A Fatty Acid Oxidation-Dependent Metabolic Shift Regulates Adult Neural Stem Cell Activity

Highlights
- A metabolic shift defines NSPC quiescence versus proliferation
- Quiescent NSPCs require high levels of FAO
- Changing levels of a single metabolite is sufficient to induce NSPC proliferation

Authors
Marlen Knobloch, Gregor-Alexander Pilz, Bart Ghesquière, ..., Nicola Zamboni, Peter Carmeliet, Sebastian Jessberger

Correspondence
marlen.knobloch@unil.ch (M.K.), jessberger@hifo.uzh.ch (S.J.)

In Brief
Controlled balance between proliferation and quiescence of neural stem/progenitor cells (NSPCs) is required for lifelong neurogenesis. Knobloch et al. identify a metabolic shift in fatty acid oxidation (FAO) that governs the proliferation of NSPCs. Further, their data suggest an instructive role for FAO in regulating NSPC activity. Thus, Knobloch et al. identify FAO as a key metabolic pathway to regulate NSPC activity.
A Fatty Acid Oxidation-Dependent Metabolic Shift Regulates Adult Neural Stem Cell Activity

Marlen Knobloch,1,7,* Gregor-Alexander Pilz,1 Bart Ghesquière,2,3 Werner J. Kovacs,3 Thomas Wegleiter,1 Darcie L. Moore,1 Martina Hruzova,1 Nicola Zamboni,1 Peter Carmeliet,1,4 and Sebastian Jessberger1,8,*

1Laboratory of Neural Plasticity, Faculty of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
2VIB Metabolomics Expertise Center, 3000 Leuven, Belgium
3Laboratory of Angiogenesis & Vascular Metabolism, Vesalius Research Center VIB, 3000 Leuven, Belgium
4Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
5Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
6Laboratory of Angiogenesis & Vascular Metabolism, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
7Present address: Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
8Lead Contact

*Correspondence: marlen.knobloch@unil.ch (M.K.), jessberger@hifo.uzh.ch (S.J.)

http://dx.doi.org/10.1016/j.celrep.2017.08.029

SUMMARY

Hippocampal neurogenesis is important for certain forms of cognition, and failing neurogenesis has been implicated in neuropsychiatric diseases. The neurogenic capacity of hippocampal neural stem/progenitor cells (NSPCs) depends on a balance between quiescent and proliferative states. Here, we show that the rate of fatty acid oxidation (FAO) regulates the activity of NSPCs. Quiescent NSPCs show high levels of carnitine palmitoyltransferase 1a (Cpt1a)-dependent FAO, which is downregulated in proliferating NSPCs. Pharmacological inhibition and conditional deletion of Cpt1a in vitro and in vivo leads to altered NSPC behavior, showing that Cpt1a-dependent FAO is required for stem cell maintenance and proper neurogenesis. Strikingly, manipulation of malonyl-CoA, the metabolite that regulates levels of FAO, is sufficient to induce exit from quiescence and to enhance NSPC proliferation. Thus, the data presented here identify a shift in FAO metabolism that governs NSPC behavior and suggest an instructive role for fatty acid metabolism in regulating NSPC activity.

INTRODUCTION

New neurons are generated throughout life in the mammalian hippocampus (Spalding et al., 2013; van Praag et al., 2002). This process, called adult neurogenesis, is critically involved in a variety of hippocampus-dependent forms of learning and memory (Clelland et al., 2009; Deng et al., 2010; Dupret et al., 2008; Goncalves et al., 2016; Nakashiba et al., 2012; Sahay et al., 2011a, 2011b). In addition, failing or altered neurogenesis has been associated with a number of neuropsychiatric diseases, such as major depression, epilepsy, and cognitive aging, suggesting adult hippocampal neurogenesis is relevant for human health and disease (Christian et al., 2014; Kempermann et al., 2008; Scharfman and Hen, 2007). Neural stem/progenitor cells (NSPCs) in the adult hippocampus reside in the subgranular zone (SGZ) of the dentate gyrus (DG), where they proliferate and generate new glutamatergic, excitatory granule cells that become integrated into pre-existing circuits over the course of several weeks (Espósito et al., 2005; Ge et al., 2007; Lagace et al., 2007; Seri et al., 2001; Toni et al., 2008; Zhao et al., 2006). Previous reports have suggested a delicate balance between quiescent, radial glia-like NSPCs and more proliferative NSPCs controlled by key signaling pathways, such as Notch and BMP signaling, resembling molecular mechanisms identified in the developing brain (Ables et al., 2010; Ehm et al., 2010; Lugert et al., 2010; Ming and Song, 2011; Mira et al., 2010). In addition, accumulating evidence in NSPCs and other somatic stem cells, such as hematopoietic stem cells (HSCs), has suggested that cellular metabolism might govern the levels of activity of adult stem cells in vivo and during cellular reprogramming in vitro (Chorna et al., 2013; David, 2011; Folmes et al., 2011; Homem et al., 2015; Ito et al., 2012; Ito and Suda, 2014; Knobloch et al., 2013; Ryalli et al., 2015). However, whether specific metabolic programs regulate the balance between NSPC quiescence and proliferation remains unknown. The brain is the organ with the highest glucose consumption rate (Mergenthaler et al., 2013), and neurons are mainly dependent on glucose and lactate for normal function. The role of lipids in brain metabolism has been much less studied, given the predominance of glucose consumption. Furthermore, the relatively small proportion of NSPCs compared to the cellular mass of the brain might have led to the overlooking of other metabolic pathways relevant for NSPCs. Indeed, we have previously identified an important role for lipid metabolism in NSPCs, showing that the build-up of lipids through de novo lipogenesis is crucial for proliferation (Knobloch et al., 2013). However, whether the metabolic counterpart, the breakdown of lipids called fatty acid oxidation (FAO), is important to regulate NSPC behavior remains poorly understood. We here characterized metabolic adaptations from a quiescent to an activated NSPC state and identified FAO as a key metabolic pathway to regulate NSPC quiescence.
RESULTS

Quiescent NSPCs Have High Levels of FAO
To study metabolic adaptations during NSPC quiescence versus activation, we modified previously established in vitro protocols that are based on the induction of NSPC quiescence by bone morphogenic protein 4 (BMP4), leading to cellular quiescence over the course of three days (Figure 1A) (Martynoga et al., 2013; Mira et al., 2010). BMP4-induced quiescence was reversible with restored proliferation and differentiation potential after removal of quiescence cues, suggesting a reliable in vitro model of functional NSPC quiescence (Figures S1A–S1C). We first analyzed the whole proteome of proliferating compared to quiescent NSPCs and found proteins associated with FAO (the breakdown of fatty acids into acetyl-coenzyme A [CoA] in the mitochondria) to be highly enriched in quiescent NSPCs (Figures 1B and S1D–S1F; Tables S1 and S2). To test whether the high expression levels of proteins associated with FAO translate into functionally elevated levels of FAO, we used radioactive FAO measurements. A labeled fatty acid (\(3^H\)-palmitic acid) was added to the medium. During oxidation of such labeled palmitic acid into eight acetyl-CoAs, measurable radioactive labeled water (\(3^H_2O\)) is produced, which serves as a readout of the rate of FAO. Strikingly, we found high levels of FAO in quiescent NSPCs that were substantially lower in proliferating NSPCs (Figure 1C).

To characterize FAO in quiescent NSPCs, we analyzed the expression of carnitine palmitoyltransferase 1a (Cpt1a), a rate-limiting mitochondrial enzyme of FAO that mediates the transport of fatty acids into the mitochondria (Houten and Wanders, 2010). Corroborating the proteomics data, we found strong upregulation of Cpt1a using qRT-PCR and western blot analyses, showing a substantial increase in the expression of Cpt1a in quiescent compared to proliferating NSPCs (Figures 1D and 1E). In line with the radioactive FAO measurements, the increase in Cpt1a expression in quiescent NSPCs was reversible (Figure 1D). Cpt1a co-labeled with the mitochondrial dye Mitotracker in both quiescent and proliferating NSPCs (Figures 1H and S1H). In addition, Cpt1a was highly expressed in NSPCs compared to their neuronal progeny when directly isolated from the adult DG (3.5-fold upregulated in SOX2+ cells versus DCX+ cells), as described previously (Bracko et al., 2012; Shin et al., 2015). Collectively, these data indicate that compared to proliferating NSPCs that are highly lipogenic (Knobloch et al., 2013), quiescent NSPCs strongly express Cpt1a and show high levels of functional FAO.

Next, we aimed to understand the molecular mechanism underlying high levels of FAO in quiescent NSPCs. We have previously shown that Spot14 is selectively expressed in quiescent NSPCs in vivo (Knobloch et al., 2013, 2014). When we induced quiescence in vitro, we found a >30-fold upregulation of Spot14 mRNA using qRT-PCR (Figure 1F). Given that Spot14 negatively regulates malonyl-CoA levels (Colbert et al., 2010; Knobloch et al., 2013), we expected that high levels of Spot14 in quiescent NSPCs would lead to low levels of malonyl-CoA. Indeed, quiescent NSPCs showed a substantial decrease in malonyl-CoA, as measured with mass spectrometry (Figure 1G). The levels of acetyl-CoA, which are not affected by Spot14, were comparable between proliferating and quiescent NSPCs (Figure S1G). Because malonyl-CoA is an endogenous inhibitor of Cpt1a, its levels determine the rate of FAO (Folmes et al., 2013; Houten and Wanders, 2010). Thus, high levels of Spot14 accompanied by low levels of malonyl-CoA in quiescent NSPCs promote high FAO (see also summary scheme Figure 5E).

High Levels of FAO Are Required to Sustain Cellular Quiescence
To test for the functional relevance of FAO activity, we blocked FAO in quiescent NSPCs using the irreversible Cpt1 inhibitor Etomoxir. NSPCs were induced to quiescence and then exposed to various doses of Etomoxir. Cell survival was assessed using time-lapse imaging. Strikingly, such complete FAO inhibition in quiescent NSPCs led to massive cell death in a dose-dependent manner (Figure 2A). This finding indicates that FAO is critically involved in maintaining adult hippocampal NSPCs in a quiescent state and that absence of this pathway is detrimental. Complete blockage of FAO using Etomoxir also affected NSPCs kept under proliferating conditions by reducing their proliferation, as assessed by time-lapse imaging, flow cytometry analysis, and 5-ethyl-2'-deoxyuridine (EdU)-pulse labeling (Figures S2A–S2C). These findings are in line with a recent report showing that proliferating NSPCs in the SVZ can oxidize fatty acids (Stoll et al., 2015). Given the detectable levels of FAO in proliferating NSPCs, (although much lower than in quiescent NSPCs; Figure 1C) and the effect of blocking FAO on proliferation, these data suggest that FAO is still to a certain extent relevant during proliferation. However, in contrast to quiescent NSPCs, abolishing FAO in proliferating NSPCs only mildly affected their cell survival (Figures S2A–S2C).

Given the importance of FAO for NSPC behavior in vitro, we next investigated why quiescent NSPCs require FAO. We used two complementary approaches to analyze the fate of oxidized fatty acids in NSPCs. First, we used radioactively labeled \(^{13}\text{C}\)-palmitic acid to determine the complete oxidation of fatty acids, allowing for energy production. In contrast to the \(^{1}\text{H}\)-palmitic acid labeling, where radioactively labeled \(^{2}\text{H}_2\text{O}\) is produced during the entire oxidation cycles into acetyl-CoAs, radioactively labeled \(^{13}\text{C}\)-palmitic acid yields measureable \(^{14}\text{CO}_2\) only if the resulting acetyl-CoAs are further oxidized in the tricarboxylic acid (TCA) cycle. We found significantly higher levels of \(^{14}\text{CO}_2\) in quiescent NSPCs compared to proliferating NSPCs, suggesting that quiescent NSPCs might use fatty acids as a fuel source (Figure 2B). To confirm that quiescent NSPCs use FAO for energy production, we determined their energy charge, as a readout for the amount of energy available in the form of adenosine triphosphate (ATP). We found that the energy charge significantly dropped following Etomoxir treatment, indicating that FAO is indeed contributing to the amount of ATP generated in quiescent NSPCs (Figure 2C), with the massive drop using 200 µm Etomoxir probably indicating reduced cell viability.

