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Professor, Doctor, University of Wroclaw

External member of the thesis committee

Dr. Alfred Kume

Doctor, University of Kent

External member of the thesis committee

Prof. Thomas Mikosch

Professor, Doctor, University of Copenhagen

External member of the thesis committee





 
 
  University of Lausanne 

Faculty of Business and Economics 
 
 

PhD in Actuarial Science 
 
 
 
 
 
 
 
 

I hereby certify that I have examined the doctoral thesis of  
 
 

Nikolai KRIUKOV 
 
 

and have found it to meet the requirements for a doctoral thesis. 
All revisions that I or committee members 

made during the doctoral colloquium 
have been addressed to my entire satisfaction. 

 
 
 
 
 

Signature:  ____________________________   Date:  _________________ 
 
 
 

Prof. Enkelejd HASHORVA 
Thesis supervisor 

 













 
 

University of Lausanne 
Faculty of Business and Economics 

 
 

PhD in Actuarial Science 
 
 
 

 
 
 
 
 

I hereby certify that I have examined the doctoral thesis of  
 
 

Nikolai KRIUKOV 
 
 

and have found it to meet the requirements for a doctoral thesis. 
All revisions that I or committee members 

made during the doctoral colloquium 
have been addressed to my entire satisfaction. 

 
 
 
 
 

Signature:  ____ _________   Date:  __17/02/2022________ 
 
 

Dr. Alfred KUME 
External member of the doctoral committee 









ACKNOWLEDGMENTS

I am deeply indebted to my thesis supervisor, professor Enkelejd Hashorva.
You significantly helped me to find the interesting directions for my research and
aided to structure and improve the results of this thesis. In addition, you also
supported me to maintain the motivation to proceed my research. I would be
pleased to continue working with you.

I am also wery grateful to Professor Krzysztof Dȩbicki, who in fact became my
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Chapter 1

Introduction

For any real-valued separable stochastic process X(t), t ∈ R its classical ruin
probability can be defined as follows

P {∃t ∈ T : X(t) > u} ,

where T is some Borel set of R, and u is some high threshold. An interesting
and challenging problem in risk theory is to calculate, simulate or approximate
the above probability of ruin. Even in the one dimensional classical models, exact
formulas for ruin probabilities are typically only possible under very non-realistic
assumptions. Therefore, often simulation or approximation as u increases is a
reasonable task for dealing with the ruin probability. Both simulation and approx-
imations require advanced techniques.

This dissertation has two main targets: On one side we consider approxima-
tions of various ruin probabilities. On the other side we shall also discuss inter-
esting bounds for those probabilities, where the threshold u is fixed. Without loss
of generality we may assume that all processes considered in this dissertation are
separable and jointly measurable.

The other important problem is an extension of the classical notion of ruin,
so-called the Parisian ruin. The core of the notion of the Parisian ruin is that now
one allows the surplus process to spend a pre-specified time under the level zero
before the ruin is recognized. Formally, the Parisian ruin can be defined as follows

P {∃t ∈ T ; ∀s ∈ [t, t+ S] : X(s) > u} ,

where T is again a Borel set, and S is some pre-specified positive time interval.
Usually, S does not depend on the moment of time t, but depends on the threshold
level u.
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The multidimensional analog of classical ruin probability is also of interest.
Such problem considers several processes X1(t), . . . , Xd(t) with the same domain
which ruin simultaneously within some Borel set T

P {∃t ∈ T : X1(t) > u1, . . . , Xd(t) > ud} .

The common choice of T is either an interval [0, T ], or a positive real halfline
[0,+∞). This dissertation focused mainly on the first case.

We consider next the classical Brownian motion case. Let B1(t), . . . , Bd(t) be
independent standard Brownian motions, and A is a non-singular d×d real matrix.
Then processes Wi(t) are defined as follows

(W1(t), . . . ,Wd(t))
> := A(B1(t), . . . , Bd(t))

>

and all ui have the same growing speed:

ui = aiu,

as u tends to infinity.
In Chapter 2 we obtain exact asymptotics for two-dimensional simultaneous

Parisian ruin for two correlated Brownian motions with drifts:

P
{
∃t ∈ [0, A− S/u2]; ∀s ∈ [t, t+ S/u2] : W1(s)− c1s > u,W2(s)− c2s > au

}
.

for any real constants c1, c2, a, and any positive constant S as u tends to infinity.
The Parisian ruin is focused on the probability of prolonged ruin period of company,
accepting that the ruin may occurs for a tiny moment. Results, achived in Chapter
2, continues the study of Parisian ruin asymptotics started in the paper [49], and
was further investigated in [13, 14].
In additional, this chapter considers cumulative Parisian ruin probability

P
{∫ A

0
I(W1(t)− c1t > u,W2(t)− c2t > au)dt > s/u2

}
.

again for any real constants c1, c1, a and any positive constant S. In fact, cu-
mulative Parisian ruin is simply the tail of the sojourn of the underlying process.
These type of investigations are of interest in various areas of probability beyond
insurance mathematics, see e.g., the monograph by Berman [7].

In Chapter 3 we focused on the multidimensional simultaneous ruin probability,
assuming that ruin occurs for at least k of d margins:

P {∃t ∈ [S, T ], I ⊂ {1, . . . , d} : |I| = k, ∀i ∈ I Wi(t)− cit > aiu}



for any real constants c1, . . . , cd, ai, . . . , ad. We derive both sharp bounds and
asymptotic approximations of the probability of interest for the finite and the
infinite time horizon. The results presented in this chapter extend previous findings
of [10, 19].

Chapter 4 contains some generalisation of the results related to asymptotics
of the simultaneous ruin probability for Brownian motion on more general class of
Gaussian processes.

Let Z(t) = (Z1(t), . . . , Zd(t))
>, t ∈ R where Zi(t), t ∈ R, i = 1, ..., d are mu-

tually independent centered Gaussian processes with continuous sample paths a.s.
and stationary increments. For X(t) = AZ(t), t ∈ R, where A is as above,
u, c ∈ Rd and T > 0 we derive tight bounds for the simultaneous ruin probability

P
{
∃t∈[0,T ] : ∩di=1{Xi(t)− cit > ui}

}
and find its exact asymptotics as the thresholds tend to infinity.

Finally, in Chapter 5 we discuss another interesting ruin problem. The classical
ruin probability can be represented as follows

P {∃t ∈ [0, T ] : W (t) > u} = P {∃t ∈ [0, T ] : W (t) ∈ uS} ,

where

S = {x ∈ R : x > 1}.

Hence, we can generalise the ruin probability by putting an arbitrary set S. The
same ruin probability may be defined in a multidimensional setup

P {∃t ∈ [0, T ] : (W1(t), . . . ,Wd(t)) ∈ uS} .

In our multivariate setting, we shall allow S to be a general Borel set. This
problem is already considered in the context of Shepp-statistics in [44]. In this
Chapter we derive upper bounds for the ruin probability of interest extending in
particular some results from [44].



Chapter 2

Parisian & Cumulative Parisian
Ruin

1 Introduction

Calculation of Parisian ruin for Brownian risk model has been initially consid-
ered in [49]. For general Gaussian risk models Parisian ruin cannot be calculated
explicitly. As shown in [13, 14] methods from the theory of extremes of Gaus-
sian random fields can be successfully applied to approximate the Parisian ruin
for general Gaussian risk models. In this chapter, we shall focus on the classical
bivariate Brownian motion risk model, which in view of recent findings in [27],
appears naturally as the limiting model of some general bivariate insurance risk
model. Consider therefore two insurance risk portfolios with corresponding risk
models

R1(t) = u+ c1t−W1(t), R2(t) = au+ c2t−W2(t), t ≥ 0,

where W1,W2 are two standard Brownian motions and the initial capital for the
first portfolio is u > 0, whereas for the second it is equal au for some real constant
a. Further c1 and c2 are some constants which denote the premium rates of the
first and the second portfolio, respectively. In this chapter we shall consider the
benchmark model where (W1(t),W2(t)), t ≥ 0 are assumed to be jointly Gaussian
with the same law as

(B1(t), ρB1(t) +
√

1− ρ2B2(t)), t ≥ 0, ρ ∈ (−1, 1), (1.1)

where B1, B2 are two independent standard Brownian motions. As mentioned
above, this model is supported by the findings of [27].

1This chapter is based on the paper [47].
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Throughout the following we suppose without loss of generality (see [53]) that
Wi’s are jointly measurable and separable. This assumption is important for the
definitions for classical ruin, Parisian ruin and cumulative Parisian ruin.

For given A > 0 and H ≥ 0 define the simultaneous Parisian ruin probability
on finite time horizon [0, A] and u > 0

PH,A(u, c1, au, c2) = P {∃t ∈ [0, A],∀s ∈ [t, t+H] : R1(s) < 0, R2(s) < 0} . (1.2)

When H = 0, the simultaneous Parisian ruin reduces to the simultaneous classical
ruin. Such model has been recently studied in [18].

It follows that for any A,H, u positive

PH,A(u, c1, au, c2) ≤ P0,A(u, c1, au, c2)

= P {∃t ∈ [0, A] : R1(t) < 0, R2(t) < 0}

since PH,A(u, c1, au, c2) is monotone in H. In [18] it is shown that the simultaneous
ruin probability can be bounded as follows

P {W ∗1 (A) > u,W ∗2 (A) > au} ≤ P0,A(u, c1, au, c2)

≤ P {W ∗1 (A) > u,W ∗2 (A) > au}
P {W1(A) > (c1A)+,W2(A) > (c2A)+}

, (1.3)

where we set
W ∗i (t) = Wi(t)− cit,

for i=1,2, and x+ = max(x, 0).
A simple lower bound for PH,A is valid for any u > 0

P {∀t ∈ [A,A+H] : R1(t) < 0, R2(t) < 0} ≤ PH,A(u, c1, au, c2). (1.4)

The above lower bound is very difficult to evaluate even asymptotically when u
tends to infinity. The most simple case is when a < ρ, ρ > 0. We have (see
Appendix) that for all large u and some C ∈ (0, 1)

CP {∀t ∈ [A,A+H] : W ∗1 (t) > u} ≤ PH,A(u, c1, au, c2)

≤ P

{
sup
t∈[0,A]

W ∗1 (t) > u

}
. (1.5)

Since P
{

supt∈[0,A]W
∗
1 (t) > u

}
can be evaluated explicitly, it follows easily that

as u→∞ it is asymptotically equal to 2P {W ∗1 (A) > u} and by [18][Thm 2.1] the
lower bound is proportional to P {W ∗1 (A) > u} /u as u → ∞. Therefore, even for
this simple case, the bounds derived above do not capture the exact decrease of



the Parisian ruin probability as u → ∞. The reason for this is that the interval
[A,A + H] is quite large. In the sequel, under the restriction that H = S/u2 for
any S ≥ 0 we show that it is possible to derive the exact approximations of the
Parisian ruin probability.

Motivated by [21] in this chapter we shall also investigate the so-called cumu-
lative Parisian ruin probability on the finite time interval [0, A], i.e.,

ΨL,A(u, au) = P
{∫ A

0
I(R1(t) < 0, R2(t) < 0)dt > L/f(u)

}
,

where A > 0, L > 0 are given constants and f is some positive function that
depends on u. It is clear that the above is bounded by P0,T (u, c1, au, c2) and
the calculation of the cumulative Parisian ruin probability is not possible for any
fixed u and x positive. A natural question here is (see [21] for the infinite time-
horizon case) if we can approximate the cumulative Parisian ruin probability as
u → ∞. This in particular requires to determine explicitly the function f . In
the case of one-dimensional risk model it is shown in [21] that the cumulative
Parisian ruin probability (or in the language of that chapter the tail of the sojourn
time/occupation time) can be approximated exactly when u becomes large. In
that aforementioned paper f(u) equals u2. We shall show that this is the right
choice also for our setup.

Section 2 presents the exact asymptotics of both Parisian and cumulative
Parisian ruin. Additionally, we discuss therein the approximation of the cumu-
lative Parisian ruin time

τL(u) = inf
A>0

∫ A

0
I(R1(t) < 0, R2(t) < 0)dt > L/f(u). (1.6)

Section 3 is dedicated to the proofs. We conclude this chapter with an Ap-
pendix composed of two auxiliary lemmas and a short discussion of general Parisian
ruin.

2 Main results

Using the self-similarity of Brownian motion we have that

PH,A(u, c1, au, c2) = P {∃t ∈ [0, 1],∀s ∈ [At,At+H] : R1(s) < 0, R2(s) < 0}

= P
{
∃t ∈ [0, 1],∀s ∈ [t, t+ (H/A)] :

R1(As) < 0
R2(As) < 0

}
= P

{
∃t ∈ [0, 1],∀s ∈ [t, t+ (H/A)] :

u+Ac1s < W1(As),
au+Ac1s < W1(As)

}



= P
{
∃t ∈ [0, 1], ∀s ∈ [t, t+ (H/A)] :

u/
√
A+
√
Ac1s < W1(s)

au/
√
A+
√
Ac1s < W1(s)

}
= PH/A,1(u/

√
A,
√
Ac1, au/

√
A,
√
Ac1).

In addition, we have

PH,A(u, c1, au, c2) = P revH,A(u, c2, u/a, c1),

where

P revH,A(u, c1, au, c2) = P {∃t ∈ [0, A],∀s ∈ [t, t+H] : Rrev1 (s) < 0, Rrev2 (s) < 0}

and

Rrev1 (t) = u+ c1t−W2(t), Rrev2 (t) = au+ c2t−W1(t), t ≥ 0.

Hence, we can consider only the case a ≤ 1 and A = 1. Let in the following

λ1 =
1− aρ
1− ρ2

, λ2 =
a− ρ
1− ρ2

, (2.1)

which are both positive if a ∈ (ρ, 1]. For the particular choice of H = S/u2 we
shall denote PH,A(u, au) simply as ψS(u, au). We consider first the approximation
of the Parisian ruin, recall W ∗i (t) = Wi(t)− cit.

Theorem 2.1 Let c1, c2 be two given real constants and let S ≥ 0 be given.
i) If a ∈ (ρ, 1], then as u→∞

ψS(u, au) ∼ Ca,ρ(S)P {W ∗1 (1) > u,W ∗2 (1) > au} ,

where

Ca,ρ(S) = λ1λ2

∫
R2

P
{
∃t ≥ 0, ∀s ∈ [t− S, t] :

W1(s)− s > x
W2(s)− as > y

}
×eλ1x+λ2y dxdy (2.2)

and Ca,ρ(S) ∈ (0,∞).
ii) If a ≤ ρ, then as u→∞

ψS(u, au) ∼ C(S)P {W ∗1 (1) > u,W ∗2 (1) > au} ,

where C(S) = E
{
esupt≥0 infs∈[t−S,t](W1(s)−s)

}
∈ (0,∞).



The approximation of the cumulative Parisian ruin requires some different
arguments since the sojourn functional is different from the supremum functional.
In the following we shall choose the scaling function f(u) to be equal to u2. Since we
consider A = 1, we can omit it and write simply ΨL(u, au) instead of ΨL,A(u, au).

Theorem 2.2 Under the setup and the notation of Theorem 2.1 for any L > 0
we have:
i) If a ∈ (ρ, 1], then as u→∞

ΨL(u, au) ∼ Ka,ρ(L)P {W ∗1 (1) > u,W ∗2 (1) > au} ,

where

Ka,ρ(L) = λ1λ2

∫
R2

P
{∫ ∞

0
I(W1(t)− t > x,W2(t)− at > y)dt > L

}
×eλ1x+λ2ydxdy ∈ (0,∞). (2.3)

ii) If a ≤ ρ, then as u→∞

ΨL(u, au) ∼ K(L)P {W ∗1 (1) > u,W ∗2 (1) > au} ,

where

K(L) =

∫
R
exP

{∫ ∞
0

I(W1(t)− t > x)dt > L

}
dx ∈ (0,∞). (2.4)

Remark 2.3 Theorems 2.1 and 2.2 may be used also if c1, c2, S and L depend
on u, but have finite limits as u → ∞ (c1(u) → c∗1, c2(u) → c∗2, S(u) → S∗,
L(u)→ L∗). In this case all constants S and L on the right-hand sides should be
replaced by S∗ and L∗, respectively.

The asymptotic distribution of the ruin time τL(u) defined in (1.6) may be explic-
itly calculated from Theorem 2.2 by using the self-similarity of Brownian motion.

Proposition 2.4 i) If a ∈ (ρ, 1], then for any 0 ≤ L2 ≤ L1 ≤ 1 with Ka,ρ defined
in (2.3)

lim
u→∞

P
{
u2(1− τL1(u)) ≥ x|τL2(u) ≤ 1

}
=
Ka,ρ(L1)

Ka,ρ(L2)
e
−x 1−2aρ+a2

2−2ρ2 , x ∈ (0,∞).

ii) If a ≤ ρ, then for any 0 ≤ L2 ≤ L1 ≤ 1 with K defined in (2.4)

lim
u→∞

P
{
u2(1− τL1(u)) ≥ x|τL2(u) ≤ 1

}
=
K(L1)

K(L2)
e−

x
2 , x ∈ (0,∞).



3 Proofs

Proof of Theorem 2.1: Let in the following T > 0 and set δ(u, T ) = 1 − Tu−2

for T, u > 0.

For any S positive and all u large

m(u, S, T ) := P
{
∃t∈[0,δ(u,T )],∀s ∈ [t, t+ S/u2] : W ∗1 (s) > u,W ∗2 (s) > au

}
≤ P

{
∃t∈[0,δ(u,T )] : W ∗1 (t) > u,W ∗2 (t) > au

}
≤ e−T/8

P {W ∗1 (1) ≥ u,W ∗2 (1) ≥ au}
P {W1(1) > max(c1, 0),W2(1) > max(c2, 0)}

, (3.1)

where the upper bound follows from [18][Lemma 4.1].

We give below the exact asymptotics of

M(u, S, T ) := P
{
∃t∈[δ(u,T ),1], ∀s ∈ [t, t+ S/u2] : W ∗1 (s) > u,W ∗2 (s) > au

}
as u tends to infinity.

Lemma 3.1 i) For any a ∈ (ρ, 1] and any positive S and T as u→∞

M(u, S, T ) ∼ u−2ϕρ(u+ c1, au+ c2)I(S, T ), (3.2)

where

I(S, T ) :=

∫
R2

P
{
t ∈ [0, T ],∀s ∈ [t− S, t] W1(s)− s > x

W2(s)− as > y

}
×eλ1x+λ2y dxdy,

and I(S, T ) ∈ (0,∞).
ii) For any a ≤ ρ and any positive S and T as u→∞

M(u, S, T ) ∼ u−1ϕρ(u+ c1, ρu+ c2)I(S, T ),

where

I(S, T ) :=

∫
R2

P {∃t ∈ [0, T ],∀s ∈ [t− S, t] : W1(s)− s > x}

×
[
I(a < ρ) + I(y < 0, a = ρ)

]
e
x− y

2−2y(c2−c1ρ)
2(1−ρ2) dxdy.

The proof of Lemma 3.1 postponed to the Appendix.



In view of Lemma 3.1, inequality (3.1) and asymptotics of the probability
P {W ∗1 (1) ≥ u,W ∗2 (1) ≥ au} (see Appendix, Lemma 4.1) we immediately obtain
that

lim
T→∞

lim
u→∞

m(u, S, T )

M(u, S, T )
= 0.

Hence, using that

M(u, S, T ) ≤ ψs(u, au) ≤ m(u, S, T ) +M(u, S, T )

we obtain

lim
T→∞

lim
u→∞

M(u, S, T )

ψS(u, au)
= 1.

Consequently, it suffices to prove that

lim
T→∞

I(S, T ) ∈ (0,∞).

Since I(S, T ) ≤ I(0, T ), I(S, T ) is growing and the finiteness of limT→∞ I(0, T )
follows from [18], the claim follows according to the asymptotics of the probability
P {W ∗1 (1) ≥ u,W ∗2 (1) ≥ au}. �

Proof of Theorem 2.2: First recall δ(u, T ) = 1− Tu−2.
For given L > 0 if

∫ 1
0 I(R1(t) < 0, R2(t) < 0)dt > L/f(u), then either the same in-

tegral but from 1−δ to 1 is larger than L/f(u), or for some point t1 ∈ [0, 1−δ(u, T )]
both R1(t1) and R2(t1) are smaller than zero. In terms of probabilities it means
that for any T > 0

M(u, T ) ≤ ΨL(u, au) ≤M(u, T ) +m(u, T ), (3.3)

where we set for u > 0

M(u, T ) = P

{∫ 1

1−δ(u,T )
I(W ∗1 (t) > u,W ∗2 (t) > au)dt > L/f(u)

}
,

m(u, T ) = P
{
∃t∈[0,1−δ(u,T )] : W ∗1 (t) > u,W ∗2 (t) > au

}
.

In view of [18][Lemma 4.1] for all large enough u

m(u, T ) ≤ e−T/8 P {W ∗1 (1) ≥ u,W ∗2 (1) ≥ au}
P {W1(1) > max(c1, 0),W2(1) > max(c2, 0)}

. (3.4)

The following lemma establishes the exact asymptotics of M(u, T ).



Lemma 3.2 i) For any a ∈ (ρ, 1] and any T > 0 as u→∞

M(u, T ) ∼ u−2ϕρ(u+ c1, au+ c2)I(T ), (3.5)

where

I(T ) :=

∫
R2

P
{∫ T

0
I(W1(t)− t > x,W2(t)− at > y)dt > L

}
×eλ1x+λ2ydxdy,

and I(T ) ∈ (0,∞).
ii) For any a ≤ ρ and any T > 0 as u→∞

M(u, T ) ∼ u−1ϕρ(u+ c1, ρu+ c2)I(T ),

where

I(T ) :=

∫
R2

P
{∫ T

0
I (W1(t)− t > x) dt > L

}
× [I{a < ρ}+ I{a = ρ, y < 0}] ex−

y2−2y(c2−c1ρ)
2(1−ρ) dxdy,

and I(T ) ∈ (0,∞).

The proof of Lemma 3.2 postponed to the Appendix.
In view of Lemma 3.2, inequality (3.4) and asymptotics of the probability

P {W ∗1 (1) ≥ u,W ∗2 (1) ≥ au} we immediately obtain that

lim
T→∞

lim
u→∞

m(u, T )

M(u, T )
= 0.

Hence, using (3.3) we have

lim
T→∞

lim
u→∞

M(u, T )

ΨL(u, au)
= 1.

Consequently, it suffices to show that

lim
T→∞

I(T ) ∈ (0,∞),

where I(T ) is defined in Lemma 3.2. Since I(T ) ≤ I(L, T ) defined in Lemma 3.1,
I(T ) is growing and limT→∞ I(L, T ) <∞, the claim follows. �

Proof of Proposition 2.4: Using the formula of conditional probability and
the self-similarity of Brownian motion for L1, L2, u positive

P
{
u2(1− τL1(u)) ≥ x|τL2(u) ≤ 1

}
=

P
{
τL1(u) ≤ 1− x/u2

}
P {τL2(u) ≤ 1}



=

P

{∫ 1−x/u2

0
I
(

W ∗1 (t) > u
W ∗2 (t) > au

)
dt > L1/u

2

}

P
{∫ 1

0
I
(

W ∗1 (t) > u
W ∗2 (t) > au

)
dt > L2/u2

}

=

P
{∫ 1

0
I
(

W ∗1 ((1− x/u2)t) > u
W ∗2 ((1− x/u2)t) > au

)
d(1− x/u2)t > L1/u

2

}
P
{∫ 1

0
I
(

W ∗1 (t) > u
W ∗2 (t) > au

)
dt > L2/u2

}

=

P


∫ 1

0
I

 W1(t) > u√
1−x/u2

+ c1

√
1− x/u2t

W2(t) > a u√
1−x/u2

+ c2

√
1− x/u2t

dt > L1/(1−x/u2)2

(u/
√

1−x/u2)2


P
{∫ 1

0
I
(

W ∗1 (t) > u
W ∗2 (t) > au

)
dt > L2/u2

} .

