<j

E[( 1
m

∑
k

(xkixkj))2]

=
∑
i<j

( 1
m2

∑
kl

E[xkixkjxlixlj ]

=
∑
i<j

( 1
m2

∑
k

E[x2
kix

2
kj ])

because

E[xkixkjxlixlj ] = E[xki]E[xkj ]E[xli]E[xlj ] = 0
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if k 6= l. Further

E[
∑
i<j

c2
ij ] =

∑
i<j

( 1
m2

∑
k

E[x2
ki]E[x2

kj ])

=
∑
i<j

( 1
m
E[x2]2)

= (n2 − n)
2m

Using a similar strategy for Ch we get,

Proposition 4. Assume that genotypes of different SNPs are independent e.g. E[xkixkj ] =

E[xki]E[xkj ] for all k if i 6= j and that there is no population structure or cryptic relatedness e.g.

E[xkixli] = E[xki]E[xli] for all i if k 6= l, further assume that ∃ C1 <∞ s.t. E[x4
ki] < C1 ∀k, i.

Also assume m→∞ and n→∞ s.t. m
n → C2 with 0 < C2 <∞. Then

E[
∑
i<j

c2
ij ]→ 3n2

2m2 ,

where cij is th ij-th element in Ch
ij.
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Proof.

E[
∑
i<j

c4
ij ] =

∑
i<j

E[c4
ij ]

=
∑
i<j

E[( 1
m

∑
k

(xkixkj))4]

=
∑
i<j

1
m4

∑
klvw

E[xkixkjxlixljxvixvjxwixwj ]

=
∑
i<j

( 1
m4 (

∑
kl

3E[x2
kix

2
kjx

2
lix

2
lj ]− 2

∑
k

E[x4
kix

4
kj ])

=
∑
i<j

3
m2
(
E[x2]4 − 1

m
E[x2]4 +

∑
k

E[x4
kix

4
kj ]

3m2
)

=
∑
i<j

( 3
m2 −

3
m3 +

∑
k

E[x4
kix

4
kj ]

m4
)

≤ 3(n2 − n)
2m2 + (C1 − 3)(n2 − n)

2m3 ,

where

(C1 − 3)(n2 − n)
2m3 → 0.

Also

E[
∑
i<j

c4
ij ] ≥ 3(n2 − n)

2m2 − 3(n2 − n)
2m3 ,

where

(3)(n2 − n)
2m3 → 0.

Furthermore

3(n2 − n)
2m2 → 3n2

2m2 .

We see that to achieve equivalent power to estimate the genetic variance of pairwise interactions
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compared to the marginal case, we need a factor increase in sample size α s.t.

α ≈
√
m

3

Assuming 3E5 independent markers, we would need about 316 times(!) as many individuals to get

equivalent power as in the marginal case. While this number seems large, it is not inconceivable

that biobank cohorts large enough will be assembled in the near future that would allow to

perform this analysis. One suggestion to remedy this is to restrict the number of interactions

tested. As an example, it would be possible to estimate interactions between SNPs prioritized

using regular GWAS where the number of SNPs to include can be guided by the considerations

above. The analysis above ignores elements on the diagonal. The deviation of diagonal elements

of C · C from one are very close to 2 times the elements of C. Additionally diagonal elements

contain G×E contributions, and might be fitted separately. While we investigated the situation

in the setting where σ2
g → 0 in an analytic fashion, a full treatment of the subject would require

to investigate settings where this condition does not hold, potentially via simulation, which might

be the subject of future work.

104



B. Connection between random effects score test and the Pascal

sum statistic

In the following, we will try to elucidate the connection between the random effects model score

test and the Pascal sum statistic. To set up the notation, we first review the score test statistic.

Let L(θ) be the likelihood of some statistical model parametrized by a vector of parameters

θ. We are interested to test some null hypothesis defined as a particular linear subspace of the

parameter space covered by θ. Let θ̂0 be the maximum likelihood estimate under the null. We

define the score of the model at θ̂0 as

U(θ̂0) = ∂ log(L(θ̂0))
∂θ

.

Also, we define the Information matrix as

I(θ̂0) = −E
(∂2 log(L(θ̂0))

∂θ∂θ′

)
.

From this we can define the score test statistic for the null

S(θ̂0) = UT (θ̂0)I−1(θ̂0)U(θ̂0).

One can show that

S(θ̂0) ∼ χ2
k,

where k is the difference between the rank of the full parameter space and the rank of subspace

defined by the null.

Returning to the particular problem we want to investigate, let’s assume that we are given a

n× 1 phenotype vector y normalized such that
∑

i yi = 0 and yTy = n. Further, we have m

n× 1 genotype vectors for SNPs within a gene region of interest all of which are normalized in
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the same fashion as the phenotype vector. We use the following random effects model:

y =
m∑

i=1
xibi + ε,

where bi ∼ N(0,σg) and ε ∼ Nn(0,σ2
eIn). We assume that we do not have access to the original

phenotype and genotype data. Rather, we have access to the z-scores zi = yTxi/
√
n and

estimates of SNP-SNP correlations ρij = xT
j xi/n for all j and i in 1, ..,m. We want to test

whether σ2
g = 0 using a score test. We first define θ = (σ2

g ,σ2
e)T . We need to calculate the

score U(θ̂0) for the null that σ2
g = 0 as well as the inverse of I(θ̂0). We will show the following

connection between the score test and the Pascal sum score.

Proposition 5. Given the model and assumption above, let
√
S(θ̂0) be the square root of the

score test statistic for the null hypothesis that σ2
g = 0. Then

√
S(θ̂0) =

∑
i z

2
i −m√

4
n2 I−1(θ̂0))1,1

, (1)

where I−1(θ̂0)1,1 is the first element of the inverse of the fisher information matrix and therefore

independent of y.

Proof. The random effects model is equivalent to

y ∼ Nn(σ2
gC + σ2

eIn),

with

σ2
gC = σ2

g

∑
i

(xix
T
i ).

The log-likelihood of the model is

l(θ) ∝ −1
2 log(|Cσ2

g + Inσ
2
e |)−

1
2y

T (Cσ2
g + Inσ

2
e)−1yT .

Let C = ΓΛΓT be the spectral decomposition of C and define y′ = ΓTy. Then the log-likelihood
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becomes

l(θ) ∝ −1
2
∑

i

log(λiσ
2
g + σ2

e)− 1
2
∑

i

y′2i
λiσ2

g + σ2
e

.

Therefore, the first term of the score vector is

U(θ̂0)1 = − 1
2σ̂2

e

∑
i

λi + 1
2σ̂4

e

∑
i

y′
2
iλi.

With ∑
i

y′
2
iλi = yTCy = n

∑
i

z2
i

and ∑
i

λi = Tr(C) = Tr(XXT ) = Tr(XTX) = nm,

we have

U(θ̂0)1 = n

2σ̂4
e

∑
i

z2
i −

nm

2σ̂2
e

.

The second term of the score statistic is

U(θ̂0)2 = − n

2σ̂2
e

+ 1
2σ̂4

e

∑
i

y′
2
i = n

2σ̂2
e

( 1
σ̂2

e

− 1).

because
∑

i y
′2
i =

∑
i y

2
i = n. From the same fact follows that the maximum likelihood estimate

of σ2
e under the null (σ2

g = 0) is 1. Therefore,

U(θ̂0)2 = 0.