Next, we used \(^{13}\text{C}\)-labeled palmitic acid to trace the incorporation of labeled carbon atoms in quiescent versus proliferative NSPCs (Figure 2D). During complete oxidation of such labeled palmitic acid, labeled carbon atoms are cleaved off and transferred to TCA intermediates and amino acids derived from TCA intermediates. The amount of incorporation of labeled carbons
Figure 1. Quiescent NSPCs Have a High Rate of FAO

(A) Exposure of NSPCs to a BMP4-containing quiescence medium for three days leads to a massive decrease in proliferation. Shown are representative images of proliferating (prol) and quiescent (quie) NSPCs and quantification of the mitotic cell marker phospho histone 3 (pH3) (mean ± SEM).

(B) Mass spectrometric comparison of the proteome of proliferating and quiescent NSPCs reveals FAO to be enriched in quiescent NSPCs. The histogram shows the normalized abundance of proteins belonging to the GO term “Fatty acid oxidation” (gray = expression change of log2 < −1, red = expression change of log2 ≥ −1, enriched in quiescent cells).

(C) Radioactive FAO measurements using 3H-labeled palmitic acid revealed a significant increase in the rate of FAO in quiescent NSPCs compared to proliferating NSPCs. Remarkably, this increase was reversed in quiescent NSPCs that had been re-exposed to proliferation conditions (ex quie), suggesting FAO is specifically upregulated upon quiescence entry (mean ± SD).

(D) mRNA levels of the key FAO enzyme Cpt1a are highly and reversibly upregulated in quiescent (quie) NSPCs compared to proliferating (prol) and formerly quiescent (ex quie) NSPCs (mean ± SEM).

(E) The increase in Cpt1a mRNA levels is also reflected on protein levels, as revealed by western blot analysis (mean ± SEM).

(F) mRNA levels of the previously described novel quiescence marker Spot14 are highly upregulated in quiescent (quie) NSPCs compared to proliferating (prol) NSPCs. This upregulation is reversible, as formerly quiescent (ex quie) NSPCs greatly reduce Spot14 mRNA levels. This suggests that the BMP4-induced in vitro quiescence system indeed reflects features of in vivo NSPC quiescence (mean ± SEM).

(G) The endogenous Cpt1a inhibitor malonyl-CoA is lowered in quiescent NSPCs compared to proliferating NSPCs, as measured by mass spectrometry analysis (mean ± SEM).

(H) Co-stainings against Cpt1a and a mitochondrial marker (Mitotracker) reveals the mitochondrial localization of Cpt1a in quiescent NSPCs. Shown is a representative confocal image of maximum projections of individual channels and a 3D reconstruction. Scale bars represent 50 μm (A) and 20 μm (H). ***p < 0.001; **p < 0.01.

See also Figure S1.
can be measured using mass spectrometry. We found highly significant increases in the incorporation of 13C into TCA intermediates as well as into amino acids derived from TCA intermediates in quiescent NSPCs (Figure 2E), suggesting that the fatty acid-derived carbon atoms might be further used as an alternative carbon source.

To address whether the upregulation of FAO in quiescent NSPCs is transcriptionally regulated, we measured the expression levels of the Peroxisome proliferator-activated receptor alpha (PPARα), a known transcriptional regulator of genes involved in FAO by qRT-PCR (Leone et al., 1999). Indeed, expression of PPARα and its target genes was highly upregulated in quiescent NSPCs compared to proliferating NSPCs (Figures 2G and S2D), suggesting that upregulation of FAO upon quiescence is at least partially regulated on a transcriptional level. Given this transcriptional component of FAO regulation...
through PPAR\(\alpha\), we next assessed whether FAO gene expression could be modulated in proliferating NSPCs to reach similar levels as in quiescent NSPCs and whether such an upregulation would render proliferating NSPCs more quiescent. Treatment with the PPAR\(\alpha\) agonist WY14643 indeed led to an upregulation of FAO genes in proliferating NSPCs compared to control NSPCs (Figure 2 G and S2D), however, to a far lesser extent than in quiescent NSPCs. Similarly, although modulation of FAO genes by WY14643 significantly reduced proliferation compared to control NSPCs, proliferation was still far higher than in quiescent NSPCs (Figure 2 F).

Cpt1a Is Expressed in Hippocampal NSPCs In Vivo
After identifying a role for FAO in NSPC quiescence in vitro, we next analyzed the expression of Cpt1a within the adult hippocampal neurogenic niche using a Cpt1a reporter mouse expressing GFP from the regulatory elements of the Cpt1a genomic locus (Genesat; hereafter called Cpt1a-GFP) (Gong et al., 2003). Besides GFP-positive classical astrocytes throughout all hippocampal subfields (Figures 3A and S3B), we found GFP expression to be highly enriched in the subgranular zone (SGZ) of the DG (Figures 3A and S3A). GFP-positive cells expressed Cpt1a, as confirmed with staining against endogenous Cpt1a (Figure S3C). Next, we phenotyped GFP-labeled cells in Cpt1a-GFP mice and found that GFP expression preferentially labeled non-mitotic, Ki67-negative hippocampal NSPCs and only a small subset of cycling NSPCs (Figure 3B). Virtually all Cpt1a-GFP-positive cells co-labeled with the radial NSPC marker SOX2 (Figure 3C). Furthermore, the majority of radial processes positive for the radial NSPC marker Nestin were also GFP positive (83.7% ± 6.2%; Figure 3C). Cpt1a was virtually absent in doublecortin (DCX)-expressing neuronal progeny of hippocampal NSPCs (Figure 3D). Furthermore, Spot14 was co-expressed in Cpt1a-GFP-positive cells (Figures S3D and S3E), suggesting that FAO is indeed high in NSPCs and becomes downregulated with neuronal differentiation.

Cpt1a Is Required for Proper Neurogenesis In Vivo
To directly test for a role of Cpt1a-dependent FAO in NSPCs in vivo, we conditionally deleted Cpt1a specifically in adult quiescent NSPCs by crossing Cpt1a flox/flox mice (Cpt1a-conditional knockout [cKO]) (Schoors et al., 2015) with mice harboring tamoxifen (TAM)-inducible Spot14-driven Cre recombinase (S14iCre) (Knobloch et al., 2013) and yellow fluorescent protein
(YFP) reporter alleles in the ROSA locus (R26YFP), inducing recombination at seven weeks of age. The low recombination efficiency of the S14iCre mouse line resulted in sparse labeling of cells, allowing the identification and classification of labeled progeny into potential clones according to their spatial clustering, similarly to previously published analyses referred to as clonal analysis (Bonaguidi et al., 2011). However, it needs to be noted that the classification of cellular clusters into clones according to spatial distance only assumes common lineage and does not ultimately prove the presence of cells of clonal origin as this would require an additional level of genetic lineage tracing (e.g., through genetic bookmarking as previously used in NSPCs; Fuentealba et al., 2015).

We first analyzed cell cluster size distribution 8 days after the first TAM administration using the sparse labeling method and found that size and composition of cellular clusters was not significantly altered between control and Cpt1a-cKO mice, although no larger clones were found in Cpt1a-cKO (Figures S4A and S4D). At this time point, slightly lower numbers of clusters were found in Cpt1a-cKO mice compared to control mice (17 clones in 5 mice versus 24 clones in 4 mice), but the number of YFP-positive cells per mouse was not significantly lower in the Cpt1a-cKO mice compared to control mice (7.2 ± 4.5 versus 11 ± 3.7; p > 0.1). Detailed cluster analysis did not reveal significant changes (Figures S4B, S4C, and S4F), although a small decrease in clones containing only R and a small, non-significant increase in active clones in Cpt1a-cKO might be suggestive of an initial activation upon Cpt1a-dependent knockout of FAO.

Next, we analyzed cell cluster composition and number 25 days after the first TAM administration. These analyses revealed a dramatic decrease in the number of YFP-positive cells per clone in Cpt1a-cKO mice compared to control littersates (Figures 4A, 4B, and S4E). The majority of clones in the Cpt1a-cKO mice contained only one to two cells, whereas more than half of the clones in control mice were composed of three to 12 or even more cells (Figures 4A, 4B, and S4E), suggesting a massive impairment of NSPC expansion upon FAO knockout. Furthermore, fewer clones were found in Cpt1a-cKO mice compared to control mice (34 clones in seven Cpt1a-cKO mice versus 62 clones in control mice), and the number of YFP-positive cells per mouse was significantly lower in the Cpt1a-cKO mice compared to control mice (Cpt1a-cKO: 12.8 ± 5.8 versus 111 ± 65.6 in control mice; p < 0.05), implying that FAO knockout leads to cell death. This was also reflected by a decrease in the number of radial-glia like NSPCs in Cpt1a-cKO compared to controls (Cpt1a-cKO: 2.6 ± 1.5 versus 17 ± 10.4 in control mice; p = 0.06).

A detailed analysis of the clone compositions revealed an increase in clones containing only one radial-glia like cell (R), a reduction in clones containing an R and neural progeny (N), an absence of clones containing a R, N and astrocytes (A), and an increase in clones without a R in Cpt1a-cKO mice compared to controls. Further, there was a strong reduction in the number of active clones (containing a radial-glia-like cell that generated progeny) (Figures 4C–4D). Thus, genetic inhibition of FAO in adult hippocampal NSPCs results in fewer recombined cells indicative of cell death and smaller as well as less active clones indicative of reduced cell proliferation, thus corroborating the in vitro results upon FAO inhibition. However, the detailed impact of FAO on the specific cellular stage (quiescence, proliferation, cell death, and survival) cannot be answered unambiguously with these snapshot data. Given that FAO is used by both proliferating and quiescent NSPCs in vitro (although the latter have much higher FAO levels and depend more on it), it is indeed likely that the strong decrease in progeny generation upon FAO ablation is due to an influence of FAO on several cellular stages.

Small hairpin RNA (shRNA)-mediated knockdown of Cpt1a using in utero electroporation in the developing mouse cortex at mid-neurogenesis (embryonic day 13 [E13]) corroborated the importance of FAO for proper neurogenesis in vivo that has been also previously shown by Xie et al. (2016) (Figures S4I and S4J). Although NSPCs are more proliferative at this stage compared to adulthood (Farkas and Huttner, 2008), staining against endogenous Cpt1a confirmed that Cpt1a is also highly enriched in NSPCs lining the ventricle during development (Figure S4H). 24 hours after electroporation (corresponding to E14) (Figure S4J), proliferation at the apical surface was significantly reduced upon Cpt1a knockdown, and general disorganization of mitoses in the ventricular zone was observed (Figures S4K and S4L). Furthermore, we found a massive increase in cell death upon Cpt1a knockdown, as measured by the apoptotic marker cleaved caspase-3 (Figure S4M), corroborating the in vitro results.

Malonyl-CoA Levels Regulate NSPC Proliferation

Given the important role of FAO for NSPCs in vitro and in vivo, determined by fully blocking this pathway with genetic and pharmacological means, we next aimed to test the significance of this regulatory pathway for NSPC activity in a more physiological manner. Metabolic pathways are finely tunable through substrate availability and intrinsic levels of metabolites have been shown to determine pathway activity. Such shifts in pathway activity are likely to reflect better the actual physiological situation than switching off a pathway by genetic deletion of its key players. For FAO, the metabolite malonyl-CoA functions as the endogenous inhibitor of Cpt1a and serves at the same time as a substrate for de novo lipogenesis, thus it has also been termed a “rheostat” regulating these two lipid metabolic pathways (Foster, 2012; McGarry and Brown, 1997). Thus, we reasoned that elevating levels of malonyl-CoA decreases Cpt1a-dependent FAO in a physiological way rather than completely blocking it and provides sufficient substrate to fuel FASN-dependent de novo lipogenesis that is required for NSPC proliferation (Knobloch et al., 2013). However, it is not known if malonyl-CoA can be taken up by cells when provided extracellularly. Thus, we first tested if exogenously provided malonyl-CoA can be metabolized and detected intracellularly. We isolated lipids of proliferating, highly lipogenic NSPCs (Knobloch et al., 2013) that were incubated with radioactively labeled malonyl-CoA (14C-malonyl-CoA) for 48 hr (Figure S5A). We detected incorporation of 14C-malonyl-CoA in polar lipids and triacylglycerides (TAGs, neutral lipids) (Figure S5B), clearly showing that exogenous malonyl-CoA can indeed be utilized by NSPCs. Next, we tested if exogenously applied malonyl-CoA could prevent BMP4-mediated induction of NSPC quiescence. Adult NSPCs were exposed to
BMP4-containing medium in the presence of different concentrations of malonyl-CoA (Figure 5A). Indeed, elevated levels of malonyl-CoA dose-dependently prevented the induction of quiescence, as measured using the cell cycle markers Ki67 and phosphorylated histone H3 (pH3) (Figure 5B). These data show that manipulating FAO through malonyl-CoA levels is
sufficient to override BMP4-induced quiescence and keeps NSPCs in a proliferating state.

