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Abstract

Sleep disorders are increasingly being characterized in modern society as contributing to a

host of serious medical problems, including obesity and metabolic syndrome. Changes to

the microbial community in the human gut have been reportedly associated with many of

these cardiometabolic outcomes. In this study, we investigated the impact of sleep length on

the gut microbiota in a large cohort of 655 participants of African descent, aged 25–45, from

Ghana, South Africa (SA), Jamaica, and the United States (US). The sleep duration was

self-reported via a questionnaire. Participants were classified into 3 sleep groups: short

(<7hrs), normal (7-<9hrs), and long (�9hrs). Forty-seven percent of US participants were

classified as short sleepers and 88% of SA participants as long sleepers. Gut microbial com-

position analysis (16S rRNA gene sequencing) revealed that bacterial alpha diversity nega-

tively correlated with sleep length (p<0.05). Furthermore, sleep length significantly

contributed to the inter-individual beta diversity dissimilarity in gut microbial composition

(p<0.01). Participants with both short and long-sleep durations exhibited significantly higher

abundances of several taxonomic features, compared to normal sleep duration participants.

The predicted relative proportion of two genes involved in the butyrate synthesis via lysine

pathway were enriched in short sleep duration participants. Finally, co-occurrence relation-

ships revealed by network analysis showed unique interactions among the short, normal

and long duration sleepers. These results suggest that sleep length in humans may alter gut

microbiota by driving population shifts of the whole microbiota and also specific changes in

Exact Sequence Variants abundance, which may have implications for chronic inflammation
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associated diseases. The current findings suggest a possible relationship between dis-

rupted sleep patterns and the composition of the gut microbiota. Prospective investigations

in larger and more prolonged sleep researches and causally experimental studies are

needed to confirm these findings, investigate the underlying mechanism and determine

whether improving microbial homeostasis may buffer against sleep-related health decline in

humans.

Background

Disrupted sleep has been associated with disturbances of hormone secretion and metabolism

[1], as well as affecting physical, mental and emotional functions [2–7]. Recent data has shown

that modern society as whole is severely sleep deprived, and that this chronic state of depriva-

tion has consequences on the persons and society [8–11]. The underlying mechanisms of by

which disrupted sleep patterns alter disease risk, especially cardiometabolic risks, have been

demonstrated in several well-conducted sleep restriction experiments in healthy volunteers

[12–15]. These include increased inflammatory markers [14], increased sympathetic nervous

system activity [13], abnormal cortisol rhythmicity [13], alterations in appetite regulating hor-

mones and food intake [16], and adipocyte dysfunction [15] which altogether contribute to

insulin resistance, diabetes and obesity risks. Many of these findings have been confirmed in

laboratory studies, demonstrating that disrupted sleep may be a risk factor for incident diabe-

tes and obesity [17, 18]. According to the American Academy of Sleep Medicine and Sleep

Research Society, the recommended sleep duration in adults is between 7–9 hours [19].

Despite strong data suggesting a causal association between disrupted sleep patterns and cardi-

ometabolic risk, only a few sleep extensional studies have been conducted to date [20–23].

While preliminary evidence supports a possible benefit in glucose metabolism and dietary pat-

terns, the ability to increase sleep time varied among participants [21–23]. Thus, development

of preventive strategies based on new, modifiable risk factors is therefore imperative.

One such novel factor is the gut microbiota, important for regulating human physiology

[24]. Structural and functional configurations of the gut bacterial community are associated

with a series of metabolic and immune diseases, which are also adverse health consequences of

disrupted sleep patterns [2, 25–28]. Emerging data from animal and human experimental

studies have shown that sleep restriction or fragmentation led to significant changes in the

structure of their intestinal microbial communities [29–31], although this was not consistently

observed in all the studies related to sleep restriction and intestinal microbiota [32]. Structural

changes in the gut microbiota may promote an increase in dietary fat intake and an increase in

fat storage through a series of signal transductions [33]. Gut microbiota dysbiosis has recently

been associated with systemic inflammation by producing butyrate with amino-acids (lysine,

glutarate and 4-aminobytyrate/succinate) as substrates via the 4-aminobutyrate pathway, lipo-

polysaccharide (LPS) or hydrogen sulfide (H2S) [34–37], etc. Thus, alterations in gut micro-

biota may also contribute to the systemic inflammation which is a known consequence of

disrupted sleep patterns [38].

