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Rare variants in IFFO1, DTNB, NLRC3 and SLC22A10 associate
with Alzheimer’s disease CSF profile of neuronal injury
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Alzheimer’s disease (AD) biomarkers represent several neurodegenerative processes, such as synaptic dysfunction, neuronal
inflammation and injury, as well as amyloid pathology. We performed an exome-wide rare variant analysis of six AD biomarkers
(β-amyloid, total/phosphorylated tau, NfL, YKL-40, and Neurogranin) to discover genes associated with these markers. Genetic and
biomarker information was available for 480 participants from two studies: EMIF-AD and ADNI. We applied a principal component
(PC) analysis to derive biomarkers combinations, which represent statistically independent biological processes. We then tested
whether rare variants in 9576 protein-coding genes associate with these PCs using a Meta-SKAT test. We also tested whether the
PCs are intermediary to gene effects on AD symptoms with a SMUT test. One PC loaded on NfL and YKL-40, indicators of neuronal
injury and inflammation. Four genes were associated with this PC: IFFO1, DTNB, NLRC3, and SLC22A10. Mediation tests suggest, that
these genes also affect dementia symptoms via inflammation/injury. We also observed an association between a PC loading on
Neurogranin, a marker for synaptic functioning, with GABBR2 and CASZ1, but no mediation effects. The results suggest that rare
variants in IFFO1, DTNB, NLRC3, and SLC22A10 heighten susceptibility to neuronal injury and inflammation, potentially by altering
cytoskeleton structure and immune activity disinhibition, resulting in an elevated dementia risk. GABBR2 and CASZ1 were associated
with synaptic functioning, but mediation analyses suggest that the effect of these two genes on synaptic functioning is not
consequential for AD development.
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INTRODUCTION
Alzheimer’s disease (AD) is a neurodegenerative disease with an
estimated heritability of 63% [1], with common variants
explaining 9–31% of disease liability [2]. Several studies have
also found a contribution of rare variants in genes such as TREM2
and ABCA7 toward AD [3–5]. A popular approach to discover AD
relevant rare variants is the use of whole-exome/genome
sequencing to assess rare-variants globally, and then to associate
each variant with AD status [6]. However, the occurrence of AD is
caused by a combination of pathways involving inflammation,
cholesterol metabolism, tau pathology, endosome or ubiquitin-
related functioning [7]. Individuals with the same symptoms can
differ regarding the pathways contributing to their symptoms.
At the same time, different AD relevant genes may act on
different pathways. Studying AD status as an outcome may
therefore mask genetic effects, which only affect specific
pathways or patients subsets. In this study we focus on six CSF
biomarkers, which reflect different AD relevant disease pro-
cesses. The examined biomarkers are amyloid beta peptide 42
(Aβ), tau, phosphorylated tau (pTau), neurofilament light chain
(NfL), YKL-40 and Neurogranin (Ng). The application of these
proteins/peptides has been reviewed previously [8, 9] and is
summarized below:
Aβ and tau are the two most well established AD biomarkers

that reflect the defining neuropathological hallmarks of AD
(amyloid plaques and tau tangles) [8, 9]. Plaque deposits of Aβ in
extracellular space are one of the earliest disease processes, with
accumulation beginning many years before first symptoms emerge
[10]. Aβ CSF levels are inversely related to brain levels, i.e., lower
levels of the 42 amino acid-long aggregation-prone Aβ in CSF are
indicative of higher brain deposition of the protein [11]. pTau is
one of the components of neurofibrillary tangles. Both total and
pTau are increased in the CSF of AD patients [11]. Compared to Aβ,
it is a more concurrent state marker of neurodegeneration, with
elevated levels occurring later during disease progression [9]. NfL is
a building block of axons and higher levels in CSF are indicative
of neuronal injury [12]. Levels of NfL are elevated in AD patients,
but it is not a specific marker of AD [9]. Another non-specific
biomarker is YKL-40, which represents astrocytic activation and
neuronal inflammation. YKL-40 is associated with AD status and
other neuropathologies [11, 13]. Finally, neurogranin is a post-
synaptic protein related to synaptic functioning, cognition and
plasticity. Importantly, levels are higher in AD patients and other
dementias [14].
Most genome-wide analyses use a case-control design, but

