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Abstract

Inverse modelling is a core element in geophysics and is used in other geoscientific fields as
well as in medical imaging, astrophysics and computer vision. In geophysics, the inverse prob-
lem aims at estimating the model parameters, describing a property field in the subsurface,
given measured indirect data that are contaminated with some level of noise. Inverse mod-
elling is generally split into deterministic and probabilistic methods. Deterministic methods
try to minimise an objective function, describing the misfit between observed and simulated
data and regularization constraints used to stabilise the solution, by following the gradient
towards the global minimum. While these methods are efficient, they are sensitive to the
choice of initial model and for complex, nonlinear problems, they might provide sub-optimal
solutions and limited uncertainty quantification. Probabilistic methods rely on sampling
the solution space and describe the solution as a random variable. They are more robust
than deterministic methods and can handle inverse problems of varying complexity, but are
generally computationally-intensive due to repeated calculations of the forward response.
This thesis proposes three approaches that aim to improve the efficiency of probabilistic
inversion methods by using (1) compact parameterization, (2) cheap surrogate models, (3)
gradient-based optimisation and (4) parallel computation. These components reduce either
the computational burden imposed by the forward solver, the overall number of forward
response computations or distribute the computation in a way that maximise performance.
The first approach leverages the first two factors. It considers a computationally cheap, but
simplified surrogate model as the forward solver and corrects the simulated data with a
modelling error generated by a generative adversarial network. The modelling error and
the subsurface model are both encoded in the low-dimensional latent spaces of generative
adversarial networks, reducing the number of parameters needed to be inferred. The second
approach, leverages the compact parameterization of generative adversarial networks and
variational autoencoders as well as the efficient optimisation offered by inverse autoregressive
flows and variational Bayesian inference. The flows in the form of a neural network are used
to parameterize the posterior distribution on the latent space of the deep generative models.
These parameters are trained through variational Bayesian inference and, at the end of the
training, the posterior can be effectively estimated and sampled from. The third approach
leverages parallel computation of efficient multiple-point statistics simulations, which are
conditioned on measured indirect data given a prior defined by a training image. These
three approaches are tested using synthetic travel-time tomography data from crosshole
ground-penetrating radar experiments. All three approaches demonstrate improvements in
computation time compared to widely used MCMC methods while providing comparable un-
certainty quantification. The thesis demonstrates the potential of incorporating techniques
from both machine learning and geostatistics to perform geophysical inversions. This fusion
of approaches opens new avenues for tackling complex inverse problems.
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Key words: Bayesian inversion, machine learning, deep generative models, variational infer-
ence, multiple-point statistics, ground-penetrating radar, geophysics.
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Résumé

La modélisation inverse est un élément essentiel de la géophysique et est utilisée dans
d’autres domaines géoscientifiques ainsi que dans l’imagerie médicale, l’astrophysique et la
vision par ordinateur. En géophysique, le problème inverse vise à estimer les paramètres du
modèle, décrivant un champ de propriétés dans le sous-sol, à partir de données indirectes
mesurées qui sont contaminées par un certain niveau de bruit. La modélisation inverse
est généralement divisée en méthodes déterministes et probabilistes. Les méthodes déter-
ministes tentent de minimiser une fonction objective, décrivant l’inadéquation entre les
données observées et simulées et les contraintes de régularisation utilisées pour stabiliser
la solution, en suivant le gradient vers le minimum global. Bien que ces méthodes soient
efficaces, elles sont sensibles au choix du modèle initial et, pour les problèmes complexes et
non linéaires, elles peuvent fournir des solutions sous-optimales et une quantification limi-
tée de l’incertitude. Les méthodes probabilistes reposent sur l’échantillonnage de l’espace
de solution et décrivent la solution comme une variable aléatoire. Elles sont plus robustes
que les méthodes déterministes et peuvent traiter des problèmes inverses de complexité
variable, mais sont généralement gourmandes en ressources informatiques en raison des
calculs répétés de la réponse directe. Cette thèse propose trois approches visant à améliorer
l’efficacité des méthodes d’inversion probabiliste en utilisant (1) une paramétrisation com-
pacte, (2) des modèles de substitution bon marché, (3) une optimisation basée sur le gradient
et (4) le calcul parallèle. Ces composants réduisent soit la charge de calcul imposée par le
solveur numérique, soit le nombre total de calculs de la réponse physique, soit distribuent
le calcul de manière à maximiser les performances. La première approche exploite les deux
premiers facteurs. Elle considère un modèle de substitution simplifié mais peu coûteux en
termes de calcul comme le solveur direct et corrige les données simulées avec une erreur de
modélisation générée par un réseaux antagonistes génératifs. L’erreur de modélisation et le
modèle de subsurface sont tous deux encodés dans les espaces latents de faible dimension
des réseaux antagonistes génératifs, ce qui réduit le nombre de paramètres à déduire. La se-
conde approche tire parti de la paramétrisation compacte des réseaux adversaires génératifs
et des autoencodeurs variationnels, ainsi que de l’optimisation efficace offerte par les flux
autorégressifs inverses et l’inférence bayésienne variationnelle. Les flux sous la forme d’un
réseau neuronal sont utilisés pour paramétrer la distribution postérieure sur l’espace latent
des modèles génératifs profonds. Ces paramètres sont entraînés par inférence bayésienne
variationnelle et, à la fin de l’entraînement, la distribution postérieure peut être efficacement
estimée et échantillonnée. La troisième approche exploite le calcul parallèle de simulations
statistiques efficaces à points multiples, qui sont conditionnées par des données indirectes
mesurées, compte tenu d’un a priori défini par une image d’entraînement. Ces trois mé-
thodes sont testées à l’aide de données synthétiques de tomographie de temps de parcours
provenant d’expériences de radar à pénétration de sol. Les trois approches démontrent une
amélioration du temps de calcul par rapport aux méthodes MCMC largement utilisées, tout
en fournissant une quantification comparable de l’incertitude. La thèse démontre le poten-
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tiel de l’incorporation de techniques d’apprentissage automatique et de géostatistique pour
effectuer des inversions géophysiques. Cette fusion d’approches ouvre de nouvelles voies
pour résoudre des problèmes inverses complexes.

Mots clés : Inversion bayésienne, apprentissage automatique, modèles génératifs profonds,
inférence variationnelle, statistiques à points multiples, radar à pénétration de sol, géophy-
sique.
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Résumé pour un public général

La modélisation inverse est un élément central de la géophysique et est utilisée pour trouver
un modèle de subsurface ou un ensemble de modèles d’une propriété physique en accord
avec les données mesurées et d’autres contraintes. La réponse physique reliant le champ de
propriétés du sous-sol aux données mesurées par un instrument peut être approximée par un
modèle mathématique ou numérique (calculable). Les modèles numériques nécessitent la
discrétisation du modèle de subsurface, c’est à dire la paramétrisation du modèle, en divisant
l’espace ou le temps en intervalles discrets. En simulant la réponse physique, également appe-
lée réponse directe, pour un ensemble spécifique de paramètres du modèle (une réalisation
souterraine) et en comparant les données obtenues avec les données observées lors d’une
expérience, nous pouvons quantifier dans quelle mesure les paramètres du modèle proposé
expliquent les données mesurées. En répétant ce processus avec différentes réalisations de la
subsurface, nous pouvons explorer lesquelle d’entre elles sont susceptible de bien décrire
la distribution des propriétés physiques. Les méthodes d’inversion se divisent en méthodes
déterministes et probabilistes. Nous considérons l’inversion probabiliste qui vise à trouver
une distribution de solutions en accord avec les données et les connaissances antérieures.
Les méthodes probabilistes sont très générales, mais elles sont souvent longues à calculer,
en raison du calcul répété du modèle numérique. Dans cette thèse, nous présentons des
approches de modélisation inverse qui améliorent l’efficacité des méthodes probabilistes
traditionnelles et nous introduisons de nouvelles approches efficaces. La première approche
décrit un moyen d’utiliser des solveurs à peu coûteux représentant une version plus simple
d’une réponse physique complexe, tout en tenant compte des erreurs résultant de cette
simplification. Pour ce faire, nous apprenons une paramétrisation de ces erreurs à l’aide
de modèles génératifs profonds, une technique d’apprentissage profond qui fait partie du
domaine de l’intelligence artificielle, et nous l’utilisons pour générer des erreurs afin de
corriger les données simulées au cours du processus d’inversion. La seconde approche est
basée sur la paramétrisation compacte de la subsurface par des modèles génératifs profonds
et une autre technique d’apprentissage profond qui approxime efficacement le postérieur en
utilisant l’optimisation basée sur le gradient et un modèle de flux transformant la distribution
initiale en celle d’intérêt. La dernière approche limite les simulations géostatistiques séquen-
tielles à la génération de réalisations de la subsurface qui correspondent étroitement aux
données mesurées. Ces simulations construisent progressivement un modèle de réalisation
de la subsurface, dans lequel les paramètres du modèle sont conditionnés à la fois par une
image affichant le modèle géologique souhaité et par les données mesurées. Comparées
aux méthodes d’inversion probabiliste traditionnelles, les trois approches ont démontré
une réduction significative du temps de calcul tout en obtenant des résultats d’une exacti-
tude similaire. Les approches développées dans la thèse créent de nouvelles opportunités et
démontrent comment l’intégration des méthodes développées dans l’apprentissage automa-
tique et les statistiques peut améliorer la performance des méthodes inverses géophysiques.
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Chapter 1

Introduction

In many scientific fields and particularly in geophysics, it is not possible to directly observe
the physical system or objects under investigation. Consequently, researchers often rely on
indirect observations to gain insights about unknown system properties and state variables
through inverse modelling (or simply inversion). While the forward problem aims to predict
measurement outcomes based on a specific experimental design and an informed model,
the inverse problem solves the opposite problem, namely, given observed data and a forward
model it estimates the model parameters (Tarantola, 2005). Inversion plays a crucial role in
various geoscientific fields including environmental and hydrogeological studies (Hubbard
and Rubin, 2000; Bagtzoglou and Atmadja, 2005; Milledge et al., 2012; Yongkai et al., 2022),
estimation of rock properties and reservoir characterization (Wilt and Alumbaugh, 2003;
Bosch et al., 2010) and mineral (Oldenburg and Pratt, 2007; Lelièvre et al., 2012) and oil and
gas exploration (Virieux and Operto, 2009). It serves as a valuable tool for decision making,
monitoring and designing procedures for addressing local and global challenges affecting
humans and ecological systems (Lazaratos and Marion, 1997; Wegener and Amin, 2019;
Maasakkers et al., 2021; Scheidt et al., 2018; Gallet et al., 2022; Hu et al., 2023).

The formulation and solution of an inverse problem can be complex and varies depending
on the problem at hand (Menke, 2018). Most geophysical inversion problems are ill-posed
as their solutions are either non-unique (finite data over continuous function) or unstable.
To obtain geologically reasonable and stable solutions, geophysicists apply different types
of regularisation constraints involving a priori geological or geophysical knowledge (Zh-
danov, 2015). Generally speaking, inversion techniques are split into either deterministic or
probabilistic. While deterministic inversion assumes that there is one true model to recover
and uncertainty quantification focuses on errors in its estimation due to data errors or pos-
sibly forward modelling errors, probabilistic inversions describe the properties of interest
in terms of random fields, implying that information about them is inherently uncertain.
Deterministic inversions are generally quick and for linear problems yield a global solution.
Conversely, nonlinear problems are often complex to address and might exhibit multiple
local "best" solutions (local minima), making it challenging to reach the global solution. In
such cases, linearization of the forward operator and an iterative updating scheme is needed.
These type of schemes are sensitive to the level of nonlinearity of the objective function to
be minimised and the choice of initial model, potentially leading to convergence to a local
minimum (Tarantola and Valette, 1982a; Tarantola, 2005).
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To circumvent the limitations of deterministic methods, global sampling techniques, such as
Monte Carlo methods, are often employed to explore the model space and search for solu-
tions in terms of distributions for nonlinear inversion problems. These methods explore a
stationary probability distribution by repeated sampling and offer full uncertainty quantifica-
tion and a higher chance of finding a global solution, yet they are computationally expensive.
Rather than randomly sampling the model space as in pure Monte Carlo methods (Kalos
and Whitlock, 2009), various algorithms use proposal distributions and acceptance rules to
speed up the convergence to the stationary distribution. Such algorithms provide significant
advantages, particularly in high-dimensional problems where a substantial portion of the
solution space is characterised by low probabilities (curse of dimensionality; Tarantola, 2005).
Nonetheless, these methods usually require hundreds of thousands of samples and may, for
computationally-expensive forward solvers take days and in some cases months to execute
(Hunziker et al., 2019; Solonen et al., 2012).

The limitations of deterministic inversion methods in terms of low robustness and limited
possibilities for uncertainty quantification, as well as the computationally-intensive nature
of standard probabilistic inversion methods, have motivated research to either enhance the
efficiency of existing techniques or developing new efficient methodologies that provide
reliable approximations and uncertainty quantification. Recent advancements in the fields
of machine learning and geostatistics have created significant opportunities to improve
geophysical inverse modelling, offering more accurate and efficient solutions to a range of
increasingly-complex inverse problems.

1.1 Machine learning in the geosciences

Machine learning (ML) methods have recently garnered tremendous interest within the
geoscientific community (Bergen et al., 2019) and geophysics in particular (Yu and Ma,
2021). Machine-learning techniques provide data-driven (and mostly black box) models
that can handle and synthesise large and complex datasets quickly and efficiently, for tasks
that would be overwhelming for humans. Machine-learning is split into supervised and
unsupervised learning. In supervised learning, the data are organised in labels and the
model is trained on these data labels. Examples for supervised learning methods are linear
regression, logistic regression, decision trees, support vector machines (SVM), and neural
networks (e.g. classification). Unsupervised learning on the other hand deals with unlabelled
data and is trained based on relationships or patterns observed in the data. Unsupervised
tasks such as clustering, dimensionality reduction and data generation are typically carried
out using various clustering techniques and neural networks.

Machine-learning techniques are being applied and adapted to various tasks in the geo-
sciences, ranging from pattern and object detection or segmentation, parameter estimation,
prediction, surrogate modelling and dimensionality reduction (Laloy et al., 2017; Karpatne
et al., 2018; Mosavi et al., 2018; Chevitarese et al., 2018; Jin et al., 2020; Hu et al., 2020; Joshi
et al., 2021; Guo et al., 2021). Furthermore, these techniques have demonstrated their effec-
tiveness in solving geophysical inverse problems both as a supplement to traditional methods
and as a stand alone approach (Reading et al., 2015; Zheng et al., 2019; Zhang and Alkhalifah,
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2020; Puzyrev and Swidinsky, 2021). In fact, geophysical inversion and machine learning
share many common aspects as they both rely on statisical theory and tools of numerical
analysis. Integrating machine learning approaches into the field of geophysics can bring
benefits, and geophysical inverse modelling can particularly benefit from advancements in
optimisation techniques, automatic-differentiation schemes and generative models devel-
oped in machine learning (Sambridge et al., 2007; Kim and Nakata, 2018; Margossian, 2019;
Laloy et al., 2019; Lopez-Alvis et al., 2021; Zhu et al., 2021; Sambridge et al., 2022; Valentine
and Sambridge, 2023).

Compared to classical physics-based models, ML models offer two significant advantages:
(1) they excel at capturing highly-nonlinear and complex relationships between input and
output variables, something that can be challenging for process-based physical models
that often require simplifications and (2) once trained, they allow for significantly faster
computation of a forward pass (response) compared to process-based models (Russell, 2019;
Zahura et al., 2020; Zhang et al., 2020). While they offer numerous advantages, ML models
also have certain disadvantages and limitations. They rely heavily on the quality, quantity,
and representativeness of training data. They do not only require availability of data, but
also data that represent the variability of the problem under consideration. Inadequate
variability or small datasets might lead to over-fitting and limited generalisation capabilities.
An additional major disadvantage of ML models, is their black box nature, which makes
interpretation and understanding of their predictions challenging.

Nevertheless, there have been several recent advancements that help alleviate these limi-
tations. Transfer learning enables the leveraging of knowledge from one task to enhance
the performance of related tasks and facilitates the re-usability of ML models (Yu and Ma,
2021). Theory-guided designs of machine learning models (Karpatne et al., 2017) and physics-
informed neural networks (PINNs; Raissi et al., 2019) integrate known domain knowledge
and physical laws and constraints, allowing models to learn solutions that honour the un-
derlying physical processes and exhibit generalisation capabilities even with limited data.
Additionally, attribution and interpretation methods provide insights into the contributions
and importance of input features in model predictions or outcomes, making ML models
more interpretable (Mamalakis et al., 2022; Toms et al., 2020). These advancements together
with the unique capabilities offered by ML models make ML highly suitable and appealing
for many geoscience applications.

1.2 The forward problem

A general formulation of a forward problem is:

d = g (θ)+ε, (1.1)

where g (·), the forward operator in geophysics is a mathematical representation of a geophys-
ical experiment that projects the model parameters θ in the model space into observable
quantities that can be compared with the observed data d. Here, ε represent errors associated
with the forward response. These include two types of errors: epistemic and aleatoric, both
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contribute to the overall uncertainty. The former is a result of factors such as measurement
bias, simplifications and assumptions in models, or incomplete understanding of the un-
derlying processes. These are often reducible through improved knowledge, or collection
of more as well as other types of data. The latter type of errors are associated with the in-
herent uncertainty in the system being studied. These arise from factors that are inherently
unpredictable, such as natural variability, measurement noise, or stochastic processes. Even
though these error sources cannot be reduced by the accumulation of more data or additional
information they can be quantified and accounted for statistically.

In this thesis, all the developed inversion approaches are tested for travel-time tomography
experiments using crosshole ground-penetrating radar (GPR). This geophysical technique
uses high-frequency electromagnetic waves to investigate structures and materials with ap-
plications mainly in the shallow subsurface. The basic principle of GPR involves transmitting
a short pulse of electromagnetic energy into the ground using an antenna. This pulse travels
as a wave through the subsurface and interacts with different materials and interfaces until a
trace is recorded by the receiver antenna (Jol, 2008). The measured quantity in travel-time
tomography is the first arrival of the signal to the receiver antenna. The governing equations
of electromagnetic waves are the Maxwell’s equations

∇×E =− iωµH (1.2)

∇×H =σE+ iωεE, (1.3)

represented here in the frequency domain, where E and H are the electric and magnetic
field vectors, ε, µ, and σ are the dielectric permittivity, magnetic permeability, and electrical
conductivity parameters, respectively, ω is angular frequency and i 2 =−1. As can be under-
stood from Eqs. 1.2-1.3, GPR responses are nonlinear by nature, and the electromagnetic
waves interact with the medium they pass through and, therefore, their velocity and path
can change depending on material properties (mainly electrical properties) causing wave
reflection, refraction, scattering, attenuation and dispersion.

There are several ways to simulate the response of GPR electromagnetic waves numerically,
depending on the purpose and desired accuracy. In this thesis, we rely on four types of
travel-time tomography solvers for crosshole applications: straight-ray, shortest path, finite
difference (Eikonal), and finite-difference time-domain, each based on different assumptions
regarding the physics of the forward problem. The first three approaches are based on the
ray-approximation, which describes the path travelled by electromagnetic waves as rays or
beams. The ray approximation (known as geometrical optics) is based on the observation
that for small wavelengths, a wave-field has the general characteristics of a plane wave, which
can be treated as a collection of rays. This approximation is valid under certain conditions,
particularly when the dimensions of objects and features in the subsurface are significantly
larger than the wavelength (Born and Wolf , 2013).

A straight-ray solver is the simplest, cheapest and least accurate approach among the four
solvers used here to model GPR responses. It makes two major assumptions: (1) the elec-
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tromagnetic wave can be described by rays and (2) ray-paths are independent of material
properties. The latter assumption implies linearity and straight paths between sources and
receivers. The forward response is calculated on a discretized slowness (inverse of velocity)
field, where the arrival time is an integration along the ray path of the ray length l times the
slowness s (Peterson, 2001):

t =∑
i

li · si . (1.4)

Another solver, based on the shortest path, is used to determine the most efficient route
between two points, considering a discretized slowness model and its available node points
(Dijkstra, 1959). The shortest path implementation used herein is available in PyGIMLi
(Rücker et al., 2017), an open-source library for multi-method modelling and inversion in
geophysics, and utilises secondary nodes (found on the edges and sides of the cells) to
enhance the accuracy of simulated travel times (Giroux and Larouche, 2013). Similar to the
straight-ray approach, the travel time is calculated by integrating along the ray path:

t =∑
i

li (s) · si , (1.5)

however, it is important to note that the ray path is influenced by the slowness model, making
it inherently nonlinear.

A solver based on a finite difference scheme, models the nonlinear response of the electro-
magnetic wave propagation by solving the Eikonal equation

∇t (x)2 = s(x)2, (1.6)

a partial differential equation (PDE) that relates the wavefront travel time to the spatial
coordinates in the model. In a finite difference approach, the Eikonal equation is discretized
with a grid of nodes (stencils) approximating the continuous spatial domain. In this thesis
we use the 2D finite difference algorithm introduced by Podvin and Lecomte (1991). This
algorithm is based on the Huygens’ principle and the plane wavefront approximation, which
treats every point on a wavefront as a secondary source of a spherical wavelet that propagates
outwards in all directions.

A widely used numerical method for simulating electromagnetic wave propagation is the
finite-difference time-domain (FDTD) approach. As opposed to the Eikonal solver, which
assumes infinite frequency, FDTD takes into consideration the frequency content of the
emitted signal. It approximates the model domain both in space and in time and solves
the Maxwell’s equations to model electromagnetic wave propagation. As it better describes
the finite wavelength of the wave it allows for the modelling of phenomena as diffraction,
interference and attenuation, while handling complex geometries, materials, and boundary
conditions. The algorithm used herein is a 2D MATLAB implementation by Irving and Knight
(2006) that can perform surface reflection and borehole GPR modeling. The simulation is
performed on a leapfrog, staggered-grid in which the electric and magnetic field components
are computed and updated with respect to each other at non-overlapping locations and
times.
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As can be expected, the computation times grow with the complexity of the solver. The
first three modelling approaches mentioned offer computational efficiency, making them
beneficial when frequent calculations of the forward response are needed. However, it is
important to acknowledge that using these simplified solvers introduces errors. These errors
can be notable when the simplifying assumptions do not hold true (e.g., small features, sharp
changes, etc.).

1.3 The deterministic inverse problem

For a linear over-determined inverse problem with Gaussian-distributed errors, a determin-
istic least-squares solution can be formulated as the minimisation of the squared residuals
between the model predictions and the observed data (assuming identically-distributed and
independent data errors) E = (d−Gθ)T (d−Gθ). Differentiating the objective function E and
setting its derivative to zero gives the following solution (Menke, 2015):

θest =
[
GT G

]−1
GT d. (1.7)

This minimisation yields a single best estimate θest that is optimal in terms of the data
fit. The least-squares solution minimises the L2 norm, also known as the Euclidean norm.
This process is equivalent to maximising the likelihood of observing the data under the
assumption of Gaussian errors (Menke, 2018). However, it is important to note that the
solution to Eq. (1.7) exists only when the observations are sufficient to uniquely determine
a solution. In practice, geophysical problems are often under-determined, resulting in an
infinite number of solutions that exhibit similar data fits. To address this issue and stabilise
the solution, additional constraints are incorporated into Eq. (1.7) through a process called
regularisation. By using different types of regularisation, one can impose smoothness or
other criteria on the solution, as well as similarity to some reference model (Tikhonov, 1963;
Lelièvre et al., 2009; Menke, 2018). The resulting solution is a compromise between fitting
the data and the regularisation. Determining the optimal balance between these two often
requires an iterative process of trial and error.

For nonlinear problems, the inverse solution is obtained by iteratively linearizing the forward
problem and relying on gradient information for minimisation. A widely used optimisation al-
gorithm is gradient-descent which iteratively updates the model’s parameters in the direction
of the steepest descent of the objective function, scaled by a step length. Other algorithms for
minimising the least-squares are the full Newton and Gauss-Newton methods, in which the
gradient is scaled by the inverse of the Hessian matrix H (second order derivative of E with
respect to the model parameters) or by an approximation of it H ≈ JT J (where J is the Jacobian,
a first order derivative of the forward operator with respect to the model parameters). The use
of the Hessian matrix or its approximation allows for considering second-order information,
which can potentially provide faster convergence and better optimisation results compared
to the gradient-descent method (Meju, 1994; Parker, 1994).

The solution obtained by these methods depends on the complexity of the problem and the
initial model (see Figure 1.1). If the initial model is far from the global minimum, and the ob-
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Figure 1.1: Illustration of the objective function for (a) linear and (b) nonlinear least-square
problems. For a linear problem, the objective function is convex with a clear global mini-
mum. For nonlinear problems, the objective function is non-convex, therefore, requiring
linearization. A deterministic inversion in that case is sensitive to the choice of initial model
as the objective function exhibits local minima. A close enough initial model (green circle)
would allow the inversion algorithm to find a global minima and a far away model (red circle)
would get stuck in a local minimum.

jective function exhibits high nonlinearity, there is a potential risk of the solution converging
to a local minimum instead (Figure 1.1b). Another challenge arises when attempting to quan-
tify uncertainty in the context of linearized operations. In such cases, the ability to accurately
quantify uncertainty using linearized models is limited compared to the full complexity of the
problem (Alumbaugh and Newman, 2000). One should also note that these approaches are
limited to problems where data errors and regularisation measures can be assumed to have
Gaussian distributions. Since these methods only work when obtaining a unique solution
(typically the model that fits the data with the strongest regularisation constraints imposed),
they offer limited abilities to assess the types of models of less regularised nature that are in
agreement with the data.

Due to the limitations of deterministic inverse methods when confronting nonlinear prob-
lems and the growth of computer resources, probabilistic inversion methods are increasingly
adopted (Tarantola and Valette, 1982b). These approaches offer a more robust and consistent
framework for addressing the challenges associated with nonlinear inverse problems.
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1.4 Bayesian inference

Bayesian inference is a statistical framework for updating our beliefs or knowledge about
unknown parameters, based on new evidence or observational data. Considering a scenario
where we have a set of N observations, denoted as d = (d1,d2, ..,dN ), and we want to estimate
a set of M parameters, denoted as θ = (θ1,θ2, ..,θM ). We can calculate the probability density
function (PDF) of the parameters given the observations, known as the posterior, by com-
bining a prior PDF and the conditional PDF of the data given the parameters using Bayes’
rule:

p(θ|d) = p(d|θ)p(θ)

p(d)
. (1.8)

The prior PDF p(θ) represents our knowledge or beliefs about the parameters θ before we
consider d. One might have knowledge about the range of values that θ can take on and
perhaps also information about the distribution of different values within that range. The
likelihood function p(d|θ), is a conditional PDF that quantifies how well the model, defined
by the parameter values θ, explains the observed data d. The choice of likelihood function
depends on the problem at hand and the specific characteristics of the data and their errors.
Several common choices of likelihood functions include the Gaussian, binomial, Poisson,
and exponential distributions, with the Gaussian likelihood being the most frequently used
when dealing with continuous data. The term p(d), referred to as the evidence, is a marginal
likelihood over all possible values of θ

p(d) =
∫

p(d|θ)p(θ)dθ. (1.9)

This normalising constant scales the posterior distribution to ensure that it is a valid distribu-
tion. In many cases, the evidence is intractable or very difficult to compute. As a result, when
the model parameterization remains constant, implying that p(d) is constant, and the goal is
to approximate the posterior, the evidence is simply ignored. In this scenario, the posterior
distribution is proportional to the product of the likelihood and the prior:

p(θ|d) ∝ p(d|θ)p(θ). (1.10)

By disregarding the evidence, we can focus on approximating the relative posterior prob-
abilities of different model realisations without explicitly computing the normalising con-
stant. This makes Bayesian inference simpler using, for example, Monte Carlo techniques
or variational inference, which provide approximate posterior distributions based on the
proportional relationship stated above.