Applying Theorem 2.2 yields

P


∫ 1

0
I

 W1(t) > u√
1−x/u2

+ c1

√
1− x/u2t

W2(t) > a u√
1−x/u2

+ c2

√
1− x/u2t

 dt > L(1−x/u2)2

(u/
√

1−x/u2)2


P
{∫ 1

0
I
(

W ∗1 (t) > u
W ∗2 (t) > au

)
dt > L/u2

}

∼
P
{
W1(1) > u√

1−x/u2
+ c1

√
1− x/u2,W2(1) > a u√

1−x/u2
+ c2

√
1− x/u2

}
P {W ∗1 (1) > u,W ∗2 (1) > au} /Γ(L1, L2)

,

where

Γ(L1, L2) =

{
Ka,ρ(L1)
Ka,ρ(L2) , a ∈ (ρ, 1],
K(L1)
K(L2) , a ≤ ρ.

Notice that (write ϕ(x, y) for the pdf of vector (W1(1),W2(1)))

ϕ

(
u√

1− x/u2
+ c1

√
1− x/u2,

u√
1− x/u2

a+ c2

√
1− x/u2

)
= ϕ(u+ c1, au+ c2)ψ∗u(a, c1, c2),

where

lim
u→∞

logψ∗u(a, c1, c2) = −x1− 2aρ+ a2

2− 2ρ2
,



hence by Lemma 4.1 the claim follows if a > ρ . For the case a ≤ ρ notice that

ϕ

(
u√

1− x/u2
+ c1

√
1− x/u2,

u√
1− x/u2

ρ+ c2

√
1− x/u2

)
= ϕ(u+ c1, ρu+ c2)ψ∗u(ρ, c1, c2),

where

lim
u→∞

logψ∗u(ρ, c1, c2) = −x/2.

This finishes the proof in the case a ≤ ρ again using Lemma 4.1 �

4 Appendix

4.1 Parisian ruin for non-vanishing interval

Consider now the probability PH,T (u, au) with some fixed constant H. We can use
the following upper bound:

P {∀t ∈ [T, T +H] : W ∗1 (t) > u,W ∗2 (t) > au} ≤ PH,T (u, au).

We can present W2(t) using the correlation coefficient ρ as ρW1(t) + ρ∗B(t),
where ρ∗ =

√
1− ρ2, and B(t) is an independent Brownian motion. Note that if

W ∗1 (t) > u and B(t) > (a− ρ)u+ (c2− ρc1)t, then also W ∗2 (t) > au. Since W1 and
B are independent

P {∀t ∈ [T, T +H] : R1(t) < 0}
×P {∀t ∈ [T, T +H] : B(t) > (a− ρ)u+ (c2 − ρc1)t} ≤ PH,T (u, au).

In case ρ > 0 and ρ > a, the probability

P {∀t ∈ [T, T +H] : B(t) > (a− ρ)u+ (c2 − ρc1)t}

tends to one when u tends to infinity. So, for any positive ε for large enough u we
derived the following lower bound

(1− ε)P {∀t ∈ [T, T +H] : W1(t)− c1t > u} ≤ PH,T (u, au).

To find an upper bound we can put H = 0 and omit the restriction for W2, namely

PH,T (u, au) ≤ P

{
sup
t∈[0,T ]

(W1(t)− c1t) > u

}
.

As u tends to infinity, the probability P {∀t ∈ [T, T +H] : W1(t)− c1t > u} is
asymptotically equal to P {W ∗1 (T ) > u}, and the probability

P
{

supt∈[0,T ](W1(t)− c1t) > u
}

is asymptotically equal to P {W ∗1 (T ) > u} /u.



4.2 Auxiliary lemmas

The following Lemma shows the exact asymptotics of the right-hand sides in The-
orem 2.1 and Theorem 2.2.

Lemma 4.1 Let X1 and X2 be Gaussian random variables with correlation coef-
ficient ρ ∈ (−1, 1). Let also c1, c2 be two given real constants and a ≤ 1 be given.
Write further ϕρ(x, y) for the joint density function of vector (X1, X2).
i) If a ∈ (ρ, 1], then as u→∞

P {X1 > u+ c1, X2 > au+ c2} ∼
u−2

λ1λ2
ϕρ(u+ c1, au+ c2),

where

λ1 =
1− aρ
1− ρ2

, λ2 =
a− ρ
1− ρ2

.

ii) If a ≤ ρ, then we have as u→∞

P {X1 > u+ c1, X2 > au+ c2}

∼
√

2π(1− ρ2)Φ∗(c1ρ− c2)e
(c2−ρc1)2

2(1−ρ2) u−1ϕρ(u+ c1, ρu+ c2),

where Φ∗(c1ρ− c2) = 1 if a < ρ and Φ∗ is the df of
√

1− ρ2X1 when a = ρ.

Proof of Lemma 4.1: i) Using the dominated convergence theorem as u→∞

P {X1 > u+ c1, X2 > au+ c2} =
ϕρ(u+ c1, au+ c2)

u2

×
∫
x,y>0

e−λ1x−λ2y
ϕρ(c1 + x/u, c2 + y/u)

ϕρ(c1, c2)
dxdy

∼ ϕρ(u+ c1, au+ c2)

u2

×
∫
x,y>0

e−λ1x−λ2ydxdy.

ii) Again using the dominated convergence theorem as u → ∞ (denote C = 0 if
a = ρ and C = −∞ otherwise)

P {X1 > u+ c1, X2 > au+ c2} ∼
ϕρ(u+ c1, ρu+ c2)

u

×
∫
x>0
y>C

e−x
ϕρ(c1, c2 + y)

ϕρ(c1, c2)
dxdy



=
ϕρ(u+ c1, ρu+ c2)

u
e

(c2−ρc1)2

1−ρ2
√

2π(1− ρ2)

×
∫

y<ρc1−c2−C

e
− 1

2
y2

1−ρ2√
2π(1− ρ2)

dy

=
ϕρ(u+ c1, ρu+ c2)

u
e

(c2−ρc1)2

1−ρ2
√

2π(1− ρ2)

×Φ∗(ρc1 − c2).

�
Then next lemma helps to go from “almost all L” to “all L” in Lemma 3.2

Lemma 4.2 Let X1(t), X2(t) for t ≥ 0 satisfy the representation (1.1). Let also
λ1, λ2, a, T be positive constants and c1, c2 be real constants. Then the functions

I1(L) =

∫
R2

P
{∫ T

0
I(X1(t)− t > x,X2(t)− at > y)dt > L

}
eλ1x+λ2ydxdy,

I2(L) =

∫
R2

P
{∫ T

0
I (X1(t)− t > x) dt > L

}
× [I{a < ρ}+ I{a = ρ, y < 0}] ex−

y2−2y(c2−c1ρ)
2(1−ρ) dxdy

are continuous for L ∈ (0,∞).

Proof of Lemma 4.2: Consider the function I1(L). The proof for I2(L) will be
the same. To show the continuity of I1(L) it is sufficient to verify that

I∗1 (L) :=

∫
R2

P
{∫ T

0
I(W1(t)− t > x,W2(t)− at > y)dt = L

}
eλ1x+λ2ydxdy

= 0

for all positive L. Fix some L > 0 and let

Ax,y =

{
f1, f2 ∈ C[0, T ] :

∫ T

0
I(f1(t)− t > x, f2(t)− at > y)dt = L

}
.

For any fixed y0 ∈ R the sets Ax1,y0 and Ax2,y0 are non-overlapping for x1 6= x2.
Define

X = {x ∈ R : P {Ax,y0} > 0}, Xn = {x ∈ R : P {Ax,y0} > 1/n}.

Since Ax,y0 are non-overlapping for different x ∈ R, |Xn| < n. In addition, X =
∪n∈NXn. Thus, the set X is countable, establishing the proof.

�



4.3 Proofs of lemmas

This part contains proofs of all the lemmas presented above in this chapter.

Proof of Lemma 3.1: i) For any x, y ∈ R put

ux = u+ c1 − x/u, uy = au+ c2 − y/u.

Writing ϕ(x, y) for the joint pdf of (W1(1),W2(1))> we have

ϕρ(ux, uy) =: ϕρ(u+ c1, au+ c2)ψu(x, y), (4.1)

where as u→∞ (write Σ for the covariance matrix of (W1(1),W2(1))>)

logψu(x, y) =
1

u2
(u+ c1, au+ c2)Σ−1(x, y)> − 1

2u2
(x, y)Σ−1(x, y)>

→ (1, a)Σ−1(x, y)>

=
1− aρ
1− ρ2

x+
a− ρ
1− ρ2

y = λ1x+ λ2y.

(4.2)

Denote further

ux,y = uy − ρux = (a− ρ)u− (y − ρx)/u+ c2 − ρc1.

LetB1, B2 be two independent Brownian motions. The representation of (W1(t),W2(t))
in terms of B1 and B2 is given in (1.1). Define the following transform

s̄u = 1− s/u2

and set F (u) = u−2ϕρ(u+ c1, au+ c2).

For the function M(u, S, T ) we have using ψu defined in (4.1)

M(u, S, T )

=

∫
R2

P

{
∃t ∈ [0, T ]∀s ∈ [t− S, t] :

B1(s̄u)− c1s̄u > u

ρB1(s̄u) + ρ∗B2(s̄u)− c2s̄u > au

∣∣∣∣∣B1(1) = ux

ρ∗B2(1) = ux,y

}
×F (u)ψu(x, y)dxdy

=: F (u)

∫
R2

hu(T, S, x, y)ψu(x, y)dxdy.

Define two auxiliary processes for s ∈ [−S, T ] as follows

Bu,1(s) := {B1(s̄u) |B1(1) = ux } − s̄uux,
Bu,2(s) := {B2(s̄u) |ρ∗B2(1) = ux,y } − s̄uux,y/ρ∗.

(4.3)



Represent the function hu(T, S, x, y) in terms of these processes as

hu(T, S, x, y)

= P

∃t ∈ [0, T ]∀s ∈ [t− S, t] :

u(Bu,1(s) + s̄uux − c1s̄u − u) > 0

uρ (Bu,1(s) + s̄uux − c1s̄u − u) +

+ uρ∗Bu,2(s) + u[s̄uux,y − (c2 − ρc1)s̄u − u(a− ρ)] > 0

 .

We have the following weak convergence in the space C([−S, T ]) as u→∞

uBu,1(t)→ B1(t), uBu,2(t)→ B2(t), t ∈ [−S, T ], (4.4)

and further

u(s̄uux − c1s̄u − u) = u
[(

1− s

u2

)(
u+ c1 −

x

u

)
− c1

(
1− s

u2

)
− u
]

→ −s− x,
u[s̄uux,y − (c2 − ρc1)s̄u − u(a− ρ)]→ −(a− ρ)s− (y − ρx).

Consequently, as u tends to infinity

hu(T, S, x, y)→ h(T, S, x, y),

where in view of (1.1)

h(T, S, x, y)

= P

{
∃t ∈ [0, T ]∀s ∈ [t− S, t] :

B1(s)− s− x > 0,

ρ(B1(s)− s− x) + ρ∗B2(s)− (a− ρ)s− (y − ρx) > 0

}

= P

{
∃t ∈ [0, T ]∀s ∈ [t− S, t] :

W1(s)− s > x,

W2(s)− as > y

}
.

This convergence is justified by applying continuous mapping theorem for the
continuous functional

HT,S(F1(t), F2(t)) = sup
t∈[0,T ]

inf

(
inf

s∈[t−S,t]
F1(t), inf

s∈[t−S,t]
F2(t)

)
and random sequence (F1,x,y,u, F2,x,y,u) ∈ C[−S, T ]2

F1,x,y,u(s) = u(Bu,1(s) + s̄uux − c1s̄u − u),

F2,x,y,u(s) = uρ (Bu,1(s) + s̄uux − c1s̄u − u) + uρ∗Bu,2(s)

+u[s̄uux,y − (c2 − ρc1)s̄u − u(a− ρ)].



To finish the proof it is enough to show the dominated convergence as u→∞
for

Iu(S, T ) =

∫
R2

hu(T, S, x, y)ψu(x, y)dxdy.

For ψu(x, y) we can show the following upper bound. Fix some

0 < ε < min(λ1, λ2)

(such constant exists as in our case both λ1 and λ2 are positive) and define con-
stants λ1,ε = λ1 + sign(x)ε and λ2,ε = λ2 + sign(y)ε. Hence for large enough u
and all x, y ∈ R

ψu(x, y) ≤ ψ̄ := eλ1,εx+λ2,εy. (4.5)

For hu(S, T, x, y) we use Piterbarg inequality (see [53], Thm 8.1), since for all t, s
positive

u2E
{

(Bu,i(t)−Bu,i(s))2
}
< Const|t− s| (4.6)

for some positive constant and sufficiently large u. Thus, for such u we have for
some positive constant C̄

hu(T, S, x, y)

≤ P

∃s ∈ [0, T ] :

u(Bu,1(s) + s̄u(ux − c1)− u) > 0

uρ (Bu,1(s) + s̄u(ux − c1)− u) + uρ∗Bu,2(s)

+ u[s̄u(ux,y − c2 + ρc1)− u(a− ρ)] > 0


≤ h̄ :=


C̄e−c(x

2+y2), x, y ≥ 0,

C̄e−cx
2
, x ≥ 0, y < 0,

C̄e−cy
2
, y ≥ 0, x < 0,

1, x, y < 0.

Since λ1,ε, λ2,ε are positive

Iu(S, T ) ≤
∫
R2

h̄(T, S, x, y)ψ̄(x, y)dxdy

= C̄

∫
x,y>0

e−c(x
2+y2)+λ1,εx+λ2,εydxdy + C̄

∫
x>0,y<0

e−cx
2+λ1,εx+λ2,εydxdy

+ C̄

∫
x<0,y>0

e−cy
2+λ1,εx+λ2,εydxdy + C̄

∫
x,y<0

eλ1,εx+λ2,εydxdy <∞.



Hence the proof follows from the dominated convergence theorem.

ii) In the case a ≤ ρ we define

ux = u+ c1 − x/u, uy = ρu+ c2 − y

and ux,y = uy − ρux = c2 − y − ρc1 + ρx/u. In the previous notation

ϕρ(ux, uy) =: ϕρ(u+ c1, ρu+ c2)ψu(x, y),

where as u→∞

logψu(x, y) = (u+ c1, ρu+ c2)Σ−1(x/u, y)> − 1

2
(x/u, y)Σ−1(x/u, y)>

→ x− y2 − 2y(c2 − ρc1)

2− 2ρ2
. (4.7)

Setting F (u) = u−1ϕρ(u + c1, ρu + c2), we have the following representation for
the function M(u, S, T ) (write s̄u for 1− s/u2 and recall (1.1))

M(u, S, T ) =

=

∫
R2

P

{
∃t ∈ [δ(u, T ), 1]∀s ∈ [t, t+ S/u2] :

W ∗1 (s) > u

W ∗2 (s) > au

∣∣∣∣∣W1(1) = ux

W2(1) = uy

}
×u−1ϕρ(ux, uy)dxdy

=

∫
R2

P

{
∃t ∈ [0, T ]∀s ∈ [t− S, t] :

B1(s̄u)− c1s̄u > u

ρB1(s̄u) + ρ∗B2(s̄u)− c2s̄u > au

∣∣∣∣∣B1(1) = ux

ρ∗B2(1) = ux,y

}
×F (u)ψu(x, y)dxdy

=: F (u)

∫
R2

hu(T, S, x, y)ψu(x, y)dxdy.

Using Bu,1 and Bu,2 defined in (4.3) we can represent the function hu(T, S, x, y)
as

hu(T, S, x, y)

= P

∃t ∈ [0, T ]∀s ∈ [t− S, t] :

u(Bu,1(s) + s̄uux − c1s̄u − u) > 0

uρ (Bu,1(s) + s̄uux − c1s̄u − u) +

+ uρ∗Bu,2(s) + u[s̄uux,y − (c2 − ρc1)s̄u − u(a− ρ)] > 0

 .

As u tends to infinity we have

u(s̄uux − c1s̄u − u) = u
[(

1− s

u2

)(
u+ c1 −

x

u

)
− c1

(
1− s

u2

)
− u
]



→ −s− x,
u[s̄uux,y − (c2 − ρc1)s̄u − u(a− ρ)] = −u2(a− ρ)− uy + ρx

+ys/u+ ρxs/u2.

If a < ρ, then the above tends to ∞, and if a = ρ then it tends to ∞ only if y < 0
and to −∞ if y > 0. Finally, if a = ρ and y = 0, then the above tends to ρx.
Again using continuous mapping theorem, since (4.4) holds, we have the following
convergence (except if y = 0)

hu(T, S, x, y)→ h(T, S, x, y), u→∞,

where

h(T, S, x, y) =

= P

{
∃t ∈ [0, T ]∀s ∈ [t− S, t] :

B1(s)− s− x > 0,

ρ(B1(s)− s− x) + ρ∗B2(s) +∞ > 0

}
×(I{a < ρ}+ I{a = ρ, y < 0})

= P {∃t ∈ [0, T ]∀s ∈ [t− S, t] : W1(s)− s > x}
×(I{a < ρ}+ I{a = ρ, y < 0}).

To show the claim we can apply the dominated convergence theorem. Note that
for large enough u and all x, y ∈ R

logψu(x, y) ≤ ϕ̄(x, y) = (1 + sgn(x)/2)x+
c2 − ρc1

1− ρ2
y − y2

2
.

By Piterbarg inequality (as (4.6) holds here for i = 1) we can establish that for
some positive constant C̄

hu(T, S, x, y) ≤ P {∃s ∈ [0, T ] : u(Bu,1(s) + s̄u(ux − c1)− u) > 0}

≤ h̄ :=

{
C̄e−cx

2
, x ≥ 0,

1, x < 0.

Since (1 + sign(x)/2) > 0, then∫
R2

h̄(x, y)ϕ̄(x, y)dxdy <∞

and by the dominated convergence theorem the claim follows. �
Proof of Lemma 3.2: i) We use the same notation as in Lemma 3.1 i). Hence

the convergence (4.2) holds. For the function M(u, T ) we have

M(u, T )



=

∫
R2

P

{∫ T

0
I

(
B1(t̄u)− c1t̄u > u

ρB1(t̄u) + ρ∗B2(t̄u)− c2t̄u > au

)
dt > L

∣∣∣∣∣B1(1) = ux

ρ∗B2(1) = ux,y

}
×F (u)ψu(x, y)dxdy

=: F (u)

∫
R2

hu(L, T, x, y)ψu(x, y)dxdy.

Recalling the processes Bu,1 and Bu,2 from (4.3) we can represent the function
hu(T, S, x, y) as follows

hu(L, T, x, y)

= P


∫ T

0
I

u(Bu,1(t) + t̄uux − c1t̄u − u) > 0

uρ (Bu,1(t) + t̄uux − c1t̄u − u) +

+ uρ∗Bu,2(t) + u[t̄uux,y − (c2 − ρc1)t̄u − u(a− ρ)] > 0

 dt > L

 .

We have the same weak convergence as in (4.4) and further as u tends to infinity

u(t̄uux − c1t̄u − u) = u

[(
1− t

u2

)(
u+ c1 −

x

u

)
− c1

(
1− t

u2

)
− u
]

→ −t− x,
u[t̄uux,y − (c2 − ρc1)t̄u − u(a− ρ)]→ −(a− ρ)t− (y − ρx).

(4.8)

Now we want to apply the continuous mapping theorem to the function

HT (F1, F2) =

∫ T

0
I (F1(t) > 0, F2(t) > 0) dt

and a random sequence (F1,x,y,u, F2,x,y,u) ∈ C([0, T ]→ R2) defined as

F1,x,y,u = u(Bu,1(t) + t̄uux − c1t̄u − u),

F2,x,y,u = uρ (Bu,1(t) + t̄uux − c1t̄u − u)

+uρ∗Bu,2(t) + u[t̄uux,y − (c2 − ρc1)t̄u − u(a− ρ)],

with exception set

Λ = {F ∈ C([0, T ]) : µ(F−1(∂{(x, y) ∈ R2|x > 0, y > 0})) > 0}.

First we need to show that HT (F1, F2) is continuous for (F1, F2) 6∈ Λ. Define an
area

λ = (F1, F2)−1(∂{(x, y) ∈ R2|x > 0, y > 0}).



For any sequence (F1,n, F2,n) converging in C([0, T ] → R2) to some function
(F1, F2) as n→∞ we can define

(F ′1,n(t), F ′2,n(t)) =

{
(F1,n(t), F2,n(t)), t 6∈ λ,
(F1(t), F2(t)), t ∈ λ.

In this case for all t ∈ [0, T ] as n→∞

I(F ′1,n > 0, F ′2,n > 0)→ I(F1 > 0, F2 > 0).

Since µ(λ) = 0, we have HT (F ′1,n, F
′
2,n) = HT (F1,n, F2,n). Hence, the dominated

convergence theorem establishes the continuity of the function HT at the point
(F1, F2).
From (4.4) and (4.8) we can establish that as u tends to infinity

F1,x,y,u(t) → B1(t)− t− x = W1(t)− t− x,
F2,x,y,u(t) → ρ(B1(t)− t− x) + ρ∗B2(t)− (a− ρ)t− (y − ρx)

= W2(t)− at− y.

Since W1 and W2 are standard Brownian motions

P
{
µ((W1(·)− ·)−1(x)) > 0

}
= 0, P

{
µ((W2(·)− a·)−1(y)) > 0

}
= 0.

Consequently, P {(W1(·)− x− ·,W2(·)− a · −y) ∈ Λ} = 0, and we can apply con-
tinuous mapping theorem, which establish that for almost all L positive

hu(L, T, x, y)→ h(L, T, x, y), u→∞,

where

h(L, T, x, y)

= P

{∫ T

0
I

(
B1(t)− t− x > 0

ρ(B1(t)− t− x) + ρ∗B2(t)− (a− ρ)t− (y − ρx) > 0

)
dt > L

}

= P
{∫ T

0
I(W1(t)− t > x,W2(t)− at > y)dt > L

}
.

To finish the proof it is enough to show the dominated convergence for the integrals

Iu(T ) =

∫
R2

hu(L, T, x, y)ψu(x, y)dxdy.

In view of (4.5) and (4.6) for large enough u we have for some positive constant
C̄ such that for all x, y ∈ R

hu(L, T, x, y)



≤ P

∃t ∈ [0, T ] :

u(Bu,1(t) + t̄u(ux − c1)− u) > 0

uρ (Bu,1(t) + t̄u(ux − c1)− u) + uρ∗Bu,2(t)

+ u[t̄u(ux,y − c2 + ρc1)− u(a− ρ)] > 0


≤ h̄(T, x, y) :=


C̄e−c(x

2+y2), x, y ≥ 0,

C̄e−cx
2
, x ≥ 0, y < 0,

C̄e−cy
2
, y ≥ 0, x < 0,

1, x, y < 0.

Since λ1,ε, λ2,ε are positive,

Iu(T ) ≤
∫
R2

h̄(T, x, y)ψ̄(x, y)dxdy

= C̄

∫
x,y>0

e−c(x
2+y2)+λ1,εx+λ2,εydxdy + C̄

∫
x>0,y<0

e−cx
2+λ1,εx+λ2,εydxdy

+ C̄

∫
x<0,y>0

e−cy
2+λ1,εx+λ2,εydxdy + C̄

∫
x,y<0

eλ1,εx+λ2,εydxdy <∞.

Thus the dominated convergence theorem may be applied and provides us with
the claimed assertion. (The constant I(T ) is continuous with respect to L (see
Appendix, Lemma 4.2), so it holds for all L positive).

ii) We keep the same notation as in Lemma 3.1 i).
The following representation for the function M(u, T ) holds (write t̄u for 1− t/u2

and recall (1.1))

M(u, T )

=

∫
R2

P

{∫ T

0
I

(
B1(t̄u)− c1t̄u > u,

ρB1(t̄u) + ρ∗B2(t̄u)− c2t̄u > au

)
dt > L

∣∣∣∣∣B1(1) = ux

ρ∗B2(1) = ux,y

}
×F (u)ψu(x, y)dxdy

=: F (u)

∫
R2

hu(L, T, x, y)ψu(x, y)dxdy.

Using again Bu,1 and Bu,2 as in (4.3) we can represent the function hu(L, T, x, y)
as

hu(L, T, x, y)

= P


∫ T

0
I

u(Bu,1(t) + t̄uux − c1t̄u − u) > 0

uρ (Bu,1(t) + t̄uux − c1t̄u − u)

+ uρ∗Bu,2(t) + u[t̄uux,y − (c2 − ρc1)t̄u − u(a− ρ)] > 0

dt > L

 .



