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4 Service de Radio-oncologie, Hôpital Fribourgeois, Fribourg, Switzerland. ?

Abstract. In recent years, multi-atlas fusion methods have gained sig-
nificant attention in medical image segmentation. In this paper, we pro-
pose a general Markov Random Field (MRF) based framework that can
perform edge-preserving smoothing of the labels at the time of fusing
the labels itself. More specifically, we formulate the label fusion prob-
lem with MRF-based neighborhood priors, as an energy minimization
problem containing a unary data term and a pairwise smoothness term.
We present how the existing fusion methods like majority voting, global
weighted voting and local weighted voting methods can be reframed to
profit from the proposed framework, for generating more accurate seg-
mentations as well as more contiguous segmentations by getting rid of
holes and islands. The proposed framework is evaluated for segmenting
lymph nodes in 3D head and neck CT images. A comparison of various
fusion algorithms is also presented.

1 Introduction

Atlas-based image segmentation is a key area of research in medical imaging [1].
It has been shown in many recent works [2,3,4] that automated segmentations
obtained by merging results from multiple atlases are more reliable and accurate
than the results obtained from a single atlas. However, one of the main prob-
lems with many of the existing fusion strategies is, although the segmentations
obtained from each individual atlas are contiguous, the merged segmentations
can be fragmented ones with undesirable discontinuities including holes and is-
lands [3,5].

To deal with the above mentioned problems, sometimes, the segmentation
results are post-processed. For instance, in [3], the segmentation results for each
structure are independently considered as binary masks, and are post-processed
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by first smoothing them with a Gaussian kernel, and then thresholded at 0.5;
after that, they further perform connected component analysis and retain only
the largest component. In [6], the segmentation results are post-processed by
morphological closing, and then followed by the extraction of the largest com-
ponent.

However, such postprocessing approaches have many disadvantages. First,
they do not preserve edges. Second, such simple Gaussian smoothing of labels
results in conflicting regions across the boundaries of adjacent structures, de-
pending on the order in which those labels are smoothed. To avoid this conflict
between regions, one could probably introduce approaches like, a more complex
iterative coupled Gaussian smoothing of multiple labels, but that still will not
solve the first problem of preserving the edges. Finally, it is not elegant to handle
“fusion” and “smoothing” as two different, independent problems.

To address the above mentioned issues, we propose here a general MRF-
based framework that simultaneously performs both fusion and edge-preserving
smoothing of multiple labels. The rest of the paper is organized as follows. In the
next section, we propose a general framework and reframe some of the existing
fusion methods to fit into our framework. In section 3, we present an evaluation
of various fusion methods that can be derived from the proposed framework.
The discussion is presented in section 4, followed by the conclusions in section 5.

2 MRF-based Fusion Model

Let V be the number of voxels in the image. Let Yp denote the label assigned to
the pth voxel in the output image. Let Y be the set containing labels assigned
to each voxel in the output image, i.e., Y = {Y1, · · ·YV }. Then, we will be
formulating the atlas fusion as a general energy minimization problem of the
form:

Y ∗ = arg min
Y
{Edata(Y ) + λEsmooth(Y )} , (1)

where the first term is a data term (unary term), and it should be defined in such
a way that it reaches to a minimum value when the chosen fusion criteria has been
met; the second term is a smoothness term (pairwise term), and in the current
context, it should penalize for irregular distribution of labels while allowing
for the edge-discontinuities. λ is a weighting parameter between the data term
and smoothness term. Energy equation of the form (1) is ubiquitous in many
computer vision problems, and there exists various efficient MRF optimization
methods for solving them [7]. In this paper, we use the graph cuts expansion
method [8] as it guarantees convergence to a global optimum for the current
model.

Note that while the above energy formulation is commonly encountered in
other computer vision problems like image segmentation, denoising and stereo
vision [7], such model has not been used so far, for the atlas fusion problem. We
now reformulate some of the existing fusion methods so that they fit into the
data term (Edata) of the above energy minimization problem.