some have also examined CSF and plasma biomarkers. A recent
genome-wide association study (GWAS) has examined common
variation in relation to Aβ and tau levels in CSF, identifying novel
associations between ZFHX3 and CSF-Aβ38 and Aβ40 levels,
and confirmed a previously described sex-specific association
between SNPs in GMNC and CSF-tTau [15]. A more recent GWAS
on these datasets further identified common-variant associa-
tions between TMEM106B and CSF-NfL and CPOX and CSF-YKL-
40 [16]. Another study investigated rare variants underlying
plasma Aβ using whole-exome sequencing, identifying several
exome-wide significant genes [17].
With this study, we took a pathway approach by analyzing

rare variants in relation to distinct AD-related pathologic
processes reflected by six different CSF biomarkers. As we
are mainly interested in the genetics of the underlying disease
processes, which can be represented by multiple biomarkers,
as opposed to the biology of single biomarkers per se,
we apply a multivariate approach to analyze multiple biomar-
kers jointly. Specifically, we applied a principal component
analysis (PCA) to identify independent clusters of biomarkers
representing different biological processes. A PCA approach
is not only conceptually appealing, but may also improve
power [18, 19].

To further improve power and generalizability, we performed a
mega-analysis of two multi-center studies: the European Medical
Information Framework for Alzheimer’s Disease Multimodal
Biomarker Discovery (EMIF-AD MBD) study [20] and the Alzhei-
mer’s Disease Neuroimaging Initiative (ADNI) [21].

METHODS
Participants
This study was embedded in the EMIF-AD MBD project, a consortium of
European cohort studies with the aim to increase understanding of AD
pathophysiology and discover diagnostic and prognostic biomarkers [20].
The EMIF-AD MBD study includes participants with no cognitive
impairment, mild cognitive impairment (MCI) or AD. Extensive phenotype
information is available on diagnosis, cognition, CSF, and imaging
biomarkers. Genetic assessments include genome-wide SNP and DNA
methylation array data, as well as whole-exome sequencing. Written
informed consent for use of data, samples and scans was obtained from all
participants before inclusion in EMIF-AD MBD. The Ethical Committee of
the University of Antwerp, as well as committees at each site [20],
approved the study and research was in accordance with the Declaration
of Helsinki.
We further included ADNI to increase power and generalizability [21].

Data used in the preparation of this article were obtained from adni.loni.
usc.edu. ADNI was launched in 2003 as a public-private partnership, led by
Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has
been to test whether serial magnetic resonance imaging, positron
emission tomography, other biological markers, and clinical and neurop-
sychological assessment can be combined to measure the progression of
MCI and early AD.
For the main analysis we selected participants, who were assessed with

exome-wide sequencing, had no known pathogenic mutations, were
unrelated and had information on at most one CSF biomarker missing,
resulting in a total sample size of 480 participants. Participants had mostly
European ancestry (98.8%). Primary analyses were based on this multi-
ancestry sample, but European ancestry only analyses are provided as
sensitivity analysis (Supplementary Methods).

Measures
Genotyping. Whole exome-sequencing in EMIF was performed using an
Illumina NextSeq500 platform using paired-end reads on DNA samples
hybridized with SeqCap EZ Human Exome Kit v3.0 (Roche). In ADNI whole
exome-sequencing was performed using the Illumina HiSeq2000 platform
[22] The same quality control pipeline was then applied to both studies
(Supplementary Methods). Post-analysis, we retained only genes with at
least two rare variant carriers in each study to reduce Type-1 error, increase
generalizability and ensure convergence.