We have the same weak convergence as in (4.4). Moreover, in this case we may
use the convergence (4.7). With the same arguments as in i) we can apply the
continuous mapping theorem and establish the following convergence for almost
all L positive and all x ∈ R, y ∈ R \ {0}

hu(L, T, x, y)→ h(L, T, x, y), u→∞,

where

h(L, T, x, y) = P
{∫ T

0
I (B1(t)− t > x) dt > L

}
(I{a < ρ}+ I{a = ρ, y < 0}).

To show the claim we can apply the dominated convergence theorem. Note that
for large enough u

logψu(x, y) ≤ ϕ̄(x, y) = (1 + sign(x)/2)x+
c2 − ρc1

1− ρ2
y − y2

2
.

By Piterbarg inequality we can establish that for some positive constant C̄

hu(L, T, x, y) ≤ P {∃t ∈ [0, T ] : u(Bu,1(t) + t̄u(ux − c1)− u) > 0}

≤ h̄(x) :=

{
C̄e−cx

2
, x ≥ 0,

1, x < 0.

Since (1 + sign(x)/2) > 0, then∫
R2

h̄(x)ϕ̄(x, y)dxdy <∞,

and by the dominated convergence theorem the claim follows for almost all L ∈
(0,∞). The function I(T ) is continuous with respect to L, so the claimed assertion
holds for all L ∈ (0,∞). �



Chapter 3

Multivariate Pandemic-type
Failures

1 Introduction

In this chapter we are interested in the probabilistic aspects of multiple simulta-
neous failures typically occurring due to pandemic-type events. A key benchmark
risk model considered here is the d-dimensional Brownian risk model (Brm)

R(t,u)= (R1(t, u1), . . . , Rd(t, ud))
> = u+ct−W (t), t ≥ 0,

where c = (c1, . . . , cd)
>,u = (u1, . . . , ud)

> are vectors in Rd and random process
W (t) = ΓB(t), t ∈ R, with Γ a d× d real-valued non-singular matrix and B(t) =
(B1(t), . . . , Bd(t))

>, t ∈ R a d-dimensional Brownian motion with independent
components which are standard Brownian motions. By bold symbols we denote
column vectors, operations with vectors are meant component-wise and ax =
(ax1, . . . , axd)

> for any scalar a ∈ R and any x ∈ Rd.
Indeed, Brm is a natural limiting model in many statistical applications. More-

over, as shown in [27] such a risk model appears naturally in insurance applications.
Since Brm is a natural limiting model, it can be used as a benchmark for various
complex models. Given the fundamental role of Brownian motion in applied prob-
ability and statistics, it is also of theoretical interest to study failure events arising
from this model. Specifically, in this chapter we are interested in the behaviour of
the probability of multiple simultaneous failures occurring in a given time horizon
[S, T ] ⊂ [0,∞].

2This chapter is based on the joint work [15] with Krzysztof Dȩbicki and Enkelejd
Hashorva.
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In our settings failures can be defined in various ways. Let us consider first
the failure of a given component of our risk model. Namely, we say that the ith
component of our Brm has a failure (or ruin occurs) if Ri(t, ui)= ui+cit−Wi(t) <
0 for some t ∈ [S, T ]. The extreme case of a catastrophic event is when d multiple
simultaneous failures occurs. Typically, for pandemic-type events there are at
least k components of the model with simultaneous failures and k is large with the
extreme case k = d. In mathematical notation, for given positive integer k ≤ d of
interest is the calculation of the following probability

ψk(S, T,u)

= P {∃t ∈ [S, T ], I ⊂ {1, . . . , d}, |I| = k : ∩i∈I{Ri(t, ui) < 0}}
= P {∃t ∈ [S, T ], I ⊂ {1, . . . , d}, |I| = k : ∩i∈I {Wi(t)− cit > ui}} ,

where |I| denotes the cardinality of the set I. If T is finite, by the self-similarity
property of the Brownian motion ψk(S, T,u) can be derived from the case T = 1,
whereas T =∞ has to be treated separately.

There are no results in the literature investigating ψk(S, T,u) for general k.
The particular case k = d, for which ψd(S, T,u) coincides with the simultaneous
ruin probability has been studies in different contexts, see e.g., [2, 3, 9, 10, 28, 30,
36, 40, 41, 48, 52, 54]. The case d = 2 of Brm has been recently investigated in
[19].

Although the probability of multiple simultaneous failures seems very diffi-
cult to compute, our first result below, motivated by [44][Thm 1.1], shows that
ψk(S, T,u) can be bounded by the multivariate Gaussian survival probability,
namely by

pT (u) = P {(W1(T )− c1T, . . . ,Wd(T )− cdT ) ∈ E(u)} ,

where

E(u)=
⋃

I⊂{1,...,d}
|I|=k

EI(u) =
⋃

I⊂{1,...,d}
|I|=k

{x ∈ Rd : ∀i ∈ I : xi ≥ ui}. (1.1)

When u → ∞ we can approximate pT (u) utilising Laplace asymptotic method,
see e.g., [43], whereas for small and moderate values of u it can be calculated or
simulated with sufficient accuracy. Our next result gives bounds for ψk(S, T,u) in
terms of pT (u).

Theorem 1.1 If the matrix Γ is non-singular, then for any positive integer k ≤ d,
all constants 0 ≤ S < T <∞ and all c,u ∈ Rd

pT (u) ≤ ψk(S, T,u) ≤ KpT (u), (1.2)

where K = 1/minI⊂{1,...,d},|I|=k P {∀i∈I : Wi(T ) > max(0, ciT )} > 0.



The bounds in (1.2) indicate that it might be possible to derive an approx-
imations of ψk(S, T,u) for large threshold u, which has been already shown for
k = d = 2 in [19]. In this chapter we consider the general case k ≤ d, d > 2
discussing both the finite time interval (i.e., T = 1) and the infinite time horizon
case with T =∞ extending the results of [10] where d = k is considered.

In Section 2 we explain the main ideas that lead to the approximation of
ψk(S, T,u). Section 3 discusses some interesting special cases, whereas the proofs
are postponed to Section 4. Some technical calculations are displayed in Section
5.

2 Main Results

In this section W (t), t ≥ 0 is as in the Introduction and for a given positive integer
k ≤ d we shall investigate the approximation of ψk(S, T,u) where we fix u = au,
with a in Rd \ (−∞, 0]d and u is sufficiently large.

Let hereafter I denote a non-empty index set of {1, . . . , d}. For a given vector,
say x ∈ Rd we shall write xI to denote a subvector of x obtained by dropping its
components not in I. Set further

ψI(S, T,aIu) = P {∃t ∈ [S, T ] : AI(t)} ,

with

AI(t) = {W (t)− ct ∈ EI(au)} = {∀i ∈ I : Wi(t)− cit ≥ aiu}, (2.1)

where EI(au) was defined in (1.1). In vector notation for any u ∈ R

ψk(S, T,au) = P

∃t ∈ [S, T ] :
⋃

I⊂{1,...,d}
|I|=k

AI(t)


= P


⋃

I⊂{1,...,d}
|I|=k

{∃t ∈ [S, T ] : AI(t)}

 .



The following lower bound (by Bonferroni inequality)

ψk(S, T,au) ≥
∑

I⊂{1,...,d}
|I|=k

ψI(S, T,aIu)

−
∑

I,J⊂{1,...,d}
|I|=|J |=k
I6=J

P {∃t, s ∈ [S, T ] : AI(t) ∩AJ (s)} (2.2)

together with the upper bound

ψk(S, T,au) ≤
∑

I⊂{1,...,d}
|I|=k

ψI(S, T,aIu) (2.3)

are crucial for the derivation of the exact asymptotics of ψk(S, T,au) as u → ∞.
As we shall show below, the upper bound (2.3) turns out to be exact asymptotically
as u→∞. The following theorem constitutes the main finding of this chapter.

Theorem 2.1 Suppose that the square d×d real-valued matrix Γ is non-singular.
If a has no more than k − 1 non-positive components, where k ≤ d is a positive
integer, then for all 0 ≤ S < T <∞, c ∈ Rd

ψk(S, T,au) ∼
∑

I⊂{1,...,d}
|I|=k

ψI(0, T,aIu), u→∞. (2.4)

Moreover, (2.4) holds also if T = ∞, provided that c and a + ct have no more
than k − 1 non-positive components for all t ≥ 0.

Essentially, the above result is the claim that the second term in the Bonferroni
lower bound (2.2) is asymptotically negligible. In order to prove that, the asymp-
totics of ψ|I|(S, T,aIu) has to be derived. For the special case that I has only two
elements and S = 0, its approximation has been obtained in [19]. Note in passing
that the assumption in Theorem 2.1 that a has no more than k − 1 non-positive
components excludes the case that there exists a set I ⊂ {1, . . . , d}, |I| = k such
that ψI(0, T,aIu) does not tend to 0 as u → ∞, which due to its non-rare event
nature is out of interest in this chapter.
The next result extends the findings of [19] to the case d > 2. For notational
simplicity we consider the case I has d elements and thus avoid indexing by I.
Recall that in our model W (t) = ΓB(t) where B(t) has independent standard
Brownian motion components and Γ is a d × d non-singular real-valued matrix.
Consequently Σ = ΓΓ> is a positive definite matrix.



Hereafter 0 ∈ Rd is the column vector with all elements equal 0. Denote by
ΠΣ(a) the quadratic programming problem:

minimise x>Σ−1x, for all x ≥ a. (2.5)

Its unique solution ã is such that

ãI = aI , (ΣII)
−1aI > 0I , ãJ = ΣJI(ΣII)

−1aI ≥ aJ , (2.6)

where ãJ is defined if J = {1, . . . , d} \ I is non-empty. The index set I is unique
with m = |I| ≥ 1 elements (see Lemma 4.6 in chapter 4, or [10][Lem 2.1]) for more
details).

In the following we set
λ = Σ−1ã.

It is known that

λI = (ΣII)
−1aI > 0I , λJ ≥ 0J , (2.7)

with the convention that when J is empty the indexing should be disregarded so
that the last inequality above is irrelevant.

The next theorem extends the main result in [19] and further complements
findings presented in Theorem 2.1 showing that the simultaneous ruin probability
(i.e., k = d) behaves up to some constant, asymptotically as u → ∞ the same as
pT (u). For notational simplicity and without loss of generality we consider next
T = 1.

Theorem 2.2 If a ∈ Rd has at least one positive component and Γ is non-
singular, then for all S ∈ [0, 1)

ψd(S, 1,au) ∼ C(a)p1(au), u→∞, (2.8)

where C(a) =
∏
i∈I λi

∫
Rm P {∃t≥0 : W I(t)− taI > xI} eλ

>
I xIdxI ∈ (0,∞).

Remarks 2.3 i) By Lemma 4.6 below taking T = 1 therein (hereafter ϕ denotes
the probability density function (pdf) of ΓB(1))

p1(au) = P {W (1)− c > ua}

∼
∏
i∈I

λ−1
i P {W U (1) > cU |W I(1) > cI}u−|I|ϕ(uã+ c) (2.9)

as u → ∞, where λ = Σ−1ã and if J = {1, . . . , d} \ I is non-empty, then
U = {j ∈ J : ãj = aj}. When J is empty the conditional probability related to U



above is set to 1.
ii) Combining Theorem 2.1 and 2.2 for all S ∈ [0, 1) and all a ∈ Rd with no more
than k − 1 non-positive components we have as u→∞

ψk(S, 1,au) ∼
∑

I⊂{1,...,d}
|I|=k

C(aI)ψ|I|(0, 1,aIu)

∼ CP {∀i∈I∗ : Wi(1) > uai + ci}

(2.10)

for some C > 0 and some I∗ ⊂ {1, . . . , d} with k elements.
iii) Comparing the results of Theorem 2.2 and [10] we obtain

lim sup
u→∞

(− lnψk(S1, 1,au))1/2

− lnψk(S2,∞,au)
<∞

for all S1 ∈ [0, T ], S2 ∈ [0,∞).
iv) Define the failure time (consider for simplicity k = d) for our multidimensional
model by

τ(u) = inf{t ≥ 0 : W (t)− tc > au}, u > 0.

If a has at least one positive component, then for all T > S ≥ 0, x > 0

lim
u→∞

P
{
u2(T − τ(u)) ≥ x|τ(u)∈ [S, T ]

}
= e−x

ã>Σ−1ã
2T2 , (2.11)

see the proof in Section 4.

3 Examples

In order to illustrate our findings we shall consider three examples assuming that
ΓΓ> is a positive definite correlation matrix. The first example is dedicated to
the simplest case k = 1. In the second one we discuss k = 2 restricting a to
have all components equal to 1 followed then by the last example where only the
assumption ΓΓ> is an equi-correlated correlation matrix is imposed. In this section
T = 1 and S ∈ [0, 1) is fixed.
Example 1 (k = 1): Suppose that a has all components positive. In view of
Theorem 2.1 we have that

ψk(S, 1,au) ∼
d∑
i=1

ψ{i}(0, 1, aiu)



as u→∞. Note that for any positive integer i ≤ d

ψ{i}(0, 1, aiu) = P
{
∃t∈[0,1] : B(t)− cit > aiu

}
,

where B is a standard Brownian motion. It follows easily that

ψk(S, 1,au) ∼ 2
d∑
i=1

P {B(1) > aiu+ ci} , u→∞.

Example 2 (k = 2 and a = 1): Suppose next k = 2 and a has all components
equal 1. By Theorems 2.1 and 2.2 we have that

ψk(S, 1,1u) ∼
∑

{i,j}⊂{1,...,d}

Ci,j(1)P
{

min
k∈{i,j}

(Wk(1)− ck) > u)

}

as u → ∞, where 1 ∈ Rd has all components equal to 1. Using further Remark
2.3 we obtain as u→∞

P
{

min
k∈{i,j}

(Wk(1)− ck) > u)

}

∼ u−2

(1− ρi,j)2
√

2π(1− ρ2
i,j)

e
− u2

1+ρi,j
−

(ci+cj)u

1+ρi,j
−
c2i−2ρi,jcicj+c2j

2(1−ρ2
i,j

) .

Here we set ρi,j = corr(Wi(1),Wj(1)). Consequently, if ρi,j > ρi∗,j∗ , then as
u→∞

P
{

min
k∈{i∗,j∗}

(Wk(1)− ck > u)

}
= o

(
P
{

min
k∈{i,j}

(Wk(1)− ck > u)

})
.

The same holds also if ρi,j = ρi∗,j∗ and ci + cj > ci∗ + cj∗ . If we denote by τ the
maximum of all ρi,j ’s and by c∗ the maximum of ci + cj for all i, j’s such that
ρi,j = τ , then we conclude that

ψk(S, 1,au) ∼
∑

i,j∈{1,...,d},ρi,j=τ, ci+cj=c∗

Ci,j(1)P
{

min
k∈{i,j}

(Wk(1)− ck > u)

}
.

Note that in this case Ci,j(1) does not depend on i and j and is equals to

(1− τ)2

∫
R2

P {∃t≥0 : B1(t)− t > x,B2(t)− t > y} e(1−ρ2)(x+y)dxdy,



where (B1(t), B2(t)), t ≥ 0 is a 2-dimensional Gaussian process with Bi’s being
standard Brownian motions with constant correlation τ . Consequently, as u→∞

ψ2(S, 1,1u) ∼ C∗u−2e
− u2

1+τ
− c∗u

2(1+τ) ,

where

C∗ =
e
− c2∗

2(1−τ2)√
2π(1− τ2)

∑
i,j∈{1,...,d},ρi,j=τ, ci+cj=c∗

e
cicj
1−τ

×
∫
R2

P {∃t≥0 : B1(t)− t > x,B2(t)− t > y} e(1−τ2)(x+y)dxdy ∈ (0,∞).

Example 3 (Equi-correlated risk model): We consider the matrix Γ such that
Σ = ΓΓ> is an equi-correlated non-singular correlation matrix with off-diagonal en-
tries equal to ρ ∈ (−1/(d−1), 1). Let a ∈ Rd with at least one positive component
and assume for simplicity that its components are ordered, i.e., a1 ≥ a2 ≥ · · · ≥ ad
and thus a1 > 0. The inverse of Σ equals[

Jd − 11>
ρ

1 + ρ(d− 1)

]
1

1− ρ
,

where Jd is the identity matrix. First we determine the index set I corresponding
to the unique solution of ΠΣ(a). We have for this case that I with m elements is
unique and in view of (2.6)

λI = (ΣII)
−1aI =

1

1− ρ

[
aI − ρ

∑
i∈I ai

1 + ρ(m− 1)
1I

]
> 0I , (3.1)

with 0 ∈ Rd the origin. From the above m = |I| = d if and only if

ad > ρ

∑d
i=1 ai

1 + ρ(d− 1)
,

which holds in the particular case that all ai’s are equal and positive.
When the above does not hold, the second condition on the index set I given

in (2.6) reads
ΣJIΣ

−1
II aI = ρ(11>)JIΣ

−1
II aI ≥ aJ .

Next, suppose that ai = a > 0, ci = c ∈ R for all i ≤ d. In view of (2.10) for any
positive integer k ≤ d and any S ∈ [0, 1) we have

ψk(S, 1,au) ∼ CP {∀i≤k : Wi(1) > ua+ c} , u→∞, (3.2)



where (set I = {1, . . . , k})

C =
d!

k!(d− k)!

∏
i∈I

λi

∫
Rk

P {∃t≥0 : W I(t)− taI > xI} eλ
>
I xIdxI ∈ (0,∞).

Note that the case ρ = 0 is treated in [5][Prop. 3.6] and follows as a special
case of this example.

4 Proofs

4.1 Proof of Theorem 1.1

Our proof below is based on the idea of the proof of [44][Thm 1.1], where c has
zero components, k = d and S = 0 has been considered. Recall the definition of
sets EI(u) and E(u) introduced in (1.1) for any non-empty I ⊂ {1, . . . , d} such
that |I| = k ≤ d. With this notation we have

ψk(S, T,u) = P {∃t ∈ [S, T ] : W (t)− ct ∈ E(u)} = P {τk(u) ≤ T} ,

where τk(u) is the ruin time defined by

τk(u) = inf{t ≥ S : W (t)− ct ∈ E(u)}.

For the lower bound, we note that

ψk(S, T,u) = P {∃t ∈ [S, T ] : W (t)− ct ∈ E(u)} ≥ P {W (T )− cT ∈ E(u)} .

By the fact that Brownian motion has continuous sample paths

W (τk(u))− cτk(u) ∈ ∂E(u) (4.1)

almost surely, where ∂A stands for the topological boundary (frontier) of the set
A ⊂ Rd.
Consequently, by the strong Markov property of the Brownian motion, we can
write further

P {W (T )− cT ∈ E(u)}

=

∫ T

0

∫
∂E(u)

P {W (t)− ct ∈ dx|τk(u)}

×P {W (T )− cT ∈ E(u)|W (t)− ct = x}P {τk(u) ∈ dt}.



Crucial is that the boundary ∂E(u) can be represented as the following union

∂E(u) =
⋃

I⊂{1,...,d}
|I|=k

(∂EI(u) ∩ ∂E(u)) =:
⋃

I⊂{1,...,d}
|I|=k

FI(u).

For every x ∈ FI(u) using the self-similarity of Brownian motion for all non-
empty index sets I ⊂ {1, . . . , d} and all t ∈ (S, T )

P {W (T )− cT ∈ E(u)|W (t)− ct = x}
≥ P {W (T )− cT ∈ EI(u)|W (t)− ct = x}
= P {W I(T )− cIT ≥ uI |W (t)− ct = x}
≥ P {W I(T − t)− cI(T − t) ≥ 0}
≥ P {W I(T − t) ≥ cI(T − t)}

= P
{
W I(1) ≥ cI

√
T − t

}
≥ P

{
W I(1) ≥ c̃I

√
T
}

= P {W I(T ) ≥ c̃IT}
≥ min
I⊂{1,...,d}
|I|=k

P {W I(T ) ≥ c̃IT} ,

where c̃i = max(0, ci), hence for all x ∈ ∂E(u)

P {W (T )− cT ∈ E(u)|W (t)− ct = x} ≥ min
I⊂{1,...,d}
|I|=k

P {W I(T ) ≥ c̃IT} .

Consequently, using further (4.1) we obtain

P {W (T )− cT ∈ E(u)}
≥ min
I⊂{1,...,d}
|I|=k

P {W I(T ) ≥ c̃IT}

×
∫ T

S

∫
∂E(u)

P {W (t)− ct ∈ dx|τk(u) = t}P {τk(u) ∈ dt}

= min
I⊂{1,...,d}
|I|=k

P {W I(T ) ≥ c̃IT}ψk(S, T,u),

establishing the proof. �



4.2 Proof of Theorem 2.1

The results in this section hold under the assumption that Σ = ΓΓ> is positive
definite, which is equivalent with our assumption that Γ is non-singular. The next
lemma is a consequence of [34][Lem 2]. We recall that ϕ denotes the probability
density function of ΓB(1).

Lemma 4.1 For any a ∈ Rd\(−∞, 0]d we have for some positive constants C1, C2

as u→∞

P {W (1)−c > au} ∼ C1P {∀i∈I : Wi(1)−ci > aiu} ∼ C2u
−αϕ(ãu+c),

where α is some integer and ã is the solution of quadratic programming problem
ΠΣ(a),Σ = ΓΓ> and I is the unique index set that determines the solution of
ΠΣ(a).

We agree in the following that if I is empty, then the term AI(t) should be simply
deleted from the expressions below; recall that AI(t) is defined in (2.1).

We state next three lemmas utilised in the case T < ∞. Their proofs are
displayed Section 5.

Lemma 4.2 Let I,J ⊂ {1, . . . , d} be two index sets such that I 6= J and |I| =
|J | = k≥1. If aI∪J has at least two positive components, then for any s, t ∈ [0, 1]
there exists some ν = ν(s, t) > 0 such that as u→∞

P {AI(t) ∩AJ (s)} = o
(
e−νu

2
) ∑
I∗⊂{1,...,d}
|I∗|=k

P {AI∗(1)} , (4.2)

and

P
{
AI\J (t), AJ\I(s), AI∩J (min(t, s))

}
= o

(
e−νu

2
) ∑
I∗⊂{1,...,d}
|I∗|=k

P {AI∗(1)} . (4.3)

Lemma 4.3 Let S > 0, k ≤ d be a positive integer and let a ∈ Rd be given.
If I,J ⊂ {1, . . . , d} are two different index sets with k ≥ 1 elements such that
aI∪J has at least one positive component, then there exist s1, s2 ∈ [S, 1] and some
positive constant τ such that as u→∞

P {∃s, t ∈ [S, 1] : AI(s) ∩AJ (t)}
= o (eτu)P

{
AI\J (s1) ∩AJ\I(s2) ∩AI∩J (min(s1, s2))

}
.

(4.4)



Case T <∞. According to Theorem 1.1 and Lemma 4.1 it is enough to show
the proof for S ∈ (0, T ). In view of the self-similarity of Brownian motion we
assume for simplicity T = 1. Recall that in our notation Σ = ΓΓ> is the covariance
matrix of W (1) which is non-singular and we denote its pdf by ϕ. In view of (4.3)
and (4.4) for all S ∈ (0, 1) there exists some ν > 0 such that as u→∞∑
I,J⊂{1,...,d}
|I|=|J |=k,I6=J

P {∃s, t ∈ [S, 1] : AI(s) ∩AJ (t)} = o
(
e−νu

2
) ∑
I⊂{1,...,d}
|I|=k

P {AI(1)} .

Note that we may utilise (4.3) and (4.4) for sets I and J of length k, because
of the assumption that a has no more than k− 1 non-positive components. Hence
any vector aI has at least one positive component.

Further, by Theorem 1.1 and the inclusion-exclusion formula we have that for
some K > 0 and all u sufficiently large

ψk(S, 1,u) ≤ K
∑

I⊂{1,...,d}
|I|=k

P {AI(1)} .

Hence the claim follows from (2.2) and (2.3).
Case T =∞. Using the self-similarity of Brownian motion we have

P {∃t > 0 : AI(t)} = P {∃t > 0 : W I(ut) ≥ (a+ ct)Iu}
= P

{
∃t > 0 : W I(t) ≥ (a+ ct)I

√
u
}

= P {∃t > 0 : A∗I(t)} ,

where

A∗I(t) = {W I(t) ≥ (a+ ct)I
√
u}. (4.5)

For t > 0 define

rI(t) = min
x≥aI+cIt

1

t
x>Σ−1

IIx, ΣII = V ar(W I(1)), Σ−1
II = (ΣII)

−1. (4.6)

Since limt↓0 rI(t) =∞ we set below rI(0) =∞.
In view of Lemma 4.1 we have as u→∞

P {A∗I(t)} ∼ C1u
−α/2ϕI,t(( ˜aI + cIt)

√
u) = C2u

−α/2e−
rI(t)u

2 ,

where ˜aI + cIt is the solution of quadratic programming problem

ΠtΣII (aI + cIt)



and ϕI,t(x) is the pdf of W I(t), α is some integer and C1, C2 are positive con-
stant that do not depend on u. For notational simplicity we shall omit below the
subscript I.