(a) Majority Voting (MV) [2,4]: This is the most simple fusion method. It
assigns for each voxel a label that maximum number of atlases agree on. Let
N be the number of atlas images. Let Xj represent jth input labeled image
(corresponding to jth atlas) after applying the transformation that maps the jth

atlas to the output intensity image. Let Xj
p be the label assigned to the pth voxel

of Xj . Now, it is easy to note that the original maximum-energy formulation
of MV in [4] can be reframed into the following equivalent minimum-energy
formulation:

Edata(Y ) =
1
N

V∑
p=1

N∑
j=1

(
1− δ

(
Xj

p , Yp

))
,

where δ is a Kronecker delta function. The reason to include a factor of 1/N in
the above data term is to make its magnitude independent of number of atlases
when smoothness term is also used with it.
(b) Global Weighted Voting (GWV) [4]: Unlike MV, GWV attaches a
weight to each atlas while counting its vote. The weight for each atlas is deter-
mined globally, based on its similarity to the image to be segmented: more the
similarity, higher the weight, and vice versa. We again reframe the maximum-
energy formulation of GWV in [4] to the following equivalent minimum energy
formulation:

Edata(Y ) =
1
N

V∑
p=1

N∑
j=1

ŵj
(
1− δ

(
Xj

p , Yp

))
,

where ŵj the normalized weight assigned to jth atlas image. In this work, we use
inverse of the mean square difference (MSD) between the atlas and output inten-
sity images as the similarity metric for computing weights. However, extension to
other similarity metrics (like mutual information or normalized cross-correlation)
is straight forward.
(c) Local Weighted Voting (LWV) [3,4]: LWV is similar to GWV except
that, not a single global weight is assigned to the entire atlas; rather, for each
voxel, an individual weight is assigned based on local similarity. Let ŵj

p be the
normalized weight assigned to pth voxel, in the jth atlas. Then, the minimum-
energy formulation for LWV is given by:

Edata(Y ) =
1
N

V∑
p=1

N∑
j=1

ŵj
p

(
1− δ

(
Xj

p , Yp

))
.

In the current application, ŵj
p at each voxel is computed based on MSD metric

computed over a local neighborhood of that voxel. It is interesting to note that
the above formulations of the data term have an equivalent representations in a
probabilistic framework as well [9]. Similar to [9], by introducing an additional
parameter, the above three energy terms can also be seen as special cases of a
more general data term.

Regarding the smoothness term, we use here the widely used edge-preserving
Potts model [7]. However, one could even use models that are specific to a given



application, that incorporate prior knowledge about the spatial distribution of
the labels. Let ℵp be the set of all voxels in the predefined neighborhood of pth

voxel. Then the Potts model-based smoothness term is given by:

Esmooth(Y ) =
V∑

p=1

∑
∀q∈ℵp

wpq (1− δ(Yp, Yq)) .

3 Results

3.1 Dataset and Methods

The evaluation of the proposed fusion framework is performed on a dataset of 3D
head and neck (H&N) CT images, for segmenting lymph nodes. Lymph nodes
are constructed volumes in the H&N region and they do not have a clear contrast
with the neighboring structures, thus, making their segmentation a challenging
task [10]. In clinical practice, accurate delineation of lymph nodes is essential
for precise radiotherapy treatment of H&N cancer. In this work, we consider 10
lymph node volumes for automated segmentation, and are: (i) IB-Left, (ii) IB-
Right, (iii) IIA-Left, (iv) IIA-Right, (v) IIB-Left, (vi) IIB-Right, (vii) III-Left,
(viii) III-Right, (ix) IV-Left, (x) IV-Right. These lymph node volumes for one
of the patients are shown in Fig. 1

The current dataset contains 12 atlas images and 8 patients’ images to be
segmented. These images typically have a resolution of 1mm×1mm×1mm in x,
y and z directions respectively. An expert oncologist has manually delineated
lymph nodes on all the images, and they are considered as the ground truth
segmentations.