When relative posterior probabilities are insufficient or when comparing different conceptual
models (Bayesian model selection; Brunetti et al., 2017, 2019), it becomes necessary to
consider the evidence, which may need to be estimated. When the evidence cannot be
calculated analytically, various techniques can be employed, such as brute-force Monte
Carlo sampling (BFMC; Hammersley and Handscomb, 1964), nested sampling (Skilling, 2006),
annealed importance sampling (AIS; Neal, 2001), power posteriors (Friel and Pettitt, 2008)
and sequential Monte Carlo (SMC) methods (Friel and Wyse, 2012). Evidence estimation
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falls outside the scope of this this thesis that primarily focuses on posterior approximation
methods.

A general and straightforward approach to generate independent samples from the posterior
distribution is rejection sampling (Figure 1.2a). In this algorithm, model proposals θpr op are
drawn from a simple proposal distribution g (θ) and are accepted or rejected according to an
acceptance probability. The acceptance probability is determined by drawing a sample from
u ∼U (0,1) and for a constant pre-determined bound c, the proposed model is excepted if

u > p(θpr op |d)
cg (θpr op ) , otherwise it is rejected. The proposal distribution g (θ) should be chosen such

that it covers the support of the target distribution. Although rejection sampling ensures that
the accepted samples are distributed according to the target distribution, the efficiency of
the algorithm depends heavily on the choice of the proposal distribution and the bounding
constant (Ripley, 2009). Additionally, it often suffers from low acceptance rates making it
inefficient and the time required to generate an adequate number of samples from the target
distribution is unknown (Luengo et al., 2020).

A more efficient way to approximate the posterior is to use methods that prioritise exploita-
tion, such as Markov chain Monte Carlo (MCMC; Robert et al., 1999) algorithms. These
algorithms effectively explore the parameter space while enhancing efficiency by selectively
sampling regions characterised by higher posterior probability.

1.4.1 Markov chain Monte Carlo

Markov chain Monte Carlo is a subset of Monte Carlo methods that construct a Markov chain
with the desired target distribution π(θ) as its equilibrium distribution (Robert et al., 1999).
In this thesis, the target distribution is the posterior from Eq. (1.8), thus, π(θ) = p(θ|d). As
the name suggests, MCMC samplers rely on the dependence between subsequent states in
the chain (Brooks et al., 2011). The model parameters θ are treated as random variables, and
the Markov chains are viewed as stochastic processes. A single or multiple MCMC chains
are initialised with random values within the support of the prior distribution. They are
then iteratively evolving by making model proposals in the form of small perturbations to
the current state of the parameters. The new model proposal is subsequently accepted or
rejected based on a probabilistic criterion. After an initial burn-in period (the period in which
the chains are becoming independent of their initial state), the output of an MCMC algorithm
is a sequence of correlated samples from the posterior distribution which can be used to
calculate posterior distribution statistics as well as making predictions (Figure 1.2b). This
methodology provides a way to draw samples from high-dimensional parameter spaces and
complex posterior distributions without the need for explicit evidence calculations (Eq. 1.9).

In order to guarantee the convergence of the chains to their target distribution, they must
maintain detailed balance and ergodicity. Detailed balance requires that the probability
of transitioning between states with respect to the stationary distribution π is equal, such
that π(θi )p(θi → θ j ) = π(θ j )p(θ j → θi ) (Mosegaard and Sambridge, 2002) and ergodicity
ensures that the chain can explore the entire parameter space and reach any state with a
non-zero probability. If an algorithm satisfies these two conditions, it will converge to the
target distribution as long as their chains run for a sufficient duration, which in practice may
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Figure 1.2: Illustration of (a) rejection sampling, (b) MCMC and (c) Variational inference.
The blue curve in (a)-(c) is the posterior PDF p(θ|d). The orange curve in (a) is the proposal
distribution of the rejection sampling algorithm with the blue and orange dots being accepted
and rejected samples. In (b), four MCMC chains are evolving simultaneously, where green,
blue and red dots represent prior, accepted and rejected samples. The blue histogram
under the blue curve in (b) is the posterior approximation using MCMC samples. The green
distribution in (c) is a variational distribution that evolves to approximate the posterior PDF
by learning its parameters.

be unacceptably long. A widely used and notable example of such a MCMC algorithm is the
Metropolis-Hastings method.

In the Metropolis-Hastings algorithm, developed by Metropolis and Ulam (1949), Metropolis
et al. (1953), and Hastings (1970), moves from the current state to the next state of the chain
are proposed according to some proposal distribution q(θpr op |θcur r ). Moves are accepted or
rejected according to the acceptance probability

Paccept = min

(
1,

p(θpr op |d)q(θcur r |θpr op )

p(θcur r |d)q(θpr op |θcur r )

)
. (1.11)

In the special case where the the proposal distribution is symmetric such that q(θpr op |θcur r ) =
q(θcur r |θpr op ), the acceptance probability reduces to Paccept = min

(
1,

p(θpr op |d)
p(θcur r |d)

)
(Metropolis

algorithm; Metropolis and Ulam, 1949). The performance and efficiency of the Metropolis-
Hastings algorithm depend on factors such as the choice of the proposal distribution, the
tuning of the proposal variance, and the convergence diagnostics used to assess the quality
of the samples (Cowles and Carlin, 1996; Laloy and Vrugt, 2012).
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A special case of the Metropolis-Hastings algorithm is the Gibbs sampler (Geman and Geman,
1984) where the acceptance probability of model proposals is always one (i.e., Paccept = 1;
Gelman, 1992; Hitchcock, 2003). Instead of sampling from a joint multivariate distribution,
the Gibbs sampler obtains samples from the marginal, conditional distributions. The Gibbs
sampler works by sampling from the conditional distributions of each variable given the
values of the other variables. A full cycle of the Gibbs sampler is obtained by iteratively updat-
ing all the variables p(θi |θ1, ..,θi−1,θi+1, ..,θm). This however, requires that the conditional
probabilities are readily available and can be effectively sampled from. An extension to Gibbs
sampling is sequential Gibbs sampling (Hansen et al., 2012, 2010) in which sequential simu-
lations are used to draw samples from a two- or multiple-point statistics (see Section 1.5.1)
representation of the conditional prior distribution. Such an implementation of the Gibbs
sampler can be used within the extended Metropolis algorithm (Mosegaard and Tarantola,
1995), where the acceptance probability becomes the ratio of likelihoods between proposed
and current states.

Traditional MCMC algorithms, such as the Metropolis-Hastings and Gibbs sampling algo-
rithms, use pre-defined proposal distributions throughout the entire simulation. However,
these fixed proposals may not be optimal for efficiently exploring the posterior distribution,
especially when the distribution has complex or multi-modal structures. Adaptive MCMC
methods address this limitation by continuously updating the proposal distribution or tuning
parameters based on the observed behaviour of the chain. The adaptation can be done in
various ways, but the general idea is to use the information gathered from the chain to modify
the proposal distribution to improve the exploration of the posterior distribution. Over the
years, adaptive variants of the Metropolis algorithm have been developed, including adaptive
Metropolis (AM; Haario et al., 2001), delayed rejection adaptive Metropolis (DRAM; Haario
et al., 2006), differential evolution Markov chain (DE-MC; Braak, 2006), differential evolution
adaptive Metropolis (DREAM; Vrugt et al., 2008), DREAM(zs) and multiple-try DREAM(zs)

(MT-DREAM(zs); Laloy and Vrugt, 2012). These adaptive methods aim to reduce the burn-in
period, improve mixing between the chains and enhance convergence.

One popular adaptive MCMC algorithm is Hamiltonian Monte Carlo (HMC; Duane et al.,
1987; Neal, 2011). It offers improved efficiency when sampling from complex probability
distributions by combining ideas from Hamiltonian dynamics and Metropolis- Hastings.
This algorithm consists of two main steps: a simulation period and a Metropolis-Hastings
acceptance-rejection step. During the simulation period the algorithm simulates Hamilto-
nian dynamics using numerical integration methods, such as the leapfrog algorithm. This
involves iteratively updating the momentum and position variables in Hamilton’s equations
over a fixed number of time steps, while preserving the total energy of the system. The
final state resulting from the simulation is proposed as the new state and is accepted or
rejected with some probability depending on the difference in energy between the current
and proposed states. One key advantage of HMC is that it can propose moves to distant
states as long as energy is conserved, which reduces the correlation between consecutive
sampled states. This property enables more efficient exploration of the target distribution
compared to traditional random-walk based MCMC algorithms. However, HMC requires the
calculation of the gradient of the log-posterior with respect to the model parameters, which
can be computationally expensive for complex models. Additionally, selecting appropriate
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parameters for the simulation period can be non-trivial and impact the algorithm’s efficiency.
Advancements in automatic differentiation strategies (Griewank and Walther, 2008) can help
alleviate the former issue while extensions to HMC, such as the No U-Turn Sampler (NUTS)
(Hoffman and Gelman, 2014), aim to address the latter.

1.4.2 Variational inference

Variational inference is a family of techniques used to approximate intractable target distribu-
tions (Bishop and Nasrabadi, 2006). It offers a computationally efficient alternative to more
general Bayesian inference methods, such as MCMC. Instead of employing a random walk,
variational inference, applied to Bayesian problems, approximates the posterior distribution
by minimising the difference between a variational distribution and the true distribution.
The variational distribution is typically a simpler distribution chosen from a parameterised
family of distributions Q. The approximation is formulated as an optimisation problem,
where the objective is to find the set of parameters q ∈Q that minimises the Kullback-Leibler
Divergence (KLD; Kullback and Leibler, 1951), which is a measure of similarity between
distributions (Figure 1.2c). As the marginal likelihood (evidence) is a constant, the KLD can
be minimised by iteratively maximising the evidence lower bound (ELBO):

log p(d) = ELBO +DK L(qφ(θ)||p(θ|d)), (1.12)

where ELBO = Eq
[
log p(θ,d)

]−Eq
[
log qφ(θ)

]
. The expectation terms and their gradients

can be approximated using a Monte Carlo estimator, which involves drawing samples from
the variational distribution and the optimisation of the variational parameters is achieved
through gradient-based techniques. Stochastic variational inference (SVI; Hoffman et al.,
2013) is an efficient and scalable algorithm for performing variational inference. It uses
natural gradients (gradients defined in the Riemannian space rather than in the Euclidean
space) over a random mini-batch of samples to perform gradient ascent/descent, thereby,
enhancing the optimisation process.

Variational inference has been widely adopted across numerous fields (Blei et al., 2017 and
references therein). In geophysics, it remains relatively understudied despite its potential for
solving geophysical inverse problems (Zhang et al., 2021b; Valentine and Sambridge, 2023).
Recent applications have demonstrated the effectiveness of variational inference in travel
time tomography (Zhang and Curtis, 2020a), full-waveform inversion (Zhang and Curtis,
2020b), seismic image denoising (Rizzuti et al., 2020), well-log prediction (Feng et al., 2021),
and hydrology (Ramgraber et al., 2021). Notably, many of these examples employ the Stein
variational gradient descent (SVGD; Liu and Wang, 2016), a particle-based method that
differs from traditional parametric variational inference algorithms. In addition, there is a
growing interest in applying variational inference to train neural networks (NNs) (Rizzuti
et al., 2020; Lopez-Alvis et al., 2021; Zhao et al., 2022).
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1.5 Conceptual models and geological realism

Not all models obtained by inversion are meaningful or relevant for geoscientific purposes
(Lange et al., 2012). Models should not only be consistent with the observed data but also
provide a realistic depiction of the physical property. For this reason it is essential to develop
inversion approaches that can handle advanced and geologically-realistic priors.

A conceptual model is a simplified representation of a system or process that aims to capture
the essential features or behaviours. It can be a geological description of spatial heterogeneity
or the governing equations that describe the processes involved. In the context of this thesis,
the term "conceptual models" specifically refers to the former and will be discussed in relation
to the prior PDF.

The most basic representation of the prior is simply a uniform distribution with problem
specific bounds. However, this representation is the least informative and one that maximises
the entropy (Gray, 2011). A slightly more informative prior is a two-point geostatistical model
defined by a mean and covariance assuming the subsurface structure to be a multivariate
Gaussian. Nevertheless, these types of priors often fail to produce spatial models that reflect
geological reality, and may even lead to incorrect predictions (Gómez-Hernández and Wen,
1998). This can become extremely important, for instance in flow and transport models,
where two-points statistics poorly represents the connectivity of high-permeability values
(Zinn and Harvey, 2003; Jankovic et al., 2017 and reference therein). Over the past two decades,
significant progress has been made in the fields of geostatistics and machine learning in
capturing and representing higher-order statistics of geological models.

1.5.1 Geostatistical models

Geostatistical techniques use statistical models of random functions and variables to account
for the uncertainty associated with simulating and estimating spatial variability. Traditional
geostatistical methods like kriging and various simulation techniques such as sequential
Gaussian simulations used in the geosciences (Matheron, 1963; Azevedo and Soares, 2017;
Sagar et al., 2018) are primarily based on variograms and represent two-point statistics.
While these methods offer a straightforward and mathematically understandable approach
to incorporating prior knowledge (Hansen et al., 2006; Linde et al., 2015a), they may not
adequately address the complexity of the data (Mariethoz, 2018; Tahmasebi, 2018). The
exploration of multiple-point statistics (MPS) began with early contributions from Deutsch
(1992) and Guardiano and Srivastava (1993). In particular, Guardiano and Srivastava (1993)
introduced the ENESIM algorithm enabling the reproduction of multiple-point statistics
learned from a training image (TI). In the context of this thesis, a training image is a geological
or geophysical representation that acts as a template or a reference that contains the desired
spatial patterns and geological structures (i.e. channels, layers, or facies).

The idea of MPS is to consider higher-order interactions among multiple data points within a
defined neighbourhood (Hu and Chugunova, 2008). MPS algorithms generate simulations
by sequentially sampling multiple-point patterns from a TI that is consistent with a prior
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Figure 1.3: Illustration of (a) multiple-point statistics (MPS) and (b) deep generative model
(DGM) simulations. In MPS, the simulation grid is populated sequentially based on patterns
borrowed from a TI. For each simulated location x (red square), the TI is scanned to find a
pattern (data event) that is similar to the one in the neighbourhood around x (dashed circle).
In DGMs the generating transformation G (generator in generative adversarial networks and
decoder in variational autoencoders) maps random variables Z in the low-dimensional latent
space into a high-dimensional image space to generate random realisations. Typically, the
latent variables in DGMs are chosen to follow a multivariate Gaussian or uniform distribution
and by sampling different values for Z, DGMs can produce a wide range of realisations,
including ones that are not present in the TI.

geological conceptualisation. To simulate a value at location x, the TI is scanned to identify
occurrences of observed values at specific locations or points in the neighbourhood of x (data
event; see Figure 1.3a). The values at location x associated with each identified occurrence in
the TI are used to construct a conditional distribution p(Z (x)|Z (x1, .., Z (xn)) from which Z (x)
is drawn to fill the value at location x in the simulation grid. This procedure is repeated for all
the points in the simulation grid. The resulting simulations reproduce the spatial patterns
and complex structures observed in the training image.

The ENESIM algorithm of Guardiano and Srivastava (1993) requires scanning the TI for each
simulated location in the grid to build a conditional distribution. However, this is computa-
tionally intensive and impractical. To address this limitation, more advanced algorithms have
been developed that use search trees. These algorithms scan the TI only once and organise
patterns at different distances from a central location as nodes in a tree-like diagram (Strebelle
and Remy, 2005). This allows for efficient retrieval of conditional histograms corresponding
to different levels in the tree. However, these algorithms are typically designed for binary
and categorical variables, and cannot handle continuous variables. The direct sampling (DS)
introduced by Mariethoz et al. (2010a), allows direct sampling from the TI avoiding the storage
of conditional distributions including for continuous variables. It defines a distance metric
for different types of variables and a threshold in case the exact pattern is not found. This
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random search and direct sampling from the TI is a prominent advantage of DS, however, it
leads to unpredictable computational time and does not scale well to new evolving hardware.
QuickSampling (QS; Gravey and Mariethoz, 2020), an efficient pixel-based MPS algorithm,
leverages decomposition of standard distance metrics and fast Fourier transforms to compute
a mismatch map between the data event in the simulation grid and the TI. Candidate values
are sorted in ascending order of mismatch and one candidate is drawn according to a user
pre-defined rank probability. This algorithm offers simulation quality that is comparable to
DS, while taking advantage of available resources and providing a predictable computational
time for a given TI size (Gravey and Mariethoz, 2020).

The finite nature of MPS priors imposes a significant limitation on uncertainty quantification
because the number of patterns available is limited and extreme events cannot be gener-
ated beyond what is present in the training image. However, despite this constraint, MPS
algorithms serve as valuable tools for representing conceptual models that exhibit complex
pattern behaviours. In fact, there is a growing interest in integrating MPS algorithms into
various inference frameworks (Alcolea and Renard, 2010; Cordua et al., 2012; Lochbühler et al.,
2014; Zahner et al., 2016; Brunetti et al., 2019).

1.5.2 Generative models

A generative model is a mathematical or computational model that enables the generation
of new samples representing a distribution of an underlying process. In the context of deep
generative models (DGMs), these models are data-based deep neural networks that learn
the statistical properties, patterns, and structures of a given training dataset or image. By
capturing the essence of the data, DGMs generate new samples with similar characteristics as
the original dataset. Various types of DGMs exist (Bond-Taylor et al., 2022); two well-known
ones that have gained significant popularity in the geosciences are generative adversarial
networks (GANs; Goodfellow et al., 2014) and variational autoencoders (VAEs; Kingma and
Welling, 2014).

GANs are composed of two main components: a generator and a discriminator. The generator
aims to transform random noise samples from a distribution of latent variables to data
samples that follows some real data distribution, while the discriminator tries to distinguish
between the real data (coming from a training dataset) and the generated data (coming
from the generator). The generator and discriminator are trained together in a competitive
(adversarial) process, whereby the generator improves its ability to generate data samples by
learning from the feedback provided by the discriminator.

Autoencoders are also composed of two main components: an encoder and a decoder. Unlike
GANs, autoencoders do not use adversarial training. Instead, the encoder maps input data
to a low-dimensional representation in a latent space, where it learns a distribution over
the latent variables. The decoder, in turn, reconstructs the data from the latent space. In
traditional autoencoders, the autoencoder transformations is trained by minimising a misfit
function between the input and output data. This leads to an unknown, unstructured latent
space. An improved version of autoencoders that forces a structure on the latent space is
the variational autoencoder. The VAE uses variational Bayesian inference to train the two
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networks. With the same principle as in section 1.4.2, the VAE is trained by maximising the
ELBO which is composed of a reconstruction error and a regularisation term encouraging
the encoded distribution to be close to some prior (typically standard normal distribution).

Compared to MPS, DGMs have several advantages. First, DGMs use a continuous prior
probability distribution to generate realisations (Figure 1.3), therefore, are able to produce
patterns that are not necessarily present in the training image/dataset. Second, they pro-
vide model parameterization, therefore, allow a direct continuous perturbation of model
parameters that is essential in some inversion algorithms (e.g. gradient-based; Laloy et al.,
2019; Lopez-Alvis et al., 2021). In addition to their data generation capabilities, GANs and
VAEs offer a significant advantage: the ability to reduce the model dimension by using a
low-dimensional latent space. As opposed to other dimensionality-reduction techniques (e.g.
principal component analysis, discrete cosine transform and singular value decomposition),
DGMs can handle strongly nonlinear relationships and provide random samples that are in
agreement with the dataset on which they were trained (Laloy et al., 2017). Depending on
the spatial correlation in the training samples, dimensionality reduction can be substantial,
resulting sometimes in a difference of more than four orders of magnitude between the sizes
of the latent and high-dimensional spaces. Due to their ability to rapidly generate realisa-
tions (orders of magnitude faster than MPS) and perform inference in a lower-dimensional
latent space, DGMs present a substantial reduction in computational demand, especially
for sampling methods such as MCMC (Laloy et al., 2017, 2018). Despite the advantages of
DGMs, they require large training datasets and time for training, involving tasks such as
building the network architecture through trial and error and the actual training process. The
dimensionality of the latent space, for example, is one of the hyperparameters and can vary
depending on the problem being addressed, the spatial correlation in the training samples
and the DGM used. Moreover, compared to MPS, conditioning realisations to hard data is
not as straightforward in DGMs.

Both GANs and VAEs have proven to be versatile tools in a range of applications due to
their representation and dimensionality reduction capabilities. They have been successfully
applied in signal processing tasks (Si et al., 2020; Siahkoohi et al., 2019), data conditioning
scenarios (Zhang et al., 2021a; Dupont et al., 2018), as well as for enhanced representation in
ensemble and sampling methods (Scheiter et al., 2022). Furthermore, these models have been
used in prior and posterior parameterizations, enabling efficient inversion and estimation
of model parameters (Laloy et al., 2017, 2018; Canchumuni et al., 2019; Mosser et al., 2020;
Zheng et al., 2020; McAliley and Li, 2021).

A third type of generative model considered in this thesis is flow based models, referred to as
normalising flows (Papamakarios et al., 2021). These models are based on invertible, smooth
transformations, mapping samples from a simple distribution to a target distribution. The
transformation is learned such that the target distribution becomes an approximation to
an otherwise intractable distribution. A key advantage of normalising flows arises from the
use of invertible transformations. This property enables density estimation and efficient
sampling from the learned distribution. However, this property is also a limiting factor as it
requires the input dimension to be equal to the output dimension. As a consequence, these
models might scale poorly to high-dimensional problems and, therefore, may be considered
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less attractive as generators compared to GANs and VAEs while still being very attractive for
inversion-purposes.

1.6 Objectives and outline

Sampling-based methods such as MCMC used to approximate distribution densities often
suffer from excessive computing times. This happens as they typically require a large number
of samples to explore the posterior and accurately approximate it. Generating each sample
involves a model proposal step that can be expensive (e.g., MPS) and the evaluation of
the forward response that can be demanding when considering elaborate forward models.
This thesis aims to improve existing methods, such as MCMC, or introducing new efficient
approaches to perform inverse modelling for geophysical applications.

Improved efficiency can be achieved by: (1) low-dimensional parameterizations of the prior,
(2) reducing the computational requirements associated with the forward response, (3) min-
imising the total number of forward response computations needed and (4) parallelization of
computation. In terms of prior representations, both MPS and DGMs offer distinct advan-
tages and disadvantages. MPS allows for easy sampling of various priors and straightforward
conditioning to hard data while modifying a prior would necessitate retraining of the DGM,
and conditioning to hard data is challenging. On the other hand, DGMs provide a compact
parameterization of the prior and fast model proposals that are compatible with the majority
of available inverse modelling methods as prior probabilities can be calculated and gradients
with respect to model parameters are easy to obtain. The use of either MPS or DGMs is
subjected to the objectives and requirement of the inverse problem. In this thesis, both MPS
and DGMs are employed as tools for representing and sampling from the prior distribution,
thereby, preserving geological realism.

The second point mentioned above can be addressed by surrogate modelling. Nevertheless,
using computationally-efficient yet simplified forward solvers, such as those described in
section 1.2, come with a price: modelling errors. These errors have to be accounted for in
order to avoid bias and over-confident estimations (Brynjarsdóttir and O-Hagan, 2014). We
explore the idea of encoding the model errors arising from surrogate modelling in the latent
space of a DGM, and simultaneously inferring both the subsurface model (also encoded in
the latent space of a DGM) and the modelling errors (Chapter 2). The improvement has two
aspects. First, by encoding both the subsurface model and the model error in a compact,
low-dimensional space, there is a substantial reduction in the number of parameters to be
inferred. Second, the use of an efficient solver that is significantly faster than its high-fidelity
counterpart allows for important gains in computing time.

To achieve a reduction in the number of forward responses, one can leverage gradient in-
formation. While gradient-based inversion methods are known for their efficiency due to
their explorative nature, they are sensitive to the initial model and can encounter local min-
ima when employed for nonlinear problems (Section 1.3). This issue becomes even more
pronounced when dealing with highly nonlinear transformations, such as those used in
DGMs (Laloy et al., 2019). We explore how to exploit the advantages of methods that combine
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stochastic aspects with gradient-based optimisation to gain an efficient yet robust approach
for inferring model parameters encoded in the latent space of a DGM (as in Chapter 3). By in-
corporating gradient information, the model parameter space can be efficiently explored. By
estimating gradients using random samples, the limitations of purely deterministic methods
can be mitigated, as the gradients are defined over a larger support.

A different approach that avoids elaborate sampling to explore the posterior and is fully
stochastic, is to condition sequential simulations to indirect geophysical data. The objective
here is to develop a methodology that enables such conditioning. In this approach, the
number of forward evaluations are finite and known (the number of model cells) while
the simulation can be performed using efficient MPS schemes (Chapter 4). An additional
advantage of this approach is that individual simulation runs are independent of each other,
allowing them to be executed in parallel. This leads us to the aspect of parallelism. The
parallelization of MCMC samplers is limited by the number of chains employed (provided
that the individual forward solvers are not parallelized as, for example, in Hunziker et al.
(2019)), as the sampling process occurs sequentially within each chain. The objective of this
thesis is to introduce methods that can be effectively scaled to high-dimensional problems,
enabling the distribution of work across available computational resources (as discussed in
Chapters 3 and 4).

This thesis touches on each of the aforementioned points and include work that was pub-
lished in peer-reviewed journals (Chapters 2 and 3) and work that is soon to be submitted
(Chapter 4). It is outlined as follows:

Chapter 2 introduces an approach to account for modelling errors that arise when using
surrogate models to reduce the computational cost of MCMC sampling. The model error
represents the discrepancy between two fidelity-varying forwards solvers. The model error as
well as the model are encoded into two separate low-dimensional, latent spaces of a GAN.
During each MCMC step, the simple low-fidelity solver is used while the observed (test) data
are obtained using a high-fidelity solver. The model error realisation, generated by the GAN
is subtracted from the forward response to correct the simulated data before being compared
to the observed data. The results of the MCMC inversions are estimates of the posterior PDFs
of the model and the model errors. We compare this approach with inversion approaches in
which model errors are either not considered or considered by inflating the error term in the
likelihood function using an error covariance model.

Chapter 3 introduces an approach to speed up the inversion process by using inverse autore-
gressive flows (a type of normalising flows) and variational Bayes to approximate the posterior
in the latent space of generative models. In this approach a transformation, representing a
mapping between a standard normal distribution and a target distribution with which the
posterior distribution is approximated, is trained using variational Bayes. The posterior is
approximated for the model parameters in the latent spaces of either a GAN or a VAE. We
compare this approach with MCMC sampling in terms of performance and computational
time.

Chapter 4 presents a new inversion approach that is based on conditioning MPS simulations
to indirect geophysical (linear) data. During the simulation, the MPS algorithm consid-
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ered (QS) provides candidate values sampled according to a TI for which likelihoods are
approximated. The likelihood approximation is based on kriging, where the unknown model
parameters (not yet simulated) are conditional on known as well as the candidate samples.
A value is assigned to a simulated location in the simulation grid by drawing one candidate
proportionally to the approximated likelihood. One complete conditional realisation is con-
sidered a draw from the posterior. Simulation runs are independent and can be executed
in parallel and used to estimate posterior statistics at much shorter times than when using
MCMC.

Chapter 5 provides a summary of the thesis as well as general conclusions, remarks on
limitations and an outlook.

Contribution statement: I had the main responsibility for the development of all research
projects (Chapters 2, 3 and 4) in this thesis, including conceptualisation, methodology,
software implementation, formal analysis and writing the original draft of the manuscripts.