The rest of the proof is established by utilising the following lemmas, whose
proofs are displayed in Section 5.

Lemma 4.4 Let k ≤ d be a positive integer and let a, c ∈ Rd. Consider two
different sets I,J ⊂ {1 . . . d} of cardinality k. If both aI + cIt and aJ + cJ t have
at least one positive component for all t > 0 and both cI and cJ also have at least
one positive component, then if

t̂I := argmin
t>0

rI(t) 6= t̂J := argmin
t>0

rJ (t)

we have

P
{
∃s, t > 0 : A∗I(t)∩A∗J (s)

}
= o(P

{
A∗I(t̂I)

}
+ P

{
A∗J (t̂J )

}
), u→∞.

Lemma 4.5 Under the settings of Lemma 4.4, if a+ ct has no more than k − 1
non-positive component for all t > 0 and c has no more than k − 1 non-positive
components, then in case t̂I := argmin

t>0
rI(t) = t̂J := argmin

t>0
rJ (t)

P
{
∃s, t > 0 : A∗I(t)∩A∗J (s)

}
= o

 ∑
K⊂{1...d}
|K|=k

P
{
A∗K(t̂K)

} , u→∞.

Combining the above two lemmas we have that for any two index sets I,J ⊂
{1, . . . , d} of cardinality k, there is some index set K ⊂ {1, . . . , d} such that as
u→∞

P
{
∃s, t > 0 : A∗I(s)∩A∗J (t)

}
= o (P {∃t > 0 : A∗K(t)}) ,

which is equivalent with

P {∃s, t > 0 : AI(s)∩AJ (t)} = o (P {∃t > 0 : AK(t)}) .

The proof follows now by (2.2) and (2.3). �



4.3 Proof of Theorem 2.2

Below we set
δ(u,Λ) := 1− Λu−2

and denote by ã the unique solution of the quadratic programming problem ΠΣ(a).
We denote below by I the index set that determines the unique solution of

ΠΣ(a), where a ∈ Rd has at least one positive component. If J = {1, . . . , d} \ I is
non-empty, then we set below U = {j ∈ J : ãj = aj}. The number of elements |I|
of I is denoted by m, which is a positive integer.

The next lemma is proved in Section 5.

Lemma 4.6 For any Λ > 0, a ∈ Rd \ (−∞, 0]d, c ∈ Rd and all sufficiently large
u there exist C > 0 such that

m(u,Λ) := P
{
∃t∈[0,δ(u,Λ)] : W (t)− tc > ua

}
≤ e−Λ/C P {W (1) ≥ au+ c}

P {W (1) > max(c, 0)}
(4.7)

and further

M(u,Λ) := P
{
∃t∈[δ(u,Λ),1] : W (t)− tc > ua

}
∼ C(c)K([0,Λ])u−mϕ(uã+ c),

(4.8)

where C(c) = P {W U (1) > cU |W I(1) > cI} and for λ = Σ−1ã

E([Λ1,Λ2]) =

∫
Rm

P
{
∃t∈[Λ1,Λ2] : W I(t)− taI > xI

}
eλ
>
I xIdxI ∈ (0,∞)

for all constants Λ1 < Λ2. We set C(c) equal 1 if U defined in Remark 2.3 is
empty. Further we have

lim
Λ→∞

E([0,Λ]) =

∫
Rm

P {∃t≥0 : W I(t)− taI > xI} eλ
>
I xIdxI ∈ (0,∞). (4.9)

First note that for all Λ, u positive

M(u,Λ) ≤ P
{
∃t∈[0,1] : W (t)− tc > ua

}
≤M(u,Λ) +m(u,Λ).

In view of Lemmas 4.6 and 4.1

lim
Λ→∞

lim
u→∞

m(u,Λ)

M(u,Λ)
= 0,

hence

lim
Λ→∞

lim
u→∞

P
{
∃t∈[0,1] : W (t)− tc > ua

}
M(u,Λ)

= 1,

and the proof follows applying (4.8). �



4.4 Proof of Eq. (2.11)

The proof is similar to that of [12][Thm 2.5] and therefore we highlight only the
main steps. If T > S ≥ 0 by the definition of τ(u) and the self-similarity of
Brownian motion

τ(u)

T
= inf{t ≥ 0 : W (Tt)− tTc > au}

= inf{t ≥ 0 : W (t)− t
√
Tc > au/

√
T}.

Thus, without loss of generality in the rest of the proof we suppose that T = 1 >
S ≥ 0.

We note that

P
{
u2(1− τ(u)) ≥ x|τ(u) ∈ [S, 1]

}
=

P
{
u2(1− τ(u)) ≥ x, τ(u) ∈ [S, 1]

}
P {τ(u) ∈ [S, 1]}

=
P
{
u2(1− τ(u)) ≥ x, τ(u) ≤ 1

}
P {τ(u) ∈ [S, 1]}

−
P
{
u2(1− τ(u)) ≥ x, τ(u) ≤ S

}
P {τ(u) ∈ [S, 1]}

= P1(u)− P2(u).

Next, for x̃(u) = 1− x
u2

P1(u) =
P {τ(u) ≤ x̃(u)}
P {τ(u) ∈ [S, 1]}

∼
P
{
∃t∈[0,x̃(u)] : W (t)− ct > ua

}
P
{
∃t∈[0,1] : W (t)− ct > ua

}
=

P
{
∃t∈[0,1] : W (t)− (c

√
x̃(u))t > u√

x̃(u)
a

}
P
{
∃t∈[0,1] : W (t)− ct > ua

} , u→∞.

Hence by Theorem 2.2, using the fact that

ϕ

(
u√
x̃(u)

ã+ (c
√
x̃(u))

)
= ϕ(uã+ c)e

− 1
2

(
1

x̃(u)
−1
)
u2ã>Σ−1ã

e−
1
2

(x̃(u)−1)c>Σ−1c

and

lim
u→∞

e
− 1

2

(
1

x̃(u)
−1
)
u2ã>Σ−1ã

= e−x
ã>Σ−1ã

2 , lim
u→∞

e−
1
2

(x̃(u)−1)c>Σ−1c = 1

we obtain

lim
u→∞

P1(u) = e−x
ã>Σ−1ã

2 . (4.10)



Moreover, following the same reasons as above

P2(u) =
P {τ(u) ≤ S}

P {τ(u) ∈ [S, 1]}
∼ P {τ(u) ≤ S}

P {τ(u) ≤ 1}
→ 0 (4.11)

as u→∞. Thus, combination of (4.10) with (4.11) leads to

lim
u→∞

P
{
u2(1− τ(u)) ≥ x|τ(u) ∈ [S, 1]

}
= e−x

ã>Σ−1ã
2 .

�

5 Appendix

Lemma 5.1 If for a ∈ (R∪{−∞})d and I ⊂ {1, . . . , d} such that aI has at least
two positive components and Γ is non-singular, then for all t > 0

P {AI(t)} = o
(
e−νu

2
)∑
i∈I

P
{
AI\{i}(t)

}
, u→∞,

where ν = ν(t, I) > 0 does not depend on u.

Remark 5.2 Lemma 5.1 implies that for any vector a ∈ (R ∪ {−∞})d and for
any d-dimensional Gaussian random vector W , if a has at least two positive com-
ponents, there exists some positive constant η and i ∈ {1 . . . d} such that as u→∞

P {W > au} = o(e−ηu
2
)P {WK > aKu} , K = {1, . . . , d} \ {i}.

Proof of Lemma 5.1: For notational simplicity we shall assume that I =
{1, . . . , d} and set Ki = I \ {i}. By the assumption for all i ∈ I the vector aKi
has at least one positive component and Σ = ΓΓ> is positive definite. In view of
Lemma 4.1 for any fixed t > 0 and some C1, C2 two positive constants we have

P {AI(t)} ∼ C1u
α1ϕt(ãu+ c), P {AKi(t)} ∼ C2u

α2ϕt(āiu+ c), u→∞,

where ϕt is the pdf of W (t) with covariance matrix Σ(t) = tΣ and

ã = argmin
x≥a

x>Σ−1(t)x,

āi = arg min
x∈Si

x>Σ−1(t)x,

with Si = {x ∈ Rd : ∀j ∈ Ki : xj ≥ aj}. Since {x ∈ Rd : x ≥ a} ⊂ Si, it is clear
that

ã>Σ−1(t)ã ≥ āi>Σ−1(t)āi



for any i ≤ d. Next, if we have strict inequality for some i ≤ d, i.e., ã>Σ−1(t)ã >
āi
>Σ−1(t)āi, then it follows that

P {AI(t)} ∼ Cuα1ϕt(ãu+ c) = o
(
e−νu

2
P {AKi(t)}

)
, u→∞

for ν = 1
2

(
ã>Σ−1(t)ã− āi>Σ−1(t)āi

)
> 0, hence the claim follows.

Let us consider now the extreme case that for all i ≤ d we have ã>Σ−1ã =
āi
>Σ−1āi. As we know that each āi is unique, then āi = ã for all i ∈ I. Consider

set

E = {x ∈ Rd : x>Σ−1(t)x ≤ ã>Σ−1(t)ã}.

Since Σ(t) is positive definite, E is a full dimensional ellipsoid in Rd. By the
definition, E ∩ Si = {ã}. Define the following lines in Rd

li = {x ∈ Rd : ∀i ∈ Ki, xi = ãi}

and observe that since li ∈ Si, we have li∩E = {ã}, and they are linearly indepen-
dent. Since E is smooth, there can not be more than d − 1 linearly independent
tangent lines at the point ã, which leads to a contradiction.

�
Proof of Lemma 4.2: First note that since I 6= J , then |I ∪ J | ≥ k + 1.

Consequently, we can find some index set K such that

|K| = k + 1, K ⊂ I ∪ J

and further aK has at least two positive components. Applying Lemma 5.1 for
any t ∈ [0, 1] and some ν > 0

P {AK(t)} = o
(
e−νu

2
)∑
j∈K

P
{
AK\{j}(t)

}
, u→∞.

If s = t, then applying Lemma 4.1

0 ≤ P {AI(t) ∩AJ (t)} = P {AI∪J (t)} ≤ P {AK(t)}

= o
(
e−νu

2
) ∑
I∗⊂{1,...,d}
I∗|=k

P {A∗I(t)} .

Next, if s < 1, then applying Lemma 4.1 we obtain

0 ≤ P {AI(t) ∩AJ (s)} ≤ P {AJ (s)} = o
(
e−νu

2
P {AJ (1)}

)



= o
(
e−νu

2
) ∑
I∗⊂{1,...,d}
|I∗|=k

P {AI∗(1)} .

A similar asymptotic bound follows for t < 1, whereas if s = t = 1, the first claim
follows directly from the case s = t discussed above. We show next (4.3). If s < t,
then s < 1 and applying Lemma 4.1 we obtain

0 ≤ P
{
AI\J (t), AJ\I(s), AI∩J (min(t, s))

}
≤ P {AJ (s)} = o

(
e−νu

2
P {AJ (1)}

)
= o

(
e−νu

2
) ∑
K⊂{1,...,d}
|K|=k

P {AK(1)} .

A similar asymptotic bound follows for t < s or s = t ≤ 1 by applying (4.2)
establishing the proof. �

Proof of Lemma 4.3: Define for s, t ∈ [S, 1] the Gaussian random vector

W(s, t) = (W I\J (s)>,W J\I(t)
>,W I∩J (min(s, t))>)>,

with covariance matrix D(s, t). We show first that this matrix is positive definite.
For this we assume that s ≤ t. As D(s, t) is some covariance matrix, we know that
it is non-negative definite. Choose some vector v ∈ Rd. It is sufficient to show
that if v>D(s, t)v = 0, then v = 0 (0 := (0, . . . , 0)> ∈ Rd). Note that

v>D(s, t)v = V ar(〈W(s, t),v〉)
= V ar(〈W (s),v〉+ 〈W J\I(t)−W J\I(s),vJ\I〉).

Using that W (t) has independent increments, this variance is equal to the sum
of the variances. Hence, both of them should be equal to zero. In particular it
means that V ar(〈W (s),v〉) = 0. Hence, as s > S > 0, we have that v = 0. Thus,
D(s, t) is positive definite and D−1(s, t) exists.
Set further

a = (a>I\J ,a
>
J\I ,a

>
I∩J )>, c(s, t) = (sc>I\J , tc

>
J\I ,min(s, t)c>I∩J )>.

With this notation we have

P {∃s, t ∈ [S, 1] : AI(s) ∩AJ (t)} ≤ P {∃s, t ∈ [S, 1] :W(s, t)− c(s, t) ≥ au} .

Let ã(s, t) = argminx≥a x
>D−1(s, t)x be the unique solution of ΠD(s,t)(a) and

let further w(s, t) = D−1(s, t)ã(s, t) be the solution of the dual problem. We



denote by I(s, t) the index set related to the quadratic programming problem
ΠD(s,t)(a). Then w(s, t) has non-negative components and according to the prop-
erties of quadratic programming problems, since both s, t ≥ S > 0 we have

a>w(s, t) = ã>(s, t)w(s, t) = ã>(s, t)D−1(s, t)ã(s, t) > 0.

Consequently, we have

P {∃s, t ∈ [S, 1] :W(s, t)− c(s, t) ≥ au}

≤ P
{
∃s, t ∈ [S, 1] : w>(s, t) (W(s, t)− c(s, t)) ≥ uw>(s, t)ã(s, t)

}
= P

{
∃s, t ∈ [S, 1] :

w>(s, t) (W(s, t)− c(s, t))

w>(s, t)ã(s, t)
≥ u

}
≤ P

{
∃s, t ∈ [S, 1] :

w>(s, t)W(s, t)

w>(s, t)ã(s, t)
≥ u+ C

}
for any positive u, where C = mins,t∈[S,1]

w>(s,t)c(s,t)
w>(s,t)ã(s,t)

. Moreover, for some s1, s2 ∈
[S, 1]

σ2 = sup
s,t∈[S,1]

E

{(
w>(s, t)W(s, t)

w>(s, t)ã(s, t)

)2
}

= sup
s,t∈[S,1]

1

ã>(s, t)D−1(s, t)ã(s, t)

=
1

ã>(s1, s2)D−1(s1, s2)ã(s1, s2)
,

since [S, 1]2 is compact. Moreover, one can check that for some positive constant
G and s1, s2, t1, t2 ∈ [S, 1]

E

{(
w>(s1, t1)W(s1, t1)

w>(s1, t1)ã(s, t)
− w>(s2, t2)W(s2, t2)

w>(s2, t2)ã(s, t)

)2
}

≤ G[|s1 − s2|+ |t1 − t2|].

Thus, utilizing Piterbarg inequality, see e.g., [53][Thm 8.1], we have that there
exist positive constants C, γ such that

P {∃s, t ∈ [S, 1] :W(s, t)− c(s, t) ≥ au} ≤ Cuγe−(u+C)2/2σ2

for all u positive. Further, by Lemma 4.1 for some constants α,C∗, C+ as u→∞

P
{
AI\J (s1), AJ\I(s2), AI∩J (min(s1, s2))

}
= P {W(s1, s2)− c(s1, s2) ≥ au}
∼ C∗u−αe−

1
2

(ã(s1,s2)u+c(s1,s2))>D−1(s1,s2)(ã(s1,s2)u+c(s1,s2))

= C+u−αe−
u2

2σ2 e−u(ãs1,s2 )>D−1(s1,s2)(c(s1,s2)).

Hence the claim follows for τ = |C/σ2|+ sups,t∈[S,1] |ã(s, t)D−1(s, t)c(s, t)|+ 1. �



Lemma 5.3 The function rI(t), t > 0 defined in (4.6) is convex and if cI has at
least one positive component, then there exists T > 0 such that for some positive
s and any t > 0

rI(T + t) ≥ rI(T ) + st. (5.1)

Moreover, if aI + cIt for any t > 0 have at least one positive component, then
rI(t), t > 0 has a unique point of minimum.

The proof of Lemma 5.3 is purely analytical, thus we skip the details.

Lemma 5.4 Suppose that Σ = ΓΓ> is positive definite. For any non-empty subset
I ⊂ {1, . . . , d} if cI and aI+cIt for all t ≥ 0 have at least one positive component,
then for any point 0 < t 6= t̂ = argmint>0 rI(t) there exists some positive constant
ν such that as u→∞

P
{
W I(t) > (aI + cIt)

√
u
}

= o
(
e−νu

)
P
{
W I(t̂) > (aI + cI t̂)

√
u
}
.

Proof of Lemma 5.4: For notational simplicity we omit below the subscript I.
Since for any t > 0 we have V ar(W (t)) = tΣ, then by Lemma 4.1

P
{
W (t) > (a+ ct)

√
u
}
∼ Cu−α(t)/2e−

u
2t
p̃(t)>Σ−1p̃(t),

where C is some positive constant, α(t) is an integer and p̃(t) is the unique solution
of ΠtΣ(a+ ct), which can be reformulated also as

P
{
W (t) > (a+ ct)

√
u
}
∼ Cu−α(t)/2e−

u
2
r(t), u→∞.

If t 6= t̂, then r(t)− r(t̂) = τ > 0 and

P {W (t) > (a+ ct)
√
u}

P
{
W (t̂) > (a+ ct̂)

√
u
} ∼ C∗u(α(t̂)−α(t))/2e−

τu
2 = o

(
e−

τ
3
u
)

as u→∞. �

Lemma 5.5 Let a, c ∈ Rd be such that a+ct has at least one positive component
for all t in a compact set T ⊂ (0,∞). If Σ = ΓΓ> is positive definite, then there
exist constants C > 0, γ > 0 and t ∈ T such that for all u > 0

P
{
∃t ∈ T : W (t) > (a+ ct)

√
u
}
≤ Cuγe−

u
2
r(t).

If we also have that for some non-overlapping index sets I,J ⊂ {1, . . . , d} and
some compact subset T ⊂ [0,∞)2 both ((aI+cIt1)>, (aJ +cJ t2)>)> have at least



one positive component for all (t1, t2) ∈ T , then for some
t = (t1, t2) ∈ T as u→∞

P {∃t ∈ T : W I(t1) > (aI + cIt1)
√
u, W J (t2) > (aJ + cJ t2)

√
u}

= o(e
√
uP {W I(t1) > (aI + cIt1)

√
u, W J (t2) > (aJ + cJ t2)

√
u}).

Moreover, the same estimate holds if I and J are overlapping and for all (t1, t2) ∈
T we have t1 6= t2.

Proof of Lemma 5.5: Denote by D(t) the covariance matrix of W (t), which
by assumption on Γ is positive definite. Let

ã(t) = arg min
x≥a+ct

x>D−1(t)x

be the solution of ΠD(a+ ct), t > 0 and let further

w(t) = D−1(t)ã(t)

be the solution of the dual optimization problem. In view of (2.7) wI(t) has
positive components and moreover

f(t) = w>(t)(a+ ct) = ã>(t)D−1(t)ã(t) > 0

implying

P
{
∃t ∈ T : W (t) ≥ (a+ ct)

√
u
}
≤ P

{
∃t ∈ T :

w>(t)W (t)

w>(t)(a+ ct)
≥
√
u

}
.

We have further that

σ2 = sup
t∈T

E

{(
w>(t)W (t)

w>(t)(a+ ct)

)2
}

= sup
t∈T

1

ã>(t)D−1(t)ã(t)

=
1

ã>(t)D−1(t)ã(t)
> 0

for some t ∈ T , since T is compact. Since f(t) > 0, t ∈ T is continuous, we may
apply Piterbarg inequality (as in the proof of (4.4)) and obtain

P
{
∃t ∈ T : W (t) ≥ (a+ ct)

√
u
}
≤ Cuγe−u/2σ2

for some positive constants γ and C, which depend only on W (t) and d. Since,
by the definition we have r(t) = 1/σ2, the proof of the first inequality is complete.



The next assertion may be obtained with the same arguments but for vector-
valued random process

W(s, t) = (W>
I (s),W>

J (t))>.

By the definition of T , for any (s, t) ∈ T we have |V ar(W(s, t))| > 0, thus we
can apply Piterbarg inequality and in consequence, using Lemma 4.1, the claim
follows. �

Lemma 5.6 Suppose that Σ = ΓΓ> is positive definite. For any non-empty subset
I ⊂ {1, . . . , d} if cI ∈ R|I| has at least one positive component and aI+cIt ∈ R|I|
has at least one positive component for all non-negative t, then for some positive
constants ν, t̂ = argmin

t>0
rI(t) and all T large, as u→∞

P
{
∃t > T : W I(t) > (aI + cIt)

√
u
}

= o(e−νu)P
{
W I(t̂) > (aI + cI t̂)

√
u
}
.

Proof of Lemma 5.6: For notational simplicity we omit below the subscript I.
For some given T > t̂ we have using Lemmas 5.5, 5.3

P
{
∃t > T : W (t) > (a+ ct)

√
u
}

≤
∞∑
i=0

P
{
∃t ∈ [T + i, T + i+ 1] : W (t) > (a+ ct)

√
u
}

≤
∞∑
i=0

Cuγe−
r(ti)

2
u

≤ Cuγe−
r(T )

2
u
∞∑
i=0

e−isu

≤ Cuγe−
r(T )

2
u

(
1 +

∫ ∞
0

e−suxdx

)
,

where s > 0 and ti ∈ [T + i, T + i+ 1]. The last integral is finite and decreasing
for sufficiently large u. Hence the claim follows with the same arguments as in the
proof of Lemma 5.4. �

Proof of Lemma 4.4: Using Lemma 5.6 we know that there exist points
tI , tJ such that as u→∞

P {∃t ≥ TI : A∗I(t)} = o(P
{
A∗I(t̂I)

}
),

P
{
∃t ≥ TJ : A∗J (t)

}
= o(P

{
A∗J (t̂J )

}
).

Next, for some positive ε < |t̂I − t̂J |/3 we have

P
{
∃s, t > 0 : A∗I(t)∩A∗J (s)

}



≤ P
{
∃(s, t) ∈ [t̂I − ε, t̂I + ε]× [t̂J − ε, t̂J + ε] : A∗I(t) ∩A∗J (s)

}
+P
{
∃t ∈ [0, t̂I − ε] : A∗I(t)

}
+ P

{
∃t ∈ [t̂I + ε, TI ] : A∗I(t)

}
+P
{
∃t ∈ [0, t̂J − ε] : A∗J (t)

}
+ P

{
∃t ∈ [t̂J + ε, TJ ] : A∗J (t)

}
+P {∃t ≥ TI : A∗I(t)}+ P

{
∃t ≥ TJ : A∗J (t)

}
.

Using Lemmas 5.5, 5.6 and

P {A∗I(t)} ∼ Cu−αe−r(t)u/2, P {A∗I(t)} = o(ue−r(t)u/2), u→∞

we obtain

P
{
∃s, t > 0 : A∗I(t)∩A∗J (s)

}
= o(e

√
uP
{
A∗I(s1) ∩A∗J (s2)

}
)

+ o(uτ3P {A∗I(t3)}) + o(uτ4P {A∗I(t4)})
+ o(uτ5P

{
A∗J (t5)

}
) + o(uτ6P

{
A∗J (t6)

}
)

+ o(P
{
A∗I(t̂I)

}
) + o(P

{
A∗J (t̂J )

}
)

for some positive constants ti, 3 ≤ i ≤ 6, where

t3 ∈ [0, t̂I − ε], t4 ∈ [t̂I + ε, TI ], t5 ∈ [0, t̂J − ε],
t6 ∈ [t̂J + ε, TJ ] s1 ∈ [t̂I − ε, t̂I + ε] s2 ∈ [t̂J − ε, t̂J + ε].

Note that for i = 3, 4, ti 6= t̂I . Hence by Lemma 5.4

uτiP {A∗I(ti)} = o(P
{
A∗I(t̂I)

}
).

The same works also for j = 5, 6

uτjP
{
A∗J (tj)

}
= o(P

{
A∗J (t̂J )

}
).