Next, we induced BMP4-mediated quiescence over 3 days, after which proliferation is almost completely inhibited, followed by replating the cells in quiescence medium together with malonyl-CoA (Figure 5C). Strikingly, we found that malonyl-CoA triggered NSPCs to enter the cell cycle in a dose-dependent manner, despite a fully established quiescence state and the continuous presence of quiescence cues (Figure 5D). This increased proliferation is most likely mediated by an increase in FASN-dependent de novo lipogenesis, as the addition of the FASN inhibitor Orlistat (Kridel et al., 2004) into the BMP4-containing quiescence medium significantly reduced remaining proliferation and abolished the pro-proliferative effect of malonyl-CoA when applied together with malonyl-CoA (Figures S5C and S5D). These data reveal that differential metabolic states are not a mere consequence of a given stem cell state but that manipulating levels of FAO through
malonyl-CoA is instructive to regulate the behavior of adult NSPCs (Figure 5E).

DISCUSSION

Due to its significance for brain function, understanding the mechanisms regulating adult hippocampal neurogenesis is important to advance the current knowledge of brain plasticity in health and disease (Jessberger and Gage, 2014). In addition to candidate-based approaches testing the role of well-studied signaling pathways that had been implicated in regulating embryonic neurogenesis such as Notch- and WNT-signaling, a series of recent studies used unbiased approaches to characterize gene expression profiles during distinct developmental stages in the course of adult neurogenesis (Bracco et al., 2012; Llorens-Bobadilla et al., 2015; Shin et al., 2015). These studies all pointed toward an important role of cellular metabolism and, more specifically, lipid metabolism in the regulation of the neurogenic process in the adult brain. Supporting this, we have previously shown that NSPCs in the adult brain depend on FASN-dependent de novo lipogenesis for proper proliferation and have identified Spot14, which is selectively expressed in largely quiescent NSPCs, as the brake on de novo lipogenesis (Knobloch et al., 2013, 2014). However, it remained unclear if Spot14 merely suppresses de novo lipogenesis to keep NSPCs in a quiescence state or if NSPC quiescence requires a specialized metabolic state.

We here used several complementary approaches in vitro and in vivo to show that quiescent NSPCs rely on FAO and that blocking this pathway pharmacologically or genetically leads to massive disturbance of NSPC behavior. Using in vitro approaches, we find clear evidence that inhibition of FAO leads to enhanced cell death of quiescent cells but also reduced proliferation. The conditional deletion of the rate-limiting enzyme Cpt1a in vivo also results in fewer and smaller cellular clusters, suggesting that the role for FAO in vivo resembles the described function of cultured NSPCs in vitro. The conditional deletion of Cpt1a in quiescent Spot14-positive NSPCs using the Spot14-CreERT2 mouse line allowed us to study the role of FAO on a specific NSPC population, reducing possible side effects of altering FAO in astrocytes, as would be the case by using other Cre-lines, such as GLAST-CreERT2 or Nestin-CreERT2 (Lagace et al., 2007; Mori et al., 2006). However, the low recombination efficiency of the Spot14-CreERT2-line results in sparse labeling, enabling clonal analysis, but making assessments of proliferation or cell death with classical markers almost impossible. Thus, the detailed cellular effects (i.e., on exactly which stage FAO deletion exerts its main phenotype) remain to be elucidated and will require novel approaches to study neurogenesis within the endogenous niche such as chronic imaging.

Although glucose and lactate remain the main fuel sources for the brain (Lundgaard et al., 2015; Wys et al., 2011), our data suggest that NSPCs might not only rely on these fuels. We provide mechanistic evidence that oxidized fatty acids are required for energy production and might serve as an alternative carbon source. Thus, our data reveal a metabolic shift in adult hippocampal NSPCs that defines the change from a quiescent to a proliferative state. Interestingly, many metabolic pathways are not only transcriptionally regulated but also highly dependent on substrate availability and inhibitory feedback loops of metabolic intermediates, providing a regulatory system than can be finely tuned rather than an “on-off” system (Lunt and Vander Heiden, 2011; Metallo and Vander Heiden, 2013). This is also the case for the breakdown and buildup of lipids (Houten et al., 2016; Menendez and Lupu, 2007). A central role in regulating the shift from FAO to lipogenesis appears to be mediated by the levels of malonyl-CoA. This physiological metabolite has been suggested to be a rheostat of stem cell fate (Folmes et al., 2013), being both an inhibitor of Cpt1a and a substrate for de novo lipogenesis (McGarry et al., 1983; Menendez and Lupu, 2007). Strikingly, we have previously shown that Spot14, which is highly expressed in quiescent NSPCs, indirectly reduces the levels of available malonyl-CoA and reduces lipid synthesis (Knobloch et al., 2013). BMP4-induced quiescent NSPCs recapitulate these features and show highly increased Spot14 levels and reduced malonyl-CoA levels, providing optimal conditions for FAO. Thus, our data support the hypothesis that malonyl-CoA acts as a rheostat with Spot14 taking a key role in this regulatory process (summarized in the graphical abstract). Our data corroborate previous findings by Stoll and colleagues who characterized the metabolic state of NSPCs in the subventricular zone (SVZ) and found that NSPCs in the adult SVZ depend on FAO for their proliferation as shown by infusing Etomoxir (thus pharmacologically inhibiting FAO) into the adult brain (Stoll et al., 2015). Interestingly, recent studies described a role for FAO in other stem cell systems: hematopoietic stem cells (HSCs) seem to require FAO to maintain their stem cell potential through a PPAR-delta mediated pathway and inhibition of FAO leads to HSC exhaustion (Ito et al., 2012). Similarly, quiescent muscle satellite cells are relying on FAO and pyruvate oxidation and undergo a metabolic shift toward glycolysis once they become activated (Ryall et al., 2015). Furthermore, a recent study has addressed the consequences of systemic inborn errors of FAO on brain development and showed that defects in FAO lead to enhanced progenitor generation and subsequently to a reduced embryonic NSPC pool (Xie et al., 2016). These studies emphasize the importance of FAO for proper stem cell behavior and suggest shared regulatory pathways involving FAO between different somatic stem cell types. Whether malonyl-CoA levels and Spot14 are the regulating entities in other somatic stem cells remains to be elucidated.

Excitingly, our data show that metabolic changes in the course of NSPC activation are not mere bystanders of other signaling pathways or transcriptional programs, but are effective to change NSPC behavior in vitro. Manipulating FAO through changing the levels of a single metabolite, its endogenous inhibitor malonyl-CoA, is sufficient to instruct quiescent NSPCs to enter cell cycle and to proliferate in vitro. Due to the short half-life of malonyl-CoA at 37°C (72 hr), in vivo experiments are currently not feasible. In contrast to the detrimental effects seen when completely switching off FAO genetically or pharmacologically, alteration of endogenous metabolite levels might better reflect the physiological relevance of metabolic shifts. Given the instructive role of metabolism on NSPC quiescence
and proliferation behavior, manipulations of the metabolic state may thus represent a novel approach to achieve enhanced neurogenesis in the aging brain or in disease states where NSPC activity is reduced.

EXPERIMENTAL PROCEDURES

Further details and an outline of the resources used in this work can be found in the Supplemental Experimental Procedures.

Mouse strains used were Cpt1α-EGFP reporter mice (STOCK Tg(Cpt1α-EGFP/IP41Gsat/Mmucd, MMRRC), Cpt1α cKO mice (Schoors et al., 2015), Spot14CreERT2 mice (S14Cre) Knobloch et al., 2013), ROSA26 YFP reporter mice (R26YFP), and C57Bl6 mice (Janvier). All animal experiments were performed according to Swiss regulatory standards and approved by the Veterinary office of the Canton of Zurich. Cre-mediated recombination was induced by intraperitoneal injections of tamoxifen (180 mg/kg) at the age of 6 to 7 weeks. Lentiviral constructs were designed and viruses produced as previously described (Knobloch et al., 2013). Adult mouse DG NSPCs were cultured in DMEM with Ham’s F12, supplemented with N2 supplement plus epidermal growth factor (EGF), fibroblast growth factor, and heparin (Knobloch et al., 2013; Ray and Gage, 2006). Quiescence was induced over three days replacing EGF with BMP4, as previously described (Martynoga et al., 2013; Mira et al., 2010). For Cpt1α inhibition, Etomoxir or malonyl-CoA was added to the medium as outlined in the figures. Proteomic analysis was done according to previously established protocols (Wisniewski et al., 2009). Radioactive FAO measurements were done using labeled 13C-palmitic acid and 13C-palmitic acid, and the amount of tritiated water or 14CO2 generated was assessed (Djouadi et al., 2003; Huyhn et al., 2014). Quiescent and proliferating NSPCs were collected for RNA and protein isolation, and established protocols (Bona-embryos (embryonic day 13 [E13]) was carried out as described previously (Asami et al., 2011). For immunohistochemical analyses, brain tissues were sectioned, stained, and imaged using previously published methods (Bonaguidi et al., 2011; Knobloch et al., 2013). Mass spectrometry measurements to assess the amount of malonyl-CoA and to determine the energy charge were done with cellular extracts using liquid chromatography-tandem mass spectrometry LC-MS/MS (Knobloch et al., 2013; Schoors et al., 2015). To analyze C13 incorporation, quiescent and proliferating NSPCs were incubated 24 hr prior to collection/extraction with 13C-palmitic acid and analyzed with gas chromatography-mass spectrometry (GC-MS) as previously described (Schoors et al., 2015). Statistical analysis was performed using unpaired t tests, paired t tests, and one-way-ANOVA or two-way-ANOVA, followed by Holm-Sidak’s multiple comparisons tests. Significance levels are set at p < 0.05.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, five figures, and three tables and can be found with this article online at http://dx.doi.org/10.1016/j.cellrep.2017.08.029.

AUTHOR CONTRIBUTIONS

M.K. co-developed the concept, performed the experiments, analyzed the data, and co-wrote the paper. G.-A.P. and M.K. performed the experiments in the embryonic brain. B.G. and M.K. performed the metabolite tracing experiments. T.W. performed the proteomics experiments. W.J.K. and M.K. performed the radioactive tracing experiments and the gene expression analyses. M.K. performed the in vivo experiments, with help from G.-A.P and D.L.M. D.L.M. contributed to in vivo Cpt1α expression analysis. M.H. and N.Z. performed malonyl-CoA measurements. P.C. contributed reagents and transgenic mice and provided critical conceptual input. All authors revised the manuscript. S.J. developed the concept and wrote the paper. The authors declare that patent applications concerning this work are pending.

ACKNOWLEDGMENTS

We thank D.C. Lie for comments on the manuscript and the ZMB (UZH) and BIOP (EPFL) imaging facilities for help with imaging. We also thank J. Grossmann, P. Gehrig, and B. Roschitzki of the FGCC (UZH and ETHZ) and the Zurich Neuroscience Center (ZNZ) of UZH and ETHZ. This study was supported by the Swiss National Science Foundation (BSCGI0_157859; 31003A_156943), the EMBO Young Investigator Program, the Theodore Ott Foundation, the Novartis Foundation, and the European Research Council (to S.J.). M.K. was supported by the Janggen-Pöhn Foundation, G.A.P. by an EMBO long-term fellowship, D.L.M. by a Human Frontier Science Program long-term fellowship, and T.W. by the Boehringer Ingelheim Fonds.

Received: July 14, 2017
Revised: July 27, 2017
Accepted: August 6, 2017
Published: August 29, 2017

REFERENCES

hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472, 466–470.