Code availability: The SGAN-ME, Neural-transport and IDCS codes are available at the
following GitHub repository: https://github.com/ShiLevy.
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Monte Carlo inversion
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Abstract

Most geophysical inverse problems are nonlinear and rely upon numerical forward solvers
involving discretization and simplified representations of the underlying physics. As a result,
forward modeling errors are inevitable. In practice, such model errors tend to be either
completely ignored, which leads to biased and over-confident inversion results, or only partly
taken into account using restrictive Gaussian assumptions. Here, we rely on deep generative
neural networks to learn problem-specific low-dimensional probabilistic representations of
the discrepancy between high-fidelity and low-fidelity forward solvers. These representations
are then used to probabilistically invert for the model error jointly with the target geophys-
ical property field, using the computationally-cheap, low-fidelity forward solver. To this
end, we combine a Markov-chain-Monte-Carlo (MCMC) inversion algorithm with a trained
convolutional neural network of the spatial generative adversarial network (SGAN) type,
whereby at each MCMC step, the simulated low-fidelity forward response is corrected using
a proposed model-error realization. Considering the crosshole ground-penetrating radar
traveltime tomography inverse problem, we train SGAN networks on traveltime discrepancy
images between: (1) curved-ray (high fidelity) and straight-ray (low fidelity) forward solvers;
and (2) finite-difference-time-domain (high fidelity) and straight-ray (low fidelity) forward
solvers. We demonstrate that the SGAN is able to learn the spatial statistics of the model
error and that suitable representations of both the subsurface model and model error can
be recovered by MCMC. In comparison with inversion results obtained when model errors
are either ignored or approximated by a Gaussian distribution, we find that our method has
lower posterior parameter bias and better explains the observed traveltime data. Our method
is most advantageous when high-fidelity forward solvers involve heavy computational costs
and the Gaussian assumption of model errors is inappropriate. Unstable MCMC convergence
due to nonlinearities introduced by our method remain a challenge to be addressed in future
work.

2.1 Introduction

Bayesian inversion treats model parameters as random variables that are constrained by prior
probability density functions and noise-contaminated data through a likelihood function
(Tarantola, 2005; Gelman et al., 2013). The Bayesian framework is flexible in that it allows
accounting for uncertainties due to inaccurate or incomplete descriptions of the underlying
physics of the problem, as well as for errors related to the measurement process. We refer to
the former as model errors (Kaipio and Somersalo, 2007) because they describe inaccuracies
in the forward modeling used to connect physical properties to observable data, while other
authors have used the term "theoretical error" (Tarantola and Valette, 1982b) in a similar
context. Model errors are notoriously difficult to quantify, particularly when the forward
problem at hand is nonlinear. Their magnitudes and correlation patterns can be highly
complex and variable throughout the model parameter space, and deriving an appropriate
statistical description of them is therefore challenging. At the same time, relying on accurate
state-of-the-art forward solvers with minimal model errors is not always practical as they
are generally computationally expensive, which becomes particularly problematic when the
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forward response has to be calculated many times. Surrogate models (also referred to as proxy
models or low-fidelity models) implying an approximation or a simplified representation
of the underlying physical process offer an attractive alternative provided that one can
adequately account for the resulting model errors. Model errors are commonly an order
of magnitude or so larger than measurement uncertainties (Tarantola and Valette, 1982b;
Kaipio and Somersalo, 2007; Hansen et al., 2014). Therefore, ignoring them might lead to
severe bias, artifacts and over-confident results (Brynjarsdóttir and O-Hagan, 2014; Hansen
et al., 2014).

Early pioneering work on model errors was conducted by Kennedy and O’Hagan (2001). They
represent model errors as a Gaussian process (GP) that is conditioned at locations in the
model parameter space where the model errors are known. The general applicability of
this method for geoscientific inverse problems of high dimensional and multivariate nature
remains unclear (Linde et al., 2017) even if some promising applications exist (Xu and Valocchi,
2015; Xu et al., 2017). Most approaches dealing with model errors involve building a statistical
model of the discrepancy between a high-fidelity forward model and a cheaper, less-accurate
counterpart. Some of these methods formulate the likelihood function such that prior
knowledge about the mean and covariance of the model errors is incorporated (Kaipio and
Somersalo, 2007; Cui et al., 2011; Hansen et al., 2014). Despite their proven value, the Gaussian
assumptions made in these methods might be problematic when confronted with non-
Gaussian priors, non-Gaussian observational noise and nonlinear problems. Traditionally,
model errors are learned by evaluating modeling discrepancies using samples from the prior,
yet, recent adaptive approaches in which the model error description is updated based on
samples from the posterior region has shown important improvements (Cui et al., 2011;
Calvetti et al., 2014). Other approaches for dealing with model errors involve estimating
and removing them from the residual data term before calculating the likelihood function
(Köpke et al., 2018, 2019). In such methods, the residuals are projected onto an orthogonal
model-error basis, which is constructed either during the inversion using a dictionary-based
K-nearest-neighbour approach, or before the inversion using principal component analysis
(PCA) conducted on a suite of model-error realizations. The dynamic model error estimation
methods of Cui et al. (2011), Calvetti et al. (2014) and Köpke et al. (2018) enjoy local statistics
of model errors in regions of high posterior density; however, they do require occasional
runs of a high-fidelity forward solver during the inversion. Another approach is presented by
Rammay et al. (2019) who perform joint inversion of the model parameters and error-model
in the context of reservoir history matching. They use PCA basis functions to parameterize
the error-model and infer for the PCA coefficients during inversion.

Over the past decade, the use of machine learning (ML) in geophysical applications has
become increasingly popular as a result of continuing growth in computational resources and
numerous breakthroughs in ML research (Giannakis et al., 2019; Bergen et al., 2019; Dramsch,
2020; Yu and Ma, 2020). Deep learning models, an extension to machine learning models, can
be trained to produce an amortized data-based alternative to expensive physics-based models
(Tripathy and Bilionis, 2018; Tang et al., 2020; Jin et al., 2020). Nonetheless, these models are
problem specific and their accuracy may vary depending on availability of training data and
their ability to generalize. Furthermore, as surrogate models they still suffer from some degree
of model errors when compared to the high-fidelity model which they aim to approximate.
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Here we give several examples of machine learning applications addressing model errors. The
approach of Xiao (2019), in analogy to the GP approach of Kennedy and O’Hagan (2001), uses
GP regression, an ML algorithm, to learn a set of error response functions associated with a
low-fidelity flow model. The error response functions predict a set of parameters that through
proper orthogonal decomposition are projected into the full error space and used to correct
the low-fidelity model. Seillé and Visser (2020) utilize regression trees in order to learn a
dimensionality discrepancy model (DDM) predicting the model errors associated with using
1D instead of 3D magnetotelluric modeling. The DDM is then used to define a likelihood
function that is used within a reversible-jump Markov chain Monte Carlo (MCMC) procedure
(Green, 1995). Sun et al. (2019) apply convolutional neural networks (CNN’s) describing spatial
and temporal discrepancies between land surface model (LSM) predictions and observations
from the gravity recovery and climate experiment (GRACE). Their neural network combining
three CNN architectures receives as an input the LSM output as well as additional predictors
(precipitation and temperature) and in return outputs the mismatch between the LSM and
GRACE observations. Their study shows an increased correlation between corrected LSM and
observed data, thereby, highlighting the potential of deep-learning to improve geo-scientific
models over different spatiotemporal scales. Machine and deep-learning algorithms have
also been proven efficient for parameterizing geological models (Laloy et al., 2017, 2018;
Mosser et al., 2020). Laloy et al. (2018) parameterized model realizations using a spatial
generative adversarial network (SGAN) and integrated the generating part of the network
within an MCMC routine. In this type of neural network, a nonlinear transformation is
learned using training images. The image space, representing the high-dimensional space
on which forward simulations are performed, is connected to a lower dimensional space
(latent space) through a series of nonlinear transformations in the form of convolution
operations. The inversion is performed with respect to this lower-dimensional representation.
Given the notable reduction in the number of inferred parameters, the spatial nature of the
network and the fast generation of model realizations, the SGAN-parameterization was
able to significantly improve the MCMC inversion performance compared with sequential
geostatistical resampling (Mariethoz et al., 2010b; Ruggeri et al., 2015).

In this study, we use SGANs to learn a low-dimensional parameterization of model errors
associated with a low-fidelity forward solver. A notable characteristic of the SGAN is its
localized nature, allowing for perturbations in a specific region of the image space following
a perturbation in one of the latent parameters. Our approach takes advantage of spatial
correlation within model-error realizations to transform the high-dimensional model-error
space (same dimension as the data space) into a lower-dimensional latent space. We train
two separate deep generative neural networks, one for the subsurface model parameters and
the other for the model errors. Then, we perform MCMC inversion on the latent parameters
to infer the joint posterior distribution of both. We consider numerical simulations in the con-
text of crosshole ground-penetrating radar (GPR) traveltime tomography and test our method
with synthetic data generated by either a (1) curved-ray (eikonal) or (2) finite difference
time-domain full-waveform forward solver. The inversion on the other hand is performed
using a low-fidelity straight-ray forward solver. The aim of our approach is to account for
discrepancies in the modelling process when one replaces an expensive, high-fidelity solver
with a cheap, less accurate solver to speed up the inversion process. By doing so, we hope to
reduce the bias caused by using low-fidelity solvers while allowing for an efficient MCMC
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inversion. Note that the cheap low-fidelity solver could, in principle, also be a deep-learning
based forward solver that was trained on the same database of high-fidelity forward solvers.
We compare our approach against two alternative inversion approaches that also rely on the
same low-fidelity forward solver, one where model errors are ignored and the other where
they are approximated as Gaussian. For the case of the synthetic data being generated with
the eikonal solver, we also compare with inversion results obtained without any model errors,
that is, when using the eikonal solver as forward model in the MCMC inversions.

2.2 Methods

Our approach to account for model errors involves three main steps: (1) database preparation,
(2) SGAN training, and (3) MCMC inversion. The database preparation involves setting up
the database on which the neural networks for the subsurface model parameters and model
error are trained. During training, information about the trained parameters of the generative
network is given at regular intervals. The stage (generator iteration) at which training data are
retained to generate realizations for subsequent inversions is chosen according to statistical
measures as well as visual inspection. Finally, the deep generative neural networks are
integrated into an MCMC inversion algorithm. Below we describe each of the three stages in
detail in the context of the considered crosshole GPR traveltime tomography inverse problem.

2.2.1 Database preparation

Multi-Gaussian model database

The training image (TI) used as a basis to describe the spatial structure of our subsurface
model-parameter prior is a 2500×2500 pixels, (250×250 m) anisotropic, multi-Gaussian,
geostatistical realization with a variance of 1 and mean of zero. It was generated by Pirot
et al. (2017) based on the geostatistical analysis of sediments at the Boise Hydrogeophysical
Research Site conducted by Barrash and Clemo (2002). We split the TI into two parts: a
segment of size 2250×2500 pixels, which is used for training the SGAN, and a segment of
size 250× 2500 pixels, from which we select the reference models used in our inversion
examples. The training is performed on small patches XΦ of pre-defined size which are
randomly cropped from the segment of the TI intended for training. The porosity fieldΦ is
then computed from the multi-Gaussian realizations using the lognormal transformation

Φ= exp(XΦ×0.22361−1.579) (2.1)

in Pirot et al. (2017).
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Crosshole GPR simulations and model-error database

In a crosshole GPR experiment, an electromagnetic impulse is emitted from a source an-
tenna located in one borehole and registered in a receiver antenna positioned in an adjacent
borehole. To create a model-error database of first-arrival travel time residuals, we perform
crosshole GPR numerical simulations based on theΦ-realizations described in subsection
2.2.1 using the low- and high-fidelity forward solvers, which we denote by g LF and g HF ,
respectively. The numerical simulations are performed on slowness s (1/velocity) fields,
therefore, the porosity field of the subsurface model-parameter realizations must be con-
verted to a slowness field. This can be done via the following relationships (Pride, 1994):

κb =Φmκw + (1−Φm)κs , (2.2)

and

s =
p
κb

c
, (2.3)

where κw and κs are the water and rock dielectric constants, m is the cementation exponent,
κb (b stands for "bulk") is the effective dielectric constant of the medium and c is the speed
of light in vacuum. We ignore petrophysical prediction uncertainty related to scatter in
the petrophysical relationship (Brunetti and Linde, 2018) and assume the petrophysical
parameters to be known. Following Pirot et al. (2017), we set κw to be 81, κs to 6 and m to
1.48.

Assuming that the forward solver g HF (HF stands for high-fidelity) describes perfectly the
crosshole GPR experiment, we have:

d = g HF (s)+ε, (2.4)

where d represents the observed traveltime data corresponding to slowness parameters s
with observational noise ε. The proxy solver g LF gives rise to a model error η(s):

d = g LF (s)+η(s)+ε, (2.5)

describing the discrepancy between the two solvers for each source-receiver pair:

η(s) = g HF (s)− g LF (s). (2.6)

To test our method, we consider two different model errors for the crosshole GPR traveltime
tomography problem. In both test cases, we use a straight-ray solver denoted by g SR as our
low-fidelity solver g LF . In the first test case, we consider a finite difference approximation of
the eikonal equation by Podvin and Lecomte (1991) as the high-fidelity model, such that g HF =
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g ei konal and the model error is ηei konal−SR (s) = g ei konal (s)− g SR (s). In the second test case,
the high-fidelity model is based on a finite difference time-domain scheme (FDTD) (Irving
and Knight, 2006), such that g HF = g F DT D and the model error is ηF DT D−SR (s) = g F DT D (s)−
g SR (s). We note that our method is almost fully amortized as the computationally expensive
high-fidelity solver is only used prior to inversion to create the model-error database and, in
a synthetic example such as ours, the data (observed data) that are to be inverted.

From the FDTD simulations, the first-arrival travel times are automatically chosen by iden-
tifying the first maximum of the signal and subtracting the time delay between the source
wavelet’s initiation and first peak. Due to an underlying infinite-frequency assumption, ray-
based approaches (straight ray and eikonal solvers) provide the same arrival times in 2D and
2.5D media. This is not the case for FDTD simulations leading to important time shifts in
the 2D FDTD first-break picks compared to the ray-based solvers. We correct this phase shift
by applying a reversed geometrical correction to that found in Ernst et al. (2007), effectively
performing a 2D to 2.5D correction of the FDTD data:

Ê(xtr n ,xr ec ,ω) = E(xtr n ,xr ec ,ω)√
2πT (xtr n ,xr ec )

−iωκ̄µ0

, (2.7)

where E(xtr n ,xr ec ,ω) and Ê(xtr n ,xr ec ,ω) are the signal in the frequency domain before and
after applying the correction from 2D to 2.5D, respectively, for source and receiver locations
xtr n and xr ec . Here, T (xtr n ,xr ec ) are the picked arrival times based on signal E(xtr n ,xr ec ) in
the time domain, ω refers to the angular frequency of the signal, κ̄ is the mean dielectric
constant of the medium, µ0 is the magnetic permeability in vacuum and i 2 = −1. After
correction, arrival times were repicked on the corrected signals.

2.2.2 Generative adversarial networks

In a fully connected neural network (see Goodfellow et al. (2016) for details), a single neuron
with weight vector w, bias term b, and input vector x can be represented as

h(x;w,b) =ϕ(
Nx∑
i=1

wi xi +b), (2.8)

where ϕ is a nonlinear transformation referred to as the activation function. In a convolu-
tional neural network applied to an image, a single pixel at location (u, v) in the output feature
map F is a result of a convolution between a kernel K of size NH ×NW and a sub-region of
the same size in the input image I:

Fu,v =ϕ(
NW∑
j=1

NH∑
i=1

Ki , j Iu+i ,v+ j +b). (2.9)
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The full feature map is the collection of pixels resulting from convolution operations over
different locations in the input image. A convolutional layer produces multiple feature maps,
each being a result of convolution between the input image and a different filter. All filters
in a layer share the same dimensions, but contain different weights. A deep convolutional
network is a network in which several convolutional layers are sequentially stacked. As the
number of layers and neurons within layers increases, the ability of the network to express
complex functions increases.

A generative adversarial network (GAN; Goodfellow et al., 2014) is a convolutional neural net-
work (CNN), in which training is a zero-sum game between a generator G and a discriminator
D. The GAN seeks to minimize a distance between the distribution Pr of the training data
and the distribution Pg of the data created by the generator G . The generator input is usually
a low-dimensional latent vector z drawn from a uniform distribution U (−1,1) or a standard
normal distribution N (0,1), and the output is an image X̃. Jetchev et al. (2016) extended
the GAN into a spatial-GAN (SGAN), where the input Z becomes a 2D (later extended to
3D by Laloy et al., 2018) tensor of n ×m (×q) dimensions such that a perturbation in one
tensor element corresponds to a change in a specific region of the output image X̃. The
input to the discriminator D is either an image X̃ from the generator distribution Pg or an
image X from the training distribution Pr (see Fig. 2.1). At each training iteration, a batch
of generated images X̃, and a batch of training images X are interchangeably fed into the
discriminator and, according to the loss function in use, they are either classified as 0 (fake)
or 1 (true), or are given a score. As opposed to other types of deep generative networks (e.g.
variational autoencoders), training enforces only the distribution on X̃ (Pg ) to approximate
the distribution on X (Pr ) while the prior on Z is simply assigned such that, for example, all
draws during training are drawn from a uniform distribution U (−1,1). For an enhanced
stability of training and better general performance, we use the Wasserstein loss function
(Arjovsky et al., 2017), whereby the distance between distributions Pr and Pg is based on the
Wasserstein-1 distance W (Pr ,Pg ):

min
G

max
D∈D

E
X∼Pr

[D(X)]− E
Z∼pg

[D(G(Z))]. (2.10)

Given that the output of D(·) in equation (2.10) is a score rather than a classification to 0 and 1,
it is referred to as a "critic". Once gradients of the loss function are calculated with respect to
the network parameters, the error is back-propagated through the network, allowing updates
of the weights and biases of each layer.

2.2.3 SGAN architecture and training

The network architecture of the generator and critic are asymmetric with respect to each
other (see Appendix 2.6.1 for details) and each of them contains five sequentially stacked
convolutional layers. Spectral normalization is applied to the weights in each critic layer
(Miyato et al., 2018). This normalizes the weight matrices K with respect to the spectral
norm at each layer, thus forcing them to conform to the Lipschitz continuity condition. In
the SGAN trained on model errors, we apply mean spectral normalization to critic layers
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Figure 2.1: Illustration of our SGAN architecture with five layers when applied to represent
model errors. During training, each parameter in the latent space Z is randomly drawn from
a uniform distribution U (−1,1). Each Z is transformed into a single image X̃ through a
nonlinear transformation G(·). At each iteration, a batch of images X̃ (generated) and a batch
of images X (training) are interchangeably fed into the critic D(·), resulting in a score that is
then used to update the network parameters through back-propagation.

(Subramanian and Chong, 2019) as it improved the quality of the generated model-error
realizations. The generator feature maps are normalized with respect to features (elements)
using instance normalization (Ulyanov et al. (2016)). The first four layers of the critic and the
generator are followed by a rectified linear unit (ReLU): f (x) = max(0, x) and a LeakyReLU:
f (x) = max(0.2x, x) activation function, respectively, and the last layer in the generator is
followed by a tanh activation function. We set the learning rates of the generator and critic
according to the two time-scale update rule (TTUR) by Heusel et al. (2017), with a ratio of
1 : 4. The output size x of layers l = 1, ..,5 in the generator can be calculated via the following
relationship:

xl = s · (xl−1 −1)−2 ·p + (k −1)+1, (2.11)

where s is the stride controlling movement of the filter along the image, p is the the number
of padding columns/rows of zeros added to the layer’s input, and k is the kernel size (see
Dumoulin and Visin (2016) for more information). We use padding to control the output
size and obtain an image with dimensions that are as close as possible to our model size (see
Appendix B for more details).

All images fed into the critic must be normalized to a [−1,1] range and have the same dimen-
sions. Thus, TI’s are either cropped (subsurface model parameter) or linearly interpolated
(model error) into a size fitting that of the generative network’s output. After training, the
generated subsurface model parameter X̃Φ or model-error X̃η realizations are either cropped
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or interpolated to the desired image size and re-scaled back to the original value range. In
the case of the subsurface model-parameter realizations there is an additional step where
porosity values are assigned according to equation 2.1.

2.2.4 Bayesian inference of latent parameters

We aim to estimate the low-dimensional (latent-space) representation of the subsurface
model parameters and associated model error by incorporating the two trained generative
networks within an MCMC inversion. Subsurface model-parameter and model-error prior
realizations are generated using the SGAN and the forward responses during inversion are
computed using the straight-ray solver g LF = g SR . The posterior probability density function
(pdf) p(Z|d) is expressed through Bayes’ theorem as:

p(Z|d) = p(d|Z)p(Z)

p(d)
, (2.12)

where p(d|Z) is the likelihood function, p(Z) is the prior pdf of latent parameters Z, and p(d)
is the marginal likelihood (evidence). The latter is a constant that we ignore in this work and
we thus focus on the unnormalized posterior p(Z|d) ∝ p(d|Z)p(Z). For numerical reasons
we work with the log-likelihood which, assuming the measurement errors are independent,
identical and normally distributed, is given by:

l (d|Z) =−Nd

2
log(2π)−Nd log(σ)− 1

2
σ−2 [d−dsi m]2 , (2.13)

where Nd is the number of data points, σ is the standard deviation of the measurement errors
ε, and dsi m and d are the forward simulated and observed data, respectively. To sample
from the posterior distribution, we rely on the differential evolution adaptive Metropolis
(DREAM(Z S)) algorithm, in which MCMC chains evolve in parallel and jumps are proposed
based on candidate points from an archive of past states (Ter Braak and Vrugt, 2008; Vrugt
et al., 2009; Laloy and Vrugt, 2012). In this algorithm, the jump size is given by γ= 2.38p

2δd ′ β,

whereβ is a user defined scalar referred to here as the jump rate scaling factor, δ is the number
of candidate points pairs used to generate the proposal, and d

′
, the number of dimensions

to be updated, varies during the inversion according to a crossover (CR) probability (Laloy
and Vrugt, 2012). At each MCMC step and for each individual chain, a random sample is
drawn from the proposal distribution q(Z′,Zt−1), which is symmetric with boundary handling
to ensure that the samples are drawn proportionally to the uniform prior. As the prior is
uniform, the sample is either accepted or rejected according to a transition acceptance rule
pacc (Zt−1 −→ Z′) = e(l (d|Z′)−l (d|Zt−1)). If accepted, the chain moves to Z′ such that Zt = Z′. If
rejected, the chain remains at the current sample and Zt = Zt−1. We run the inversion with
eight parallel chains and, to improve the search, we allow for a 20% chance of snooker update
(Ter Braak and Vrugt, 2008) during the first 20,000 steps (per chain) which we consider as
the burn-in period. As opposed to parallel updating where sampling occurs along an axis
that runs past states of a single chain, the snooker update involves an axis that runs along
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states of two different chains. The jump rate scaling factor β is varied adaptively during the
burn-in period in order to reach a 20%−30% MCMC acceptance rate. To prevent very high
acceptance rates and slow mixing after the burn-in period, we set a minimum value to the β,
beyond which it cannot decrease.

We jointly infer the posterior distribution of the two low-dimensional latent spaces: ZΦ
describing the subsurface model parameters and Zη describing the model error, both of
which have uniform prior distributions U (−1,1). The proposed latent parameter realizations
are mapped into their respective high-dimensional image spacesΦ and ηapp (approximate
model error), where a low-fidelity forward response is calculated on the porosity field Φ
converted to slowness s using equations (2.2) and (2.3). In addition to the subsurface model-
parameter and model-error latent parameters, we infer an auxiliary parameter ν with a
uniform prior distribution U (0,1) that scales the model-error realization before it is added
to the simulated data. This scalar was found to improve the inference and quality of the
inferred model errors by providing additional means to control their magnitudes. When
inferring model errors, dsi m in equation (2.13) is replaced with g SR (s)+νηapp . The most
salient features of our method, combining SGAN-ME (ME stands for model error) with MCMC
inversion, is provided in Algorithm 1 and Figure 2.2.

We compare SGAN-ME against cases where model errors are zero as the high-fidelity forward
solver is used in MCMC inversions or model errors are either ignored or approximated to
be Gaussian. In these latter cases, the inferred parameters are the latent parameters of the
model alone, such that Z = ZΦ and we simply plug dsi m = g SR (s) into equation (2.13).

To approximate the model errors as Gaussian, we follow Hansen et al. (2014) and learn their
mean dME and a covariance matrix CME , which are used to correct the residual term and
inflate the likelihood function:

l (d|Z) =−Nd

2
log(2π)− 1

2
log(|CD |)− 1

2

[
d− g SR (s)−dME

]T
C−1

D

[
d− g SR (s)−dME

]
, (2.14)

where CD = Cd +CME , with Cd being the traditional data covariance matrix and CME the
learned model-error covariance matrix. The bias correction term dME is the model-error
mean. We use 800 random model-error samples from the same database used for training
the SGAN to learn CME and dME , noting that Hansen et al. (2014) recommend to use at least
300 samples.
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Algorithm 1: SGAN-ME inversion with differential evolution adaptive Metropolis
DREAM(Z S)

1 Set t = 1 and initialize the archive with realizations ZΦ, Zη and ν randomly drawn from p(ZΦ),
p(Zη) and p(ν) (respectively)

2 Initialize Zt = [Zt
Φ,Zt

η,νt ] for each MCMC chain

3 X̃t
Φ, X̃t

ηapp
← GΦ(Zt

Φ), Gη(Zt
η)

4 Perform post-processing (section 2.2.3): Φt , ηt
app ← X̃t

Φ, X̃t
ηapp

and convertΦt into slowness st

(equations (2.2)-(2.3))
5 dsi m = g LF (st )+νtηt

app

6 Compute l (d|Zt ) (equation (2.13))
7 while t < Ndr aw do
8 Propose a new sample Z′

Φ, Z′
η and ν′ from proposal distribution q(Z′,Zt−1)

9 X̃
′
Φ, X̃

′
ηapp

← GΦ(Z′
Φ), Gη(Z′

η)

10 Perform post-processing (section 2.2.3): Φ
′
, η

′
app ← X̃

′
Φ, X̃

′
ηapp

and convertΦ
′

into

slowness s
′

(equations (2.2)-(2.3))
11 dsi m = g LF (s′)+ν′η′app

12 Compute l (d|Z′)
13 Compute probability of acceptance α← e(l (d|Z′)−l (d|Zt−1))

14 Draw U from a uniform distribution U (0,1)
15 if U <α then
16 Zt ← Z′

17 else
18 Zt ← Zt−1

19 end
20 t = t+1

21 end
22 Function GΦ(ZΦ)
23 Performs a series of transposed convolution layers with pre-trained weights
24 return X̃Φ
25 end
26 Function Gη(Zη)
27 Performs a series of transposed convolution layers with pre-trained weights
28 return X̃ηapp

29 end
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Figure 2.2: SGAN-ME workflow. Subsurface-model representation using SGAN is discussed
in details in the work of Laloy et al. (2018), here we focus on model-error representation.
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2.3 Results

In our numerical experiments we consider two parallel vertically-oriented boreholes, one
containing 30 sources and the other 30 receivers. The model domain on which the numerical
experiment is performed is 4×6.1 m (40×61 pixels). Sources and receivers are distributed
evenly between 0.2 and 6 m depth in intervals of 0.2 m and the two boreholes are located at
0 m and 4 m along the horizontal axis, respectively. In the straight-ray and eikonal forward
solvers, the model domain is discretized evenly into 0.1 m square cells. The FDTD simulated
responses are performed using a spatial discretization of 0.025 m and a time discretization
of 0.15 ns. The FDTD simulation requires the dielectric constant of the medium κb and
electrical conductivity fields as input. We assume a constant conductivity of 0.002 S/m across
the model domain. The dielectric constant κb is obtained using equation (2.2). The model-
error databases corresponding to ηei konal−SR and ηF DT D−SR contain 10,000 images, each
of which requires a simulation using the low- and high-fidelity forward solvers. In the next
subsections, we present results obtained from SGAN training and subsequent inversions.

2.3.1 Quality assessment of generative models

By training the SGAN on the subsurface model parameters and model error, we are able to
reduce the two parameter spaces containing 2440 and 900 parameters (respectively) into
two latent spaces, ZΦ and Zη, each of size 5× 5× 1. In order to assess the quality of the
generative models at a given training iteration, we calculate pixel-wise means and variances
on a set of generated and training realizations. Based on this analysis, we found that the
quality of the generated realizations could be further improved by scaling each realization by
a spatially-varying correction factor intended to match the pixel-wise means of the TI’s:

X̃ =G(Z) · (Mx ®Mx̃), (2.15)

where Mx is the mean of 10,000 TI’s, Mx̃ is the mean of 10,000 SGAN realizations and G(Z) is
a single SGAN realization to be corrected. The correction matrix obtained by element-wise
division Mx ®Mx̃ contains the mean of generated SGAN realizations, and, thus, it is specific to
a given training iteration. For the subsurface model-parameter realizations, we also evaluate
the spatial auto-correlation within each realization by calculating directional semivariograms
using the GSTools package (Müller and Schüler, 2020).