Thus we can focus only on the first probability. By the definition of A∗I and A∗J
in (4.5)

P
{
A∗I(s1) ∩A∗J (s2)

}
= P

{
W(s1, s2) > b

√
u
}
,

where b = ((aI + cIs1)>, (aJ + cJ s2)>) and W(s, t) = (W I(s)
>,W J (t)>)>.

Define î = I ∪ J \ {i}. Applying Remark 5.2, there exists an index i and a
constant η > 0 such that

P
{
A∗I(s1) ∩A∗J (s2)

}
= o

(
e−ηu

)
P
{

(W(s1, s2))̂i > b̂i
√
u
}
.

If i ∈ I, then

P
{

(W(s1, s2))̂i > b̂i
√
u
}
≤ P {W J (s2) > (aJ + cJ s2)u} ,



or

P
{

(W(s1, s2))̂i > b̂i
√
u
}
≤ P {W I(s1) > (aI + cIs1)u} .

In both cases

e
√
uP
{
A∗I(s1) ∩A∗J (s2)

}
= o (P {W I(s1) > (aI + cIs1)u}+ P {W J (s1) > (aJ + cJ s1)u})
= o

(
P
{
W I(t̂I) > (aI + cI t̂I)u

}
+ P

{
W J (t̂I) > (aJ + cJ t̂J )u

})
establishing the proof. �

Proof of Lemma 4.5: Using Lemma 5.6 we have

P
{
∃s, t > 0 : A∗I(s)∩A∗J (t)

}
≤ P

{
∃(s, t) ∈ T1 : A∗I(s)∩A∗J (t)

}
+P
{
∃(s, t) ∈ T2 : A∗I(s)∩A∗J (t)

}
+o(P

{
A∗I(t̂I)

}
) + o(P

{
A∗J (t̂J )

}
),

where

T1 = {(s, t) ∈ [0, TI ]× [0, TJ ] : |s− t̂I | ≥ |t− t̂I |},
T2 = {(s, t) ∈ [0, TI ]× [0, TJ ] : |s− t̂I | ≤ |t− t̂I |},

and TI and TJ are the constants from (5.1). According to Lemma 5.5 for some
(si, ti) ∈ Ti

P
{
∃(s, t) ∈ Ti : A∗I(s) ∩A∗J (t)

}
= o
(
e
√
u
)
P
{
A∗I(si) ∩A∗J \I(ti)

}
.

If s1 6= t̂I , then according to Lemma 5.4

e
√
uP
{
A∗I(s1) ∩A∗J \I(t1)

}
≤ e
√
uP {A∗I(s1)} = o(P

{
A∗I(t̂I)

}
).

Otherwise, using the definition of T1, |t1− t̂I | ≤ |s1− t̂I | = 0, so t1 = t̂I and thus

P
{
A∗I(s1) ∩A∗J \I(t1)

}
= P

{
A∗I∪J (t̂I)

}
.

This probability can be bounded using Remark 5.2, namely we have

P
{
A∗I∪J (t̂I)

}
= o
(
e−νu

)
P
{
A∗I∪J \{i}(t̂I)

}
for some i ∈ I ∪J and η > 0. As |I| = |J | = k, and I 6= J , then |I ∪J | ≥ k+ 1

and thus |I ∪ J \ {i}| ≥ k. Consequently, we have

e
√
uP
{
A∗I∪J (t̂I)

}
= o
(
P
{
A∗I∪J \{i}(t̂I)

}
) = o

 ∑
K⊂{1...d}
|K|=k

P
{
A∗K(t̂K)

} .



With similar arguments we obtain further

P
{
∃(s, t) ∈ T2 : A∗I(s)∩A∗J (t)

}
= o

 ∑
K⊂{1...d}
|K|=k

P
{
A∗K(t̂K)

} .

Hence the claim follows.
�

Recall that ã stands for the unique solution of the quadratic programming
problem ΠΣ(a).

Proof of Lemma 4.6: By the self-similarity of Brownian motion for all u > 0

m(u,Λ) := P
{
∃t∈[0,δ(u,Λ)] : W (t)− tc > ua

}
= P

{
∃t∈[0,1] : W (t)− δ1/2(u,Λ)tc > δ−1/2(u,Λ)ua

}
.

Hence, applying Theorem 1.1 we obtain

m(u,Λ) ≤
P
{
W (1) ≥ δ−1/2(u,Λ)ua+ δ1/2(u,Λ)c

}
P {W (1) > max(c,0)}

,

which after some standard algebraic manipulations, straightforwardly implies in-
equality (4.7).

Asymptotics (4.8) and limit (4.9) follow by the same idea as the proof of
”Pickands’ lemma” in e.g. [10]; see Lemmas 4.2 and 4.3 therein. We skip long but
standard proof, referring for details to the extended version of contribution [11].
�



Chapter 4

Multivariate Gaussian Risk
Model

1 Introduction

Let Z(t) = (Z1(t), . . . , Zd(t))
>, t ∈ R be a d-dimensional Gaussian process, where

Zi(t), t ∈ R, i = 1, ..., d are mutually independent centered Gaussian processes
with continuous sample paths a.s. and stationary increments. For u, c ∈ Rd and
T > 0 we consider

pT (u) := P
{
∃t∈[0,T ] : X(t)− ct > u

}
= P

{
∃t∈[0,T ] : ∩di=1{Xi(t)− cit > ui}

}
,

where X(t) = AZ(t), with A a nonsingular d× d real-valued matrix.
In the main result of this chapter, which is Theorem 3.3, we derive exact

asymptotics of pT (u) for u = ua = (a1u, ..., adu)>, as u → ∞, where the vector
a ∈ Rd\(−∞, 0]d. The core assumption that we work with is the so-called Berman
condition

vi(t) := Var(Zi(t)) = o(t), as t→ 0

for i = 1, ..., d. Interestingly, while in the one-dimensional case, under Berman
condition

pT (u) ∼ P {X(T )− cT > u} , as u→∞

(see the seminal paper by Berman [6] and [26] for the non-centered case), the
vector-valued case considered in this chapter leads to more diverse scenarios that

3This chapter is based on the joint work [8] with Krzysztof Dȩbicki and Krzysztof
Bisewski.
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can be captured in the form

pT (ua) ∼ C · P {X(T )− cT > ua} ,

as u → ∞, where C ≥ 1 is a constant depending on the model parameters; see
Eq. (3.1) below.

We note that for Z being a two-dimensional standard Brownian motion, the
asymptotic behavior of pT (ua) was recently analyzed in [20], where the strategy
of the proof was based on the independence of increments and self-similarity of
Brownian motion. In general, Gaussian processes with stationary increments do
not have these properties and thus the proof of the main result of this chapter
needs more subtle and refined analysis than the one used in [20]. More precisely,
the idea of the proof of Theorem 3.3 is based on two steps: (i) showing that

lim
L→∞

lim
u→∞

pT (ua)

P
{
∃t∈[T−Lu−2,T ] : ∩di=1{Xi(t)− cit > ui}

} = 1

and (ii) finding the exact asymptotics of the denominator above. In the first step,
particularly precise analysis is needed for the neighbourhood of the right end of
the parameter set [0, T − Lu−2], see Lemma 4.3.

Complementary to the exact asymptotics derived in Theorem 3.3, in Theorem
3.1 we establish uniform upper and lower bounds for pT (u). This result extends
recently derived bounds for Z being a d-dimensional standard Brownian motion
[11, 20, 45].

The quantity pT (u) has been already introduced in Chapter 2 and has a
natural interpretation as the simultaneous ruin probability in time horizon [0, T ]
of an insurance portfolio represented by d mutually dependent risk processes
(Ri(t), ..., Rd(t))

> = R(t,u), where R(t,u) = u−X(t) + ct, t ∈ R, since

pT (u) = P
{
∃t∈[0,T ] : R(t,u) < 0

}
,

where for the i-th business line, ui is the initial capital, Xi(t) is the accumulated
clam size in time interval [0, t] and ci is the premium rate. In this context, our
results complement work [42], where the particular case d = 2, T =∞ withX2(t) =
σ2X1(t) where X1 is a fractional Brownian motion, was analyzed. We refer to, e.g.,
[4, 29, 37, 51] for recent works on simultaneous ruin probability for Lévy processes
and to recently derived asymptotics for centered vector valued Gaussian processes;
see [23, 24].

Our findings cover two special cases that play important role in the literature on
the Gaussian risk models, i.e. fractional Brownian motion risk model and Gaussian
integrated risk model; see Section 3 for details. We refer to [22, 38, 39, 50] for the
analysis of Gaussian risk models in d = 1 dimensional setting.



2 Notation

We follow the notational convention of [25]. All vectors in Rd are written in bold
letters, for instance b = (b1, . . . , bd)

>, 0 = (0, . . . , 0)>, 1 = (1, . . . , 1)>. We follow
the convention that 1-dimensional vectors are vertical. For two vectors x and y,
we write x > y if xi > yi for all 1 ≤ i ≤ d. For any x,y ∈ Rd we use 〈x,y〉 for
scalar product and xy for a component-wise product.

Given a real-valued matrix A we shall write AIJ for the submatrix of A deter-
mined by keeping the rows and columns of A with row indices in the non-empty
set I and column indices in the non-empty set J , respectively. In our notation Id
is the d× d identity matrix and diag(x) = diag(x1, . . . , xd) stands for the diagonal
matrix with entries xi, i = 1, . . . , d on the main diagonal, respectively.

Let in the sequel Σ ∈ Rd×d be any positive definite matrix. We write Σ−1
IJ :=

(ΣIJ)−1 for the inverse matrix of ΣIJ whenever it exists. For any vector a ∈
Rd \ (−∞, 0]d, let ΠΣ(a) we will use the definition of quadratic programming
problem ΠΣ(a) given in Chapter 23 (2.5), definitions of its solution ã of sets
I, J given in Chapter 3 (2.6), and definition of λ, given in Chapter 3, (2.9).
Additionally, we define U := {i ∈ J : ãi = ai}. We refer to Lemma 4.6 below for
more details.

Throughout the chapter, let Σ(t) denote the variance matrix of process X at
time t ∈ [0, T ], that is

Σ(t) := E
{
X(t)X>(t)

}
= AE

{
Z(t)Z>(t)

}
A> = A diag(v(t))A>,

where v(t) = (v1(t) . . . vd(t))
>. Moreover, for all i ∈ {1, . . . , d} let

ρi(t, s) := Cov(Zi(t), Zi(s)) =
vi(s) + vi(t)− vi(|s− t|)

2
, (2.1)

where in the second equality we used the fact that Zi has stationary increments.
For all t ∈ (0, T ], let ã(t) be the solution of quadratic programming problem
ΠΣ(t)(a) and D(t) := ã(t)>Σ−1(t)ã(t). Moreover, let λ(t) := Σ−1(t)ã(t), and
It := {i : λi(t) > 0}, Jt := {1, . . . , d} \ It (which can be empty). Throughout
this chapter we slightly abuse the notation by writing λi(t) instead of λ(t)i, ai(t)
instead of a(t)i, and ãi(t) instead of ã(t)i.

3 Main results

Consider a centered, d−dimensional Gaussian process with stationary increments,
continuous sample paths and mutually independent components Z(t), t ≥ 0. Let
vi(t) := VarZi(t) be the variance function of process Zi. Due to the stationarity



of increments, the covariance structure of Zi is determined by its variance function
vi, see (2.1). We shall establish the following conditions for each i ∈ {1, . . . , d}.

B0. vi ∈ C1([0, T ]) is strictly increasing and vi(0) = 0.

BI. The first derivative v̇i(T ) > 0.

BII. vi(t) = o(t), as t→ 0.

The following families of Gaussian processes satisfy assumptions B0-BII:

� fractional Brownian motions: Z(t) = (Bα1(t), ..., Bαd(t))
>, t ≥ 0, where

Bαi(t), t ≥ 0, i = 1, ..., d are mutually independent standard fractional Brownian
motions with Hurst parameters αi/2 ∈ (1/2, 1), that is centered Gaussian processes
with stationary increments, continuous sample paths a.s. and variance function
vi(t) = tαi respectively. We refer to, e.g., [26, 39, 50] for the motivation and
relations of this class of stochastic processes in risk theory.

� integrated stationary processes: Z(t) = (Z1(t), ..., Zd(t))
>, t ≥ 0, where

Zi(t) =
∫ t

0 ηi(s)ds, with ηi(t), t ≥ 0, i = 1, ..., d mutually independent centered
stationary Gaussian processes with continuous sample paths a.s. and continuous
strictly positive covariance function Ri(t) := Cov(Zi(s), Zi(s+ t)). One can check
that vi(t) = 2

∫ t
0 ds

∫ s
0 R(w)dw in this case. We refer to [22, 26, 38] for the analysis

of extremes of this class of processes in the context of Gaussian risk theory and its
relations to Gaussian fluid queueing models.

In the following, Nd(µ,Σ) stands for the law of a d-dimensional normal distri-
bution with mean µ ∈ Rd and covariance matrix Σ ∈ Rd×d.

Theorem 3.1 Let X(t) = AZ(t), t ≥ 0 be such that Z satisfies B0 with vi(t) =
v(t) for all i, v(t) is convex, and A ∈ Rd×d is a non-singular matrix satisfying
(A>A)ij ≥ 0. Then, for each u ∈ Rd and c ≥ 0,

P {X(T )− cT > u} ≤ P
{
∃t∈[0,T ] : X(t)− ct > u

}
≤ P {X(T )− cT > u}

P {Nd(0, A>A) > 0}
.

Remarks 3.2 In the case when Z is a standard d-dimensional Brownian motion
the assumption (A>A)ij ≥ 0 can be lifted and the upper bound in Theorem 3.1 holds
for any non-singular matrix A; see [11]. It can be verified that this bound holds
also for all u large enough for the process Z considered in Example 3.4 below,
which suggests that the upper bound in Theorem 3.1 holds for any non-singular
matrix A.



To the end of this chapter, let

C :=

∑d
i=1 max

(
λi · (AQA−1ã)i, 0

)∑d
i=1 λi · (AQA−1ã)i

(3.1)

where Q = diag(v̇i(T )/vi(T )), and λ, ã correspond to the solution of the quadratic
problem ΠΣ(T )(a); see also Lemma 4.6 below.

Theorem 3.3 Let X(t) = AZ(t), t ≥ 0 be such that Z satisfies B0-BII, a ∈
Rd \ (−∞, 0]d, c ∈ Rd and A is a non-singular matrix. Then,

P
{
∃t∈[0,T ] : X(t)− ct > ua

}
∼ C · P {X(T )− cT > ua} , u→∞,

where C defined in (3.1) is a positive constant.

The heuristic interpretation of the bounds and asymptotics derived in Theorems
3.1, 3.3 is that only a small area around the end point T of the parameter set [0, T ]
contributes to the tail distribution of the analyzed problem. We refer to [33, 35]
and references therein for the analysis of the exact form of the asymptotics for
P {X(T )− cT > ua}, as u→∞; see also Lemma 4.5.

The following example illustrates the main findings of this section.

Example 3.4 Suppose that d = 2, and Z1(t), Z2(t) are mutually independent and
identically distributed centered Gaussian processes that satisfy B0-BII. Then the
constant C has the following form

C =

∑2
i=1 max (λi · ãi, 0)∑2

i=1 λi · ãi
.

We assume further that A =
(

1 0

ρ
√

1−ρ2

)
, where ρ ∈ (−1, 1) and a = (1, a)>, with

a ≤ 1.
� If a < ρ, then I = {1}, J = {2} and hence, as u→∞,

P
{
∃t∈[0,T ] : X(t)− ct > ua

}
∼ P {X(T )− cT > u}
∼ P {X1(T )− c1T > u} ;

� If a = ρ, then I = {1}, U = {2} and as u→∞,

P
{
∃t∈[0,T ] : X(t)− ct > ua

}
∼ P {X(T )− cT > u}
∼ P {X2(T ) > c2T |X1(T ) = c1T}
×P {X1(T )− c1T > u} ;



� If a > ρ, then I = {1, 2}, ã = a and λ = Σ−1(T )a = v(T )
1−ρ2

(
1−aρ
a−ρ

)
, see also

[20]. Thus, if further a ≥ 0, then C = 1 and

P
{
∃t∈[0,T ] : X(t)− ct > ua

}
∼ P {X1(T )− c1T > u,X2(T )− c2T > au} ,

as u → ∞. Otherwise, if a < 0, then C = 1−aρ
1−aρ+a2−aρ = 1−aρ

1−2aρ+a2 > 1 and hence,
as u→∞,

P
{
∃t∈[0,T ] : X(t)− ct > ua

}
∼ 1− aρ

1− 2aρ+ a2
P {X1(T )− c1T > u,X2(T )− c2T > au} .

In the above we used [35, Lemma 4.2] for the exact asymptotics of the probability
P {X(T )− cT > u}.

4 Proofs of main results

Proof of Theorem 3.1: Using the fact that c ≥ 0 and u > 0, we have

P
{
∃t∈[0,T ]X(t)− ct > u

}
= P

 ⋃
t∈[0,T ]

d⋂
i=1

{Xi(t) > ui + cit}


= 1− P

 ⋂
t∈[0,T ]

d⋃
i=1

{
Xi(t)

ui + cit
≤ 1

}
= 1− P

 ⋂
t∈[0,T ]

d⋃
i=1

{
−Xi(t)

ui + cit
≥ −1

}
= 1− P

 ⋂
t∈[0,T ]

d⋃
i=1

{
Xi(t)

ui + cit
≥ −1

} ,

where in the last equality above we used that Xi are centered.

Let Bi(t), t ≥ 0, i = 1, 2, ..., d mutually independent standard Brownian mo-
tions, and B∗(t) = AB(t).

Next, we show that

P

 ⋂
t∈[0,T ]

d⋃
i=1

{
Xi(t)

ui + cit
≥ −1

} ≥ P

 ⋂
t∈[0,T ]

d⋃
i=1

{
B∗i (v(t))

ui + cit
≥ −1

} ,



for which by Gordon inequality (see e.g. [31] or [1, page 55]) it suffices to check
that

E
{
Xi(t)

2
}

= E
{
B∗i (v(t))2

}
, (4.1)

E {Xi(t)Xj(t)} = E
{
B∗i (v(t))B∗j (v(t))

}
, (4.2)

E {Xi(t)Xj(s)} ≥ E
{
B∗i (v(t))B∗j (v(s))

}
, for t 6= s. (4.3)

For all i, j ∈ {1, . . . , d} and t ∈ [0, T ] we have

E {Xi(t)Xj(t)} = E {(AZ)i(t)(AZ)j(t)}

= E

{
d∑

k=1

aikZk(t)

d∑
k=1

ajkZk(t)

}

= E

{
d∑

k=1

aikajkZ
2
k(t)

}

=
d∑

k=1

aikajkE
{
Z2
k(t)

}
=

d∑
k=1

aikajkv(t) = (AA>)i,jv(t).

Analogously,

E
{
B∗i (v(t))B∗j (v(t))

}
= E {(AB)i(v(t))(AB)j(v(t))}

= E

{
d∑

k=1

aikBk(v(t))
d∑

k=1

ajkBk(v(t))

}

= E

{
d∑

k=1

aikajkB
2
k(v(t))

}

=

d∑
k=1

aikajkE
{
B2
k(v(t))

}
=

d∑
k=1

aikajkv(t) = (AA>)i,jv(t).

Hence, equalities (4.1), (4.2) are satisfied. For t 6= s we obtain that

E {Xi(t)Xj(s)} = (AA>)i,jE {Z1(t)Z1(s)}

= (AA>)i,j
v(s) + v(t)− v(|s− t|)

2
,



E
{
B∗i (v(t))B∗j (v(s))

}
= (AA>)i,jE {B1(v(t))B1(v(s))}
= (AA>)i,j min(v(t), v(s)).

As (AA>)i,j ≥ 0, it is enough to show that

v(s) + v(t)− v(|s− t|)
2

≥ min(v(t), v(s)).

Using the convexity of v(·), we have for all s < t

v(t− s) =

∫ t−s

0
v′(x)dx

≤
∫ t

s
v′(x)dx = v(t)− v(s)

hence
v(s) + v(t)− v(|s− t|)

2
≥ v(s) + v(t)− |v(s)− v(t)|

2
.

Thus, inequality (4.3) holds which jointly with (4.1) and (4.2) implies

P
{
∃t∈[0,T ] : X(t)− ct > u

}
≤ P

{
∃t∈[0,T ] : AB(v(t))− ct > u

}
= P

{
∃t∈[0,v(T )] : AB(t)− cw(t) > u

}
≤ P

{
∃t∈[0,v(T )] : AB(t)− c T

v(T )
t > u

}
,

where w(t) is the inverse function of v(t). In the second line we used the fact
that v(·) is continuous and strictly increasing, while the inequality in the third line
follows by concavity of w(t) (recall that v(t) is supposed to be convex). Finally,
by [11, Theorem 1.1] (see also [45] for the centred case) the above is bounded by

P {AB(v(T ))− cT > u}
P {AB(v(T )) > 0}

=
P {X(T )− cT > u}

P {X(T ) > 0}
.

This completes the proof. �
Proof of Theorem 3.3: For any L > 0 we have

P3(u, L) ≤
P
{
∃t∈[0,T ] : X(t)− ct > u

}
P {X(T )− cT > ua}

≤
3∑

n=0

Pn(u, L),



with

Pn(u, L) :=
P
{
∃t∈[Tn(u),Tn+1(u)] : X(t)− ct > u

}
P {X(T )− cT > ua}

,

where T0(u) = 0, T1(u) = T1 > 0 is chosen small enough to satisfy the conditions
in Lemma 4.1,

T2(u, L) := T − Lu−2 ln2 u, T3(u, L) := T − Lu−2, and T4(u) = T.

The proof consists of several steps which follow by lemmas displayed and proved
in the rest of this section. It turns out, that asymptotically as u→∞, only P3(u, L)
contributes to the asymptotics, while

∑2
n=0 Pn(u, L) is asymptotically negligible.

Since each term in
∑2

n=0 Pn(u, L) needs a different argument for its negligibility,
we provide detailed justification in separate lemmas. Namely,

� For any L > 0 it holds that limu→∞ P0(u, L) = 0 due to Lemma 4.1,

� For any L > 0 it holds that limu→∞ P1(u, L) = 0 due to Lemma 4.2,

� limL→∞ limu→∞ P4(u, L) = 0 due to Lemma 4.3,

� limL→∞ limu→∞ P5(u, L) = C due to Lemma 4.4.

This completes the proof. �

Lemma 4.1 Under the assumptions of Theorem 3.3 it holds that

P
{
∃t∈[0,T1] : X(t)− ct > ua

}
P {X(T )− cT > ua}

→ 0, u→∞

for all T1 ∈ (0, T ) small enough.

Lemma 4.2 Under the assumptions of Theorem 3.3, for any L > 0 it holds that

P
{
∃t∈[T1,T−Lu−2 ln2 u] : X(t)− ct > ua

}
P {X(T )− cT > ua}

→ 0, u→∞

for all T1 ∈ (0, T ) > 0 small enough.

Lemma 4.3 Under the assumptions of Theorem 3.3, there exist positive constants
C, β > 0, such that

lim
u→∞

P
{
∃t∈[T−Lu−2 ln2 u,T−Lu−2]X(t)− ct > au

}
P {X(T )− cT > ua}

≤ Ce−βL

for all L > 0 large enough.



Lemma 4.4 Under the assumptions of Theorem 3.3, for any L > 0 there exists a
positive constant C(L) such that

P
{
∃t∈[T−Lu−2,T ] : X(t)− ct > ua

}
P {X(T )− cT > ua}

→ C(L), u→∞.

Moreover, limL→∞ C(L) = C, with C defined in (3.1).

The proofs of the four lemmas above are given in the following three subsec-
tions. The proof of each result is located at the very end of these subsections and
is preceded by additional preparatory results.

4.1 Proof of Lemma 4.1

Let ϕX(·) be the pdf of random variable X. Before giving the proof of Lemma 4.1,
we need the following lemma, which can be deduced from [35, Lemma 4.2]. Since
we need a bit different (although equivalent) form of the derived below asymptotics,
we provide an independent short proof of the following lemma.

Lemma 4.5 Let X ∈ Rd be a centered Gaussian vector with an arbitrary, non-
singular covariance matrix Σ. Then, for any c ∈ Rd, a ∈ Rd \ (−∞, 0]d we have,
as u→∞

P {X − c > ua} ∼ u−|I|ϕX(uã+ c)∏
i∈I λi

×
∫
R|J|

I {xU < 0U} e−
1
2
x>J (Σ−1)JJxJ e〈c̃J ,xJ 〉dxJ ,

where c̃ := c>Σ−1, and ã,λ, and index sets I, J, U corresponding to the quadratic
programming problem ΠΣ(a).

