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Chapter 1

Introduction

For any real-valued separable stochastic process X(t), t € R its classical ruin
probability can be defined as follows

P{3teT:X(t)>u},

where T is some Borel set of R, and u is some high threshold. An interesting
and challenging problem in risk theory is to calculate, simulate or approximate
the above probability of ruin. Even in the one dimensional classical models, exact
formulas for ruin probabilities are typically only possible under very non-realistic
assumptions. Therefore, often simulation or approximation as w increases is a
reasonable task for dealing with the ruin probability. Both simulation and approx-
imations require advanced techniques.

This dissertation has two main targets: On one side we consider approxima-
tions of various ruin probabilities. On the other side we shall also discuss inter-
esting bounds for those probabilities, where the threshold u is fixed. Without loss
of generality we may assume that all processes considered in this dissertation are
separable and jointly measurable.

The other important problem is an extension of the classical notion of ruin,
so-called the Parisian ruin. The core of the notion of the Parisian ruin is that now
one allows the surplus process to spend a pre-specified time under the level zero
before the ruin is recognized. Formally, the Parisian ruin can be defined as follows

P{3teT,; Vset,t+S]: X(s)>u},
where T is again a Borel set, and S is some pre-specified positive time interval.

Usually, S does not depend on the moment of time ¢, but depends on the threshold
level wu.
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The multidimensional analog of classical ruin probability is also of interest.
Such problem considers several processes Xi(),..., X4(t) with the same domain
which ruin simultaneously within some Borel set T

P{3teT: :Xq1(t) >u,...,Xa(t) > uq}.

The common choice of T is either an interval [0,7], or a positive real halfline
[0,4+00). This dissertation focused mainly on the first case.
We consider next the classical Brownian motion case. Let Bj(t),..., B4(t) be
independent standard Brownian motions, and A is a non-singular d x d real matrix.
Then processes W;(t) are defined as follows

(Wi(0), .., Wa(t)) T := A(Bi(0),..., Ba(t))T
and all u; have the same growing speed:
Uu; = a;u,

as u tends to infinity.
In Chapter 2 we obtain exact asymptotics for two-dimensional simultaneous
Parisian ruin for two correlated Brownian motions with drifts:

P{3t e [0,A— S/u’; Vs € [t,t+ S/u?]: Wi(s) —c15 > u, Wa(s) — cas > au} .

for any real constants c1, c2, a, and any positive constant S as u tends to infinity.
The Parisian ruin is focused on the probability of prolonged ruin period of company,
accepting that the ruin may occurs for a tiny moment. Results, achived in Chapter
2, continues the study of Parisian ruin asymptotics started in the paper [49], and
was further investigated in [13, 14].

In additional, this chapter considers cumulative Parisian ruin probability

A
IP’{/O I(Wi(t) — eit > u, Wa(t) — cat > au)dt > s/uz} :

again for any real constants ci,c1,a and any positive constant S. In fact, cu-
mulative Parisian ruin is simply the tail of the sojourn of the underlying process.
These type of investigations are of interest in various areas of probability beyond
insurance mathematics, see e.g., the monograph by Berman [7].

In Chapter 3 we focused on the multidimensional simultaneous ruin probability,
assuming that ruin occurs for at least k of d margins:

P{Ht € [S,T],ZC {1,...,d} : ‘.’Z| =k, Vi GIWi(t) —cit > aiu}



for any real constants ci,...,cq, Q;,...,aq. We derive both sharp bounds and

asymptotic approximations of the probability of interest for the finite and the
infinite time horizon. The results presented in this chapter extend previous findings
of [10, 19].

Chapter 4 contains some generalisation of the results related to asymptotics
of the simultaneous ruin probability for Brownian motion on more general class of
Gaussian processes.

Let Z(t) = (Z1(t),...,Z4(t))",t € R where Z;(t),t € R, i = 1,...,d are mu-
tually independent centered Gaussian processes with continuous sample paths a.s.
and stationary increments. For X(t) = AZ(t), t € R, where A is as above,
u,c € R and T > 0 we derive tight bounds for the simultaneous ruin probability

P {Elte[O,T] : ﬂgzl{Xi(t) —cit > Uz}}

and find its exact asymptotics as the thresholds tend to infinity.

Finally, in Chapter 5 we discuss another interesting ruin problem. The classical
ruin probability can be represented as follows

P{3te[0,T]: W(t)>u}=P{3te[0,T]: W(t) €uS},
where
S={zeR:z>1}.

Hence, we can generalise the ruin probability by putting an arbitrary set S. The
same ruin probability may be defined in a multidimensional setup

P {3t € [0,T]: (Wi(t),..., Wa(t)) € uS}.

In our multivariate setting, we shall allow S to be a general Borel set. This
problem is already considered in the context of Shepp-statistics in [44]. In this
Chapter we derive upper bounds for the ruin probability of interest extending in
particular some results from [44].



Chapter 2

Parisian & Cumulative Parisian
Ruin

1 Introduction

Calculation of Parisian ruin for Brownian risk model has been initially consid-
ered in [49]. For general Gaussian risk models Parisian ruin cannot be calculated
explicitly. As shown in [13, 14] methods from the theory of extremes of Gaus-
sian random fields can be successfully applied to approximate the Parisian ruin
for general Gaussian risk models. In this chapter, we shall focus on the classical
bivariate Brownian motion risk model, which in view of recent findings in [27],
appears naturally as the limiting model of some general bivariate insurance risk
model. Consider therefore two insurance risk portfolios with corresponding risk
models

Ri(t) =u+crt — Wi(t), Ro(t) =au+ cot — Wa(t), t>0,

where W1, Wy are two standard Brownian motions and the initial capital for the
first portfolio is u > 0, whereas for the second it is equal au for some real constant
a. Further ¢; and ¢y are some constants which denote the premium rates of the
first and the second portfolio, respectively. In this chapter we shall consider the
benchmark model where (W (t), Wa(t)),t > 0 are assumed to be jointly Gaussian
with the same law as

(Bl(t)apBl(t) +v1- pQBQ(t))v t=20, pe (_1> 1)a (1'1)

where Bj, By are two independent standard Brownian motions. As mentioned
above, this model is supported by the findings of [27].

!This chapter is based on the paper [47].
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Throughout the following we suppose without loss of generality (see [53]) that
W;’s are jointly measurable and separable. This assumption is important for the
definitions for classical ruin, Parisian ruin and cumulative Parisian ruin.

For given A > 0 and H > 0 define the simultaneous Parisian ruin probability
on finite time horizon [0, A] and u > 0

Pra(u,c1,au,c) =P{3t € [0, A],Vs € [t,t+ H] : Ri(s) <0, Ra(s) <0}. (1.2)

When H = 0, the simultaneous Parisian ruin reduces to the simultaneous classical
ruin. Such model has been recently studied in [18].
It follows that for any A, H, u positive

Py a(u,cr,au,c2) < Py a(u,ci,au,c)
= P{3te|0,4]: Ri(t) <0, Ra(t) <0}

since P a(u, ¢1, au, c2) is monotone in H. In [18] it is shown that the simultaneous
ruin probability can be bounded as follows
P{W7(A) > u, Wy (A) > au} < Py a(u, c1,au, c2)
P{W}(A) > u,W5(A) > au}

, 1.3
SERA) > @A) @) > oy
where we set
Wi(t) = Wi(t) — eit,
for i=1,2, and " = max(z, 0).
A simple lower bound for Pp 4 is valid for any u > 0
P{vt € [A,A+ H]: Ri(t) < 0,Ry(t) <0} < Py, a(u,c1,au,c). (1.4)

The above lower bound is very difficult to evaluate even asymptotically when u
tends to infinity. The most simple case is when a < p,p > 0. We have (see
Appendix) that for all large v and some C € (0,1)

CP{Vte [A, A+ H]: W{(t) >u} < Pya(u,ci,au,cy)

}P’{ sup Wi(t) > u} . (1.5)

tel0,A]

IN

Since P {suptem A Wi(t) > u} can be evaluated explicitly, it follows easily that

as u — oo it is asymptotically equal to 2P {W(A) > u} and by [18][Thm 2.1] the
lower bound is proportional to P{W;(A) > u} /u as u — oo. Therefore, even for
this simple case, the bounds derived above do not capture the exact decrease of



the Parisian ruin probability as u — oo. The reason for this is that the interval
[A, A+ H] is quite large. In the sequel, under the restriction that H = S/u? for
any S > 0 we show that it is possible to derive the exact approximations of the
Parisian ruin probability.

Motivated by [21] in this chapter we shall also investigate the so-called cumu-
lative Parisian ruin probability on the finite time interval [0, 4], i.e.,

Uy a(u, au) = P {/OA]I(Rl(t) <0, Ro(t) < 0)dt > L/f(u)} ,

where A > 0, L > 0 are given constants and f is some positive function that
depends on w. It is clear that the above is bounded by Py 7 (u,ci,au,cz) and
the calculation of the cumulative Parisian ruin probability is not possible for any
fixed w and z positive. A natural question here is (see [21] for the infinite time-
horizon case) if we can approximate the cumulative Parisian ruin probability as
u — oo. This in particular requires to determine explicitly the function f. In
the case of one-dimensional risk model it is shown in [21] that the cumulative
Parisian ruin probability (or in the language of that chapter the tail of the sojourn
time/occupation time) can be approximated exactly when u becomes large. In
that aforementioned paper f(u) equals u?. We shall show that this is the right
choice also for our setup.

Section 2 presents the exact asymptotics of both Parisian and cumulative
Parisian ruin. Additionally, we discuss therein the approximation of the cumu-
lative Parisian ruin time

A
1 (u) = jlgf()/() I(Ry(t) < 0, Ra(t) < 0)dt > L/ f(w). (1.6)

Section 3 is dedicated to the proofs. We conclude this chapter with an Ap-
pendix composed of two auxiliary lemmas and a short discussion of general Parisian
ruin.

2 Main results

Using the self-similarity of Brownian motion we have that

Py a(u,c1,au,co) =P {3t € [0,1],Vs € [At, At + H] : Ri(s) <0, Ra(s) <0}
Rl(AS) <0
RQ(AS) <0

u+ Acis < Wi(As),
au+ Acis < Wi(As)

:}P’{Ht € [0,1],Vs € [t,t + (H/A)] :

:P{Ht €10,1],Vs € [t,t+ (H/A)] :



:[P{Elte [0,1),Vs € [t,t + (H/A)] : u/VA+VAcis < Wi(s) }

au/V A+ Acis < Wi(s)
= PH/Ayl(u/\/Z, VAcy, au/VAVA).

In addition, we have
Py a(u, c1,au, c2) = Py (u, ca,u/a, c1),
where
Pira(u,cr,au,c2) =P {3t € [0, A],Vs € [t,t + H] : R{*(s) <0, R5*(s) <0}
and
RI(t) = u+ cit — Wa(t), R5™(t) = au+ cat — Wi(t), t>0.
Hence, we can consider only the case a <1 and A = 1. Let in the following

1—ap

(1/_
e i (2.1)

A =

which are both positive if a € (p,1]. For the particular choice of H = S/u? we
shall denote Py 4(u, au) simply as 1g(u, au). We consider first the approximation
of the Parisian ruin, recall W} (t) = W;(t) — ¢;t.

Theorem 2.1 Let c1,cy be two given real constants and let S > 0 be given.
i) If a € (p,1], then as u — o0

s (u, au) ~ Cq ,(S)P{WT (1) > u, W5 (1) > au},

where

Con(S) = MiAe /

IP’{EItZ 0,Vs et —S,t:
R2

Wi(s) —s>x }
Wa(s) —as >y

x eMTTA2Y qgdy (2.2)

and C,,(S) € (0,00).
it) If a < p, then as u — oo

Ys(u,au) ~ C(S)P{W7 (1) > u, W5 (1) > au},

where C(S) =E {esuptZOinfse[t—S,t] (Wl(s)—s)} c (0’ OO)



The approximation of the cumulative Parisian ruin requires some different
arguments since the sojourn functional is different from the supremum functional.
In the following we shall choose the scaling function f(u) to be equal to u2. Since we
consider A =1, we can omit it and write simply ¥ (u, au) instead of Wy, 4(u, au).

Theorem 2.2 Under the setup and the notation of Theorem 2.1 for any L > 0
we have:
i) If a € (p, 1], then as u — o

U1 (u, au) ~ Kqp(L)P{W{(1) > u, Wy (1) > au},

where

KoL) = M /R P {/OOO (W () — ¢ > 2, Wa(t) — at > y)dt > L}
xeMT A2 dzdy € (0,00). (2.3)
it) If a < p, then as u — o0
U (u,au) ~ K(L)P{W{(1) > u, W5 (1) > au},

where

K(L) — /Rex]P’ {/OOO]I(Wl(t) —t>a)dt > L} dz e (0,00).  (2.4)

Remark 2.3 Theorems 2.1 and 2.2 may be used also if c1, co, S and L depend
on u, but have finite limits as u — oo (c1(u) — ¢, ca(u) — ¢, S(u) — S,
L(u) — L*). In this case all constants S and L on the right-hand sides should be
replaced by S* and L*, respectively.

The asymptotic distribution of the ruin time 77 (u) defined in (1.6) may be explic-
itly calculated from Theorem 2.2 by using the self-similarity of Brownian motion.

Proposition 2.4 i) If a € (p, 1], then for any 0 < Ly < Ly <1 with K, , defined
in (2.3)

K, (L) _zl=2a +a?
lim P{u2(1 =71, (w) > x|, (u) <1} = (L) 2207 , x€(0,00).

U—00 Ka,p(LZ)

ii) If a < p, then for any 0 < Ly < Ly <1 with K defined in (2.4)

UILH;OP{U2(1 — 71, (0) > @7, (u) < 1} = KLy)° 3 z € (0,00).



3 Proofs

Proof of Theorem 2.1: Let in the following 7' > 0 and set 6(u,T) = 1 — Tu"?2
for T, u > 0.
For any S positive and all u large

m(u, S, T) = P{3icios0ur) Vs € [t 1+ S/u?) s Wi(s) > u, W5 (s) > au}
< P{3icpsury : Wit) > u, Wi (t) > au}

P{W;(1) > max(c1,0), Wa(1) > max(cg,0)}’

where the upper bound follows from [18][Lemma 4.1].
We give below the exact asymptotics of

M (u,S,T) :=P{Ie5u1)1), Vs € [t,t + S/u®] : Wi (s) > u, Wi (s) > au}
as u tends to infinity.
Lemma 3.1 i) For any a € (p,1] and any positive S and T as uw — oo
Mu,S,T) ~ u%p,(u+ecr,au+c2)I(S,T), (3.2)

where

1(5,T) :—/WIP’{te[O,T],vse[t—s,t] Wi(s) = s >x }

Wa(s) —as >y
x e T HA2Y dzdy,

and 1(S,T) € (0,00).
it) For any a < p and any positive S and T as u — oo

M(u,S,T) ~ uflapp(u + c1, pu+ c2)I(S,T),
where

1(S,T) = /RZ]P’{HtE 0,T],Vs € [t — S, 4] : Wi(s) —s > a1}

_y2—2y(ca—c1p)

X [H(a <p)+Iy <0,a=p)le 207  dady.

The proof of Lemma 3.1 postponed to the Appendix.



In view of Lemma 3.1, inequality (3.1) and asymptotics of the probability
P{W;(1) > u, W5(1) > au} (see Appendix, Lemma 4.1) we immediately obtain
that

T
lim lim m(u, $,7T)

—— = =0.
T—o0 u—oo M(u, S, T)

Hence, using that
M(u, $,T) < ths(u au) < m(u, $,T) + M(u, S,T)
we obtain

M T
lim lim 7(% 5,T)

= 1.
T—o0 u—oo g(u, au)

Consequently, it suffices to prove that
lim I(S,T) € (0,00).
T—o00

Since I(S,T) < 1(0,T), I(S,T) is growing and the finiteness of limr_,~ I(0,7")
follows from [18], the claim follows according to the asymptotics of the probability
P{W}(1) > u, W5(1) > au}. O

Proof of Theorem 2.2: First recall §(u,T) =1 — Tu2.

For given L > 0 if fol I(Ryi(t) < 0, Ra(t) < 0)dt > L/ f(u), then either the same in-
tegral but from 1—¢ to 1 is larger than L/ f(u), or for some point t; € [0,1—d(u,T)]
both R;(t1) and Ra(t1) are smaller than zero. In terms of probabilities it means
that for any T > 0

M(u,T) < Vp(u,au) < M(u,T) + m(u,T), (3.3)

where we set for u > 0

—4(u,T)
m(u, T) =P {Jiefo1-s(ur) : Wi t) > u, W3 (t) > au} .

M(u,T) = P {/1 (W) > w, Wi(t) > au)dt > L/f(u)} ,

In view of [18][Lemma 4.1] for all large enough u

P{W; (1) > u, W3 (1) > au)

m(u e~ 18 ’
(u,T) < P{W1(1) > max(c1,0), Wa(1) > max(c2,0)}

(3.4)

The following lemma establishes the exact asymptotics of M (u,T).



Lemma 3.2 i) For any a € (p,1] and any T > 0 as u — oo
Mu,T) ~ u%p,(u+ec1,au+ c)I(T), (3.5)

where

T
(7)) = / P {/ (Wi () — ¢ > o, Wa(t) — at > y)dt > L}
R2 0
xeMTTA2Y Q. dy,

and I(T) € (0, 00).
i1) For any a < p and any T > 0 as u — o0

M(u,T) ~ u*1<pp(u + ¢y, pu+ c2)I(T),

I(T) = /RZIP’{/OT]I(Wl(t)t>x)dt>L}

y2—2y(ca—c1p)

x[[{a<pl+Ha=p, y<0}e’™ 202  dady,

where

and I(T) € (0,00).

The proof of Lemma 3.2 postponed to the Appendix.
In view of Lemma 3.2, inequality (3.4) and asymptotics of the probability
P{W(1) > u, W5(1) > au} we immediately obtain that

lim lim M

Toou—ro0 M(u,T) 0

Hence, using (3.3) we have

M(u,T
lim lim L

=1
T—o0u—o0 W (u, au)

Consequently, it suffices to show that

lim I(T) € (0,00),
T—o0
where I(T) is defined in Lemma 3.2. Since I(T) < I(L,T) defined in Lemma 3.1,
I(T) is growing and lim7_, I(L,T) < oo, the claim follows. O
Proof of Proposition 2.4: Using the formula of conditional probability and
the self-similarity of Brownian motion for L1, Lo, u positive

P {7z, (u) <1—az/u?}

P {u?(1 — 11, (w) > @|rr,(u) <1} = P {71, (u) < 1}




1
5
1
Wi(t) > u 9
P{ 0 H( Wz"‘(t)>au>dt>L2/u

U 1 _ 2
. /111 Wi(t) > e T x/u?t o Dafiapty
0 Wi (t) > a——== (u/y/1=z/u?)?

}.

Applying Theorem 2.2 yields

_u — 2
P /111 Wil > Jamm vV B sy
0 Wg(t) >a z

e/ e/t (u/\1=2 i)
1
Wi(t) >u 9
IP’{/O ]I( Wi () > au >dt>L/u

P{Wl(l) > \/1—ua:w + /1 —x/u2, Wa(l) > a

~

Jl_“arjw+02«/l—$/u2}

P{W(1) > u, Wy (1) > au} /T(L1, La)
where

Ka,p(Ll) = ( 1
, p, 1],
(L1, L) = {?sz@ B
K(Lz)’ a = p.