Training the SGAN for 58,000 iterations with a batch containing 64 images took about 8−9
hours on one GPU GeForce GTX Titan X with 12 GB memory. Figure 2.3 provides a compar-
ison between the statistics of the subsurface model-parameter training images and SGAN
realizations. We show the pixel-wise mean and variance of the TI’s (Figs 2.3a-b) and the SGAN
realizations before (Figs 2.3c-d) and after (Figs 2.3e-f) applying the correction in equation
2.15. The SGAN mean image before correction shows horizontal band-like features. After
mean correction, this effect decreases and the image becomes closer to homogeneous. The
variance images, however, do not exhibit the same improvement following the correction and
look overall similar in both cases (Figs 2.3d and f). The spatial statistics represented by the di-
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Figure 2.3: Statistics of subsurface model-parameter realizations after 58,000 training iter-
ations. Mean and variance images calculated on 5,000: (a-b) TI realizations , (c-d) SGAN
realizations before mean correction and (e-f) SGAN realizations after mean correction. The
directional semivariograms in the (g) x- and (h) y-directions were calculated on 5,000 TI
realizations and SGAN realizations after mean correction. The gray lines are single semivari-
ograms calculated on SGAN realizations after correction; their mean is marked as a solid red
line and it is almost completely overlapped by the blue solid line, representing the mean of TI
realizations. The blue dashed lines mark the TI realizations’ range.

rectional semivariograms in x- and y-directions are given in Figures 2.3g and h, respectively;
the mean semivariograms are calculated over 5,000 TI (blue) and corrected SGAN (red) model
realizations. The two mean curves fall on top of each other, indicating a good agreement
between the TI and corrected SGAN realizations. Furthermore, the semivariograms of single
SGAN realizations (gray curves) are mostly concentrated within the ranges of the TI (dashed
blue curves).

A similar mean correction and assessment to those described above for the subsurface model-
parameter SGAN training are performed for the model error training. Example model-error
TI’s for the two types of model errors considered in this paper are shown in Figure 2.4. In
most cases, ηF DT D−SR has a larger range of error values compared to ηei konal−SR and displays
similar features to ηei konal−SR with additional off-diagonal patterns. Figure 2.5 provides a
comparison between the pixel-wise mean and variance of the model-error TI’s and those of
the SGAN realizations before and after the mean correction. Although the mean image of
the SGAN generated ηei konal−SR

app realizations before correction (Fig. 2.5c) is close to that of
the TI realizations (Fig. 2.5a), it underestimates the model-error mean on the diagonal. After
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Figure 2.4: Examples of actual model-error realizations (a-d) ηei konal−SR and (e-h) ηF DT D−SR .
Figures in the same column were calculated for the same subsurface model-parameter
realization.

correction (Fig. 2.5e), the bias in the mean is removed and the variance (Fig. 2.5f), which also
suffers from underestimation on the diagonal, is slightly improved. Training with ηF DT D−SR

realizations proved to be more challenging and required larger number of training iterations
(450,000 iterations as opposed to 250,000 for ηei konal−SR ). The SGAN mean image before
correction (Fig. 2.5i) is distorted compared to the TI mean image (Fig. 2.5g). We attribute
this difference to the patchy nature of the ηF DT D−SR realizations and features that extend
to elements further off-diagonal (Fig. 2.4). These distortions were reduced after applying
the mean correction (Fig. 2.5k), although improvements in the variance (Fig. 2.5l) are not as
visible. One can observe a broken pattern on the diagonal in the ηF DT D−SR TI’s mean and
variance images (Figs. 2.5g and h). This pattern can also be found in ηei konal−SR TI’s mean
and variance images (Figs. 2.5a and b), albeit to a lesser extent. Since the subsurface model-
parameter TIs on which model errors are calculated were randomly chosen, we attribute this
pattern to be a result of the forward modeling process rather than a repetitive pattern in the
subsurface model-parameter TIs.

Finally, we test the ability of the SGAN to capture the true model by performing a pixel-to-
pixel MCMC inversion (i.e., the actual pixel values are considered as data in the inversion) on
two reference models, cropped out of the testing segment of the subsurface model-parameter
TI described in Section 2.2.1. We consider the maximum a posteriori estimate of pixel-
to-pixel based inversion results as being the closest possible SGAN representation of the
reference model (’closest SGAN realization’). Figure 2.6 shows the considered reference
models and their corresponding closest SGAN realization illustrating the capability of the
SGAN to generate model realizations that closely resemble their reference models.
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Figure 2.5: Model errors of (a-f) ηei konal−SR and (g-l) ηF DT D−SR . Pixel-wise mean and vari-
ance of 10,000 (a-b and g-h) TI realizations, (c-d and i-j) SGAN realizations before mean
correction and (e-f and k-l) SGAN realizations after mean correction (see equation (2.15)).
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Figure 2.6: Reference models (a) 1 and (c) 2 and (b and d) corresponding closest SGAN
realizations obtained from pixel-to-pixel inversion considering 25 latent parameters.

2.3.2 Inversion results

We perform inversion of data generated from the two multi-Gaussian reference models in
Figures 2.6a and 2.6c that we refer to as ’Model 1’ and ’Model 2’, respectively. The synthetic
data for each reference model are created using the high-fidelity forward solver, which is
either g ei konal or g F DT D depending on the type of model error considered (i.e., ηei konal−SR or
ηF DT D−SR ). The data are contaminated with random noise drawn from a normal distribution
N (0,0.52 ns2). We consider in our analysis only those traveltime data corresponding to
source-receiver angles of less than 50◦ from the horizontal, as is commonly done with field
data to avoid borehole and antenna effects (Irving and Knight, 2005). This leads to a total of
858 traveltimes to be considered in the inversion. Note that the number (25) of subsurface
model parameters ZΦ to be estimated is the same for all considered approaches. The SGAN-
ME approach requires estimation of 26 additional parameters: 25 for the model error Zη
along with auxiliary parameter ν. Note that the number of parameters in ZΦ and Zη is chosen
based on a trade-off between inversion performance and efficiency. It is chosen such that it
remains low while ensuring high-quality subsurface model estimation.

For each of the considered approaches, we show the maximum a posteriori estimate. Given
the uniform prior on the parameters, this corresponds also to the maximum-likelihood
solution. For comparison, we calculate the root mean-square-error (RMSE) and structural
similarity (SSIM) index for each approach including that of the closest SGAN realization
obtained by pixel-by-pixel inversion. We consider two different RMSE values: one on the
subsurface model parameters denoted by RMSEΦ and the other on the data denoted RMSEd.

38



Table 2.1: Inversion convergence for Test Case 1 (ηei konal−SR ) and Test Case 2 (ηF DT D−SR ).
The mean acceptance rate represents the average acceptance rate of the two tested reference
models excluding the first 20,000 steps.

Model
error
type

Inversion
approach

Nr. of
MCMC steps
(per chain)

Mean
acceptance
rate (excl.

burn-in) [%]Model 1 Model 2

ηei konal−SR

straight-
ray

95,510 22,060 28

Covariance 43,860 189,760 36
SGAN-ME 108,960 382,620 18

eikonal 34,710 61,160 23

ηF DT D−SR
straight-

ray
53,160 141,110 18

Covariance 27,810 188,010 35
SGAN-ME 363,760 437,810 23

The RMSE metric gives an indication as to the spread of residuals, with larger weight given
to higher values, while the SSIM complements the latter by measuring the similarity of two
images (here these are images of either the subsurface model parameters or model errors)
in terms of their structure (see Appendix 2.6.2). The above metrics are calculated for the
maximum-likelihood realization in the case of pixel-to-pixel inversion whereas in data-based
inversions, they represent an average value for the last 50% samples of the chains. In the
case of the inferred model error, we also calculate what we refer to as "error recovery". This
measure serves as an indication of how well the model error is approximated, by taking the
average posterior mean-squared-error (MSE) between the approximated model error and the
reference model error (MSE(ηapp ,ηr e f )) and dividing it by the MSE between the reference
model and 0 (MSE(ηr e f ,0)).

Convergence

We use the Gelman-Rubin diagnostic (Gelman and Rubin, 1992) and declare convergence
when all inferred parameters satisfy R̂ ≤ 1.2. The initial jump rate scaling factor was set to
5 for all inversion runs. The minimum jump rate scaling factor had to be adjusted in each
inversion individually in order to achieve a reasonable acceptance rate (ideally 20−30% and
not more than 50%) and convergence. A value of 0.2 was often suitable to achieve conver-
gence and reasonable acceptance rates with some SGAN-ME cases requiring slightly smaller
values (0.15 −0.2). In Table 2.1, we provide convergence information for each inversion ap-
proach. All inversions reached convergence, but the number of steps required differ between
approaches. More steps are needed to reach convergence with the SGAN-ME approach.
The mean acceptance rates in Table 2.1 are consistently higher for the covariance approach
compared to the other approaches due to its inflated error term, which increases the chance
for proposed samples to be accepted in the MCMC.
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Test Case 1: eikonal - straight-ray model error

We first consider inversion results with model error ηei konal−SR in terms of maximum-
likelihood solutions of the straight-ray, covariance, SGAN-ME and eikonal-based inversion
approaches in Figure 2.7 and RMSEΦ, SSIM and RMSEd in Table 2.2. Generally speaking
and given values in Table 2.2, the SGAN-ME approach exhibits better overall performance
compared to the straight-ray and covariance approaches, scoring lower RMSE and higher
SSIM values. The SGAN-ME approach captures well the general structure of the various
porosity zones in both test models. The spatial representation of model errors in Figure 2.8
together with values in Table 2.3, suggest that SGAN-ME is able to recover a large part of the
model error (about 51% for Model 1 and 67% for Model 2). Table 2.3 also indicates that the
closest SGAN realizations obtained by the pixel-based inversions consistently reached better
scores than the closest of the 10,000 model realizations used for training, thereby indicating
that the SGAN generalizes well for the model error.

We now consider results for Model 1 specifically. The SGAN-ME and eikonal solutions
exhibit similar structures between 0 and 5 m depth, resulting in similar SSIM values (0.79
and 0.78, respectively). The low porosity zone between 5 and 5.5 m depth is thinner in the
SGAN-ME solution and the high-porosity zone between 4−4.5 is overestimated. This can
be explained by considering the SGAN-ME model-error posterior samples in Figures 2.8c-e.
Although the features on the diagonal (and close to diagonal) are correctly located, they
are underestimated for source-receiver pairs (15,15)− (20,20) and overestimated for source-
receiver pairs (20,20)−(25,25) causing overestimation of porosity in the region corresponding
to the latter source-receiver pairs. Furthermore, the model errors at the bottom right corner
of all posterior samples in Figure 2.8c-e are overestimated and differ by up to ∼ 2 ns from
the truth, translating to a thicker high-porosity layer at the bottom of the subsurface model
(5.5-6 m). The covariance solution overestimates the low-porosity zone at around 3 m depth.
It scores the same RMSEΦ as the straight-ray solution (0.016) but receives higher SSIM (0.74
versus 0.72) and slightly lower RMSEd (0.75 ns versus 0.77 ns) scores.

As for Model 2, the SGAN-ME maximum-likelihood realization is the only solution properly
reconstructing the porosity structure between 0-1 m depths. Other approaches, including
the eikonal solution do not have a clear layered structure around these depths. The eikonal
solution tend to overestimate some high-porosity zones (4-4.5 m in Model 1 and around 1.5-
1.7 m in Model 2) and exhibit rough texture in its solution to Model 2. The covariance solution
underestimates the porosity at 4 m depth but still surpasses the straight-ray solution in both
subsurface model-parameters scores (RMSEΦ and SSIM). As opposed to Model 1, here the
straight-ray solution fits the data significantly better than the covariance solution (RMSEd of
0.87 ns for straight-ray versus 1.17 ns for covariance). Furthermore, the straight-ray solutions
are smooth and do not contain major artifacts. They do however, generally underestimate
high-porosity zones and receive the highest RMSE and lowest SSIM scores in most cases.

As can be seen in Table 2.2, the RMSEd was also calculated for the closest SGAN realization
using the high-fidelity forward solver, namely the eikonal solver. For better visualization, we
show in Figure 2.9 the RMSEd values of each approach and for each of its eight chains along
100,000 sequential samples (per chain). The data fit plots corresponding to Model 1 and 2
and model error ηei konal−SR (Figs 2.9a and b) indicate that our SGAN-ME approach fits the
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Figure 2.7: Inversion results for reference Models (a) 1 and (f) 2 for Test Case 1 (ηei konal−SR ).
(b)-(e) and (g)-(j) are the maximum-likelihood realizations obtained from inversion using the
straight-ray, covariance, SGAN-ME and eikonal approaches. The first three approaches use
the straight-ray solver for the forward response during inversion, while the observed data for
all approaches were created using the eikonal solver.

data as well as the eikonal solver, close to the noise level of 0.5 ns (indicated by the red dotted
line) and significantly better than the straight-ray and covariance approaches. The RMSEd of
the closest SGAN realization (indicated by a dotted black line) is higher compared to that of
the eikonal and SGAN-ME inversion approaches, but lower than that of the straight-ray and
covariance approaches.

Finally, we represent posterior samples in the form of RMSEΦ and SSIM distributions (Figs.
2.10a,b,e,f). The RMSEΦ and SSIM values, calculated separately for each posterior sample,
were plotted as a normalized density function to which a Gaussian kernel was fitted. It is
observed that the SGAN-ME approach generally results in RMSEΦ and SSIM distributions that
rank higher than the straight-ray and covariance approaches. For Model 2, the RMSEΦ and
SSIM distributions associated with SGAN-ME almost completely overlap those corresponding
to the model error-free eikonal approach. The SGAN-ME posterior distributions are charac-
terized by intermediate widths as opposed to the covariance approach for which RMSEΦ and
SSIM values vary widely and to the straight-ray approach for which the distribution is narrow
and with the worst statistics.
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Figure 2.8: Model errors for Test Case 1 (ηei konal−SR ) representing the discrepancy between
the eikonal and straight-ray solvers. (a) and (f) are reference model errors calculated based on
reference Models 1 and 2 in Figures 2.7a and 2.7f, respectively, (b) and (g) are the correspond-
ing closest SGAN model-error realizations obtained from pixel-to-pixel inversion and (c)-(e)
and (h)-(j) are posterior samples obtained from inversion with the SGAN-ME approach.

Table 2.2: Inversion results for Test Case 1 (ηei konal−SR ) in terms of the subsurface model
considering g LF = g SR and g HF = g ei konal . The RMSEΦ and SSIM values are average values
of the posterior samples. The RMSEΦ of each posterior sample was calculated on porosity
values with respect to the corresponding reference model. The SSIM was calculated on
normalized images in the range of [0,1]. The SSIM can take values between -1 and 1, where 1
indicates identical images. The RMSEd represents the data fit with respect to the observed
data and is an average value over the last draws from the eight MCMC chains. For more
details see Appendix 2.6.2.

Model Inv. approach RMSEΦ [-] SSIM [-] RMSEd [ns]

True 0 1 0.5

1

straight-ray 0.016 0.72 0.77
Covariance 0.016 0.74 0.75
SGAN-ME 0.015 0.79 0.53

eikonal 0.013 0.78 0.53
Closest SGAN real. 0.010 0.83 0.62

2

straight-ray 0.021 0.72 0.87
Covariance 0.018 0.75 1.17
SGAN-ME 0.017 0.78 0.55

eikonal 0.017 0.78 0.55
Closest SGAN real. 0.013 0.83 0.63
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Table 2.3: Inversion results in terms of model-error estimation for the two considered refer-
ence models (1 and 2) and Test Case 1 (ηei konal−SR ) and 2 (ηF DT D−SR ) . The given RMSE and
SSIM values are average values of the posterior samples of model errors. The RMSE of each
posterior sample was calculated with respect to the corresponding reference model error.
The SSIM was calculated on normalized images in the range of [0,1]. The SSIM can take
values between -1 and 1, where 1 indicate identical images. The error recovery represents the
fraction of mean-squared-error (MSE) of posterior samples MSE(ηapp ,ηr e f ) compared to the
MSE(ηr e f ,0) of the reference model with respect to 0 and can range between 0% to 100%. For
more details see Appendix 2.6.2).

Model error Model Inv. approach RMSE [ns] SSIM [-] Error recovery [%]

True 0 1 100

ηei konal−SR

1
SGAN-ME 0.67 0.56 51

Closest SGAN real. 0.23 0.87 94
Closest database real. 0.29 0.87 90

2
SGAN-ME 0.66 0.64 67

Closest SGAN real. 0.29 0.86 94
Closest database real. 0.54 0.63 77

ηF DT D−SR

1
SGAN-ME 0.49 0.68 74

Closest SGAN real. 0.24 0.88 94
Closest database real. 0.33 0.85 88

2
SGAN-ME 0.63 0.72 71

Closest SGAN real. 0.32 0.89 92
Closest database real. 0.56 0.71 78
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Figure 2.9: Data fit (RMSEd) for inversion considering: modelling error ηei konal−SR for refer-
ence models (a) 1 and (b) 2 and modelling error ηF DT D−SR for reference models (c) 1 and (d)
2.
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Figure 2.10: RMSEΦ and SSIM distributions of posterior samples for inversion considering:
Test Case 1 (ηei konal−SR ) for reference models (a and e) 1 and (b and f) 2 and Test Case 2
(ηF DT D−SR ) for reference Models (c and g) 1 and (d and h) 2. The high-fidelity solution is only
available in Test Case 1 (blue area in a, b, e and f).
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Test Case 2: FDTD - straight-ray model error

We now consider the model error ηF DT D−SR for the same reference porosity models and
create the synthetic data using the FDTD forward solver. Here we compare only between
the straight-ray, covariance and SGAN-ME approaches due to the excessive computational
time needed to perform MCMC inversion with the FDTD forward solver (Hunziker et al.,
2019). Results for this test case can be found in Figure 2.11 and Table 2.4 which show the
maximum-likelihood solution of the straight-ray, covariance and SGAN-ME approaches for
the two reference models and their respective RMSE and SSIM scores.

The maximum-likelihood solution together with the RMSEΦ and SSIM values in Table 2.4
suggest that the SGAN-ME results capture both the magnitude and structure of porosity
for Model 1 and is the closest to values observed for the closest SGAN realization, having
RMSEΦ of 0.0014 ns (versus 0.010 ns) and SSIM value of 0.75 (versus 0.83). The SGAN-ME
approach is also able to recover large portions of the model error (74% error recovery) for
this reference model (Table 2.3). The high-porosity zone between 0.5 and 1.5 m depth is
wider in the all solutions compared to reference Model 1, although less visible in the SGAN-
ME solution. Similarly, as was found previously for the case of ηei konal−SR , the covariance
solution consistently overestimates the porosity around 3 m depth for Model 1 (Figs. 2.7c and
2.11c). All compared approaches underestimate the high porosity zone between ∼ 3.8-4.5 m
depth and overestimate the low-porosity zone between 5-5.5 m depth.

As for Model 2, the porosity structure between 0 and 1 m is better defined in the SGAN-ME
solution compared to the other approaches. The porosity zone between 1.8 and 2.8 m depth is
overestimated in the right hand side of the SGAN solution. This part of the subsurface model
is covered by receivers 10-15. Indeed, the posterior samples displayed in Figure 2.12h-j show
a larger diagonal feature between receivers 10-15 and sources 10-15 than in the reference
model error for those source-receiver pairs. Nonetheless, the inferred SGAN-ME model error
recovers 71% of the true model error (Table 2.3).

For both reference models, the RMSEΦ of the covariance and straight-ray approaches are
increasing or remain the same when going from ηei konal−SR to ηF DT D−SR . Interestingly, the
SGAN-ME inversion result corresponding to Model 1 improves fromηei konal−SR toηF DT D−SR ,
with RMSEΦ decreasing from 0.015 to 0.014 while the SSIM value decreases from 0.79 to 0.75.
This improvement in RMSEΦ score can be linked to better error recovery, which increases
from 51% for ηei konal−SR to 74% for ηF DT D−SR . Notice that in both types of model errors
the closest SGAN model-error realizations obtained by pixel-based inversion (Figs. 2.8b
and 2.8g for ηei konal−SR and Figs. 2.12b and 2.12g for ηF DT D−SR ) strongly resemble their
reference model errors and their error recovery is between 92 to 94%, further exemplifying
the ability of the SGAN to represent model errors. Tables 2.2 and 2.4 and Figure 2.9 show that
the SGAN-ME approach is able to fit the data equally well in both test cases and approaches
the noise contamination level. Finally, we observe that the posterior samples in the form of
RMSEΦ and SSIM distribution (Figure 2.10c,d,g,h) show similar patterns as for Test Case 1, in
the sense that the SGAN-ME approach generally results in RMSEΦ and SSIM distributions
that rank higher than the straight-ray and covariance approaches. Again, the SGAN-ME dis-
tributions are characterized with intermediate widths as opposed to the covariance approach
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Figure 2.11: Inversion results for reference models (a) 1 and (e) 2 for Test Case 2 (ηF DT D−SR ).
(b)-(d) and (f)-(h) are the maximum-likelihood realizations obtained from inversion using the
straight-ray, covariance and SGAN-ME approaches. All three approaches use the straight-ray
solver for the forward response during inversion, while the observed data were created using
the FDTD solver.

for which RMSEΦ and SSIM values vary widely and to the straight-ray approach for which the
distribution is narrow and exhibits the worst statistics.

2.4 Discussion

Our results demonstrate the suitability of our SGAN architecture and training procedure
to represent model errors and the ability of SGAN-ME inversions to infer them for a given
subsurface model realization (Figs. 2.8 and 2.12). Among the considered inversion methods
employing a low-fidelity forward solver, the SGAN-ME inversion scored RMSE (Φ and d) and
SSIM values that are the closest to those obtained when the high-fidelity forward eikonal
solver is used in the inversion (Table 2.2). This indicates that inferring the model error during
inversion using the SGAN-ME offers an overall better performance compared to ignoring
model errors or accounting for them by inflating the error term in the likelihood function
following Hansen et al. (2014). Somewhat surprisingly, the straight-ray approach, where
model errors are neglected, resulted in subsurface models with relatively minor artifacts
(Figs. 2.7b, 2.7g, 2.11b and 2.11f). This is likely a consequence of the SGAN dimensionality
reduction. The dimensionality of the subsurface model domain is reduced in our examples
from 2440 parameters to 25 latent parameters, thus, limiting strong artifacts at the expense
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Figure 2.12: Model errors for Test Case 2 (ηF DT D−SR ) representing the discrepancy between
the FDTD and straight-ray solvers. (a) and (f) are reference model errors calculated based
on reference models 1 and 2 in Figures 2.11a and 2.11e, respectively, (b) and (g) are the
corresponding closest SGAN model error realizations obtained from pixel-to-pixel inversion
and (c)-(e) and (h)-(j) are three posterior samples obtained from inversion with the SGAN-ME
approach.

Table 2.4: Inversion results for Test Case 2 (ηF DT D−SR ) in terms of the subsurface model
considering g LF = g SR and g HF = g F DT D . The RMSEΦ and SSIM values are average values of
the posterior samples. The RMSEΦ of each posterior sample was calculated on porosity values
with respect to the corresponding reference model. The SSIM was calculated on normalized
images in the range of [0,1]. The SSIM can take values between -1 and 1, where 1 indicates
identical images. The RMSEd represents the data fit with respect to the observed data and
is an average value over the last draws from the eight MCMC chains. For more details see
appendix 2.6.2.

Model Inv. approach RMSEΦ [-] SSIM [-] RMSEd [ns]
True 0 1 0.5

1

straight-ray 0.017 0.73 0.65
Covariance 0.018 0.69 0.84
SGAN-ME 0.014 0.75 0.53

Closest SGAN real. 0.010 0.83 0.58

2

straight-ray 0.021 0.71 0.73
Covariance 0.019 0.74 1.16
SGAN-ME 0.018 0.76 0.54

Closest SGAN real. 0.013 0.83 0.62
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of the ability to achieve high likelihoods. We expect that more artifacts would appear when
inverting the data in the original high-dimensional subsurface model space.

In all tested cases, the SGAN-ME is able to infer meaningful model-error representations (Figs.
2.8 and 2.12) ranging between 71 and 74% recovery of the true model error in the ηF DT D−SR

Test case (Table 2.3). By jointly inferring the subsurface model parameters and the model
error, SGAN-ME enables identification and localization of regions in the subsurface model
that are prone to large model errors. Some of the inferred model errors are still misplaced
(Figure 2.8c-e) or underestimated (Figure 2.8h-j). This could suggest that the inferred model
error accommodates inadequacies between the subsurface-model realizations that can be
generated by the SGAN and the reference subsurface model used to generate the data. Indeed,
with 25 parameters it is of course impossible to fully represent all the geostatistical variability
of our training image. Tables 2.2 and 2.4 reinforce this hypothesis, as they show that the
closest SGAN realization obtained from a pixel-to-pixel inversion does not fit the data as well
as the eikonal or our SGAN-ME approach, implying a certain bias in the SGAN-ME inversions.
A possible solution to address this problem would be to perform a hierarchical inversion in
which the standard deviation of the data error is one of the inferred parameters (Malinverno
and Briggs, 2004). Initial results with such an hierarchical approach have been inconclusive
to date and require further investigation.

The RMSEd values corresponding to SGAN-ME are very similar to those obtained when
using the high-fidelity eikonal solver (Table 2.2). For both types of errors, ηei konal−SR and
ηF DT D−SR , SGAN-ME is found to fit the data significantly better than the straight-ray and
covariance approaches with values close to the noise level of σ = 0.5 ns (Tables 2.2 and
2.4). We have seen that the impact of the type of model-error size on data fit is small in the
SGAN-ME approach, indicating its robustness in fitting the data by inferring the model error.
The covariance approach is characterized by a large variability of RMSEd values throughout
the inversion due to the inflation of the likelihood function, and hence a wide range of
realizations are accepted. This variability in model realizations is also observed in Figure
2.10, where the covariance-based RMSEΦ and SSIM distributions exhibit the largest variance.
The straight-ray approach spans a smaller range of posterior realizations, but those present
poor RMSEΦ and SSIM scores. In that regard, the SGAN-ME presents a combination of small
uncertainty (intermediate posterior widths) and the best RMSEΦ and SSIM scores.

In agreement with other approaches treating model errors as the discrepancy between a
low- and a high-fidelity solver, we stress that our method is unable to quantify any model
errors arising from simplifications in the high-fidelity solver or an inappropriate prior model
(training data) of the subsurface properties. As a deep learning method, our approach de-
pends on the availability of training data (i.e. subsurface-model representation and two
fidelity-varying forward solvers). Note also that the networks are model and model-error
specific, meaning that new training is required if considering a different set-up. Furthermore,
our SGAN-ME approach combines multiple nonlinear transformations leading to MCMC
convergence issues. Here, we relied on the DRE AM(Z S) algorithm and found that conver-
gence was highly sensitive to the chosen jump-rate scaling factor. In the future, it would be
beneficial to assess if convergence could be improved by using other MCMC samplers such
as gradient-, Hamiltonian-dynamics- (Duane et al., 1987; Neal, 2011) or diffusion- (Roberts
et al., 1996; Roberts and Rosenthal, 1998) based samplers.