Given the intersection between the gut microbiota, cardiometabolic disease and disrupted

sleep patterns, it is possible that the gut microbiota is a potential mediator linking disrupted

sleep and adverse health outcomes. Indeed, these associations between disrupted sleep patterns

and changes in the gut microbiota community are not well understood. Notably, sleep-derived

variations in the composition of gut microbiota has only been explored in small groups involv-

ing experimental sleep restriction [31]. Studies in large cohorts that explore this association
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across different geographic regions, with their own lifestyle and geographic idiosyncrasies

could help elucidate the general characteristics that determine the differences in the micro-

biota across gradients of sleep duration. Therefore, to examine the potential impact of sleep

disruption on the gut microbiota, this study leveraged African-origin participants enrolled in

the Modeling the Epidemiologic Transition Study” (METS) cohort to investigate the structural

and predicted metabolic dynamics of the gut (stool-derived) microbiota as a function of sleep

quality in 655 adults of African descent aged 22 to 45 years.

Results

Participant characteristics

The first METS cohort consisted of 2,506 participants enrolled in December 2010 and January

2011, and 655 participants from this original cohort were additionally asked to provide stool

samples for this current microbiome study. These 655 participants were recruited from Ghana

(N = 196), South Africa (N = 176), Jamaica (N = 92) and US (N = 191) (Table 1). Prevalence of

overweight and obesity was significantly higher in the US cohort (81.3%) when compared to

the other sites (i.e., Ghana, 33.2%, South Africa, 55.7%, Jamaica 65.2%). South Africans and

Americans had significantly higher blood pressure than Ghanaians and Jamaicans (Table 1).

Americans also slept the least number of hours (6.7 ± 1.4 hours) compared to Ghanaians

(7.9 ± 1.4 hours, p<0.001), Jamaicans (7.3 ± 2.1 hours, p<0.05), and South Africans

(10.5 ± 1.7 hours, p<0.001). The normal range of sleep for adults defined by the American

Academy of Sleep Medicine is 7–9 hours [19], therefore if a participant slept 7–9 hours, then

he/she was identified as a “normal sleeper”. If a participant slept<7 hours of per 24-hour

period, then he/she was considered to be a “short sleeper” and if >9 hours: a “long sleeper”.

Overall, the US had the greatest proportion of short sleepers, while South Africa had highest

proportion of long-sleepers. Table 2 presents a summary of the distribution across the 3

groups.

Sleep length significantly impact gut-derived bacterial diversity and

composition

We used 16S rRNA amplicon sequencing to define shifts in microbial community structure

and composition associated with sleep length. A total of 10,805,592 16S ribosomal RNA gene

sequences with good quality were generated from the 655 fecal samples, which clustered into

6, 909 Exact Sequence Variants (ESVs). Alpha diversity was calculated by Shannon’s diversity

index diversity [39], which is a quantitative measure of community richness, and observed otu

diversity, which a qualitative measure of community richness [39]. Gut microbial alpha diver-

sity was significantly different between normal sleepers, short sleepers, and long sleepers,

whereby short sleepers had a significantly lower alpha diversity, and long sleepers had a signifi-

cantly higher alpha diversity compared with normal sleepers (Fig 1A, Shannon index, p<0.05.

S1 Fig. Observed otu diversity). Principal coordinate analysis (PCoA) was performed based on

weighted and unweighted UniFrac distances, a method for computing differences between

microbial communities based on phylogenetic information [40]. 1000 reads/samples were con-

sidered to calculate the inter-individual beta diversity dissimilarity. Weighted UniFranc con-

sidered both ESVs presence/absence and abundance distances, and unweighted UniFrac only

considered ESVs presence/absence. Permutational multivariate analysis of variance (PERMA-

NOVA, R function adonis (vegan, 999 permutations)) was used to analyze statistical differ-

ences in beta diversity [41]. Similarly, we found that sleep length significantly contributed to

the inter-individual beta diversity dissimilarity in Exact Sequence Variants (ESV)-level gut
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microbial composition, both in the weighted and unweighted UniFrac dissimilarity index

(permutational multivariate analysis of variance (PERMANOVA), p<0.001) (Fig 1B and 1C).

Pairwise comparation based on permutation tests showed that both weighted and unweighted

UniFrac distances between samples within short sleepers and long sleepers are significantly

different from that between samples within normal sleepers (p<0.01). These data suggest that

ESV features contribute markedly to the dissimilarity in microbial community structure in

response to sleep length. However, neither alpha diversity (S2 Fig) nor beta diversity (weighted

and unweighted UniFrac dissimilarity index, S3 and S4 Figs) within each country site (Ghana,

South Africa, Jamaica or US) were significantly different among participants with different

sleep length (p> 0.05), which is most likely due to small size of the cohorts. Since geographic

location contributed significantly to the distribution of CM risk factors and sleep duration, e.g.