Notice that (write ¢(z,y) for the pdf of vector (Wy(1), Wa(1)))

u

@ (m +c1v/1 —x/uz, \/1_UWCL+CQ\/ 1-— x/u2>
=¥

(u+ c1,au+ )¢ (a, c1, c2),
where

_ . 1 — 2ap + a?
Jm logvulaser, c2) = —o =5 5

)



hence by Lemma 4.1 the claim follows if @ > p . For the case a < p notice that

u u
—t V1 -2/, —p+ /1 — z /U3
90(@ -/, —aemp eV />
:@(u+cl7pu+c2)¢;(p501762)5

where
lim log ¢y, (p, c1,¢2) = —/2.
U—00
This finishes the proof in the case a < p again using Lemma 4.1 ([

4 Appendix

4.1 Parisian ruin for non-vanishing interval

Consider now the probability Py 7(u, au) with some fixed constant H. We can use
the following upper bound:

P{Vvt e [T, T+ H] : W{(t) > u, W5(t) > au} < Py r(u,au).

We can present Wh(t) using the correlation coefficient p as pWi(t) + p*B(t),
where p* = /1 — p2, and B(t) is an independent Brownian motion. Note that if
Wi(t) > vwand B(t) > (a— p)u+ (c2 — pc1)t, then also W3 (t) > au. Since W; and
B are independent

P{Vt e [T, T+ H] : Ri(t) < 0}
xP{Vt € [T,T + H|: B(t) > (a — p)u+ (c2 — pc1)t} < Pyr(u,au).
In case p > 0 and p > a, the probability
P{Vte [T, T+ H] : B(t) > (a — p)u+ (c2 — pc1)t}

tends to one when u tends to infinity. So, for any positive € for large enough u we
derived the following lower bound

(1—-e)P{Vt e [T, T+ H] : Wi(t) — c1t > u} < Py r(u,au).
To find an upper bound we can put H = 0 and omit the restriction for W5, namely

Py r(u,au) < IF’{ sup (Wi(t) —cit) > u} .
te[0,7)

As u tends to infinity, the probability P{Vt € [T.T + H]: Wi(t) — c1t > u} is
asymptotically equal to P{W;(T") > u}, and the probability

P {supte[QT](Wl (t) —cit) > u} is asymptotically equal to P{W{(T') > u} /u.



4.2 Auxiliary lemmas

The following Lemma shows the exact asymptotics of the right-hand sides in The-
orem 2.1 and Theorem 2.2.

Lemma 4.1 Let X; and X2 be Gaussian random variables with correlation coef-
ficient p € (—1,1). Let also ¢1,ca be two given real constants and a < 1 be given.
Write further p,(x,y) for the joint density function of vector (X1, X2).

i) If a € (p,1], then as u — o0

—2
]P){Xl > u+cp, Xo >au+cz}~ Y

@p(u + c1,au + cz2),

A1 A2
where
1—ap a—p

it) If a < p, then we have as u — o0

P{Xl > u—+cp, Xo >(LU+CQ}

(ea—pec)?

~ V27 (1 = p2)®*(c1p — ca)e 2022 u L (u+ 1, pu + ca),
where ®*(c1p —c2) =1 if a < p and ®* is the df of /1 — p? X1 when a = p.

Proof of Lemma 4.1: i) Using the dominated convergence theorem as u — oo

©p(u+ c1,au+ c2)
'LL2
/ e—/\lx—AQy 909(01 + .I‘/U, c2 + y/u)
z,y>0 SOp(CI; 62)

P{Xl >u—+cp, Xo > au—l—02}

X

dzdy

wp(u+ c1,au + cg)
w2

X / e~ NI dy.
z,y>0

ii) Again using the dominated convergence theorem as u — oo (denote C' = 0 if
a = p and C' = —o0 otherwise)

P{X; >u+c;,Xo>au+ca} ~ ©p(u + c1, pu+ c2)

u
% / 672 QOP(C]J 62 + y) dxdy
pplcr, c2)
x>0

y>C



(eg—pc1)?
oot e puter) ot oo

= e
U
_1 y22
e 21-»
X ——dy
v2r(l—p?)
y<pci—ca—C

(eg—pep)?
- wlutaputa) St s
u
x®*(pc1 — c2).

O

Then next lemma helps to go from “almost all L” to “all L” in Lemma 3.2

Lemma 4.2 Let X1(t), Xa(t) for t > 0 satisfy the representation (1.1). Let also
A1, Ao, a, T be positive constants and c1,co be real constants. Then the functions

T
L(L) = /R2 P {/0 I(X:(t) —t >z, Xao(t) — at > y)dt > L} eMTHAY g dy,

L(L) = /RQIP’{/OTI[(Xl(t)—t>x)dt>L}

< [I{a < p} + H{a = p, y < 0}] "

_y?—2y(ca—c1p)
2(1-p) dxdy
are continuous for L € (0, 00).

Proof of Lemma 4.2: Consider the function I;(L). The proof for I5(L) will be
the same. To show the continuity of I;(L) it is sufficient to verify that

T
I} (L) = /R2 P {/0 I(Wy(t) —t > 2, Wa(t) —at > y)dt = L} MY dzdy

= 0

for all positive L. Fix some L > 0 and let

T
Agy = {flan € C[0,T]: /0 I(f1(t) —t > x, fo(t) — at > y)dt = L} .

For any fixed yo € R the sets A;, 4, and A, ,, are non-overlapping for x; # xs.
Define
X={reR:P{A;,} >0},

Since A, 4, are non-overlapping for different z € R, |&,| < n. In addition, X =
Upendrn. Thus, the set X is countable, establishing the proof.
O

X, ={xeR:P{Asy} >1/n}.



4.3 Proofs of lemmas
This part contains proofs of all the lemmas presented above in this chapter.
Proof of Lemma 3.1: i) For any z,y € R put
Uy =u+cp — x/u, uy = au+ c2 — y/u.

Writing ¢(z, y) for the joint pdf of (Wi (1), Wa(1))" we have

(Pp(umuy) = @p(u+01,au+62)¢u(l’,y), (4‘1)

where as u — oo (write ¥ for the covariance matrix of (Wy(1), Wa(1))T)

1 _
Tug(xa y)z l(x’y)—r

— (1,(:L)E*1(:zc,y)T (4.2)
_l—ap a—p

- 1—p2$+1—p2y:A1x+A2y'

1 _
1Og¢u($ay) = ?(u+cl,au+02)2 1($’y)T -

Denote further

Ugy = Uy — PUg = (a—p)u— (y—px)/u+cz — pe1.

Let By, By be two independent Brownian motions. The representation of (W7 (), Wa(t))
in terms of By and By is given in (1.1). Define the following transform

5y =1—s/u’

and set F(u) = u=2p,(u + c1,au + c3).
For the function M (u,S,T) we have using 1, defined in (4.1)

M(u,S,T)
:/ P{at €[0,TVs € [t — 5,1] :
R2

X F () (2, y)dzdy
= F(u) [ hu(T.S..9)b (o 9)dedy,

Bl(gu) —C18y > U

pB1(5,) + p*Ba(Sy) — €25y > au

Bi(1) = uy
p*Ba(1) = U,y

Define two auxiliary processes for s € [—S,T] as follows

Bu(s) = {B1(54) |B1(1) = uz } — 5Sutiz,
Bya(s) == {B2(84) |p* B2(1) = Uﬂc,y} - guur,y/p*-



Represent the function h, (7, S, z,y) in terms of these processes as

hy(T, S, z,y)
W(Bu,(8) + Sutls — €15y —u) > 0
= P[0, T|Vs €[t —5,t]: up(Bui(s) + Sutiy — 15, — u) +
+ up* Bua(s) + ulSuuzy — (c2 — pe1)sy — ula — p)] > 0

We have the following weak convergence in the space C([—S5,T]) as u — oo
uBuJ(t) — Bl(t>, UB%Q(t) — Bg(t), tc [—S, T], (4.4)

and further

u(guuxfcﬁufu):u{(lf%) <u+clf§) — (17%> fu}

— —5— 1,

u[Sylg,y — (c2 — pc1)5y —u(a — p)] = —(a — p)s — (y — px).
Consequently, as u tends to infinity
hu(T7 S7 Z, y) — h(T7 S, z, y)7

where in view of (1.1)

MT, S, x,y)
B . B  Bi(s) —s—z>0,
= P{BtG[O,TW €lt-51: p(Bl(s)—s—:r)+p*Bz(S)—(G—P)S—(?J_px)>0}
Wi (s

_ P{Bte[O,T]Vse[t—S,t]: Wl( ;_Siw’y}.
5(s) —as

This convergence is justified by applying continuous mapping theorem for the
continuous functional

Hrps(Fi(t), F5(t)) = sup inf< inf Fi(t), inf Fz(t)>
te[0,77] se[t—S,t] sE[t—S5,t]

and random sequence (Fi z gy, Fozy4) € C[—5, T)?

Fiayu(s) = uw(Buyi(s) + 8tz — €15, — u),
Fopyu(s) = up(Bui(s)+ 8uuz — 15y — u) +up” Bya(s)

FulSutgy — (c2 — per)Su — u(a — p)].



To finish the proof it is enough to show the dominated convergence as u — oo
for

L(8,T) = / Bl S, @, y)bu(, y)dady.
]R2

For 1, (z,y) we can show the following upper bound. Fix some
0 < e < min(A1, A2)

(such constant exists as in our case both A; and A\ are positive) and define con-
stants A1 = A1 + sign(xz)e and Aa . = A2 + sign(y)e. Hence for large enough u
and all z,y € R

Yul@,y) < = et TAny, (4.5)

For h,(S,T,x,y) we use Piterbarg inequality (see [53], Thm 8.1), since for all ¢, s
positive

u’R {(Bu(t) — Bu,i(s))2} < Const|t — s| (4.6)

for some positive constant and sufficiently large u. Thus, for such u we have for
some positive constant C

ho(T, S, x,y)
w(Buy,1(8) + 5u(ug —c1) —u) >0
< PC3se[0,T]: up(Bua(s) + Su(ug — c1) —u) +up*Bya(s)
+ ulSy(ug,y — c2 + pe1) — ula — p)] >0
Cee@ ") 3y >0,

2

< 7 Ce ", x>0,y <0,
o ' C’e*CyQ, y>0,2<0,
1, z,y < 0.

Since A ¢, A2 are positive

1,(8.T) < / R(T, S, 2, y)i(x, y)dady
RQ

— C/ e—c(xZ+y2)+>\1,sx+>\2,sydxdy +C e—cx2+>\1,s:c+)\2,sydxdy
z,y>0 x>0,y<0

— 2 —
+C e Y +)\1,E$+)\2,sydxdy + C/ e)\1,6x+)\2,sydmdy < 00.
r<0,y>0 z,y<0



Hence the proof follows from the dominated convergence theorem.

ii) In the case a < p we define
Uy =u+c1 —x/u, Uy =pu+ca—y

and Uy y = Uy — Py = 2 — Y — pc1 + pz/u. In the previous notation
ol ty) = gy + 1, pu+ c2)u(z.y),

where as u — oo

1
log Yu(z,y) = (utcr,pu+c)S H(z/u,y)" — 5(56/% y)S Nz u,y) "
2
y* — 2y(ca — pc1)
- x— 32, . (4.7)

Setting F(u) = u'¢,(u + c1, pu + c2), we have the following representation for
the function M (u, S,T) (write 5, for 1 — s/u® and recall (1.1))

M(u,S,T) =
Wi(s) > Wi(l) = ug
:/ P {3t e [5(u,T), 1)Vs € [t,¢ + S/u?] : 1*(5) v |Whil) =u
R2 Wy (s) > au | Wa(l) = uy
xu o, (g, uy)drdy
B Su) — Su > Bi(1) = T
:/ PL3te0,Ts e ft— 8,4 DLW masu>u (L) =
R2 pB1(5u) + p*Ba(5u) — 254 > au | p*Ba(1) = ug,y

X F(u)n(, y)dody
— F(u) /R hu(T, S, ), )y,

Using B,,1 and By 2 defined in (4.3) we can represent the function h,(T, S, z,y)
as

ho(T, S, z,y)
u(By,1(8) + yuz — €15, —u) >0
= PLIte[0,TIVse[t—S,t]: up(Bui(s)+ Syuz — €15, —u) +
+up* By a(s) + u[Syugy — (c2 — pc1)sy, —ula — p)] >0

As u tends to infinity we have

u(guux—clgu—u):uKl—%) (u—l—cl—§> —c (1—%) —u}



— —s—x,
uluttzy — (2 = per)su —ula — p)] = —u*(a — p) —uy + pz
+ys/u+ prs/u?.
If a < p, then the above tends to co, and if a = p then it tends to co only if y < 0
and to —oo if y > 0. Finally, if a = p and y = 0, then the above tends to pz.

Again using continuous mapping theorem, since (4.4) holds, we have the following
convergence (except if y = 0)

ho(T, S, z,y) = h(T, S, z,y),  u— o0,
where

n(T,S,z,y) =

:P{Hte[o,T]vse[t_S’t]:B1(8)—s—a:>0, }

p(Bi(s) —s—x)+ p*Ba(s) + 00 >0
x({a < p}+Ha=p, y <0})
=P{3tec[0,TIVse[t—S5,t]: Wi(s) —s > x}
X(I{a < p} +{a=p, y<0}).
To show the claim we can apply the dominated convergence theorem. Note that
for large enough u and all z,y € R

C2 — pc1 y2

127 o

log ¢u(z,y) < p(z,y) = (1 + sgn(x)/2)x +
By Piterbarg inequality (as (4.6) holds here for ¢ = 1) we can establish that for

some positive constant C

ho(T, S, z,y) < P{3s€[0,T]:u(Byi(s)+ Su(uy —c1) —u) >0}
o Ci'efcmz, x>0,
1, z < 0.

Since (1 + sign(x)/2) > 0, then

/ h(z, y)@(z,y)dzdy < oo
R2

and by the dominated convergence theorem the claim follows. O
Proof of Lemma 3.2: i) We use the same notation as in Lemma 3.1 i). Hence
the convergence (4.2) holds. For the function M (u,T) we have

M(u,T)



Bi(1) = u }

P Ba(1) = uqy

T Bi(ty) — 1ty > u
= P I _ _ _ d L
/]R2 {/0 (pBl(tu> + p*Ba(ty) — caty, > au) b=
X F(u)pu(z,y)dzdy
= F(u) [ hu(L T 5)u (. )dndy.
R2

Recalling the processes B, 1 and B, 2 from (4.3) we can represent the function

hy(T, S, x,y) as follows

hu(L, T, 2, y)
. w(By,1(t) + tyug — c1ty, —u) >0
=P / I up (By(t) + tyug — ity —u) +
° + up*By2(t) + ultyug,y — (c2 — per)ty — u(a — p)] >0

dt > L

We have the same weak convergence as in (4.4) and further as u tends to infinity

u(tuux—cltu—u):u[(l—;> (u—l—cl—%)—cl (1—52>—u]

— —t—u,
ultyUzy — (c2 — per)ty —u(a — p)] = —(a — p)t — (y — px).

(4.8)

Now we want to apply the continuous mapping theorem to the function
T
He(Fy, ) :/ L(F(t) > 0, Fy(t) > 0) dt
0

and a random sequence (Fi ; .4, Fozyu) € C([0,T] — R?) defined as

w(Bya(t) + tyug — ety — u),
up (By,1(t) + tyug — c1ty, — u)
+up*Bu,2(t) + U[Euua:,y - (02 - Pcl)fu - u(a - p)]a

Fl,x,y,u
F2733,y7u =

with exception set
A={FeC(0,T)) : u(F(8{(x,y) € R*|z > 0, y > 0})) > O}

First we need to show that Hp(F, Fy) is continuous for (Fy, Fy) ¢ A. Define an

area
A= (Fy, Fo) " (9{(z,y) € R?|z > 0, y > 0}).



For any sequence (Fy,,Fs,) converging in C([0,7] — R?) to some function
(F1, Fy) as n — oo we can define

(F1n(t), Fa(t),  t&A,
(Fin(t), Fy (1) =

(F1(t), Fa(t)), te
In this case for all ¢t € [0,T] as n — oo

I(F],, > 0,F}, > 0) = I(F| > 0,F, > 0).

Since p(\) = 0, we have Hr(F],,, Fy,,) = Hr(F1pn, F2p). Hence, the dominated
convergence theorem establishes the continuity of the function Hp at the point
(Fy, Fy).

From (4.4) and (4.8) we can establish that as u tends to infinity

F17x7y7u(t) — Bl (t) —t—x = Wl(t) —t—ux,
Foryu(t) — p(Bi(t) —t—x)+p"Ba(t) — (a — p)t — (y — px)
= Wg(t) —at — Y.

Since W7 and W5 are standard Brownian motions
P {u((Wi(-) =)' (x)) > 0} =0, P {u((Wa() —a-)"'(y)) > 0} = 0.

Consequently, P{(W1(-) —z — -, Wa(:) —a- —y) € A} =0, and we can apply con-
tinuous mapping theorem, which establish that for almost all L positive

hu(L, T, 2z,y) — h(L, T, 2,y), U — 00,
where

h(L,T,z,y)

_ P{/T]I<Bl(t)_t_x>0 >dt>L}
o \pBit) —t—a)+p"By(t) = (a—p)t = (y — px) >0

T
_ IP’{/ I(WL(E) — t > @, Walt) — at > y)dt > L} |
0
To finish the proof it is enough to show the dominated convergence for the integrals
L,(T) = / ho(L, T, x, y) by (z, y)dady.
R2

In view of (4.5) and (4.6) for large enough u we have for some positive constant
C such that for all z,y € R

hU(La T,.I', y)



W(By(t) + tu(us —c1) —u) >0
P{ 3t e0,T]: up(By ()+£(ux—cl)—u)+upBu2()
Tu
),

IN

- ulfuttay — 2+ per) —ula — p)] > 0

ée_C(r +y z,y Z 07
_ Cecr?, >0,y <0,
S h(ﬂ%?/) = 76 2 v= y
Ce=Y", y >0,z <0,
1, z,y < 0.
Since A1, A2 are positive,
I,(T) < /2 W, x,y)(z, y)dedy
R
=C e—C(@? )+ A1 cat A, Ydpdy + C/ _Cx2+)\1,537+>\2,5ydl»dy
z,y>0 >0,y<0
+ C’ e_Cy +)\1,51‘+/\2,5ydxdy + C/ e>\1,5$+)\2,sydxdy < 0.
x<0,y>0 z,y<0

Thus the dominated convergence theorem may be applied and provides us with
the claimed assertion. (The constant I(7") is continuous with respect to L (see
Appendix, Lemma 4.2), so it holds for all L positive).

ii) We keep the same notation as in Lemma 3.1 i).
The following representation for the function M (u,T) holds (write £, for 1 —¢/u?
and recall (1.1))

M (u,T)
T [ Bi(ty) — c1ty > u,
= P I _ _ _ d L
/R2 {/0 (pBl(tu) + p*Ba(ty) — caty > au) >
F(u)ypu(z, y)dzdy
= F(w) [ hu(L 5w )dndy.
R2

Bl(l) = Uy
p*Ba(1l) = ugy

Using again B,,; and B, 2 as in (4.3) we can represent the function h, (L, T, z,y)
as

hu(L, T, z,y)
- w(By(t) + tyug — ety —u) >0
—p / T| wp (Bur(t) + Futte — c1fu — ) dt> 1L
0

+up*Bya(t) + ultyugy — (c2 — per)ty —u(a —p)] >0



We have the same weak convergence as in (4.4). Moreover, in this case we may
use the convergence (4.7). With the same arguments as in i) we can apply the
continuous mapping theorem and establish the following convergence for almost
all L positive and all z € R, y € R\ {0}

ho(L, T, x,y) — WL, T,z,y), u — 00,

where

T
h(L,T,x,y) :IP’{/O H(Bl(t)—t>:v)dt>L} ({a < p} +Ha=p, y<0}).