Supplemental Information

A Fatty Acid Oxidation-Dependent Metabolic Shift Regulates Adult Neural Stem Cell Activity

Marlen Knobloch, Gregor-Alexander Pilz, Bart Ghesquière, Werner J. Kovacs, Thomas Wegleiter, Darcie L. Moore, Martina Hruzova, Nicola Zamboni, Peter Carmeliet, and Sebastian Jessberger
Figure S1 (related to Figure 1): Quiescent NSPCs have a high rate of fatty acid oxidation (FAO). A) Representative images of reversible BMP4-induced quiescence in NSPCs. Shown are NSPCs kept under proliferating conditions (prol), after 3 days of quiescence induction (quie), proliferating NSPCs that were replated (prol repl), and NSPCs kept under quiescent conditions (ex quie repl).
replated into proliferation medium (prol replated) and previously quiescent NSPCs that were replated into proliferation medium and kept for 3 days under proliferation conditions (ex quie replated). B) Flow cytometry histograms showing the DNA profile of proliferating (prol) and quiescent (quie) NSPCs and of previously quiescent NSCPs that have been replated into proliferation medium for 3 days (ex quie 3d) or 6 days (ex quie 6d). The corresponding proliferating control NSCPs were replated accordingly (prol repl. 3d and prol repl. 6d). Three days of quiescence treatment significantly decreases the amount of proliferating cells. Replating quiescent NSPCs into proliferation medium induces cell proliferation, showing the reversibility of this in vitro quiescence. Although 3 days re-exposure to proliferation medium led to a very similar proliferation profile as seen in NSPCs not exposed to quiescence, there were still significant differences, which were gone after 6 days of re-exposure to proliferation medium. Bars represent mean ± SEM. C) The neurogenic potential upon differentiation was not altered upon previous quiescence exposure, further demonstrating the reversibility of the system. Shown are representative images of NSPCs that were allowed to spontaneously differentiate for 9 days upon growth factor removal. Prior to differentiation, NSPCs were either exposed 3 days to quiescence cues followed by 3 days proliferation medium (ex quie-diff) or kept all the time under proliferation conditions (prol-diff). Map2ab marks neurons. Quantification represents mean ± SEM. D) Comparative analysis of the proteome of proliferating and quiescent NSPCs reveals proteins involved in FAO to be enriched in quiescent NSPCs. The dot plot shows proteins changed significantly
at least two fold ($\log_2 \geq |1|$) in quiescent (red) and proliferating (green) NSPCs. E) Shown is the median abundance of proteins belonging to the represented GO terms. Only the GO term “Fatty acid oxidation” was changed more than 2 fold (median higher than $\log_2 \geq |1|$). F) Histograms show the normalized abundance of proteins belonging to the indicated GO terms, detected in the mass spectrometric comparison of proliferating and quiescent NSPCs. (Gray = expression change of $\log_2 < |1|$, red = expression change of $\log_2 \leq -1$, enriched in quiescent NSPCs, green = expression change of $\log_2 \geq 1$, enriched in proliferating NSPCs). G) Acetyl-CoA does not differ significantly between quiescent and proliferating NSPCs, as measured by mass spectrometry (mean + SEM). H) Cpt1a in proliferating NSPCs co-localizes with the mitochondrial marker Mitotracker. Shown are representative confocal images of maximum projections of individual channels and a 3D-reconstruction.

Scale bar: 100µm (A), 50µm (C), 20µm (H); ***$p < 0.001$, **$p < 0.01$
Figure S2 (related to Figure 2): Pharmacological blocking of FAO in proliferating NSPCs decreases proliferation. A) Time-lapse analysis of proliferating NSPCs exposed to various doses of the irreversible Cpt1 inhibitor Etomoxir (50, 100 and 200µM). Shown are a schematic outline of the experimental setup, the quantification of the area covered by proliferating NSPCs over time, and representative images. The quantification of the percent area covered by proliferating NSPCs reveals a significant decrease in proliferation for all doses tested. B) Flow cytometry-based cell cycle analysis confirms a decrease in proliferation with Etomoxir in proliferating NSPCs. Shown are
Histograms of DNA profiles after 24h of exposure with the indicated doses of Etomoxir (50 and 100µM) and the corresponding quantification (left bar graph). Right bars show the percentage of cells in Sub-G1 as a readout for cell death. 100µM Etomoxir lead to a mild but significant increase in cell death. C) The decrease in proliferation upon Etomoxir treatment is also apparent using an EdU-pulse to label cells in S-phase. With 50µM or 100µM Etomoxir for 24h, the amount of proliferating NSPCs decreased significantly, whereas the increase in cell death (cleaved caspase-3) was mild and non-significant. Shown are representative images of the different conditions and quantification of proliferation and cell death. D) Treatment with the PPARα agonist WY14643 led to an upregulation of PPARα target FAO genes in proliferating NSPCs compared to control NSPCs, however, to a far lesser extent than in quiescent NSPCs. Shown are the mRNA expression levels (mean fold change ± range) of multifunctional protein 1 (Mfp1), Acyl-CoA oxidase 1 (Acox1), peroxisomal 3-ketoacyl-CoA thiolase A (Acaa1a) and peroxisomal biogenesis factor 11 alpha (Pex11a).

Scale bars: 50µm; ***p < 0.001, **p < 0.01.
Figure S3 (related to Figure 3): Cpt1a is expressed in quiescent NSPCs in vivo and co-labels with the quiescence marker Spot14. A) DAB-staining against GFP on a sagittal section of a 2-month-old Cpt1a-GFP reporter mouse. B) Co-staining for Cpt1a-GFP and for glial fibrillary acidic protein (GFAP) shows
that GFP positive cells outside the subgranular zone of the DG are astrocytes. Shown is a representative confocal image (maximum projection) from a 2-month-old Cpt1a-GFP reporter mouse. Dotted lines show the outline of the granular zone of the DG. C) Co-staining for Cpt1a-GFP and endogenous Cpt1a protein shows that the Cpt1a-GFP reporter mouse faithfully reports Cpt1a expression. Shown is a representative confocal image (maximum projection) from a 2-month-old Cpt1a-GFP reporter mouse. Dotted lines show the outline of the granular zone of the DG. D) Co-staining for Cpt1a-GFP and endogenous Spot14 protein reveals that NSPCs expressing Spot14 are also positive for GFP. Shown is a representative confocal image (maximum projection) from a 2-month-old Cpt1a-GFP reporter mouse. Dotted lines show the outline of the granular zone of the DG. Note the increase in GFP signal due to harsh epitope retrieval needed for Spot14 staining. E) Enlarged image of the boxed area depicted in D.

Scale bars represent: 1mm (A), 50µm (B, C, D), and 20µm(E).
Figure S4 (related to Figure 4): Cpt1a is required for proper neurogenesis in the adult and during development. A) Conditional Cpt1a knockout in adult quiescent NSPCs, by crossing Cpt1a flox/flox mice with Spot14-driven Cre recombinase mice and ROSA YFP reporter mice. Clonal analysis early after TAM
induction (8 days after the first injection) does not yet reveal significant differences in clone size in the Cpt1a-cKO flox/flox mice compared to Cpt1a-cKO wt/wt littermates. B) Detailed clone composition analysis shows no significant differences at 8 days after induction, although there was a small decrease in clones containing only R. C) The number of active clones early after deletion of Cpt1a is not different between Cpt1a-cKO flox/flox mice compared to Cpt1a-cKO wt/wt littermates despite a small, but non-significant (n.s.) increase (p = 0.17) in active clones containing a radial glia-like cell (R) and any kind of progeny (X) in Cpt1a-cKO mice. D) Clone size distribution 8 days after induction, analyzed per mouse instead of per clones (mean ± SEM). Similar to the data shown in A, there is no significant difference at that timepoint. E) Clone size distribution 25 days after induction, analyzed per mouse instead of per clones (mean ± SEM). Similar to the data shown in Fig. 4B, there is a significant reduction in the number of large clones in Cpt1a-cKO flox/flox mice compared to Cpt1a-cKO wt/wt littermates. F) The number of active clones analyzed per mouse instead of per clones (mean ± SEM) does not reveal a significant difference 8 days after induction. G) The number of active clones analyzed per mouse instead of per clones (mean ± SEM) at 25 days after induction shows a significant reduction in Cpt1a-cKO flox/flox mice compared to Cpt1a-cKO wt/wt littermates, similar to the data shown in Fig. 4D. H) During development, Cpt1a is expressed in the ventricular zone, where NSPCs reside and give rise to newborn neurons. Shown is a representative confocal image (maximum projection) of an E14 wildtype mouse embryo brain stained against Cpt1a (cytoplasm) and Sox2 (nuclei). I) A
shRNA targeting Cpt1a was tested for knockdown efficiency compared to a non-targeting control shRNA. All constructs also contain a mCherry reporter sequence. Shown is a representative Western blot of the endogenous Cpt1a levels in Hepa1-6 cells 48h after shRNA-transfection and the corresponding loading control (β-actin). The bar graph shows the quantification of Cpt1a levels normalized to β-actin (mean ± SEM). J) ShRNA-mediated Cpt1a knockdown in vivo by in utero electroporation. Shown is a scheme of the experimental approach: ShRNA constructs were injected into the ventricle of E13 mouse embryos and current was applied to transfect cells in the ventricular zone. Embryos were analyzed one day later (E14) by immunohistochemistry. K) Representative images of embryonic brain sections after in utero electroporation with a non-targeting shRNA and a shRNA against Cpt1a, both expressing mCherry. Staining against the proliferation marker phospho-histone 3 (pH3) reveals reduced proliferation at the apical surface, where radial glia divide, and a general disorganization of the ventricular zone. L) Quantification of the pH3 intensity from the apical surface 40µm into the ventricular zone. M) Representative images of embryonic brain sections after in utero electroporation of the different shRNA-constructs described in D. Dotted lines show the transfected areas in the cortex marked by mCherry expression. Staining against the apoptotic marker cleaved Caspase-3 reveals massive cell death upon knockdown of Cpt1a, suggesting that FAO is also required for proper neurogenesis during development. Enlarged images of the mCherry positive transfected areas show the apparent morphological differences between non-
targeting shRNA transfected NSPCs and the NSPCs transfected with the Cpt1a targeting shRNA. I) Quantification of the increase in cleaved Caspase 3 positive area upon Cpt1a knockdown in utero (mean ± SEM).

Scale bars represent: 50µm (B, M), 20µm (K). ***p < 0.001, **p < 0.01, *p < 0.05.
Figure S5 (related to Figure 5): Exogenously applied malonyl-CoA is incorporated into new lipids and increased proliferation upon malonyl-CoA exposure in quiescent NSPCs is at least partially regulated by an increase in FASN-dependent de novo lipogenesis. A) Scheme of the experimental procedure to detect whether exogenously applied malonyl-CoA can be used by NSPCs. Radioactively labeled malonyl-CoA (\(^{14}\)C-malonyl-CoA) was applied together with non-labelled malonyl-CoA (100\(\mu\)M) to proliferating NSPCs for 48h. Intracellular lipids were isolated, separated by thin layer chromatography and their radioactivity was measured by scintillation counts. B) Both in the polar lipid
fraction (containing the phospholipids) and in the neutral lipid fraction (containing triacylglycerides), significantly higher radioactivity (decay per minute, dpm) was detected in the samples incubated with 14C-malonyl-CoA, indicating that exogenously applied malonyl-CoA is taken up and integrated into newly synthesized lipids in NSPCs. C) NSPCs were replated after fully established quiescence in quiescence medium containing either vehicle, the FASN inhibitor Xenical (Orlistat, 20 μM), malonyl-CoA (200 μM) or both Xenical and malonyl-CoA (20 μM and 200 μM). D) The number of mitotic cells was analyzed 3 days later by pH3 staining. Inhibition of FASN significantly reduced the remaining small percentage of mitotic cells, whereas malonyl-CoA significantly increased proliferation. Xenical abolished the pro-proliferative effect of malonyl-CoA when applied together with malonyl-CoA. This suggests that increased proliferation of quiescent NSPCs is at least partially dependent on FASN-driven de novo lipogenesis. Shown are representative images of indicated doses (A) and the quantification of proliferating cells (B) (mean ± SEM).

Scale bar represents 50μm. ***$p < 0.001$, **$p < 0.01$, *$p < 0.05$.

EXTENDED DATA TABLES

Table 1. Listed are the normalized abundances of proteins detected in the mass spectrometric comparison of proliferating and quiescent NSPCs.
Table 2. Listed are the normalized abundances of significantly and at least two-fold changed proteins, belonging to different GO processes.