Americans have the highest prevalence of overweight and obesity and slept the least number of

hours, when compared to the other sites, we also investigate its effect in gut microbial commu-

nity structure. Gut microbial alpha diversity was significantly lower in Americans compared to

Ghanaians, Jamaicans, and South Africans (p<0.001) (S5A Fig). Geographic location also sig-

nificantly contributed to the inter-individual beta diversity dissimilarity gut microbial compo-

sition in the weighted UniFrac dissimilarity index (PERMANOVA, p<0.001) (S5B Fig). These

observations suggest that a country-related physiological or environmental influence change

in the host is conducive to a less complex microbiota.

The taxonomic features that differentiated the gut microbiota among short, normal and

long sleepers were determined using Analysis of Composition of Microbiota (ANCOM,

adjusted for country, age, gender and BMI, p (false discovery rate (fdr)-corrected) < 0.05) (Fig

1D). An ESV assigned to genus Dialister was significantly enriched in short sleepers, while

another ESV also assigned to genus Dialister was at a significant greater proportion in the long

sleepers, compared to the normal sleepers. 2 ESVs belonging to genus Prevotella were both

Table 2. Participant characteristics by site (N,%).

Ghana South Africa Jamaica United States Overall

(N = 196) (N = 175) (N = 90) (N = 191) (N = 652)

Sleep

Category

Short Normal Long Short Normal Long Short Normal Long Short Normal Long Short Normal Long

N N = 28 N = 113 N = 55 N = 3 N = 18 N = 154 N = 33 N = 33 N = 24 N = 90 N = 86 N = 15 N = 154 N = 250 N = 248

Sex2

Women 15,

53.6%

74,

65.5%

38,

69.1%

1,

33.3%

12,

66.6%

98,

63.6%

15,

45.5%

27,

81.8%

19,

79.2%

44,

48.9%

50,

58.1%

8,

53.3%

75,

48.7%

163, 64.9 163,

65.7%

Men 13,

46.4%

39,

34.5%

17,

30.9%

2,

66.7%

6, 33.3% 56,

36.4%

18,

54.6%

6, 18.2% 5,

20.8%

46,

51.1%

36,

41.9%

7,

46.7%

79,

51.3%

88, 35.1 85,

34.3%

BMI class
1Normal

weight

21,

75.0%

74,

65.5%

36,

65.5%

1,

33.3%

6, 33.3% 71,

46.1%

13,

39.4%

9, 27.3% 9,

37.5%

20,

22.2%

12,

14.0%

4,

26.7%

55,

35.7%

101,

40.2%

120,

48.4%
1Overweight 6,

21.4%

24,

21.2%

11,

20.0%

1,

33.3%

2, 11.1% 24,

15.6%

11,

33.3%

10,

30.3%

6,

25.0%

23,

25.6%

24,

27.9%

5,

33.3%

41,

26.6%

61,

24.3%

46,

18.6%
1Obese 1, 3.6% 15,

13.3%

8,

14.6%

1,

33.3%

10,

55.6%

59,

38.3%

9,

27.3%

14,

42.4%

9,

37.5%

47,

52.2%

50,

58.1%

6,

40.0%

58,

37.7%

89,

35.5%

82,

33.1%

Smokers 0, 0% 1, 0.9% 3, 5.5% 0, 0% 5, 26.3% 43,

27.9%

5,

15.2%

4, 12.1% 1, 4.2% 32, 35.6 31, 36.1 9, 60.0 31,

27.0%

37,

17.4%

55,

24.7%

χ2 testing used to analyze differences between normal and short sleepers within each site and overall for each characteristic.
1Where “normal weight”, “overweight” and “obese” are defined as BMI<25 kg/m2, BMI�25 kg/m2-<30 kg/m2 and BMI�30 kg/m2, respectively.
2 χ2 testing reached significance in Jamaica (p<0.05) and “Overall” (p<0.001).

https://doi.org/10.1371/journal.pone.0255323.t002
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more abundant in the long sleepers, compared to short and normal sleepers. Furthermore,

long sleepers were also significantly enriched with 4 ESVs belonging to family Erysipelotricha-

ceae, family Ruminococcaceae, genus Oscillospira, and genus Catenicacterium, compared to

the other two groups. And short sleepers had significantly higher proportion of one ESV from

genus Bacteroides, compared to normal and long sleepers (Fig 1D).