To show the claim we can apply the dominated convergence theorem. Note that
for large enough u

2
_ . Co — pC1 Yy
log ¥u(z,y) < @(x,y) = (1 + sign(z)/2)r + —5y — 5

1—p? Y
By Piterbarg inequality we can establish that for some positive constant C

hy(L, T z,y) < P{3t€[0,T]: u(Byi(t)+ tu(ugz —c1) —u) > 0}
Pl - C’e*mQ, x>0,
1, x < 0.

Since (1 + sign(x)/2) > 0, then

/ h(x)p(x, y)dady < oo,
R2

and by the dominated convergence theorem the claim follows for almost all L €
(0,00). The function I(T) is continuous with respect to L, so the claimed assertion
holds for all L € (0, c0). O



Chapter 3

Multivariate Pandemic-type
Failures

1 Introduction

In this chapter we are interested in the probabilistic aspects of multiple simulta-
neous failures typically occurring due to pandemic-type events. A key benchmark
risk model considered here is the d-dimensional Brownian risk model (Brm)

R(t,u)= (Ri(t,u1),...,Ry(t,uq)) " = utet — W(t), t>0,

where ¢ = (c1,...,¢q) ", u = (u1,...,uq)" are vectors in R? and random process
W(t) =TB(t), t € R, with I' a d x d real-valued non-singular matrix and B(t) =
(B1(t),...,Bq(t))",t € R a d-dimensional Brownian motion with independent

components which are standard Brownian motions. By bold symbols we denote
column vectors, operations with vectors are meant component-wise and ax =
(az1,...,axq)" for any scalar @ € R and any € R%.

Indeed, Brm is a natural limiting model in many statistical applications. More-
over, as shown in [27] such a risk model appears naturally in insurance applications.
Since Brm is a natural limiting model, it can be used as a benchmark for various
complex models. Given the fundamental role of Brownian motion in applied prob-
ability and statistics, it is also of theoretical interest to study failure events arising
from this model. Specifically, in this chapter we are interested in the behaviour of
the probability of multiple simultaneous failures occurring in a given time horizon
[S,T] C [0, 0.

2This chapter is based on the joint work [15] with Krzysztof Debicki and Enkelejd
Hashorva.
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In our settings failures can be defined in various ways. Let us consider first
the failure of a given component of our risk model. Namely, we say that the ith
component of our Brm has a failure (or ruin occurs) if R;(t, u;)= ui+cit — Wi(t) <
0 for some t € [S,T]. The extreme case of a catastrophic event is when d multiple
simultaneous failures occurs. Typically, for pandemic-type events there are at
least k components of the model with simultaneous failures and k is large with the
extreme case k = d. In mathematical notation, for given positive integer k < d of
interest is the calculation of the following probability

ka(S?Tau)
= P{ﬂt € [S, T], IcC {1, e ,d}, IZ| =k : ﬁiez{Ri(t,u,-) < 0}}
= ]P){Ehf S [S,T], IcC {1, - ,d}, |I| =k: ﬁieI{Wi(t) —ct > ul}},

where |Z| denotes the cardinality of the set Z. If T is finite, by the self-similarity
property of the Brownian motion (S, T, u) can be derived from the case T = 1,
whereas T' = oo has to be treated separately.

There are no results in the literature investigating (S, T, u) for general k.
The particular case k = d, for which 14(S, T, u) coincides with the simultaneous
ruin probability has been studies in different contexts, see e.g., [2, 3, 9, 10, 28, 30,
36, 40, 41, 48, 52, 54]. The case d = 2 of Brm has been recently investigated in
[19].

Although the probability of multiple simultaneous failures seems very diffi-
cult to compute, our first result below, motivated by [44][Thm 1.1], shows that
Yr(S,T,u) can be bounded by the multivariate Gaussian survival probability,
namely by

pr(u) =P{(Wi(T) —a1T,... Wu(T) — c4T) € E(u)},

where
Ew= |J Bzw)= |J {zeR":Viel: z>u} (1.1)
Ic{1,...,d} Ic{1,...,d}
|Z|=k |Z|=k

When u — oo we can approximate pr(w) utilising Laplace asymptotic method,
see e.g., [43], whereas for small and moderate values of u it can be calculated or
simulated with sufficient accuracy. Our next result gives bounds for ¥ (S, T, u) in
terms of pr(u).

Theorem 1.1 If the matriz ' is non-singular, then for any positive integer k < d,
all constants 0 < S < T < oo and all ¢,u € R?

pr(u) < ¢i(S,T,u) < Kpr(u), (1.2)
where K = 1/minzcqq . ay, 7=k P{Viez : Wi(T) > max(0,¢7T)} > 0.



The bounds in (1.2) indicate that it might be possible to derive an approx-
imations of ¥y (S,T,u) for large threshold w, which has been already shown for
k= d = 2 in [19]. In this chapter we consider the general case k < d,d > 2
discussing both the finite time interval (i.e., T'= 1) and the infinite time horizon
case with 7' = oo extending the results of [10] where d = k is considered.

In Section 2 we explain the main ideas that lead to the approximation of
Yi(S,T,u). Section 3 discusses some interesting special cases, whereas the proofs
are postponed to Section 4. Some technical calculations are displayed in Section
5.

2 Main Results

In this section W (t),¢ > 0 is as in the Introduction and for a given positive integer
k < d we shall investigate the approximation of ¥ (S, T, u) where we fix u = au,
with a in R?\ (—o00,0]¢ and u is sufficiently large.

Let hereafter Z denote a non-empty index set of {1,...,d}. For a given vector,
say € R? we shall write 7 to denote a subvector of  obtained by dropping its
components not in Z. Set further

»1(S, T,azu) =P {3t € [S,T] : Az(t)},
with
Az(t) ={W(t) —ct € Ez(au)} ={Vi € Z: W;(t) — ¢it > a;u}, (2.1)
where E7(au) was defined in (1.1). In vector notation for any u € R

UR(S,Tyau) = PS3te[S,T): ) Az

Zc{1,...,d}
|Z|=k

= P U {BtelsT): A7)}

Zc{1,...,d}
IZ|=F




The following lower bound (by Bonferroni inequality)

Un(S, Toau) > > ¥r(S, T, azu)

Ic{1,....d}
IZ|=k
(2.2)
- ). P{3ts€[ST]: Az(t)nAs(s)}
7,7 C{1,....d}
IZ1=7|=k
I#J
together with the upper bound
(S, T,au) < Z Yz(S, T, azu) (2.3)
Ic{1,...,d}
\Z|=k

are crucial for the derivation of the exact asymptotics of ¥ (S, T, au) as u — 0.
As we shall show below, the upper bound (2.3) turns out to be exact asymptotically
as u — oo. The following theorem constitutes the main finding of this chapter.

Theorem 2.1 Suppose that the square d X d real-valued matriz I' is non-singular.
If a has no more than k — 1 non-positive components, where k < d is a positive
integer, then for all0 < S < T < oo, c € R?

Yr(S,Toau) ~ Y 7(0,T,azu), u— . (2.4)

Ic{1,....d}
|Z|=Fk

Moreover, (2.4) holds also if T = oo, provided that ¢ and a + ¢t have no more
than k — 1 non-positive components for all t > 0.

Essentially, the above result is the claim that the second term in the Bonferroni

lower bound (2.2) is asymptotically negligible. In order to prove that, the asymp-
totics of 9|7 (S, T, azu) has to be derived. For the special case that 7 has only two
elements and S = 0, its approximation has been obtained in [19]. Note in passing
that the assumption in Theorem 2.1 that a has no more than £ — 1 non-positive
components excludes the case that there exists a set Z C {1,...,d}, |Z| = k such
that 17(0,7, azu) does not tend to 0 as u — oo, which due to its non-rare event
nature is out of interest in this chapter.
The next result extends the findings of [19] to the case d > 2. For notational
simplicity we consider the case Z has d elements and thus avoid indexing by Z.
Recall that in our model W (t) = I'B(t) where B(t) has independent standard
Brownian motion components and I' is a d X d non-singular real-valued matrix.
Consequently ¥ = I'T'T is a positive definite matrix.



Hereafter 0 € R? is the column vector with all elements equal 0. Denote by
I (a) the quadratic programming problem:

minimise ' X1, for all > a. (2.5)
Its unique solution a is such that
ar=ar, () tar>0; a;=%;(Sm) tar > ay, (2.6)

where a; is defined if J = {1,...,d} \ I is non-empty. The index set I is unique
with m = |I| > 1 elements (see Lemma 4.6 in chapter 4, or [10][Lem 2.1]) for more
details).

In the following we set

It is known that
A = (E[[>_la[ > 0y, )\J >0y, (2.7)

with the convention that when J is empty the indexing should be disregarded so
that the last inequality above is irrelevant.

The next theorem extends the main result in [19] and further complements
findings presented in Theorem 2.1 showing that the simultaneous ruin probability
(i.e., k = d) behaves up to some constant, asymptotically as u — oo the same as
pr(u). For notational simplicity and without loss of generality we consider next
T=1.

Theorem 2.2 If a € R? has at least one positive component and T is non-
singular, then for all S € [0, 1)

Ya(S,1,au) ~ Cla)pi(au), u— oo, (2.8)
where C(a) = [Tes Mi fam P (Bi0 : Wi(t) — tag > 21} X ®1da; € (0,00).

Remarks 2.3 i) By Lemma 4.6 below taking T' = 1 therein (hereafter ¢ denotes
the probability density function (pdf) of TB(1))
pi(au) =P{W(1) — ¢ > ua}
~ TN PAW e (1) > el Wi(1) > ey u Mp(ua + ¢) (2.9)
el

as u — oo, where A = Y ta and if J = {1,...,d} \ I is non-empty, then
U={jeJ:a;=a;}. When J is empty the conditional probability related to U



above s set to 1.
ii) Combining Theorem 2.1 and 2.2 for all S € [0,1) and all a € R with no more
than k — 1 non-positive components we have as u — 00

Ur(S, Lau) ~ Y Clan)dz(0,1, azu)

Tc{l,....d
S (2.10)

~ CP{Viez+ : Wi(1) > ua; + ¢;}

for some C > 0 and some T* C {1,...,d} with k elements.
i1i) Comparing the results of Theorem 2.2 and [10] we obtain

. (—lnwk(Sl,l,au))I/z
1
lirﬁrisolip —1In ¢k<527 0, CLU) =

for all S1 € [0,T],52 € [0,00).
iv) Define the failure time (consider for simplicity k = d) for our multidimensional
model by

7(u) =inf{t > 0: W(t) — tc > au}, u > 0.

If a has at least one positive component, then for all T > S >0,z > 0

lim P {u(T — 7(w)) > zlr(u)e [S,T]} = e >3, (2.11)

U— 00

see the proof in Section 4.

3 Examples

In order to illustrate our findings we shall consider three examples assuming that
I'T" is a positive definite correlation matrix. The first example is dedicated to
the simplest case £ = 1. In the second one we discuss k = 2 restricting a to
have all components equal to 1 followed then by the last example where only the
assumption I'T" is an equi-correlated correlation matrix is imposed. In this section
T =1and S €0,1) is fixed.

Example 1 (kK = 1): Suppose that a has all components positive. In view of
Theorem 2.1 we have that

d
wk(57 17 (IU) ~ Z w{z} (07 1a aiu)
=1



as u — 0o. Note that for any positive integer i < d
w{z}(ov 17 a’i“’) =P {EltE[O,l} : B<t) — ¢t > aiu} )
where B is a standard Brownian motion. It follows easily that
d
Yr(S, 1, au) ~ 2ZP{B(1) >au+c}, u— oo.
i=1

Example 2 (k =2 and @ = 1): Suppose next k = 2 and a has all components
equal 1. By Theorems 2.1 and 2.2 we have that

UR(S,1,1u) ~ Y ci,j(1)xp>{ min (Wi(1) — ¢z) > u)}

{i,jyc{1,....d} kefi,j}

as u — 00, where 1 € R? has all components equal to 1. Using further Remark
2.3 we obtain as u — oo

IP’{ min (Wi(1) — c4) > u)}

ke{ijg}
2 w2 (eitepu -2 jeicite]
- u o TP 1FPig 2(1-p7 )

(1= pij)?y/2m(1 = p})

Here we set p; j = corr(W;(1), W;(1)). Consequently, if p; ; > p; =, then as
U — 00

IP{ min (Wk(l)—ck>u)}:0<P{ min (Wk(l)—ck>u)}>.

ke{i*,j*} kedi,g}

The same holds also if p; ; = p; j« and ¢; + ¢; > ¢+ + ¢;+. If we denote by 7 the
maximum of all p; ;’s and by ¢, the maximum of ¢; + ¢; for all 4, j’s such that
pij = T, then we conclude that

Ur(S, 1, au) ~ > ci,j(1)xp>{ min (Wy(1) — ¢ > u)}.

L. ke{i,g
1,J€{1,...,d},pi j=T, citcij=cy tid}

Note that in this case C; ;(1) does not depend on ¢ and j and is equals to

(1—7)> /2 P{3i>0: Bi(t) —t >z, Ba(t) — t > y} e<1_p2)<$+y)dxdy,
R



where (Bi(t), Ba(t)),t > 0 is a 2-dimensional Gaussian process with B;’s being
standard Brownian motions with constant correlation 7. Consequently, as u — co

Yo(S,1,1u) ~ Cyu™“e 1+7 20+7)
where

2

Cx

T ciey
C* = ﬁ Z el—r
\/ 2T — T ..
( ) 1,7€{1,....d},ps j=T, citcj=cx«

X / P{3i>0: Bi(t) —t >z, Ba(t) — t > y} =)@ qady € (0, 00).
R2

Example 3 (Equi-correlated risk model): We consider the matrix I" such that
¥ =TT is an equi-correlated non-singular correlation matrix with off-diagonal en-
tries equal to p € (—1/(d—1),1). Let a € R? with at least one positive component
and assume for simplicity that its components are ordered, i.e., a1 > as > --- > aq
and thus a; > 0. The inverse of ¥ equals

1
Ji-11T— P :
[d 1+p<d—1>]1—p

where Jy is the identity matrix. First we determine the index set I corresponding
to the unique solution of IIx(a). We have for this case that I with m elements is
unique and in view of (2.6)

1
Ar= ) tar = —— [al —p
I—p

dier @i

H—,O(Tn—l)ll] > 0y, (3.1)

with 0 € R? the origin. From the above m = |I| = d if and only if

d
D i1 G

which holds in the particular case that all a;’s are equal and positive.
When the above does not hold, the second condition on the index set I given
in (2.6) reads
EJ]ZI_IIG,[ = p(llT)J[EI_IIG,] >ay.

Next, suppose that a; = a > 0,¢; = ¢ € R for all i < d. In view of (2.10) for any
positive integer k < d and any S € [0,1) we have

(S, 1,au) ~ CP{Vi<x: W;(1) >ua+c}, u— oo, (3.2)



where (set I = {1,...,k})

d! T
=[N | P{Es0:Wit) - A r .
C R(d— )] ZEI/\ /Rk {30 1(t)—tar > xr}e dz; € (0,00)

Note that the case p = 0 is treated in [5][Prop. 3.6] and follows as a special
case of this example.

4 Proofs

4.1 Proof of Theorem 1.1

Our proof below is based on the idea of the proof of [44][Thm 1.1], where ¢ has
zero components, k = d and S = 0 has been considered. Recall the definition of
sets E7(u) and E(u) introduced in (1.1) for any non-empty Z C {1,...,d} such
that |Z| = k < d. With this notation we have

Ye(S,T,w) =P{3t € [S,T]: W(t) — ct € E(u)} = P{me(u) < T},
where 7 (u) is the ruin time defined by
Ti(w) =inf{t > S: W(t) —ct € E(u)}.
For the lower bound, we note that
VS, T,u) =P{3t € [S,T]: W(t) —ct € E(u)} >P{W(T)—cT € E(u)}.
By the fact that Brownian motion has continuous sample paths

W (ri(u)) — cmp(u) € OE(u) (4.1)
almost surely, where 0A stands for the topological boundary (frontier) of the set
A CR4
Consequently, by the strong Markov property of the Brownian motion, we can
write further

P{W(T) —cT € E(u

//8E P{W(t) — ct € dx|m(u)}
xP{W(T) —cT € E(u)|W(t) — ct = z} P {7 (u) € dt}.



Crucial is that the boundary 0E(u) can be represented as the following union

0E(u)= | OEz(u)noEw) = |J PFr(w).
Ic{1,...,d} Zc{1,...,d}
IZ|=k |Z|=k

For every x € Fr(u) using the self-similarity of Brownian motion for all non-
empty index sets Z C {1,...,d} and all t € (S,T)

P{W(T) — cT € E(u)|W(t) — ct = x}
>P{W(T)—cT € Ez(u)|W(t) — ct =z}
=P{W(T) — czT > ug|W(t) — ct = x}
>P{Wz(T —t)—cz(T —t) >0}
> P{W (T — ) > er(T — )}
—P{Wi(1) > VT - 1}

> min P{W(T)>esT},
Zc{1,...,d}
\Z|=k

where ¢ = max(0, ¢;), hence for all x € 0E(u)

PAW(T) — T € B@|W() —ct =} > min P{W(T) 2 &},
|Z|=k

Consequently, using further (4.1) we obtain

P{W(T)—cT € E(u)}
> i >c
> ICI{I&I}@} P{W(T) > ¢sT'}
Z|=k

T
X /S /aE(u) P{W (£) — et € da|r(u) = £} P {ry(u) € dt}

— min P T) > esT T
IC?%}.I}@} {WI( ) = CT }W;(Sa ,U),
|Z|=k

establishing the proof. O



4.2 Proof of Theorem 2.1

The results in this section hold under the assumption that ¥ = I'T'T is positive
definite, which is equivalent with our assumption that I' is non-singular. The next
lemma is a consequence of [34][Lem 2]. We recall that ¢ denotes the probability
density function of I'B(1).

Lemma 4.1 For any a € R%\ (—o0,0]% we have for some positive constants C, Cs
as u — 00

P{W(1)—c > au} ~ C1P {Vicr : Wi(1)—¢; > aju} ~ Cou™“p(aut-c),

where « is some integer and a is the solution of quadratic programming problem
Os(a),Y = I'TT and I is the unique index set that determines the solution of

Hg(a).

We agree in the following that if Z is empty, then the term Az (¢) should be simply
deleted from the expressions below; recall that Az(t) is defined in (2.1).

We state next three lemmas utilised in the case T' < oco. Their proofs are
displayed Section 5.

Lemma 4.2 Let Z,J C {1,...,d} be two index sets such that T # J and |I| =
|T| = k>1. If azuy has at least two positive components, then for any s,t € [0, 1]
there exists some v = v(s,t) > 0 such that as u — o0

P{Az(t)NAz(s)} =o () 3 P{Az()}, (4.2)

T*C{1,....d}
|Z*|=k
and
P{ A7 7(1), Ag\z(s), Azng (min(t, s)} =0 () S P{Az-(1)}. (43)
T*C{1,....d}

|7 |=k

Lemma 4.3 Let S > 0, k < d be a positive integer and let a € R? be given.
If7,7 c {1,...,d} are two different index sets with k > 1 elements such that
azuy has at least one positive component, then there exist s1,s9 € [S,1] and some
positive constant T such that as u — oo

P{3s,t € [S,1]: Az(s) N A7(t)}

=0 (eTu)IP) {AI\j(Sl) N AJ\I(SQ) N Aij(min(sl, 82))} . (4‘4)



Case T < . According to Theorem 1.1 and Lemma 4.1 it is enough to show
the proof for S € (0,7). In view of the self-similarity of Brownian motion we
assume for simplicity 7' = 1. Recall that in our notation ¥ = I'T'T is the covariance
matrix of W (1) which is non-singular and we denote its pdf by ¢. In view of (4.3)
and (4.4) for all S € (0,1) there exists some v > 0 such that as u — oo

2

S P{3st e[S 1] Az(s) N Ag ()} = o (e—w ) Y P{4z(1)}.
7,Jc{1,....d} Ic{1,...,d}
IZ|=|T|=k,Z#T |Z|=k

Note that we may utilise (4.3) and (4.4) for sets Z and J of length k, because
of the assumption that a has no more than k£ — 1 non-positive components. Hence
any vector a7z has at least one positive component.