We can now calculate the score test statistic:

S(θ̂0) = U(θ̂0)2
1I
−1
1,1 (θ̂0)

=
(∑

i

z2
i −m

)2
I−1

1,1 (θ̂0)n
2

4
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To actually calculate I−1
1,1 (θ̂0) , we note that for a normal distribution of the form Nn(0, Σ(θ)) is

Im,n = 1
2Tr(Σ−1 ∂Σ

∂θm
Σ−1 ∂Σ

∂θn
).

Therefore

I1,1(θ̂0) = 1
2
∑

i

λ2
i ,

I2,2(θ̂0) = n

2

I1,2(θ̂0) = 1
2
∑

i

λi = nm

2 .

Therefore

I−1
1,1 (θ̂0) = 2

(
∑

i λ
2
i − nm2)

.

∑
i λ

2
i is not directly available to us because we do not have genotype level data. But we can

estimate it from a reference population. Note that

∑
i

λ2
i = Tr(CCT ) = Tr(XXTXXT ) = Tr((XTX)(XTX)) = n2∑

ij

ρ2
ij .

Because we have estimates for ρij from reference populations, we can estimate I−1
1,1 (θ̂0) efficiently.
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C. Estimating heritability within a genic region via maximum

likelihood

In the Appendix B, we have shown a connection between the Pascal sum statistic and a score

test for a particular random effects model. When instead of testing, we try to estimate the

parameters of this random effect model, we essentially estimate the contribution of this genic

region to the additive genetic variance. In the following, we will present a procedure to do so.

Again, let’s make the same assumptions an in Appendix B. However, now we will try to estimate

θ via maximum likelihood. As before the log-likelihood of the model is

l(θ) ∝ −1
2 log(|Cσ2

g + Inσ
2
e |)−

1
2y

T (Cσ2
g + Inσ

2
e)−1y.

We will further assume that m < n (a reasonable assumption as the length of y is quite typically

larger than the number of SNPs in a given genic region). Under this assumption, C not full rank.

Again, we neither have access to C nor y. Rather, we have access to an estimate of Σ and z

where

Σ = XTX

z = 1√
n
XTy

We will try to define the maximum likelihood from these quantity accessible to us.

Proposition 6. Let Σ = V ΛV T be the eigenvalue decomposition of Σ. Then we can formulate

the log-likelihood as

l(θ) ∝ −1
2

n∑
i=1

log(λiσ
2
g + σ2

e)− n

2σ2
e

(
1−

m∑
i=1

z′i
2

λi

)
− n

2σ2
e

m∑
i=1

z′i
2

λi(λiσ2
g + σ2

e) ,

where z′ = V Tz with z′i being the i-th element of z′ and λi being the i-th diagonal element of Λ

if i ≤ m and 0 otherwise.

Proof. Define X = ΓDV T as is the singular value decomposition of the genotype matrix, where
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Γ is a n×m-matrix. We have
√
nD−1z′ = ΓTy.

Set U⊥ as some (n−m)×m matrix composed of orthonormal vectors orthogonal to U . Since

yT (Cσ2
g + Inσ

2
e)−1y = yT Γ(D2σ2

g + Imσ
2
e)−1ΓTy + 1

σ2
e

yT (U⊥)(U⊥)Ty,

with

yT Γ(D2σ2
g + Imσ

2
e)−1ΓTy = nz′TD−1(D2σ2

g + Imσ
2
e)−1D−1z′

= n
m∑

i=1

z′i
2

λi(λiσ2
g + σ2

e) ,

and

yT (U⊥)(U⊥)Ty = yTy − yTUUTy

= n− nz′TD−2z′

= n
(
1−

m∑
i=1

z′i
2

λi

)
.

Further

log(|Cσ2
g + Inσ

2
e |) =

n∑
i=1

log(λiσ
2
g + σ2

e).

Assembling all terms we get the expression for the likelihood above.

Because we can express the likelihood in terms of known or estimable quantities, we can now

optimize the likelihood function easily via some numerical optimization routine such as newton-

raphson. Alternatively, one could approximate the maximum likelihood by a second degree taylor

polynomial around σ2
g = 0 and maximize the resulting equation analytically.
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D. Supplementary Information for Chapter 2
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Fig S1: Overview of pathway scoring strategies in Pascal.
Pathway scores are computed from gene scores. The upper panel shows a typical gene score distribution,
where the pathway gene scores are indicated in black. In order to compute pathway scores, the original
gene score p-values need to be transformed. To this end we use one of two strategies: in our ‘empirical
strategy’ (lower left panel), gene score p-values are directly transformed with the inverse -quantile function
to obtain chi-square scores, which are then summed across all pathway genes. A Monte Carlo estimate of
the p-value is then obtained by sampling random gene sets of the same size and calculating the fraction of
sets reaching a higher score than that of the given pathway. In the ’chi-square method’ (bottom right
panel), the gene score p-values are first ranked such that the lowest p-value ranks highest. The rank values
are then divided by the number of genes plus one to define new p-values (p-rank) that are distributed
uniformly by definition. From there, we proceed as for the empirical strategy just replacing p by p-rank.
Also, since the scores are guaranteed to be chi-square distributed, the computation of their corresponding
p-value can be done analytically without any loss in precision.
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Fig S2: Comparison of results for different reference panels.
Comparing p-values using of European 1000 Genomes project reference panel to calculate LD-matrix
versus those using the measured from CoLaus. GWAS summary statistics were taken from a large-scale
blood-HDL level meta-analys. a) comparing results for max gene scores. b) comparing results for max
gene scores removing gene scores that were computed with the effective number of tests approximation. c)
comparing results for sum gene scores. There is good concordance in all cases.
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Fig S3: Comparison of max and sum gene scores.
We compared max and sum gene scores directly for a large-scale blood-HDL level meta-analysis. Only
gene scores up to 10−15 are displayed, which truncated 6 genes with very large max scores. R2 between
the -log10-transformed variables is 90%. We see max scores tend to be larger when the two methods do
not agree.
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Fig S4: Pathway scores for random phenotypes using max gene scores.
p-values for 1077 pathways from our pathway library were computed for 100 random phenotypes using
the Pascal pipeline using max gene scores and chi2-pathway integration strategy. a) Without merging of
neighbouring genes and (b) with merging of neighbouring genes (gene-fusion strategy). p-value distributions
are represented by QQ-plots (upper panels) and histograms (lower panels). Results are colour-coded
according to the fraction of genes in a given pathway that have a neighbouring gene in the same pathway,
i.e. that are located nearby on the genome (distance <300kb). a) p-values of pathways that contain genes
in LD are strongly inflated without correction. b) The gene fusion approach provides well-calibrated
p-values independently of the number of pathway genes in LD.
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Fig S5: Performance of pathway enrichment methods for blood lipid traits and Crohn’s disease
using sum of squares (SOCS) statistics for defining gene scores.
Displayed is the mean area under the precision-recall curve (AUC) for pathways identified using Pascal, a
standard hypergeometric test at various gene score thresholds, and a rank-sum test (vertical bars show
the standard error). We show results for the SOCS gene scores (MOCS gene score results are similar,
see Figure 4 in the main text). a) Results for four blood lipid traits. A reference standard pathway list
was defined as all pathways that show a significance level below 5 · 10−06, for any of the tested threshold
parameters for hypergeometric tests in the largest study of lipid traits to date. The significance level of
5 · 10−06 corresponds to the Bonferroni corrected, genome-wide significance threshold at the 0.5% level
for a single method. For each phenotype, error bars denote the standard error computed from three
independent subsamples of the CoLaus study (including 1500 individuals each). We see good overall
performance of Pascal pathway scores, whereas results for discrete gene sets vary widely with the particular
choice for the threshold parameter of hypergeometric test. b) Results for Crohn’s disease using the same
approach as in (a). A reference standard pathway list was defined as all pathways that show a significance
level below 5 · 10−06 for any of the tested threshold parameters for hypergeometric tests in the largest
study of Crohn’s disease traits to date. We observe that the chi-squared strategy outperforms all other
strategies in this setting, whereas performance of the hypergeometric testing strategy varies.