49



2.5 Conclusions

We present a methodology accounting for model errors in Bayesian inversion using deep
generative neural networks. In contrast to most existing methods, our approach makes no
restrictive Gaussian assumptions about the statistical distribution of the model errors arising
from using a fast low-fidelity solver instead of a slow high-fidelity solver. We use SGANs to
learn two separate generative models: one for the subsurface model parameters of interest
and the other for the model errors. The underlying low-dimensional latent parameterizations
are then used to jointly infer the subsurface model parameters and model error via MCMC
using the fast low-fidelity forward solver, thereby, allowing for significant speed-up. By doing
so, we are able to improve the posterior estimates of subsurface model parameters and model
errors. Our SGAN-ME method is shown to perform better than in cases where model errors
are ignored or accounted for using a Gaussian error model. In fact, the quality of the posterior
solutions is close to results obtained when using a high-fidelity forward solver in the MCMC.
By providing posterior distributions of the model errors, it is possible to visualize where
model errors occur and to identify regions where inversion results might be less reliable.
This information could be used to locally replace low-fidelity simulations with high-fidelity
simulations. Our focus has been on model errors due to simplified physics, but our approach
and the extension discussed above could also be useful when considering coarse meshes for
the forward computations. In addition, our approach could be extended to other fields of
geophysics, for example, full-waveform inversion. Even if our SGAN-ME method works well in
the considered test examples, we highlight the need to address MCMC instabilities due to the
underlying nonlinearity of the SGAN transformation. Since the performance of our approach
depends on the quality of the SGAN realizations, there is a need to further advance network
architectures and training procedures for both subsurface model parameters and model
errors. Further improvements could also be made by training the subsurface model and
model error jointly with shared latent parameters or by combining our SGAN-ME approach
with deep-learning based surrogate modeling.

2.6 Appendix

2.6.1 Details on SGAN Architecture and training

Below we discuss the SGAN architecture and provide practical information about its training.
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Figure 2.13: SGAN architecture showing the activation and normalization types and output
size after each convolution (/transposed convolution) with NC being the number of image
channels (e.g. three channels in RGB images). When training over model errors the critic
layers include mean-spectral-normalization as opposed to spectral normalization alone for
subsurface-model training.

Network architecture

Figure 2.13 details the architecture of the SGAN used in this study. The learning rate of the
generator (ratio of 1 : 4 in learning rate between generator and critic) in subsurface-model
training is 5e −05 while it is 1e −06 in model-error training. We found that using such a low
learning rate was essential to avoid artifacts from appearing in the generated images. We used
a batch size of 64 even if a batch size of 32 provides similar results. The hyper-parameters of
each layer are detailed in Table 2.5 and include the kernel, stride and padding sizes. We use
the RMSProp (Tieleman and Hinton, 2012) optimizer in both generator and critic to update
the parameters of the network.

Effective receptive field and feature size

A distinct difference between SGANs and GANs is the way information in the latent space is
being translated into the image space. GANs usually involve a latent space vector where each
latent parameter affects the resulting images globally, while in SGANs the latent parameters
are ordered within a 2D/3D tensor and contain local information which overlaps in the image
space. One of the limitations arising from using spatially-dependent information within
a convolutional network is that a change in the dimensions of the latent space affects the
output image size (see eq. (2.11)). This means that the network output size is determined
by the dimensions of the latent space. All input to the critic in SGANs must have the same
dimensions, therefore, the dimensions of the TIs should match those of the generated images.
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Table 2.5: SGAN hyper-parameters.

layer kernel stride padding

Generator

1 5 2 3
2 5 2 3
3 5 2 3
4 5 2 3
5 5 2 4

Critic

1 5 2 2
2 5 2 2
3 5 2 2
4 5 2 2
5 1 2 0

We can easily match image sizes by performing an interpolation on the TI to match the
generated image dimensions (or vice versa). Note though that there is an indirect effect of
image interpolation on the learning process that is related to the effective receptive field
(ERF). The ERF is the area in the input (or output in the case of a generator) influencing a
neuron in a given convolutional layer. The ERF is a function of the kernel and stride sizes and
can be computed for the l th layer in the following way (Le and Borji, 2017):

Rl = Rl−1 + (kl −1)
l−1∏
i=1

si , (2.16)

where Rl and Rl−1 are the ERF’s of a neuron in the current and previous layers, kl is the kernel
size in the current layer, si is the stride in layer i and R0 = 1. Although the ERF size does not
depend on the size of the image or latent space, an interpolation to the TI affect the network
for given kernel and stride sizes. The reason is that for an interpolated TI, features within
the image are larger/smaller and therefore, the portion of the features seen by a neuron is
changed (see Figure 2.14). As illustrated in Figure 2.14, where the ERFs of 5 layers are plotted
on top of a TI before and after interpolation for a given network architecture, the resolution
in which neurons in each layer ’see’ features of difference scales changes with interpolation.
This means that some scales cannot be properly resolved which can lead to a mode collapse
or a failure of the network to learn the underlying data distribution.

Hence, it is important to test how well the output/input image is covered by the ERF’s of
neurons in different layers. Since the SGAN was proven to be substantially more sensitive to
changes in k or s than in p (padding; see section 2.2.3), in our work we limited the generated
image size using padding when we increased the number of latent parameters.
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Figure 2.14: (a) Multi-Gaussian TI of dimensions 65x65 pixels and (b) the same TI interpo-
lated into 129x129 pixels, both overlaid by the ERF’s of neurons computed for 5 sequential
convolutional layers. The ERF is computed given k = 5 and s = 2 for all layers.

2.6.2 Quality measure calculation

Here we expand the information concerning the quantitative measures appearing in Tables
2.2, 2.3 and 2.4. We use RMSE as a metric for model and data fit. The RMSE of the model
(RMSEΦ) is calculated on porosity values of individual posterior realizations (only the last
50% of each chain is considered) with respect to the reference model:

RMSEΦ =

√√√√∑NΦ
n=1(Φr e f −Φn)2

NΦ
, (2.17)

where NΦ is the number of subsurface model parameters. The final reported RMSEΦ is the
average value of posterior samples. The data RMSE (RMSEd ) is the average RMSE value in
the last draw of the MCMC chains

RMSEd =

√√√√∑Nd
n=1(d−dsi m

n )2

Nd
, (2.18)

where Nd is the number of data points.

The structural similarity (SSIM; Wang et al., 2004) index of two images U and V is a common
quantitative measure in image processing. It is calculated using sliding windows u and v of
dimension M ×M (we use a 7×7 window) subsampling the [0,1] normalized images,
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SSI M(u,v) = (2µuµv +C1)(2σuv +C2)

(2µ2
u +µ2

v +C1)(2σ2
u +σ2

v +C2)
, (2.19)

where µu and µv are the mean values over u and v, σ2
u and σ2

v are the respective variances
of u and v and σuv is the covariance between u and v. We follow Wang et al. (2004) and set
C1 = 0.01 C2 = 0.03.

The error recovery value is calculated based on MSE values of the reference model error
with respect to 0 (MSE(ηr e f ,0)) and the MSE of the inferred model error with respect to the
reference model (MSE(η,ηr e f )):

MSE(ηr e f ,0) =
∑Nη

n=1(0−ηr e f ,n)2

Nη
, (2.20)

MSE(ηapp ,ηr e f ) =
∑Nη

n=1(ηr e f −ηapp,n)2

Nη
, (2.21)

where Nη is the number of model error parameters. The error recovery is the fraction of the
average MSE(ηapp ,ηr e f ) within posterior samples and MSE(ηr e f ,0) given in percentage:

ER =
MSE(ηapp ,ηr e f )

MSE(ηr e f ,0)
∗100%. (2.22)
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Chapter 3

Variational Bayesian inference with complex
geostatistical priors using inverse autoregres-
sive flows

Shiran Levy, Eric Laloy, Niklas Linde

Published1 in Computers & Geosciences and herein slightly adapted to fit the theme of this
thesis.

1Levy, S., Laloy, E. and Linde, N.(2022). Variational Bayesian inference with complex geostatistical priors
using inverse autoregressive flows. Computers & Geosciences, 171, 105263.
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Abstract

We combine inverse autoregressive flows (IAF) and variational Bayesian inference (variational
Bayes) in the context of geophysical inversion parameterized with deep generative models
encoding complex priors. Variational Bayes approximates the unnormalized posterior dis-
tribution parametrically within a given family of distributions by solving an optimization
problem. Although prone to bias if the chosen family of distributions is too limited, it provides
a computationally-efficient approach that scales well to high-dimensional inverse problems.
To enhance the expressiveness of the variational distribution, we explore its combination
with IAFs that allow samples from a simple base distribution to be pushed forward through
a series of invertible transformations onto an approximate posterior. The IAF is learned by
maximizing the lower bound of the evidence (marginal likelihood), which is equivalent to
minimizing the Kullback-Leibler divergence between the approximation and the target poste-
rior distribution. In our examples, we use either a deep generative adversarial network (GAN)
or a variational autoencoder (VAE) to parameterize complex geostatistical priors. Although
previous attempts to perform Gauss-Newton inversion in combination with GANs of the
same architecture were proven unsuccessful, the trained IAF provides a good reconstruction
of channelized subsurface models for both GAN- and VAE-based inversions using synthetic
crosshole ground-penetrating-radar data. For the considered examples, the computational
cost of our approach is seven times lower than for Markov chain Monte Carlo (MCMC) inver-
sion. Furthermore, the VAE-based approximations in the latent space is in good agreement.
The VAE-based inversion requires only one sample to estimate gradients with respect to the
IAF parameters at each iteration, while the GAN-based inversions need more samples and
the corresponding posterior approximation is less accurate.

3.1 Introduction

Probabilistic inverse modeling is often based on Bayes’ theorem:

p(m|d) = p(d|m)p(m)

p(d)
, (3.1)

where m are unobserved model parameters, d are the measured data, p(m|d) is the pos-
terior probability density function (PDF) of interest, p(m) is the prior PDF, p(d|m) is the
likelihood and p(d) = ∫

p(d|m)p(m)dm is the marginal likelihood that is often referred to
as the evidence. The latter is very challenging to estimate, especially for problems of large
dimensionality, due to the requirement of integrating the likelihood over the prior of all
possible model parameters m. Markov chain Monte Carlo (MCMC) methods circumvent
this problem of evidence estimation by making model proposals using formalized rules and
comparing posterior probability ratios, thereby, enabling unbiased sampling from p(m|d)
provided that the MCMC chain(s) are long enough (Robert et al., 1999). In practice, MCMC
methods can incur prohibitive computational costs for many problems encountered in the
geosciences.
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Variational inference (VI; Blei et al., 2017) or its Bayesian variant termed variational Bayes
(VB; Kingma and Welling, 2014) provides an attractive alternative to MCMC methods as it
replaces a sampling problem with an optimization problem. It proceeds by approximating
the posterior PDF of interest using a surrogate distribution referred to as the variational
density, which is adjusted such that the evidence lower bound (ELBO, see section 3.2.2) is
maximized. The variational density belongs to a family of distributions from which it inherits
its parameterization. The approximation resulting from VI is limited by the chosen parametric
family of distributions. For instance, a classical choice is to use a Gaussian distribution with
unknown hyperparameters, which often offers a poor approximation.

Various variational techniques involving intermediate invertible transformations have been
developed to allow for more expressive variational densities. Automatic differential vari-
ational inference (ADVI; Kucukelbir et al., 2017), for instance, attempts to accommodate
different probabilistic models by transforming the original latent space of the model into
an unconstrained real-valued space, serving as a "common space". VI is then performed on
the common space and differentiation is performed with respect to the original latent space.
This approach offers an automatic, comfortable and efficient way to perform VI for a variety
of models. Nevertheless, there are several limitations to ADVI: (1) the approximation might
suffer from bias due to implicit Gaussian approximations, (2) the approximation is sensitive
to the choice of the invertible transformation connecting the variational density in the real-
valued space and the original space and (3) it might not be suitable when the posterior is
multi-modal (Kucukelbir et al., 2017; Zhang and Curtis, 2020a; Zhao et al., 2022). Another
approach that has seen multiple applications in geophysics (Zhang and Curtis, 2020b; Ram-
graber et al., 2021; Zhang and Curtis, 2021) is Stein variational gradient descent (SVGD; Liu
and Wang, 2016). It uses an ensemble of particles, initialized from a base analytical distribu-
tion, that are iteratively updated to approximate the posterior using a smooth transformation
describing an incremental perturbation. In each step, particles are updated via perturbations
in the direction of the steepest descent, where the magnitude and direction of perturbations
are determined based on the Stein operator (more specifically Stein’s identity and kernelized
Stein discrepancy), to minimize the Kullback-Leibler divergence (DK L , Kullback and Leibler,
1951) between the current distribution of the particles and a target distribution. An advantage
of SVGD is that it does not require explicit parameterization. However, SVGD underestimates
the variance as the dimensionality of the problem increases and, therefore, performs poorly
on high-dimensional problems (Ba et al., 2019). Ba et al. (2019) argue that accurate estimates
using SVGD could be obtained by either increasing the number of particles, but this comes at
a high computational cost and might not always be practical for high-dimensional problems,
or by introducing re-sampling to avoid deterministic bias.

In this study, we consider the increasingly popular family of transformations referred to as
normalizing flows (Rezende and Mohamed, 2015; Papamakarios et al., 2021; Kobyzev et al.,
2021). Normalizing flows transform an initial density of random variables into a target density
of richer form through a series of invertible, differentiable and volume conserving maps. Their
combination with VI enables a more flexible and scalable approach allowing for approximate
posterior distributions of high complexity (Rezende and Mohamed, 2015; Kingma et al.,
2016). Some example applications are flow-based generative models (Dinh et al., 2016, 2014;
Kingma and Dhariwal, 2018), inference, reparameterization and representation learning
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(Papamakarios et al., 2021 and references therein). In a geophysical context, Zhao et al. (2022)
assessed normalizing flows expressed by neural networks on two tomographic problems and
found that it can significantly reduce the number of forward evaluations needed to reach
a solution compared to SVGD and MCMC, while at the same time being less biased than
ADVI. However, the authors indicate a possible drawback when training the neural network
for high-dimensional problems, for example, in 3D problems. This motivates our work which
seeks to combine such approaches with dimensionality reduction.

One of the most popular techniques to reduce dimensionality is principal component analysis
(PCA; Wold et al., 1987), although a plethora of other methods exist (e.g. Kernel-PCA, linear
discriminant analysis and deep neural networks; Dejtrakulwong et al., 2012; Konaté et al.,
2015; Hinton and Salakhutdinov, 2006). For example, Urozayev et al. (2021) used VB to
infer the low-dimensional latent variables describing the coefficients of a discrete cosine
transform (DCT) in a seismic imaging problem. By reducing the dimensionality and using VB,
they could reduce the computational complexity and ensure that geologically-meaningful
solutions were obtained. Laloy et al. (2017) and Laloy et al. (2018) showed that deep generative
neural networks, such as variational autoencoders (VAEs) or generative adversarial networks
(GANs), are well-suited for dimensionality reduction when working on inverse problems
with complex prior models. Such methods allow for fast sampling from the prior and the
reduction in dimensionality makes MCMC inversions more efficient compared to alternative
approaches relying on a training image (TI) such as sequential geostatistical resampling
(Mariethoz et al., 2010b; Hansen et al., 2012; Tahmasebi, 2018).

Generally speaking, there are two ways in which generative neural networks can be used
in inverse modelling. In the first approach, a pre-trained generative network is combined
with an inference framework (e.g. MCMC). In the second approach, the generative network
serves as the inference network that is trained to generate realizations that honor the data
(Dupont et al., 2018; Mosser et al., 2018; Song et al., 2021b,c; Laloy et al., 2021). The first
approach can be further split into two sub-approaches: 1) The distribution conditional on
the data is explored in the latent space of the generative network by sampling, minimization
or optimization methods (Laloy et al., 2017, 2019; Mosser et al., 2020; Levy et al., 2022) and 2)
a mapping is learned between an initial simple distribution and a distribution on the latent
space of the generative network which is conditioned on data and from which we can sample
conditional realizations (Chan and Elsheikh, 2019). Here we study this latter sub-approach for
inversion and build on previous works on normalizing flows and VI (Rezende and Mohamed,
2015; Kingma et al., 2016; Hoffman et al., 2019). We train inverse autoregressive flows (IAF;
Kingma et al., 2016), a type of normalizing flows, using stochastic variational inference (SVI;
Hoffman et al., 2013) to invert synthetic, noise contaminated (indirect) geophysical data in
presence of a complex geostatistical prior. We refer to this approach as neural-transport
(Hoffman et al., 2019). Our model parameters are parameterized within the latent space
of a deep generative model (DGM): either a GAN or a VAE. Training of the IAF proceeds by
randomly drawing samples from a standard normal distribution and pushing them through
the IAF transform into a space in which VI is performed. The parameters of the IAF are
updated at each training iteration using stochastic gradient-based optimization with the
objective to maximize the ELBO.
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For the same type of subsurface models as considered herein, Laloy et al. (2019) attempted
to infer the latent parameters of a GAN using two different deterministic gradient-based
inversion approaches. They found that even when a linear forward solver was used, both
approaches performed poorly given the high non-linearity of the GAN. Their conclusion was
later reinforced by Lopez-Alvis et al. (2021) who suggested to replace the GAN with a VAE, for
which they obtained better inversion results. This is because the VAE generator was found
to be less nonlinear and to better preserve topology compared to the GAN generator (see
Lopez-Alvis et al., 2021, for details). As neural-transport is a stochastic approach that relies
on gradient-based optimization, we expect it to perform better than deterministic gradient-
based approaches and, thereby, at least partly avoid pitfalls due to the non-linearity and
complex manifold topology of the GAN. Additionally, neural-transport may offer a potentially-
significant speedup compared to MCMC given that (1) it allows parallelization of the problem
making it well suited to high-dimensional problems and (2) it solves an optimization problem
using gradient-based information. The objective of this study is to assess the performance of
the neural-transport approach with respect to using either a GAN or a VAE and compare its
performance against MCMC results.

The remainder of the paper is structured as follows. Section 2 briefly describes the theory
behind each component of the methodology namely, the used DGMs, IAF, VI and the com-
bined neural-transport routine. In section 3, a sensitivity analysis with respect to training
and algorithmic parameters is presented. Section 4 presents inversion results obtained from
neural-transport and a comparison of neural-transport against MCMC. Section 5 discusses
the results, advantages and limitations of neural-transport and outlines possible future
developments. Section 6 concludes the study.

3.2 Methods

We build upon the work of Hoffman et al. (2019) who coined the term neural-transport (NT)
to describe the trained IAF transformation. Compared to previous work with NT, here we
consider an intermediate latent space of a DGM: either a SGAN or a VAE. The IAF (section
3.2.1) serves as an inference network in which samples from a standard normal distribution
are mapped into a target distribution. The IAF is trained through variational Bayesian infer-
ence (section 3.2.2), in which the parameters of the transformation are iteratively updated
through gradient-based optimization. The inferred model parameters are those within the
latent space of the DGM (section 3.2.3) while the physical forward response (section 3.2.4)
is computed on high-dimensional model realizations following the DGM transformation.
Finally, the resulting approximate posterior distribution, that is conditioned on indirect
(noise-contaminated) geophysical data, can be sampled and estimated. We describe the
implementation of this approach, combining NT and DGMs, in section 3.2.5. To assess the
quality of the IAF approximation we use several metrics (section 3.2.6) such as the root-mean-
squared error and structural similarity index and compare with results obtained by MCMC
inversion.
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3.2.1 Inverse autoregressive flows

IAF is a class of normalizing flows, in which a random variable z(0) drawn from a known
probability density function (base distribution) z(0) ∼ q(z(0)) is mapped into a random variable
m from the target distribution m ∼ q(m). Given a transformation m = f (z(0)) where f :Rn −→
Rn is an invertible, continuous and differentiable mapping between two random variables,
one can sample from the target distribution by applying the transformation and evaluating
the target distribution using the change of variables theorem

q(m) = q(z(0))

∣∣∣∣det
d f (z(0))

dz(0)

∣∣∣∣−1

, (3.2)

where d f (z(0))
dz(0) is the Jacobian matrix J and det d f (z(0))

dz(0) its determinant, representing the change
in volume as a result of the transformation f . If the mapping consists of several transforma-
tions, the logarithmic form of q(m) can be evaluated by:

log q(m) = log q(z(0))−
K∑

k=1
log

∣∣∣∣det
d fk (z(k−1))

dz(k−1)

∣∣∣∣ , (3.3)

where k = 1, ..,K is the number of sequential transformations and m = z(K ). In IAF, the
transformation fk applied on the random variable z(k−1)

i (i = 1,2, ...,n) is conditional on
previous instances and can be formulated as:

z(k)
i ∼ q(z(k)

i |z(k−1)
1:i−1 ) = fk (z(k−1)

i ) = z(k−1)
i ¯σφ,i (z(k−1)

1:i−1 )+µφ,i (z(k−1)
1:i−1 ), (3.4)

where φ are the trainable parameters of the IAF and σ and µ are the scale and shift functions,
respectively, conditional on previous instances. For this type of transformation |detJk | =∏n

i σi , making the determinant of the Jacobian easy to compute and the target distribution

easier to evaluate. Since z(k)
i only depends on known variables z(k−1)

1:i , the mapping can be
computed in parallel.

3.2.2 Variational Bayesian inference

Variational Bayes is an approach to approximate an intractable posterior distribution by
optimization. The approximation of p(m|d) is made with a surrogate distribution q∗(m)
defined within a family Q, for which:

q∗(m) = arg min
q(m)∈Q

DK L(q(m)||p(m|d)). (3.5)
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The notation DK L in eq. (3.5) indicates the Kullback-Leibler divergence (KL; Kullback and
Leibler, 1951), a statistical measure of the distance between two distributions defined as
DK L( f (x)||g (x)) = ∫

f (x) log( f (x)
g (x) )d x for a given random variable x. We defineφ as the param-

eterization of the variational density q(m) and it depends on our choice of the distribution
family Q. Since the posterior distribution p(m|d) is intractable in most cases and the evi-
dence p(d) is a constant, a common approach is to instead maximize the evidence lower
bound (ELBO; see Blei et al., 2017)

log p(d) = Em∼q log p(m,d)−Em∼q log qφ(m)︸ ︷︷ ︸
ELBO

+DK L(qφ(m)||p(m|d)). (3.6)

The name "evidence lower bound" comes from the fact that logEq(x)p(x) ≥ Eq(x) log p(x) and
that DK L(q(m)||p(m|d)) ≥ 0, resulting in the following inequality (Jordan et al., 1999):

log p(d) ≥ Em∼q log p(m,d)−Em∼q log q(m) = ELBO. (3.7)

As we maximize the ELBO in eq. (3.6), it approaches log p(d). We define a corresponding loss
function L (φ) = ELBO which depends on the parameterization φ of the variational density

L (φ) =
∫

qφ(m) log p(m,d)dm−
∫

qφ(m) log qφ(m)dm

=
∫

qφ(m) log
p(m,d)

qφ(m)
dm = Em∼q

[
log

p(m,d)

qφ(m)

]
. (3.8)

Then,φ is optimized to maximize L (φ) (and as a consequence it also minimizes DK L(qφ(m)||
p(m|d))) via gradient-based optimization in which gradients of L (φ) are computed with
respect to φ using samples from qφ(m)

∇φL (φ) = Em∼q

[
∇φ log

p(m,d)

qφ(m)

]
. (3.9)

An unbiased Monte Carlo estimation of the ELBO (and its derivatives) can be computed by
evaluating the logarithmic ratios in eqs. (3.8) and (3.9) at Ns samples from qφ(m).
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3.2.3 Deep generative models

DGMs are artificial neural networks that are trained to generate data according to an un-
derlying distribution of a dataset of interest. A network is composed of input, hidden and
output layers, where the input is our input features, the output is our generated data and
hidden layers are intermediate layers connecting the input to the output. The hidden layers
are composed of small units (nodes) referred to as neurons. Mathematically, a hidden layer
can be formulated as:

h(X) =ϕ(XTW+b), (3.10)

where X is the input vector to the layer, W contains the weights connecting input features to
individual neurons, b is a vector of biases andϕ is an activation function (sigmoid, tanh, ReLU
etc.) introducing non-linearity. In convolutional neural networks (CNNs), such as those used
herein, weights in each layer are organized in a series of matrices (kernels) that are convolved
with the input to form a series of feature maps. Convolutional networks reduces the number
of weights required, especially for large inputs and they are advantageous in tasks where
the input exhibits local interactions between features (see Goodfellow et al., 2016 for more
information). In this study, we consider two types of DGMs: spatial generative adversarial
network (SGAN) and a variational autoencoder (VAE). These DGMs are introduced to reduce
the dimensionality of the inverse problem by learning an encoding of a complex prior, thereby,
aiming at reducing the computational cost and improving inversion performance. Both
DGMs are trained using the binary channelized image of size 2500×2500 pixels introduced
by Zahner et al. (2016) and later used by Laloy et al. (2018) (Fig. 2a) and Lopez-Alvis et al.
(2021).

Spatial generative adversarial networks

The SGAN (Jetchev et al., 2016; Laloy et al., 2018) is a type of generative adversarial network
(GAN ;Goodfellow et al., 2014), that is, a CNN consisting of a discriminator D and a generator G .
Adversarial training consists of optimization with the generator and discriminator competing
against each other. The input to the generator in a SGAN is a noise tensor Z of 2D or 3D shape,
which is typically drawn from a standard normal or uniform distribution. For convenience, in
this paper we represent Z in its vector form z, however, in practice the input to the generator
of the SGAN is a tensor of rank that is higher than one. For a 2D model domain, the output is
an image X̃ of size m ×n ×q , where q represent the number of RGB channels. The size of X̃
is determined by the depth of the network as well as the number of spatial parameters (m
and n). The significance of having an input tensor in a SGAN as opposed to a 1D vector in a
standard GAN, is the way perturbations in the latent space are translated into changes in the
image space. As opposed to a global update, perturbing one of the SGAN’s latent parameters
leads to a localized change in X̃. The input to the discriminator is either the generated image
X̃ or an image X from a training set, containing the patterns we would like to learn. The output
of the discriminator is a score of either 0 or 1, representing the belief that the input is either
generated by the generator or is a part of the training set (i.e., training image), respectively.
The network is trained using the following minimization-maximization loss function:
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min
G(·)

max
D(·)

E
X∼Pr

[logD(X)]+ E
z∼pg

[log(1−D(G(z)))]. (3.11)

The discriminator D will try to maximize the function in eq. (3.11) by correctly labeling X as 1
and G(z) as 0, while the generator G will try to minimize it through fooling the discriminator.
For numerical stability, an l2-norm regularization αG AN ||Ω||22 is applied to both the generator
and discriminator, whereΩ contains the network weights and regularization increases as we
increase αG AN , the weighting factor. This type of regularization encourages the individual
weights to be small, thus, preventing large weights on a few layer units (neurons). The loss
from eq. (3.11) is then used to update the parameters of the discriminator and generator,
where the weights of the discriminator are updated first and the weights of the generator
are updated in a second stage. The update to the parameters of the network is performed
by back-propagating the error computed in the forward pass (going from input to output)
through the respective network. The update to each network parameter is proportional to
a specified learning rate and the gradients of the error with respect to that parameter (see
Laloy et al. (2018) for more details).

We adopt the SGAN architecture of Laloy et al. (2019) who used a generator with seven
convolutional layers, instance normalization and ReLU activation function except for the last
layer which is only followed by a tanh activation function. We train the network with a square
latent space z of 12×12 out of which we use only 5×3 (15) latent variables to generate images
of size 65×129. The training images are normalized into a range of [−1,1] before they are
fed into the discriminator. Consequently, when using the trained generator, images are also
re-scaled into the [0,1] range. We train the SGAN with the ADAM optimizer (Kingma and Ba,
2014) using a batch of 32 images at each training iteration and the following hyperparameters:
βG AN ,1 = 0.5, βG AN ,2 = 0.999, learning rate of 5e−4 and αG AN = 1e−7.