Proof of Lemma 4.5: Let ū ∈ Rd be such that ūi = u when i ∈ I and ūi = 1
when i ∈ J . We apply substitution w = uã+ c− x/ū and obtain

P {X − c > ua} =

∫
w>ua+cT

ϕX(w)dw

= u−|I|
∫
x<uū(ã−a)

ϕ(uã+ c− x/ū)dx

= u−|I|ϕ(uã+ c)

∫
Rd

I {x < uū(ã− a)} θu(x)dx,



where θu(x) := ϕ(uã+ c− x/ū)/ϕ(uã+ c). We have as u→∞

I{x<uū(ã−a)} → I {xI∪U < 0} ,

and

θu(x) = exp

{
uã>Σ−1(x/ū) + c>Σ−1(x/ū)− 1

2
(x/ū)>Σ−1(x/ū)

}
→ e〈λI ,xI〉 · e−

1
2
x>J (Σ−1)JJxJ e〈c̃J ,xJ 〉 =: θ(x),

as u → ∞. So, applying the dominated convergence theorem, with dominating,
integrable function

e〈λI ,xI〉e
1
2
〈λI ,|xI |〉 · e−

1
2
x>J (Σ−1)JJxJ e〈c̃J ,xJ 〉,

we obtain

P {X − c > ua}
u−|I|ϕ(uã+ c)

→
∫
Rd

I {xI∪U < 0} θ(x)dx

=

∫
R|I|

I{xI < 0I}e
∑
i∈I

λixi
dxI

×
∫
R|J|

I {xU < 0U} e−
1
2
x>J (Σ−1)JJxJ e〈c̃J ,xJ 〉dxJ

=
1∏
i∈I λi

∫
R|J|

e−
1
2
x>J (Σ−1)JJxJ e〈c̃J ,xJ 〉dxJ ,

which concludes the proof. �
Proof of Lemma 4.1: First, using Lemma 4.5, we know that there exist some

C > 0, k ∈ N such that

P {X(T )− cT > au} ∼ Cu−kϕT (ãu+ cT ),

as u→∞, where ϕT is the density of X(T ). Second, fix some i ∈ {1, . . . , d} such
that ai > 0. Then

P
{
∃t∈[0,T1] : X(t)− ct > ua

}
≤ P

{
∃t∈[0,T1] : Xi(t)− cit > aiu

}
≤ P

{
∃t∈[0,T1] : Xi(t) > aiu− |ci|T1

}
.

Using assumption B0, we can apply Piterbarg’s inequality [53, Thm 8.1], receiving
for some positive constant C1 and all sufficiently large u

P
{
∃t∈[0,T1] : Xi(t) > aiu− |ci|T1

}
≤ P

{
∃t∈[0,T1] : |Xi(t)| > aiu− |ci|T1

}



≤ C1(aiu− |ci|T1)2P {Xi(T1) > aiu− |ci|T1}

for u > 0. Hence, for all u large enough we have

P
{
∃t∈[0,T1] : Xi(t) > aiu− |ci|T1

}
P {X(T )− cT > au}

≤ 2C1(aiu− |ci|T1)2

×ukP {Xi(T1) > aiu− |ci|T1}
ϕT (ãu+ cT )

.

Since P {N (0, 1) > u} ∼ 1√
2πu

exp(−u2/2) as u→∞, it is left to show that

lim
u→∞

uk−1 exp
(
−(aiu− |ci|T1)2/(2vi(T1))

)
exp

(
−1

2(ãu+ cT )>Σ−1(T )(ãu+ cT )
) = 0.

We have

exp
(
−(aiu− |ci|T1)2/(2vi(T1))

)
exp

(
−1

2(ãu+ cT )>Σ−1(T )(ãu+ cT )
)

= exp

(
−1

2

(
a2
i

vi(T1)
− ã>Σ−1(T )ã

)
u2 +O(u)

)
.

Finally, since vi(0) = 0 and vi(·) is continuous, then
a2
i

vi(T1) > ã>Σ−1(T )ã for all
T1 small enough, which completes the proof. �

4.2 Proof of Lemma 4.2

Before giving the proof, we need to layout preliminary results. Below, we cite the
result from [25, Lemma 4]. In the following, J = {1, . . . , d} \ I can be empty; the
claim in Lemma 4.6(ii) is formulated under the assumption that J is non-empty.

Lemma 4.6 Let d ≥ 2 and Σ a d × d symmetric positive definite matrix with
inverse Σ−1. If a ∈ Rd \ (−∞, 0]d, then the quadratic programming problem
ΠΣ(b) has a unique solution ã and there exists a unique non-empty index set
I ⊂ {1, . . . , d} with |I| ≤ d elements such that

(i) ãI = aI 6= 0I ;

(ii) ãJ = Σ−1
IJ Σ−1

II aI ≥ aJ , and Σ−1
II aI > 0I ;

(iii) minx≥a x
>Σ−1x = ã>Σ−1ã = a>Σ−1ã = a>I Σ−1

II aI > 0,

with λ = Σ−1ã satisfying λI = Σ−1
II aI > 0I , and λJ = 0J .



Remark 4.7 Using Lemma 4.6 it can be found that ã>Σ−1ã = a>Σ−1ã.

To the end of this chapter, let D(t) := ã(t)>Σ−1(t)ã(t).

Lemma 4.8 Assuming conditions B0-BII hold, then D(t) is positive and strictly
decreasing on t ∈ (0, T ]. Moreover,

Ḋ(T ) = −
∥∥∥diag

(√
v̇(T )/v(T )

)
A−1ã(T )

∥∥∥2

2
< 0.

Proof of Lemma 4.8: Let 0 < t1 < t2 ≤ T . Then

D(t2) = ã(t2)>Σ−1(t2)ã(t2) ≤ ã(t1)>Σ−1(t2)ã(t1)

= ã(t1)>A−> diag(1/v(t2))A−1ã(t1)

= D(t1)− ã(t1)>A−1> diag

(
v(t2)− v(t1)

v(t2)v(t1)

)
A−1ã(t1)

= D(t1)−

∥∥∥∥∥diag

(√
v(t2)− v(t1)√
v(t2)v(t1)

)
A−1ã(t1)

∥∥∥∥∥
2

2

< D(t1),

because ã(t1) 6= 0 and v(t) is strictly increasing. This shows that D(t) is strictly
decreasing. Furthermore, we have

ã(T )>A−>diag

(
v(t)− v(T )

(T − t)v(t)v(T )

)
A−1ã(T )

≤ D(T )−D(t)

T − t

≤ ã(t)>A−>diag

(
v(t)− v(T )

(T − t)v(t)v(T )

)
A−1ã(t)

using that ã(t) and v(t) are continuous and v(t) has a positive derivative at the
point t = T , we have as t→ T

D(T )−D(t)

T − t
→ −ã(T )>A−>

(
v̇(T )

v2(T )

)
A−1ã(T )

= −
∥∥∥diag

(√
v̇(T )/v(T )

)
A−1ã(T )

∥∥∥2

2
< 0,

hence the claim follows. �

Lemma 4.9 Let T0 ∈ (0, T ]. Then D(t), and ãi(t), λi(t),
λi(t)
D(t) are Lipschitz

continuous functions on t ∈ [T0, T ] for all i ∈ {1, . . . , d}.



Proof of Lemma 4.9: Let T0 ∈ (0, T ] be fixed. According to [32, Theo-
rem 3.1], ãi(·) and λi(·) are Lipschitz continuous, provided that conditions [32,
A1-A3] are satisfied. First, let us note that the conditions A1-A2 are clearly sat-
isfied in our setting so will will focus only on condition A3. In order to state what
is condition A3, let M(t) ∈ RI(t)×d such that M(t) := (−Id)I(t), where (−Id)I(t)
is the submatrix of −Id consisting of rows corresponding to the indices of I(t).
Then, condition [32, A3] states that that there exist α, β > 0 such that for all
t ∈ [T0, T ]:

(i) x>Σ−1(t)x ≥ α‖x‖2 for all x ∈ Rd satisfying M(t)x = 0,

(ii) ‖M(t)>x‖ ≥ β‖x‖ for all x ∈ RI(t).
Since ‖M(t)>x‖ = ‖x‖, then (ii) is satisfied with β = 1. To see that (i) holds, we
have

x>Σ−1(t)x ≥ σ1(t)‖x‖2,

where σ1(t) is the smallest eigenvalue of Σ−1(t). The matrix Σ−1(t) is symmet-
ric and positive definite for t > 0, thus it has only real positive eigenvalues
σ1(t) . . . σd(t). So the related characteristic polynomial pΣ−1(t) has continuous
monoms and always has d real solutions. It means that we can order the eigen-
values σ1(t), . . . , σd(t) in such way that this functions will be continuous by t and
thus we can take α := mint∈[T0,T ] σ1(t) > 0, which concludes the proof of (i) and
of the Lipschitz continuity of ãi(·) and λi(·).

Now, the fact that ãi(·) is Lipschitz continuous immediately implies the Lip-
schitz continuity of D(·). Lastly, we need to show the Lipschitz continuity of
λi(t)/D(t). For t, s ∈ [T0, T ] we have∣∣∣∣λi(s)D(s)

− λi(t)

D(t)

∣∣∣∣ ≤ ∣∣∣∣λi(s)− λi(t)D(s)

∣∣∣∣+ λi(t)

∣∣∣∣D(t)−D(s)

D(t)D(s)

∣∣∣∣ .
The proof is concluded by the Lipschitz continuity of λi(·), D(·), and by noting
that mint∈[T0,T ]D(t) = D(T ) > 0; see Lemma 4.8. �

In the following, argmin t∈[a,b]f(t) is the smallest minimizer of function f(·)
over set [a, b]. For t ∈ (0, T ] we define function

G(t) :=
〈λ(t), c〉t
D(t)

. (4.4)

Lemma 4.10 Let X(t) = AZ(t), t ∈ [0, T ] be such that Z(t) satisfies the con-
ditions B0-BII and a ∈ Rd \ (−∞, 0]d. Then, for any T1 ∈ (0, T ) there exists a
constant C > 0 such that for any T1 ≤ L < R ≤ T and u > −G(T ∗)

P
{
∃t∈[L,R] : X(t)− ct > ua

}
≤ C(u+ G(T ∗)) exp

(
−D(R)(u+ G(T ∗))2/2

)
,

where T ∗ := argmin t∈[L,R]G(t).



Proof of Lemma 4.10: Recall that Σ(t) := Var(X(t)) and ã(t) is the solution
to the quadratic programming problem ΠΣ(t)(a) for each t > 0. According to
Lemma 4.6(iii), for t > 0 we have D(t) > 0. Hence

P
{
∃t∈[L,R] : X(t)− ct > ua

}
≤ P

{
∃t∈[L,R] : 〈λ(t), (X(t)− ct)〉 > 〈λ(t),a〉u

}
= P

{
∃t∈[L,R] :

〈λ(t),X(t)〉
D(t)

> u+ G(t)

}
, (4.5)

with G(·) defined in (4.4). In the following let Y (t) := 〈λ(t),X(t)〉
D(t) . Using the

inequality (
∑d

i=1 ai)
2 ≤ d

∑d
i=1 a

2
i we find that

E
{

(Y (t)− Y (s))2
}
≤ 2E

{(
〈λ(t),X(t)〉

D(t)
− 〈λ(s),X(t)〉

D(s)

)2
}

+ 2E

{(
〈λ(s),X(t)〉

D(s)
− 〈λ(s),X(s)〉

D(s)

)2
}

≤ 2d
d∑
i=1

(
λi(t)

D(t)
− λi(s)

D(s)

)2

vi(t) + 2d
λ2
i (s)

D2(s)
vi(|t− s|).

Now, the functions vi(·) and λi(·)/D(·) are Lipshitz continuous due to B0 and
Lemma 4.9 respectively, so there exists C1 > 0 such that the inequalities |vi(|t −
s|)| ≤ C1|t− s|, and |λi(t)D(t) −

λi(s)
D(s) | ≤ C1|t− s| hold for all i ∈ {1, . . . , d}. Thus

E
{

(Y (t)− Y (s))2
}
≤ 2d2C2

1 |t− s|2 + 2d max
i∈{1,...,d}

max
t∈[L,R]

{
λ2
i (t)

D2(t)

}
C1|t− s|.

We conclude that there exists C2 > 0 such that

E
{

(Y (t)− Y (s))2
}
≤ C2|t− s|

for all t, s ∈ [L,R]. Since Var(Y (t)) = Var(ã>(t)Σ−1X(t))/D2(t) = 1/D(t) and
D(t) is strictly decreasing, see Lemma 4.8, then the maximum of Var(Y (t)) over
[L,R] is attained at t = R. According to Piterbarg inequality [53, Thm 8.1], there
exists a constant C3 such that for any 0 < L < R ≤ T we have

P
{
∃t∈[L,R] : Y (t) > u

}
≤ C3(R− L)u2P {Y (R) > u} (4.6)

for u > 0. Finally, since P {N (0, 1) > u} ≤ 1√
2πu

e−u
2/2 for u > 0, then upon

combining (4.5), (4.6) we obtain

P
{
∃t∈[L,R] : X(t)− ct > ua

}
≤ C3(R− L)

√
D(R)

2π
(u+ G(T ∗))



× exp{−D(R)(u+ G(T ∗))2/2}.

Since function D(·) is decreasing (Lemma 4.8), we conclude the proof by taking

C := C3(R− L)

√
D(T1)

2π . �

Lemma 4.11 Let B0-BII hold and let T1 ∈ (0, T ] and T1 ≤ L(u) < R(u) ≤ T .
If either of the following two conditions is satisfied:

(i) R(u)→ T , and u(T −R(u))→∞, or

(ii) T − L(u) = o(u(T −R(u))), and u2(T −R(u))/ ln(u)→∞,

then

lim
u→0

P
{
∃t∈[L(u),R(u)] : X(t)− ct > ua

}
P {X(T )− cT > ua}

= 0

as u→∞.

Proof of Lemma 4.11: Using Lemma 4.5, we know that there exist some
C1 > 0, k ∈ N such that

P {X(T )− cT > au} ∼ C1u
−kϕT (ãu+ cT ), (4.7)

as u→∞, where ϕT is the density of X(T ). According to Lemma 4.10 there exist
C2 > 0,K ∈ R such that, for all u > −G(T ∗(u)) we have

P
{
∃t∈[L(u),R(u)] : X(t)− ct > ua

}
≤ C2(u+ G(T ∗(u))

× exp
(
−D(R(u))(u+ G(T ∗(u)))2/2

)
,

(4.8)

where K(·) is defined in Lemma 4.10 and T ∗(u) := argmin t∈[L(u),R(u)]G(T). From
now on, we take u > − inft∈[T1,T ] G(t), which is finite due to Lemma 4.9.

For brevity, in the following we denote Σ := Σ(T ), ã := ã(T ). In light of (4.7)
and (4.8), it suffices to show that, for any β ∈ R we have

uβ
exp(−D(R(u))(u+ G(T ∗(u)))2/2)

exp (−(ãu+ cT )>Σ−1(ãu+ cT )/2)

= exp
(
−
(
u2h2(u) + uh1(u) + h0(u)

)
+ β ln(u)

)
→ 0,

(4.9)

as u→∞, where

h2(u) :=
1

2

(
D(R(u))−D(T )

)
, h1(u) := D(R(u))G(T ∗(u))−D(T )G(T ),



h0(u) :=
1

2

(
D(R(u))K2(T ∗(u))− T 2c>Σ−1c

)
.

We notice that functions |hi(u)| are all bounded for u large enough.

Suppose that L(u), R(u) satisfy conditions (i). Due to the continuity of D(·),
we have that D(R(u)) → D(T ). Using the assumption B1, that D(t) is differen-
tiable at the point t = T , with Ḋ(T ) < 0, we have

−uh2(u)− h1(u) = u(T −R(u)) · D(R(u))−D(T )

2(R(u)− T )
− h1(u)→ −∞,

which implies (4.9) under conditions in item (i).

Next, suppose that L(u), R(u) satisfy conditions (ii). We have

h1(u) = D(R(u))
D(T ∗(u)) ·

(
D(T ∗(u))G(T ∗(u))−D(T )G(T )

)
+ D(T )
D(T ∗(u))G(T )

(
D(R(u))−D(T ∗(u))

)
.

Functions D(t) and D(t)G(t) = 〈λ(t), c〉t are Lipschitz continuous due to Lemma
4.9 and the fact that sums and products of Lipschitz continuous functions are
Lipschitz continuous. This implies that there exists C3 > 0 such that∣∣∣D(T ∗(u))G(T ∗(u))−D(T )G(T )

∣∣∣ ≤ C3|T − T ∗(u)| ≤ C3|T − L(u)|,

as well as ∣∣∣D(R(u))−D(T ∗(u))
∣∣∣ ≤ C3|R(u)− T ∗(u)| ≤ C3|T − L(u)|.

Hence, there exists C4 > 0 such that |h1(u)| ≤ C4|T −L(u)| for all u large enough
and

−u2h2(u)− uh1(u) ≤ u2(T −R(u)) ·
[
D(R(u))−D(T )

2(R(u)− T )
+ C4 ·

T − L(u)

u(T −R(u))

]
.

Since D(R(u)) < D(T ) and Ḋ(T ) < 0 and T−L(u) = o(u(T−R(u))) then the term
in the square brackets above is eventually negative and bounded away from 0 for
u large enough. Finally, (4.9) follows from the fact that u2(T −R(u))/ ln(u)→∞.
�

Proof of Lemma 4.2: Consider the following upper bound

P
{
∃t∈[T1,T−Lu−2 ln2 u] : X(t)− ct > ua

}
P {X(T )− cT > ua}



≤
P
{
∃t∈[T1,T−Lu−1 lnu] : X(t)− ct > ua

}
P {X(T )− cT > ua}

+
P
{
∃t∈[T−Lu−1 lnu,T−Lu−1 ln−1 u] : X(t)− ct > ua

}
P {X(T )− cT > ua}

+
P
{
∃t∈[T−Lu−1 ln−1 u],T−Lu−2 ln2 u] : X(t)− ct > ua

}
P {X(T )− cT > ua}

.

Now, the first and second term above satisfy condition (i) of Lemma 4.11, while
the third term satisfies condition (ii) of Lemma 4.11. Thus the righthand side of
the above inequality converges to 0, as u→∞. �

4.3 Proofs of Lemma 4.3 and Lemma 4.4

Before proceeding to the proof of Lemma 4.3 and Lemma 4.4 we need some aux-
iliary lemmas. The following result generalizes [25, Lemma 5.3].

Lemma 4.12 For any f := (f1, . . . , fd) ∈ Rd, if
∑d

i=1 fi = 0

∫
Rd

I
{
∃t∈[0,L] : x < f t

}
e
∑d
i=1 xidx = 1 +

d∑
i=1

f+
i L,

otherwise∫
Rd

I
{
∃t∈[0,L] : x < f t

}
e
∑d
i=1 xidx =

∑d
i=1 f

−
i∑d

i=1 fi
+

∑d
i=1 f

+
i∑d

i=1 fi
e
∑d
i=1 fiL,

where f+
i := max{fi, 0} and f−i := min{fi, 0}.

Proof of Lemma 4.12: Define S+ :=
∑d

i=1 f
+
i , S− := −

∑d
i=1 f

−
i , and S :=∑d

i=1 fi = S+−S−. Without the loss of generality, let k ∈ {0, . . . , d} be such that
f1 ≥ 0, . . . , fk ≥ 0, and fk+1 < 0, . . . , fd < 0. We distinguish three cases: (i) k = d
(all fis are non-negative, which is equivalent to S− = 0), (ii) k = 0 (all fis are
negative, which is equivalent to S+ = 0), and (iii) 0 < k < d. It can be easily seen
that in case (i) we have

∫
Rd

I
{
∃t∈[0,L] : x < f t

}
e
∑d
i=1 xidx =

d∏
i=1

∫ fiL

−∞
exidxi = eSL,



and in case (ii) we have∫
Rd

I
{
∃t∈[0,L] : x < f t

}
e
∑d
i=1 xidx =

d∏
i=1

∫ ∞
0

e−xidxi = 1.

Till the end we consider case (iii). Let us define

Q1 := {x ∈ Rd : ∀i∈{1,...,d} if fi < 0 then xi < 0},
Q2 := {x ∈ Rd : ∃i∈{1,...,d} if fi < 0 then xi ≥ 0},

so that Q1 ∪Q2 = Rd and Q1 ∩Q2 = ∅. It can be seen that∫
Q2

I
{
∃t∈[0,L] : x < f t

}
e
∑d
i=1 xidx = 0.

Furthermore, with m := m(xk+1, . . . , xd) = min{ xk+1

−fk+1
, . . . , xd

−fd }, we have∫
Q1

I
{
∃t∈[0,L] : x < f t

}
e
∑d
i=1 xidx

=

∫ ∞
0
· · ·
∫ ∞

0

[
k∏
i=1

∫ fi(L∧m)

−∞
exidxi

]
e−
∑d
i=k+1 xi dxk+1 · · · dxd

=

∫ ∞
0
· · ·
∫ ∞

0
exp {S+(L ∧m)} e−

∑d
i=k+1 xidxk+1 · · · dxd.

We recognize that exp{−
∑d

i=k+1 xi}·I {xi ≥ 0} is the density of minimum of d−k
independent exponential distributions with rate 1; using that such minimum is
again exponentially distributed with rate (d−k), we find that, with Y ∼ Exp(S−),∫

Q1

I
{
∃t∈[0,L] : x < f t

}
e
∑d
i=1 xidx = E

{
eS+(L∧Y )

}
= S−

∫ ∞
0

eS+(L∧y)−S−ydy

= S−

∫ L

0
e(S+−S−)ydy

+ eS+L

∫ ∞
L

S−e
−S−ydy

=

{
L · S− + eSL, S = 0,
S−
S · (e

S·L − 1) + eSL, otherwise,

which completes the proof. �



Lemma 4.13 There exist τ̄ ∈ (0, T ), λ∗ > 0, η > 0 such that:

(i) IT ⊆ It for all t ∈ [τ̄ , T ],

(ii) λi(t) > λ∗ for all i ∈ It, t ∈ [τ̄ , T ],

(iii) Σ−1(t)− ηId is positive definite for all t ∈ [τ̄ , T ].

Proof of Lemma 4.13: According to Lemma 4.6, i ∈ It if and only if λi(t) > 0.
Since λi(t) is a continuous function for any i ∈ {1, . . . , d} (see Lemma 4.9), then
for any i ∈ IT there must exist τi < T , and λ∗i > 0 such that λi(t) > λ∗i for all
t ∈ [τi, T ]. for all t ∈ [τi, T ] we have λi(t) > 0. Thus the claims in (i) and (ii)
follow by taking τ = maxi∈IT (τi) and λ∗ = mini∈IT λ

∗
i .

The matrix Σ−1(t) is symmetric and positive definite for t > 0, thus it has only
real positive eigenvalues σ1(t) . . . σd(t). So the related characteristic polynomial
pΣ−1(t) has continuous monoms and always has d real solutions. It means that we
can order the eigenvalues σ1(t), . . . , σd(t) in such way that this functions will be
continuous by t and thus η = min

i∈{1,...,d}
min
t∈[τ,T ]

σi(t) > 0. This concludes the proof of

(iii). �
In the following, for all u > 0, τ ∈ (0, T ], and x ∈ Rd we define:

wu,τ (x) := uã(τ) + cτ − x

ū(τ)
, (4.10)

where ū(τ) ∈ {u, 1}d such that ūIτ (τ) := u ·1|Iτ |, and ūJτ (τ) := 1|Jτ |, that is ū(τ)
has the components in the set Iτ equal to u and the other components equal to
1. Further, for all L > 0, τ ∈ (0, T ], x ∈ Rd and u >

√
L/τ consider a Gaussian

process {Zxu,τ (t), t ∈ [0, L]} defined conditionally:(
Zxu,τ (t)

)
t∈[0,L]

:
d
=
(
Z(τ − t

u2 ) | Z(τ) = A−1wu,τ (x)
)
t∈[0,L]

. (4.11)

Since the components of Z(t) are mutually independent, then the components of
Zxu,τ (t) are mutually independent as well, i.e.