Regarding the registration, all the 12 atlases are registered to each patient to
be segmented. An initial affine registration is performed followed by a two-level
hierarchical nonrigid registration. In the first level, a region-based registration,
driven by selected structures (bones, trachea and external-contour of H&N) hav-
ing clear boundaries, is performed; this is followed by a second level of pixel-based
nonrigid registration. Since the main focus of this work is fusion of multi-atlas
segmentation results, which is independent of the registration algorithm, we skip
more details on registration and refer the readers to [10].

We mainly evaluate atlas fusion results from 8 methods. 4 of them are the
state-of-the-art methods that do not contain any smoothness term (i.e., λ = 0),
and are: (i) majority voting (MV), (ii) global weighted voting (GWV), (iii)
local weighted voting (LWV) with the weights computed over a neighborhood
of 3×3×3 voxels (LWV1), (iv) LWV with the weights computed over 9×9×9
neighborhood. The reason to consider above two versions of LWV is also to study
the effect of neighborhood size on the segmentation of H&N lymph nodes. The
other 4 algorithms are based on the MRF-based atlas fusion framework proposed
here, and are referred as: (v) MV+MRF, (vi) GWV+MRF, (vii) LWV1+MRF,
and (viii) LWV2+MRF.



Fig. 1: Ground truth segmentations of H&N lymph nodes for one of the images:
Segmentations in an axial and coronal slice are respectively shown in the first
two images; the lymph node volumes are shown in the last image. Lymph nodes
IB, IIA, IIB, III and IV are respectively shown in green, yellow, magenta, blue
and pink.

Another widely used atlas fusion algorithm is STAPLE (simultaneous truth
and performance level estimation) [11], which was originally proposed for com-
bining manual segmentations done by multiple experts. We have not yet explored
reformulating the STAPLE as an energy minimization problem that fits into the
current framework; however, we present here some statistical results obtained
using STAPLE, in order to notice it’s relative performance in the current con-
text. In particular, we use here the multi-label implementation of the STAPLE
proposed in [12].

In all the experiments, λ value is set empirically to 0.5, and has not been
optimized anymore; however, this is suffice to demonstrate the advantages of the
proposed framework. Finally, in the smoothness term, ℵp is set to the standard
3D grid of 6 neighbors, and wpq is set to 1/card(ℵp).

3.2 Qualitative and Quantitative Results

We present here qualitative results for one of the images. Fig. 1 shows ground
truth segmentations of lymph nodes. It shows the segmentations in an axial
and coronal slice, as well as the 3D volumes of the lymph nodes. Fig. 2 shows
the automated segmentation results of the same, obtained from each method;
the odd numbered columns of this figure show results for the 4 existing meth-
ods, while the even columns show results for their counterparts that include an
MRF-based smoothing term in their fusion. The lymph node volumes obtained
from these methods are shown in Fig. 3. By visual comparison of these results
with the ground truth in Fig. 1, it can be noted that the proposed MRF-based
smoothing can provide more accurate segmentations, and also results in getting
rid of unwanted holes and islands in the output segmentations.

The quantitative evaluation is performed over the entire dataset, using two
metrics; (i) Dice similarity metric (DSM): This is a commonly used metric that
computes the measure of overlap (in %) between the ground truth segmentations



(a) MV (b) MV+MRF (c) MV (d) MV+MRF

(e) GWV (f) GWV+MRF (g) GWV (h) GWV+MRF

(i) LWV1 (j) LWV1+MRF (k) LWV1 (l) LWV1+MRF

(m) LWV2 (n) LWV2+MRF (o) LWV2 (p) LWV2+MRF

Fig. 2: Qualitative comparison of lymph nodes segmentation results for one of
the images: Results in an axial and a coronal slice are presented in the first and
the last two columns respectively. The ground truth segmentations for the above
slices are shown in Fig. 1.



(a) MV (b) MV+MRF (c) GWV (d) GWV+MRF

(e) LWV1 (f) LWV1+MRF (g) LWV2 (h) LWV2+MRF

Fig. 3: Qualitative comparison of lymph node volumes obtained from different
methods. The ground truth volume for the above is shown in Fig. 1.

and automated segmentations. (ii) Number of connected regions per label: The
output segmentations of each lymph node (label) should ideally contain a single
contiguous region. Hence, we evaluate the fusion algorithms also based on the
number of connected regions it has created per each label (ideal value = 1); we
take into account both islands and holes for computing the number of connected
regions.