CSF biomarkers and dementia symptoms. CSF has been obtained via
lumbar puncture and biomarker levels analyzed as previously described
[21, 23]. In brief, in EMIF the V-PLEX Plus AbPeptidePanel 1 Kit assessed Aβ
and INNOTEST ELISA was used for tau [23]. In ADNI the Elecsys CSF
immunoassay with a cobas e 601 analyzer was used to measure Aβ and tau
concentration [24]. In both EMIF and ADNI NfL was analyzed using ELISA
[23, 25]. Ng was assessed using an immunoassay in EMIF [23] and
electrochemiluminescence technology in ADNI [26]. YKL-40 was measured
with an ELISA kit in EMIF [23] and LC/MRM‐MS proteomics in ADNI [27]. As
the ADNI proteomics data contained two peptide sequences, with two ion
frequencies each, we averaged across these four values after z-score
standardization. Both studies used the Mini-Mental State Examination, a 30
item questionnaire to assess dementia symptoms [28].

Statistical analysis
PCA. We first performed a PCA across both studies to identify and
compute independent components using linear combinations of the
measured biomarkers. Biomarkers showed extreme skewness, which can
distort findings [29]. We therefore transformed all biomarkers with rank
based inverse normal transformation within each cohort. The resulting
z-score also harmonizes the scale between the cohorts. We used a PCA-
based imputation approach, as implemented in missMDA, to account for
missing levels of biomarkers [30]. To determine the optimum number of
dimensions, we applied leave-one-out cross-validation minimizing the
squared error of prediction. The PCA was performed in the same analysis
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sample as the main genetic analysis, but see sensitivity analyses for results
in a larger sample not restricted by genetic information (n= 1158). PCA
scores were computed with the psych package [31]. All analyses were
performed in R 4.0.3 [32].

Gene-based tests. We focused on rare variants with potentially large
impacts on pathogenic processes. We analyzed rare protein-coding variants
with a minor allele frequency below 1% in the EMIF/ADNI population and
associated them with biomarker PCs. In secondary analyses, we further
prioritized loss-of-function variants.
We used a SKAT-O test [33], a kernel-based method, as implemented in

MetaSKAT, allowing for heterogeneous effects between studies. MetaSKAT is
an extension of the original SKAT test designed for meta-analyses [34]. As
individual level data was available for both studies, we performed a mega-
analysis on combined datasets.
All analyses were adjusted for sex, age and genetic ancestry. In EMIF we

used the first four genome-wide PCs and in ADNI the first ten, taking into
account the higher population admixture. We performed analyses both with
and without adjusting for diagnosis (dummy coding for MCI and AD), to
avoid collider bias in case the genetic variant and PC are both independently
causative of AD [35]. To characterize which specific variants drive the gene
associations, we followed up gene hits with a single variant regression
analysis model analogous to the SKAT analyses.

Mediation tests. Genes with exome-wide significance were followed up
with mediation tests. The mediation models tested whether genes impact
dementia via their influence on the examined neurodegenerative process.
The outcome in the models were MMSE scores and the mediator was the
PC showing an exome-wide significant association with the gene. MMSE
scores were normalized using a previously described method [36].
Mediation tests were performed with SMUT, an intersection-union test
based on SKAT [37]. We regressed outcomes on sex, age, and genetic
ancestry and z-score standardized the resulting residuals within cohorts.
Normalized MMSE scores were residualized jointly across cohorts using
sex, age, and genetic ancestry. These residuals were also used to correlate
the PCs with MMSE to better characterize the PCs using spearman

correlations. We also looked up the total effect of the genes with MMSE
using the same MetaSKAT model as used with the PCs.

RESULTS
Demographics
Descriptive statistics are presented in Table 1. Both EMIF and ADNI
represent an elderly population of comparable ages, but EMIF
recruited a larger proportion of participants with AD. The included
sample of ADNI concerned only participants with no or mild
cognitive impairment, resulting in a higher mean score of the
MMSE, indicating better performance. See Supplementary Figs. S1
and S2 for biomarkers and PC distributions per diagnosis category.