Table 3. Listed are the primers used for qPCR.
RESOURCES TABLE

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mouse anti-pH3</td>
<td>Abcam</td>
<td>#14955</td>
</tr>
<tr>
<td>mouse anti-Cpt1a</td>
<td>Abcam</td>
<td>#ab128568</td>
</tr>
<tr>
<td>rabbit anti-Ki67</td>
<td>Novocasra</td>
<td>#NCL-Ki67p</td>
</tr>
<tr>
<td>chick-anti-GFP</td>
<td>Aves</td>
<td>#GFAP.1020</td>
</tr>
<tr>
<td>goat anti-Sox2</td>
<td>Santa Cruz</td>
<td>#sc17320</td>
</tr>
<tr>
<td>mouse anti-Nestin</td>
<td>BD Biosciences</td>
<td>#556309</td>
</tr>
<tr>
<td>goat anti-DCX</td>
<td>Santa Cruz</td>
<td>#sc 8066</td>
</tr>
<tr>
<td>mouse anti Map2ab</td>
<td>Sigma</td>
<td>#M2320</td>
</tr>
<tr>
<td>chick anti-GFAP</td>
<td>Aves</td>
<td>#GFAP</td>
</tr>
<tr>
<td>mouse-anti GFAP</td>
<td>Sigma</td>
<td>#032M4779</td>
</tr>
<tr>
<td>rabbit anti-Spot14</td>
<td>Abcam</td>
<td>#Ab56193</td>
</tr>
<tr>
<td>rabbit anti-cleaved Caspase-3</td>
<td>Cell signaling</td>
<td>#Asp175</td>
</tr>
<tr>
<td>rabbit anti-dsRed</td>
<td>Living colors</td>
<td>#632496</td>
</tr>
<tr>
<td>mouse anti-beta-actin</td>
<td>Sigma</td>
<td>#A2228</td>
</tr>
<tr>
<td>Mitotracker Deep red</td>
<td>Invitrogen</td>
<td>#M22426</td>
</tr>
<tr>
<td>DAPI</td>
<td>Sigma</td>
<td>#D9542</td>
</tr>
<tr>
<td>Biological Samples</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemicals, Peptides, and Recombinant Proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamoxifen</td>
<td>Sigma</td>
<td>#T5648</td>
</tr>
<tr>
<td>Corn-oil</td>
<td>Sigma</td>
<td># C8267</td>
</tr>
<tr>
<td>N2 supplement</td>
<td>Gibco</td>
<td>#17502048</td>
</tr>
<tr>
<td>hEGF</td>
<td>Peprotech</td>
<td>#AF-100-15-500ug</td>
</tr>
<tr>
<td>hFGF basic</td>
<td>Peprotech</td>
<td>#100-188-500ug</td>
</tr>
<tr>
<td>antibiotic/antimycotic</td>
<td>Thermo Scientific</td>
<td>#15240-062</td>
</tr>
<tr>
<td>Heparin</td>
<td>Sigma</td>
<td>#H3149-50KU</td>
</tr>
<tr>
<td>Poly-ornithine</td>
<td>Sigma</td>
<td>#P36655</td>
</tr>
<tr>
<td>Laminin</td>
<td>Sigma</td>
<td># L2020</td>
</tr>
<tr>
<td>mouse BMP4</td>
<td>R&D Systems</td>
<td>#5020-BP-010</td>
</tr>
<tr>
<td>Trypsin</td>
<td>Gibco</td>
<td>#15090</td>
</tr>
<tr>
<td>Versene</td>
<td>Gibco</td>
<td>#15040-033</td>
</tr>
<tr>
<td>Ovomucoid trypsin inhibitor</td>
<td>Sigma</td>
<td>#T6522</td>
</tr>
<tr>
<td>DNase I type IV</td>
<td>Sigma</td>
<td>#D5025-15 KU</td>
</tr>
<tr>
<td>Malonyl-CoA</td>
<td>Sigma</td>
<td>#M4263</td>
</tr>
<tr>
<td>Etomoxir</td>
<td>Sigma</td>
<td>#E1905</td>
</tr>
<tr>
<td>Xenical (Orlistat)</td>
<td>Roche</td>
<td>Xenical 120 mg</td>
</tr>
<tr>
<td>Hoechst 33342</td>
<td>Invitrogen</td>
<td>#H3570</td>
</tr>
<tr>
<td>Item</td>
<td>Supplier</td>
<td>Catalog Number</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Lipofectamine-2000</td>
<td>Thermo Scientific</td>
<td>#11668019</td>
</tr>
<tr>
<td>Complete EDTA-free proteinase Inhibitor tablets</td>
<td>Roche</td>
<td>#11873580001</td>
</tr>
<tr>
<td>[9,10-^3H(N)]palmitic acid</td>
<td>PerkinElmer</td>
<td>#NET043001MC</td>
</tr>
<tr>
<td>[1-14C]palmitic acid</td>
<td>PerkinElmer</td>
<td>#NECO75H050UC</td>
</tr>
<tr>
<td>fatty acid-free albumin</td>
<td>Sigma</td>
<td>#A8806</td>
</tr>
<tr>
<td>sodium palmitate</td>
<td>Sigma</td>
<td>#P9767</td>
</tr>
<tr>
<td>L-carnitine</td>
<td>Sigma</td>
<td>#C0158</td>
</tr>
<tr>
<td>C13-labelled palmitate</td>
<td>Cambridge Isotope Laboratories Inc.</td>
<td>#CLM-3943</td>
</tr>
<tr>
<td>DOWEX 1X2 chloride form resin (200-400 mesh)</td>
<td>Sigma</td>
<td>#217395</td>
</tr>
<tr>
<td>IRGASAFE Plus, scintillation liquid</td>
<td>Zinser Analytic</td>
<td>#1003100</td>
</tr>
</tbody>
</table>

Critical Commercial Assays

<table>
<thead>
<tr>
<th>Assay</th>
<th>Supplier</th>
<th>Catalog Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Click-iT EdU Imaging Kit</td>
<td>Invitrogen</td>
<td>#C10338</td>
</tr>
<tr>
<td>BCA Protein determination</td>
<td>Pierce</td>
<td>#23225</td>
</tr>
<tr>
<td>BC assay</td>
<td>Uptima</td>
<td>#FT-40840A</td>
</tr>
<tr>
<td>Vectastain ABCKit</td>
<td>Vector Laboratories</td>
<td>#PK-6100</td>
</tr>
<tr>
<td>Nucleo Spin RNAII Kit</td>
<td>Macherey & Nagel</td>
<td>#740955</td>
</tr>
<tr>
<td>Superscript III Kit</td>
<td>Invitrogen</td>
<td>#18080093</td>
</tr>
</tbody>
</table>

Deposited Data

<table>
<thead>
<tr>
<th>Type</th>
<th>Source</th>
<th>Catalog Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw and analyzed Proteomics Data</td>
<td>This paper</td>
<td>PXD005598</td>
</tr>
</tbody>
</table>

Experimental Models: Cell Lines

<table>
<thead>
<tr>
<th>Model</th>
<th>Supplier</th>
<th>Catalog Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse: primary dentate gyrus NSPCs</td>
<td>(Ray and Gage, 2006)</td>
<td>N/A</td>
</tr>
<tr>
<td>Mouse: liver hepatome cells (Hepa1-6 cells)</td>
<td>Leibniz Institute DSMZ</td>
<td>#ACC 175</td>
</tr>
</tbody>
</table>

Experimental Models: Organisms/Strains

<table>
<thead>
<tr>
<th>Model</th>
<th>Supplier</th>
<th>Catalog Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse: Tg(Cpt1a-EGFP)IP41Gsat/Mmucd</td>
<td>MMRRC</td>
<td># 030281-UCD</td>
</tr>
<tr>
<td>Mouse: C57BL/6JRj wildtype mice</td>
<td>Janvier</td>
<td>#C57BL/6JRJ</td>
</tr>
<tr>
<td>Mouse: Cpt1a cKO mice</td>
<td>(Schoors et al., 2015)</td>
<td>N/A</td>
</tr>
<tr>
<td>Mouse: Spot14CreERT2 mice (S14iCre)</td>
<td>(Knobloch et al., 2013)</td>
<td>N/A</td>
</tr>
<tr>
<td>Mouse: B6.129X1-Gt(Rosa)26Sor<sup>mcherry</sup>Cor<sup>YFP</sup>/J</td>
<td>Jackson laboratory</td>
<td>#006148</td>
</tr>
<tr>
<td>Mouse: S14iCre x Cpt1a cKO x R26YFP</td>
<td>This paper</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Recombinant DNA

<table>
<thead>
<tr>
<th>DNA</th>
<th>Supplier</th>
<th>Catalog Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cpt1a shRNA1 5'-3': CCAGCGGCTGAGGAACCTCAAACCTATTCTCGAGAATA</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>GGTGTGGAGTCCCTCAGGTGTGG (targeting Cpt1a from nucleotide 949-969)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-targeting shRNA 5'-3': TCCTAAGGTTAAGTCCGGCCCTTTCAAGAGAAGGCG</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>ACTTAACCTTAGGTTTTTC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LentiLox3.7 U6 shRNA (pLL3.7)</td>
<td>Addgene</td>
<td>#11795</td>
</tr>
<tr>
<td>LentiLox3.7 mcherry U6 shRNA</td>
<td>(Knobloch et al., 2013)</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Sequence-Based Reagents

| Primers for qPCR | This paper | See Table 3 |

Software and Algorithms

<table>
<thead>
<tr>
<th>Software and Algorithms</th>
<th>Software and Algorithms</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imaris</td>
<td>Bitplane</td>
<td>www.bitplane.com</td>
</tr>
<tr>
<td>ImageJ</td>
<td>NIH Image</td>
<td>https://imagej.net/</td>
</tr>
<tr>
<td>Free-D</td>
<td>Free-D</td>
<td>http://free-d.versailles.inra.fr/</td>
</tr>
<tr>
<td>Photoshop</td>
<td>Adobe</td>
<td>www.adobe.com</td>
</tr>
<tr>
<td>Progenesis QI for proteomics</td>
<td>Nonlinear Dynamics</td>
<td>http://www.nonlinear.com/progenesis/qi-for-proteomics/</td>
</tr>
<tr>
<td>Scaffold 4</td>
<td>Proteome Software</td>
<td>http://www.proteome/software.com/products/scaffold/</td>
</tr>
<tr>
<td>Metacore 6.24 build 67895</td>
<td>Thomson Reuters</td>
<td>www.thomsonreuters.com</td>
</tr>
<tr>
<td>Xcalibur software</td>
<td>Thermo Scientific</td>
<td>OPTON-30487</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Sebastian Jessberger (jessberger@hifo.uzh.ch)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals

Mice were kept in a specific pathogen free (SPF) animal facility according to the guidelines of the Federation of European Laboratory Animal Science Associations (FELASA), where persons entering the facility must wear protective cloths, facemasks, hairnets and gloves after crossing a barrier. Mice were kept with littermates under a 12h dark/light cycle in individually ventilated cages and with ad libitum access to food and water. The Cpt1a-EGFP reporter mouse line (STOCK Tg(Cpt1a-EGFP)IP41Gsat/Mmucd) was generated by the Mutant Mouse Regional Resource Centers (MMRRC). Founders were cryo-resuscitated and bred thereafter with C57BL/6JRj wildtype mice (Janvier Labs, France). Genotyping was performed using 5'-CTGGTGCCAGGCTTCTAA-3' forward and 5'-TAGCGGCTGAAGCTGCA-3' reverse primers. Six females were used for histological analyses at the age of two months. For in utero electroporation experiments, time-mated C57BL/6JRj female mice were obtained from Janvier Labs (France). Cpt1a cKO mice (Schoors et al., 2015) were embryo-transferred
through C57BL6/J (Jackson laboratory) and kept thereafter on a heterozygous level by crossing them with C57BL/6JRj (Janvier Labs, France). They were crossed with Spot14CreERT2 mice (S14iCre (Knobloch et al., 2013)) and ROSA26 YFP reporter mice (R26YFP, B6.129X1-Gt(ROSA)26Sor1/Mou1(EYFP)Cys/J, kept for more than 10 generations on a C57BL/6J background) to obtain S14iCre +/-; Cpt1a cKO wt/wt; R26YFP fl/wt and S14iCre +/- ; Cpt1a cKO fl/fl; R26YFP fl/wt littermates. Breedings were set up in a way that all the genotypes were generated within one litter and that several litters were born within one week. Littermates were assigned to the different groups based on genotype. Due to low recombination efficiency, Cre-mediated recombination was induced by five intraperitoneal injections of tamoxifen on five consecutive day (Sigma, 180mg/kg, dissolved in cornoil) at the age of six to seven weeks. All animals received tamoxifen. Animals were perfused either eight days or twenty-five days after first tamoxifen injections. For the eight day timepoint, one male and three females of S14iCre +/- ; Cpt1a cKO wt/wt; R26YFP fl/wt and one male and five females of S14iCre +/- ; Cpt1a cKO fl/fl; R26YFP fl/wt were induced. One S14iCre +/- ; Cpt1a cKO fl/fl female had to be excluded from the analysis, as no YFP positive cells were detected in the DG. For the twenty five day timepoint, two males and three females of S14iCre +/- ; Cpt1a cKO wt/wt; R26YFP fl/wt and one male and six females of S14iCre +/- ; Cpt1a cKO fl/fl; R26YFP fl/wt were induced. Two S14iCre +/- ; Cpt1a cKO wt/wt; R26YFP fl/wt (one male, one female) had to be excluded from the analysis, as no YFP positive cells were detected in the DG.
All animal experiments were performed according to Swiss regulatory standards and approved by the Veterinary office of the Canton of Zurich.