Variational autoencoders

Variational autoencoders are a type of generative models proposed by Kingma and Welling
(2014) for various deep learning tasks (e.g. recognition, denoising, representation and visual-
ization) involving intractable posteriors. VAEs include two neural networks: a probabilistic
encoder described by qϑ(z|X) and a probabilistic decoder described by pθ(X|z), where ϑ and
θ are the parameters of the encoder and decoder, respectively. The former transforms an
input X(i ) from the training set {XN

i=1} into a probabilistic n-dimensional representation z and
the latter samples z and transform it into X̃(i ), that is, a reconstruction of X(i ). The training
objective is to maximize the ELBO (Kingma and Welling, 2014):

L (ϑ,θ) = Eqϑ(z|X)
[
log(pθ(X|z))

]−DK L(qϑ(z|X)||p(z)). (3.12)

The first term represents the reconstruction error of the decoder when transforming samples
from z into X̃ while the second term encourages the variational density qϑ(z|X) to be close
to p(z) ≡ N (0n ,In). The model becomes non-differentiable if we sample z directly from
a distribution parameterized by the output of the encoder as we would need to compute
the gradients with respect to a random sample. This is problematic for gradient-based
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optimization during which gradients are back-propagated through the network. In order to
solve this problem, z is re-parameterized using a random auxiliary noise ε such that (Kingma
and Welling, 2014):

z̃ =µϑ(X)+σϑ(X)¯ε, ε∼ p(ε) (3.13)

where ¯ denotes an element-wise product and µϑ and σϑ are mean and standard deviation
vectors provided by the encoder. After reparameterization, z becomes determinstic and
gradients can be back-propagated through it. Here we use the VAE proposed by Lopez-Alvis
et al. (2021) which has the same layer architecture as the SGAN and was trained on the same
training images. Although VAE can be fully probabilistic, Lopez-Alvis et al. (2021) considered
only the mean of the decoder, therefore, making it a deterministic generator Gθ(z). After
training, θ is constant and to generate X̃ samples, we simply draw samples from z̃ ≈N (0n ,In)
and push it through the generator Gθ(z). Lopez-Alvis et al. (2021) discuss the importance
of two hyper-parameters that needs to be specified when training the VAE: βV AE which is
a weighting factor multiplying the second term in eq. (3.12) and αV AE which controls the
distribution from which the auxiliary noise is drawn from: p(ε) = N (0n ,αV AE · In). They
illustrate how well-chosen αV AE - and βV AE -values leads to a well-behaved generator and
better inversion performance relative to other choices. The hyper-parameters with which
the VAE is trained are as follows: βV AE = 1000, αV AE = 0.1 and a learning rate of 1e−3 (for
more details, see Lopez-Alvis et al., 2021). The VAE decoder contains two fully connected
layers followed by four convolutional layers that are all followed by instance normalization
and ReLU activation function except for the last layer which is only followed by a sigmoid
activation function. The latent space z of the VAE is composed of a vector of 20 parameters
corresponding to output images of 65×129 pixels.

3.2.4 Crosshole traveltime tomography

In our test examples, we consider a crosshole ground penetrating radar (GPR) setup in which
source and receiver antennas are distributed within two vertically-oriented boreholes. The
forward response can be formulated as follows:

d = g (s)+ε, (3.14)

where g is the forward operator, s is the slowness field (inverse of velocity v) of the modelled
domain, ε is the observational noise and d = (d1, ...,dN ) ∈ RN with N ≥ 1 is the measured
first-arrival travel times between source-receiver pairs. We assign velocities to individual
model parameters using v = 0.06+0.02 · (1− x̃), resulting in a continuous range of velocities
between [0.06,0.08] m·ns−1.

We consider a non-linear forward solver implemented in the pyGIMLi geophysical modelling
library (Rücker et al., 2017). In this implementation, the travel times are calculated on a mesh
of nodes based on the Dijktra’s method, giving the shortest path between source-receiver
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positions for a given slowness model. We use the Jacobian provided by pyGIMLi for a given
source-receiver geometry and slowness model and calculate the travel times according to:

dsi m = Jg (s)s, (3.15)

where Jg is the Jacobian matrix (also known as the sensitivity matrix) containing the length
of the ray segment at each model cell for each travel time. Note that this Jacobian refers to
the physical forward solver and not to the Jacobian of the IAF (eq. (3.2)). The accuracy of
the simulated travel times can be improved by adding secondary nodes. In our examples,
the Jacobian is re-computed for each slowness field using two secondary nodes. With the
Jacobian acting as the forward operator (eq. (3.15)) we are able to comply with the automatic
differentiation (auto-differentiation) requirements of machine-learning supported Python
libraries (e.g., PyTorch and TensorFlow). Unfortunately, pyGIMLi objects are not supporting
data storage using pickling which is a requirement when using most parallel computing
Python libraries. Given this limitation, in this work the forward simulations are performed in
a sequential manner.

3.2.5 Inversion in the latent space of a deep generative model with neural-
transport

Our inversion framework combining NT with a DGM is composed of the methods described
in previous subsections: IAF, VI and DGMs, where the forward response is required in order
to compute the joint probability p(m,d). Both DGMs define a low-dimensional latent space
involving uncorrelated variables with a well-defined prior (standard normal) that we choose
to be in agreement with the base distribution of the IAF. As both DGMs are implemented in
PyTorch, we use Pyro (Bingham et al., 2019), a library for probabilistic programming built
on Python and PyTorch, to train the IAF. In the following, we define z(0) as a random variable
within the latent space of the IAF that is drawn from a standard normal base distribution, we
further define our target distribution qφ on the latent space of the SGAN (or VAE) such that
m = zG AN (or zV AE ) and X̃ as the high-dimensional, image-space parameters before slowness
s is assigned. For the remainder of this paper, we will refer to random samples drawn from
the base distribution (and pushed forward to the variational distribution space) as particles.
Each particle represents one model realization and has the same size as that of the latent
space of the DGM in use. For the sake of conciseness, we will refer to variables from the
target distribution zG AN (or zV AE ) simply as z and specify in the appropriate places to which
generative model they belong.

To train the IAF, Ns particles are drawn from the base distribution z(0) ∼ q(z(0)) and mapped
through the invertible transformation of the IAF into the variational space qφ(z) in which
we approximate the posterior on the DGM’s latent space z. The Ns particles z are then
transformed into high-dimensional X̃-realizations through the generator G(·). Slowness s is
assigned to each pixel and the likelihood is computed for each of the Ns particles using the
geophysical forward solver. We compute the logarithm of the joint distribution log p(z,d) =
log p(d|z)+ log p(z) (also referred to as the logarithmic form of the unnormalized posterior
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p(z|d)). Since we have a standard-normal prior (mean µz = 0 and standard deviation σz = 1)
on both the SGAN and VAE latent spaces, and further assume independent, identical and
normally-distributed observational noise with zero mean and standard deviation of σd , we
have

log p(z,d) =−1

2

(
Nd log(2π)+2Nd log(σd )+σ−2

d

Nd∑
i=1

[
di − gi (G(z))

]2

+Nz log(2π)+2Nz log(σz)+σ−2
z

Nz∑
i=1

z2
i

)
, (3.16)

where Nd is the number of data observations, Nz is the number of latent z parameters and zi is
the i th parameter in z. Note that the log-likelihood is evaluated on forward simulations based
on the high-dimensional X̃-space while the log-prior is evaluated on the low-dimensional
SGAN (or VAE) latent parameters. The loss function L (φ) can be calculated by using eq. (3.3)
to evaluate log qφ(z):

L (φ) = Ez∼q

[
log

p(z,d)

qφ(z)

]
= Ez∼q

log
p(z,d)

q(z(0))
∏K

k=1

∣∣∣det d fk (z(k−1))
dz(k−1)

∣∣∣−1

 . (3.17)

The gradient of L (φ) is computed through auto-differentiation. We consider −L (φ) and
perform stochastic gradient descent to update φ. A brief summary of the above routine
appears in Figure 3.1 and Algorithm 2.

The architecture of the IAF can be adjusted in response to the level of complexity of the target
distribution. Hoffman et al. (2019) used three stacked flows with two hidden layers each. We
found that two sequential flows, each containing one hidden layer and a hidden dimensional-
ity that is twice as large as the target distribution to be sufficient for our considered examples.
Each flow is followed by a non-linear ReLU activation function providing the network with
further flexibility (For detailed information about the architecture of the IAF see Appendix
3.6.1). During training the network parameters are optimized using ADAM with βI AF,1 = 0.9
and βI AF,2 = 0.999 and a learning rate of 0.01. In order to enable gradient calculation of the
model parameters with respect to the DGM as part of the NT routine, we do not threshold
the generated images to [0,1] (Laloy et al., 2019).
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Figure 3.1: Illustration of one training iteration of neural-transport combined with deep
generative models. The inferred model parameters (here represented in 2D as dots) are
the low-dimensional latent parameters z. The pre-trained generator G transform the latent
parameters into their corresponding high-dimensional parameters in the image-space on
which forward simulations are carried out to obtain the data vector d. The IAF (represented
by transformation f ) parameters φ, are tuned during training to maximize the ELBO.

3.2.6 Performance assessment

We test NT in combination with each of the two considered DGMs using five different test
models (Fig. 3.2) generated by the respective generator. Following Lopez-Alvis et al. (2021),
we refer to models generated by the SGAN with the abbreviation ’mg’ and models generated
by the VAE with ’mv’. It is seen that the SGAN provides images that are less blurry than those
produced by the VAE. To assess the performance and quality of the approximate posterior
qφ(z) obtained from NT, we consider different statistical metrics. For each test model, we
plot the mean and standard deviation image of the approximate posterior. The root-mean-
squared error (RMSE) is computed on mean values of the latent parameters (RMSEz), model
parameters (RMSEX) and data misfit (RMSEd) at the last iteration. We rely on RMSEd to
determine if the approximate posterior has converged. The loss function for the IAF L is
used here as a complementary metric as we observed that the data fit can decrease even after
L becomes stable. We define two criteria that both need to be met to declare convergence:
(1) for an iteration after which the RMSEd value averaged over all particles equals that in

the last 10% iterations of the algorithm; (2) the average WRMSE =
√

1
Nd

∑[
di−gi (G(z))

σi

]2
(data

misfit weighted by the standard deviation of the data noise) is less than 1.1. The former
criterion ensures that the approximate posterior reached a stable solution while the latter
prevents declaring convergence for models that are stuck in a local minimum with a data
misfit that is poor. The similarity of the NT solution (mean value of the approximate posterior)
to the true model in the high-dimensional space X̃ is further assessed using the structural
similarity index (SSIM; Wang et al., 2004). It measures the similarity between two images with
respect to their structural information:
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Algorithm 2: Bayesian inference using neural-transport and a deep generative model

1 set T (maximum number of iterations) and t = 0
2 while (t < T ) do
3 Draw Ns particles (realizations of z(0)) from the base distribution q(z(0))
4 z ← IAFφ(z(0))
5 X̃ ← G(z)
6 Assign slowness values to X̃ and compute the forward simulation g (s) to get simulated

data d
7 Compute L (φ) and ∇φL (φ) using eq. (3.9), (3.16) and (3.17) and update φ using

stochastic gradient descent
8 t = t +1

9 end
10 Function G(z)
11 Perform a series of transposed convolution layers with pre-trained weights
12 return X̃
13 end
14 Function IAFφ(z(0))
15 z = fk ◦ fk−1 ◦ ...◦ f1(z(0))
16 return z
17 end

SSI M(u,v) = (2µuµv +C1)(2σuv +C2)

(2µ2
u +µ2

v +C1)(2σ2
u +σ2

v +C2)
, (3.18)

where u and v are sliding windows of size M × M , each sub-samples its respective [0,1]
normalized image. The values of the SSIM range between −1 and 1, where 1 indicates
perfectly matching images. Here we use M = 7, C1 = 0.01 and C2 = 0.03 as those values are
commonly used (Wang et al., 2004; Laloy et al., 2021 and references therein).

Additionally, we asses the performance of the NT approach against the results obtained
by MCMC. We use the differential evolution adaptive Metropolis (DREAM(Z S)) algorithm
(Ter Braak and Vrugt, 2008; Vrugt et al., 2009; Laloy and Vrugt, 2012) to sample the posterior
in the latent space of each considered DGM. In this MCMC algorithm, several chains evolve
in parallel and jumps are proposed based on candidate points from an archive of past states.
At each MCMC step and for each individual chain, a sample z′ proposed according to a
symmetric proposal distribution is either accepted or rejected according to a Metropolis
acceptance probability

pacc (zt−1,z′) = min

(
1,

p(d|z′)p(z′)
p(d|zt−1)p(zt−1)

)
. (3.19)

If accepted, the chain moves to the proposed state, if rejected it remains at the current state.
Convergence of each latent parameter is declared based on the Gelman-Rubin diagnostic
(Gelman and Rubin, 1992) when R̂ ≤ 1.2. We compare the approximate posterior PDFs of z
obtained from NT to those obtained from MCMC inversion. Furthermore, both posterior
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distributions are also compared to the prior of the latent space. The distance between two
PDFs is computed using the KL-divergence while their predictive power is assessed using
the logarithmic scoring rule (LogS; Good, 1952). The LogS statistic is defined as logS(p̂,y) =
− log p̂(y) where y are the true values of the parameters of interest and p̂ is the PDF used to
predict the probability of y. A lower LogS indicates a more accurate prediction. Both the
KL-divergence and LogS values are reported as mean values over all parameters.

Figure 3.2: Reference models used for inversion. Models labeled with: ’mg’ are test models
generated by the SGAN and ’mv’ are test models generated by the VAE.

3.3 Inversion results

We consider the inversion of synthetic data created using the forward solver described in
section 3.2.4 that are contaminated with normally-distributed noise N (0,1). We use 25
sources and 25 receivers resulting in 625 data points. Given results from the hyperparameter
search described in Appendix 3.6.2, we use 20 particles to perform inversion with the SGAN
and only a single particle when using VAE. After 250 iterations with 20 particles, the RMSEd

of NT with SGAN is still decreasing towards the target value (Fig. 3.10a). Consequently, we
increase the number of training iterations to 300 (6000 forward simulaions) for the SGAN
inversions. On the other hand, NT with VAE converges towards the target value in less
than 1000 iterations with a single particle (Fig. 3.10d). Since we perform only one forward
simulation per iteration we allow a maximum of 2000 training iterations for the VAE inversions.
The learning rate in both types of inversions is set to 0.01. We run each NT-inversion scheme
on a single CPU (AMD EPYC™ 7402) in a sequential manner due to the inability to distribute
the forward response function on multiple CPUs (see section 3.2.4). It takes around 13 hours
to run the VAE-based NT inversion considering 2000 training iterations and a single particle
and around 40 hours to run the SGAN-based NT for 300 training iterations and 20 particles.
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The computational effort is completely dominated by the calculation of the Jacobian of
the physical forward solver (eq. (3.15)) at each iteration as it makes up 99% of the total
computational time.

Figures 3.3 and 3.4 for SGAN and VAE, respectively, show the mean and standard deviation of
the approximate posterior compared to the true model as well as the ELBO loss and RMSEd

during inversion. These figures are complemented by quantitative metrics in Table 3.1. For all
of the mg models in Figure 3.3 that were obtained using SGAN as the DGM, the main features
were reconstructed with the right number and location of the channels (Fig. 3.3b) and the
largest uncertainty is located at the boundaries of the channels (Fig. 3.3c) as expected given
results of previous studies (e.g., Zahner et al., 2016). The inferred models mg2 and mg3 are of
lower quality compared to the other ones with SSIM values of 0.71 and 0.76, while it is ≥ 0.85
for the other mg models. The inferred model for mg2 has large uncertainty (around 0.3) on
the upper left 2 m of the model and exhibits the largest data misfit (1.42 ns while it is ≤ 1.10
ns for the other models). It is possible that these estimates would have improved further with
more training iterations.

The results obtained when using the VAE as DGM are both qualitatively (Fig. 3.4) and quanti-
tatively (Table 3.1) much better. Table 3.1 suggests that all mv models are well reconstructed
with all RMSEd ≤ 1.05 ns and all SSIM ≥ 0.9. The RMSEz values are as low as 0.08 and none is
higher than 0.37, indicating a good match between the inferred latent parameters and their
true counterparts. These values are at least one order lower than the values obtained for
the SGAN-based inversion (≥ 1.08). The RMSEX is as low as 0.04 for the VAE models (mv4)
whereas the lowest value for the SGAN models is 0.10 (mg1). Moreover, the mean standard
deviation of X, while highly dependent on the number of channel elements in the reference
model, is consistently lower when the VAE is used as DGM (on average by ∼ 60%). Although
there are noticeable differences in the bottom part of the inferred mv1 and mv2 models (last
2 m) compared to their references, these do not translate into large data misfits as these
regions are not well constrained by the GPR rays. Furthermore, when we train the IAF with
ten particles on the mv1 model the reconstruction improves (see Appendix 3.6.3).

Three out of the five mg models and all mv models converged according to the criteria in
subsection 3.2.6 (see Table 3.1). For the mg models, convergence occurs after 260 training
iterations on average (with 20 particles), while for the mv models the stage at which conver-
gence can be declared ranges between 477 and 1767 training iterations (with a single particle).
Nonetheless, it can be seen in Figure 3.4 that by the 800th iteration the RMSEd for all the
models is below 1.1 ns. This is in agreement with Figure 3.5 where we take three exemplary
latent parameters of mv5 and plot their approximate PDF at different stages of the training
process. We observe that after 500 training iterations the approximate density is close to the
final density (2000 iterations) and after 1000 iterations the density becomes very similar to
the final one for the first (Fig. 3.5a) and tenth (Fig. 3.5b) latent parameters.

After demonstrating that the SGAN- and particularly the VAE-based NT produce high-quality
reconstructions of the true model, we assess now the corresponding approximate posteriors
with respect to MCMC inversion (DREAM(Z S)) and the standard normal prior PDF. We run
eight parallel MCMC chains for one test model of each DGM: mg5 and mv5 (these are also
the models resulting in the lowest RMSEz). We limit the number of samples per chain to
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Figure 3.3: Inferred posterior distributions for different reference models generated by the
SGAN using 20 particles and 300 training iterations. (a) True mg1-mg5 models (b) mean
posterior models obtained from NT and (c) posterior standard deviation in the model image
space. (d) The ELBO loss and RMSEd in ns during training. The RMSEd curves represent the
average values over all particles.
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Figure 3.4: Inferred posterior distributions for different reference models generated by the
VAE using one particle and 2000 training iterations. (a) True mv1-mv5 models (b) mean
posterior models obtained from NT and (c) posterior standard deviation in the model image
space. (d) The ELBO loss and RMSEd in ns during training.
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Table 3.1: Summary of the results obtained from inversion with neural-transport for various
reference models and using either the SGAN (20 particles) or the VAE (one particle) as
DGM. S(X) is the average standard deviation of the posterior p(X|d,z) corresponding to
samples from qφ(z). RMSEz is calculated on the mean latent space parameters of the resulting
posterior while the RMSEX is calculated in the model image space. RMSEd is the data misfit
RMSE value at the last iteration. The SSIM is calculated in the model image space on [0,1]
models.

DGM Model
Converged
(iteration #)

S(X)
RMSE

SSIM
z X d [ns]

SGAN

mg1 269 0.024 1.15 0.10 1.07 0.91
mg2 - 0.110 1.35 0.20 1.42 0.71
mg3 - 0.054 1.39 0.19 1.10 0.76
mg4 243 0.027 1.59 0.12 1.08 0.86
mg5 271 0.040 1.08 0.12 1.06 0.85

VAE

mv1 1767 0.020 0.37 0.12 1.05 0.94
mv2 1467 0.017 0.18 0.06 1.04 0.96
mv3 477 0.024 0.15 0.09 1.04 0.90
mv4 496 0.020 0.08 0.04 1.04 0.97
mv5 1256 0.020 0.08 0.06 1.04 0.94

20 000 which represent a computation time of ∼6 days on a 8-core workstation. For the
SGAN-based MCMC inversion, 12 of the 15 parameters satisfy the R̂ criterion within this
computational budget. For the VAE-based MCMC inversion, all 20 parameters converged
within 8900 samples per chain (total of 71 200 samples). Given the two different convergence
criteria for NT and MCMC, we have that the computational time required for the VAE-based
MCMC inversion to converge to the posterior target is 7 times larger than that required by the
VAE-based NT (56 times if the MCMC algorithm would not have been running in parallel).
After 20 000 MCMC samples per chain, the RMSEzs of the posterior means are 0.31 and 0.09
for the SGAN- and VAE-based MCMC inversions, respectively. The mean SSIM values in
the model space that correspond to those posterior latent parameters are 0.91 (mg5) and
0.95 (mv5). In addition, the final RMSEd averaged over all chains is about 1.03 ns for both
DGM-based MCMC inversions. Compared to NT the MCMC achieves lower RMSE values
and higher SSIM values when the SGAN is the DGM, but the performance is comparable for
the VAE-based inversion.

For comparison, we plot the marginal prior and posterior latent distributions obtained by
performing both NT and MCMC sampling for the mg5 (SGAN) and mv5 (VAE) true models
(Figs. 3.6 and 3.7). The LogS of each PDF and the KL-divergence values between the various
PDFs are provided in Table 3.2. The marginal posteriors obtained for the mg5 model (Fig. 3.6)
are considerably wider than those obtained for mv5 (Fig. 3.7). This can be also observed in
the range of the posterior standard deviation displayed in Figs. 3.3c and 3.4c. The posterior
derived by the SGAN-based NT is often not centered around the true value and receives
the highest LogS (7.66; see Table 3.2). Moreover, when the SGAN is used as DGM the KL-
divergence value between NT and MCMC posteriors goes to infinity due to a minimal overlap.
The estimates are more consistent when using the VAE. Here the latent posterior PDF (Fig.
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Figure 3.5: Estimation of the variational PDF describing the marginal posterior of the 1st ,
10th and 18th latent parameters of the mv5 model at various training iterations.

Table 3.2: Statistical summary of the posterior PDF in the latent space z of mg5 and mv5

models obtained by neural-transport (NT) and MCMC with DREAM(Z S). Both are compared
against the prior PDF of z. The logS and KL-divergence are reported as the mean value over
the z parameters.

PDF (Q) logS
DK L(Q||P )

MCMC (P ) Prior (P )

mg5

NT 7.66 inf 3.63
MCMC 0.11 0 1.48

Prior 1.60 - 0

mv5

NT −1.29 0.19 2.84
MCMC −1.19 0 2.55

Prior 1.43 - 0

3.7) is either centered around or contains the true value for both the NT inversion and
the MCMC inversion and posterior uncertainty derived by the NT is similar to that of the
MCMC. Furthermore, the KL-divergence of the NT posterior from the MCMC posterior is
relatively small (0.19), which indicates strong similarity between the two. The two VAE-based
approximate posteriors also provide relatively similar LogS value with the NT posterior being
slightly more accurate than the MCMC one (−1.29 for NT versus −1.19 for MCMC).

3.4 Discussion

Our results demonstrate that the presented NT approach works well with both SGAN and VAE
in terms of reconstructing the true models in the image space. Moreover, the approximate
posterior from the VAE-based inference provides a slightly better prediction (low LogS value)
than MCMC as well as reliable uncertainty estimates with respect to the true latent space
values (Fig. 3.7 and Table 3.2) at a much lower computational cost. Due to the invertible
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Figure 3.6: Approximate marginal posteriors on the latent space z obtained with neural-
transport (NT) and MCMC for model mg5 in Fig. 3.2 as well as the prior on the latent space of
the SGAN.

transformations of the IAF, in NT we can evaluate the approximate posterior analytically as
well as draw random samples from it.

The differences in training (adversarial versus variational) and more so the differences in
architecture (fully connected and convolutional layers in the VAE versus fully convolutional
spatial GAN) between the two DGMs lead to transformations that vary in their degree of non-
linearity. The SGAN transformation provides approximate latent posterior distributions that
are both wider and less accurate than those obtained by the VAE-based inversions, thereby,
indicating stronger dependencies between the SGAN parameters. The stronger correlation
between the SGAN latent parameters can be explained by its spatial architecture, that is,
its 2D latent space and fully convolutional layers. Although the approximate posterior in
the latent space of the SGAN does not provide a good prediction of the true value, as seen
from the RMSEz and LogS values, the reconstruction of the actual model (in the original
high-dimensional image space) is reasonable with SSIM values in the 0.71 - 0.91 range.
This suggests that two latent vectors that lie far from each other may correspond to similar
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Figure 3.7: Approximate marginal posteriors on the latent space z obtained with neural-
transport (NT) and MCMC for model mv5 in Fig. 3.2 as well as the prior on the latent space of
the VAE.

realizations in the high-dimensional model space. This can be explained as an attempt of
the generator to accommodate the change in topology between the latent space and the
real manifold in the high-dimensional space (Lopez-Alvis et al., 2021). Moreover, Lopez-
Alvis et al. (2021) showed that the convexity of the misfit function in the latent space of the
VAE can be controlled by choosing the right hyper-parameters during training. This is an
important advantage, as Laloy et al. (2019) showed that the misfit function in the latent space
of the SGAN is in fact a rough surface containing many local minima. Instead, the VAE is
trained in such a way that both the changes induced in topology and the convexity of the
misfit function are controlled. However, one must also keep in mind that this comes at the
expense of generation accuracy and that realizations generated by the VAE are more lossy
and, consequently, less sharp than those obtained from a GAN (Hou et al., 2017; Bao et al.,
2022; see also our Figure 3.2).

We stress that variational inference is limited by the parameterization of the approximate
distribution, hence, in some cases the solution might not converge to an appropriate ap-
proximation of the posterior if the parameterized distribution is not expressive enough. A
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further improvement, for example in the case of the SGAN-based inversion, can be achieved
by running traditional MCMC or Hamiltonian Monte Carlo (HMC; Duane et al., 1987; Neal,
2011) within the latent space of the IAF (Hoffman et al., 2019; Papamakarios et al., 2021). In
this setting, the normalizing flow is used to reparameterize the posterior distribution and the
starting point for the MCMC sampler is the approximation resulting from training the IAF,
thereby, providing a much shorter burn-in. Additionally, it provides a favorable sampling ge-
ometry from a standard normal which may improve MCMC mixing in multi-modal problems
(Nijkamp et al., 2020).

The results for the VAE-based inversion (Fig. 3.4) demonstrate that NT can be performed
with a single particle. The SGAN-based inversion on the other hand requires more than
a single particle and starts to perform well (measured in terms of data misfit only) when
the number of particles is increased to 20 for the considered case studies (Fig. 3.10). This
finding is consistent with those by Laloy et al. (2019) and Lopez-Alvis et al. (2021), where
deterministic gradient-based inversions within the low-dimensional space of the SGAN
was found to perform poorly due to the highly non-linear SGAN transformation and small-
scale irregularities in the objective function. Increasing the number of particles allows for
more regions in the latent/model space to be explored at each iteration, thereby providing
a more robust gradient estimation. This is perhaps particularly important at the initial
phase of inversion where a vast region of the prior is explored. As opposed to many other
gradient-based methods, NT involves random sampling at each iteration, which makes it
more robust and reduces the risk of getting stuck in a local minimum. Increasing the number
of particles is also shown to result in earlier convergence, however, it comes at the cost of
an increased computational expense as evolving one particle for one iteration involves a
forward simulation and the calculation of its Jacobian. For instance, for the SGAN-based
inversions with 20 particles it takes an average of 260 training iterations (among those who
have reached convergence) to converge, which translates into 5200 forward simulations.
In contrast, the maximum number of iterations needed for the single-particle VAE-based
inversion to converge is 1767 forward simulations only (see Table 3.1). Those SGAN-based
inversion cases which have not converged possibly require either more training iterations
or more particles. Nevertheless, among the converged cases using either the VAE or the
SGAN, the total number of forward simulations needed in the NT approach is always much
lower than in MCMC. When compared based on their individual convergence criteria, the
computational times required by MCMC and NT differ by a factor of 7 in favor of NT. This
factor would be 56 if the eight MCMC chains were not evolved in parallel.

In our NT applications, the forward simulations of the particles are computed sequentially.
However, the computational time when considering multiple particles can be significantly
reduced by distributing the computations associated with individual particles over several
processing units (preferably using one unit per particle). This option is available in NT-based
inversions: transformations and forward simulations can be performed in parallel when using
more than a single particle, given that the forward simulation is parallelizable. Note that auto-
differentiation as performed by machine learning libraries such as PyTorch and TensorFlow
requires the forward solver to be implemented in the library in use, or alternatively, that the
gradients of the forward response are provided by the user (Richardson, 2018; Laloy et al.,
2019). As mentioned in subsection 3.2.5, to maintain a differentiable operation we do not
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threshold the generated images to a binary value of 0 or 1 in neither the SGAN nor the VAE
generations. This limitation might affect inversion performance when the inverted model is
either binary or categorical.