PCA
The cross-validation informed the use of five components
(Table 2). The first component loaded strongly on the tau
measures and moderately on Ng and YKL-40. Given the
component’s strong loading on tTau and pTau, but also at the
same time moderate loading on other aspects of neurodegenera-
tion, we interpret the component as representing tau pathology
and neurodegeneration in general. This tau pathology/degenera-
tion PC was negatively correlated with MMSE (r=−0.19). The
second PC loaded mostly on NfL, with a moderate loading on YKL-
40, thus we can interpret it as indicating neuronal injury and
inflammation. This PC correlated with MMSE negatively as well
(r=−0.22). The third component was highly specific to Aβ and
had the strongest correlation with dementia symptoms in the
expected positive direction (r= 0.28). The fourth component
loaded mostly on YKL-40 with weak loadings on tTau and NfL. This
component did not correlate with MMSE scores and was therefore
labeled Non-AD Inflammation. The final component loaded mostly
on Ng, with weak loadings on the tau measures, but again no

Table 1. Participant characteristics.

EMIF ADNI

Characteristic n Mean/% SD n Mean/% SD

Age 353 71.23 8.72 127 74.42 6.11

Female 182 51.6% 50 39.4%

Education (in years) 280 10.82 3.79 127 15.94 3.13

Ancestry

European 353 100% – 121 95.3% –

African – – – 5 3.9% –

Asian – – – 1 0.8% –

Diagnosis

Cognitively normal 45 12.5% – 62 49.6% –

Subjective cognitive impairment 22 7.10% – 0 0% –

Mild cognitive impairment 185 51.7% – 64 50.4% –

Alzheimer’s disease 101 28.7% – 0 0% –

Mini-mental state examination 350 25.01 4.50 127 28.20 1.63

CSF biomarkers

β-Amyloid42 (in pg/ml) 352 295.51 181.70 127 1024.60 476.99

Tau (in pg/ml) 351 318.27 344.14 127 276.32 101.78

Phosphorylated Tau (in pg/ml) 351 53.85 32.95 127 26.44 11.45

Neurofilament light (in pg/ml) 352 1315.39 2394.16 127 1299.76 1174.46

YKL-40 (in pg/ml or z-scorea) 353 176946.43 67909.97 63 0.00 0.85

Neurogranin (in pg/ml) 345 127.44 193.41 127 425.86 282.45

Demographic information and descriptive statistics.
n sample size, SD standard deviation.
aFor ADNI, average values of two peptide sequences, with two ion frequencies each, were averaged after z-score standardization.
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correlation with dementia symptoms and therefore is named Non-
AD Synaptic functioning
The PCA results were highly consistent across both studies,

however, association magnitudes with MMSE differed between
studies, with ADNI showing lower effect sizes. We also performed
a sensitivity analysis in a larger sample not filtered for availability
of genetic assessments. The same five components were
identified and loadings were nearly identical, differing at most
by 0.05 (Supplementary Table S1).

Whole-exome rare variant analysis: protein-coding variants
Quality control. After QC, 9576 genes remained with at least two
rare variant carriers per study. Exome-wide significance was
therefore set at p= 5.2 * 10−6 (Bonferroni correction). Lambda was
1 or lower, suggesting that test statistics were not inflated due to
population stratification or wide-spread collider bias (Supplementary
Fig. S3).

No diagnosis adjustment. No gene passed exome-wide signifi-
cance for the Tau pathology/Degeneration, Aβ Pathology, or Non-
AD synaptic functioning PC. See Table 3 for gene-based results,
Fig. 1 for Manhattan plots, Fig. 2 for outcome distributions per rare
variant carrier status and Supplementary Table S2 for single-
variant results.
Two genes were associated at exome-wide significance with