116



Fig S6: Power of pathway scoring methods across diverse traits and diseases using sum of squares
(SOCS) statistics for defining gene score.
Bar heights represent the number of pathways found to be significant after Bonferroni correction. Within
a given trait group, results are aggregated for all tested GWAS studies. 65 GWASs had at least one
significant pathway in one of the tested method. For each GWAS, the raw number of significant pathways
was divided by the number of pathways found by the best performing method. This was done to avoid
that a few studies with many emerging pathways dominate. We show results for the SOCS gene scores
(MOCS gene score results are similar, see Figure 5). a) Results are aggregated over all trait groups. b)
Results for different trait groups.
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Fig S7: Power of pathway scoring methods stratified with respect to sample size.
Only GWAS studies for quantitative traits were used. Top panels (a,b) show results for max gene scores
and bottom panels (c,d) show results for sum gene scores. Left and side panels (a,c) show results for all
studies where the number of individuals was below 50’000. Right hand side panels (b,d) show results for
studies with sample sizes above 50’000. We see power gains in all cases. The improvements are particularly
pronounced in lower powered GWAS.
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Fig S8: Power comparison max and sum gene scores for pathway analysis.
Bar heights represent the number of pathways found to be significant after Bonferroni correction. Within
a given trait group, results are aggregated for all tested GWAS studies. For each GWAS, the raw number
of significant pathways was divided by the number of pathways found by the best performing method.
Results for SOCS and MOCS as well as the chi-square and empirical pathway scores are displayed. We
observe a drop in performance for the combination of MOCS gene scores with empirical pathway scores.
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Fig S9: Power analysis for max gene scores with capped gene scores.
Bar heights represent the number of pathways found to be significant after Bonferroni correction. Within
a given trait group, results are aggregated for all tested GWAS studies. For each GWAS, the raw number
of significant pathways was divided by the number of pathways found by the best performing method.
Max gene scores using empirical sampling pathway scores (emp) and chi-squared pathway scores (chi2)
are compared to max gene scores combined with empirical sampling, where outlier gene scores (p-value
< 10−12) are set to 10−12 (empCapped). We chose the capping value such that the maximum -log10
p-value was roughly in the middle between genome wide significance threshold (8) and the maximum
value that can be calculated for the sum statistic (15).
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S10 Fig. Power of Pascal pathway scoring methods compared to aggregated hypergeomet- ric
scores (MOCS)
The same data as in Figure 5 is plotted here. However, instead comparing Pascal pathway scoring methods
with results for all hypergeometric threshold separately, we defined a new aggregated pathway score that
picks the optimal threshold for each pathway over a range of hypergeometric threshold and correcting
for the multiple number of tests by Bonferroni correction. Results for different sets of thresholds are
displayed. Set1 refers to the complete set of thresholds (i.e.: 25%, 15%, 10%, 5%, 2%, 1%, 0.25%, 0.1%).
Set2 refers to a set with thresholds more ‘spread out’ (i.e.: 25%, 5%, 1%, 0.25). We see that Pascal has
better performance, except when combining the ‘empirical sampling’ pathway scoring method with max
gene scores.
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S11 Fig. Power of Pascal pathway scoring methods compared to aggregated hypergeomet- ric
scores (SOCS)
The same data as in Figure 5 is plotted here. However, instead comparing Pascal pathway scoring methods
with results for all hypergeometric threshold separately, we defined a new aggregated pathway score that
picks the optimal threshold for each pathway over a range of hypergeometric threshold and correcting
for the multiple number of tests by Bonferroni correction. Results for different sets of thresholds are
displayed. Set1 refers to the complete set of thresholds (i.e.: 25%, 15%, 10%, 5%, 2%, 1%, 0.25%, 0.1%).
Set2 refers to a set with thresholds more ‘spread out’ (i.e.: 25%, 5%, 1%, 0.25). We see that Pascal has
better performance.
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Fig S12: Power of gamma distribution for pathway analysis (MOCS).
Bar heights represent the number of pathways found to be significant after Bonferroni correction. Different
bars signify results for a different gamma shape parameter value. For each GWAS, the raw number of
significant pathways was divided by the number of pathways found by the best performing method. Upper
left panel ‘All’ refers to all traits stacked. We present here MOCS gene score based results. 52 GWA
studies showed at least one significant pathway in one of the evaluated scenarios.
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Fig S13: Power of gamma distribution for pathway analysis (SOCS).
Bar heights represent the number of pathways found to be significant after Bonferroni correction. Different
bars signify results for a different gamma shape parameter value. For each GWAS, the raw number of
significant pathways was divided by the number of pathways found by the best performing method. Upper
left panel ‘All’ refers to all traits stacked. We present here SOCS gene score based results. 60 GWA
studies showed at least one significant pathway in one of the evaluated scenarios.
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Fig S14: Distribution of pathway scores for simulated phenotypes influenced by causal SNPs in
coding regions.
We first sampled 50 random SNPs assayed in CoLaus in or close to coding regions. Using the genotypes
of the CoLaus study we then simulated phenotypes by adding up the sampled 50 SNPs with a normally
distributed effect size with a variance of 0.04 plus Gaussian noise (with a variance of 1). We then ran
GWAS for the simulated phenotype to obtain association summary statistics. The experiment was repeated
50 times. On average, this resulted in 18 independent, genome-wide significant gene score hits for each
simulated GWAS (for the MOCS statistic). We applied Pascal to compute pathway scores for each of
the 50 simulated GWASs. We found that the resulting pathway scores are well calibrated, i.e., they do
not show inflation or deflation regardless of the setting used (max or sum gene score, chi2 or empirical
enrichment test). The QQ-plots show the median value for each quantile across the 50 simulated GWASs.
The shaded areas correspond to 95% confidence intervals for the median (estimated from 2000 bootstrap
samples of size 50, with replacements). Similar results were obtained when varying the type and number
of simulated causal SNPs and their effect size.
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Fig S15: Distribution of pathway scores for simulated phenotype influenced by causal SNPs in
coding and non-coding regions.
These QQ-plots correspond to an analysis equivalent to that of Fig S14 but with 50 SNPs chosen uniformly
from all SNPs assayed in CoLaus, rather than from genic regions only. On average, this resulted in
12 independent, genome-wide significant gene score hits for each simulated GWAS (using the MOCS
statistic). Note that this does not completely exclude the possibility of less well-calibrated scores in other
settings. Deviations from perfectly calibrated scores may occur in the cases where true SNP associations
are present, because the gene wise test statistic may have varying power for different genes depending on
the genetic architecture of the associated phenotype and on certain gene properties (such as gene length,
LD structure, SNP coverage, or SNP allele frequency). If a set of pathways contains many pathways
enriched (or depleted) for genes with such confounding factors, inflation or deflation is possible.
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S1 Fig 1: Association between motif accessibility and mRNA expression for the bona fide pioneer 

factor FOXA1 .   