Using DGMs results in a drastic reduction in the number of inferred parameters (here from
8385 to only 15 and 20 SGAN and VAE latent parameters, respectively) as well as realizations
which honor the higher-order statistical features of the model as represented by a training
image (Laloy et al., 2017, 2018). The NT mechanism on the other hand, leverages on gradient
information, random drawing of particles and flexible parameterization of the approximate
posterior distribution. Consequently, NT combined with a DGM forms an efficient and
scalable approach for solving high-dimensional inverse problems. As discussed in section 3.3,
most of the computational cost of the NT approach comes from the forward simulation and
the largest updates to the IAF parameters occur at early training stages. Therefore, further
improvement of NT efficiency could probably be gained by updating the Jacobian of the
forward solver in eq. (3.15) less frequently as the inversion advances. Another option could be
to set a large number of particles at the beginning of the inversion and gradually decrease it
as updates to the IAF parameters are becoming smaller. We leave these two options for future
studies. Additionally, our study was limited to channelized subsurface models and a weakly
non-linear forward solver operating in a crosshole setting. Further research is required to
assess the performance of this approach for different geomodels, physical models (e.g. fluid
flow, wave-based reflection data) and 3D problems.

3.5 Conclusions

Neural-transport refers to the application of variational Bayes to train an IAF transformation,
which maps samples from a simple base distribution into samples from an approximate
posterior over the latent space of a DGM. We demonstrate that inferring a model in the latent
space of either a SGAN or a VAE using neural-transport significantly reduces the number of
forward simulations required compared to MCMC sampling. In this respect, DGMs play an
important role in improving the efficiency and scalability of the NT approach when dealing
with geophysical inverse problems that are generally high-dimensional. Our results are in
agreement with previous works concerning deterministic inversions performed in the latent
space of a SGAN or a VAE. Indeed, the VAE is found to provide a better reconstruction of the
true model in both the low-dimensional latent and high-dimensional model image spaces;
the agreement with the MCMC results were also excellent. NT combined with SGAN provides
a reasonable estimation in the high-dimensional model space and much better results overall
compared to previous results based on deterministic inversions. In contrast to MCMC, where
the posterior is estimated based on an ensemble of samples, NT provides a closed-form
solution of the approximate posterior such that it can be efficiently evaluated and sampled
from. Performance of NT-based inversion could be further improved by combining it with
MCMC sampling within the latent space of the NT, starting from the solution of the NT-based
inversion.
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3.6 Appendix

3.6.1 IAF design

The IAF is constructed as sequential flows with each of them producing a different distribution
(see Figure 3.8a). Each flow involves an autoregressive network which takes as input either
variables from the base distribution (if it is the first flow) or variables that are a result of the
preceding flow. The output of the autoregressive network is a mean µ and logarithm of the
standard deviation log(σ) (to prevent negative standard deviation as output, it is therefore
exponentiated to get σ). To achieve the autoregressive property, the connections between
layers are masked to ensure conditioning of variables only on those preceding them (see
illustration in Figure 3.8b; Germain et al., 2015; Papamakarios et al., 2017). Before each flow
the input is re-ordered (permutation) which has been shown to improve the training of such
models (Germain et al., 2015; Kingma et al., 2016). The autoregressive network includes
one hidden layer with 2n hidden units (neurons). To be able to represent all degrees of
conditioning, the number of units in a hidden layer should be at least n −1. Here we found
that 2n units in the hidden layer performs slightly better than using n units (a default choice).
We introduce a non-linearity to the transformation by applying a ReLU activation function
to each flow. Results did not change significantly when other activation functions such
as LeakyReLU or ELU were used and we found ReLU to work well for our purposes. Each
additional flow in the current architecture introduces 6n2 +2 trainable parameters therefore,
the number of flows chosen was based on a consideration of complexity/performance versus
computational effort that might vary for different types of models.

Figure 3.8: Schematic drawing of the IAF architecture. (a) General workflow of the IAF with
two flows corresponding to one intermediate distribution. The number of neurons depends
on the number of input features n. (b) An illustration of an autoregressive network in which
connections are masked to honor the autoregressive property.
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3.6.2 Hyperparameter calibration

Once the architecture (i.e. number of flows, number of layers etc.) of the IAF is fixed, there are
two main algorithmic variables that may affect the final results: (1) number of particles Ns

and (2) learning rate. To determine proper values for these variables and test the robustness
of the approach to different choices, we perform a hyperparameter search and show the
results on models mg1 (for the SGAN) and mv3 (for the VAE) in Figure 3.2. We first test the
NT routine with the SGAN and VAE using learning rates of: 0.1, 0.05, 0.01, 0.005, 0.001 and
one particle. The curves in Figure 3.9 represent the RMSE of the data misfit RMSEd during
the NT-training for the different learning rates. For both the SGAN and VAE it is found that a
learning rate of 0.01 gives the fastest and most stable convergence towards the target misfit
of 1 ns corresponding to the standard deviation of the noise added to the synthetic data. A
higher learning rate results in either instability or convergence to a sub-optimal solution,
while a lower learning rate results in a slower convergence.

Figure 3.9: Average RMSEd value over model particles during inference as a function of the
learning rate using (a) SGAN and (b) VAE as DGM.

To evaluate how many particles Ns to use, we fix the learning rate at the optimal value of
0.01. We then test the NT using 1, 5, 10 and 20 particles. We compare the RMSEd averaged
over the particles during NT-training and plot them as a function of the number of training
(gradient-descent) iterations (Figs. 3.10a and c) and the number of forward simulations (Figs.
3.10b and d). Increasing the number of particles leads to more stable and earlier convergence
with respect to the number of iterations. However, increasing the number of particles also
induces a higher computational demand. When considering the RMSEd with respect to the
number of forward simulations as in Figure 3.10d, it becomes clear that the VAE optimization
performed using one particle only provides the best trade-off (at least if not considering
parallelization), as the target misfit is then reached at the lowest computational cost. In
contrast, the SGAN benefits from a larger number of particles as we found that using 20
particles reduces the risk of getting stuck in a local minima (Fig. 3.10b) and in most cases
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it brings the RMSEd closer to the target misfit despite the fewer gradient-decent iterations
assigned to it. This behavior is likely due to the higher degree of non-linearity of the SGAN, for
which a higher number of particles provides more robustness with respect to local features in
the misfit function when updating the parameters of the autoregressive network.

Figure 3.10: Average RMSEd values during the NT inversion as a function of the number of (a)
and (c) iterations and (b) and (d) forward simulations with SGAN (a,b) and VAE (c,d) as DGM.
The different curves correspond to different number of particles used to estimate the ELBO
and its gradients at each NT iteration.

3.6.3 Supplementary results

The NT-inversion with the mv1 model performed relatively poorly at the lower boundary
when using one particle only (Figs. 3.4a-d). Indeed, the mean model (Fig. 3.4b) and the
standard deviation (Fig. 3.4c) suggest that the true model is not part of the posterior. By
extending the number of particles to ten, we find that the posterior mean is much closer to
the true model (compare Figs. 3.11a-b) and the standard deviation is higher implying a better
exploration of the posterior. The lower region of high standard deviation maps well to the
interface between the lower channel and the background matrix. This suggests that adding
more particles can also be beneficial when using VAE as DGM.
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Figure 3.11: (a) True mv1 model (b) mean posterior models obtained from NT using ten
particles and (c) posterior standard deviation in the model image space. (d) The ELBO loss
and RMSEd in ns during training.
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Abstract

We introduce a new methodology providing geostatistical realisations honouring both indi-
rect geophysical data and complex prior knowledge described by a training image. It uses
a multiple-point statistical (MPS) simulation algorithm to iteratively build up a realisation
pixel-by-pixel starting from an empty grid. During each simulation step, the MPS algo-
rithm generates multiple proposals from the conditional prior and one of them is selected
proportionally to an approximate likelihood accounting for the indirect geophysical data.
The posterior distribution is approximated by simulating many complete field realisations
(sequentially or in parallel). In our demonstrations of the method, we consider synthetic
geophysical data obtained from crosshole ground-penetrating radar first-arrival simulations.
We test our approach, which we name Indirect Data Conditional Simulations (IDCS), with
both multi-Gaussian priors and linear physics for which analytical posteriors are available
as well as for more complex priors and non-linear physics. We assess its accuracy against a
Gibbs sampler employed within an extended Metropolis framework. The IDCS method is
inherently approximate due to the use of a finite training image, a finite number of MPS can-
didates at each simulation step and the need to approximate intractable likelihood functions.
Nevertheless, the results demonstrate that the posterior approximations obtained by IDCS
are often comparable to those obtained with a Markov chain Monte Carlo method, with IDCS
being at least one order of magnitude faster. While the method performs the best when the
underlying physics is modelled as a linear response, we provide encouraging preliminary
results considering a non-linear physical response.

4.1 Introduction

Multiple-point statistics (MPS) is a non-parameteric family of methods that rely on sequential
simulations to produce geostatistical realisations honouring higher-order spatial statistics
present in so-called training images (TI; Guardiano and Srivastava, 1993; Strebelle, 2002;
Zhang, 2006; Mariethoz and Caers, 2014). These methods rely on sequential assignment of
parameter values to points on a simulation grid. This process entails scanning the training
image and contrasting the patterns within it with the patterns surrounding the simulated
point on the simulation grid, using various distance metrics. They are widely used for
applications in geology, hydrogeology, remote sensing and reservoir engineering to obtain
model realisations with the right spatial statistics while also honouring available data points
(e.g. borehole information) or volume (linear averages, Straubhaar et al., 2016) measurements.
Even if deep generative models offer highly competitive approaches to provide unconditional
realisations (Laloy et al., 2017, 2018), MPS algorithms are still far superior in accounting for
hard conditioning data (Zhang, 2015; Hansen et al., 2018; Straubhaar and Renard, 2021).

Sequential geostatistical simulations, including MPS, are commonly constrained to hard data
such as well measurements. Multiple-point statistics methods can additionally be utilized as
a post-processing tool to refine a deterministic, smoothness-constrained solution obtained
from a non-linear inversion. In such a setting, the resolution of the model realisations is
enhanced (Lochbühler et al., 2014; Linde et al., 2015b), but without any guarantees that
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the resulting realisations honour the original geophysical data. Other algorithms such as
the Blocking Moving Window (BMW), introduced by Alcolea and Renard (2010), constrains
MPS simulations to both hard data and connectivity information and while it introduces
correlation with soft data (e.g. geophysical data) through a secondary training image, it does
not impose it as a constraint.

Geophysical inversion using MPS algorithms generally involves Markov chain Monte Carlo
(MCMC) methods (Mariethoz et al., 2010b; Hansen et al., 2012). At each model proposal
step, an MPS algorithm performs sequential Gibbs sampling in which a subset of randomly
chosen model cells (Mariethoz et al., 2010b) or a randomly selected patch (Hansen et al.,
2012) within the model domain are re-simulated. The model proposals generated by the MPS
algorithm are consistent with the patterns of the training image and conditional on the cell
values that have not been re-simulated. The acceptance probability is given by the ratio of
the likelihoods of the proposed model and the previous model in the chain. This extended
Metropolis method (Mosegaard and Tarantola, 1995) will eventually locate the posterior
and sample proportionally to it. However, it is often very slow in practice, as geostatistical
re-simulation and forward simulation times are non-negligible, and there is often a need to
perform millions of MCMC iterations before the posterior is sampled sufficiently. The latter
is a result of very high correlation in the sampled MCMC states, implying that very long runs
are needed to draw a sufficient number of independent samples (Ruggeri et al., 2015).

In the context of linear forward problems, Hansen et al. (2006) introduced a method for
conditioning sequential simulations to noisy indirect data of mixed support (point- and
volume-support). This method allows for the incorporation of geophysical measurements
into the simulation process. In their implementation the mean and covariance of the posterior
probability density function (PDF) is obtained by solving a kriging system with an a-priori
mean and covariance as well as support volumes related to the physical response. In a
subsequent step, posterior realisations are generated through sequential simulation using
the kriging mean and covariance. This method was later extended by Hansen and Mosegaard
(2008) to accommodate non-Gaussian marginal prior distributions, however, it captures only
two-point spatial statistics, and its ability to faithfully reproduce the prior is restricted by the
kriging process. Applying the concept of averages over support volumes to MPS, Straubhaar
et al. (2016) showed how simulations can be constrained to indirect geophysical data and the
multiple-point statistics of a conditional prior. In their method, MPS candidate values for a
simulated location are accepted according to an accumulated error considering the target
value (mean value obtained from the data), a tolerance range and the mean over the support
volume in the simulation grid. This method however, does not sample the posterior, as the
likelihood used does not account for the error statistics and is based on arbitrary tolerance
values.

In this paper, we propose an approach enabling fast geostatistical simulations honouring
geophysical constraints under a linear system response and explore its possible extension to
non-linear responses. This approach can, for instance, be applied to potential-field methods
such as gravity, magnetics and self-potential when prior knowledge is best represented by
higher-order statistics (e.g. Jensen et al., 2022). Our approach involves gradually constructing
an MPS realisation starting from an empty simulation grid or, if hard data is available, with the
known local data values. Each simulated value is selected based on geostatistical constraints
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considering spatial patterns created by the already informed values, as well as constraints
offered by the geophysical data. Incorporating the latter constraint would normally involve
calculating a likelihood by marginalising over the distributions of the uninformed model
parameters (grid cells), something that is computationally impractical. Instead, we draw at
each simulation step k conditional samples with the MPS algorithm and accept one of them
proportionally to an approximate likelihood. In our likelihood approximation, we estimate
the uninformed model parameter values (mean and covariance) using kriging. Once the
simulation grid is fully informed, it can be seen as a draw from an approximate posterior
distribution. Conducting multiple independent simulations allows the estimation of an
approximate posterior distribution.

Our approach is faster than sequential Gibbs sampling within MCMC, as simulations are built
up conditionally to the data at each simulation step and no re-simulation steps are performed.
Moreover, the approach can be easily parallelized since each full simulation can be performed
independently of other simulations. Nonetheless, the method is approximate due to three
factors: (1) the training image is finite, (2) the likelihood distribution is approximated in each
simulation step using a limited number of MPS proposals and (3) the uninformed model
parameters are assumed to be normally-distributed when approximating the likelihood.
To assess the impacts of these approximations on the simulation results, we first consider
a training image depicting a multivariate Gaussian field for which the posterior is known
analytically. We then consider more complex continuous and binary channelised training
images for which comparisons are made in terms of computational effort and accuracy, with
respect to a sequential Gibbs sampler. Finally, we introduce an extension of our approach to
non-linear physical responses and show preliminary results.

The paper is organised as follows: Section 2 provides a detailed explanation of the theory
behind our proposed approach; Section 3 details the metrics and the comparative approach
used to assess the quality of the results; Section 4 presents the results obtained when consider-
ing a linear physical solver as well as initial results for a non-linear solver; Section 5 discusses
the results, highlighting the limitations, advantages and possible future developments. Finally,
in Section 6 we conclude the study.

4.2 Methods

Our proposed method allows conditioning MPS simulations to both point data (e.g., facies)
and indirect data (geophysical measurements). In our implementation of the method, we rely
on QuickSampling (Gravey and Mariethoz, 2020) as the MPS algorithm, and indirect geophys-
ical data given by crosshole ground-penetrating radar (GPR) simulations. In the following
subsections, we provide a detailed description of our method (section 4.2.1) focusing on the
approximation of the likelihood and how to perform a fast update of the kriging mean and
covariance. We then proceed by giving a concise description of the QuickSampling algorithm
(section 4.2.2) and the considered forward response (section 4.2.3).
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4.2.1 Bayesian formulation for conditional sequential simulation

Our method begins with an empty simulation grid S(x), where x denotes the location in the
grid. If any (hard) conditioning points are known, they are assigned before the simulation be-
gins. The simulation path p (order of simulated locations) is generated randomly to maximise
the variability of the realisations. The variable θ is used here as both the simulated property
field (model parameters) and the function mapping the location in the grid to the property
value. At each simulation step, we distinguish between three types of (model) parameters:
"informed" parameters, denoted as θI , corresponding to values that were simulated in pre-
vious simulation steps or are related to hard data, "simulated" parameters, denoted as θS ,
corresponding to the value of the cell that is simulated in the current step of the algorithm and
"uninformed" parameters θU , corresponding to the value of empty grid cells that have not
yet been simulated. While θI and θU refer to the values in the informed x I and uninformed
xU locations, respectively, θS refers to the value in the simulated cell (θS = θ(xS)). In each
simulation step, one of k candidate values proposed for location xS , that are denoted here as
QMPS , is chosen proportionally to an unnormalized posterior that is conditional on observed
data d and previously informed parameters θI :

p(θS |d,θI ) ∝ p(d|θS ,θI )p(θS |θI ). (4.1)

The conditional prior p(θS |θI ) cannot be computed explicitly, and instead we rely on an MPS
algorithm to sample from it. In general, MPS algorithms generate samples from a conditional
distribution that preserves higher-order statistics among multiple data points. These algo-
rithms scan the training image, comparing its patterns to that of a defined neighbourhood
in the simulation grid S(x). However, our methodology is not confined to MPS and it is
adaptable to any algorithm capable of generating multiple samples from a conditional prior.

The simulated data dsi m , resulting from the forward response g (θ), depends on the whole
property field with the response contribution arising from the uninformed parameters θU

being unknown:
dsi m = g (θS ,θI ,θU ). (4.2)

This poses a problem as the corresponding likelihood in Eq. (4.1), which is a marginalised
likelihood over all uninformed parameters θU :

p(d|θS ,θI ) =
∫

p(d|θS ,θI ,θU )p(θU |θS ,θI )dθU , (4.3)

is intractable in most cases. To circumvent this problem, we derive below an approximation
of the likelihood by estimating the distribution of the uninformed θU parameters conditional
on informed θI and simulated θS parameters.
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Estimation of uninformed quantities and likelihood approximation

To estimate the distribution of the uninformed parameters θU as needed by our likelihood
approximation, we rely on kriging-based interpolation (Matheron, 1963). Kriging assumes a
mean m(x) and a stationary covariance C (xi , x j ) function describing the correlation between
locations xi and x j that are separated by some distance. To build the covariance model,
kriging relies on theoretical variograms (Oliver and Webster, 1990). Here we use simple
kriging, in which the mean of the property of interest is assumed to be known and we estimate
the values of uninformed locations based on conditioning to informed and simulated (MPS
candidates) locations (Chilès and Desassis, 2018).

To estimate the uninformed grid points θU , we assume that both our property field θ and the
observational noise follow a normal distribution. Note that this Gaussian assumption on the
property field is only made to approximate the likelihood (Eq. (4.3)), while the candidates
are provided by draws from MPS-based priors. Given a multivariate Gaussian field with the
following prior and likelihood distributions

θ ∼N (µθ,Σθ) (4.4)

d|θ ∼N (Gθ,Σd ), (4.5)

there exist an analytical solution both for the likelihood p(d|θ) and posterior p(θ|d) distribu-
tions (see Appendix 4.7.1). In Eq. (4.4), µθ and Σθ represent the mean and covariance matrix
of the model parameters. The term Gθ in Eq. (4.5), where G is the linear forward operator of
the physical response, corresponds to the expected value of the data andΣd is the covariance
matrix of the data errors. We express θ = (θS ,θI ,θU ) = (θ(xS),θ(x I ),θ(xU )) and θc = (θS ,θI )
for which θS ∈QMPS is provided by an MPS algorithm and re-write the prior distribution as
the following multivariate distribution(

θc

θ

)
∼N

((
µθc

µθ

)
,

(
Σθc Σθcθ

Σθθc Σθ

))
, (4.6)

where µθc
and µθ are the prior means for parameters θc and θ, respectively. Furthermore,

Σθc and Σθ are the covariance matrices whose (i , j ) entries are the covariances between the
i -th and j -th value of θc or θ, respectively, andΣθcθ refers to the covariance matrix consisting
of the covariance values between θc and θ. We can then calculate the conditional distribution
θ|(θc = θ∗c ) ∼N (µθ|θc

,Σθ|θc ) as follows (Prince, 2012):

µ̃θ =µθ+ΣθθcΣ
−1
θc

(θ∗c −µθc
), (4.7)

Σ̃θ =Σθ−ΣθθcΣ
−1
θc
Σθcθ. (4.8)

For informed and simulated parameters θc , their entries in the kriging mean µ̃θ are their
value before kriging and their corresponding entries in the kriging covariance matrix Σ̃θ
are zero. The multiplication ΣθθcΣ

−1
θc

yields the kriging weights that provide the necessary
information for interpolating from known grid points (at locations x I and xS) to unknown
points (at location xU ).
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At each simulation step, we consider k candidate values θS ∈ QMPS and obtain k kriging
means and a single covariance matrix (see Figure 4.1 for illustration). The likelihood of each
candidate value is estimated using the kriging mean and covariance as (Bishop and Nasrabadi,
2006):

d|θ ∼N (µ̃L ,Σ̃L) (4.9)

µ̃L =Gµ̃θ (4.10)

Σ̃L =Σd +GΣ̃θGT . (4.11)

For each candidate value and corresponding kriging mean, we calculate the forward response
to generate µ̃L (Eq. (4.10)). Additionally, we incorporate the kriging error into the error
covariance of the likelihood Σ̃L (Eq. (4.11)). Normally, in the case of uncorrelated data errors,
this matrix is given by a diagonal matrix Σd with the variance of the observational noise on
its diagonal. Finally, the Gaussian likelihood can be approximated as:

p(d|θS ,θI ) ≈ 1√
(2π)Nd |Σ̃L|

exp

(
−1

2

[
d− µ̃L

]T
Σ̃
−1
L

[
d− µ̃L

])
, (4.12)

where Nd is the size of the observed data and |Σ̃L| is the determinant of Σ̃L . The value assigned
to the simulated location is drawn proportionally to the approximate likelihoods of the k
proposed values. This is achieved by drawing randomly from the cumulative distribution
function (CDF) of the approximate likelihoods.

To estimate the covariance structure of the Gaussian prior distribution in Eq. (4.6), we employ
the GSTools Python library (Müller et al., 2022) that automatically fits a theoretical variogram
to samples from the training image. Based on these samples, which we limit to 30 000,
GSTools provides the standard deviation σ, integral scale ` in two directions and shape
parameter ν of the fitted model. In this paper, the term "training image" refers to either a
complete image or a portion of an image used as a template for the simulation process.

Fast update of conditional mean and covariance

To gain computational efficiency by avoiding re-computing Eqs. (4.7)-(4.8) at each simulation
step, we adopt the fast kriging update approach introduced by Emery (2009) and later ex-
tended by Chevalier et al. (2014, 2015). Chevalier et al. (2015) used this approach to assimilate
new observation points to sequential simulations. Their technique enables a fast update
of the kriging mean µ̃θ and the kriging covariance Σ̃θ given new conditioning data points.
Instead of calculating the conditional mean and covariance from scratch at each simulation
step, we simply perturb the previous estimate given the newly simulated value. To maintain
consistency, we adopt the general notation used in the previous subsection and express the
kriging update equations as a function of the simulation step, denoted as t . In this notation,
θ becomes θ(t ) and θ(t )

c = θ(x (t )
c ) = (θ(t )

I ,θ(t )
S ) = (θ(x (t )

I ),θ(x(t )
S )). The conditional distribution

then becomes θ(t )|(θ(t )
c = θ∗(t )

c ) ∼N (µ̃(t )
θ

,Σ̃
(t )
θ ).
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Figure 4.1: Schematic illustration of one IDCS simulation step for a binary model. (a) The
simulation grid where the simulated location is marked by a red square, informed locations
are marked as either white or black filled squares and uninformed locations are marked with
blue. (b) The MPS algorithm proposes k = 2 candidates sampled from the training image
that are conditional on the pattern in the simulation grid. (c) Kriging is then used to estimate
uninformed grid cells in order to calculate an approximate likelihood given the geophysical
data. (d) One candidate is drawn proportionally to the approximate likelihood and assigned
to the simulated location.
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Let us expressΣθ = (σθ(xi , x j ))1≤i , j≤n and Σ̃θ = (σ̃θ(xi , x j ))1≤i , j≤n and re-write Eqs. (4.7)-(4.8)
with respect to step t and the location x,

µ̃(t )
θ

(x) =µθ(x)+σθ(x (t )
c , x)Tσθ(x (t )

c , x (t )
c )−1(θ(t )

c −µθ(x (t )
c )), (4.13)

σ̃(t )
θ

(xi , x j ) =σθ(xi , x j )−σθ(x (t )
c , xi )Tσθ(x (t )

c , x (t )
c )−1σθ(x (t )

c , x j ). (4.14)

Using the fast update, µ̃(t )
θ

(x) is computed by perturbing the kriging mean resulting from the

previous step µ̃(t−1)
θ

(x), according to the difference between the value of the MPS candidate

θ(t )
S and the value at location xS in µ̃(t−1)

θ
:

µ̃(t )
θ

(x) = µ̃(t−1)
θ

(x)+ σ̃(t−1)
θ

(x(t )
S , x)T (σ̃(t−1)

θ
(x(t )

S , x(t )
S ))−1(θ(t )

S − µ̃(t−1)
θ

(x(t )
S )), (4.15)

where σ̃(t−1)
θ

(x(t )
S , x)T (σ̃(t−1)

θ
(x(t )

S , x(t )
S ))−1 represents the kriging weight. The update to the

conditional covariance is based on the same kriging weight

σ̃(t )
θ

(xi , x j ) = σ̃(t−1)
θ

(xi , x j )− σ̃(t−1)
θ

(x(t )
S , xi )T (σ̃(t−1)

θ
(x(t )

S , x(t )
S ))−1σ̃(t−1)

θ
(x(t )

S , x j ). (4.16)

Once the conditional mean and covariance are updated, they are plugged into Eqs. (4.10) and
(4.11). For a summary of our full conditioning algorithm, see Algorithm 3. The algorithm de-
scribes a single run of our method which we refer to as Indirect Data Conditional Simulations
(IDCS).

4.2.2 QuickSampling algorithm

In the implementation of our method, we use QuickSampling (QS) which is a computationally
efficient pixel-based MPS algorithm that in contrast to many other pixel-based MPS algo-
rithms, does not store conditional distributions (Strebelle, 2002; Straubhaar et al., 2011) or
rely on threshold criteria for choosing a candidate (Mariethoz et al., 2010a). In this algorithm,
the training image, denoted as T , is scanned to find a close match to the pattern around
the simulated location xS in the simulation grid S. The pattern is represented by values and
their relative positions to xS . At each simulation step a neighbourhood in S, denoted as N ,
is considered; N (x) is centred around the currently simulated grid cell and contains within
a specified radius the locations in the simulation grid that are previously informed (either
previously simulated or conditioning data points).

In QS, the cross-correlation between N (x) and T is calculated to generate a dissimilarity
(mismatch) map E :

E(T, N (x)) ∝F−1

{∑
i∈I

∑
j∈J

F {1(Ti )◦ f j (Ti )}◦F {wi ◦1(xi )◦ g j (N (x)i )}

}
, (4.17)

where F and F−1 are the fast Fourier transform and its inverse, F {} is the conjugate and ◦
indicates an element-wise multiplication. Furthermore, w is a weighting matrix and it can be
set to assign different weights as a function of the distance from xS . The indicator function 1
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Algorithm 3: Indirect Data Conditional Simulations (IDCS) with a general MPS
algorithm

1 Input: simulation grid S(x) (either empty or informed by hard conditioning data),
training image T , simulation path p, observed data d, number of candidates k and
algorithm-specific MPS parameters b.

2 Output: fully informed grid with property field θ
3 set simulation step t = 1
4 for t <= size(p) do
5 xS = pt

6 Function MPS(θ, T , xS , k, b)
7 Sample candidate values from T that are conditional on the θI around

location xS in the simulation grid.