the Injury/Inflammation PC: IFFO1 (p= 6.7 * 10−7) and DTNB (p=
8.3 * 10−7). IFFO1 harbored five rare variants, results mostly being
driven by rs138380449 and rs139792267, with five rare variant
carriers each and a total of 10 carriers (Supplementary Table S2).
The minor A allele in both SNPs was associated with 1.7 SD (SE=
0.44, p= 0.0001) and 1.3 SD (SE= 0.45, p= 0.0037) higher levels of
injury/inflammation (Fig. 2). Both SNPs are located six bp from
each other in the IFFO1 exon. The minor alleles are missense
variants resulting in a proline-to-leucine substitution, predicted to
be moderately deleterious (CADD > 22.5). All carriers either had
MCI (n= 6) or AD (n= 3), except one carrier with no cognitive
impairment at last follow-up (age 90). Mediation tests indicated
that injury/inflammation levels affected by IFFO1 variants would
also affect dementia (p= 9.5 * 10−6). For DTNB, rare variants were
also associated with higher levels of injury/inflammation (Supple-
mentary Table S2, Fig. 2). Mediation tests were significant as well
(p= 0.001) and lookup of the total effect on MMSE revealed
a nominally significant association (p= 0.04) (Supplementary
Table S3).
Two genes also associated with the non-AD synaptic function-

ing PC at exome-wide significance: GABBR2 (p= 1.6 * 10−6) and
CASZ1 (p= 1.9 * 10−6). In contrast to the Injury/Inflammation
associated genes, rare variants in these genes tended to be
associated with both higher and lower levels of non-AD synaptic
functioning (Supplementary Table S2, Fig. 2). Given the low
correlation between the non-AD synaptic functioning PC with
MMSE, mediation tests were not significant (p ≥ 0.82).

Diagnosis adjustment. When adjusting for diagnosis, one addi-
tional gene reached exome-wide significance: NLRC3 as predictor
of the Injury/Inflammation PC (p= 7.0 * 10−7). As with IFFO1 and
DTNB, rare variants on average showed higher PC scores, e.g., the
T allele in rs61732418 was associated with 0.8SD (SE= 0.41, p=
0.04) higher levels based on six carriers, but is likely benign
(CADD= 0.1)(Supplementary Table S2, Fig. 2). As with the other
Injury/Inflammation associated genes, the results suggest a
mediation effect on dementia symptoms (p= 0.002). See Supple-
mentary Results for sensitivity analyses (Supplementary Table S4)
and single-cohort results (Supplementary Table S5).

Whole-exome rare variant analysis: loss-of-function variants
When restricting analyses to LoF variants, 270 genes remained,
which passed QC and for which at least two participants per studyTa
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had rare variants. The exome-wide significance threshold was
therefore set to p < 1.9 * 10−4. Most lambdas were 1.01 or lower
(Supplementary Fig. S3), except for Aβ Pathology, which was 1.1
and may indicate slight inflation. One gene passed exome-wide
significance in LoF prioritized models, when adjusting for
diagnosis: SLC22A10 was associated with the Injury/Inflammation
PC (p= 1.7 * 10−4) (Table 3, Supplementary Fig. S4). Two rare
variants in this gene associated with higher Injury/Inflammation
scores, with most evidence for an A deletion in rs562147200
having deleterious effects (β= 1.64, SE= 0.50, p= 1.1 * 10−3)
(Supplementary Table S2, Fig. 2). See Supplementary Table S6
for single-cohort results.

DISCUSSION
We performed the first multivariate exome-wide rare variant
analysis of multiple AD CSF biomarkers in two multi-center
studies. We observed a highly consistent clustering of the
examined biomarkers into five independent components in
both studies. We interpret the first component to represent tau
pathology and neurodegeneration more generally, the second
to indicate neuronal injury and inflammation, and the third
component to represent Aβ pathology specifically. Not only did
Aβ almost exclusively load on the third component, but Aβ also
did not load on any other component. This suggests that Aβ
represents a different disease process than the other biomar-
kers. E.g., Aβ accumulation is thought to precede first symptoms,

whereas the other biomarkers are more representative of
concurrent disease state [9]. The first three components
correlated with dementia symptoms in the expected directions
in both studies, however, the magnitude tended to be smaller in
the ADNI study. The ADNI sample included only participants
with MCI, resulting in higher mean MMSE scores and lower
variability in the lower range, which may not generalize to
clinical populations.
The fourth and fifth component loaded on YKL-40 and