Further, by Theorem 1.1 and the inclusion-exclusion formula we have that for
some K > 0 and all u sufficiently large

IC|{11‘;’;;d}

Hence the claim follows from (2.2) and (2.3).
Case T = 0. Using the self-similarity of Brownian motion we have

P{3t>0:Az(t)} = P{It>0: Wx(ut) > (a+ ct)zu}
= P{3t>0:Wz(t) > (a+ct)z/u}
= P{3t>0:A%()},

where
A5(t) = {(W(t) > (a+ et)zv/ul. (4.5)
For ¢t > 0 define

S G _ _
rz(t) = min ggﬁzﬂlx, Srr=Var(Wz(1)), Y74 =(Sz7)""  (4.6)

x>az+crt

Since limy g rz(t) = oo we set below 77(0) = oo.
In view of Lemma 4.1 we have as ©v — 0o
—~— r7(t)u
P{A%5(t)} ~ Ciu~%p7 (a7 + ert)V/u) = Cou e "2

where aI/;?It is the solution of quadratic programming problem

Iy, (a1 + c1t)



and @7 ¢(x) is the pdf of Wz(¢), « is some integer and Cy,Cy are positive con-
stant that do not depend on u. For notational simplicity we shall omit below the
subscript Z.

The rest of the proof is established by utilising the following lemmas, whose
proofs are displayed in Section 5.

Lemma 4.4 Let k < d be a positive integer and let a,c € RY. Consider two
different sets T, J C {1...d} of cardinality k. If both az + ezt and az + ¢yt have
at least one positive component for all t > 0 and both cz and ¢z also have at least
one positive component, then if

tr = min t #f = min t
T arg t>10 rz(t) J arg t>10 r7(t)
we have

P{3s,t>0: AZ()NA%(s)} = o(P{AL(ix)} + P{A%(t7)}), u— .

Lemma 4.5 Under the settings of Lemma 4.4, if a + ct has no more than k — 1
non-positive component for all t > 0 and ¢ has no more than k — 1 non-positive
components, then in case t1 := arg Itnigl rr(t) =tz :=arg rtnigl r(t)

> >

P{3s,t>0: AL(t)NAG(s)} =0 > P{Ailic)} |, u-— oo
Kc{1...d}
|K|=k

Combining the above two lemmas we have that for any two index sets Z, 7 C
{1,...,d} of cardinality k, there is some index set I C {1,...,d} such that as
U — 00

P{3s,t>0: A7(s)NA%(t)} = o (P{3t > 0: Ax(t)}),
which is equivalent with
P{3s,t >0: Az(s)NA7(t)} =o(P{It >0: Ax(t)}).

The proof follows now by (2.2) and (2.3). O



4.3 Proof of Theorem 2.2

Below we set
S(u,A) :=1 — Au~2

and denote by a the unique solution of the quadratic programming problem IIy.(a).

We denote below by I the index set that determines the unique solution of
5 (a), where a € R? has at least one positive component. If J = {1,...,d}\ I is
non-empty, then we set below U = {j € J : @; = a;}. The number of elements |I|
of I is denoted by m, which is a positive integer.

The next lemma, is proved in Section 5.

Lemma 4.6 For any A > 0, a € R?\ (—00,0]%, ¢ € R? and all sufficiently large
u there exist C' > 0 such that
m(u,A) :=P {3,56[0,5(%/\)] :W(t) —te > ua}
o—A/C P{W(1) > au+ c} (4.7)
- P{W (1) > max(c,0)}

and further
M(u, A) = ]P’{Elte )] 2 W(t) —te > ua}
Cle)K([0,A)u""p(ua + c),
where C(c) = P{Wy (1) > cy|W (1) > ¢} and for A =¥ 1a

(4.8)

E([Al,Ag]) = / ]P){Elte[Al,Ag] : W[(t) - ta[ > il}[} GAITmIdiB[ S (0,00)
Rm
for all constants Ay < Ay. We set C(c) equal 1 if U defined in Remark 2.3 is

empty. Further we have

A—oo

lim E([0,A]) = / P {30 Wilt) —tag > z;}eM¥da; € (0,00).  (4.9)

First note that for all A, u positive
M (u, A) <P{Fep1y: W(t) — te > ua} < M(u,A) +m(u,A).

In view of Lemmas 4.6 and 4.1

. . m(u,A) B
i lim ey~
hence
. P{3pou: W) — te > ua}

and the proof follows applying (4.8). O



4.4 Proof of Eq. (2.11)

The proof is similar to that of [12][Thm 2.5] and therefore we highlight only the
main steps. If 7> S > 0 by the definition of 7(u) and the self-similarity of
Brownian motion

T ey 0w - iTe > au)

= inf{t>0: W(t)—tVTe > au/VT}.
Thus, without loss of generality in the rest of the proof we suppose that T'=1 >

S > 0.
‘We note that

(1 —7(u z,7(u
]P’{UQ(l —7(u)) > x|1(u) €[S, 1]} = ]P){ a P{(T()t)L)ZE [:5’, (1]}) =15 1]}
P{u?*(1—7(u) >z, 7(u) <1} B P{u?*(1—7(uv) >z 7(u) < S}
P{r(u) €[5, 1]} P{r(u) €[S, 1]}

= Pl(u) — PQ(U)

Next, for z(u) =1— %

P{r(u) <Z(u)} P{3icpsw): W) —ct>ua}
P{r(u) € [S,1]}  P{Fsepo1: W(t) — ct > ua}
PS Jiea) : W(t) — (ey/Z(u)t > —=a
= Vit U — 00
P {Elte[(),l] : W(t) — ct > ua} ’ :
Hence by Theorem 2.2, using the fact that
-1 1 _1\w2a'S"'a _1l(s)_ _
¢< ?< >‘”<CM>) — ud + c)e (o ~H)waTI T e ne TS e
Z(u
and
. —1(5E-1)waTs e _alsla . I
lim e 2\#w) = e 2, lime 3(@w)-1)e’s e _ 4
U—r00 U—>00
we obtain
a's—la
lim Pr(u) =e 2. (4.10)



Moreover, following the same reasons as above

Pyu) = @S Pir(w) < 5)
? P{r(u) € [S,1]} P {r(u) <1}

as u — oo. Thus, combination of (4.10) with (4.11) leads to

lim P {u?(1—7(w) > |r(u) € [5,1]} = e 7"

U—00

5 Appendix

Lemma 5.1 If fora € (RU{—c0})? and Z C {1,...,d} such that ar has at least
two positive components and I' is non-singular, then for all t > 0

P{Az(t)} =0 (e—mﬂ) Y P{An®)}, u— oo,

i€
where v =v(t,Z) > 0 does not depend on u.

Remark 5.2 Lemma 5.1 implies that for any vector a € (R U {—oo})? and for
any d-dimensional Gaussian random vector W, if a has at least two positive com-
ponents, there exists some positive constant n and i € {1...d} such that as u — oo

P{W > au} = o(e " P{Wy > agu}, K={1,....d}\ {i}.

Proof of Lemma 5.1: For notational simplicity we shall assume that 7 =
{1,...,d} and set K; = Z \ {i}. By the assumption for all i € Z the vector ag;
has at least one positive component and ¥ = I'T'" is positive definite. In view of
Lemma 4.1 for any fixed ¢ > 0 and some C7, Cy two positive constants we have

P{Az(t)} ~ Crutp(au+c), P{Ak,(8)} ~ Cou™py(@au+¢),  u— oo,
where ¢; is the pdf of W (t) with covariance matrix X(¢) = t¥ and

@ =argminz ' X7 (t)x,
x>a

. s Tyl
;= YTt
a; = arg min z (t)x,
with S; = {x € R%: Vj € K; : xj > a;j}. Since {x € R?:x > a} C S, it is clear
that
dTE_l(t)d > diTZ_l(t)di



for any i < d. Next, if we have strict inequality for some i < d, i.e., @' 7 (t)a >
a; Y~(t)a;, then it follows that

P{Az(t)} ~ Cu*tp(@au+c)=o <e*”“2]P’{AKi (t)}) , U— 00

forv=1(a"S7Y(t)a —a;"E71(t)a;) > 0, hence the claim follows.

Let us consider now the extreme case that for all ¢ < d we have a'Yla =
a;' Y ta;. As we know that each a; is unique, then a; = a for all + € Z. Consider
set

E={xecRi:2"> )z <a'v '(t)a}).

Since X(t) is positive definite, F is a full dimensional ellipsoid in R?. By the
definition, £ N S; = {a}. Define the following lines in R?

li:{JJERd:ViGKi,wi:fLi}

and observe that since [; € S;, we have [;NE = {a}, and they are linearly indepen-
dent. Since E is smooth, there can not be more than d — 1 linearly independent
tangent lines at the point a, which leads to a contradiction.

O
Proof of Lemma 4.2: First note that since Z # J, then [ZU J| > k + 1.
Consequently, we can find some index set K such that

K|l=k+1, KcIUJ

and further ax has at least two positive components. Applying Lemma 5.1 for
any t € [0,1] and some v > 0

P{Ax(t)} =o (e—mﬂ) S P{A B}, u— oo
jeK
If s =t, then applying Lemma 4.1
0<P{Az(t)NAs(t)} = P{Azs(t)} <P{Ax(t)}
- 0 (e—w2) S P{430).
*c{1,...,.d}

T* =k

Next, if s < 1, then applying Lemma 4.1 we obtain

0 <P{Az(t) N Az(s)} SP{Ag(s)} = o(e"P{az(1)})



_ o(e*vuz’) Y P{An(1).
I*c{1,....d}
Fali

A similar asymptotic bound follows for ¢ < 1, whereas if s = ¢t = 1, the first claim
follows directly from the case s =t discussed above. We show next (4.3). If s < ¢,
then s < 1 and applying Lemma 4.1 we obtain

]P){AI\j(t),AJ\I(S),AIQJ(miH(t7S))}
P{As(s)} =0 (P {A7(1)})
_ 0(67w2) > P{Ac(1)}.

Kc{1,...,d}
IK|=k

0

IN

IN

A similar asymptotic bound follows for t < s or s = t < 1 by applying (4.2)
establishing the proof. O
Proof of Lemma 4.3: Define for s,t € [5, 1] the Gaussian random vector

W(s,t) = (Wpz(s) ", W nz(t)T, Wnz(min(s, ) 7) T,

with covariance matrix D(s,?). We show first that this matrix is positive definite.
For this we assume that s < ¢. As D(s,t) is some covariance matrix, we know that
it is non-negative definite. Choose some vector v € R?. It is sufficient to show
that if v" D(s,t)v = 0, then v = 0 (0 := (0,...,0)" € R?%). Note that

v ' D(s,t)v = Var((W(s,t),v))
= Var(W(s),v) + (Wnz(t) = Wanz(s), v\1)-
Using that W (¢) has independent increments, this variance is equal to the sum
of the variances. Hence, both of them should be equal to zero. In particular it
means that Var((W(s),v)) = 0. Hence, as s > S > 0, we have that v = 0. Thus,

D(s,t) is positive definite and D~!(s,t) exists.
Set further

T T T \T T T : T \T
a:(a’I\j7aJ\IvaIﬂJ) ) c(svt):(SCI\j7th\Zamln(svt)clﬂj) :

With this notation we have
P{3s,t € [S,1] : Az(s) N Az (t)} <P{3s,t €[S, 1] : W(s,t) —c(s,t) > au}.

Let a(s,t) = argmingsq,x' D7(s,t)x be the unique solution of Hps s (a) and
let further to(s,t) = D71(s,t)a(s,t) be the solution of the dual problem. We



denote by I(s,t) the index set related to the quadratic programming problem
I ps)(a). Then to(s,t) has non-negative components and according to the prop-
erties of quadratic programming problems, since both s,f > S > 0 we have

a'ro(s,t) =a' (s,t)w(s,t) =a' (s,t)D (s, t)a(s,t) > 0.
Consequently, we have
P{3s,t € [S,1] : W(s,t) —c(s,t) > au}
<P {Els,t € [S,1] i (s,8) W(s,t) — c(s,)) > umT(s,t)a(s,t)}
10 (s,t) W(s,t) — c(s,1))
P {Hs,t e[S, 1]: T (5, )a(5.7) > u}

o' (s, t)W(s,t)
(s, t)a(s,t) zut Qt}

! (s,t)c(s,t)
I T (s,0a(s,0)"

§]P’{3$,t€ [S,1] :

for any positive u, where € = min, ;¢(s Moreover, for some s1, 59 €

[5,1]

T(s,OW(s, 1)\’ 1
o2 = su E(m(s’~’) = sup = =
s,te[g,l] { mT(s,t)a(s,t) s,te[,IS:'),l} QT(S,t)Dfl(S,t)a(S,t)
1
aT(Sl,SQ)D_I(Sl,SQ)a(Sl,SQ)7

since [S, 1]? is compact. Moreover, one can check that for some positive constant
G and s1, s9,1t1,t9 € [S, 1]

E { (mT(Sl,tl)W(Sl,tl) B mT(SQ,tQ)W(SQ,t2)>2}

ol (s1,t1)a(s,t) w ' (s2,t2)a(s,t)
< Gls1 — sa| + [t1 —ta]].

Thus, utilizing Piterbarg inequality, see e.g., [53][Thm 8.1], we have that there
exist positive constants C, vy such that

P{3s,t € [S,1] : W(s,t) —c(s,t) > au} < Cue (wt®)?/20%
for all u positive. Further, by Lemma 4.1 for some constants o, C*, CT as u — oo

P{Aq 7(s1), Anz(s2), Azng(min(s1, s2)) }
= P{W(s1,s2) —¢(s1,52) > au}
*  —q 7%(51(31,52)u+c(51,52))TD*1(51,52)(6(51,82)u+c(51,52))

~ C*'u %

2
_ C+u_ae_;7 e—u(ﬁslysz)TDfl(51,52)(c(51,52)) )

Hence the claim follows for 7 = |€/a?| + SUD; 4e[9,1] la(s,t)D~1(s,t)e(s, t)] + 1. O



Lemma 5.3 The function rz(t),t > 0 defined in (4.6) is convex and if ¢z has at
least one positive component, then there exists T > 0 such that for some positive
s and any t >0

r(T +1t) > r¢(T) + st. (5.1)

Moreover, if az + czt for any t > 0 have at least one positive component, then
rz(t),t > 0 has a unique point of minimum.

The proof of Lemma 5.3 is purely analytical, thus we skip the details.

Lemma 5.4 Suppose that ¥ =TT is positive definite. For any non-empty subset
Z c{l,...,d} ifer and az+ecgt for allt > 0 have at least one positive component,
then for any point 0 < t # t= arg mingsq rz(t) there exists some positive constant
v such that as u — o0

P {Wz(t) > (az + CIt)\/a} =o0 (efyu) P {Wz(ﬂ > (CLI + CItA)\/E} .

Proof of Lemma 5.4: For notational simplicity we omit below the subscript Z.
Since for any ¢t > 0 we have Var(W(t)) = tX, then by Lemma 4.1

P{W(t) > (a+ ct)/u} ~ Cu /2= 3P T=75(0),

where C is some positive constant, «(t) is an integer and p(t) is the unique solution
of II;x(a + ct), which can be reformulated also as

P{W(t) > (a+ct)Vu} ~ Cu*WD/2e7270 4 o,

If t # ¢, then r7(t) —r(f) = 7 > 0 and

P{W(®) > (a+e)Vu} | w (a-am)/2e-% _ (e—gu)
P{W (i) > (a + ct)u}

as u — 00. O

Lemma 5.5 Let a,c € R? be such that a + ct has at least one positive component
for all t in a compact set T C (0,00). If £ =TT is positive definite, then there
exist constants C > 0, v > 0 and t € T such that for all u >0

P{3teT: W(t)> (a+ect)/u} <Cule 2"V,

If we also have that for some non-overlapping index sets Z,J C {1,...,d} and
some compact subset T C [0,00)% both ((az+crt1) ', (az+cqta) ") have at least



one positive component for all (t1,t2) € T, then for some
t= (’q,tg) eT asu— o0

P{Ht eT: Wz(tl) > (aI + Cztl)\/a, Wj(tg) > (aJ + Cjtg)\/a}
= O(eﬁP{WI(fl) > (a7 + ert))Vu, W(te) > (ag + crt2)\/u}).

Moreover, the same estimate holds if T and J are overlapping and for all (t1,t,) €
T we have t; # to.

Proof of Lemma 5.5: Denote by D(t) the covariance matrix of W (t), which
by assumption on I' is positive definite. Let

a(t) = arg winaifct xz' D7 )z

be the solution of IIp(a + ct),t > 0 and let further
w(t) = D7 L(t)a(t)

be the solution of the dual optimization problem. In view of (2.7) ro;(t) has
positive components and moreover

f@)=w" () (a+ect)=a' (t)D (t)a(t) >0

implying
. . (W)
P{3teT:W(t)>(a+ct)yu} < P{ate’r. wTO)(a T e > \/a}
We have further that
B wl OWE) 7| 1
o' = suplt { (mT(t)(a + ct>> } ~ tera ()DI(Dal)
1
= >0

a’ () D1 (H)a(t)

for some t € T, since T is compact. Since f(t) > 0,¢ € T is continuous, we may
apply Piterbarg inequality (as in the proof of (4.4)) and obtain

P{3teT:W(t)>(a+ct)yu} < CuYe—u/20°

for some positive constants v and C, which depend only on W (¢) and d. Since,
by the definition we have r(t) = 1/02, the proof of the first inequality is complete.



The next assertion may be obtained with the same arguments but for vector-
valued random process

W(s,t) = (W1 (s), Wj(t)".

By the definition of T, for any (s,t) € T we have |Var(W(s,t))| > 0, thus we
can apply Piterbarg inequality and in consequence, using Lemma 4.1, the claim
follows. 0

Lemma 5.6 Suppose that ¥ = TT'T is positive definite. For any non-empty subset
ZcA{l,....d}ifer e RZI has at least one positive component and az + czt € R
has at least one positive component for all non-negative t, then for some positive
constants v, t = arg Itn>161 rz(t) and all T large, as u — o0

P {Ht >T: Wz(t) > (aI + Czt)\/a} = O(Q‘B_Iju)]P> {WI(tA) > (aI + CIL:)\/E} .