Three different regression models (a-c) were used to compute association p-values between the             

accessibility of a given TF motif (here FOXA1 ) and mRNA expression for each of the assayed 15K                 

protein-coding genes. Results are visualized as qq-plots showing the –log10 transformed p-values. (a)             

Association p-values obtained using standard linear regression. Due to confounding, p-values are            

strongly inflated and FOXA1 motif accessibility shows only mild association with FOXA1 expression             

compared to other genes. (b) The linear mixed model (LMM) successfully corrects for confounding,              

with most p-values following the null distribution as expected. The association between FOXA1 motif              

accessibility and FOXA1 expression now ranks second among all genes and first among all TFs,               

although it does not pass the Bonferroni significance threshold. (c) Additionally controlling for the first               

principal component of the motif accessibility matrix corrects for a strong batch effect (Methods),              

Fig S1: Association between motif accessibility and mRNA expression for the bona fide pioneer
factor FOXA1.
Three different regression models (a-c) were used to compute association p-values between the accessibility
of a given TF motif (here FOXA1 ) and mRNA expression for each of the assayed 15K protein-coding
genes. Results are visualized as qq-plots showing the -–log10 transformed p-values. a) Association p-values
obtained using standard linear regression. Due to confounding, p-values are strongly inflated and FOXA1
motif accessibility shows only mild association with FOXA1 expression compared to other genes. b) The
linear mixed model (LMM) successfully corrects for confounding, with most p-values following the null
distribution as expected. The association between FOXA1 motif accessibility and FOXA1 expression now
ranks second among all genes and first among all TFs, although it does not pass the Bonferroni significance
threshold. c) Additionally controlling for the first principal component of the motif accessibility matrix
corrects for a strong batch effect (Methods), further lowers the CAR rank. Using this approach, FOXA1
motif accessibility showed the strongest association precisely with FOXA1 expression (i.e., the gene-level
CAR rank equals one), in line with literature on FOXA1 being a pioneer factor [67, 68]
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further lowers the CAR rank. Using this approach, FOXA1 motif accessibility showed the strongest              

association precisely with FOXA1 expression (i.e., the gene-level CAR rank equals one), in line with               

literature on  FOXA1  being a pioneer factor(Cirillo et al. 2002) (Cirillo et al. 2002; Soufi et al. 2015) . 
 

 

S1 Fig 2:  Overview of procedure to calculate CAR  ranks on the subfamily level.   
We cluster TFs and motifs according to subfamily definitions given in TFClass . For each bicluster, we 

define the bicluster score as the most significant p-value between any TF and motif members of the 

bicluster corrected for bicluster size.  We then rank bicluster scores across the TF subfamilies.  If the 

bicluster joining a TF cluster and its corresponding motifs is ranked low, this is an indication of CAR 

activity. 

 

 

Fig S2: Overview of procedure to calculate CAR ranks on the subfamily level.
We cluster TFs and motifs according to subfamily definitions given in TFClass. For each bicluster, we
define the bicluster score as the most significant p-value between any TF and motif members of the
bicluster corrected for bicluster size. We then rank bicluster scores across the TF subfamilies. If the
bicluster joining a TF cluster and its corresponding motifs is ranked low, this is an indication of CAR
activity.
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further lowers the CAR rank. Using this approach, FOXA1 motif accessibility showed the strongest              

association precisely with FOXA1 expression (i.e., the gene-level CAR rank equals one), in line with               

literature on  FOXA1  being a pioneer factor(Cirillo et al. 2002) (Cirillo et al. 2002; Soufi et al. 2015) . 
 

 

S1 Fig 2:  Overview of procedure to calculate CAR  ranks on the subfamily level.   
We cluster TFs and motifs according to subfamily definitions given in TFClass . For each bicluster, we 

define the bicluster score as the most significant p-value between any TF and motif members of the 

bicluster corrected for bicluster size.  We then rank bicluster scores across the TF subfamilies.  If the 

bicluster joining a TF cluster and its corresponding motifs is ranked low, this is an indication of CAR 

activity. 

 

 

Fig S3: CARs predicted from ENCODE Data set enrich in subfamilies with low CAR ranks in
the ROADMAP dataset.
DHS and expression data available for 56 samples (29 with assayed DHS and 27 with imputed DHS) as
part of the ROADMAP data collection were used to predict CARs. Shown are CAR enrichment curves for
ENCODE results stratified by CAR ranks derived from ROADMAP. Displayed are the following strata:
ROADMAP CAR rank <10 (N=9 observations in total), ROADMAP CAR rank <20 (N=20 observations
in total), ROADMAP CAR rank <30 (N=25 observations in total), ROADMAP CAR rank <60 (N=38
observations in total), ROADMAP CAR rank <100 (N=58 observations in total), ROADMAP CAR rank
≥100 (N=86 observations in total). We see that subfamilies with low ROADMAP CAR rank are also tend
to be predicted to be CARs when using the ENCODE data. This enrichment get weaker for subfamilies
with lower ROADMAP CAR ranking.
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S1 Fig 3: CARs predicted from ENCODE Data set enrich in subfamilies with low CAR ranks in the 

ROADMAP dataset.  

DHS and expression data available for 56 samples (29 with assayed DHS and 27 with imputed DHS) as                  

part of ROADMAP data collection were used to predict CARs. Shown are CAR enrichment curves for                

ENCODE results stratified by CAR ranks derived from ROADMAP. Displayed are the following strata:              

ROADMAP CAR rank <10 (N=9 observations in total), ROADMAP CAR rank <20 (N=20 observations in               

total), ROADMAP CAR rank <30 (N=25 observations in total) ,ROADMAP CAR rank <60 (N=38              

observations in total), ROADMAP CAR rank <100 (N=58 observations in total), ROADMAP CAR rank              

>=100 (N=86 observations in total). We see that subfamilies with low ROADMAP CAR rank are also                

tend to be predicted to be CARs when using the ENCODE data. This enrichment get weaker for                 

subfamilies with lower ROADMAP CAR ranking .  

 
S1 Fig 4: CARs ranks from ROADMAP data set enrich only in subfamilies predicted to be CARs in 

ENCODE. 

DHS and expression data available as part of ROADMAP data collection were used to predict CARs.                