Cells
Primary adult mouse DG (mDG) NSPCs were obtained and cultured as previously described (Knobloch et al., 2013; Ray and Gage, 2006). In brief, DGs from eight female C57BL6/J (Jackson laboratory) were subdissected and processed as described (Ray and Gage, 2006). Early passages were frozen and kept in liquid nitrogen. Experiments were performed with cells up to passage 20. Mycoplasma tests were performed on a regular base to verify that cells were mycoplasma free. Mouse liver hepatome cells (Hepa1-6 cells) were grown as suggested by the provider, Leibnitz Institute DSMZ (Catalogue code: ACC 175).

Plasmids
Cpt1a shRNA sequence was designed using the RNAi Consortium hairpin candidate sequences selection (www.broadinstitute.org/rnai/trc) against mouse Cpt1a (NM_013495). The sequences of the oligonucleotides used are as follows:

Cpt1a shRNA1 5’-3’:
CCGGCGTGAGGAACTCAAACCTATTCTCGAGAATAGGTTTGAGTTCCTCACGTTTTTG (targeting Cpt1a from nucleotide 949-969)
non-targeting shRNA 5’-3’:
TCCTAAGGTTAAGTCGCCCTTTCAAGAGAAGGGCGACTTAACCTTAGGTTTTTTC
The shRNA knockdown constructs (derived from LentiLox3.7) were cloned to express mCherry under the CMV promoter and shRNAs under the U6 promoter.

METHOD DETAILS

Cell culture
Primary mDG NSPCs were kept as monolayer cultures in DMEM/F12 Glutamax medium supplemented with N2 (Invitrogen), human EGF (20 ng/ml), human basic FGF-2 (20 ng/ml, Peprotech) and Heparin (5mg/ml, Sigma). Medium contained an antibiotic/antimycotic (Anti-Anti, Thermo Fisher Scientific). This proliferation medium was changed every 2-3 days.

For all experiments involving quiescence induction and/or immunocytochemistry, cells were plated on glass coverslips or multi-well cell culture dishes coated with Poly-L-ornithine (Sigma, 10µg/ml for plastic, 50µg/ml for glass) and Laminin (Invitrogen, 5µg/ml). All experiments were done with a minimum of 3 coverslips per condition.

Quiescence was induced as previously described (Martynoga et al., 2013; Mira et al., 2010). In brief, exchanging EGF with recombinant mouse BMP4 (RnD Systems) results in a significant drop in proliferation over the course of 3 days with almost no more proliferation detectable after 3 days. This artificial quiescence is fully reversible after replating NSPCs in proliferation medium. For all quiescence experiments, cells were plated in proliferation medium (~40’000
cells/cm2) and switched the next day to quiescence medium, which was composed of DMEM/F12 Glutamax supplemented with N2, human basic FGF-2 (20 ng/ml), Heparin (5mg/ml) and BMP4 (50ng/ml, BMP4 stock dissolved in 4mM HCL/PBS/0.5%BSA). Cells were kept for a minimum of 3 days in quiescence medium before fixation or harvest. For comparisons with proliferating NSPCs, cells were plated in parallel at a lower density (~14’000 cells/cm2) and kept in proliferation medium over the same time period as the quiescent NSPCs, with medium change every 2 days. To reverse quiescence, NSPCs were collected after 3 days of quiescence and replated in fresh proliferation medium (~50’000 cells/cm2). To compare the proliferation rate of formerly quiescent NSPCs to cells that had not entered quiescence, proliferating NSPCs that were grown in parallel were also replated in fresh proliferation medium at slightly lower density (~30’000 cells/cm2). For extended reversal of quiescence (6 days proliferation medium after quiescence), cells were replated as described above and split again 3 days later. For the experiments were effects of compounds on quiescence were tested cells were treated as followed: full quiescence was established as described above for 3 days, cells were washed off the plate with old medium, trypsinized with 2.5% Trypsin diluted to .05% in Versene (Invitrogen) and blocked with a trypsin Inhibitor Mix (L-15 medium, 0.1% ovomucoid trypsin inhibitor (Sigma), 0.05% BSA and 0.01% DNAse I type IV). Cells were spun down in PBS, counted and plated onto freshly coated plates in fresh quiescence medium (~220’000 cells/cm2). 100 µM or 200 µM Malonyl-CoA (Sigma) was added as outlined in the
corresponding figures. 20 µM Orlistat (Xenical, Roche) was used as previously described (Knobloch et al. 2013).

For cell cycle analysis, two different methods were used. Cells were either harvested and stained in a fluorochrome solution (0.1% sodium citrate, 0.1% Triton X-100 and 50mg/L Propidium iodide) for 1h at 4°C or incubated live for 30min at 37°C (in the cell culture incubator) with Hoechst 33342 (Invitrogen, 1:2000) Flow cytometry was performed on a LSRII instrument (Becton Dickson) and data were analysed using FlowJo software (Tree Star, Inc.). For Cpt1a inhibition, various doses of Etomoxir (50-200µM, Sigma) or Malonyl-CoA (100-200µM, Sigma) were added to the medium as outlined in the main figures.

The PPARα agonist Wy14643 (Enzo Life Science) was dissolved in 100% EtOH and 100µM was added to proliferating NSPCs for 48h. The same amount of 100% EtOH was added to proliferating NSPCs as a control. After 48h, cells were either collected for RNA isolation (see below) or incubated with EdU (5-ethynyl-2′-deoxyuridine, Invitrogen, 10µM, 1h pulse at 37°C in cell culture incubator), fixed and processed for immunocytometry as described below.

To assess the knockdown efficiency of the Cpt1a-shRNA construct, mouse liver hepatoma cells (Hepa 1-6 cells) that naturally express high Cpt1a levels were transfected with the 2 different constructs, using lipofectamine-2000 (Thermo Fisher). 48h later, cells were lysed and analyzed by Western blot as described below.
Time-lapse imaging and analysis

For time-lapse imaging, NSPCs were plated as described above in coated plastic cell culture plates in triplicates for each condition. Cells were placed in a heated and CO$_2$-controlled chamber of an inverted microscope (Zeiss, Axio Observer) and 4-6 adjacent areas were imaged every 4h. Stitched phase contrast images were analysed using ImageJ. Several processing steps (bandpass filtering, Gaussian blurs, thresholding) were used to automatically analyze the area covered by cells.

Proteomics analysis

Sample preparation

Proliferating and quiescent NSPCs were cultured as described above on coated 10cm plates. Prior to protein extraction cells were washed twice using 4°C cold PBS (Life Technology). Cells were lysed using 300µl lysis buffer (150mM NaCl, 50mM Tris, 5mM EDTA, 20mM N-Ethylmaleimide, 2mM PMSF, 1x Complete EDTA-free proteinase Inhibitor tablets, ROCHE). Lysates were collected in precooled screw cap tubes (Sarstedt). Lysates were supplemented with 1.7% Triton (Sigma) and 1% Chaps (Sigma) and incubated for 1h with end over end rotation at 4°C. Lysates were cleared by centrifugation at 17000g for 10min and protein concentration was determined using Protein DC assay (Biorad) following the Manufacturer’s instructions. 100µg protein was precipitated twice by methanol/chloroform precipitation and protein pellets were resuspended in SDS lysis buffer (4% (w/v) SDS, 100mM Tris/HCL pH 8.2, 0.1M DTT) and stored at -
80°C. Protein samples were processed using a modified protocol by filter aided sample preparation (FASP) (Wisniewski et al., 2009). In brief, samples were incubated for 5 min at 95°C with 700 rpm shaking on a head block (Eppendorf), followed by 10min sonication. Protein concentration was measured using a Qubit 2.0 Fluorometer (Thermo Fisher Scientific) following the Manufacturer’s instructions and 20µg protein per sample was used for further processing.

Samples were mixed with 200µl 8 M urea in 100mM Tris/HCl pH 8.2 (UA) and loaded to Microcon-30 centrifugal filter units (Millipore), washed once with 200µl UA, alkylated with 100µl 50mM Iodoacetamide and incubated for 1min at 600rpm in a Thermo mixer (Eppendorf). Filter units were washed 3x with 100µl UA and 2x with 100µl 0.5M NaCl. Filter units were then transferred to new collection tubes and incubated with 120µl TEAB with trypsin (1:50 (w/w) ratio of trypsin to protein) (Promega) overnight in a wet-chamber. If not otherwise stated, all centrifugation steps were performed for 20 min at RT. Samples were collected and acidified to a final concentration of 0.5% TFA followed by Solid Phase Extraction (SPE) C18 clean up. Finisterre SPE columns (100mg/1ml; WICOM International) were pre-wetted with 1ml 100% MeOH and cleaned with 1ml of 60% ACN, 0.1% TFA before equilibration with 3% ACN, 0.1% TFA. The volume of peptide containing samples was adjusted to 500µl with 3% ACN 0.1% TFA and loaded onto SPE columns and washed twice with 1ml of 3% ACN, 0.1% TFA. Peptides were eluted with 60% ACN, 0.1% TFA, completely dried (Centrivap, Labconco) and dissolved in 3% ACN; 0.1% FA). Prior to measurements, peptide
samples were supplemented 1:40 with Retention Time Normalization Peptides (BIOGNOSYS).

LC MS/MS analysis

All data was acquired on an Orbitrap Fusion Tribrid mass spectrometer (Thermo Scientific, San Jose, Ca), which was connected to an Easy-nLC 1000 HPLC system (Thermo Scientific). 4µl of the peptide samples were loaded onto a frit column (inner diameter 75µm, length 15 cm) packed with reverse phase material (C18-AQ, particle size 1.9µm, pore size 120 Å, Dr. Maisch GmbH, Germany), and separated at a flow rate of 250nl per min. Solvent composition of buffer A was 0.1% formic acid in water, and buffer B contained 0.1% formic acid in acetonitrile. The following LC gradient was applied: 0 min: 3% buffer B, 50 min: 25% B, 60 min: 32% B, 70 min: 97% B, 80 min: 97% B. Survey scans were recorded in the Orbitrap mass analyzer in the range of m/z 300-1500, with a resolution of 60000 and a maximum injection time of 100 ms. Higher energy collisional dissociation (HCD) spectra were acquired in the ion trap, using a maximum injection time of 35 ms. The precursor ion isolation width was set to m/z 2.0, and a normalized collision energy of 30% was used. Charge state screening was enabled, and charge states 2-6 were included. No threshold for signal intensities was applied, and precursor masses already selected for MS/MS acquisition were excluded for further selection during 45 s.
MS data processing

Raw files were processed with Progenesis QI for proteomics (Nonlinear Dynamics). In brief, runs were aligned to a reference sample containing the most comprehensive number of peptide ions to compensate for between run differences in the retention time. Only peptide ions with a charge state of two, three and four were included into the analysis, default normalization was performed. For peptide identification, up to three tandem mass spectra per peptide ion were exported to a Mascot generic file (mgf) with fragment ion count limited to 200 and deisotoping as well as charge deconvolution was applied. Mascot (2.4.1) was used for searching a target-decoy mouse database downloaded from uniprot (03/01/2015), as decoys protein sequences were reversed and concatenated to the forward database. Parameters were set as following: peptide tolerance ±10ppm, MS/MS tolerance ±0.7DA, variable modifications: Acetyl (Protein N-term), Carbamidomethyl (C), Gln → pyro Glu (N-term), N-Ethylmaleimide, N-Ethylmaleimide + water, oxidation (M). Resulting Mascot dat-files were imported into Scaffold 4 (Proteome Software) and the false discovery rate (FDR) for peptides was set to 0.01, for proteins to 0.05 respectively. The Scaffold Spectrum Report was re-imported into Progenesis and relative quantitation using non-conflicting peptides was performed. Decoy hits were excluded and protein quantitation and statistics were exported as .csv files.

Gene Ontology analysis

Gene names, p-values and normalized protein abundance were exported to Metacore 6.24 build 67895 (Thomson Reuters). Members corresponding to the
GO terms: GO:0019395, GO:0006633, GO0006096, GO:0006098, GO:0008652, GO:0006099, GO: 0022904, GO:0006754 were exported. Changes in protein abundances were represented as histograms using Prism 6 (Graphpad).

Radioactive FAO measurements

Radioactively labeled palmitic acid ([9,10-3H(N)]palmitic acid (32Ci/mmol, NET043001MC) and [1-14C]palmitic acid (56.1mCi/mmol, NEC075H050UC) were purchased from Perkin Elmer.