Proof of Lemma 5.6: For notational simplicity we omit below the subscript Z.
For some given T > { we have using Lemmas 5.5, 5.3

P{3t>T: W(t) > (a+ct)Vu}

gi}P’{Elte [T+i,T+i+1]: W(t) > (a+ct)Vu}
=0

x
r(t;)
< ZCu“’e_ 2 Y
i=0

—rT,, = —1i5U
< Cule 2 Ze
=0

(1) o
<Cu'le 2 ¥ (1 —I—/ e_suxd:l,) ,
0

where s > 0 and t; € [T+ i,T + i+ 1]. The last integral is finite and decreasing
for sufficiently large u. Hence the claim follows with the same arguments as in the
proof of Lemma 5.4. (|

Proof of Lemma 4.4: Using Lemma 5.6 we know that there exist points
tz, t7 such that as u — oo

P{3t>Tr: A7(t)} = o(P {A%(iz)}),
P{3t>Tys: A%(t)} = o(P{A%(i7)}).
Next, for some positive € < |tz — t7|/3 we have

P{3s,t>0: AZ(t)NA%(s)}



<P{3(s,t) € lir—e,ir+e] x [ty —e,ty+e]: AL(t)NA%(s)}

+P {3t € [0,iz —¢]: A7(t)} +P{3t € [iz +¢,T7]: A5(t)}

+P {3t € [0,i7 —e]: A(t)}+P{3t €ty +e,Ty]: A1)}

+P{3t >Tr: A7)} +P{3t>Ts: A%(t)}.
Using Lemmas 5.5, 5.6 and

P{A5(t)} ~ Cu=%"W%2  PLAL()} = o(ue " D2), 4 — oo
we obtain
P{3s,t>0: A5()NA%(s)} = o(eV'P{A%(s1) N A% (s2)})

o(uPP{Az(ts3)}) + o(u™P{Az(ts)})
o(uPP {A%(ts)}) + o(u™P {A%(t6) })
(P{Az(i2)}) + o(P{AZ(i7)})

for some positive constants t;,3 <1 < 6, where

(9]

+ o+ o+

ts € [0,7?1—6], ty € [£I+57TI]7 ls € [07£J _5]7
tﬁe[fj+€,TJ] 316[51—5,514—6] 82€[£J—5a£7+5]-

Note that for i = 3,4, t; # t7. Hence by Lemma 5.4
WP AL (1)} = o(P {A3(iz)}):
The same works also for j = 5,6
u™ P {A}(tj)} =o(P {A?(fj)})

Thus we can focus only on the first probability. By the definition of A7 and A%
in (4.5)

P {A;(Sl) N A}(Sg)} =P {W(Sl, 82) > b\/&} R
where b = ((ar + cz51)",(ag + c782) ") and W(s,t) = (Wz(s)", W (t)")T.

Define i = ZU J \ {i}. Applying Remark 5.2, there exists an index i and a
constant 1 > 0 such that

P{AZ(s1) N A% (s2)} =0 (e7™)P{(W(s1,52)); > b:v/u} .
If i € Z, then

P{(W(Sl,SQ))’Z-\ > b;\/a} < P{WJ(SQ) > (aj +0532)u},



P {(W(Sl, 82)); > b;\/ﬂ} <P{Wx(s1) > (az + czs1)u}.
In both cases
eVUP { A% (s1) N A% (s2)}
=0 (P{Wx(s1) > (az + ezs1)u} + P{W 7(s1) > (a7 + c781)u})
=0 (P {WI(EI) > (aI + szz)u} + P {Wj(tAI) > (aj + ijj)u})

establishing the proof. O
Proof of Lemma 4.5: Using Lemma 5.6 we have

P{3s,t>0: A7(s)NA%(t)} < P{3(s,t) € T1: AZ(s)NA%(1)}
+P{3(s,t) € Ty : A3(s)NA%(t)}
+o(P{A%(t1)}) + o(P{A%(t7)}),

where

T, = {(S,t) S [O,TI] X [O,Tj] : |S —tAz‘ > ’t—fz‘},
TQ = {(S,t) (S [O,TI] X [O,Tj] : ’S —fz‘ < ’t—fz‘},

and T7 and Tz are the constants from (5.1). According to Lemma 5.5 for some
(Si, ti) S TZ‘

P{3(s,t) € T; : As(s) N A% (1)} = o(eﬁ)uv {A}(si) N A}\I(ti)} .
If 51 # t7, then according to Lemma 5.4
eV"P{A3(s1) N A1 (1) } < eV"P{AR(s1)} = o(P {A}(iD)}).
Otherwise, using the definition of Ty, |t; —iz| < |s1 —tz] = 0, so t; = {7 and thus
P{A5(s1) N A% 1(01) } = P{ Az i)}
This probability can be bounded using Remark 5.2, namely we have
P{A57(in)} = o™ )P { A7y 5y (i) }

for somei € ZUJ andn > 0. As |Z| = |J| =k, and T # J, then [ZUJ| > k+1
and thus |ZU J \ {i}| > k. Consequently, we have

eﬂP{A}UJ(fI)}:o(]P’{A%UJ\{i}(fI)})zo S P{4k(ix)}
Kc{l...d}
IK|=k



With similar arguments we obtain further

P{3(s,t) € Ta: Af(s)NAZ(0)} =0 | Y P{Ax(ix)}
ST

Hence the claim follows.
O
Recall that a stands for the unique solution of the quadratic programming
problem IIx(a).
Proof of Lemma 4.6: By the self-similarity of Brownian motion for all v > 0

m(u, A) = P{Jieios0un) : W(t) —tec> ua}
= P {Hte[o,l] W (t) — 62 (u, Ate > 5*1/2(U,A)ua} .

Hence, applying Theorem 1.1 we obtain

P{W (1) > 6~ Y2(u, A)ua + 6*/%(u, A)c}

m(u, A) < P{W (1) > max(c,0)} 7

which after some standard algebraic manipulations, straightforwardly implies in-
equality (4.7).

Asymptotics (4.8) and limit (4.9) follow by the same idea as the proof of
”Pickands’ lemma” in e.g. [10]; see Lemmas 4.2 and 4.3 therein. We skip long but
standard proof, referring for details to the extended version of contribution [11].
U



Chapter 4

Multivariate Gaussian Risk
Model

1 Introduction

Let Z(t) = (Z1(t),...,Z4(t))",t € R be a d-dimensional Gaussian process, where
Zi(t),t € R, i = 1,...,d are mutually independent centered Gaussian processes
with continuous sample paths a.s. and stationary increments. For u,c € R? and
T > 0 we consider

pT(u) = P{Hte[O,T} : X(t) —ct > u}
= P {ﬂte[o,:r] N {XG(t) — it > Ui}} »

where X (t) = AZ(t), with A a nonsingular d x d real-valued matrix.

In the main result of this chapter, which is Theorem 3.3, we derive exact
asymptotics of pr(u) for u = ua = (ayu, ...,aqu) ", as u — oo, where the vector
a € R?\ (—o0,0]%. The core assumption that we work with is the so-called Berman

condition
vi(t) := Var(Z;(t)) = o(t), ast — 0

for ¢ = 1,...,d. Interestingly, while in the one-dimensional case, under Berman
condition
pr(u) ~P{X(T)—cT > u}, as u — 00

(see the seminal paper by Berman [6] and [26] for the non-centered case), the
vector-valued case considered in this chapter leads to more diverse scenarios that

3This chapter is based on the joint work [8] with Krzysztof Debicki and Krzysztof
Bisewski.

69



can be captured in the form
pr(ua) ~C-P{X(T)—cT > ua},

as u — 0o, where C > 1 is a constant depending on the model parameters; see
Eq. (3.1) below.

We note that for Z being a two-dimensional standard Brownian motion, the
asymptotic behavior of pr(ua) was recently analyzed in [20], where the strategy
of the proof was based on the independence of increments and self-similarity of
Brownian motion. In general, Gaussian processes with stationary increments do
not have these properties and thus the proof of the main result of this chapter
needs more subtle and refined analysis than the one used in [20]. More precisely,
the idea of the proof of Theorem 3.3 is based on two steps: (i) showing that

L pr(ua) _
lim lim 7 =1
Lvoou=00 P{Jyerp_py—2 71 1 O {Xi(t) — cit > wi}}

and (ii) finding the exact asymptotics of the denominator above. In the first step,
particularly precise analysis is needed for the neighbourhood of the right end of
the parameter set [0,7 — Lu~2], see Lemma 4.3.

Complementary to the exact asymptotics derived in Theorem 3.3, in Theorem
3.1 we establish uniform upper and lower bounds for pr(w). This result extends
recently derived bounds for Z being a d-dimensional standard Brownian motion
[11, 20, 45].

The quantity pp(u) has been already introduced in Chapter 2 and has a
natural interpretation as the simultaneous ruin probability in time horizon [0, 7]
of an insurance portfolio represented by d mutually dependent risk processes
(Ri(t), ..., Rg(t))T = R(t,u), where R(t,u) = u — X (t) +ct, t € R, since

pr(w) =P{Jepm : R(t,u) <0},

where for the i-th business line, u; is the initial capital, X;(¢) is the accumulated
clam size in time interval [0,¢] and ¢; is the premium rate. In this context, our
results complement work [42], where the particular case d = 2,T = oo with Xs(t) =
09X1(t) where X is a fractional Brownian motion, was analyzed. We refer to, e.g.,
[4, 29, 37, 51] for recent works on simultaneous ruin probability for Lévy processes
and to recently derived asymptotics for centered vector valued Gaussian processes;
see [23, 24].

Our findings cover two special cases that play important role in the literature on
the Gaussian risk models, i.e. fractional Brownian motion risk model and Gaussian
integrated risk model; see Section 3 for details. We refer to [22, 38, 39, 50] for the
analysis of Gaussian risk models in d = 1 dimensional setting.



2 Notation

We follow the notational convention of [25]. All vectors in R? are written in bold
letters, for instance b = (by,...,bq)", 0= (0,...,0)",1=(1,...,1)". We follow
the convention that 1-dimensional vectors are vertical. For two vectors & and y,
we write > y if z; > 1; for all 1 < i < d. For any =,y € R? we use (x,y) for
scalar product and xy for a component-wise product.

Given a real-valued matrix A we shall write Aj; for the submatrix of A deter-
mined by keeping the rows and columns of A with row indices in the non-empty
set I and column indices in the non-empty set J, respectively. In our notation Zy
is the d x d identity matrix and diag(x) = diag(z1, ..., xq) stands for the diagonal
matrix with entries z;, ¢ = 1,...,d on the main diagonal, respectively.

Let in the sequel ¥ € R4 be any positive definite matrix. We write EI_JI =
(31 J)_l for the inverse matrix of ¥X;; whenever it exists. For any vector a €
R?\ (—00,0]%, let IIx(a) we will use the definition of quadratic programming
problem IlIx(a) given in Chapter 23 (2.5), definitions of its solution a of sets
I, J given in Chapter 3 (2.6), and definition of A, given in Chapter 3, (2.9).
Additionally, we define U := {i € J : a@; = a;}. We refer to Lemma 4.6 below for
more details.

Throughout the chapter, let ¥(¢) denote the variance matrix of process X at
time ¢ € [0, 77, that is

S(t) :=E {X(t)XT(t)} — AE {Z(t)ZT(t)} AT = A diag(v(t))A”,

where v(t) = (v1(t)...vg(t)) . Moreover, for all i € {1,...,d} let

vi(s) +vi(t) — vi(ls — t)

pi(t,s) := Cov(Z;(t), Zi(s)) = 5 )

(2.1)

where in the second equality we used the fact that Z; has stationary increments.
For all ¢ € (0,7], let a(t) be the solution of quadratic programming problem
g (a) and D(t) = a(t)' =71 (t)a(t). Moreover, let A(t) := L~ (t)a(t), and
I = {i: Ni(t) > 0}, Jp == {1,...,d} \ I; (which can be empty). Throughout
this chapter we slightly abuse the notation by writing A;(¢) instead of A(t);, a;(t)
instead of a(t);, and a;(t) instead of a(t);.

3 Main results

Consider a centered, d—dimensional Gaussian process with stationary increments,
continuous sample paths and mutually independent components Z(t),t > 0. Let
v;(t) := Var Z;(t) be the variance function of process Z;. Due to the stationarity



of increments, the covariance structure of Z; is determined by its variance function
v;, see (2.1). We shall establish the following conditions for each i € {1,...,d}.

BO. v; € C([0,T)) is strictly increasing and v;(0) = 0.
BI. The first derivative v;(71") > 0.

BIIL. v;(t) = o(t), as t — 0.

The following families of Gaussian processes satisfy assumptions BO-BII:

o fractional Brownian motions: Z(t) = (Ba,(t),..., Ba,(t))",t > 0, where
B,,(t),t > 0, i =1,...,d are mutually independent standard fractional Brownian
motions with Hurst parameters «; /2 € (1/2, 1), that is centered Gaussian processes
with stationary increments, continuous sample paths a.s. and variance function
v;(t) = t* respectively. We refer to, e.g., [26, 39, 50] for the motivation and
relations of this class of stochastic processes in risk theory.

o integrated stationary processes: Z(t) = (Z1(t),..., Z4(t))T,t > 0, where
Zi(t) = f(f ni(s)ds, with n;(t),t > 0, ¢ = 1,...,d mutually independent centered
stationary Gaussian processes with continuous sample paths a.s. and continuous
strictly positive covariance function R;(t) := Cov(Z;(s), Zi(s +t)). One can check
that v;(t) = 2 fot ds [y R(w)dw in this case. We refer to [22, 26, 38] for the analysis
of extremes of this class of processes in the context of Gaussian risk theory and its
relations to Gaussian fluid queueing models.

In the following, NV;(u, ) stands for the law of a d-dimensional normal distri-
bution with mean p € R? and covariance matrix ¥ € R%*,

Theorem 3.1 Let X (t) = AZ(t), t > 0 be such that Z satisfies BO with vi(t) =
v(t) for all i, v(t) is convex, and A € R¥™? is a non-singular matriz satisfying
(AT A);; > 0. Then, for each u € R¢ and ¢ > 0,

P{X(T)—cT > u}

IN

P{HtE[O,T] : X(t) —ct > u}
P{X(T) - ¢T > u}
P{N,(0,ATA) > 0}

IN

Remarks 3.2 In the case when Z is a standard d-dimensional Brownian motion
the assumption (ATA)ij > 0 can be lifted and the upper bound in Theorem 3.1 holds
for any non-singular matriz A; see [11]. It can be verified that this bound holds
also for all u large enough for the process Z considered in Example 3.4 below,
which suggests that the upper bound in Theorem 3.1 holds for any non-singular
matriz A.



To the end of this chapter, let
S max (\; - (AQAta);,0)
Yt A - (AQA™ )

where @ = diag(v;(T)/v;(T)), and A, @ correspond to the solution of the quadratic
problem Ils,7)(a); see also Lemma 4.6 below.

C .=

(3.1)

Theorem 3.3 Let X(t) = AZ(t), t > 0 be such that Z satisfies BO-BII, a €
RY\ (—o0,0]%, ¢ € R? and A is a non-singular matriz. Then,

P{3icpor): X(t) —ct >ua} ~C-P{X(T)—cT > ua}, u— oo,
where C defined in (3.1) is a positive constant.

The heuristic interpretation of the bounds and asymptotics derived in Theorems
3.1, 3.3 is that only a small area around the end point 7" of the parameter set [0, 7]
contributes to the tail distribution of the analyzed problem. We refer to [33, 35]
and references therein for the analysis of the exact form of the asymptotics for
P{X(T)— cT > ua}, as u — oo; see also Lemma 4.5.

The following example illustrates the main findings of this section.

Example 3.4 Suppose that d = 2, and Z1(t), Z2(t) are mutually independent and
identically distributed centered Gaussian processes that satisfy BO-BII. Then the
constant C has the following form

2?21 max (\; - a;,0)

C = 5 -
dici NGy

We assume further that A = (;1) \/10_7>, where p € (—1,1) and a = (1,a) ", with

a<1.
o If a < p, then I = {1}, J = {2} and hence, as u — oo,

P{3icpor: X(t) —ct >ua} ~ P{X(T)—cl >u}
~ P{Xl(T) -1 > u};

o Ifa=p, then I = {1}, U ={2} and as u — oo,

P{3icjor): X(t) —ct >ua} ~ P{X(T)—cl > u}
~ P{XQ(T) > CQT’Xl(T) = ClT}
xP{X1(T) — 1T > u};



olfa>p, thenl = {1,2},a=a and A = X }(T)a = o(T) (1(1__“:), see also
[20]. Thus, if further a > 0, then C =1 and

P{3icjor): X(t) — et > ua} ~P{X1(T) — 1. > u, Xo(T) — coT > au},

l—ap _ l—ap
l—ap+aZ—ap ~ 1—2ap+a

as u — oo. Otherwise, if a < 0, then C =
as u — 00,

> > 1 and hence,

1—ap

~ mﬁ” {X1(T) — 1T > u, Xo(T) — coT > au} .

In the above we used [35, Lemma 4.2] for the exact asymptotics of the probability
P{X(T)— cT > u}.

4 Proofs of main results

Proof of Theorem 3.1: Using the fact that ¢ > 0 and u > 0, we have

d
P{JeomX(t) —ct>u} = P ) ({Xi(t) > wi+ cit}

tel0,T)i=1
Xi(t)
— _ <
1-P< U{ui—{—cit_l}
te[0,T] =1
—X;(t)
= 1—-P > —
ﬂ U{ui—l—cit_ 1}
t€[0,7] =1
Xi(t)
= 1—-P > —
ﬂ U{ui—i-cit_ 1} ’
te[0,7] i=1

where in the last equality above we used that X; are centered.

Let B;(t),t > 0, ¢ = 1,2, ...,d mutually independent standard Brownian mo-
tions, and B*(t) = AB(t).

Next, we show that

O UE= ) = 0 Ul

te[0,17] =1 tel0,1) i=1



for which by Gordon inequality (see e.g. [31] or [1, page 55]) it suffices to check
that

E{X:()°} = E{B(v(t)}, (4.1)
E{X:()X;(0)} = E{Bw®)B@(®)}, .
E{X:()X;(s)} > E{B(v(t))B:(v(s))}, fort#s. (4.3)

For all 7,5 € {1,...,d} and t € [0,T] we have
E{X:(0)X;(0)} = E{(A2)i(t)(AZ);(1)}

d d
= E { Z ainZ(t) Z aijk(t)}
k=1 k=1
d
= E{Zaikaij,f(t)}
k=1

d

= Y anapB{Z} (1)}

k=1
_ T
= Zalka]kv (AA"); 5v(t).

Analogously,

E{B;(v(t))Bj(v(t))} = E{(AB)i(v(t))(AB); ( )}
= {Z ik Bi (v Za]k‘Bk‘ }

d
= {Z (Lik;ajkB]% (U(t)) }
k=1
d
= Z a;ka;,E {Bl%(v(t))}

= Zalka]kv AAT)HU( ).

Hence, equalities (4.1), (4.2) are satisfied. For ¢ # s we obtain that

E{X:(t)X;(s)} = (AAT);E{Z1(t)Z:(s)}
_ (AAT)MU(S) +v(t)2— v(]s — tl)’




E{B;f(v(t))B;(v(s)} = (AAT)i;E{Bi(v(t))Bi(v(s))}
= (AAT)M min(v(t), v(s)).

As (AAT);; > 0, it is enough to show that

v(s) +o(t) —o(ls —t))
2

> min(v(t), v(s)).

Using the convexity of v(-), we have for all s < ¢

wt—s) = /Ot_sv’(m)da:

IN

/: V(2)dz = v(t) — v(s)

hence

v(s) +o(t) —vlls —t)) o v(s) +o(t) = Jo(s) — o)
2 - 2 '
Thus, inequality (4.3) holds which jointly with (4.1) and (4.2) implies

P {EltE[O,T] : X(t) —ct > 'LL} S P {EltE[O,T] : AB(’U(t)) —ct > ’LL}
= P {Elte[(],v(T)] : AB(t) — cw(t) > u}

T
< P {Elte[o,v(T)] : AB(t) — Cmt > u} ,

where w(t) is the inverse function of v(t). In the second line we used the fact
that v(-) is continuous and strictly increasing, while the inequality in the third line
follows by concavity of w(t) (recall that v(¢) is supposed to be convex). Finally,
by [11, Theorem 1.1] (see also [45] for the centred case) the above is bounded by

P{AB(v(T)) —cT >u} P{X(T)—cT >u}
P{AB(v(T)) >0}  P{X(T) >0}

This completes the proof. O
Proof of Theorem 3.3: For any L > 0 we have

P {Hte[O,T] : X(t) —ct > u}
P{X(T) — cT > ua}

3
<> Pu(u, L),

n=0

P3(u7 L) <




with

P {Srem(w) T () * X (8) —ct > u}
P{X(T)— cT > ua} ’

P,(u,L) :=
where Tp(u) = 0, T1(u) = Th > 0 is chosen small enough to satisfy the conditions
in Lemma 4.1,

To(u,L) :=T — Lu"?In*u, T3(u,L):=T — Lu"?, and Ty(u)="T.