Shown are CAR enrichment curves for ROADMAP results stratified by CAR predictions derived from              

ENCODE. Displayed are the following strata: ENCODE CAR rank <10 (N=37 observations in total),              

ENCODE CAR rank >= 10 (N=107 observations in total). While we see enrichment for low ROADMAP                

Fig S4: CARs ranks from ROADMAP data set enrich only in subfamilies predicted to be CARs
in ENCODE.
DHS and expression data available as part of the ROADMAP data collection were used to predict CARs.
Shown are CAR enrichment curves for ROADMAP results stratified by CAR predictions derived from
ENCODE. Displayed are the following strata: ENCODE CAR rank <10 (N=37 observations in total),
ENCODE CAR rank ≥ 10 (N=107 observations in total). While we see enrichment for low ROADMAP
CAR rank in subfamilies predicted to be CARs via the ENCODE data, we see no enrichment in low
ROADMAP CAR ranks for other subfamilies.
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CAR rank in subfamilies predicted to be CARs via the ENCODE data, we see no enrichment in low                  

ROADMAP CAR ranks for other subfamilies. 

 

 
S1 Fig 5: CAR detection power is stable to changes in motif cutoffs. 

Cumulative distribution of CAR ranks at the subfamily level using the three different motif cutoffs: 10-5                

(used throughout the paper) is compared to 10-6 (yielding 9.3 fewer motifs on average [median]) and                

5*10-5 (yielding 5.2 more motifs assigned on average). For each setting, we filtered motifs that did not                 

overlap at least 150 dhs regions per celline on average. Only subfamilies passing this filter in all                 

settings were included (62 subfamilies in total). Power mildly increased at low CAR ranks for more                

stringent cutoffs at the cost of fewer motifs passing filtering. However, at false discovery rate of 10%                 

power was nearly identical. 

 

Fig S5: CAR detection power is stable to changes in motif cutoffs.
Cumulative distribution of CAR ranks at the subfamily level using the three different motif cutoffs: 10−5

(used throughout the paper) is compared to 10−6 (yielding 9.3 fewer motifs on average [median]) and
5 · 10−5 (yielding 5.2 more motifs assigned on average). For each setting, we filtered motifs that did not
overlap at least 150 DHS regions per cell line on average. Only subfamilies passing this filter in all settings
were included (62 subfamilies in total). Power mildly increased at low CAR ranks for more stringent
cutoffs at the cost of fewer motifs passing filtering. However, at false discovery rate of 10% power was
nearly identical.
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S1 Fig 6: CAR prediction is stable w.r.t. changes in motif thresholds. 

Shown are pairwise comparisons of different motif thresholds. For each threshold we derived CAR              

ranks for all tested subfamilies yielding one CAR rank list per threshold. Pairwise comparisons of these                

lists were performed in the following manner: For each pair of rank lists, the first list was used to split                    

the tested subfamilies into a ‘CAR set’ and its complement based on whether a subfamily had CAR                 

rank below 10. For the second results list, two separate CAR enrichment curves were drawn, one                

curve for the ‘CAR set’ defined via the first list (black ) and its complement (grey). Rows denote the                   

threshold used to derive the ‘CAR set’ and columns denote the threshold used to draw the                

enrichment curves. For each setting, we filtered motifs that did not overlap at least 150 dhs regions                 

per celline on average. Only subfamilies passing this filter in all settings were included (62 subfamilies                

in total). We see that CARs predicted are stable with respect to varying motif cutoffs. 

 

Fig S6: CAR prediction is stable w.r.t. changes in motif thresholds.
Shown are pairwise comparisons of different motif thresholds. For each threshold, we derived CAR ranks
for all tested subfamilies yielding one CAR rank list per threshold. Pairwise comparisons of these lists
were performed in the following manner: For each pair of rank lists, the first list was used to split the
tested subfamilies into a ‘CAR set’ and its complement based on whether a subfamily had CAR rank
below 10. For the second results list, two separate CAR enrichment curves were drawn, one curve for
the ‘CAR set’ defined via the first list (black) and its complement (grey). Rows denote the threshold
used to derive the ‘CAR set’ and columns denote the threshold used to draw the enrichment curves. For
each setting, we filtered motifs that did not overlap at least 150 dhs regions per cell line on average. Only
subfamilies passing this filter in all settings were included (62 subfamilies in total). We see that CARs
predicted are stable with respect to varying motif cutoffs.
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S1 Fig 7: CAR detection power does not improve systematically when guiding motif cutoffs via 

ChIP-seq.  

Shown are cumulative distribution of CAR ranks at the subfamily level comparing fixed motif cutoff of                

10-5 (used throughout the paper) is compared to variable motif cutoffs guided by ChIP-seq data,               

where motif cutoffs are adjusted such that called binding sites (i.e. DHS sites containing a motif                

instance) have a fixed validation rate compared to a gold standard defined by ChiP-Seq. Chosen               

validation rates are 0.3, 0.5 and 0.7. For each setting, we filtered motifs that did not overlap at least                   

150 dhs regions per celline on average. Only subfamilies passing this filter in all settings were                

included (32 subfamilies in total). While we see some variation in power, the variation is not                

systematic.  

 

 

Fig S7: CAR detection power does not improve systematically when guiding motif cutoffs via
ChIP-seq.
Shown are cumulative distribution of CAR ranks at the subfamily level comparing fixed motif cutoff of
10−5 (used throughout the paper) is compared to variable motif cutoffs guided by ChIP-seq data, where
motif cutoffs are adjusted such that called binding sites (i.e. DHS sites containing a motif instance) have
a fixed validation rate compared to a gold standard defined by ChiP-seq. Chosen validation rates are
0.3, 0.5 and 0.7. For each setting, we filtered motifs that did not overlap at least 150 DHS regions per
celline on average. Only subfamilies passing this filter in all settings were included (32 subfamilies in
total). While we see some variation in power, the variation is not systematic.
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S1 Fig 8:ChiP-seq  data guiding motif thresholding  yields similar CAR predictions as regular motif 

thresholding. 

Shown are pairwise comparisons of different motif thresholding methods. For each thresholding            

method we derived CAR ranks for all tested subfamilies yielding one CAR rank list per method.                

Pairwise comparisons of these lists were performed in the following manner: For each pair of rank                

lists, the first list was used to split the tested subfamilies into a ‘CAR set’ and its complement based on                    

whether a subfamily had CAR rank below 10. For the second results list, two separate CAR enrichment                 

curves were drawn, one curve for the ‘CAR set’ defined via the first list (black ) and its complement                   

(grey). Rows denote the thresholding method used to derive the ‘CAR set’ and columns denote the                

thresholding method used to draw the enrichment curves. A fixed motif cutoff of 10-5 (also used                

throughout the paper) is compared to variable motif cutoffs guided by ChIP-seq data, where motif               

cutoffs are adjusted such that called binding sites (i.e. DHS sites containing a motif instance) have a                 

fixed validation rate when compared to ChiP-Seq. Chosen validation rates are 0.3, 0.5 and 0.7. For                

Fig S8: ChiP-seq data guiding motif thresholding yields similar CAR predictions as regular motif
thresholding.
Shown are pairwise comparisons of different motif thresholding methods. For each thresholding method we
derived CAR ranks for all tested subfamilies yielding one CAR rank list per method. Pairwise comparisons
of these lists were performed in the following manner: For each pair of rank lists, the first list was used to
split the tested subfamilies into a ‘CAR set’ and its complement based on whether a subfamily had CAR
rank below 10. For the second results list, two separate CAR enrichment curves were drawn, one curve for
the ‘CAR set’ defined via the first list (black) and its complement (grey). Rows denote the thresholding
method used to derive the ‘CAR set’ and columns denote the thresholding method used to draw the
enrichment curves. A fixed motif cutoff of 10−5 (also used throughout the paper) is compared to variable
motif cutoffs guided by ChIP-seq data, where motif cutoffs are adjusted such that called binding sites (i.e.
DHS sites containing a motif instance) have a fixed validation rate when compared to ChiP-seq. Chosen
validation rates are 0.3, 0.5 and 0.7. For each setting, we filtered motifs that did not overlap at least 150
DHS regions per celline on average. Only subfamilies passing this filter in all settings were included (32
subfamilies in total). We see that CARs predicted are stable with respect to varying motif cutoffs.
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each setting, we filtered motifs that did not overlap at least 150 dhs regions per celline on average.                  