Table 1 presents the mean and standard deviation values of the DSM ob-
tained from all methods for each lymph node. As mentioned earlier, just to note
the relative performance of multi-label STAPLE, we presented the mean DSM
values obtained from it, in the same Table. We notice that other fusion meth-
ods performed better than STAPLE in the current context; however, we did
not perform any further quantitative analysis of STAPLE, as that is not in the
current scope of the paper. The corresponding box plots of DSM are presented
in Fig. 4. For the box plots, because of the space limitations, statistics for the
left and right structures of the lymph nodes of the same number are combined
together as they are approximately symmetric. Finally, Table 2 summarizes for
each method, the mean and standard deviations of number of connected regions
per label.

We further evaluated the statistical significance of the improvements in the
segmentation results with the inclusion of MRF-based smoothness term. Wilcoxon
signed-rank test [13] is used for this purpose. Notice that Wilcoxon signed-rank
test can be seen as non-parametric alternative to paired-student test since it



does not make any assumptions regarding the distributions of the data popula-
tion. We performed this test on DSM statistics, for each pair of methods (i.e.,
without and with the inclusion of MRF-based smoothness term), with the alter-
native hypothesis being: “Segmentation results with the inclusion of MRF-based
smoothness term are statistically better (greater) than the original methods that
do not use this term.” From these experiments, it is found (at 0.05 significance
level) that in all cases, the improvements in the segmentation results due to the
inclusion of MRF-based smoothness term are statistically significant compared
to the original methods.

Table 1: Mean and standard deviation values of the dice similarity metric (DSM)
in %, for the H&N lymph nodes segmentation, obtained from different fusion
methods. The best mean DSM values for each lymph node are shown in bold.

Fusion Method

STAPLE MV
MV

GWV
GWV

LWV1
LWV1 LWV2

LWV2

+MRF +MRF +MRF +MRF

IB-L
61.21± 64.83± 65.10± 64.20± 65.33± 63.34± 64.93± 64.74± 65.34±
11.9 9.2 9.9 7.3 8.6 7.4 8.8 7.9 9.1

IB-R
58.77± 64.42± 65.15± 66.56± 67.50± 65.02± 66.58± 67.01± 67.74±
9.6 8.2 8.4 6.3 6.1 4.9 5.6 5.1 5.2

IIA-L
57.35± 61.50± 62.25± 61.81± 62.93± 64.36± 67.23± 65.66± 67.11±
14.4 9.3 9.3 7.5 7.8 7.8 8.7 7.4 7.3

IIA-R
62.91± 66.11± 67.17± 66.88± 68.23± 67.59± 69.84± 68.74± 69.92±
7.1 6.4 6.3 4.4 4.9 4.3 4.7 4.4 5.0

IIB-L
49.96± 55.79± 56.56± 58.57± 58.77± 65.02± 61.13± 65.82± 64.86±
14.5 13.5 14.4 13.2 13.3 9.3 18.4 7.2 7.7

IIB-R
52.16± 60.01± 61.07± 63.42± 63.86± 67.21± 67.09± 67.28± 67.48±
12.8 14.0 14.1 12.5 12.5 9.2 10.9 10.2 10.8

III-L
66.55± 69.74± 70.64± 70.10± 71.30± 69.96± 72.29± 72.10± 73.39±
10.3 7.1 7.0 6.5 6.6 5.5 6.8 5.7 6.0

III-R
65.90± 67.46± 67.73± 68.51± 69.16± 69.03± 71.19± 70.12± 71.30±
4.8 4.4 5.3 5.0 5.2 3.9 4.6 4.2 4.3

IV-L
56.86± 62.41± 63.23± 61.54± 62.31± 61.84± 64.15± 63.05± 64.44±
8.2 6.1 5.9 6.1 6.8 4.8 4.9 5.0 5.9

IV-R
57.06± 61.15± 61.12± 62.27± 63.41± 61.36± 63.92± 62.53± 64.14±
8.4 5.9 6.5 6.6 6.2 6.3 6.6 6.3 6.6

Avg.
58.87± 63.34± 64.00± 64.39± 65.28± 65.47± 66.84± 66.70± 67.57±
10.2 8.4 8.7 7.5 7.8 6.3 8.0 6.3 6.8



Fig. 4: Box plots of dice similarity metric (DSM) for the lymph node segmen-
tation results obtained from all the 8 methods. Statistics for the left and right
structures of the same lymph node are combined together (for example, IB-L &
IB-R are combined to IB).