Piphillin [42] was used to predict the gene abundances for gut microbial metabolic path-

ways based on the 16S rRNA gene abundance. Specifically, we wanted to determine the differ-

ences in the predicted abundance of gut microbial genes associated with butyrate metabolism

Fig 1. Sleep length can significantly impact intestinal microbiota community structure. (A) Alpha diversity (Shannon index) between different sleep groups; �

p< 0.05; ��� p< 0.001. (B) Beta diversity analysis (weighted UniFrac distance) between different sleep groups; (C) Beta diversity analysis (unweighted UniFrac

distance); and (D) Differential ESV abundance among short, normal and long sleepers, adjusted for BMI, age, gender and countries. ESVs with relative

abundance� 1% in at least one group shown. Data shown are means ± S.E.M.; � p(fdr-corrected)< 0.05. fdr, false discovery rate.

https://doi.org/10.1371/journal.pone.0255323.g001
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(via less-dominant pathway-the 4-aminobutyrate pathway, include amino-acids (lysine, gluta-

rate and 4-aminobytyrate/succinate) as substrates [38], H2S and LPS synthesis between short,

normal and long sleepers, which are involved in the low-grade systemic inflammation in meta-

bolic diseases [34–37]. Predicted genes involved in butyrate biosynthesis pathways showed

that only 3,5-diaminohexanoate dehydrogenase (K18012) and 3-keto-5-aminohexanoate

cleavage enzyme (K18013) in the Lysine pathway was enriched in short sleepers, compared to

normal sleepers and long sleepers (S6 Fig; pfdr<0.05, adjusted for age, gender, country and

BMI). No statistically significant differences in the genes involved in the LPS or H2S synthesis

pathway were observed between short sleepers and normal sleepers (pfdr>0.05, adjusted for

age, gender, country and BMI).

A correlation network was constructed by calculating Spearman correlations between ESVs

using the gut microbiota of short, normal and long sleepers’ datasets, and only robust correla-

tions were considered for network construction (-0.60� ρ� 0.60, pfdr <0.05). The vertices in

this network represent ESVs and the edges that connect these nodes represent correlations

between ESVs. The network of the short and long sleepers’ microbiota has a higher number of

vertices and edges (short sleepers, 312 vertices and 566 edges, long sleepers, 315 vertices and

376 edges) in comparison to that of normal sleepers (272 vertices and 265 edges) (Fig 2A–2C).

Using the co-occurrence network outlined above, we also examined whether ESVs associated

with a special sleep length exhibited unique node-level topological features. This feature set

included betweenness centrality (a measure of centrality based on the number of times a node

acts as a bridge along the shortest path between two other nodes.), closeness centrality (a mea-

sure of centrality based on the sum of the length of the shortest paths between this node and

connected nodes), and degree (the number of connections a single node has). The betweenness

centrality feature was used to measure the centrality of each node in the network. Significantly

higher betweenness centrality scores were observed for ESVs associated with short sleepers’

microbiota than those associated with normal or long sleepers’ microbiota (pfdr <0.05, Fig

2D). This suggests that the gut microbes from the short sleepers were more often located in

central positions within the network, compared to those from the normal sleepers. We next

examined additional node-level topological measures, degree and closeness, for each ESV in

the co-occurrence network. Degree and Closeness only take into account only the immediate

neighborhood of ESVs, and hence capturing a different aspect of network topological features.

Closeness and degree of ESVs associated with short sleepers’ microbiota were also significantly

higher than those associated with normal or long sleepers’ microbiota (p<0.001, Fig 2E and

2F). Thus, co-occurrence relationships revealed by network analysis showed unique interac-

tions among the short, normal and long duration sleepers, which the gut microbiota of short

sleepers had a closer connected network, compared to those of normal and longer sleepers.

Discussion

Recently, there has been some evidence that a relationship between disrupted sleep and the gut

microbiota exists because both sleep alterations as well as a gut dysbiosis are associated with

similar diseases [24, 43]. However, this relationship is not well understood, and studies have

been limited by small sample sizes. Here, we performed the first investigation into how sleep

length may alter the human gut microbiota in a large cohort of African-origin adults. Overall,

we demonstrate that the structure of the gut microbiota is remarkably impacted by sleep

length. Indeed, it may well be that many of the adverse effects that have been observed in sleep

disorder may be due in part to gut microbial dysbiosis.

Most of the health decline in humans have been reported to be associated with reduced

overall bacterial community diversity and richness [44–47], which is identified as one of the
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characters of gut microbial dysbiosis. In our current study, we saw that sleep length signifi-

cantly associated with the alpha diversity in humans. Participants with short sleep duration

exhibited lower alpha diversity; however, Participants with long sleep duration showed higher

alpha diversity compared to those with normal sleep duration, which implied that not only too

low, but too high gut bacterial community diversity may also induce the gut microbial dysbio-

sis. This suggest that chronic sleep disruption may also promote an intestinal microbial dysbio-

sis [29–31]. Certainly disrupted sleep may serve as another novel environmental factor that

induce gut bacterial diversity, besides diet, urbanization, and other lifestyle changes in modern

society [48].