Only subfamilies passing this filter in all settings were included (32 subfamilies in total). We see that                 

CARs predicted are stable with respect to varying motif cutoffs. 

 
S1 Fig 9:  Histone-wise motif activities do not substantially associate with TF expression values. 

H3K4me3 peak data for 51 cell lines were downloaded from ENCODE and histone-wise motif activity               

was computed and normalized analogously to for DHS data, regressing out the first principal              

component. We performed the mixed model regression where H3K4me3-based motif accessibility           

data are regressed on gene expression adding a random effect with the same covariance structure as                

the expression matrix (denoted ‘histone’). To assess the DHS-independent contribution of H3K4me3            

histone activities, we added DHS-based motif accessibility as a covariate (denoted ‘DHS-adjusted            

histone’). We see that subfamily ranks for both of these strategies do not substantially enrich in low                 

ranks. While ‘histone’ performs mildly better, this is likely due to correlation between the histone               

activity and dhs activity. In contrast, the when DHS-based motif accessibility data was adjusted for               

Fig S9: Histone-wise motif activities do not substantially associate with TF expression values.
H3K4me3 peak data for 51 cell lines were downloaded from ENCODE and histone-wise motif activity
was computed and normalized analogously to for DHS data, regressing out the first principal component.
We performed the mixed model regression where H3K4me3-based motif accessibility data are regressed
on gene expression adding a random effect with the same covariance structure as the expression matrix
(denoted ‘histone’). To assess the DHS-independent contribution of H3K4me3 histone activities, we added
DHS-based motif accessibility as a covariate (denoted ‘DHS-adjusted histone’). We see that subfamily
ranks for both of these strategies do not substantially enrich in low ranks. While ‘histone’ performs mildly
better, this is likely due to correlation between the histone activity and DHS activity. In contrast, the
when DHS-based motif accessibility data was adjusted for H3K4me3-based motif accessibility, we see
a still substantial enrichment (see “histone-adjusted DHS” curve). This experiment was performed by
regressing DHS motif accessibility on gene expression while adding H3K4me3-based motif accessibilities
as a covariate plus a random effect with the same covariance structure as the expression matrix. This
shows that of the two activity measures, only DHS activity substantially associates with expression.
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H3K4me3-based motif accessibility, we see a still substantial enrichment (see “histone-adjusted DHS”            

curve). This experiment was performed by regressing DHS motif accessibility on gene expression while              

adding H3K4me3-based motif accessibilities as a covariate plus a random effect with the same              

covariance structure as the expression matrix. This shows that of the two activity measures, only DHS                

activity substantially associates with expression. 

 

 

S1 Fig 10: SOX2  expression associates strongly with POU5F1  motif accessibility. 
The QQ-plot shows the p-value distribution obtained from the LMM associating the accessibility of the 

POU5F1  motif to gene expression values across all genes. We see the strongest association to SOX2 

expression. 

  

Fig S10: SOX2 expression associates strongly with POU5F1 motif accessibility.
The QQ-plot shows the p-value distribution obtained from the LMM associating the accessibility of the
POU5F1 motif to gene expression values across all genes. We see the strongest association to SOX2
expression.
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S1 Fig 11:  Predicted chromatin accessibility regulators tend to have higher expression variation. 
We derived the variance of expression for all transcription factors across micro-arrays after RMA 

normalization and averaging expression values for experiments derived from the cell types. Displayed 

is a density distribution of the maximal expression variance observed in each subfamily. We 

partitioned TF subfamilies into two groups depending on whether they had family level CAR ranks of 1 

or not.  We observe that top ranked subfamilies do have substantially higher variance on average than 

other subfamilies (linear regression p-value <10-3).  
  

Fig S11: Predicted chromatin accessibility regulators tend to have higher expression variation.
We derived the variance of expression for all transcription factors across micro-arrays after RMA normal-
ization and averaging expression values for experiments derived from the cell types. Displayed is a density
distribution of the maximal expression variance observed in each subfamily. We partitioned TF subfamilies
into two groups depending on whether they had family level CAR ranks of 1 or not. We observe that
top ranked subfamilies do have substantially higher variance on average than other subfamilies (linear
regression p-value <10−03).
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S1 Fig 12:  Removing first principal component from motif accessibility matrix leads to similar 

correlation structures between motif accessibility and expression. 
Displayed are pair-wise correlation matrices with squared entries across cell lines for motif 

accessibilities (a); motif accessibilities with the first principal component removed (b) and (c) for 

expression values. Further, the first 25 eigenvalues of these matrices are shown in (d).  The motif 

accessibility matrix has a very dominant first principal component. After removal of the first principal 

component, the correlation structure of motif accessibility and expression show a similar structure. 

 

 

 

Fig S12: Removing first principal component from motif accessibility matrix leads to similar
correlation structures between motif accessibility and expression.
Displayed are pair-wise correlation matrices with squared entries across cell lines for motif accessibilities
(a); motif accessibilities with the first principal component removed (b) and (c) for expression values.
Further, the first 25 eigenvalues of these matrices are shown in (d). The motif accessibility matrix has a
very dominant first principal component. After removal of the first principal component, the correlation
structure of motif accessibility and expression show a similar structure.
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S1 Fig 13: precision-recall curves of CAR ranks and PIQ pioneer scores and their combination. 
Displayed are the precision-recall curves using annotation from Iwafuchi-Doi et al. (2014) as true set. 

Motif wise PIQ pioneer scores were extracted from Sherwood et al. (2014). For each subfamily, we 

defined its PIQ pioneer score as the maximal pioneer score for its subfamily members. For 77 

subfamilies, data were available from both approaches of which 7 were in the true set. For both CAR 

ranks and PIQ pioneer scores, precision-recall curves were drawn (CAR rank precision-recall curve 

starts at 0.43 recall, because many subfamilies share CAR rank of one). Additionally, both scores were 

combined: For each scoring method, results were ranked (rank ties was replaced by the minimum). 

For each subfamily, its combined rank is the maximal rank across both methods. A low rank can 

therefore only be achieved when both methods yielded low ranks. We see that the combined strategy 

outperforms both base strategies. 