neurogranin, thus the first intuition may be to interpret these
components as representing inflammation and synaptic function-
ing. However, these components did not correlate with dementia
symptoms, which is at odds with previous analyses of these
molecules. It is important to consider, that neurogranin and YKL-
40 also loaded on the Tau/Neurodegeneration PC, and YKL-40
loaded also on the Injury/Inflammation PC. The fourth and
fifth components may represent variation in inflammation and
synaptic functioning, which is not related to dementia, the clinical
variance being included in the first two components.
We then tested the contribution of rare variants towards the

different disease processes identified by different combinations
of biomarkers. IFFO1, DTNB, NLRC3 and SLC22A10 were associated
with the Injury/Inflammation PC, as represented by heightened
NfL and YKL-40 levels in the presence of rare variants in these
genes. Notably, mediation tests suggested that these genes also
affect dementia symptoms by impacting neural injury and
inflammation. IFFO1 codes for Intermediate filament family

Fig. 1 Manhattan plot of the exome-wide rare variant anayses (protein-coding). Results from the exome-wide rare variant (MAF < 1%)
analyses of five CSF biomarker principal components (PC) (n= 480). Each plot displays a different PC as outcome. X-axis represents each gene
(rare protein-coding variants) and the y-axis the p value obtained from gene-based SKAT-O tests on a −log10 scale. All analyses were adjusted
for sex, age, and genetic ancestry. Blue points represent p values additionally adjusted for diagnosis. Red line indicates exome-wide
significance threshold (p= 5.2 * 10−6). Yellow line indicates suggestive threshold (p= 1.0 * 10−4). Exome-wide significant genes are
highlighted with a larger and red font.
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orphan 1 and is involved in DNA repair [38]. It is plausible that
rare variants in IFFO1 would affect NfL levels, which are
themselves an intermediate filament. The results suggest that
rare variants in IFFO1 affect sensitivity of the neuronal cytoske-
leton to damage, resulting in neurodegeneration and potentially
dementia symptoms.
DTNB encodes part of the dystrophin-associated protein complex

(DAPC). DAPC links actin with extracellular space, is involved in cell
signaling and has been mostly studied in the context of muscle
diseases [39]. Post-analysis we became aware of another simulta-
neously conducted study by Prokopenko et al., who performed a
region-based whole genome-sequencing association analysis on AD
status in an independent dataset (NIMH/NIA ADSP) [40]. Interest-
ingly, rare variants in the DTNB locus were associated with AD. The
converging evidence from two independent studies, using a
biomarker/pathway-based approach on the one hand, and a
case–control design on the other, strongly suggests an involvement
of DTNB in neurodegenerative processes and development of AD,
not previously considered.
Finally, NLRC3 and SLC22A10 were also associated with injury/

inflammation, but only when statistically adjusting for diagnosis.
However, the difference between both models was minor.
NLRC3 has a well-established role in lowering inflammation via
inhibition of NfκB and NLRP3 inflammasome pathways, which
have been observed to play a role in AD in human and
mouse studies [41]. Specifically, downregulation of NLRC3
in a mouse model affects plaque deposition and neuronal loss
[42]. Considering that wild type NLRC3 is involved in lowering
inflammation, and overexpression has been shown to inhibit the
deposition of A-beta, and reverse the degeneration of neurons
in APP/PS1 mice [42], we speculate that rare variants in NLRC3
elevate inflammation, resulting in increased neurodegeneration

and dementia symptoms. SLC22A10 is an ion transporter
involved in potassium homeostasis, but not much is known
about its role in disease [43, 44]. According to the Agora
platform, SLC22A10 gene expression is downregulated in the
parahippocampal gyrus in AD [45]. A possibility is, that the
identified LoF variants in SLC22A10 may be responsible for such
downregulation and increase vulnerability to neuronal injury
and inflammation.
GABBR2 and CASZ1 were genes identified with Non-AD synaptic