Table 2: Mean and standard deviations of average number of connected regions
per label (considering both islands and holes), obtained from each fusion method.

MV
MV

GWV
GWV

LWV1
LWV1 LWV2

LWV2

+MRF +MRF +MRF +MRF

16.89±3.8 1.06±0.1 21.38±3.3 1.01±0.0 46.71±8.8 1.05±0.1 24.66±4.5 1.00±0.0

4 Discussion

The following observations can be made from the above results. Methods with the
proposed MRF-based edge-preserving smoothness priors in their fusion model
resulted in more accurate segmentations than their counterparts that do not in-
corporate any smoothing priors. MRF-based atlas fusion methods, unlike their
counterparts, resulted in segmentation with contiguous regions. In terms of DSM,
local weight based methods are the best ones followed by global weight based
and majority voting schemes. Among the two versions of the local weight based
methods, the second one with the larger neighborhood (9×9×9) gave better re-
sults. From the point of view of number of connected regions, all the MRF-based
methods have successfully generated segmentations with contiguous regions; on
the other hand, among their counterparts, LWV1 has produced a highly frag-
mented output followed by LWV2, GWV and MV respectively.

It can be noted from Table 1 that mean values of DSM obtained from methods
that use MRF-based smoothness term are clearly better than their counterparts
without smoothness priors. Although a slight increase in the standard deviations
is observed with the inclusion of MRF-based smoothness priors, notice that the



relative magnitude of the the improvements achieved in the mean DSM values are
more than the increase in the standard deviations; it implies that the overall seg-
mentation results are better with the MRF-based methods. That slight increase
in the standard deviations can be due to the following reason: The improvements
contributed by MRF-based model will be more when the segmentations obtained
with the original methods (i.e., without MRF-based smoothness) are not con-
tiguous; but for certain images, when the segmentation results with the original
methods are more contiguous than for other images, the added improvements
due to MRF-models are not as much as for those other images, and thereby
slightly increasing the standard deviations. But, as we mentioned before, meth-
ods with MRF-based smoothness term always resulted in better segmentations,
and significance of these improvements is also ascertained by the statistical test
results.

Regarding the weighting parameter (λ) in eq. 1, in the current study, we have
empirically set its value to 0.5. The approaches for the automatic selection of
λ for this atlas fusion problem could be very similar to those used with other
MRF-based energy minimization problems encountered in computer vision [7].
We would like to additionally mention here an observation specific to the current
context: For a chosen value of λ, looking at the resulting number of connected
regions per label could provide some insights about the λ value; when the number
of regions is more than the expected value (based on the prior knowledge about
that structure), it could potentially indicate to choose a larger value of λ and
vice versa.

5 Conclusions

In this paper, we have proposed a general MRF-based edge-preserving fusion
framework for merging segmentation results obtained from multiple atlases.
Many of the existing atlas fusion methods can be reframed to profit from the
proposed framework. We have demonstrated how the majority voting, global
weighted voting and local weighted voting fusion methods can be fitted into
this framework. We have compared the segmentation results obtained from the
above methods versus the methods that additionally use the MRF-based edge-
preserving smoothness term at the time of fusion. The results from the MRF-
based models are found to be more accurate besides providing segmentations
with contiguous regions. We have also performed a comparison of 8 fusion meth-
ods that can be derived from this framework, for segmenting 10 lymph node
structures in the H&N CT images. Among all the methods, local weighted voting
with MRF-based smoothness term has provided the best segmentation results.
We would like to further extend this framework to other fusion methods like
shape-based averaging [5], and also evaluate this framework on other important
applications in medical imaging.
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