In this study, we observed an increased relative abundance of one ESV assigned to genus

Dialister in the gut community of participants with short or long sleep duration separately,

compared to normal length sleepers. An increase of the species or strains in this genus, has

been found to be associated with many kinds of diseases in humans, such as spondyloarthritis

[49], periodontitis [50], inflammatory bowel disease and their unaffected relatives [51, 52], pul-

monary disease [53] and so on. Such changes may promote increased chronic inflammatory

state and could therefore constitute a possible mechanism through which chronic sleep loss

can increase the risk of human diseases. We also observed decreased levels of two ESVs

assigned to the genus Prevotella in the gut community of participants with short sleep dura-

tion. Reduced incidence of genus Prevotella have been associated previously with autistic chil-

dren [54], and Parkinson’s disease [55]. However, one ESV assigned to genus Prevotella was

significantly higher in the gut community of participants with long sleep duration, and it

should also be noted that there are a handful of studies that suggest that Prevotella are signifi-

cantly enriched in patients with metabolic diseases [56–58]. This was the first study to show

that short sleep participants with harbored lower proportions of ESVs assigned to genus Prevo-
tella, while long sleepers harbored higher proportions of ESVs assigned to genus Prevotella.

Furthermore, this study also showed that participants with long sleep duration were also sig-

nificantly enriched with 4 ESVs belonging to family Erysipelotrichaceae, family Ruminococca-

ceae, genus Oscillospira, and genus Catenicacterium, compared to the participants with normal

or short sleep duration. The importance of Erysipelotrichaceae in inflammation-related disor-

ders of the gastrointestinal tract is highlighted by the fact that they have been found to be

enriched in individuals with colorectal cancer or IBD in both human and mouse studies [59–

62]. In addition, higher levels of Erysipelotrichaceae have been observed in human disease

related to metabolic disorders [63–65]. However, several recent studies have observed that

members of the Oscillospira genus were highly enriched in lean subjects, and positively associ-

ated with the leanness in human and mouse studies [66, 67], and decreased in individuals with

inflammatory diseases, nonalcoholic steatohepatitis [68], Crohn’s disease [69]. Members of the

family Ruminococcaceae, which are involved in degrading dietary indigestible fibers and poly-

saccharides and in producing butyrate, were also important in improving weaning weight

[70]. An increase of the relative abundance in the genus Catenicacterium has been found to be

associated with obesity with metabolic syndrome [71], however, it was also shown that cholor-

ectal cancer patients harbor less Catenicacterium in the gut [72]. We also observed that partici-

pants with short sleep duration had significantly higher proportion of one ESV from genus

Fig 2. The network analysis revealing the co-occurrence patterns among short sleepers, normal sleepers and long

sleepers. A connection represents a strong (Spearman’s correlation coefficient ρ>0.6) and significant (P<0.05) correlation.

A-C, co-occurrence network of short sleepers (A) normal sleepers (B) and long sleepers (C) The nodes represented unique

ESV feature in the data sets. The size of each node is proportional to the relative abundance. Node color corresponds to

phylum taxonomic classification. The edge thickness is equivalent to the correlation values. D-F, Topological features for each

node in the network, (D) betweenness centralization, (E) closeness centrality and (F) node degree values. ��� p< 0.0001.

https://doi.org/10.1371/journal.pone.0255323.g002
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Bacteroides, compared to normal and long sleepers. Bacteroides, an abundant genus in the

intestines of mammals, play essential roles in host immunity, glucose and lipid metabolism

and the prevention or induction of diseases [73–80]. The specific role the members in genus

Bacteroides found in this study requires more experimental evidence to interpret their role.

Given that many members of these gut microbiota above have not yet been grown in culture

and more experimental evidence need to be collected, it remains a conundrum in gut micro-

biota research and the association between gut microbiota and sleep disruption. However, in

light of the strong evidence linking these gut microbiol members to human health and disease,

these bacteria should be cultivated to characterize both genome and function to investigate its

potential link to the sleep disruption in future studies.

Similarly, we observed that sleep length was associated with the gut microbiota functional-

ity. The predicted functional potential of the bacterial communities showed significant ele-

vated abundance of two predicted enzymes involved in the butyrate synthesis via lysine

pathway in short sleep participants. It has shown the beneficial effects of butyrate on host

homeostasis by enhancing gut barrier function and reducing inflammation [81], however,

butyrate synthesis via less-dominant pathway-the 4-aminobutyrate pathway, include amino-

acids (lysine, glutarate and 4-aminobytyrate/succinate) as substrates, can produce pro-inflam-

matory byproducts and increase the risk of human diseases [37].