functioning in protein-coding models, as mainly represented by
higher levels of neurogranin. GABBR2 encodes a GABA receptor,
the main inhibitory neurotransmitter in the human brain. Down-
regulation of GABA receptors in various brain regions is associated
with Alzheimer’s disease, potentially by disrupting the balance
between excitation/inhibition balance [46, 47]. It seems plausible,
that rare variants in the gene would also affect neurogranin levels
and other markers of synaptic functioning. Curiously, despite prior
evidence for an involvement of GABA in AD, we did not observe
an association with dementia symptoms. Rare variants in the
GABBR2 gene therefore might only affect nonclinical variation of
synaptic functioning, without consequences on neurodegenera-
tion or dementia symptoms.
Finally, CASZ1 is a zinc finger transcription factor expressed in

the brain, but has been mostly studied in the context of cardiac
health. For instance, LoF variants in the genes are associated with
congenital heart disease [48] and cardiomyopathy [49].
Two genes reached exome-wide significance in the EMIF

cohort only, but not in the mega-analysis: CHI3L and CLU. CHI3L
encodes the YKL-40 protein, which is the primary biomarker
loading on the non-AD inflammation PC and was recently
identified as a cis-pQTL in a common-variant GWAS in an
overlapping set of EMIF-AD MBD and ADNI individuals [16]. In

Fig. 2 Violin plot of CSF biomarker principal component score distributions per rare variant carrier status. Top row displays the
distribution of the Injury/Inflammation PC in participants not carrying a rare variant in the exome-wide significant genes, or carrying at least
one variant in IFFO1, DTNB, or NLRC3. Bottom row displays the distribution of the Non-AD Synaptic functioning PC in participants not carrying
a rare variant in the exome-wide significant genes, or carrying at least one variant in GABBR2, CASZ, or MICALCL. For the latter, only loss-of-
function variants are considered, otherwise any protein-coding variant.
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regard to CLU, common and rare variants have been associated
with AD and the gene product clusterin has been researched
extensively as potential AD biomarker [50, 51]. Our results hint at
CLU acting mostly via disruption of synaptic functioning, but the
results have to be interpreted cautiously in light of non-
replication.
The two biggest strengths of the study are the mega-analysis and

multivariate design. The simultaneous analysis of multiple American
and European centers and studies improves the generalizability of
the results and allowed us to increase statistical power. The
examination of biomarker combinations instead of single values
likely supported the accurate and robust assessment of underlying
disease processes, while improving power. This study is also one of
the first to formally test mediation in the context of rare variant
analyses using the recently developed SMUT approach.
However, as any other rare variant analysis, the chance for false

positives or non-generalizable results is higher than for common
variants. We opted for a mega-analysis instead of discovery-
replication design to maximize robustness of initial findings. This
choice also means that findings need to be externally verified
before firm conclusions can be drawn. Another limitation of
the study is that both CSF biomarkers and MMSE scores
were measured concurrently and analyzed cross-sectionally in
the mediation analyses. We can therefore not rule out reverse
causation or independent pleiotropic gene effects on the
biomarkers and dementia symptoms. A longitudinal analysis is
recommended to explore gene effects further. More research is
also needed to explore epistasis effects. Six participants carried
two nominally significant risk variants across different genes, all of
whom had high biomarker levels (>1.6 SD) and either a MCI or AD
diagnosis. Gene-gene interaction analyses in independent sam-
ples are needed to test the potentially strong effects of carrying
more than one risk gene. Finally, while the PC approach here was
used to aid in etiological research, the partitioning of clinically
relevant and clinically irrelevant variance for biomarkers such as
YKL-40 and Ng could also improve diagnosis and prediction,
which should be tested in future research.
In summary, the results suggest that rare variants in IFFO1,

DTNB, NLRC3, and SLC22A10 impact neuronal injury and inflam-
mation, by potentially altering cytoskeleton structure, impairing
repair abilities, and by disinhibition of immune pathways. The
resulting sensitivity to damage and inflammation may then result
in neurodegeneration and dementia symptoms, as evidenced by
lower MMSE scores. Finally, we also found evidence for the
involvement of GABBR2 and CASZ1 in synaptic functioning, but no
evidence that these changes would impact dementia symptoms.

DATA AVAILABILITY
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