Cov((Zxu,τ (s))i, (Z
x
u,τ (t))j) = 0

for i 6= j. By the definition in (4.11), for any i ∈ {1, . . . , d}, t, s ∈ [0, L] we have

E
{

(Zxu,τ (t))i
}

=
ρi(τ − t

u2 , τ)

vi(τ)

(
A−1wu,τ (x)

)
i
,

Cov
(

(Zxu,τ (s))i, (Z
x
u,τ (t))i)

)
= ρi(τ − s

u2 , τ − t
u2 )−

ρi(τ − s
u2 , τ)ρi(τ − t

u2 , τ)

vi(τ)

with ρi defined in (2.1). In the following let Ẑu,τ (t) := Zxu,τ (t)− E
{
Zxu,τ (t))

}
. It

is noted that the distribution of Ẑu,τ (t) does not depend on x.



Lemma 4.14 There exists a constant C > 0 such that for all L > 0, τ ∈ (0, T ],
and t, s ∈ [0, L] we have

u2E
{(

(AẐu,τ (t))i − (AẐu,τ (s))i

)2
}
≤ Cu2 max

j∈{1,...,d}
vj(Lu

−2)

for all i ∈ {1, . . . , d} and u large enough.

Proof of Lemma 4.14: For brevity, in the following denote t := τ− t
u2 , s := τ− s

u2 ,

and Ẑu(t) := Ẑu,τ (t). We have

E
{(

(Ẑu(t))i − (Ẑu(s))i

)2
}

= Var{(Ẑu(t))i}+ Var{(Ẑu(s))i}

− 2Cov{(Ẑu(t))i, (Ẑu(s))i}

= vi(t̄)−
ρ2
i (t̄, τ)

vi(τ)
+ vi(s̄)−

ρ2
i (s̄, τ)

vi(τ)

− 2

(
ρi(s̄, t̄)−

ρi(t̄, τ)ρi(s̄, τ)

vi(τ)

)
= vi(|s̄− t̄|)−

(
ρi(t̄, τ)− ρi(s̄, τ)

)2
vi(τ)

.

Now, the above is not greater than vi(|s̄ − t̄|) = vi(|s − t|/u2) ≤ vi(Lu
−2). Fur-

thermore, we have

u2E
{(

(AẐu(s))i − (AẐu(t))i

)2
}

= u2E

(
d∑
j=1

aij
(
(Ẑu(s))j − (Ẑu(t))j

))2


≤ u2

 d∑
j=1

a2
ij

 d∑
j=1

E
{

(Ẑu(s))j − (Ẑu(t))j)
2
} ,

where we used CauchySchwarz inequality. This completes the proof. �
The following corollary to Lemma 4.14 is a straightforward application of Piter-

barg inequality [53, Theorem 8.1] and Lipshitz continuity of functions vi(·).

Corollary 4.15 There exists C > 0 such that for all L > 0, τ ∈ (0, T ], z > 0 we
have

P

{
sup
t∈[0,L]

u(AẐu,τ (t))i > z

}
≤ Cz2e−z

2/(2u2 maxj∈{1,...,d} vj(Lu
−2))

for i ∈ {1, . . . , d} and all u large enough.



In the following, for any i ∈ {1, . . . , d}, t, s ∈ [0, L] we define

hu,τ (L,x) := P
{
∃s∈[τ−Lu−2,τ ] : X(t)− ct > ua |X(τ) = wu,τ (x)

}
,

θu,τ (x) := ϕτ (wu,τ (x))/ϕτ (uã(τ) + cτ).
(4.12)

Lemma 4.16 There exists τ0 ∈ (0, T ) and function H : R+×Rd → R+ satisfying∫
Rd H(L,x)dx =: C∗(L) < ∞ for all L > 0, and u0 : R+ → R+ such that for all
L > 0, τ ∈ [τ0, T ], and x ∈ Rd we have

hu,τ (L,x)θu,τ (x) ≤ H(L,x)

for all u > u0(L). Moreover, there exists C∗ > 0 such that

lim sup
L→∞

C∗(L) < C∗.

Proof of Lemma 4.16: For u > 0, τ ∈ (0, T ], and x ∈ Rd let

θu,τ (x) := ϕτ (wu,τ (x))/ϕτ (uã(τ) + cτ).

Then

θu,τ (x)

= exp

{
uã>(τ)Σ−1(τ)(x/ū) + τc>Σ−1(τ)(x/ū)− 1

2
(x/ū)>Σ−1(τ)(x/ū)

}
= e<λI(τ),xI>e<c̃I(τ)/u,xI>e<c̃J (τ),xJ>e−

1
2

(x/ū)>Σ−1(τ)(x/ū),

where c̃(τ) := c>Σ−1(τ). From Lemma 4.13(iii) we know that there exists η > 0
such that Σ−1(τ)− ηId is positive definite for all τ < T , thus

e−
1
2

(x/ū)>Σ−1(τ)(x/ū) ≤ e−
1
2

(x/ū)>(Σ−1(τ)−ηId)(x/ū)e−
η
2
||x/ū||2 ≤ e−

η
2
‖xJ‖2 .

Furthermore, due to the continuity of vi(·) and λi(·) (see Lemma 4.9), for all ε > 0
there exists τ0 < T large enough such that

λi(T )(1− ε) < λi(τ) < λi(T )(1 + ε),

and

c∗i (T )(1− ε) ≤ |c∗i (τ)| ≤ c∗i (T )(1 + ε)

for all i ∈ {1, . . . , d} and τ ∈ [τ0, T ]. Moreover, for all ε > 0 small enough and
τ0 > τ̄ , where τ̄ is defined in Lemma 4.13 we also have

λε,xi (t) := λi(t)− sgn(xi)ε > 0



for all i ∈ I, thus for every ε > 0 small enough there exists τ0 such that

θu(x) ≤ e<λI(T )(1+ε·sgn(xI)),xI>e<c
∗
J (T )(1+ε·sgn(xJ )),xJ>e−

η
2
||xJ ||2 =: θ̄(x).

Now, let Zxu,τ (t), and Ẑu,τ (t) be defined as in (4.11). Since X = AZ, then

hu,τ (L,x) = P
{
∃t∈[τ−Lu−2,τ ] : AZ(t)− ct > ua | AZ(τ) = wu,τ (x)

}
, (4.13)

= P
{
∃t∈[0,L] : AZ(τ − t

u2 )− c(τ − t
u2 ) > ua | AZ(τ) = wu,τ (x)

}
,

= P
{
∃t∈[0,L] : AZxu,τ (t)− cτ + ct/u2 > ua

}
= P

{
∃t∈[0,L]∀i∈{1,...,d} : u(AẐu,τ (t))i + (µu,τ (t,x))i > 0

}
,

where, with defining Ru,τ (t) := diag(ρi(τ − t
u2 , τ)/vi(τ)) for breviety, we have

µu,τ (t,x) := uARu,τ (t)A−1wu,τ (x)− ucτ + ct/u− u2a

= uARu,τ (t)A−1(uã+ cτ − x/ū)− ucτ + ct/u− u2a

= u2A (Ru,τ (t)− Id)A−1 · (ã+ cτ/u− x/(uū))

+ ct/u+ u2(ã− a)− ux/ū.

Notice that

u2A (Ru,τ (t)− Id)A−1

= u2A · diag

(
ρi(τ − t

u2 , τ)− vi(τ)

vi(τ)

)
·A−1

= tA · diag

(
1

2vi(τ)

[
vi(τ − t

u2 )− vi(τ)

t/u2
+
vi(

t
u2 )

t/u2

])
·A−1

→ − t
2
AQ(τ)A−1, u→∞ (4.14)

for any fixed τ, T , where Q(τ) := diag(v̇i(τ)/vi(τ)). Moreover, applying the mean
value theorem yields

inf
s∈[τ0−Lu−2,T ]

|v̇i(s)| ≤

∣∣∣∣∣vi(τ − t
u2 )− vi(τ)

t/u2

∣∣∣∣∣ ≤ sup
s∈[τ0−Lu−2,T ]

|v̇i(s)|,

so using the assumption B0, for every ε > 0 there exists τ0 < T such that

−(1 + ε)v̇i(T ) ≤
vi(τ − t

u2 )− vi(τ)

t/u2
≤ −(1− ε)v̇i(T )



for all τ ∈ [τ0, T ], t ∈ [0, L] and u large enough. The bound above implies that for
any ε > 0, we can find τ0 < T such that for all i ∈ I we have

(µu,τ (t,x))i ≤
(
−1

2(AQA−1ã)i + ε
)
t− xi(1− ε · sgn (xi)),

for all t ∈ [τ0, T ] and u large enough, where Q := Q(T ) = diag(v̇i(T )/vi(T )). In
the following define Wu,τ := maxi∈{1,...,d} supt∈[0,L] u(AẐu,τ (t))i and see that

hu,τ (L,x)

≤ P
{
∃t∈[0,L]∀i∈I : Wu,τ +

(
−1

2(AQA−1ã)i + ε
)
t− xi(1− ε · sgn (xi)) > 0

}
≤ P

{
∃t∈[0,L]∀i∈I :

−1
2(AQA−1ã)i + ε

1− ε · sgn (xi)
· t > xi −

Wu,τ

1− ε

}

≤
∞∑
k=0

P

{
∃t∈[0,L]∀i∈I :

−1
2(AQA−1ã)i + ε

1− ε · sgn (xi)
· t > xi −

Wu,τ

1− ε
;Wu,τ ∈ (εk, ε(k + 1)]

}

≤
∞∑
k=0

I

{
∃t∈[0,L]∀i∈I :

−1
2(AQA−1ã)i + ε

1− ε · sgn (xi)
· t > xi −

ε(k + 1)

1− ε

}
P {Wu,τ > εk} .

Furthermore, due to Corollary 4.15 and assumption BII, we have

P {Wu,τ > εk} ≤ e−(εk)2

for all τ ∈ [τ0, T ] and u large enough. Thus,

hu,τ (L,x)

≤
∞∑
k=0

I

{
∃t∈[0,L]∀i∈I :

−1
2(AQA−1ã)i + ε

1− ε · sgn (xi)
· t > xi −

ε(k + 1)

1− ε

}
e−(εk)2

:= h̄(L,x)

for all u large enough. Furthermore, define

Ek(L) :=

∫
R|I|

I

{
∃t∈[0,L]∀i∈I :

−1
2(AQA−1ã)i + ε

1− ε · sgn (xi)
· t > xi −

ε(k + 1)

1− ε

}
× e<λI(T )(1+ε·sgn(xI)),xI>dxI .

Then∫
Rd
h̄(L,x)θ̄(x) =

∞∑
k=0

Ek(L)e−(εk)2 ·
∫
R|J|

e<c
∗
J (T )(1+ε·sgn(xJ )),xJ>e−

η
2
||xJ ||2dxJ .



Now, the integral over R|J | above is bounded for all ε small enough because it
does not depend on τ and u. We now focus on the sum

∑∞
k=0Ek(L)e−(εk)2

. Let
δ = (δ1, . . . , δd) ∈ {−1, 1}|I|. For each k ∈ N we have

Ek(L)

≤
∑

δ∈{−1,1}|I|

∫
R|I|

I

{
∃t∈[0,L]∀i∈I :

−1
2(AQA−1ã)i + ε

1− εδi
· t > xi −

ε(k + 1)

1− ε

}
× e<λI(T )(1+εδi),xI>dxI .

After applying substitution xi := λi(1 + εδi)
[
xi − ε(k+1)

1−ε

]
, each term of the sum

above is bounded from above by C(L; ε, δ) · egi(ε), where

C(L; ε, δ) :=
1∏

i∈I λi(1 + εδi)

∫
R|I|

I
{
∃t∈[0,L]∀i∈I : fi(ε, δi)t > xi

}
e
∑
i∈I xidxI ,

with fi(ε, δi) and gi(ε) defined below

fi(ε, δi) :=

(
−1

2(AQA−1ã)i + ε
)
λi(1 + εδi)

1− εδi
, gi(ε) :=

λi(1 + ε)ε(k + 1)

1− ε
.

It is straightforward to see that fi(ε, δi)→ fi := (−A v̇(T )
2v(T )A

−1a)iλi, as ε→ 0 for

any δ and similarly gi(ε)→ 0. Therefore,

C(L; ε, δ)→ C(L), ε→ 0,

where

C(L) :=
∏
i∈I

λi

∫
R|I|

I
{
∃t∈[0,L] : −1

2(AQA−1ã)I − xI > 0I
}
e

∑
i∈I

λixi
dxI (4.15)

=

∫
R|I|

I
{
∃t∈[0,L]∀i∈I : −1

2λi · (AQA
−1ã)i − xi > 0

}
e

∑
i∈I

xi
dx.

Now, since Σ−1 = A−> diag(vi(T ))A−1 and λ = Σ−1ã, then∑
i∈I

λi · (AQA−1ã)i = 〈AQA−1ã,λ〉 = 〈AQA−1ã,λ〉

= λ> diag

(
v̇i(T )

vi(T )

)
A>A−>diag

(
1

vi(T )

)
A−1ã

= −Ḋ(T ),



where in the last line we used Lemma 4.8. Applying Lemma 4.12 using f = (fi),
fi = −1

2

∑
i∈I λi · (AQA−1ã)i and the fact that,

∑
i fi = 1

2Ḋ(T ) < 0, see Lemma
4.8, we conclude that C(L)→ C, as L→∞, with C defined in (3.1).

Now, since C(L) → C, then there must exist some c1 > 0 such that for all ε
small enough and all δ ∈ {−1, 1}|I|, we have C(L; ε, δ) ≤ (1 + c1)2d+1C. Finally,
notice that for each ε > 0,

∞∑
k=0

exp

{
λi(1 + ε)ε(k + 1)

1− ε

}
e−(εk)2

<∞.

These observations combined give us that there exists a constant c2 > 0 such that∫
Rd
h̄(L,x)θ̄(x) < c2 · C

for all u large enough. This completes the proof. �
In the following, for any τ ∈ (0, T ], L > 0 and u >

√
L/τ let

Mτ (u, L) := P
{
∃t∈[τ−Lu−2,τ ] : X(t)− ct > ua

}
. (4.16)

Proof of Lemma 4.4: For any T > 0, with MT (u, L) defined in (4.16), we
have

MT (u, L) =

∫
Rd

P
{
∃t∈[T−Lu−2,T ] : X(t)− ct > ua |X(T ) = x

}
ϕT (x)dx,

where ϕT be the pdf of X(T ). After applying substitution wu,T (x); see (4.10) we
obtain

MT (u, L) = u−|IT |
∫
Rd

P
{
∃t∈[T−Lu−2,T ] : X(t)− ct > ua |X(T ) = wu,T (x)

}
× ϕ(wu,T (x))dx

= u−|IT |
∫
Rd
hu,T (L,x)ϕ(wu,T (x))dx. (4.17)

Now, let θu,T (x) := ϕT (wu,T (x))/ϕT (uã(T ) + cT ). Then

θu,T (x)

= exp

{
uã>(T )Σ−1(T )(x/ū) + Tc>Σ−1(T )(x/ū)− 1

2
(x/ū)>Σ−1(T )(x/ū)

}
,

with the three terms under the exponent exhibit the following behavior:

e−
1
2

(x/ū)>Σ−1(T )(x/ū) → e−
1
2
x>J (Σ−1(T ))JJxJ , u→∞



eTc
>Σ−1(T )(x/ū) → eT 〈(c

>Σ−1(T ))J ,xJ 〉, u→∞
eã
>(T )Σ−1(T )(ux/ū) = eλ

>(T )(ux/ū) = e〈λI(T ),xI〉.

Letting c̃ := Tc>Σ−1(T ) we obtain

θ(x) := lim
u→∞

θu(x) = e〈λI(T ),xI〉 · e−
1
2
x>J (Σ−1(T ))JJxJ e〈c̃J ,xJ 〉.

Let Ẑu,τ (t) be defined as in (4.11). Repeating steps from the proof of Lemma
4.16, cf. Eq. (4.13) and below, we find that

hu,T (L,x) = P
{
∃t∈[0,L] : uAẐu,τ (t) + µu,T (t,x) > 0

}
,

where

µu,T (t,x) = u2A (Ru,τ (t)− Id)A−1

× (ã+ cτ/u− x/(uū)) + ct/u+ u2(ã− a)− ux/ū

with Ru,τ (t) := diag(ρi(τ − t
u2 , τ)/vi(τ)). Let UT := {i ∈ JT : ãi(T ) = ai} be the

subset of JT . Repeating steps from the proof of Lemma 4.16, cf. Eq. (4.14) and
below, we obtain

(µu,T (t,x))i → µ(T,x) :=


−1

2(AQA−1ã)i − xi, i ∈ I,
sgn(−xi) · ∞, i ∈ U,
∞, i ∈ J \ U

as u→∞, where Q := diag(v̇i(T )/vi(T )). We can see that

P
{
∃t∈[0,L]∀i∈{1,...,d} : (µu,T (t,x))i > 0

}
≤ hu,T (L,x)

≤ P

{
∃t∈[0,L]∀i∈{1,...,d} : sup

t∈[0,L]
(uAẐu,τ (t))i + (µu,T (t,x))i > 0

}
.

Corollary 4.15 implies that supt∈[0,L](uAẐu,τ (t))i → 0, as u → ∞, so for every
x ∈ R we have

lim
u→∞

hu,T (L,x) = I
{
∃t∈[0,L] : −1

2(AQA−1ã)I − xI > 0I
}
· I{xU < 0U}

=: h(L,x).

Thanks to Lemma 4.16, we may apply Lebesgue’s dominated convergence theorem
and obtain as u→∞∫

Rd
hu,T (L,x)θu,T (x)dx→

∫
Rd
h(L,x)θ(x)dx



= C(L) · 1∏
i∈I λi(T )

∫
R|J|

e−
1
2

(xJ−c̃)>(Σ−1(T ))JJ (xJ−c̃)

× e
1
2
c̃>(Σ−1(T ))JJ c̃I{xU<0U}dxJ ,

with C(L) defined in (4.15). Finally, using Lemma 4.5 yields

MT (u, L)

P {X(T )− cT > ua}
→ C(L)

as u → ∞. Repeating the reasoning from the proof of Lemma 4.16, we conclude
that C(L)→ C, as L→∞, with C defined in (3.1). �

Proof of Lemma 4.3: Define a sequence τk := T − kLu−2 and a constant
K(u) = [ln2(u) + 1]. Then

P
{
∃t∈[T−Lu−2 ln2(u),T−Lu−2]X(t)− ct > au

}
P {X(T )− cT > ua}

≤
K(u)∑
k=1

Mτk(u, L)

P {X(T )− cT > ua}
,

with Mτ (u, L) defined in (4.16). Similarly to (4.17), for any τ > 0 we have

Mτ (u, L) = u−|Iτ |
∫
Rd
hu,τ (L,x)ϕτ (w)dx,

with hu,τ defined as in (4.12). Let τ0 be as in Lemma 4.16. Then τk ∈ [τ0, T ] for
all k ∈ {1, . . . ,K(u)} we may apply Lemma 4.16 and obtain

Mτk(u, L) ≤ u−|IT |ϕτk(uã(τk) + cτk) ·
∫
Rd
H(L,x)dx

for all u large enough. Furthermore, according to Lemma 4.16, there exists a
constant C1 such that

∫
Rd H(L,x)dx ≤ C1 for all u large enough. Moreover,

according to Lemma 4.5, there exist C2 > 0, such that

P {X(T )− cT > ua} ≥ C2u
−|IT |ϕT (ãu+ cT )

for all u large enough. We thus have

P
{
∃t∈[T−Lu−2 ln2(u),T−Lu−2]X(t)− ct > au

}
P {X(T )− cT > ua}

≤ C1

C2

K(u)∑
k=1

ϕτk(uã(τk) + cτk)

ϕT (uã(T ) + cT )
.

Consider one of the terms in the sum above. We have

ϕτk(uã(τk) + cτk)

ϕT (uã(T ) + cT )
=

√
|Σ(T )|
|Σ(τk)|

· e−
u2

2
(D(τk)−D(T ))e−u〈λ(τk)−λ(T ),c〉



× e−
1
2
c>(Σ−1(τk)−Σ−1(T ))c.

Now, using the fact that D(t) has a negative derivative at t = T (cf. Lemma 4.8),
and the fact that τK(u) → T we know that if u large enough, then u2(D(τk) −
D(T )) ≥ |Ḋ(T )|kL/2. Using Lipschitz continuity of λi we also find that there
exists a constant C1 > 0 such that |〈λi(τk) − λi(T ), c〉| ≤ C1kL. Both these
observations combined imply that there exist some constants C3, β > 0 such that

ϕτk(uã(τk) + cτk)

ϕT (uã(T ) + cT )
≤ C3e

−βkL

for all u large enough. Finally, we have

K(u)∑
k=1

Mτk(u, L)

P {X(T )− cT > ua}
≤ C1C3

C2

∞∑
k=1

e−βkL ≤ C1C3

C2(1− e−βL)
· e−βL,

which completes the proof. �



Chapter 5

Uniform Bounds for Ruin
Probability

1 Introduction and first result

Let B(t), t ≥ 0 be a d-dimensional Brownian motion with independent standard
Brownian motion components and set Z(t) = AB(t), t ≥ 0 with A a d × d real
non-singular matrix. The recent contribution [44] derived the following remarkable
inequality

1 ≤ P {∃t ∈ [0, T ] : Z(t) ≥ b}
P {Z(T ) ≥ b}

≤ K(T ), K(T ) =
1

P {Z(T ) ≥ 0}
. (1.1)

valid for all b ∈ Rd, T > 0. In our notation bold symbols are column vectors with
d rows and all operations are meant component-wise, for instance x ≥ 0 means
xi ≥ 0 for all i ≤ d with 0 = (0, . . . , 0) ∈ Rd.
The special and crucial feature of (1.1) is that the bounds are uniform with
respect to b. Moreover, if at least one component of b tends to infinity, then
P {∃t ∈ [0, T ] : Z(t) ≥ b} can be accurately approximated (up to some constant)
by the survival probability P {Z(T ) ≥ b}.
Inequality (1.1) has been crucial in the context of Shepp-statistics investigated in
[44]. It is also of great importance in the investigation of simultaneous ruin prob-
abilities in vector-valued risk models (see [16, 17, 47]). Specifically, consider the
multidimensional risk model

R(t, u) = au−X(t), X(t) = Z(t)− ct

4This chapter is based on the paper [46].
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for some vectors a, c ∈ Rd and Z(t), t ≥ 0 defined above. Typically, R models the
surplus of all d-portfolios of an insurance company, where aiu, u > 0 plays the role
of the initial capital, the component Zi models the accumulated claim amount up
to time t and cit is the premium income for the ith portfolio.

Given a positive integer k ≤ d, of interest is the k-th simultaneous ruin prob-
ability, i.e., at least k out of d portfolios are ruined on a given time interval [0, T ]
with T possibly also infinite. That ruin probability can be written as

P
{
∃t∈[0,T ] : Z(t)− ct ∈ uS

}
, u > 0,

where
S :=

⋃
I⊂{1...d}
|I|=k

SI , SI = {x ∈ Rd : ∀i ∈ I, xi > ai}.

The particular case Z(t) = AB(t), t ≥ 0 with A a d× d non-singular matrix is of
special importance for insurance risk models, see e.g., [27]. Clearly, this instance
is also of great importance in statistics and probability given the central role of
the Rd-valued Brownian motion.
In [15] it has been shown that (1.1) can be extended for this model, i.e., for all
u > 0, T > 0, and any compact set LT ⊂ [0, T ], such that T ∈ LT

1 ≤ P {∃t∈LT : X(t) ∈ uS}
P {X(T ) ∈ uS}

≤ KS(LT ), X(t) = Z(t)− c(t), (1.2)

with c(t) = ct, t ≥ 0 and some known constant KS(LT ) > 0. Again the bounds
are uniform with respect to u.
It is clear that the inequality above does not hold for an arbitrary set S ⊂ Rd. For
example, taking S = {x ∈ Rd : x1 = 1} we have that

P {∃t∈LT : X(t) ∈ uS} = P {∃t∈LT : X1(t) > u} ≥ P {X1(T ) > u} > 0,

P {X(T ) ∈ uS} = 0,

and (1.2) does not hold for any constant KS(LT ).
We consider further only sets S which satisfy the following condition:

Definition 1.1 Let X and Z are as defined above. The Borel set S ⊂ Rd satisfies
cone condition with respect to the vector-valued process X if there exists a strictly
positive function εS(t), t > 0 such that for any point x ∈ S and any t > 0 there
exists a Borel set V x ⊂ S that contains x satisfying V x − x ⊂ c (V x − x) for all
c > 1 and P {Z(t) ∈ V x − x} ≥ εS(t).