The proof consists of several steps which follow by lemmas displayed and proved
in the rest of this section. It turns out, that asymptotically as u — oo, only Ps(u, L)
contributes to the asymptotics, while Zi:o P, (u, L) is asymptotically negligible.
Since each term in Zizo P, (u, L) needs a different argument for its negligibility,
we provide detailed justification in separate lemmas. Namely,

o For any L > 0 it holds that lim,_,~ Py(u, L) = 0 due to Lemma 4.1,

o For any L > 0 it holds that lim,_,~ P;(u, L) = 0 due to Lemma 4.2,

o limy o0 limy o0 Py(u, L) = 0 due to Lemma 4.3,

o limy o0 limy o0 Ps(u, L) = C due to Lemma 4.4.
This completes the proof. O
Lemma 4.1 Under the assumptions of Theorem 3.3 it holds that

]P){EltG[O,Tl] : X(t) —ct > ua} N
P{X(T) - cT > ua} ’

for all Ty € (0,T) small enough.

U — 00

Lemma 4.2 Under the assumptions of Theorem 3.3, for any L > 0 it holds that
P {EliEG[ThTfLu—2 In2 ) * X<t) —ct > ua’}
P{X(T) - cT > ua}
for all Ty € (0,T) > 0 small enough.

-0, u—o

Lemma 4.3 Under the assumptions of Theorem 3.3, there exist positive constants

C,B >0, such that

I P {Elte[TfLu—2 In? u,TfLu—Q]X(t) —ct > a’u}
w00 P{X(T) — cT > ua}

< CePL

for all L > 0 large enough.



Lemma 4.4 Under the assumptions of Theorem 3.3, for any L > 0 there exists a
positive constant C(L) such that

P {EltE[TfLu_%T} : X(t) —ct > ua}
P{X(T) — cT > ua}

C(L), u— oc.

Moreover, limy,_,o C(L) = C, with C defined in (3.1).

The proofs of the four lemmas above are given in the following three subsec-
tions. The proof of each result is located at the very end of these subsections and
is preceded by additional preparatory results.

4.1 Proof of Lemma 4.1

Let ¢ x (+) be the pdf of random variable X. Before giving the proof of Lemma 4.1,
we need the following lemma, which can be deduced from [35, Lemma 4.2]. Since
we need a bit different (although equivalent) form of the derived below asymptotics,
we provide an independent short proof of the following lemma.

Lemma 4.5 Let X € R? be a centered Gaussian vector with an arbitrary, non-
singular covariance matriz ¥. Then, for any ¢ € R%, a € R?\ (—o0,0]¢ we have,
as u — 0o

u Mo (ua + c)
Hie[ Ai

% / IH{xy < OU}6_%1’}(E_l)JJmJ6<éJ7mJ>de7
RIVI

P{X —c>ua} ~

where & :=c¢"Y71, and @, A, and index sets I, J,U corresponding to the quadratic
programming problem Ilx(a).

Proof of Lemma 4.5: Let @ € R? be such that @ = u when ¢ € I and @; = 1
when i € J. We apply substitution w = ua + ¢ — x/u and obtain

P{X —c>ua} = ex (w)dw
w>ua+cT

= o(ua +c—xz/u)dx

r<uu(a—a)

= u Wp(ua + c) /Rd [{x <uvu(a —a)}0,(x)dx,



where 0, (x) := p(ua + ¢ — x/u)/p(ua + ¢). We have as u — oo

Lie<ua(@a—a)yy = IH{zrow <0},

and

0, () = exp {udTE_l(az/ﬁ) +c' s Hx/a) — ;(m/ﬁ)TE_l(m/ﬁ)}

— eAnzr) ,e—%m;r(zfl)uw]éa‘]@]) =:0(x),

as u — 0o0. So, applying the dominated convergence theorem, with dominating,
integrable function

e()q,:cf)e%()q,\:ul) . ef%:c}(zfl)ﬂwjeﬁbwj)’
we obtain
P{X —c >
{ = ) _>/ I{xur < 0} 60(x)dx
u=Mlp(ua + c) RA
> iz
= / {x; < 0;}eic”  day
RII
X / I {:L‘U < OU} 6_%‘%;(E_I)JJmJe<aJ’mJ>d:BJ
RIJI
1 1T -1 -
= e~ 3% ETHuums (Cr®) 4 7
[Licr N /]RJI J
which concludes the proof. 0

Proof of Lemma 4.1: First, using Lemma 4.5, we know that there exist some
C > 0, k € N such that

P{X(T) - cT > au} ~ Cu " pr(au + cT),

as u — 0o, where o is the density of X (T'). Second, fix some ¢ € {1,...,d} such
that a; > 0. Then

P {Elte[O,Tﬂ : X(t) —ct > ua} P {Hte[O,Tl] : Xl(t) —cit > aiu}

<
< P{Hte[O,Tl] : Xl(t) > a;u — ’Cl| Tl} .

Using assumption B0, we can apply Piterbarg’s inequality [53, Thm 8.1], receiving
for some positive constant C] and all sufficiently large «

P{Hte[O,Tﬂ : Xz(t) > a;u — ’CZ‘ Tl}
< P{Elte[QTﬂ : |Xz(t)| > a;u — |CZ‘ Tl}



< 01 (aiu — |CZ| Tl)QIP) {Xi(Tl) > a;u — |CZ‘ Tl}
for u > 0. Hence, for all u large enough we have

P {3t€[07T1] : Xl(t) > a;u — |Cl’ Tl}
P{X(T)—cT > au}

S 201(aiu — |Cz’ T1)2

XukP{Xi(Tl) > a;u — ’Cz‘ Tl}
er(au+ cT) ’

Since P{N(0,1) > u} ~ \/217m exp(—u?/2) as u — oo, it is left to show that

lim b1 P (—(aiu — |ei| T1)?/(20i(T1)))
u—00 exp (—3(au+ cI)TE"YT)(au + cT))

We have

exp (—(au — || Th)*/(20:(Th)))
exp (—3(au+ cT)TE"YT)(au + cT))

= exp <—; <Ui?;) . aTz—l(T)a> u? + O(u)> .

Finally, since v;(0) = 0 and v;(-) is continuous, then % >a' YHT)a for all

T1 small enough, which completes the proof. U

4.2 Proof of Lemma 4.2

Before giving the proof, we need to layout preliminary results. Below, we cite the
result from [25, Lemma 4]. In the following, J = {1,...,d} \ I can be empty; the
claim in Lemma 4.6(ii) is formulated under the assumption that J is non-empty.

Lemma 4.6 Let d > 2 and ¥ a d X d symmetric positive definite matrix with
inverse X1 If a € R?\ (—o0,0]¢, then the quadratic programming problem
II5;(b) has a unique solution @ and there exists a unique non-empty index set
Ic{1,...,d} with |I| <d elements such that

(i) ar = ar # Oy;
(ii) &,J = EI_JIZI_IICL[ >ayj, and EI_IIG,[ > O],‘
(iii)) mingsqx' X'z =a'Y 'a=a"S"'a=a] %} a; >0,

with A = Y7 a satisfying A\j = Efllaj > 05, and Ay =0y.



Remark 4.7 Using Lemma 4.6 it can be found that a'>'a=a"x'a.
To the end of this chapter, let D(t) := a(t) S~ (t)a(t).

Lemma 4.8 Assuming conditions BO-BII hold, then D(t) is positive and strictly
decreasing on t € (0,T]. Moreover,

D(T) = — Hdiag (\/@/U(T)) A*la(T)Hz <0.

Proof of Lemma 4.8: Let 0 < t; < to <7T. Then

D(tg) = a(ty) 'S Yta)a(ts) < a(ty) 'S~ Hta)a(tr)
d(tl)TA_T diag(l/v(tg))A_ld(tl)

Dit1) — a(t)TA™" " diag (”“2) - ”(’51)> Aa(h)

v(t2)v(t1)
2
— _ ia ’U(tg) - v(tl) ,1(,i
= D(tl) d g ( v(t2)'v(t1) ) A (tl) i < D(tl),

because a(t1) # 0 and v(t) is strictly increasing. This shows that D(t) is strictly
decreasing. Furthermore, we have

v(t) —v(T) 1~
T t>v<t>v<T>> A7a(T)
_ D(T) - DY)
- T —t

a(T)" A~ "diag <

v( -1g
T t>v<t>v<T>> A7)

using that a(t) and v(t) are continuous and wv(t) has a positive derivative at the
point t =T, we have ast — T

D) - D) (TT) — f ® —a(T)TA™" <:2((TT>)> A™'a(T)
E— ‘ diag (W/v(:r)) A*la(T)Hz <0,
hence the claim follows. O

Lemma 4.9 Let Ty € (0,T]. Then D(t), and a;(t), \i(t), )58)) are Lipschitz
continuous functions on t € [Ty, T| for alli € {1,...,d}.



Proof of Lemma 4.9: Let Ty € (0,7] be fixed. According to [32, Theo-
rem 3.1}, a;(-) and A\;(-) are Lipschitz continuous, provided that conditions [32,
A1-A3] are satisfied. First, let us note that the conditions A1-A2 are clearly sat-
isfied in our setting so will will focus only on condition A3. In order to state what
is condition A3, let M(t) € RI®M*d such that M(t) := (=Za)1(t), where (=Zq) )
is the submatrix of —Z; consisting of rows corresponding to the indices of I(t).
Then, condition [32, A3] states that that there exist a, 5 > 0 such that for all
te [T(), T]

(i) "2 (t)x > afjz|]? for all z € R satisfying M (t)z = 0,
(ii) [|M(t)Tz| > B|jz| for all z € RI®),

Since ||M(t) x| = |||, then (ii) is satisfied with 8 = 1. To see that (i) holds, we
have

2 ST D > oy (1) 2]

where o1 (t) is the smallest eigenvalue of ¥~1(¢). The matrix £ 71(t) is symmet-
ric and positive definite for ¢ > 0, thus it has only real positive eigenvalues
o1(t)...oq(t). So the related characteristic polynomial py-1(4 has continuous
monoms and always has d real solutions. It means that we can order the eigen-
values o1(t),...,04(t) in such way that this functions will be continuous by ¢ and
thus we can take a := min,c( 71 01(¢) > 0, which concludes the proof of (i) and
of the Lipschitz continuity of a;(-) and A\;(-).

Now, the fact that a;(-) is Lipschitz continuous immediately implies the Lip-
schitz continuity of D(-). Lastly, we need to show the Lipschitz continuity of
Ai(t)/D(t). For t,s € [Ty, T] we have

Ai(s) () < Ai(s) = Ai(t) ) D(t) - D(s)|

D(s)  D(t) D(s) D(t)D(s)
The proof is concluded by the Lipschitz continuity of A;(-), D(-), and by noting
that min,czy 7 D(t) = D(T') > 0; see Lemma 4.8. O

In the following, argmin ([, 1,f(t) is the smallest minimizer of function f(:)
over set [a,b]. For ¢t € (0,T] we define function

(A@), o)t
D(t) -

Lemma 4.10 Let X (t) = AZ(t), t € [0,T] be such that Z(t) satisfies the con-
ditions BO-BII and a € R?\ (—00,0]%. Then, for any Ty € (0,T) there exists a
constant C > 0 such that for any Ty < L < R<T and u > —G(T*)

]P’{EIte[L,R] : X(t) — et > ua} < C(u+ Q(T*))exp(—D(R)(u + Q(T*))2/2),

where T := argmin ¢, g)G(t).

G(t) == (4.4)



Proof of Lemma 4.10: Recall that %(¢) := Var(X(¢)) and a(t) is the solution
to the quadratic programming problem Iy (a) for each ¢ > 0. According to
Lemma 4.6(iii), for ¢ > 0 we have D(t) > 0. Hence

P{3icir,p : X(t) —ct > ua}
<P {ierrr - (AW, (X () — et)) > (A(t), a)u}
(A, X (1))
=P {EltE[L,R] : T > u+ g(t) s (45)
with G(-) defined in (4.4). Tn the following let Y'(t) := AX00 " Using the
inequality (Zle a;)2 < dS%, a? we find that

i=1""
2
B{(v() - v(s)?} <28 { (LX) QX)) }
(), X)) (A(s), X(s))
+2E{( D(s) D(s) ) }

D(t)  D(s) D2(s)

Now, the functions v;(-) and \;(-)/D(-) are Lipshitz continuous due to BO and
Lemma 4.9 respectively, so there exists C; > 0 such that the inequalities |v;(|t —

s)| < Cilt = s, and [ 357 — 3| < CiJt — s| hold for all i € {1,...,d}. Thus

d Ai(t)  Ai(s) 2 , A(s) _
szd;< - )vz(t)—i—?d vi(lt = s])-

A (t)
B 2\ 920214 _ o2 i _dl
E {(Y(t) Y(s)) } <Pt — s + 24 max . {D2(t) } Cilt — s|

We conclude that there exists Cy > 0 such that
E{(r(t) - V(s)’} < Cult -

for all t,s € [L, R]. Since Var(Y(t)) = Var(a' (1)1 X (t))/D?(t) = 1/D(t) and
D(t) is strictly decreasing, see Lemma 4.8, then the maximum of Var(Y'(¢)) over
[L, R] is attained at t = R. According to Piterbarg inequality [53, Thm 8.1], there
exists a constant C5 such that for any 0 < L < R < T we have

P{3cir.p : Y(t) > u} < C3(R— Lyu’P{Y(R) > u} (4.6)
for v > 0. Finally, since P{N(0,1) > u} < ﬁe*“QQ for u > 0, then upon
combining (4.5), (4.6) we obtain

D(R
P{3icir,p : X(t) —ct >ua} < C3(R— L) ( )(u+Q(T*))



x exp{—D(R)(u+ G(T"))?/2}.
Since function D(-) is decreasing (Lemma 4.8), we conclude the proof by taking

C := C3(R — L)/ 2. O

2

Lemma 4.11 Let BO-BII hold and let Ty € (0,T] and Ty < L(u) < R(u) < T
If either of the following two conditions is satisfied:

(1) R(u) =T, and u(T — R(u)) — oo, or
(ii) T — L(u) = o(u(T — R(u))), and u*(T — R(u))/In(u) — oo

then

‘m P {Elte[L(u),R(u)} : X(t) —ct > ua} _
u—0 P{X(T)—cT > ua}
as u — oQ.

Proof of Lemma 4.11: Using Lemma 4.5, we know that there exist some
C7 > 0, k € N such that

P{X(T) — T > au} ~ Ciu *pr(au + T, (4.7)

as u — 00, where @7 is the density of X (7). According to Lemma 4.10 there exist
Cy > 0, K € R such that, for all u > —G(T™*(u)) we have
P {EltE[L(u),R(u)] : X(t) —ct > ua}
< Ca(u+G(T" (u)) (4.8)
x exp(=D(R(u))(u + G(T*(w)))*/2),
where K (-) is defined in Lemma 4.10 and 7™ (u) := argmin ¢[r,(u),r(u)9(T). From
now on, we take u > —infyc(p, 77 G(t), which is finite due to Lemma 4.9.

For brevity, in the following we denote ¥ := X(7T'), @ := a(T). In light of (4.7)
and (4.8), it suffices to show that, for any 8 € R we have

5 exp(=D(R(w) (u+ G(T*())*/2)
exp (—(au + cT) T2 (au + ¢T)/2)

= exp ( - (u2h2(u) + whi (u) + ho(u)) + ﬂln(u))

— 0,

(4.9)

as u — 00, where

ha(u) = & (D(R(w) ~ D(T)),  ha(w) == D(R()G(T* (u)) ~ DIT)G(T),



ho(u) := %(D(R(u))KQ(T*(u)) — T20T2_10>.

We notice that functions |h;(u)| are all bounded for u large enough.

Suppose that L(u), R(u) satisfy conditions (i). Due to the continuity of D(-),
we have that D(R(u)) — D(T). Using the assumption B1, that D(t) is differen-
tiable at the point ¢t = T, with D(T) < 0, we have

D(R(u)) — D(T)

—uhg(u) — hi(u) = w(T — R(u)) - 2(R(u) —1T)

— hi(u) = —o0,

which implies (4.9) under conditions in item (i).
Next, suppose that L(u), R(u) satisfy conditions (ii). We have

() = s - (DT () G(T* (w) = D(T)G(T))
7 G (D(R(w) = DT (w))).

Functions D(t) and D(t)G(t) = (A(t), ¢)t are Lipschitz continuous due to Lemma
4.9 and the fact that sums and products of Lipschitz continuous functions are
Lipschitz continuous. This implies that there exists C'3 > 0 such that

| DT (@)G(T* () = DIT)G(T)| < C|T — T*(u)| < ColT ~ L(w),
as well as
D(R(u)) = D(T*(w)| < Cl R(u) = T*(u)| < CoIT — L{w)]

Hence, there exists Cy > 0 such that |hi(u)| < Cy4|T — L(u)| for all u large enough

and

D(R(u)) — D(T)
2(R(u) =T)

—u?hg(u) — uhy (u) < u*(T — R(u)) - { +Cy-
Since D(R(u)) < D(T) and D(T) < 0 and T—L(u) = o(u(T—R(u))) then the term
in the square brackets above is eventually negative and bounded away from 0 for

u large enough. Finally, (4.9) follows from the fact that u?(T — R(u))/In(u) — co.
U

Proof of Lemma 4.2: Consider the following upper bound

P {ate[Tl,T—Lu—anQ e X(t) —ct > ua}
P{X(T) — cT > ua}




P {Elte[Tl,TfLu_l Inu] X(t) —ct > ua}
- P{X(T)— cT > ua}

P {EtE[T—Lu*1 Inu,T—Lu~11ln"1 ] : X(t> —ct> UCL}
P{X(T)—cT > ua}

P {Elte[T_LUfl In~'w),T—Lu—21n%y] * X(t) —ct > ua}
P{X(T) — cT > ua}

Now, the first and second term above satisfy condition (i) of Lemma 4.11, while
the third term satisfies condition (ii) of Lemma 4.11. Thus the righthand side of
the above inequality converges to 0, as u — oo. ([

4.3 Proofs of Lemma 4.3 and Lemma 4.4

Before proceeding to the proof of Lemma 4.3 and Lemma 4.4 we need some aux-
iliary lemmas. The following result generalizes [25, Lemma 5.3].