The co-occurrence networks generated for the gut microbiota from participants with short,

normal and long sleep duration showed significant differences in the node-level features, spe-

cifically between the participants with short sleep duration, compared to the other 2 cohorts.

Participants with short sleep duration have more being center nodes, that were closely con-

nected within the network, and nodes with increasing influence in connecting different parts

of the network, compared to the less connected and centered co-occurrence networks, as

found in participants with normal and long sleep duration. Co-occurrence relationships

revealed by network analysis showed unique interactions among the participants with different

duration.

At present, it is still not known that if there’s a causal relationship between disrupted sleep

and disrupted gut microbiota in humans. It is not clear there is a common mechanism medi-

ates the effects of disrupted gut microbiota and sleep disorder either. There are several poten-

tial mechanisms that are listed in previous publications and reviews in the field, such as

alterations in interaction of gut microbiome with bile acid metabolism [82, 83], microbiota-

mediated molecular signaling, like SCFA [84–86] or altered nutrient uptake through the intes-

tinal wall [87, 88], etc. Chronic inflammation also appears to be an important mechanism for

the deleterious health consequences of insufficient sleep and gut microbial dysbiosis, as exem-

plified by increased risk and severity of obesity and related other metabolic syndrome [89],

cardiovascular disease [90], and inflammatory bowel disease [91]. Notably, when considered

alongside previous studies, the current research suggests that disrupted sleep may be associated

with dysbiosis of gut microbiota in humans (including overall decreased diversity, changed

abundance of some taxa and unique co-occurrence network). However, this study only

observes an association and doesn’t prove causality between the sleep disruption and gut

microbial dysbiosis with the composition of gut microbiota. In future, prospective investiga-

tions in larger and more prolonged sleep researches and causally experimental studies are

needed to confirm these findings, investigate the underlying mechanism and determine

whether improving microbial homeostasis may buffer against sleep-related health decline in

humans. Lastly, considering that the significant geographically difference of sleep duration

and the microbial composition showed in this study, the geographic effect need to be consid-

ered to investigate the potential relationship between sleep disruption and gut microbiota dys-

biosis in the future studies
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Our study is not without several limitations, including that sleep lengths were self-reported

and do not include the time of day when sleep occurred. In fact, a single question was asked

about sleep, thus excluding an evaluation of sleep. However, these weaknesses were balanced

by several study strengths, including the large sample size, the use of cohorts from diverse

countries and measured clinical data. Future directions of this study will include increasing

the number of questions asked about sleep routines and quality. Also sleep will be objectively

measured using sleep monitors.

Conclusion

To our knowledge, our study is the first to provide information in a large human cohort that

sleep length alters gut microbiota. The changes in the structural and functional dysbiosis of

microbiota that we observed in the present study could be due, at least in part, to sleep length.

These findings should be considered along with the limitations of the study. The sleep disor-

der-gut microbiota connection will require numerous larger studies, including longitudinal

studies, to fully elucidate the role of the gut microbiota in relation to sleep length and associ-

ated deleterious health consequences. Similarly, further animal studies are needed to under-

stand causal mechanisms by which sleep duration affects the gut microbial dysbiosis.

Metagenomic sequencing might also need to be considered to determine whether disrupted

sleep patterns functionally alter gut microbiota.

Materials and methods

Participant selection

The original METS cohort consisted of 2,506 male and female participants of African descent

aged 25–45 years old. Participants were enrolled in METS between January 2010 and Decem-

ber 2011 and followed annually for three years. A detailed description of the METS protocol

has previously been published [92]. For the current study of METS, the microbiome study,

both fecal and saliva samples were collected in 2014 from 655 and 620 male and female partici-

pants from the first METS cohort, respectively, from Ghana (N = 196), South Africa (N = 176),

Jamaica (N = 92) and the US (N = 191). These sites were chosen as they span the epidemiologic

transition, and each site is at a different stage of development as defined by the United Nation’s

Human Development Index. Exclusion criteria included self-reported infectious disease (e.g.,

HIV), pregnancy, current breast-feeding and inability to participate in normal physical activi-

ties. METS was approved by the Institutional Review Board of Loyola University Chicago, IL,

US; the Committee on Human Research Publication and Ethics of Kwame Nkrumah Univer-

sity of Science and Technology, Kumasi, Ghana; the Research Ethics Committee of the Univer-

sity of Cape Town, South Africa; the Board for Ethics and Clinical Research of the University

of Lausanne, Switzerland; and the Ethics Committee of the University of the West Indies,

Kingston, Jamaica. All study procedures were explained to participants in their native lan-

guages, and participants provided written informed consent after being given the opportunity

to ask any questions.