FAO of [9,10-3H(N)]palmitic acid was assessed by the production and release of tritiated water according to a modified procedure (Djouadi et al., 2003). Proliferating and quiescent NSPCs were grown in 24-well plates as described above and the tritiated water release experiments were performed in triplicate (3 wells per sample/condition). A 500\(\mu\)M stock solution of [9,10-3H(N)]palmitic acid was prepared by complexing labeled and unlabeled palmitate to fatty acid-free albumin (PAA) as follows: 0.1mCi of 3H-palmitic acid and 130\(\mu\)l of 50mM palmitate (Sigma, dissolved in 100% ethanol) were mixed and dried under N\(_2\). 13ml of BSA (2.5mg/ml) in PBS were added to the dried palmitate, vortexed vigorously and incubated in a shaker at 37 °C overnight. The palmitate/BSA stock solution was stored at -20 °C. The reaction was initiated by replacing the culture medium with 200\(\mu\)l of the reaction mixture. The reaction mixture was prepared by diluting the palmitate/BSA stock solution four-fold with cell culture medium and contained 0.385\(\mu\)Ci [9,10-3H(N)]palmitic acid and 125\(\mu\)M sodium palmitate and 1mM L-carnitine (Sigma). The culture plate was wrapped in foil to
avoid evaporation and incubated for 4h at 37 °C. In some experiments, 100µM Etomoxir (Sigma), an inhibitor of mitochondrial FAO, was added to wells as a negative control. At the end of the incubation period, the reaction mixture from each well was transferred to a tube containing 200µl of cold 10% trichloroacetic acid (TCA) to stop the reaction. The tubes were centrifuged at 2200 g at 4 °C for 10 min. The radioactive product \(^3\)H\(_2\)O was eluted with 1.7ml deionized water and quantified by scintillation counting. Aliquots of supernatants (350µl) were removed and mixed with 55µl of 6M NaOH to neutralize the TCA. The total volume was applied to an ion-exchange column packed with 2.4ml of 0.37g/ml DOWEX 1X2 chloride form resin (200-400 mesh, Sigma). After the sample completely entered the column, the radioactive product \(^3\)H\(_2\)O was eluted with 1.7ml deionized water directly into a scintillation vial, mixed with 5ml of scintillation liquid (IRGASAFE Plus, Zinsser Analytic) and quantified by scintillation counting (Beckman Coulter LS 6500 Multi-Purpose Scintillation Counter). For the calculation of the specific radioactivity of the reaction mixture, 20µl of the reaction mixture were mixed with 1.5ml H\(_2\)O and 5 ml scintillation liquid. After removal of the reaction mixture cells were washed with PBS and lysed in 0.1M NaOH for protein determination using the BCA procedure (Pierce). The FAO of [1-\(^14\)C]palmitic acid was assessed by the production and release of \(^14\)CO\(_2\) according to a modified procedure of Huynh et al. (2014).

A 2.5mM stock solution of [1-\(^14\)C]palmitic acid was prepared by complexing labeled and unlabeled palmitate to fatty acid-free albumin as follows: the amount of radiolabeled palmitic acid in ethanol required to assay each
sample with 0.2µCi per well was dried under N\textsubscript{2}. The dried palmitate was resolubilized in the appropriate amount of 7% BSA/2.5mM palmitate warmed to 37 °C to get a stock solution of 7% BSA/2.5mM palmitate/0.01µCi/ml 14C-palmitate. The reaction mixture was prepared by diluting the palmitate/BSA stock solution 25-fold with cell culture medium and contained 0.2µCi [1-14C]palmitic acid and 100µM sodium palmitate and 1mM L-carnitine in 500µl medium. Cells were seeded in 24-well plates and the experiments were performed in quadruplicates (4 wells per sample/condition). The reaction was initiated by replacing the culture medium with 500µl of the reaction mixture. The culture plate was sealed with parafilm to avoid evaporation and incubated for 2.5h at 37 °C. In some experiments, 100µM Etomoxir was added to wells as a negative control. During the incubation, acidification vials with a 14CO\textsubscript{2} trap were prepared by adding 200µl of 1M perchloric acid (Sigma) to tubes that contained a Whatman filter paper disc inside the cap that had been wetted with 20µl of 1M NaOH. At the end of the incubation, 400µl of the reaction mixture was added into an acidification vial to stop the reaction and incubated for 1h at room temperature. The paper disc was transferred to a scintillation vial, mixed with 5ml of scintillation liquid and quantified by scintillation counting. After removal of the reaction mixture cells were washed with PBS and lysed in 0.1M NaOH for protein determination using the BCA procedure (Pierce).
Radioactive malonyl-CoA incorporation measurements

Cells were incubated with 0.5 µCi [2-¹⁴C]malonyl-CoA (55 mCi/mmol; Cat. No. ARC 0528, American Radiolabeled Chemicals, USA) and 100 µM malonyl-CoA. After incubation, the cells were rinsed three times with PBS, and lipids were extracted with hexane:isopropanol (3:2). Manipulative losses of lipids were accounted for by addition of a known amount of [1,2-³H(N)]cholesterol (Cat. No. NET139250UC; PerKinElmer) as internal standard. After lipid extraction cells were lysed in 0.1 M NaOH for protein determination using the Pierce BCA Protein Assay Kit (Cat. No. 23227, Thermo Scientific, Rockford, IL, USA). Malonyl-CoA incorporation into specific lipids was analyzed after separation of lipids by thin-layer chromatography. Therefore, organic phases were evaporated to dryness under a nitrogen stream. Lipids were resuspended in chloroform and spotted together with appropriate lipid standards on silica gel 60 F₂₅₄ plates (Cat. No. 1.05715.0001; Merck, Darmstadt, Germany). For separation of neutral lipids, plates were developed in heptane:diethylether:acetic acid (90:30:1) as solvent. Lipid samples and standards were visualized by iodine vapor. The lipid fractions were scraped from the plate, mixed with 5 ml of scintillation liquid (IRGASAFE Plus, Zinsser Analytic, Cat. No. 1003100) and quantified by scintillation counting (Beckman Coulter LS 6500 Multi-Purpose Scintillation Counter). Values were normalized for sample protein content.
In utero electroporation and tissue preparation

In-utero electroporation of mouse embryos (embryonic day 13, E13) from time-mated C57BL/6JRj female mice was carried out as described previously (Asami et al., 2011). In brief the shRNA plasmid DNA (Cpt1a-shRNA1 or non-targeting shRNA; final concentration 0.5-0.7µg/µl) was targeted into the ventricular wall by repeated electrical pulses (ElectroSquireporator T830, Harvard Apparatus). After 24h (corresponding to developmental stage E14), electroporated brains were dissected in ice cold PBS and fixed in phosphate buffered 4% paraformaldehyde (PFA; Sigma) on 4°C for 2 hrs. After rinse in PBS, embryonic brains were dehydrated in 30% sucrose (in PBS), embedded and frozen in OCT compound (Tissue-Tek; Sakura), and cut in slices of 30µm thickness using a Cryostat (Microm).

Tissue preparation, Immunohistology and Immunocytochemistry

Mice were transcardially perfused with 0.9% saline solution followed by 4% PFA solution. Brains were taken out and post-fixed overnight at 4°C in 4% PFA. After dehydration in 30% sucrose, 40µm thick free-floating sections were cut on a microtome (Leica). Sections were blocked for 1h with blocking buffer (0.25% Triton-x, 3% donkey serum in PBS) and subsequently incubated with primary antibodies in blocking buffer at 4°C overnight. Sections were washed 3x with PBS and incubated for several hours at room temperature with secondary antibodies in blocking buffer. Nuclei were stained with DAPI. After another 3 washes with PBS sections were mounted (Shandon Immu-mount, Thermo
Scientific). For Spot14 stainings, section were pretreated for 5h at RT with a buffer containing 1% Triton-x and 3% donkey serum, followed by 3 days primary antibody incubation in blocking buffer. An additional enhancement step with a biotinylated secondary antibody followed by a streptavidin-coupled fluorophore was used. Cells were fixed with 4% PFA (37°C, fixed at RT for 20min), washed 3x with PBS and incubated in blocking buffer for 1h. Antibody stainings were done overnight at 4°C, secondary antibodies were incubated 2-4h at RT.

The following primary antibodies and dilutions were used: mouse anti-pH3 (1:1000, Abcam), mouse anti-Cpt1a (1:500, Abcam), rabbit anti-Ki67 (1:500m, Novocastra), chick-anti-GFP (1:500, Aves), goat anti-Sox2 (1:500, Santa Cruz), mouse anti-Nestin (1:500, BD Biosciences), goat anti-DCX (1:250, Santa Cruz), mouse-anti GFAP (1:500, Sigma), rabbit anti-Spot14 (1:250, Abcam), rabbit anti-cleaved Caspase-3 (1:500, Cell signaling), rabbit anti-dsRed (1:500, Living Colors), mouse anti-Map2ab (1:500, Sigma), chick anti-GFAP (1:500, Aves). All secondary antibodies were raised in donkey and used 1:250 (Jackson ImmunoResearch). Mitotracker Deep red was added to cells for 1h at 37°C (100nM, Invitrogen), DAB staining was done according to the manufacturer’s protocol (Vectastain ABCKit, Vector Laboratories). EdU staining was performed before antibody incubation using the Click-iT EdU Imaging Kit (Invitrogen).

Image acquisition and analysis

Images of cell stainings were acquired using an Epifluorescent microscope (Zeiss Axiovert Observer). Images were analysed using ImageJ with customized
macros for automated detection in a blinded manner. For differentiated cells, confocal microscopy (LSM-700, Zeiss) was performed and z-projections were generated for analysis in ImageJ. Images were thresholded, a watershed filter was applied and DAPI positive nuclei were counted with the analyze particle function. To quantify MAP2ab positive cells masks of the MAP2ab channel were generated and DAPI positive nuclei inside the MAP2ab mask were counted using the particle analyzer. Image acquisition and analysis were performed in a blinded manner. For co-localization experiments, confocal microscopy (LSM-700, Zeiss, FV1000; Olympus) was performed. Images of brain tissue were acquired using a Zeiss AxioImager microscope (for DAB stainings) or by confocal microscopy (LSM-700, Zeiss). One-to-two series of sagittal sections (corresponding to a 6th-3rd of the entire brain) were used from 2 months old Cpt1a-EGFP reporter mice (n=3-6) for quantification. To determine the percentage of Sox2 and DCX cells that were Cpt1a-eGFP+, analyses were carried out using both softwares Imaris (Bitplane) and ImageJ software. In Imaris, a surface was first created using either the Sox2 or DCX channel. Subsequently, this surface was used to mask the GFP signal. A snapshot of the maximum projection of each raw channel as well as each masked channel was saved for further import into ImageJ. To demarcate the SGZ, DAPI and DCX images were merged to outline the specified region. Bright Sox2 or DCX positive cells within the SGZ were circled to create region of interests (ROIs). These ROIs were then overlaid onto the masked GFP channel to determine if the Sox2+ or DCX+ cells were Cpt1a-eGFP+. At least 3 sections from 3 different animals were used to count >50 cells for each condition.
The same procedure was used to determine the number of Nestin-positive processes that also were Cpt1a-eGFP+.

For the in utero electroporation experiments, images were analyzed in a blinded manner with ImageJ. A region of interest was drawn over the mCherry positive area (stained as described above) from the ventricular zone to the pial surface. This region of interest was then applied to the adjacent sections stained against cleaved Caspase 3. A threshold was set and the %area covered by Caspase-3 positive cells was measured. 4-5 sections per embryo were analyzed (non-targeting n=4 embryos, Cpt1a shRNA1 n=5 embryos). For pH3 quantification, regions with mCherry signal were selected and signal intensity of corresponding adjacent sections stained for pH3 were analyzed with ImageJ. Mean gray values 40µm from the apical surface into the ventricular zone were measured along the electroporated area and plotted in relation to distance. 3-4 sections per embryo were analyzed (non-targeting n=3 embryos, Cpt1a shRNA1 n=4 embryos).

Clonal analysis
Serial 40µm sections of an entire hemisphere per mouse were stained with antibodies against GFP, Sox2 and doublecortin (DCX). All sections containing GFP positive cells were imaged with a 20x confocal microscope (for cellular identification) as well as with a 5x Epifluorescent microscope (for reconstruction). Cell identity was determined in a blinded manner based on the following criteria, similar to what has been previously described (Bonaguidi et al., 2011).
Radial-glia like cell (R): triangular shaped soma in SGZ with radial, arborized process into GCL (sometimes not entirely visible), Sox2 positive, DCX negative. Neural progeny (N): this group contains non-radial cells (more oval to roundish soma in SGZ with one or more horizontal process, Sox2 positive), progenitor cells (roundish soma in SGZ, DCX positive but without long vertical process yet, sometimes still Sox2 positive) and immature/mature neurons (round soma in GCL with long more or less vertical process, Sox2 negative, usually DCX positive, but sometimes DCX already absent). Astrocytes (A): multi-process containing, star shaped or bushy cell in SGZ/Hilus or GCL.