 

Fig S13: precision-recall curves of CAR ranks and PIQ pioneer scores and their combination.
Displayed are the precision-recall curves using annotation from Iwafuchi-Doi et al. [69] as true set. Motif
wise PIQ pioneer scores were extracted from Sherwood et al. [70]. For each subfamily, we defined its
PIQ pioneer score as the maximal pioneer score for its subfamily members. For 77 subfamilies, data were
available from both approaches of which 7 were in the true set. For both CAR ranks and PIQ pioneer
scores, precision-recall curves were drawn (CAR rank precision-recall curve starts at 0.43 recall, because
many subfamilies share CAR rank of one). Additionally, both scores were combined: For each scoring
method, results were ranked (rank ties was replaced by the minimum). For each subfamily, its combined
rank is the maximal rank across both methods. A low rank can therefore only be achieved when both
methods yielded low ranks. We see that the combined strategy outperforms both base strategies.
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E.2. Supplementary Methods

As mentioned in the main text, we use the following linear mixed model,

y = xiβ
i + δi + εi,

where y is a vector of motif accessibility scores across n cell lines, xi is the expression vector of

gene i, βi is the effect size of gene i:

ε ∼ Nn(0,σ2
rIn),

and

δ ∼ Nn(0,σ2
eCe),

with

Ce = 1
p

p∑
i=1
xix

T
i .

The likelihood function of is

f(y) = 1
(2π)n/2(σ2

eCe + σ2
rIn)

1
2

exp
(
− 1

2(y − xiβ
i)T (σ2

eCe + σ2
rIn)−1(y − xiβ

i)
)
.

We define the spectral decomposition of Ce as:

Ce = ΓΛΓT .

For any values of σ2
e and σ2

r we have

(σ2
eCe + σ2

rIn) = Γ(σ2
eΛe + σ2

rIn)ΓT ,

i.e.: the eigenvectors of the mixture matrix are constant w.r.t the mixing parameters. Set

y′ = ΓTy,

x′ = ΓTx.
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Since the likelihood is invariant to rotations, we have

f(y′) = f(y)

and

f(y′) = 1
(2π)n/2(σ2

eΛe + σ2
rIn)

1
2

exp
(
− 1

2(y − xiβ
i)T (σ2

eΛ + σ2
rIn)−1(y − xiβ

i)
)
.

Reparametrizing with

γ = σ2
r/σ

2
e ,

the log-likelihood becomes

l(y′) = n

2 log(2π)− n

2
∑

log(σ2
e(λi + γ))− n

2
∑ (y′k − x′kiβi)2

(2σ2
e(λi + γ))

Partial derivation shows that the maximum of the log likelihood is reached at

β̂i =
∑

k

y′kx
′
ki

(λk + γ̂)/
∑

k

(x′ki)2

(λk + γ̂) ,

and

σ̂2
e =

∑
k

(y′k − x′kiβ
i)2

(λk + γ̂) /
∑

k

n

(λk + γ̂) .

Reducing the 3 parameter optimization problem to a one parameter optimization over γ. p-values

can be obtained by the likelihood ratio test for null hypothesis that β = 0.
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F. Supplementary Information for Chapter 4

!
!
!
S1 Fig. Analysis of the male dataset. a) Genetic correlation between morphometric traits in 

males. The two modules of higher correlation observed in females are still visible (bright 

yellow in the upper left and lower right corners) but the overall clustering is more influenced 

by the more inaccurately measured smaller veins and areas. b) Cumulative variance 

explained in male data by increasing number of principal components. As in the female 

dataset, the first two PCs explain almost 75% of the variance in the data. c) Factor map for 

the variables. PCs 1 and 2 split the data into two groups. d) Correlation between PCs and 

traits. PC1 reflects a general size component and PC2 is highly correlated with head/thorax 

traits, effectively splitting the data in two groups. 
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Fig S1: Analysis of the male dataset.
a) Genetic correlation between morphometric traits in males. The two modules of higher correlation
observed in females are still visible (bright yellow in the upper left and lower right corners) but the overall
clustering is more influenced by the more inaccurately measured smaller veins and areas. b) Cumulative
variance explained in male data by increasing number of principal components. As in the female dataset,
the first two PCs explain almost 75% of the variance in the data. c) Factor map for the variables. PCs
1 and 2 split the data into two groups. d) Correlation between PCs and traits. PC1 reflects a general
size component and PC2 is highly correlated with head/thorax traits, effectively splitting the data in two
groups.
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!
!
!
S2 Fig. Allometry and inversions. Histograms of the estimates for the allometric coefficient 

b for the relationship between CS and IOD in females (a), in males (b) and between CS and 

TL in females (c) and males(d). e) Boxplot and individual datapoints of the data in a-d. Red = 
females and black = males. 95% confidence intervals for b (Supplementary Table 1) are very 

broad for some lines due to few datapoints used for fitting, so these are just very rough 
estimates for the allometric relationship. Nevertheless there is variation among lines for all 

evaluated relationships. f) The effect of cosmopolitan inversions on wing size. Lines are 
plotted according to the number of homozygous inversion arrangements they have: 0 (red) = 

neither In(2L)t nor In(3R)Mo present, 1 (green) = homozygous for either In(2L)t or In(3R)Mo, 
2 (blue) =homozygous for both In(2L)t and In(3R)Mo. Datapoints are individual flies.!
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Fig S2: Allometry and inversions.
Histograms of the estimates for the allometric coefficient b for the relationship between CS and IOD in
females (a), in males (b) and between CS and TL in females (c) and males(d). e) Boxplot and individual
datapoints of the data in a-d. Red = females and black = males. 95% confidence intervals for b are very
broad for some lines due to few datapoints used for fitting, so these are just very rough estimates for
the allometric relationship. Nevertheless there is variation among lines for all evaluated relationships.
f) The effect of cosmopolitan inversions on wing size. Lines are plotted according to the number of
homozygous inversion arrangements they have: 0 (red) = neither In(2L)t nor In(3R)Mo present, 1 (green)
= homozygous for either In(2L)t or In(3R)Mo, 2 (blue) =homozygous for both In(2L)t and In(3R)Mo.
Datapoints are individual flies.
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S3 Fig. The minor and major haplotype of genome-wide significant SNPs show 
differential association with female IOD. a) The minor allele haplotype of the genome-

wide significant cluster is associated with an increased IOD in females. Boxplots of female 

IOD by genotype at the nine SNPs annotated to kek1. SNPs marked by a star pass 
Bonferroni correction. Grey=major allele, white = minor allele. b) Lines with the minor 

haplotype are distributed across all four foodbatches. Black dots = major allele, blue dots = 
minor allele. The IOD distribution for each foodbatch is plotted for females for the most 

a 

b 

c

d 

Fig S3: The minor and major haplotype of genome-wide significant SNPs show differential
association with female IOD.
a) The minor allele haplotype of the genome- wide significant cluster is associated with an increased IOD in
females. Boxplots of female IOD by genotype at the nine SNPs annotated to kek1. SNPs marked by a star
pass Bonferroni correction. Grey=major allele, white = minor allele. b) Lines with the minor haplotype
are distributed across all four foodbatches. Black dots = major allele, blue dots = minor allele. The IOD
distribution for each foodbatch is plotted for females for the most significant SNP. The distribution is
the same for all other SNPs of the cluster as all minor alleles form a haplotype. c) Correlation between
p-values from GWAS with normalized IOD (y-axis) and non-normalized iod (x-axis) in females. Axes are
on the –log10 scale. d) Several blocks of higher LD are visible in the region 20kb upstream of kek1. Blue
= no correlation, orange = complete correlation.
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S4 Fig. QQ-plots from GWA in females for all traits show a departure from uniformity 

of top associations. Observed association p-values are –log10 transformed (y-axis) and 
plotted against the –log10 transformed theoretically expected p-values under the assumption 

of no association (uniform distribution, x-axis). Centroid size (a), inversion corrected centroid 
size (b), interocular distance (c), inversion corrected interocular distance (d) and relative 

centroid size (e). 