Anthropometric and biochemical measurements and stool collection

All measurements were performed by site staff in their local research clinics. Participants wore

light clothing and no shoes when weight and height were measured. Participants were asked to

provide an early morning fecal sample, using a standard collection kit (EasySampler stool col-

lection kit, Alpco, NH) at their home. Fecal samples were immediately brought to the site clin-

ics and stored at -80˚C. Participants were asked to fast 10–12 hours prior to clinic visit, so that
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fasting capillary glucose concentrations could be determined using finger stick (Accu-check

Aviva, Roche).

Sleep and demographic data

Sleep, age and smoking data were obtained via questionnaire. Participants were asked how

many hours they slept each night. Neither the times at which they slept nor whether they slept

during the day or evening was recorded.

Statistical analysis

Statistical analyses for Tables 1and 2 were performed in Stata (version 12, Manufacturer, Col-

lege Station, TX, USA). Table 1 summarized continuous participant characteristics and risk

factors using mean ± SD, and Table 2 summarized dichotomous and categorical variables

using proportions which were presented as N, %. Comparisons of participant characteristics

and risk factors within sites and overall were performed using t-tests for normally distributed

continuous variables, Wilcoxon rank-sum scores for non-normally distributed continuous

variables and Pearson’s chi-squared test for categorical variables at a significance level (α) of

0.05.

DNA isolation and 16S ribosomal RNA (rRNA) gene sequencing

The microbial genomic DNA from the human stool samples was extracted using the DNeasy

PowerSoil DNA Isolation Kit (Qiagen) (Mo Bio Laboratories, Carlsbad, CA, USA) following

the protocol of Flores et al [93]. The V4 region of 16S rRNA gene was amplified and sequenced

using the Illumina MiSeq platform [94]. The primers used for amplification (515F-806R) con-

tain adapters for MiSeq sequencing and single-end barcodes allowing pooling and direct

sequencing of PCR products [95]. Each 25 μl PCR reaction contained the following mixture:

12 μl of MoBio PCR Water (Certified DNA-Free; Mo Bio Laboratories), 10 μl of 5-Prime Hot-

MasterMix (1×), 1 μl of forward primer (5 μM concentration, 200 pM final), 1 μl of Golay Bar-

code Tagged Reverse Primer (5 μM concentration, 200 pM final), and 1 μl of template DNA

[96]. The conditions for PCR were as follows: 94 ˚C for 3 min to denature the DNA, with 35

cycles at 94 ˚C for 45 s, 50 ˚C for 60 s, and 72 ˚C for 90 s, with a final extension of 10 min at 72

˚C to ensure complete amplification. Amplicons were quantified using PicoGreen (Invitrogen,

Grand Island, NY, USA) assays and a plate reader, followed by clean-up using UltraClean1

PCR Clean-Up Kit (Mo Bio Laboratories) and then quantification using Qubit readings (Invi-

trogen). The 16S rRNA gene samples were sequenced on an Illumina MiSeq platform (2 × 150

paired-end sequencing, V3 chemistry) at Argonne National Laboratory core sequencing facil-

ity according to Earth Microbiome Project (EMP) standard protocols [97].

16S rRNA gene sequencing data preprocessing and analysis

Raw sequences were pre-processed, quality filtered and analyzed using the next-generation

microbiome bioinformatics platform (QIIME2 version 2019.1 pipeline) according to the

developer’s suggestion [98]. We used the DADA2 algorithm [99] a software package wrapped

in QIIME2, to identify exact sequence variants (ESVs). Quality control, filtering low quality

regions of the sequences, by truncating them to 120 base pair length, identification and

removal of chimera sequences, merging paired end reads, which yielded the ESV feature table

(ESV table). Chloroplast and mitochondrial DNA were removed. Alpha and beta-diversity

analyses were performed in R using the phyloseq package [100]. Alpha diversity was calculated

by Shannon’s diversity index diversity [39]. Results were adjusted for BMI, age, gender and
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country. Principal coordinate analysis (PCoA) was performed based on weighted and

unweighted UniFrac distances, a method for computing differences between microbial com-

munities based on phylogenetic information [40]. Weighted UniFranc considered both ESVs

presence/absence and abundance distances, and unweighted UniFrac only considered ESVs

presence/absence. Permutational multivariate analysis of variance (PERMANOVA, R function

adonis (vegan, 999 permutations)) was used to analyze statistical differences in beta diversity

[41]. Pairwise tests were performed to determine which specific pairs of groups (e.g., normal

sleepers and short sleepers) differ from one another using the beta-group-significance com-

mand with the—p-pairwise parameter in QIIME2.