After cellular identification, clonal reconstruction was done based on the order of sections and based on the 5x overview images, followed by image overlay with the software Free-D (http://free-d.versailles.inra.fr/) and Photoshop (Adobe). Cells within the same spatial location and not more than 160µm apart in all 3 dimensions were assigned as belonging to a single clone. In the 25d timepoint group, a total of 62 clones were identified from three S14iCre-R26YFP-Cpt1acKO wt/wt mice (two females, one male) and a total of 34 clones were identified from seven S14iCre-R26YFP-Cpt1acKO fl/fl mice (six females, one male). In the 8d timepoint, a total of a total of 24 clones were identified from four S14iCre-R26YFP-Cpt1acKO wt/wt mice (three females, one male) and a total of 17 clones were identified from five S14iCre-R26YFP-Cpt1acKO fl/fl mice (four females, one male).
RT-PCRs

RNA of proliferating, quiescent, re-plated proliferating and formerly quiescent NSPCs (grown as described above) as well as of NSPCs treated with the PPARα agonist Wy14643, control NSCPs and quiescent NSPCs grown in parallel was isolated with the Nucleo Spin RNAII Kit (Macherey & Nagel). cDNA was synthesized using the Superscript III Kit (Invitrogen) according to the manufacturer’s protocol. Taqman probes against mouse Cpt1a, Spot14 and β-actin and RT-PCR master mix were obtained from Applied Biosystems and used according to the manufacturer’s protocol. Real time PCR and data analysis was performed on an Applied Biosystems 7900HT System. Fold changes were calculated using the deltadelta Ct methods.

For PPARα target gene analysis, qRT-PCR was performed on a Roche LightCycler 480 in LightCycler 480 Multiwell Plate 96. The 20 µl amplification mixture consisted of 2x KAPA SYBR FAST qPCR Mastermix (KAPA Biosystems,) and 4 pmol forward and reverse primers (Microsynth, Switzerland) and approximately 10 ng of cDNA template. Thermal cycling was carried out with a 5 min denaturation step at 95 °C, followed by 45 three-step cycles: 10 sec at 95 °C, 10 sec at 60 °C, and 10 sec at 72 °C. Finally, melt curve analysis was carried out to confirm the specific amplification of a target gene and absence of primer dimers. All reactions were run in duplicate. Relative mRNA amount was calculated using the deltadelta Ct methods. Cyclophilin was used as the invariant control. Results were confirmed with 18S rRNA as the invariant control (data not shown). Primers used are listed in Table S3.
Western Blot

Proliferating and quiescent NSPCs were lysed in RIPA buffer containing protease inhibitors (Complete, Roche). Protein amount was determined with a BC assay (Uptima) and equal amounts of proteins were separated by SDS-PAGE electrophoresis followed by transfer to PVDF membrane (BioRad). Membranes were incubated with mouse anti-Cpta1 (1:2000, Abcam) and mouse anti-beta-actin (1:10'000, Sigma). HRP-conjugated secondary antibodies (Jackson immunoResearch) were used and signal was revealed by enhanced chemiluminescence substrate (ThermoScientific).

Malonyl-CoA and acetyl-CoA measurements

Proliferating and quiescent NSPCs were washed with 75mM ammonium carbonate pH 7.4 and plates were snap frozen with liquid nitrogen. Metabolites were extracted with cold acetonitrile:methanol:water solvent (40:40:20) at -20°C for 10 minutes and an extraction step was repeated once. Samples were centrifuged at 13000rpm for 3 minutes and kept at -80°C. Extracts were dried by vacuum-centrifugation, re-suspended in 50µl water and analyzed by LC-MS/MS on a Thermo Quantum Ultra instrument equipped with a Waters Acquity UPLC (Buescher et al., 2010). Data analysis was performed using our own software written in Matlab (The Mathworks). Cell numbers of proliferating and quiescent NSPCs were assessed in separate plates grown in parallel using live Hoechst (5µg/ml, Invitrogen). 12 low magnification images from each triplicate were taken.
and the number of nuclei counted using ImageJ. Measured malonyl- and acetyl-CoA values were normalized to the average cell number.

C13-incorporation and energy charge measurements

Proliferating and quiescent NSPCs were incubated for 24h with the corresponding medium containing 100µM C13-labelled palmitate (Cambridge Isotope Laboratories Inc.). Palmitate was coupled to BSA to achieve better cellular uptake. Metabolites were extracted with 800µL 80% methanol (at -80 °C), cells were scraped and the extracts were transferred to a 1.5ml tube. Next the extracts were centrifuged at 4°C for 15min at 20,000xg. The supernatant was dried using a vacuum centrifuge. To the dried fractions 25µL of a 2% methoxyamine hydrochloride solution (20mg dissolved in 1mL pyridine) was added and placed at 37°C for 90min. Then 75µl of N-tert-Butyldimethylsilyl-N-methyltrifluoro-acetamide with 1% N-tert-Butyldimethyl- chlorosilane (Sigma-Aldrich, Belgium) was added and the reaction was carried out for 30min at 60°C. Reaction mixtures were centrifuged for 15min at 20,000xg at 4°C in order to remove insolubilities, and the supernatant was transferred to a glass vial with conical insert (Agilent). GC-MS analyses were performed using an Agilent 7890A GC equipped with a HP-5 ms 5% Phenyl Methyl Silox (30 m - 0.25 mm i.d. - 0.25 µm; Agilent Technologies, Santa Clara, California, USA) capillary column, interfaced with a triple quadruple tandem mass spectrometer (Agilent 7000B, Agilent Technologies) operating under ionization by electron impact at 70eV. The injection port, interface and ion source temperatures were kept at 230°C.
Temperature of the quadrupoles was maintained at 150°C. The injection volume was 1µl, and samples were injected at 1:10 split ratio. Helium flow was kept constant at 1 ml/min. The temperature of the column started at 100 °C for 5 min and increased to 260 °C at 2°C/min. Next, a 40°C/min gradient was carried out until temp reached 300°C. After the gradient, the column was heated for another 3 min at 325°C. The GC-MS analyses were performed in Single Ion Monitoring (SIM) scanning for the isotopic pattern of metabolites.

For energy charge measurements (which is defined as following: (ATP+0.5*ADP)/(ATP+ADP+AMP)), metabolites of proliferating and quiescent NSPCs were extracted using 250 uL of an 80% methanol solution. Measurement of ATP, ADP and AMP levels was performed using a Dionex UltiMate 3000 LC System (Thermo Scientific) coupled to a Q Exactive Orbitrap mass spectrometer (Thermo Scientific) operated in negative mode. Practically, 30 µl of sample was injected on a SeQuant ZIC/ pHILIC Polymeric column (Merck Millipore). The gradient started with 20% of solvent B (2 mM Na-acetate in mqH2O, pH 9.3) and 80% solvent A (95:5, acetonitrile:mqH2O, containing 2 mM Na-acetate at pH 9.3) and remained at 20% B until 2 min post injection. Next, a linear gradient to 80% B was carried out until 29 min. At 38 min the gradient returned to 40% B followed by a decrease to 20% B at 42 min. The chromatography was stopped at 58 min. The flow was kept constant at 100 uL/min at the column was placed at 25°C throughout the analysis.

The MS operated both in full scan mode using a spray voltage of 3.2 kV, capillary temperature of 320°C, sheath gas at 10.0, auxiliary gas at 5.0. AGC target was
set at 1e6 using a resolution of 70.000, with a maximum IT of 100 ms. Data
collection was performed using Xcalibur software (Thermo Scientific).

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantifications were done as described in the METHOD DETAIL section.

Statistical analyses were performed with the software Prism 6 (GraphPad).
Significance levels were set at *$p < 0.05$, **$p < 0.01$ and ***$p < 0.001$.
The following tests were used:

Figure 1: A: unpaired t-test, two-tailed, n=3 coverslips per condition (10 images
per coverlip), B: Wilcoxon matched-pairs signed Rank test against the
hypothetical value 0. C: One-way-ANOVA followed by Holm-Sidak’s multiple
comparisons test, n=3 samples per condition. D and F: One-way-ANOVA
followed by Holm-Sidak’s multiple comparisons test, n=3 samples per condition.
E: unpaired t-test, two-tailed, n=3 samples per condition. G: unpaired t-test, two-
tailed, n=3 samples per condition

Figure 2: A: 2-way ANOVA with multiple comparisons, n=3 wells per condition
(4-6 adjacent areas per well). B: unpaired t-test, two-tailed, n=3 samples per
condition. C: One-way-ANOVA followed by Holm-Sidak’s multiple comparisons
test, n=3 samples per condition. D: unpaired t-test, two-tailed, n=3 samples per
condition. F: One-way-ANOVA followed by Holm-Sidak’s multiple comparisons
test, n=3 samples per condition. G: One-way-ANOVA followed by Holm-Sidak's multiple comparisons test, n=3 samples per condition.

Figure 3: B, C and D: paired t-test, two-tailed, n=3 mice (50-100 cells per mouse).

Figure 4: B, C and D: Contingency analysis, Chi2-test, n=62 clones for S14iCre +/-; Cpt1a cKO wt/wt; R26YFP fl/wt, n=34 clones for S14iCre +/-; Cpt1a cKO fl/fl; R26YFP fl/wt.

Figure 5: A and B: One-way-ANOVA followed by Holm-Sidak’s multiple comparisons test, n=3 coverslips per condition (10 images per coverslip).

Supplemental Figure 1: B: unpaired t-test, two-tailed, n=3 samples per condition. C: unpaired t-test, two-tailed, n=3 samples per condition. F: Wilcoxon matched-pairs signed Rank test against the hypothetical value 0. G: unpaired t-test, two-tailed, n=3 samples per condition.

Supplemental Figure 2: A: 2-way ANOVA with multiple comparisons, n=3 wells per condition (4-6 adjacent areas per well). B: One-way-ANOVA followed by Holm-Sidak’s multiple comparisons test, n=3 samples per condition. C: One-way-ANOVA followed by Holm-Sidak’s multiple comparisons test, n=3 coverslips per condition (10 images per coverslip). D: One-way-ANOVA followed by Holm-Sidak’s multiple comparisons test, n=3 samples per condition.

Supplemental Figure 4: A, B and C: Contingency analysis, Chi2-test, n=24 clones for S14iCre +/-; Cpt1a cKO wt/wt; R26YFP fl/wt, n=17 clones for S14iCre +/-; Cpt1a cKO fl/fl; R26YFP fl/wt. D: grouped analysis, multiple t-tests, two tailed, n= 4 mice for S14iCre +/-; Cpt1a cKO wt/wt; R26YFP fl/wt, n=5 mice for
S14iCre +/-; Cpt1a cKO fl/fl; R26YFP fl/wt. E: grouped analysis, multiple t-tests, two tailed, n= 3 mice for S14iCre +/-; Cpt1a cKO wt/wt; R26YFP fl/wt, n=7 mice for S14iCre +/-; Cpt1a cKO fl/fl; R26YFP fl/wt. F: unpaired t-test, two tailed, n= 4 mice for S14iCre +/-; Cpt1a cKO wt/wt; R26YFP fl/wt, n=5 mice for S14iCre +/-; Cpt1a cKO fl/fl; R26YFP fl/wt. G: unpaired t-test, two tailed, n= 3 mice for S14iCre +/-; Cpt1a cKO wt/wt; R26YFP fl/wt, n=7 mice for S14iCre +/-; Cpt1a cKO fl/fl; R26YFP fl/wt. I: unpaired t-test, two tailed, n= 3 samples per condition.

L: 2-way ANOVA followed by uncorrected Fisher’s LSD, n=3 embryos (4-5 slices per animal) non-targeting shRNA, n=4 embryos (4-5 slices per animal) Cpt1a shRNA. M: unpaired t-test, two tailed, n=4 embryos (4-5 slices per animal) non-targeting shRNA, n=5 embryos (4-5 slices per animal) Cpt1a shRNA.

Supplemental Figure 5: B: Unpaired t-test, two tailed, n= 3 samples per condition, D: One-way-ANOVA followed by Holm-Sidak’s multiple comparisons test, n=3 coverslips per condition (10 images per coverslip).

DATA AND SOFTWARE AVAILABILITY

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD005598

SUPPLEMENTAL INFORMATION REFERENCES