It is of interest to consider a general trend function in (1.2). We consider below
a large class of trend functions which is tractable if Z has self-similar coordinates
with index α > 0. This is in particular the case when Z = AB.



Definition 1.2 A vector-valued measurable function c : [0,+∞)→ Rd belongs to
RVt0(α) for some α > 0 and t0 ∈ [0, T ] if for some M > 0, all i ∈ {1 . . . d} and all
t ∈ [0, T ]

|ci(t)− ci(t0)| ≤M |t− t0|α.

We state next our first result. Below F : Rd → Rd growing means that for any
x,y ∈ Rd such that for all i ∈ {1, . . . , d} xi ≥ yi we have that for all i ∈ {1, . . . , d}
Fi(x) ≥ Fi(y).

Theorem 1.3 If S ⊂ Rd satisfies the cone condition with respect to the process
Z = AB such that 0 6∈ S and c ∈ RVT (1/2), then for all constants T > 0, u > 1
the inequality (1.2) holds and

K(LT ) =
2d/2

C(LT )εS(T )
, C(LT ) = inf

t∈LT \{T}
e
−T
(

c(T )−c(t)√
T−t

)>
Σ−1

(
c(T )−c(t)√

T−t

)
> 0,

where Σ is the covariance function of Z(T ). In particular, for any growing func-
tion F : Rd → Rd we have

P {∃t∈LT : F (Z(t)− c(t)) > ua} ≤ CTP {F (Z(T )− c(T )) > ua}

for all a ∈ Rd \ (−∞, 0]d, u > 1 and some constant CT which does not depend on
u.

If Z : Rn → Rd is a given separable random field, it is of interest to determine
conditions such that (1.2) can be extended to

1 ≤ P {∃t∈LT
: Z(t)− c(t) ∈ uS}

P {Z(T )− c(T ) ∈ uS}
≤ KS(LT ), (1.3)

where LT ⊂ [0, T1] × . . . × [0, Tn] is compact, T ∈ LT and T = (T1, . . . , Tn) has
positive components. For the case Z(t) =

∑n
i=1Zi(ti) , where Zi are independent

copies of Z, and c(t) = 0 the result (1.3) was shown in [44][Thm 1.1] for some
special set S. For more general set S we can show the following result:

Theorem 1.4 If S ⊂ Rd satisfies the cone condition with respect to the process
Z(t), 0 6∈ S and all ci ∈ RVT (1/2), then for any T1, . . . , Tn > 0, u > 1 the
inequality (1.3) holds with Z(t) =

∑n
k=1Zk(tk) and c(t) =

∑n
k=1 ck(tk) and

KS(LT ) =
n∏
k=1

2d/2

Ck(Tk)εS(Tk)
,

Ck(Tk) = inf
t∈[0,Tk)

e
−Tk

(
ck(Tk)−ck(t)√

Tk−t

)>
Σ−1(Tk)

(
ck(Tk)−ck(t)√

Tk−t

)
> 0,

where εS is any function satisfies the claims of Definition 1.1.



2 Discussion

In this section, as in Introduction, we consider

Z(t) = AB(t), t ≥ 0,

with A non-singular and B a d-dimensional Brownian motion with independent
components. We are investigating the generalisation of the upper bound (1.2).

2.1 Order statistics

The classical multidimensional Brownian motion risk model (see [27]) is formulated
in terms of risk process R specified by

R(t, u) = au−Z(t) + ct

for some vectors a, c ∈ Rd. We are interested in the finite-time simultaneous ruin
probability for k out of d portfolios, i.e., probability that at least k portfolios are
ruined. In other words, we are investigating the probability

P
{
∃t∈[0,T ], ∃I⊂{1,...,d} : |I| = k, ∀i ∈ I Zi(t)− cit > aiu

}
.

The probability above can be represented as follows

P
{
∃t∈[0,T ] : Z(t)− ct ∈ Su

}
, u > 0,

where
Su :=

⋃
I⊂{1...d}
|I|=k

SI,u, SI,u = {x ∈ Rd : ∀i ∈ I xi > aiu}.

Asymptotics of such probability was already investigated in [15]. Now we want
to show a uniform bound. It is clear that all sets SI,u satisfy the cone condition
with respect to the process Z(t). Thus, Su also satisfies the cone condition with
respect to the process Z(t), hence we can use Theorem 1.3 and write for some
positive constant C

P {Z(T )− cT ∈ Su} ≤ P
{
∃t∈[0,T ] : Z(t)− ct ∈ Su

}
≤ CP {Z(T )− cT ∈ Su} .

2.2 Fractional Brownian motion

Consider next the risk model d = 1 driven by the one-dimensional fractional Brow-
nian motion BH(t) for t > 0, i.e., the risk process is

R(u, t) = u−BH(t) + ct, t > 0.



We are interested in the calculation of the finite-time ruin probability for given
T > 0. The inequalities below have already been shown in [17]. We show now
the way to obtain them using the general theorem presented above. Using Slepian
inequality, we can write for H > 1

2

P
{
∃t∈[0,T ]R(u, t) < 0

}
≤ P

{
∃t∈[0,T ]B1/2

(
t2H
)
− ct > u

}
= P

{
∃t∈[0,T 2H ]B1/2 (t)− ct1/2H > u

}
= P

{
∃t∈[0,1]B1/2

(
T 2Ht

)
− cT t1/2H > u

}
= P

{
∃t∈[0,1]B1/2 (t)− cT 1−Ht1/2H > u/TH

}
.

Since cT 1−Ht1/2H ∈ RV1(1/2), using Theorem 1.3, for some positive constant C
we can write

P
{
∃t∈[0,1]B1/2 (t)− cT 1−Ht1/2H > u/TH

}
≤ CP

{
B1/2 (1)− cT 1−H > u/TH

}
= CP

{
B1/2

(
T 2H

)
− cT > u

}
= CP {R(u, T ) < 0} .

The above can be extended considering the convolution of n independent one-
dimensional fractional Brownian motions BHi

i (t), for t > 0, i ≤ n. Let Hi > 1/2
and define the risk processes

Ri(u, t) = u/n−BHi
i (t) + cit, i ≤ n.

Consider the convolution of processes Ri(u, t). Using Slepian inequality, as all
Hi >

1
2 we can write

P

∃t∈ n∏
i=1

[0,Ti]

n∑
i=1

Ri(u, ti) < 0

 ≤ P

∃t∈ n∏
i=1

[0,Ti]

n∑
i=1

Bi
(
t2Hi

)
− citi > u


= P

∃t∈ n∏
i=1

[0,T
2Hi
i ]

n∑
i=1

Bi (t)− cit1/2Hii > u

 .

Here Bi stands for an independent copy of Brownian motion. As it is clear that
cit

1/2Hi ∈ RVTi(1/2, 1), using Theorem 1.4, for some positive constant C we can
write

P

∃t∈ n∏
i=1

[0,T
2Hi
i ]

n∑
i=1

Bi (t)− cit1/2Hii > u

 ≤ CP

{
n∑
i=1

Bi

(
T 2Hi
i

)
− ciTi > u

}



= CP

{
n∑
i=1

BHi
i (Ti)− ciTi > u

}

= CP

{
n∑
i=1

Ri(u, Ti) < 0

}
.

The same approach may be applied for a different Gaussian process with convex
variance.

3 Vector-valued time-transform

Finally, we discuss some extensions of (1.2) under different time transformations.
We use the notations from Section 2 and define the following time transform. Let
f(t) : [0,+∞) ∈ Rd be a growing vector-valued function, and define

Z(f(t)) = (Z1(f1(t)), . . . , Zd(fd(t)))
>.

Hence f(t) can be considered as a generalised transformation of time.

Theorem 3.1 Let c(t),f(t) : [0, T ] → Rd. Suppose that all fi(t) are continu-
ous, strictly growing and for all i ∈ {1, . . . , d} we have fi(0) = 0 and function

δi(t) = fi(T )−fi(t)
f1(T )−f1(t) has a positive finite limit as t → T . Let also |ci(T )− ci(t)| <

M
√
f1(T )− f1(t) for all t ∈ [0, T ], all i ∈ {1, . . . , d}, some M > 0, and S satisfies

the cone condition with respect to the process Z(t). If 0 6∈ S, then for all constants
T > 0, u > 1 the inequality (1.2) holds with X(t) = Z(f(t)) and

K∗(LT ) =
(2f1(T ))d/2

C(LT )ε̄S
,

C(LT ) = min
t∈LT

e
−
(

c(Tk)−c(t)√
f1(T )−f1(t)

)>
Σ−1(δ(t))

(
c(Tk)−c(t)√
f1(T )−f1(t)

)
> 0,

and

ε̄S =


inf

i∈{1,...,d}
t∈LT

δi(t)

sup
i∈{1,...,d}
t∈LT

δi(t)


d/2

εS

 inf
i∈{1,...,d}
t∈LT

δi(t)

 > 0.

Remark 3.2 The function f(t) in Theorem 3.1 may also be an almost surely
growing stochastic process, independent of Z(t), satisfying the following conditions:

max
i∈{1,...,d}

fi(T ) < F,



max
i∈{1,...,d}

sup
t∈LT \{T}

∣∣∣∣∣ ci(Tk)− ci(t)√
f1(T )− f1(t)

∣∣∣∣∣ < M,

δ < inf
i∈{1,...,d}
t∈LT

δi(t) ≤ sup
i∈{1,...,d}
t∈LT

δi(t) < ∆,

almost surely with some positive constants F,M, δ,∆. In this case the inequality
(1.2) holds with

K∗(LT ) =
(2F )d/2

C(LT )ε̄S
, C(LT ) = min

x∈[−M,M ]d

t∈[δ,∆]d

e−x
>Σ−1(t)x > 0,

and

ε̄S =

(
δ

∆

)d/2
εS (δ) > 0.

We illustrate the above findings considering again d independent one-dimensional
fractional Brownian motions BHi(t), t > 0 with Hurst parameters Hi >

1
2 , i ≤ d.

Define d ruin portfolios

Ri(u, t) = u−BHi(t) + cit.

We are interested in probability that all of them will be simultaneously ruined in
[0, T ].
Using Gordon inequality (see [1, page 55]), we obtain

P
{
∃t∈[0,T ]∀i∈{1,...,d}Ri(u, t) < 0

}
≤ P

{
∃t∈[0,T ]∀i∈{1,...,d}Bi

(
t2Hi

)
− cit > u

}
.

where Bi(t) are intependent Brownian motions. Since

lim
t→T

T 2Hi − t2Hi
T 2H1 − t2H1

=
2Hi

2H1

T 2Hi−1

T 2H1−1
> 0,

using Theorem 3.1, for some positive constant C, which does not depend on u we
can write

P
{
∃t∈[0,T ]∀i∈{1,...,d}Bi

(
t2Hi

)
− cit > u

}
≤ CP

{
∀i∈{1,...,d}Bi

(
T 2Hi

)
− ciT > u

}
= CP

{
∀i∈{1,...,d}BHi (T )− cT > u

}
= CP

{
∀i∈{1,...,d}Ri(u, T ) < 0

}
.



4 Proofs

Let us note the following property of the function εS(t).

Lemma 4.1 If set S satisfies the cone condition with respect to the process Z(t)
with some function εS(t), then for any constant u > 1 set uS also satisfies the
cone condition with respect to the process Z(t), and for any function εS(t) exists
a function εuS(t) such that

εuS(t) ≥ εS(t).

Proof of Lemma 4.1: Fix some x ∈ uS. Then we know that y = x/u ∈ S.
As S satisfies the cone condition with respect to the process Z(t), there exists
some cone Vy ⊂ S with vertex y such that P {Z(t) ∈ Vy − y} ≥ εS(t). Hence,
uVy ⊂ uS. Note that using the properties of cone

uVy = u(y + (Vy − y)) = x+ u(Vy − y) ⊃ x+ (Vy − y).

Hence, x+ (Vy − y) ⊂ uS is some cone with vertex x, and

P {Z(t) ∈ uVy − x} ≥ P {Z(t) ∈ Vy − y} ≥ εS(t).

�
Proof of Theorem 1.3: Consider the first inequality. Define the following

stopping moment

τ = inf{t ∈ LT : Z(t)− c(t) ∈ uS}.

According to the strong Markov property

P {Z(T )− c(T ) ∈ uS}

=

∫
LT

P {τ ∈ dt}
∫
uS

P {Z(t)− c(t) ∈ dx|τ = t}

×P {Z(T )− c(T ) ∈ uS|Z(t)− c(t) = x} .

Using Lemma 4.1, uS satisfies the cone condition with respect to the process
Z(t). Hence for all x ∈ uS, t ∈ LT

P {Z(T )− c(T ) ∈ uS|Z(t)− c(t) = x}
≥ P {Z(T )− c(T ) ∈ V x|Z(t)− c(t) = x}
= P {Z(T − t)− (c(T )− c(t)) ∈ V x − x}

= P
{
Z(1)− (c(T )− c(t))/

√
T − t ∈ (V x − x)/

√
T − t

}
≥ P

{√
TZ(1) ∈ V x − x+

√
T (c(T )− c(t))/

√
T − t

}



= P
{
Z(T ) ∈ V x − x+

√
T (c(T )− c(t))/

√
T − t

}
=

∫
V x−x

1

(2π)
d
2

√
|Σ|

e
− 1

2
(x̃+
√
T

c(T )−c(t)√
T−t )>Σ−1(x̃+

√
T

c(T )−c(t)√
T−t )

dx̃

≥
∫
V x−x

1

(2π)
d
2

√
|Σ|

e
−T (

c(T )−c(t)√
T−t )>Σ−1(

c(T )−c(t)√
T−t )

e−
1
2

(
√

2x̃)>Σ−1(
√

2x̃)dx̃

= e
−T (

c(T )−c(t)√
T−t )>Σ−1(

c(T )−c(t)√
T−t )P

{
Z(T ) ∈

√
2(V x − x)

}
2d/2

≥ 1

2d/2
e
−T (

c(T )−c(t)√
T−t )>Σ−1(

c(T )−c(t)√
T−t )P {Z(T ) ∈ V x − x}

≥ CεuS
2d/2

≥ CεS
2d/2

,

where V x is the cone from Definition 1.1. As the right part does not depend on
x and t, we can write

P {Z(T )− c(T ) ∈ uS} ≥ CεS
2d/2

∫
LT

P {τ ∈ dt}

×
∫
uS

P {Z(t)− c(t) ∈ dx|τ = t}

=
CεS
2d/2

P {∃t∈LTZ(t)− c(t) ∈ uS} ,

hence, the first inequality holds. Consider the second one. Define a set

a+ = {x ∈ Rd : x ≥ a}

and

Su =
1

u
F−1(ua+).

Set Su satisfies the cone condition with respect to the process Z(t) for Vx = x+,
as for any y ≥ x ∈ Su

F (uy) ≥ F (ux) ≥ ua+,

hence y ∈ Su and

εSu(t) = P
{
X(t) ∈ x+ − x

}
= P

{
X(t) ∈ [0,+∞)d

}
does not depend on u. Applying the result above for the set Su we obtain

P {∃t∈LT : X(t) ∈ uSu} ≤
2d/2P {X(T ) ∈ uS}

C(LT )εSu(T )
=

2d/2P {X(T ) ∈ uSu}
C(LT )P {X(T ) ∈ [0,+∞)d}

.



As the event {X(t) ∈ uSu} is equal to the event {F (X(t) − c(t)) > ua}, this
completes the proof. �

Proof of Theorem 1.4: Define

ϕc1,...,cn(S,T) = P

{
∃t∈T :

n∑
i=1

(Zi(ti)− ci(ti)) ∈ S

}

and

ψk(S) := P

{
∃t∈Tk :

k∑
i=1

(Zi(ti)− ci(ti)) +
n∑

i=k+1

(Zi(Ti)− ci(Ti)) ∈ S

}
,

where Tk = [0, T1]× . . .× [0, Tk]. As in the previous section we are going to prove
that the inequality

ψk(uS) ≤ 2d/2ψk−1(uS)

εS(Tk)Ck

takes place for any k ∈ {1, . . . , n}. We can fix the trajectories of processes Zi(t)
called xi(t), fix random vectors Zi(Ti) called xi, and define the process

Z∗k(t, tk) = Zk(t)− ck(t) +
k−1∑
i=1

(xi(ti)− ci(ti)) +
n∑

i=k+1

(xi − ci(Ti)),

where tk = (t1, . . . , tk−1) ∈ Tk−1.
As Zi are independent processes, it is enough to show that for every set of trajec-
tories xi(t) and points xj , the inequality

ψ∗(uS) ≤ 2d/2ν(uS)

εS(Tk)Ck

takes place, where

ψ∗(S) = P
{
∃t∈[0,Tk] : Z∗k(t, tk) ∈ S for some tk ∈ Tk−1

}
,

ν(S) = P
{
Z∗k(Tk, t

k) ∈ S for some tk ∈ Tk−1

}
.

Define the following stopping moment:

τk = inf
{
t : Z∗k(t, tk) ∈ uS for some tk ∈ Tk

}
,



in case such set is not empty. Otherwise we put τ =∞. Define further a random
vector

x̃k =

{
x∗, τk ≤ Tk,
0, otherwise,

where x∗ is any point from the following set:⋃
tk∈Tk

{
Z∗k(τk, t

k)
}⋂

uS.

Using the total probability formula we obtain

ν(uS) =

∫ Tk

0
P {τk ∈ dt}

×P
{
Z∗k(Tk, t

k) ∈ uS for some tk ∈ Tk |τk = t
}

=

∫ Tk

0
P {τk ∈ dt}

∫
S
P {x̃k ∈ dx0 |τk = t}

×P
{
Z∗k(Tk, t

k) ∈ uS for some tk ∈ Tk−1 |τk = t, x̃k = x0

}
.

For any tk ∈ Tk−1 we have

Z∗k(Tk, t
k)−Z∗k(t, tk) = Zk(Tk)−Zk(t)− (ck(Tk)− ck(t)).

Thus, using the same chain of inequalities as in Theorem 1.3 we obtain

P
{
Z∗k(Tk, t

k) ∈ uS for some tk ∈ Tk |τk = t, x̃k = x0

}
≥ P {Zk(Tk)−Zk(t)− (ck(Tk)− ck(t)) ∈ uS − x0}

≥ CkεS(Tk)

2d/2
,

which completes the proof. �
Proof of Theorem 3.1: Define a stopping moment

τ = inf{t ∈ LT : Z(f(t))− c(t) ∈ uS},

in case such set is not empty. Otherwise we put τ =∞. According to the strong
Markov property

P {Z(f(T ))− c(T ) ∈ uS}

=

∫
LT

P {τ ∈ dt}P {Z(f(T ))− c(T ) ∈ uS|τ = t}



=

∫
LT

P {τ ∈ dt}
∫
uS

P {Z(f(t))− c(t) ∈ dx|τ = t}

×P {Z(f(T ))− c(T ) ∈ uS|Z(f(t))− c(t) = x, τ = t} .

According to Lemma 4.1, uS satisfies the cone condition with respect to the
process Z(t). Then

P {Z(f(T ))− c(T ) ∈ uS|Z(f(t))− c(t) = x, τ = t}
= P {Z(f(T ))− c(T ) ∈ uS|Z(f(t))− c(t) = x}
≥ P {Z(f(T ))− c(T ) ∈ Vx|Z(f(t))− c(t) = x}
= P {Z(f(T ))−Z(f(t))− c(T ) + c(t) ∈ Vx − x}
= P {Z(f(T )− f(t))− (c(T )− c(t)) ∈ Vx − x}

= P

{
Z(δ(t))− c(T )− c(t)√

f1(T )− f1(t)
∈ Vx − x√

f1(T )− f1(t)

}

≥ P

{
Z(δ(t))− c(T )− c(t)√

f1(T )− f1(t)
∈ Vx − x√

f1(T )

}

=

∫
y∈ Vx−x√

f1(T )

ϕδ(t)

(
y +

c(T )− c(t)√
f1(T )− f1(t)

)
dy

≥
∫
y∈ Vx−x√

f1(T )

C(LT )ϕδ(t)(
√

2y)dy

≥ C(LT )

2d/2
P

{
Z(δ(t)) ∈ Vx − x√

f1(T )

}

≥ C(LT )

(2f1(T ))d/2
P {Z(δ(t)) ∈ Vx − x}

=
C(LT )

(2f1(T ))d/2
P
{
B(δ(t)) ∈ A−1(Vx − x)

}
=

C(LT )

(2f1(T ))d/2
1√

2π
∏d
i=1 δi(t)

∫
y∈A−1(Vx−x)

e
− 1

2

d∑
i=1

y2
i

δi(t) dy,

where ϕδ(t) is the pdf of Z(δ(t)). Using that all the functions δi(t) are bounded
and separated from zero for t ∈ LT , there exists some constants δ,∆ > 0, such
that for all i ∈ {1, . . . , d} and all t ∈ LT

δ ≤ δi(t) ≤ ∆.



Hence we obtain

1√
2π
∏d
i=1 δi(t)

≥ 1√
2π
∏d
i=1 ∆

,

e
− 1

2

d∑
i=1

x2
i

δi(t) ≥ e
− 1

2

d∑
i=1

x2
i
δ
,

and finally

P {Z(f(T ))− c(T ) ∈ uS|Z(f(t))− c(t) = x, τ = t}

≥ C(LT )

(2f1(T ))d/2
1√

2π
∏d
i=1 ∆

∫
y∈A−1(Vx−x)

e
− 1

2

d∑
i=1

y2
i
δ

dy

=
C(LT )

(2f1(T ))d/2

√∏d
i=1 δ√∏d
i=1 ∆

P
{
B(δ) ∈ A−1(Vx − x)

}

≥ C(LT )

(2f1(T ))d/2

√∏d
i=1 δ√∏d
i=1 ∆

εS(δ).

Hence the claim follows. �
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[24] Krzysztof Dȩbicki, Enkelejd Hashorva, and Longmin Wang. Extremes of
vector-valued Gaussian processes. Stochastic Processes and their Applica-
tions, 130(9):5802–5837, 2020.
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[26] Krzysztof Dȩbicki and Tomasz Rolski. A note on transient Gaussian fluid
models. Queueing Systems, 41(4):321–342, 2002.

[27] G A Delsing, M R H Mandjes, P J C Spreij, and E M M Winands. Asymptotics
and approximations of ruin probabilities for multivariate risk processes in a
Markovian environment. preprint (2018). Available at arXiv:1812.09069.

[28] Clement Dombry and Landy Rabehasaina. High order expansions for renewal
functions and applications to ruin theory. Ann. Appl. Probab., 27(4):2342–
2382, 08 2017.

[29] Sergey Foss, Dmitry Korshunov, Zbigniew Palmowski, and Tomasz Rolski.
Two-dimensional ruin probability for subexponential claim size. Probability
and Mathematical Statistics, 37(2):319–335, 2017.

[30] Serguei Foss, Dmitry Korshunov, Zbigniew Palmowski, and Tomasz Rol-
ski. Two-dimensional ruin probability for subexponential claim size. Probab.
Math. Statist., 37(2):319–335, 2017.

[31] Yehoram Gordon. Some inequalities for Gaussian processes and applications.
Israel J. Math., 50(4):265–289, 1985.

[32] William W. Hager. Lipschitz continuity for constrained processes. SIAM J.
Control Optim., 17(3):321–338, 1979.

[33] Enkelejd Hashorva. Asymptotics and bounds for multivariate Gaussian tails.
Journal of theoretical probability, 18(1):79–97, 2005.



[34] Enkelejd Hashorva. Approximation of some multivariate risk measures for
Gaussian risks. J. Multivariate Anal., 169:330–340, 2019.

[35] Enkelejd Hashorva. Approximation of some multivariate risk measures for
Gaussian risks. Journal of Multivariate Analysis, 169:330–340, 2019.

[36] Zechun Hu and Bin Jiang. On joint ruin probabilities of a two-dimensional
risk model with constant interest rate. J. Appl. Probab., 50(2):309–322, 2013.

[37] Zechun Hu and Bin Jiang. On joint ruin probabilities of a two-dimensional risk
model with constant interest rate. Journal of Applied Probability, 50(2):309–
322, 2013.
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