For taxonomic comparisons, relative abundances based on all obtained reads were used.

We used the QIIME2 plugin “q2-feature-classifier” and the Naïve Bayes classifier that was

trained on the metagenome annotation package Greengenes13.8 99% operational taxonomic

units (OTUs) full-length sequences to obtain the taxonomy for each ESV [101]. Significantly

differential ESVs were determined using the statistical framework called analysis of composi-

tion of microbiomes (ANCOM) [102] for two group comparisons. Benjamini–Hochberg false

discovery rate (fdr) correction was used to correct for multiple hypothesis testing [103]. Results

were adjusted for BMI, age, gender and country.

Metagenome functional predictions of the microbial pathways

We used Piphillin algorithm to predict the functional profiles of the microbiome [42]. Briefly,

this algorithm uses direct nearest-neighbor matching between 16S rRNA gene sequencing

datasets and microbial genomic databases to infer the metagenomic content of the samples.

Gene prediction was performed on ESVs table using online Piphillin (http://secondgenome.

com/Piphillin.).), with KEGG (2017) as reference database and 97% identity cut-off. Predicted

gene content and gene copy numbers within each genome were retrieved and classified in

terms of KEGG orthology (KOs) [104]. Results were adjusted for BMI, age, gender and coun-

try. Statistical analyses were performed in R. Student’s t-test (normally distributed) or Mann-

Whitney U test (not normally distributed) was used for to detect differentially abundant KOs

between two groups. FDR correction was used to correct for multiple hypothesis testing.

Network construction and topological feature analysis

To visualize the correlations in the network interface, we constructed a correlation matrix by

calculating all possible pairwise Spearman’s rank correlations between the normal-, short- and

long sleepers in the present study. To reduce rare ESVs in the data set, we removed ESVs with

relative abundances less than 0.01% of the total number of sequences. A correlation between

two ESVs was considered statistically robust if the Spearman’s correlation coefficient (ρ) was

>0.6 and the P-value was <0.05. To reduce the chances of obtaining false-positive results, the

P-values were adjusted with a multiple testing correction using the Benjamini–Hochberg

method [103]. The robust pairwise correlations formed their co-occurrence networks. The

nodes in this network represent ESVs and the edges that connect these nodes represent corre-

lations between ESVs. Network analyses were performed in R environment using VEGAN

[41], and igraph packages [105]. We calculated topological features for each node in the net-

work with the igraph package [105]. This feature set included betweenness centrality (the

number of shortest paths going through a node), closeness centrality (the number of steps

required to access all other nodes from a given node), and degree (the number of adjacent

edges). The betweenness centrality feature was used to measure the centrality of each node in

the network.
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Supporting information

S1 Fig. Alpha diversity (observed otu) from 16S rRNA gene sequence data between differ-

ent sleep groups; �� p< 0.01; ��� p < 0.001.

(JPG)

S2 Fig. Alpha diversity analysis (Shannon index) from 16S rRNA gene sequence data

shows no difference among normal sleepers (1) and short sleepers (0) and long sleepers (2)

in each country site. (A) USA, the United States of America, (B) RSA, South Africa (C) Gha-

naian and (D) Jamaican populations.

(JPG)

S3 Fig. Beta diversity analysis (weighted UniFrac distance metric) from 16S rRNA gene

sequence data shows no difference among normal sleepers (1) and short sleepers (0) and

long sleepers (2) in each country site. (A) USA, the United States of America, (B) RSA, South

Africa (C) Ghanaian and (D) Jamaican populations.

(JPG)

S4 Fig. Beta diversity analysis (unweighted UniFrac distance metric) from 16S rRNA gene

sequence data shows no difference among normal sleepers (1) and short sleepers (0) and

long sleepers (2) in each country site. (A) USA, the United States of America, (B) RSA, South

Africa (C) Ghanaian and (D) Jamaican populations.

(JPG)

S5 Fig. 16S rRNA gene sequence data shows a country-related physiological or environ-

mental influence change in the host is conducive to a less complex microbiota. (A) Alpha

diversity analysis (Shannon Index); (B) beta diversity analysis (weighted UniFrac distance met-

ric) from ��� p< 0.001.

(JPG)

S6 Fig. Predicted genes involved in butyrate biosynthesis pathways show that genes

involved in the lysine pathway are enriched in short sleepers, compared to normal sleepers

and long sleepers. K18012, 3,5-diaminohexanoate dehydrogenase; K18013, 3-keto-5-amino-

hexanoate cleavage enzyme. � p < 0.05.

(JPG)
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