Lemma 4.12 For any f := (f1,..., fq) € Rd, if Z?ZI £=0
d d
/ H{Hte[O,L] < ft} ei=1Tidy = 1 + Zf;_L,
“ i=1
otherwise

S f
2?21 fz

where f;7 = max{f;,0} and f; := min{f;,0}.

s
Yic fi y gL
)

+
22‘11 fz

/ ]I{EIte[O’L} < ft} X Tidy =
Ra

Proof of Lemma 4.12: Define S, := Zle fir, S_ = — E?:l . ,and S :=
Z;-izl fi = S+ — S_. Without the loss of generality, let k € {0,...,d} be such that
f1>0,...,fr >0,and fri1 <O0,...,fs <0. We distinguish three cases: (i) k = d
(all f;s are non-negative, which is equivalent to S_ = 0), (ii) £ = 0 (all f;s are
negative, which is equivalent to S; = 0), and (iii) 0 < k < d. It can be easily seen
that in case (i) we have

d  ofilL
/ I {Hte[O,L} D x < ft} X Tidgy = H/ eCidx; = e,
R4 j—1 Y —00



and in case (ii) we have

d oo
/ ]I{Elte[o,L] < ft} ezgﬁzidm = H/ e Yidx; = 1.
Rd i=170

Till the end we consider case (iii). Let us define

Q1 :={x e R*: V(g if f; <0 then z; < 0},
Q2 :={z e R": 3y gy if fi <0 then z; > 0},

so that Q1 U Q2 = R% and Q1 N Q2 = (). It can be seen that
/ I {Hte[O,L} < ft} ezg:lxida: =0.
Q2

Th+1
—fey1? "

Furthermore, with m := m(zg41,...,2q) = min{ f—}ld}, we have

/ I{3ecpr: =< ft} e Tid g
Q1

L

= / . / exp{S+(LAm)}e” Z?:k+1xidxk+1 - dxg.
0 0

d )
e Zi:k+1 T4 dxk+1 e diUd

We recognize that exp{— Z‘ij:k 41 %} -I{z; > 0} is the density of minimum of d—k
independent exponential distributions with rate 1; using that such minimum is
again exponentially distributed with rate (d— k), we find that, with Y ~ Exp(S_),

/ I{Jcp,0): ® < ft} eXici%idy = E {eS+(L/\Y)}
Q1

_g / LAY =Sy,

_ 5 / oS+ =52y gy,
0

o0
+ eS+L / S_efs—ydy
L

_ L-S_"i‘eSL; S =0,
% (e —1) 4 5L, otherwise,

which completes the proof. O



Lemma 4.13 There exist 7 € (0,T), \* >0, n > 0 such that:
(i) It C I; for allt € [7,T],
(ii) Ni(t) > X* foralli€ I, t € [7,T],
(iii) XY(t) — nZy is positive definite for all t € [7,T).

Proof of Lemma 4.13: According to Lemma 4.6, i € I; if and only if A\;(¢) > 0.
Since \;(t) is a continuous function for any i € {1,...,d} (see Lemma 4.9), then
for any i € Ir there must exist 7; < T, and A} > 0 such that X\;(¢) > A} for all
t € [1,T]. for all t € [, T] we have A\;j(t) > 0. Thus the claims in (i) and (ii)
follow by taking 7 = max;er,. (7;) and \* = min;er, AL

The matrix ¥ 71(¢) is symmetric and positive definite for ¢ > 0, thus it has only
real positive eigenvalues o1(t)...04(t). So the related characteristic polynomial
Px-1(+) has continuous monoms and always has d real solutions. It means that we
can order the eigenvalues o1(t),...,04(t) in such way that this functions will be

continuous by ¢ and thus 7 = min min o;(¢) > 0. This concludes the proof of
ie{l,....d} te[r,T]

(ii). O
In the following, for all u > 0,7 € (0,T], and & € R? we define:

wy - (x) = wua(r) + et — B (4.10)

u(r)’
where @(7) € {u,1}? such that @y, (1) := u- 11, and @y, (7) := 1, |, that is @(r)
has the components in the set I; equal to v and the other components equal to
1. Further, for all L >0, 7 € (0,T], € R? and u > /L/7 consider a Gaussian
process {Z% (t),t € [0, L]} defined conditionally:

(22,0),_,, = (20— )1 2(1) = A7 wus ()

Since the components of Z(t) are mutually independent, then the components of
Zy -(t) are mutually independent as well, i.e.

Cov((Z7 - (s))i, (27 (1)) =0
for i # j. By the definition in (4.11), for any i € {1,...,d}, t,s € [0, L] we have

. 4.11
tel0,L] ( )

B{(25, )} = 2

Cov ((Z2(5))i, (Z2,(0)0)) = pilr — 5,7 — ) -

(Afl'wuﬁ(a:))i ,

pi(T - ?8277-)pi(7- - %77)
vi(7)

with p; defined in (2.1). In the following let 2U,T(t) =Z7 () -E{Z7 (1)} It

is noted that the distribution of 2%7 (t) does not depend on .




Lemma 4.14 There exists a constant C > 0 such that for all L >0, 7 € (0,77,
and t,s € [0, L] we have

W’E { ((AZur () - (AZU,T(S))i)Q} i max (L)

foralli e {1,...,d} and u large enough.

Proof of Lemma 4.14: For brevity, in the following denote t := 7— JQ , 8 i=T—,

and Z,(t) == Z,,(t). We have

B{ ((Zu(0): - (Zu(6)):) } = Varl(Zu(0)} + Varl(Zu(5)))

_on PG pE(ET)
=0 Nm O

2 (pey - 2T

)
Now, the above is not greater than v;(|5 — #|) = v;(|s — t|/u?) < v;(Lu=?). Fur-
thermore, we have

WK { ((Azu(s)),- - (AZu(t))Z)z}
= u’E ( S

J

i (Zu()); — (Zu(1));))”

1
d d

<u? [ Sa | [ S E{(Zus); - (Zu0)?} ).
=1 =1

where we used CauchySchwarz inequality. This completes the proof. O
The following corollary to Lemma 4.14 is a straightforward application of Piter-
barg inequality [53, Theorem 8.1] and Lipshitz continuity of functions v;(-).

Corollary 4.15 There exists C > 0 such that for all L > 0, 7 € (0,T], z > 0 we
have
P{ sup U(AZU,T(t))Z‘ > Z} < 0226_22/(2u2 maxje(1,....a} v (Lu™?))
te[0,L)]

forie{l,...,d} and all u large enough.



In the following, for any i € {1,...,d}, t,s € [0, L] we define
huyr(L,x) =P {Hse[rfLuﬁ,r] X (t) —ct >ua | X(1) = wuﬁ(m)} , (4.12)
Our () := pr(wyr(T))/Pr(ua(r) + c7). .

Lemma 4.16 There exists o € (0,T) and function H : R, x R* — R, satisfying
Jga H(L,)dx =: C*(L) < oo for all L > 0, and ug : Ry — Ry such that for all
L>0,7¢€[nT], and x € R? we have

hy (L, x)0, - (x) < H(L,x)
for all uw > ug(L). Moreover, there exists C* > 0 such that

limsup C*(L) < C*.

L—oo

Proof of Lemma 4.16: For u > 0,7 € (0,T], and € R? let
Our () := pr(wyr(T))/Pr(ua(r) + cr).
Then
O ()

= exp {udT(T)E_l(T)(QI/U) +71e" 87 () (x/a) — ;(m/u)TZ_l(T)(x/u)}

— e</\1(7),w1>6<&[(7)/u,a:]>e<?:J(‘r),:vJ>e—%(w/ﬁ)TZ’l(T)(:c/ﬁ)’

where &(7) := ¢"£71(7). From Lemma 4.13(iii) we know that there exists n > 0
such that X=1(7) — nZy is positive definite for all 7 < T, thus

e~ 2(@/@) TN (@/7) < e~ 5@/ (ST () —nla)(x/w) ,—Fa/al)? < e~ slesll?,

Furthermore, due to the continuity of v;(-) and \;(-) (see Lemma 4.9), for alle > 0
there exists 79 < T' large enough such that

M(T)(1 =€) < Xilr) < X(T)(1 +¢),
and
G(T)(1—e) <l (M) < (T)(1+e)

for all © € {1,...,d} and 7 € [19,T]. Moreover, for all € > 0 small enough and
To > T, where T is defined in Lemma 4.13 we also have

AP (t) == Ni(t) — sgn(z;)e > 0



for all ¢ € I, thus for every £ > 0 small enough there exists 7y such that

eu(:n) < e<)\1(T)(lJrs-sgn(mI)),aw>6<c’3(T)(1+z—:-sgn(m‘])),aw>€fgH:BJH2 —. 9(:1:)
Now, let Z7 (), and Z,.-+(t) be defined as in (4.11). Since X = AZ, then

hur (L) = P{Jep_ru—2.:AZ({t) —ct >ua | AZ(1) = wyr(x)}, (4.13)
]P’{EIte[O’L] cAZ (T — u%) —c(1 — %) >ua | AZ(T) = wu,’r($)} ,
= P {3 : AZ; (t) —cT + ct/u® > ua}

where, with defining Ry -(t) := diag(pi(1 — 25, 7)/vi(7)) for breviety, we have

My o (t, @) = uA Ry () A w, - () — uer + ct/u — u’a
= uA R, ()A" (ua + et — /1) — uer + ct/u — v’a
= u?A(Ru,(t) —Ty) A~ - (@ + e /u — x/(ua))
+ ct/u +u*(a — a) — ux/a.

Notice that
U A (R, (t) —Ty) A7

— u2A - dia pi(T—#’T)_UZ’(T) e
=u“A-d g( o (r) ) A

. 1 |ui(r =) —wi(r) | i) _
=tA - diag (21),-(7') [ v + 2 ) AL
N —%AQ(T)A”, = 00 (4.14)

for any fixed 7,7, where Q(7) := diag(v;(7)/v;(7)). Moreover, applying the mean
value theorem yields

’UZ‘(T — u%) — Ui<T)
t/u?

< sup  foi(s)],

inf |0i(s)| <
] s€lro—Lu=2,T)

s€[ro—Lu—2,T

so using the assumption BO, for every € > 0 there exists 7p < 7" such that

iy = &) = ulr) _

_(1 + €)UZ(T) < t/u2

(1 —e)oi(T)



for all 7 € [19,T], t € [0, L] and u large enough. The bound above implies that for
any € > 0, we can find 79 < T such that for all ¢« € I we have

(Hr(t,2)i < (—5(AQAT@)i + ) t — i(1 — & - sgn (27)),

for all ¢ € [r9,T] and u large enough, where @ := Q(T) = diag(v:(T)/vi(T)). In
the following define Wy, - 1= max;c(1 . a) SUPseo 1] U(AZu,-(t))i and see that

hu,r (L, )
< P{3sep,1 Vier : WM + (- 5(AQA*16L),~ +e)t—z;i(1 —e-sgn(x;) >0}
oot AR
< ki;oIP’ {Elte[o,L]VieI 1(A§Asg; ()x; 2 > T — %; Wa,r € (ek,e(k + 1)]}

Furthermore, due to Corollary 4.15 and assumption BII, we have
P{W,, > ck} < e (F)
for all 7 € [19,T] and u large enough. Thus,

hy- (L, x)

o] 1 15
~L(AQA @), + ¢ RUESY
< ZH {ate[O,L]ViGI [—— > — e (R

for all uw large enough. Furthermore, define

H(AQA1a); + e(k+1)
Ey(L) == /Rm I {Hte[o,L]VieI e san (@) @i 5

« €<AI(T)(1+€'Sgn(mI)):m1>dx1'

Then

) h L, m 9_ ZEk —(ek)? /J e<cf‘](T)(1+5.sgn(a:J))7;1;J>e_g”mﬂ|2de.
R R



Now, the integral over RVl above is bounded for all € small enough because it
does not depend on 7 and u. We now focus on the sum )7, Ek(L)e_(sk)Q. Let
8= (61,...,04) € {—1,1}I. For each k € N we have

Ex(L)
—lAA~ta); +¢ e(k+1
< > /RI H{Hte[O,L]ViGI‘ 2t > - ]

Se{_1a} 1-— 551' 1—¢

% €<)\1 (T)(1+66i)’ml>dm[.

After applying substitution x; := \;(1 + €6;) [wz — E(fj;)}, each term of the sum

above is bounded from above by C(L;e¢, ) - e9i(e)  where

1
Hz’el Ai(1+¢€6;)

with f;(e,0;) and g;(e) defined below

C(L;e,8) == /]RI I{3ic(o.0)Vier © fie, 0i)t > 2} eXier “idwy,

—1AQAta i Ai(l 0; i k
fi(e, 7) _ (-2(4Q f)_:(;) (1+e0i) gi(e) == (1+1616§ +1)

It is straightforward to see that f;(e,d;) — f; := (—A;;((TT))

any 0 and similarly g;(¢) — 0. Therefore,

A~ ta);\;, as € — 0 for

C(L;e,8) = C(L), €—0,

where

1 —1- 2 iz
CL)=J]x [ 1{3wprn:-3(AQA"a) —x; >0} est dax; (4.15)
ier /R

> T
= / I {Hte[O,L]ViEI : —%)\Z’ . (AQA_lfl)i —x; > O} el dex.
RHI
Now, since 27! = A~ T diag(v;(T))A™! and A = £7'a, then

SN (AQA™'a); = (AQA™'a,\) = (AQA ', \)

1€l
CNT 3 Ul(T T A=T 3: 1 -1
= A diag (vl(T)> A' A 'diag (vl(T)> A" a

~—

- _D(T)7



where in the last line we used Lemma 4.8. Applying Lemma 4.12 using f = (f;),
fi= 13 N (AQA™ta); and the fact that, 3, fi = s D(T) < 0, see Lemma
4.8, we conclude that C(L) — C, as L — oo, with C defined in (3.1).

Now, since C(L) — C, then there must exist some ¢; > 0 such that for all €
small enough and all § € {—1,1}], we have C(L;¢,8) < (1 + ¢1)2%1C. Finally,
notice that for each ¢ > 0,

Z exp { Al te)elk +1) } e (R’ < 0.
k=0

1—¢

These observations combined give us that there exists a constant co > 0 such that

/ h(L,z)0(x) < cz-C
R4

for all u large enough. This completes the proof. O
In the following, for any 7 € (0,7], L > 0 and u > /L/7 let

My (u, L) :=P{Jpejrpu—2, : X(t) —ct > ua}. (4.16)

Proof of Lemma 4.4: For any T > 0, with Mp(u, L) defined in (4.16), we
have

My (u, L) = /d P{3ieir—ru-—21): X(t) —ct > ua | X(T) = x} op(x)da,
R

where 7 be the pdf of X (7T'). After applying substitution w, r(x); see (4.10) we
obtain

Mr(u, L) = u~1'7] / P{Sicr—ru-—21y: X(t) —ct > ua | X(T) = wyr(z)}
R4
X p(w,, r(x))de
—u 1t [ hu(L@)etw,r (@) de. (4.17)
Rd
Now, let 0, 7(x) := pr(wy,r(x))/er(ua(T) + cI'). Then
0u7T(CC)
- _ _ _ N N _
—exp {ua" (1)3 (T)(w/a) + T 57T w/a) - (o/a) S (D) afa)}.
with the three terms under the exponent exhibit the following behavior:

@SN @/a) o~ de] (SN g



(TS T @/@) Ly TUTE D) @)y oo

a' (T)5N(T) (uz/w) AT(T)(uz/w) _ (Ar(T),xr)

e =e
Letting & := Tc"Y71(T) we obtain

O(x) := lim O, (x) = eA(T),r) .e_%m:lr(z_l(T))JJmJ6<&J7mJ>‘
U—>00

Let Z,,(t) be defined as in (4.11). Repeating steps from the proof of Lemma
4.16, cf. Eq. (4.13) and below, we find that

hu,T(L7 33) =P {Elte[O,L] : UAZU,T(t) + H’u,T(t) x) > 0} 5
where
w7t T) = u?A (R (t) — Zg) At
x (a+ cr/u—x/(uw)) + ct/u+ u*(a — a) — ux/u

with Ry - (t) := diag(pi(T — 25, 7)/vi(7)). Let Up := {i € Jp : a;(T) = a;} be the
subset of Jr. Repeating steps from the proof of Lemma 4.16, cf. Eq. (4.14) and
below, we obtain
—2(AQA™a); —x;, i€,
(B (t, )i = p(T, ) = { sgn(—w;) - o0, iel,
00, ieJ\U
as u — oo, where @ := diag(0;(T")/v;(T')). We can see that
P {3ieo,0)Vie(1,.d} : (Bur(t2))i > 0} < hyr(L, x)

<P {Hte[O,L}Vz‘e{l,..,d} : ts[l(l)lii](UAZu,r(t))i + (7 (t, )i > 0} :
€10,

Corollary 4.15 implies that sup,cp z)(uAZy-(t))i — 0, as u — oo, so for every
x € R we have

Jim By (L, 2) =1 {Jiep.) 1 —3(AQA™ a) — =y > 0} - I{wy < Oy}
=:h(L,x).

Thanks to Lemma 4.16, we may apply Lebesgue’s dominated convergence theorem
and obtain as u — oo

/ hy (L, )0y r(x)de — h(L,x)0(x)dx
R4 Rd



-
Hiel /\i(T)

X e%éT(Efl(T))JJéH{w

—c(L)- / o3 @8 T (2 T) ()
RIJI

U<0U}dm<]7
with C(L) defined in (4.15). Finally, using Lemma 4.5 yields

Mrp(u, L)
P{X(T)— cT > ua}

— C(L)

as u — oo. Repeating the reasoning from the proof of Lemma 4.16, we conclude
that C(L) — C, as L — oo, with C defined in (3.1). O

Proof of Lemma 4.3: Define a sequence 7, := T — kLu~? and a constant
K(u) = [In*(u) + 1]. Then

P{X(T) — cT > ua} et P{X(T) — cT > ua}’

with M, (u, L) defined in (4.16). Similarly to (4.17), for any 7 > 0 we have
M, (u, L) = v~ 117! hu+(L, ) pr (w)de,
R4

with h,, r defined as in (4.12). Let 79 be as in Lemma 4.16. Then 7, € |19, T] for
all k € {1,..., K(u)} we may apply Lemma 4.16 and obtain

M, (u,L) < u*UT'cka (ua(ry) + eTx) - H(L,x)dx
Rd

for all u large enough. Furthermore, according to Lemma 4.16, there exists a
constant C7 such that fRd H(L,x)dx < Cj for all u large enough. Moreover,
according to Lemma 4.5, there exist Co > 0, such that

P{X(T) - cT > ua} > Cou "l pr(au + cT)

for all u large enough. We thus have

P {Elte[T—Lu*2 ln2(u),T—Lu*2]X(t) —ct> au} < Cl KE(E) ©Or (ufb(Tk) + CTk)
P{X(T) — cT > ua} Oy = pr(ua(T) +cT)

Consider one of the terms in the sum above. We have

pro(ualm) +em) - [IE(D] w2 (D(r)-D(1)) j~u(A(m)-A(T).c)
er(ua(T) + cT) |12 (7))




% e~z (BTHm) =S HTD))e,

Now, using the fact that D(t) has a negative derivative at ¢ = T' (cf. Lemma 4.8),
and the fact that 7x(,) — T we know that if u large enough, then u?(D (1) —
D(T)) > |D(T)|kL/2. Using Lipschitz continuity of \; we also find that there
exists a constant C; > 0 such that |(Ai(7x) — \i(T),¢)|] < C1kL. Both these
observations combined imply that there exist some constants Cs, 8 > 0 such that

or, (ua(ty) + cr)

~ < CgePkL
or(ua(T) + 1) — ¢
for all u large enough. Finally, we have
il M, (u, L) 105 & C1C;
Z (U, < Ze—ﬂkL < e=PL
— P{X(T)—cT > ua} Cy &= Co(1 — eBL)

which completes the proof. O



Chapter 5

Uniform Bounds for Ruin
Probability

1 Introduction and first result

Let B(t),t > 0 be a d-dimensional Brownian motion with independent standard
Brownian motion components and set Z(t) = AB(t),t > 0 with A a d x d real
non-singular matrix. The recent contribution [44] derived the following remarkable
inequality

SRS TV 10y

P{3t € [0,T]: Z(t) > b} 1

> b} < K(T), K(T) = W (1.1)
valid for all b € R%, T > 0. In our notation bold symbols are column vectors with
d rows and all operations are meant component-wise, for instance & > 0 means
x; >0 for all i < d with 0= (0,...,0) € R%

The special and crucial feature of (1.1) is that the bounds are uniform with
respect to b. Moreover, if at least one component of b tends to infinity, then
P{3t €[0,T]: Z(t) > b} can be accurately approximated (up to some constant)
by the survival probability P{Z(T") > b}.