!

Fig S4: QQ-plots from GWA in females for all traits show a departure from uniformity of top
associations.
Observed association p-values are –log10 transformed (y-axis) and plotted against the –log10 transformed
theoretically expected p-values under the assumption of no association (uniform distribution, x-axis).
Centroid size (a), inversion corrected centroid size (b), interocular distance (c), inversion corrected
interocular distance (d) and relative centroid size (e).
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S5 Fig. QQ-plots from GWAS in males for all traits show a departure from uniformity 

of top associations. Observed association p-values are –log10 transformed (y-axis) and 
plotted against the –log10 transformed theoretically expected p-values under the assumption 

of no association (uniform distribution, x-axis). Centroid size (a), inversion corrected centroid 
size (b), interocular distance (c), inversion corrected interocular distance (d) and relative 

centroid size (e). 

!

Fig S5: QQ-plots from GWAS in males for all traits show a departure from uniformity of top
associations.
Observed association p-values are –log10 transformed (y-axis) and plotted against the –log10 transformed
theoretically expected p-values under the assumption of no association (uniform distribution, x-axis).
Centroid size (a), inversion corrected centroid size (b), interocular distance (c), inversion corrected
interocular distance (d) and relative centroid size (e).
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S6 Fig. Correlation between associated (p<10-05) SNPs in females. The SNPs are 

ordered according to chromosome arm (2L, 2R, 3L, 3R, X) and black dividers separate 

chromosomes. Within one chromosome arm SNPs are ordered according to their position on 

that chromosome with each tile representing one SNP. The color code is depicted on the 

right: orange = complete correlation (1) and blue = no correlation (0). Centroid size (a), 

inversion corrected centroid size (b), interocular distance (c), inversion corrected interocular 

distance (d) and relative centroid size (e). 

!

Fig S6: Correlation between associated (p < 10−05) SNPs in females.
The SNPs are ordered according to chromosome arm (2L, 2R, 3L, 3R, X) and black dividers separate
chromosomes. Within one chromosome arm SNPs are ordered according to their position on that
chromosome with each tile representing one SNP. The color code is depicted on the right: orange =
complete correlation (1) and blue = no correlation (0). Centroid size (a), inversion corrected centroid size
(b), interocular distance (c), inversion corrected interocular distance (d) and relative centroid size (e).
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S7 Fig. Correlation between associated (p<10-05) SNPs in males. The SNPs are ordered 

according to chromosome arm (2L, 2R, 3L, 3R, X) and black dividers separate 

chromosomes. Within one chromosome arm SNPs are ordered according to their position on 

that chromosome with each tile representing one SNP. The color code is depicted on the 

right: orange = complete correlation (1) and blue = no correlation (0). Centroid size (a), 

inversion corrected centroid size (b), interocular distance (c), inversion corrected interocular 

distance (d) and relative centroid size (e). 

!

Fig S7: Correlation between associated (p < 10−05) SNPs in males.
The SNPs are ordered according to chromosome arm (2L, 2R, 3L, 3R, X) and black dividers separate
chromosomes. Within one chromosome arm SNPs are ordered according to their position on that
chromosome with each tile representing one SNP. The color code is depicted on the right: orange =
complete correlation (1) and blue = no correlation (0). Centroid size (a), inversion corrected centroid size
(b), interocular distance (c), inversion corrected interocular distance (d) and relative centroid size (e).
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S8 Fig. Correlation of SNP p-values between the sexes. SNP p-values in females (x-axis) 

are plotted against their respective p-values in males (y-axis). The Spearman rank correlation 
is given for each trait and the red lines denote the significance cutoff. a = CS, b = CSIC, c = 

IOD, d = IODIC, e = rCS. 

!

Fig S8: Correlation of SNP p-values between the sexes.
SNP p-values in females (x-axis) are plotted against their respective p-values in males (y-axis). The
Spearman rank correlation is given for each trait and the red lines denote the significance cutoff. a = CS,
b = CSIC, c = IOD, d = IODIC, e = rCS.
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S9 Fig. RNAi knockdown results males. Percent change in median wing area compared to 
CG1315 RNAi upon wing-specific knockdown of the validated candidate genes in males. 

Only the lines yielding a significant wing size change (p<0.001, Wilcoxon rank sum test) are 

depicted. Median, 25th and 75th percentile for each are given in Supplementary Table 7. 

!

Fig S9: RNAi knockdown results males.
Percent change in median wing area compared to CG1315 RNAi upon wing-specific knockdown of the
validated candidate genes in males. Only the lines yielding a significant wing size change (p<0.001,
Wilcoxon rank sum test) are depicted.
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S10 Fig. Comparison of p-values and effect sizes between candidate and control 

RNAi. a: -log10 transformed p-value densities of the candidate (black) and combined control 

(red) data sets. The two p-value distributions differ by a location shift that is not zero (i.e. are 

not the same); specifically, the – log10 transformed control p-value distribution (red) is shifted 

towards the left of the – log10 transformed candidate p-value distribution (black) (one sided 

Wilcoxon rank sum test p = 0.02). b: The distribution of candidate effect sizes (percent 

change in wing size upon knockdown) is shifted towards positive effect sizes (white boxes), 

whereas the control knockdown effect size distribution (red) is more centered on 0. The two 

exceptions at -28% (CG17646) and -42% (CG3704) are lines whose wings not only show a 

size reduction but also considerable morphological defects (c). N = 43 candidates (white), N 

= 22 control (red); only data from females was used for these analyses. 

!

Fig S10: Comparison of p-values and effect sizes between candidate and control RNAi.
a: -log10 transformed p-value densities of the candidate (black) and combined control (red) data sets. The
two p-value distributions differ by a location shift that is not zero (i.e. are not the same); specifically, the
– log10 transformed control p-value distribution (red) is shifted towards the left of the – log10 transformed
candidate p-value distribution (black) (one sided Wilcoxon rank sum test p = 0.02). b: The distribution
of candidate effect sizes (percent change in wing size upon knockdown) is shifted towards positive effect
sizes (white boxes), whereas the control knockdown effect size distribution (red) is more centered on 0.
The two exceptions at -28% (CG17646) and -42% (CG3704) are lines whose wings not only show a size
reduction but also considerable morphological defects (c). N = 43 candidates (white), N = 22 control
(red); only data from females was used for these analyses.
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S11 Fig. Functional annotation of the 33 validated candidate genes based on DAVID 
GO annotation. 

!

Fig S11: Functional annotation of the 33 validated candidate genes based on DAVID GO
annotation.
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