Inequality (1.1) has been crucial in the context of Shepp-statistics investigated in
[44]. Tt is also of great importance in the investigation of simultaneous ruin prob-
abilities in vector-valued risk models (see [16, 17, 47]). Specifically, consider the
multidimensional risk model

R(t,u) =au— X(t), X(t)=Z(t) —ct

4This chapter is based on the paper [46].
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for some vectors a, c € R? and Z(t),t > 0 defined above. Typically, R models the
surplus of all d-portfolios of an insurance company, where a;u,u > 0 plays the role
of the initial capital, the component Z; models the accumulated claim amount up
to time t and ¢;t is the premium income for the ith portfolio.

Given a positive integer k < d, of interest is the k-th simultaneous ruin prob-
ability, i.e., at least k out of d portfolios are ruined on a given time interval [0, 7]
with T possibly also infinite. That ruin probability can be written as

P{3icjor): Z(t) — ct € uS}, u >0,

where
S = U S[, S[:{wERd:ViGI, :Bi>a2-}.
Ic{1..d}
\I|=k
The particular case Z(t) = AB(t),t > 0 with A a d X d non-singular matrix is of
special importance for insurance risk models, see e.g., [27]. Clearly, this instance
is also of great importance in statistics and probability given the central role of
the R%valued Brownian motion.
In [15] it has been shown that (1.1) can be extended for this model, i.e., for all
u >0, T >0, and any compact set Ly C [0,T], such that T € Ly

1< P{3icr, : X(t) € uS}
- P{X(T) € uS}
with ¢(t) = et,t > 0 and some known constant Kg(L7) > 0. Again the bounds
are uniform with respect to u.
It is clear that the inequality above does not hold for an arbitrary set § ¢ R?. For
example, taking S = {x € R?: 21 = 1} we have that
P{3ier, : X(t) € uS} = P{3er, : X1(t) > u} > P{X1(T) > u} > 0,
P{X(T)euS} = 0,

< Ks(Ly), X(t) = Z(t) —c(t),  (1.2)

and (1.2) does not hold for any constant Kg(L7).
We consider further only sets S which satisfy the following condition:

Definition 1.1 Let X and Z are as defined above. The Borel set S C R? satisfies
cone condition with respect to the vector-valued process X if there exists a strictly
positive function eg(t),t > 0 such that for any point € € S and any t > 0 there

exists a Borel set V4 C S that contains x satisfying Vg —x C c(Vy — ) for all
c>1and P{Z(t) e V, —x} > eg(t).

It is of interest to consider a general trend function in (1.2). We consider below
a large class of trend functions which is tractable if Z has self-similar coordinates
with index « > 0. This is in particular the case when Z = AB.



Definition 1.2 A wvector-valued measurable function ¢ : [0,400) — R? belongs to
RVy, () for some o > 0 and to € [0,T] if for some M >0, alli € {1...d} and all
t€[0,T]

|ci(t) — cilto)| < Mt — to]®.

We state next our first result. Below F' : R? — R¢ growing means that for any
x,y € R? such that for all i € {1,...,d} x; > 3; we have that for all i € {1,...,d}
Fy(x) > Fi(y).

Theorem 1.3 If S C R? satisfies the cone condition with respect to the process
Z = AB such that 0 ¢ S and ¢ € RVp(1/2), then for all constants T > 0,u > 1
the inequality (1.2) holds and

9d/2
¢(Lr)es(T)’

where X is the covariance function of Z(T). In particular, for any growing func-
tion F : RY — R? we have

P{3icr, : F(Z(t) — c(t)) > ua} < CrP{F(Z(T) — c(T)) > ua}

C(Lr) =, _inf T (E) () >0,

K(Lr) = = 1
( T) tELlT\{T}

for all a € R4\ (—o00,0]¢, u > 1 and some constant Ct which does not depend on
u.

If Z :R® — R? is a given separable random field, it is of interest to determine
conditions such that (1.2) can be extended to

P {Jiery : Z(t) — c(t) € uS}
P{Z(T)— ¢(T) € uS}
where Ly C [0,T3] X ... x [0,T},] is compact, T' € Ly and T = (T1,...,T,) has
positive components. For the case Z(t) = > | Z;(t;) , where Z; are independent

copies of Z, and ¢(t) = 0 the result (1.3) was shown in [44][Thm 1.1] for some
special set S. For more general set S we can show the following result:

Theorem 1.4 If S C R? satisfies the cone condition with respect to the process
Z(t), 0 ¢ S and all ¢; € RVp(1/2), then for any Ty,...,T, > 0,u > 1 the
inequality (1.3) holds with Z(t) =, Zy(tx) and c(t) =Y, ck(ty) and

n 9d/2

Kg(L = _—
s(Lr) ¢ (T)es(Th)
-
-7 cp(T)—cp () 271 T cp (T)—cp(t)
C(Tx) = inf e k( VIt ) (k)< VIt )>0,

t€[0,Ty,)

where €g is any function satisfies the claims of Definition 1.1.



2 Discussion

In this section, as in Introduction, we consider
Z(t) = AB(),  t>0,

with A non-singular and B a d-dimensional Brownian motion with independent
components. We are investigating the generalisation of the upper bound (1.2).

2.1 Order statistics

The classical multidimensional Brownian motion risk model (see [27]) is formulated
in terms of risk process R specified by

R(t,u) = au— Z(t) + ct

for some vectors a, c € R?. We are interested in the finite-time simultaneous ruin
probability for k out of d portfolios, i.e., probability that at least k& portfolios are
ruined. In other words, we are investigating the probability

P {3ico1)s Fzcqi,ay - [ =k, Vi € T Zi(t) — cit > a;u} .
The probability above can be represented as follows
P{3iwcior: Z(t) —ct € Sy},  u>0,

where
S, = U Sl,m SLu:{.’BERd: Vielxz; >aiu}.
Ic{1..d}
=k

Asymptotics of such probability was already investigated in [15]. Now we want
to show a uniform bound. It is clear that all sets S, satisfy the cone condition
with respect to the process Z(t). Thus, S, also satisfies the cone condition with
respect to the process Z(t), hence we can use Theorem 1.3 and write for some
positive constant C'

P{Z(T)—cT € Sy} <P{Jepor: Z(t) —ct € Sy} <CP{Z(T)—cT € S,}.

2.2 Fractional Brownian motion

Consider next the risk model d = 1 driven by the one-dimensional fractional Brow-
nian motion By (t) for ¢ > 0, i.e., the risk process is

R(u,t) =u— By (t)+ct, t > 0.



We are interested in the calculation of the finite-time ruin probability for given
T > 0. The inequalities below have already been shown in [17]. We show now
the way to obtain them using the general theorem presented above. Using Slepian
inequality, we can write for H > %

P{JcpomRu,t) <0} < P{3comBije (") —ct > u}
— P {atemw]B1 1o (1) — et /2 > u}
— P {3t6[07”31 1o (T2H4) — et /2 u}
= P {ﬂte[o,l]Bl/g (t) — T He/2H u/TH} .

Since ¢I''~Ht1/2H ¢ RV (1/2), using Theorem 1.3, for some positive constant C
we can write

P {HMMBV2 (t) — T HR/2H S u/TH} < CP{By (1) — ' > 07"}

= CP{By) (T?") — T > u}
CP{R(u,T) < 0}.

The above can be extended considering the convolution of n independent one-
dimensional fractional Brownian motions B (t), for t > 0,i < n. Let H; > 1/2
and define the risk processes

Ri(u,t) =u/n — BZ-H"(t) +cit, i < n.

Consider the convolution of processes R;(u,t). Using Slepian inequality, as all
H;, > % we can write

n n

e 07 & te flo7)
=1 = i

i= i= =1

Bz’ (tQHi) —cti >u

n

1/2H;

= P<d = B; (t) — ¢t >

te I1 [0,771] Z i(8) —at; "
i=1 i=1

Here B; stands for an independent copy of Brownian motion. As it is clear that

citt/2Hi ¢ RVr,(1/2,1), using Theorem 1.4, for some positive constant C' we can

write

n ‘ L 1/21{1. < n ’ 2H;\ _ .
P Elte i fo.72 Z; B; (t) — cit; >u,p, < CP {Z B; (TZ ) il > u}
i=1 =

=1



— CP{iB{’i(Ti)quu}
=1
= CP{iRZ-(u,Ti)<O}.

i=1
The same approach may be applied for a different Gaussian process with convex
variance.

3 Vector-valued time-transform

Finally, we discuss some extensions of (1.2) under different time transformations.
We use the notations from Section 2 and define the following time transform. Let
f(t):[0,400) € R? be a growing vector-valued function, and define

Z(f(1)) = (Z1(f1(1); -, Za(fa() "

Hence f(t) can be considered as a generalised transformation of time.

Theorem 3.1 Let c(t), f(t) : [0,T] — Re.  Suppose that all fi(t) are continu-
ous, strictly growing and for all i € {1,...,d} we have f;(0) = 0 and function
0i(t) = % has a positive finite limit as t — T. Let also |¢;(T) — ¢i(t)| <

M~/ fi(T) = fi(t) for allt € [0,T], alli € {1,...,d}, some M >0, and S satisfies
the cone condition with respect to the process Z(t). If 0 & S, then for all constants

T > 0,u > 1 the inequality (1.2) holds with X (t) = Z(f(t)) and

/2

_ ( c(Ty)—c(t) ) Eil(é(t)) ( c(Ty)—c(t) )
Q(LT) — mine V(T)=f1(t) V(T =10 > 0,
teLr

and

inf  6;(¢)\ /2
i€{1,....d}
teLr

fg=| —— inf  6;(¢ 0.
£s sup  0;(t) °5 ie{llr,l...,d} )] >
ie{l,....d} teLy

teLy

Remark 3.2 The function f(t) in Theorem 3.1 may also be an almost surely
growing stochastic process, independent of Z(t), satisfying the following conditions:

(1) < F,
ey FilT)



ci(Ty) — ci(t)
max
i€{l,d} e\ (T} |/ [1(T) — fa(t)
d< inf 6;(t) < sup 6i(t) < A,

’L'E{l,...,d} ’ie{l,...,d}
telr teLr

)

almost surely with some positive constants F,M,5, A. In this case the inequality

(1.2) holds with

* (2F)d/2 : —z 'S ()
K*(Lr) = —+~—, ¢€(L7)= > 0,
L) ¢(Lr)és (L1) weloM A
te[s,Al¢

and

We illustrate the above findings considering again d independent one-dimensional
fractional Brownian motions By, (t),t > 0 with Hurst parameters H; > 3,i < d.
Define d ruin portfolios

Ri(u, t) =u— BHi (t) + c;t.

We are interested in probability that all of them will be simultaneously ruined in
[0, 7).
Using Gordon inequality (see [1, page 55]), we obtain

P{3icionVieq, apRi(u,t) <0} < P{JepnVieqr,..aBi (t2H) — it > u}.
where B;(t) are intependent Brownian motions. Since

. T2H¢ _ tZHi _ 2HZ TQHifl
i T2H — 2 9fy, T2Hi—1

> 0,

using Theorem 3.1, for some positive constant C, which does not depend on u we
can write

IN

P{3iciomVieq,. .ayBi (7)) — cit > u} CP{Vicq1, .y Bi (T?™") — T > u}
CP {vie{l,...,d}BHi (T) -l > u}

C]P) {Vi6{17...,d}Ri(ua T) < 0} .



4 Proofs

Let us note the following property of the function eg(t).

Lemma 4.1 If set S satisfies the cone condition with respect to the process Z(t)
with some function €g(t), then for any constant u > 1 set uS also satisfies the
cone condition with respect to the process Z(t), and for any function eg(t) exists
a function e,5(t) such that

8u5(t) > €S(t).

Proof of Lemma 4.1: Fix some € uS. Then we know that y = «/u € S.
As S satisfies the cone condition with respect to the process Z(t), there exists
some cone Vy C S with vertex y such that P{Z(t) € V, —y} > eg(t). Hence,
uVy C uS. Note that using the properties of cone

uVy=uy+Vy—y)) =z+ulVy—y)dx+(Vy-y).
Hence, & + (V —y) C uS is some cone with vertex x, and
P{Z(t) cuVy —x} >P{Z(t) € Vyy —y} > es(t).

OJ
Proof of Theorem 1.3: Consider the first inequality. Define the following
stopping moment

T =inf{t € Ly : Z(t) — c(t) € uS}.
According to the strong Markov property
P{Z(T) - c(T) € uS}
_/ Pirc dt}/ P{Z(t) - c(t) € da|r = t}
L uS
xP{Z(T) —c(T) € uS|Z(t) — c(t) = x}.

Using Lemma 4.1, u.S satisfies the cone condition with respect to the process
Z(t). Hence for all z € uS, t € Ly
P{Z(T)—¢c(T) € uS|Z(t) — c(t) = =}
> P{Z(T) — o(T) € V4 |Z(t) — c(t) = )}
P{Z(T —1) = (e(T) —c(t)) € Vo —x}
—P {2(1) —(e(T) — () NT —t e (Vg —x)/VT - t}
P

VTZ(1) € Vi — &+ VT(e(T) — ¢(t)) VT — t}



—p{z(r )ev — &+ VT(e(T) ~ c(t))/\/T—t}

/ L @eVTEE) T @ VT ) o
(2m) 5 VIZ]
/ L ERRE T RS -1 (veR) T (VER) g 5
v

eiT(C(T\;)T;ft(i))TZ— (eD)=e0) P {Z(T)eV2(Vy—x)}

2d/2
1 (C(T) C(t))TE 1(c(T) c(t)
Zsape v JP{Z(T) € Vg — x}
Ceus _ Ceg
— 9d/2 = 9d/2’

where V', is the cone from Definition 1.1. As the right part does not depend on
x and t, we can write

P{Z(T) - e(T) € uS} > gj/SQ/LTIP’{TGdt}

x /uSIP’{Z(t) —e(t) € da|r = )
Ceg

= Qd/Q]P’{ElteLT (t) — c(t) € uS},
hence, the first inequality holds. Consider the second one. Define a set
t={xecR: xz>a)
and
Su=—F " (ua™).
u

Set S, satisfies the cone condition with respect to the process Z(t) for V, = ™,
as forany y > x € Sy

F(uy) > F(uz) > ua™,
hence y € S, and
es, () =P{X(t)cat —x} =P {X(t) e [o, +oo>d}
does not depend on u. Applying the result above for the set S, we obtain

202P{X(T) e uS} = 2¥?P{X(T) € uS.}
¢(Lr)es,(T)  C(Lp)P{X(T) € [0, +00)}"

P{Jier, - X(t) € uSu} <



As the event {X () € uS,} is equal to the event {F (X (¢t) — ¢(t)) > ua}, this
completes the proof. O

Proof of Theorem 1.4: Define

Oepen (S, T) =P {Elte’]l‘ : Z(Zi(ti) —ci(t;)) € S}
=1

and

k n
V(S) =P {Htem Y (Zilti) = cilt) + Y (Zi(Th) — () € S} ;

i=1 i=k+1

where Ty, = [0,T1] x ... x [0,Tg]. As in the previous section we are going to prove
that the inequality

24241 (uS)

Yr(uS) < cs(Th) %

takes place for any k € {1,...,n}. We can fix the trajectories of processes Z;(t)
called x;(t), fix random vectors Z;(T;) called x;, and define the process

k—1 n
ZH AN = Zi(t) — en(t) + ) _(mi(ts) — ci(t) + Y (z — ai(Th)),
=1 i=k+1

where tF = (t1,...,t_1) € Tp_1.
As Z; are independent processes, it is enough to show that for every set of trajec-
tories «;(t) and points x;, the inequality

20/21(uS)

VS < es(Tk) €y,

takes place, where

P*(S) = P{Hte[O’Tk] : Z*R(t,t%) € 8 for some tF € ']I‘k,l},

v(S) = P{Z*k(Tk,tk) € S for some th ¢ Tk—l}-

Define the following stopping moment:

7, = inf {t : Z*F(t,t%) € uS for some tF € ']I‘k} ,



in case such set is not empty. Otherwise we put 7 = co. Define further a random
vector

~ CC*, Tk S Tka
Ty = .
0, otherwise,

where * is any point from the following set:

U {Z*k(Tk,tk)} ﬂuS.

theTk

Using the total probability formula we obtain

Tk
V(uS) = /0 P{ry € dt}

xP {Z*k(Tk,tk) e uS for some t* e T" |7, = t}

Ty,
= / P{r € dt}/ P{x, € dxg |, =t}
0 S
x P {Z*k(Tk,tk) € uS for some tF € Tj_, |7 = t, &), = aco} )

For any tk € T)_; we have
ZR (T, t8) — Z°F(t,t%) = Z1(T)) — Z1(t) — (cr(Th) — ci(t)).
Thus, using the same chain of inequalities as in Theorem 1.3 we obtain
P{Z*k(Tk,tk) € uS for some tF e T |7 = t, &) = wo}

> P{Zk(Tk) — Zk(t) — (Ck(Tk) — Ck(t)) euS — :130}

Cres(Th)

which completes the proof. O
Proof of Theorem 3.1: Define a stopping moment

r=inf{t € Ly : Z(f()) — e(t) € uS},

in case such set is not empty. Otherwise we put 7 = co. According to the strong
Markov property

P{Z(f(T)) — c(T) € uS}
_ / P{r € dt} P{Z(f(T)) - e(T) € uS|7 = t}

Lt



_ / Pirc dt}/ P{Z(£(t)) - e(t) € da|r = £}
Lt uS
<P {Z(£(T)) — e(T) € uS|Z(f(t)) — e(t) = @, = t}.

According to Lemma 4.1, uS satisfies the cone condition with respect to the
process Z(t). Then

P{Z(f(T)) — c(T) € uS|Z(f(t)) — c(t) =z, 7 =t}
=P{Z(f(T)) - e(T) € uS|Z(f(t)) - c(t) = x}
> P{Z(f(T)) — c(T) € Va|Z(f (1)) — c(t) = x}
=P{Z(f(T)) - Z2(f(t)) — e(T) + c(t) € Vo — x}
=P{Z(f(T) = f(t)) = (c(T) = c(t)) € Vo — x}
c(T) —c(t) Ve —x
P{Z(5(t)) VI(T) = fi(t) © \/fl(T)_fl(t)}

Y
~
N

{

c(T) — c(t)
e Ps(t) <y+ AGE ﬁ(t)) dy

(1) —e(t) Vo —x
(o) VII(T) = fi(t) © \/fl(T)}

b

> [ s (Van)dy
VeV

> 2d/§ P{Z(é(t)) € fl(T)}
> (22((%))61 SPAZG() € Vs — )
B (22((;§))d/2p {B(6(1)) € A7 (Ve — @)}
 ¢(Lt) 1 e—%é 6y(?t>
- A or 1 s /yef“w”) e

where @5y is the pdf of Z(4(t)). Using that all the functions d;(t) are bounded
and separated from zero for ¢t € Ly, there exists some constants J, A > 0, such
that for all i € {1,..., d} and all t € Ly

5 < 6i(t) < A.



Hence we obtain

or 1L, 6i(t)  y/2n ]Il A

o b

|
o=
M=
d
S
Z

and finally

P{Z(f(T)) — e(T) € uS|Z(f(t)) — c(t) = 2,7 =t}

() | / -
AWM [ L, A Jvea— (Voa)

>
— (

YITmi 0
2AMY e A

Hence the claim follows.

N
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