8 return QMPS = {θ1
S , ...,θk

S }
9 if t=1 then

10 Compute µ̃θ and Σ̃θ using Eqs. (4.6)-(4.8) for all k candidates
11 else
12 Update µ̃θ and Σ̃θ using Eqs. (4.15)-(4.16) for all k candidates
13 end
14 µ̃L , Σ̃L ← compute Eqs. (4.10)-(4.11) for all k candidates
15 Approximate p(d|θ) ← compute Eq. (4.12) for all k candidates
16 Calculate cumulative distribution function (CDF) of k likelihoods p(d|θ) and draw

one value from QMPS

17 Populate grid cell at location xS with the selected candidate value
18 t = t +1
19 end
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equals 1 at informed grid cells and 0 everywhere else, that is,

1(x) =
{

1, if N (x) is informed

0, otherwise .
(4.18)

The variables f j and g j represent components of a series of decomposed functions that
depend on the distance metric used (see Gravey and Mariethoz (2020) for more information).
In the original implementation, candidates are sorted in increasing order of mismatch and
the simulated value is sampled proportionally to a probability determined by a user-defined
rank kr ank . In addition to kr ank , the QS algorithm requires a user-defined parameter n that
determines the number of neighbouring locations around xS , and effectively the size of the
neighbourhood N (x) to be considered for MPS conditioning. In our implementation, the QS
algorithm functions solely as a means to sample k conditional draws from the prior that are
evaluated using an approximate likelihood. Therefore, the QS parameter kr ank is replaced in
our implementation by kcand which represents the number of candidates provided by the QS
algorithm (k = kcand ).

4.2.3 Forward response

To test IDCS, we consider a crosshole geometry in which GPR antennas placed in two bore-
holes are used to send and receive electromagnetic signals and the travel-times between
different source and receiver pairs are measured. In this setting, θ = s, where s is the slowness
field (inverse of the velocity v). Specifically, we use a ray-based formulation in which the
travel-time tr ay is an integration of slowness s over the ray path l :

tr ay =
∫

s(l )dl . (4.19)

The aforementioned physical response can be written in a general form as

d = g (s)+ε, (4.20)

where g (·) is the forward operator projecting the parameters s in the model space into a
vector d in the data space and the process typically involves some type of error ε. Here we
consider only uncorrelated, randomly distributed Gaussian (measurement) noise under ε.

Linear physical response

Considering linear physics, Eq. (4.19) can be simplified into tr ay ≈∑
i li · si and the response

becomes a matrix-vector multiplication operation

d si m =G s, (4.21)

where G (also referred to as the sensitivity matrix) contains the ray length in each grid cell
considering only a straight path between the source and receiver. The simulated data dsi m are
represented in a vector containing each source-receiver response in the form of travel-times.
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Non-linear physical response

When dealing with a non-linear physical response, an approximation to Eq. (4.20) is required
in order to calculate Eqs. (4.10)-(4.11). This is achieved by linearising the forward operator
g (s) around a given subsurface model to obtain the sensitivity matrix (Jacobian). In general,
the Jacobian represents the gradient around the point of linearisation and, therefore, the
forward response is calculated with respect to a reference point s0:

d si m = g (s0)+ J (s0)(s −s0), (4.22)

where J (s0) is the Jacobian calculated for the subsurface model s0. In travel-time tomography
the forward operator can be replaced by the Jacobian to calculate the physical response
d si m = J s, where J is the Jacobian given the slowness field s. In this case, G in Eqs. (4.10) and
(4.11) is simply replaced with J to obtain:

µ̃L = J µ̃θ (4.23)

Σ̃L =Σd + JΣ̃θJT . (4.24)

4.3 Comparative approach and quality assessment criteria

4.3.1 Sequential Gibbs sampling

To assess the quality and performance of the IDCS method when no analytical solution is
available, we compare it against results obtained with the extended Metropolis algorithm
(Mosegaard and Tarantola, 1995) using a sequential Gibbs sampler (Hansen et al., 2012;
Cordua et al., 2012).

The extended Metropolis algorithm allows exploring the posterior PDF when dealing with
a prior distribution of arbitrary complexity which cannot be quantified but from which
samples can be drawn. In this algorithm, the acceptance or rejection of a model proposal θ′

is determined by the acceptance probability Paccept = min
(
1, p(d|θ′)

p(d|θ(t ))

)
, where θ(t ) represents

the current model. If accepted θ(t+1) = θ′ otherwise θ(t+1) = θ(t ). Gibbs sampling takes a
given realisation θ and at each iteration computes the conditional distribution at a random
position xi

p(θ(xi )|θ(x1), ..,θ(xi−1),θ(xi+1), ...,θ(xN )). (4.25)

A value for θ(xi ) is then drawn from the conditional distribution forming the new realisation.
Sequential Gibbs sampling combines sequential simulations with the Gibbs sampler such
that one can generate realisations from the conditional distribution.

In this study, we use QS to generate conditional model proposals and proceed to estimate the
posterior distribution using the extended Metropolis with each chain being initialised by an
unconditional MPS simulation. At each MCMC step, a random subset of the model domain
is re-simulated while being conditioned on the remaining part of the domain. The size of
the subset is adapted during the first 2000 MCMC steps, within the burn-in period, using the
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parameter δ. After burn-in, the value of δ remains constant to maintain detailed balance of
the Markov chain. The parameter δ represents half of the side-lengths of a square centred at a
grid point chosen at random. The size of δ is used to control the step length of the sequential
Gibbs sampler, where a small value leads to a high acceptance rate with highly correlated
chains and larger values lead to lower acceptance rates but less correlated chains (Hansen
et al., 2012). During burn-in, the value of δ is adjusted every 20 iterations according to

δnew = δ∗ P̄acc

Pt ar g et
, (4.26)

with the aim of maintaining a reasonable acceptance rate (Gelman et al., 1996; Cordua
et al., 2012). The variable P̄acc is the average acceptance rate between adjustment steps
and Pt ar g et is the target acceptance rate, which we set to 0.3. We use the Gelman-Rubin
diagnostic (Gelman and Rubin, 1992), which compares the variance between the independent
chains and within the chains, to assess the convergence of the MCMC chains to a stationary
distribution for each of the model parameters. Convergence is declared when R̂ ≤ 1.2 for all
considered parameters (grid cell values).

4.3.2 Performance metrics

To determine the optimal algorithmic setting and to assess the quality of the resulting pos-
terior realisations, we use the structural similarity index (SSIM; Wang et al., 2004), which
is calculated with respect to the reference subsurface model, and the weighted root-mean-
squared error (WRMSE) which is calculated with respect to the synthetic data. The SSIM
metric indicates the structural similarity between two images. It is is defined as:

SSI M(u,v) = (2µuµv +C1)(2σuv +C2)

(2µ2
u +µ2

v +C1)(2σ2
u +σ2

v +C2)
, (4.27)

where u and v are M ×M sliding windows of their respective [0,1] normalised image, µu and
µv are the mean values over u and v, σ2

u and σ2
v are the respective variances of u and v, σuv

is the covariance between u and v and C1 and C2 are constants. We use 7×7 windows and
set C1 = 0.01 and C2 = 0.03. The SSIM score ranges from −1 to 1, where 1 indicates perfectly
matching images. It is reported as a mean value across all posterior realisations. The data fit
is evaluated with respect to the standard deviation of the observational noise σ during the
simulation using the WRMSE

W RMSE =

√√√√ 1

Nd

Nd∑
i=1

[
di −d si m

i

σi

]2

, (4.28)

between the observed data d associated with the reference model and the simulated data
dsi m corresponding to posterior realisations. The reported WRMSE is the final value averaged
over all simulations. A WRMSE value close to one indicates an appropriate data fit while
values larger than one indicate that the data residuals are too large compared to the data
noise. In addition to those two metrics, we show for each test case the model realisation for
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Table 4.1: True and estimated training image statistics. Estimated values are based on a
variogram fitted to 30 000 samples drawn from a training image of size 500×500 pixels.

TI
True Estimated

lx/ly ν µ

[ns/m]
σ

[ns/m]
lx/ly ν σ

[ns/m]

Gaussian 10/5 1 14.332 0.827 10.569/5.597 1.26 0.811

Connected high-
conductivity structures

- - 14.338 0.831 9.458/9.657 0.92 0.806

Binary channels - - 13.580 1.826 27.220/6.421 1.30 1.889

which the lowest root-mean-squared error (RMSE) with respect to the reference subsurface
model was obtained.

4.4 Results

We consider three different training images: (1) a multivariate Gaussian field, (2) connected
high-conductivity structures and (3) binary channels, each corresponding to a full stationary
image of size 2500×2500 pixels representing an area of 250×250 m. Rather than using the
entire available image as a training image, we select a smaller section of 50×50 m serving as
the training image for the QS algorithm and variogram fitting. The three training images are
shown in Figure 4.2 and their true and estimated covariance model parameters (standard
deviation, integral scale and shape parameter) are reported in Table 4.1. The multivariate
Gaussian image was generated using the fast Fourier transform Moving Average (FFT-MA;
Ravalec et al., 2000) method with an exponential model (ν= 1). After generation, it was re-
scaled to have a mean of 0.07 m·ns−1 and a standard deviation of 0.004 m·ns−1. To generate
an image with connected high-conductivity structures, we use the transformation in Zinn
and Harvey (2003). This field manipulation transforms an isotropic random Gaussian field of
mean zero and unit standard deviation to a field in which high values are connected. After
the transformation, the image is re-scaled to have a mean of 0.07 m·ns−1 and a standard
deviation of 0.004 m·ns−1. The image with binary channels is taken from Zahner et al. (2016)
and velocity values of [0.06,0.08] m·ns−1 are assigned to the channels and surrounding matrix
material, respectively.

Following preliminary tests to determine the QS parameters (see Appendix 4.7.2), we use
n = 10 for the continuous models and n = 25 for the binary one as they result in the best
simulation quality. To mitigate the potential risk of sampling unfavourable candidates in the
presence of a finite and possibly small training image, we set kcand = 100 for both continuous
and binary models. When performing MCMC inversion, we use the original implementation
of QS and set kr ank = 1.2 (represents a probability rather than the number of candidates)
and n = 30 as those values lead to a good simulation quality (Gravey and Mariethoz, 2020;
Meerschman et al., 2013). Throughout the IDCS simulations and the MCMC inversion the QS
parameters remain constant.
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Figure 4.2: Training images for the various tested models. 500×500 pixels (50×50 m) section
of (a) anisotropic, random Gaussian field, (b) isotropic field with connected high-conductivity
structures generated by applying the transformation in Zinn and Harvey (2003) and (c) binary
channels.

We consider a model domain of size 5×10 m with 0.1 m discretisation yielding a total of 5000
model parameters. The forward response is computed given two boreholes separated by a
distance of 5 m. The borehole on the right side of the domain contains 25 source locations
and the borehole on the left contains 25 receiver locations. The antennas are located between
0.2 and 9.8 m depth with 0.4 m separating subsequent antenna positions. Ray-paths between
source-receiver pairs that exceed angles of ±50◦ to the horizontal are filtered out and are not
considered during inversion. Consequently, the number of data points is 515. The reference
model (synthetic truth) is cropped from a portion of the full image that remains unused
during the simulation process and the corresponding synthetic observed data of all case
studies are contaminated with normally distributed noise with mean zero and standard
deviation of 1 ns.

4.4.1 Linear physics

We first show the results obtained from IDCS simulations considering different subsurface
models and a linear physical response.

Multivariate random Gaussian field

We perform 100 independent IDCS runs (each with a different simulation path) given the
noise-contaminated synthetic data corresponding to the reference model in Figure 4.3a.
Since we deal with a multi-Gaussian property field and linear physics, we can compute the
analytical solution (see Appendix 4.7.1) of the posterior distribution and use it for compar-
ison. The element-wise mean and standard deviation of the analytical solution and the
approximate posterior obtained by IDCS are displayed in Figure 4.3. The mean obtained
from running 100 IDCS simulations (Fig. 4.3c) is almost identical to the analytical mean (Fig.
4.3b) and the three IDCS posterior samples, representing the best and worst data fit (Fig. 4.3d
and 4.3e, respectively) as well as the closest matching subsurface model realisation (Fig. 4.3f),
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Figure 4.3: IDCS results for a random multivariate Gaussian field and a linear forward solver.
(a) Reference model, the (b) analytical and (c) approximate (IDCS) posterior pixel-wise mean,
where the latter is computed on 100 IDCS realisations. IDCS realisations with the (d) lowest
and (e) highest data WRMSE while (f) is the IDCS realisation with the lowest model RMSE.
Pixel-wise standard deviation of the (g) analytical and (h) approximate (IDCS) posteriors. (i)
The WRMSE curves of 100 IDCS runs as well as their mean.

are all reproducing the patterns in the reference model. The standard deviation calculated
on the conditional realisations (Fig. 4.3h) underestimates (by 17% on average) that of the
analytical solution (Fig. 4.3g). This underestimation is likely a consequence of using a finite
training image and only 100 IDCS runs. As the simulations are conditioned on the observed
data, we expect the data misfit to gradually decrease during the simulation to a WRMSE of
one, representing realisations that fit the data to the noise level. This behaviour is confirmed
by our results in that the median WRMSE among the 100 realisations is 1.00 (Table 4.2) and it
is already around 1.01 after simulating 1850 grid cells (Fig. 4.3i).

Connected high-conductivity structures

We now perform 100 independent IDCS runs given the noise-contaminated synthetic data
corresponding to the reference model in Figure 4.4a. Since no analytical solution is available
for this case, we compare the results against eight independent MCMC chains (see section
4.3.1). We provide computational resources to permit the maximal performance of each
method, namely, one CPU per chain for MCMC (eight in total) and one CPU per simulation for
the conditional MPS simulations (100 in total). Both methods are executed on a cluster that is
equipped with AMD EPYC™ 7402 CPUs. It takes around 100 minutes to run 100 conditional
QS simulations in parallel and it took around 26 hours to perform 20 000 MCMC steps (per
chain, in total 160 000 samples). For the MCMC, we used a re-simulated sub-domain with
a maximum size of 11×11 cells (δ= 5) resulting in acceptance rate of 31% on average. The
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Table 4.2: Summary of IDCS results for linear and non-linear physical responses. The mean
SSIM as well as the median data WRMSE computed on 100 IDCS runs for the three types of
models.

Physics TI type SSIM WRMSE

Linear

Gaussian 0.50 1.00

Connected high-
conductivity structures

0.48 1.02

Binary channels 0.86 1.02

Non-linear

Gaussian 0.46 1.03

Connected high-
conductivity structures

0.44 1.05

Binary channels 0.55 2.44

Binary channels
(linearised Jacobian)

0.60 2.56

MCMC chains did not converge after 20 000 iterations and the R̂-values range from 1.27 to
8.42 with the median value being 4.54.

The reference model contains connected high-value features with different orientations and
those aligned vertically typically present challenges in terms of identifiability in a crosshole
setting. This is seen in the posterior mean of both MCMC samples (Fig. 4.4b) and the
IDCS realisations (Fig. 4.4c). While the features that are horizontally-oriented are present
in the estimated posterior mean obtained from the IDCS, the vertically-oriented ones are
unresolved leading to a slightly lower SSIM than in the previous test case (0.48 versus 0.50, see
Table 4.2). This is not a method-specific problem as similar SSIM values are observed for the
MCMC posterior samples (on average 0.48). The IDCS realisations exhibit higher standard
deviation (Fig. 4.4h) than those observed in the MCMC samples (Fig. 4.4g). In both methods,
the highest standard deviation is observed where high-slowness features are present or at
the locations where they are poorly resolved. This is also evident from the notable variability
observed in these locations in the independent IDCS realisations displayed in Figures 4.4d-f.
The median WRMSE among the IDCS realisations is 1.02, indicating an overall appropriate
data fit and suggesting that the vertical features are not well constrained by the available data.

Binary channels

The last test case with linear physics is a binary reference model with channel-like structures
(Figure 4.5a). No analytical solution is available and we compare again the IDCS results
against those obtained from eight MCMC chains. While the computation cost of the IDCS
runs is the same as in the previous example, it took 72 hours to perform 20 000 MCMC steps
(per chain). The longer computational times are a result of a larger re-simulated sub-domain
with a maximum size of 17×17 cells (δ= 8) leading to an average acceptance rate of 24%. As
in the previous test case, the MCMC chains did not converge after 20 000 iterations and the
R̂-values range from 1.00 to 28.92 with the median value being 1.36.
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Figure 4.4: IDCS results for the isotropic field with connected high-conductivity structures
and a linear forward solver. (a) Reference model, posterior pixel-wise mean computed on
(b) MCMC samples and (c) 100 IDCS realisations. IDCS realisations with the (d) lowest and
(e) highest data WRMSE, while (f) is the IDCS realisation with the lowest model RMSE. Pixel-
wise standard deviations of the posterior approximated by (g) MCMC samples and (h) IDCS
realisations. (i) The WRMSE curves of 100 IDCS runs as well as their mean.
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Figure 4.5: IDCS results for the binary channelised field and a linear forward solver. (a)
Reference model, posterior pixel-wise mean computed on (b) MCMC samples and (c) 100
IDCS realisations. IDCS realisations with the (d) lowest and (e) highest data WRMSE, while (f)
is the IDCS realisation with the lowest model RMSE. Pixel-wise standard deviations of the
posterior approximated by (g) MCMC samples, (h) IDCS realisations and (i) IDCS realisations
excluding outliers. (j) The WRMSE curves of 100 IDCS runs as well as their mean.

The posterior mean of the MCMC inversion (Figs. 4.5b) and the approximate posterior mean
of the IDCS (Fig. 4.5c) reconstruct the channel features well. In accordance with Zahner et al.
(2016), the highest uncertainty is concentrated around the boundaries of the channels (Figs.
4.5g and 4.5h). While most IDCS realisations correctly reproduce the channels in the reference
model (e.g. Figs. 4.5d and 4.5f), seven IDCS realisations do not locate channel material around
6−8 m and one misses it around 3.5−4.5 m (e.g. Fig. 4.5e). These eight realisations have
significantly higher WRMSE values (2.70−3.37) than the remaining realisations (average
WRMSE of 1.02, see Fig. 4.5j). These artefacts appear at an early stage when matrix material is
incorrectly placed where a channel should be, thus constraining subsequent simulation steps
such that the resulting data misfit is high. Nonetheless, the aberrant simulations are easily
distinguishable from the other simulations and can be regarded as outliers. One approach
is to calculate the Inter Quartile-Range statistic (IQR; Ter Braak and Diks, 2009) during the
simulation and to discard those simulations that are indicated as outliers. This can be done
either during the simulation (to avoid redundant computation) or as a post-processing step.
After simulating approximately 23% of the grid (corresponding to 1138 grid cells), the IQR
statistics identify the eight aberrant simulations as outliers. If these simulations are excluded,
the uncertainty becomes comparable to the ones obtained from the MCMC posterior samples
(Fig. 4.5i).
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Figure 4.6: IDCS results given reference models (a) and (g) and a non-linear forward solver.
(b) and (h) Means of 100 IDCS realisations, (c) and (i) realisations with the lowest WRMSE, (d)
and (j) realisations with the highest WRMSE, (e) and (k) realisations with the lowest model
RMSE and (f) and (l) the standard deviations of 100 IDCS realisations.

4.4.2 Non-linear physics

In this section we present results obtained when running IDCS with a non-linear forward
response (see Section 4.2.3). As the calculation of the Jacobian is generally expensive, instead
of calculating J for each MPS candidate it is computed based on the kriging mean, given the
informed grid cells at step t : θ(t )

I . Accordingly, the number of Jacobian updates reduces to the
number of grid cells to be simulated. To calculate the forward response, we use the pyGIMLi
geophysical modelling library (Rücker et al., 2017) to calculate the shortest path between
a source and receiver pair given a slowness model. The accuracy of the forward response
depends on the number of secondary nodes on the edges of the grid cell, allowing for more
ray angles. Here we limit the number of secondary nodes used to compute the Jacobian to
two in order to avoid too long computation times.

Running the IDCS with the aforementioned non-linear forward response takes 21 hours on
average. The mean of the approximate posterior for the multivariate Gaussian case (Fig. 4.6b)
is similar to the reference model (Fig. 4.6a) and the standard deviation of the 100 realisations
(Fig. 4.6f) is similar to the linear-physics case. The isotropic field with connected high-
conductivity structures results in similar posterior mean and standard deviation (Figs. 4.6h
and 4.6l, respectively) as with linear physics, however, structures are less connected and are
more patchy (Figs. 4.6i-k). In both types of subsurface models, the SSIM has slightly reduced
values from 0.50 and 0.48 to 0.46 and 0.44 for the multivatiate Gaussian and connected high-
conductivity structures, respectively (see Table 4.2). Although the WRMSE is close to 1 in
both cases, it increased by 0.03 compared to the WRMSE reached with linear physics.
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Figure 4.7: Data WRMSE curves during the IDCS run given the reference model in (a) Figure
4.6a and (b) Figure 4.6g. The WRMSE is calculated at each simulation step using a non-linear
forward solver.

In contrast to the continuous test cases, the application to the binary channels model yields
a substantial decrease in the quality of the posterior approximation in comparison with the
linear physics. The SSIM reduced from 0.86 to 0.55 and the WRMSE increased from 1.02 to
2.38. While the mean of the IDCS posterior (Fig. 4.8b) captures the channel structure, it is
excessively smooth. Additionally, the individual realisations are of lower quality compared
to those obtained with linear physics. This can be also observed in a large uncertainty on
the boundaries as well as inside the channels (Fig. 4.8f). Correspondingly, the WRMSE
curves in Figure 4.9a are scattered and none of the IDCS realisations fit the data to the noise
level. The underlying approximations (Gaussianity, continuity, single Jacobian update for all
candidates) together with a higher level of non-linearity intensifies the aberrant simulations
problem already observed for the linear physics case in Figure 4.5 when considering this
training image.

To improve the approximation we run the IDCS for the same observed data, but with a
constant Jacobian linearised around the realisation in Figure 4.8c, that is, the realisation cor-
responding to the lowest WRMSE. This further run adds around 100 minutes of computation
to the total computation time (see Section 4.4.1) as the forward operator remains constant
during the simulation and no update is performed. The posterior approximation is overall
improved as characterized by an increase in SSIM to an average of 0.60. Moreover, the mean
of the posterior (Fig. 4.8g) becomes better defined and the uncertainty within the channels is
reduced (Fig. 4.8k). The channel feature within the 6−8 m range still presents a significant
degree of uncertainty. Nevertheless, this specific feature posed a challenge even in the linear
case, as can be seen in Figure 4.5h. The WRMSE curves in Figure 4.9b are calculated using
the Jacobian linearised around the realisation in Figure 4.8c. While these exhibit an overall
reduction in the WRMSE, the real WRMSE of the final realisations (with the Jacobian being
computed for each individual realisation) has increased from 2.44 in the first run to 2.56 in
the second run (Table 4.2).
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Figure 4.8: IDCS results for the binary channelised subsurface model in (a) and a non-
linear forward solver considering (b)-(f) IDCS runs with the Jacobian updated according to
the kriging mean and (g)-(k) considering subsequent IDCS runs with a constant Jacobian
corresponding to the realisation in (c). (b) and (g) Means of 100 IDCS realisations, (c) and (h)
realisations with the lowest WRMSE, (d) and (i) realisations with the highest WRMSE, (e) and
(j) realisations with the lowest model RMSE and (f) and (k) the standard deviations of 100
IDCS realisations.

Figure 4.9: Data WRMSE curves during the IDCS run given the reference model in Figure
4.8a. The WRMSE in (a) is calculated at each simulation step using the linearised Jacobian
around the kriging mean while in (b) the WRMSE is calculated using a constant Jacobian
corresponding to the realisation in Figure 4.8(c).
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4.5 Discussion

The proposed IDCS method successfully approximates the posterior distribution when con-
sidering an ensemble of simulations (e.g., 100), given linear physics, for both Gaussian and
non-Gaussian reference models. The IDCS runs are able to provide posterior approximations
that are comparable in quality to those obtained when performing MCMC, but at a much
lower computational cost. This applies also to the binary test case, which poses a greater chal-
lenge due to the values being discrete, while the likelihood approximation assumes continuity
and a Gaussian distribution. As a consequence of this discrepancy between the nature of the
model and the estimation method, a small fraction of the IDCS runs introduce artefacts in
the early stages, as matrix material is erroneously placed in locations where channel material
exists in the reference model. Fortunately, these outlier simulations are easily distinguishable
and can be removed at an early stage or in a post-processing step using statistical metrics for
dispersion, such as the IQR.

In comparison with the block data method of Straubhaar et al. (2016), our method works by
estimating unknown parameters and sampling MPS candidates according to an approximate
likelihood, eliminating the need for precise knowledge of the ray paths. Hence, when consid-
ering non-linear physical responses and provided that the forward response is differentiable
and can be linearised, the Jacobian can be used to obtain the kriging error and a first-order
approximation of the forward response. Results for both continuous reference models sug-
gest that the IDCS is able to approximate the posterior rather well even when the forward
response is non-linear, with only slight deterioration in SSIM and WRMSE metrics compared
to the linear cases. In the binary subsurface case, the issue with aberrant simulations seen
in the linear case is worsened likely due to a combination of the Gaussian approximation
and a poor coverage of the channels by ray paths (see Appendix 4.7.3). A possible improve-
ment could be gained by using a different likelihood approximation for binary or categorical
model parameters. The results from conducting a second run of IDCS simulations, where
we linearise the Jacobian around the best data-fitting realisation from the initial run, show
improvement of the posterior approximation.

The results obtained by IDCS runs are inherently approximate due to the finite training image
(prior distribution), the limited number of candidate values considered at each simulation
step, and the approximation of the intractable likelihood function. Testing of the influence of
the number of candidates (k) and the number of neighbours (n) (see Appendix 4.7.2) suggests
that the quality of the simulation and the data fit is less sensitive to changes in n than in
k. For a finite training image with a fixed size, large n (50 and above for a 500×500 pixels
training image) can potentially lead to pattern degradation and the generation of artefacts.
This is due to the limited number of distinct patterns available in the training image. On the
other hand, the choice of k represents a trade-off between structure and data fit. For large k,
the algorithm is forced to sample more values with decreasing pattern similarity and some
of them will be accepted by the algorithm as they might lead to sufficiently low data misfit
values. This means that the optimal choice of n and k depends on the size of the training
image and the diversity of its patterns. Given that the algorithm is vectorized with respect to
k, increasing k does not introduce additional computation time. However, the computation
time increases quadratically with the size of the training image (Gravey and Mariethoz, 2020).
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The computational cost of the IDCS algorithm does not scale linearly with the size of the
model domain. Three factors come into play: the increase in the number of simulation
steps (linear effect), the need to multiply a larger covariance matrix (Eq. (4.11)) (non-linear
effect) and the need for a larger training image (non-linear effect). In our examples, the
approximation of the likelihood for the linear case is responsible for 97% of the computation
time of a single simulation step. Out of the time it takes to approximate the likelihood and
return a simulated value, 76% is spent on computing Σ̃L (Eq. (4.11)), 11% on the (linear)
forward response (for all candidates using vectorized operations), 2% on the likelihood
function (Eq. (4.12)) and the rest on various small operations. This suggests that modern
matrix multiplication algorithms (e.g. Nowak et al., 2003) could help enhance the efficiency
of our approach and mitigate the impact of the matrix multiplication operation in Eq. (4.11).
When compared with MCMC, IDCS is at least an order of magnitude faster depending
on the test example. The number of forward simulations required in a single IDCS runs
depends linearly on the number of cells to simulate and on the k candidates. In contrast, the
computation time of MCMC depends on the number of chains and the number of MCMC
steps needed to converge, which is unknown before running the inversion. Using Gibbs
sampling, the computational time is also influenced by the size of the re-simulated domain.
When the physical response is non-linear the number of Jacobian updates during the IDCS
is equal to the number of grid cells to be simulated (as described in Section 4.4.2). Thus,
IDCS provides a more predictable and efficient alternative compared to MCMC inversions
provided that the inevitable approximations are acceptable. Furthermore, as simulations
are independent, the number of simulations that are running simultaneously scale with
the number of available processing units (either CPUs or GPUs). A further reduction in the
computational time can be achieved by conditioning the simulation on indirect data only
up to a stage where the data fit curve stabilises and changes in the data misfit are small (e.g.
around 2000 steps in Figure 4.7). At this stage, all necessary large-scale features are present
to which the rest of the simulation is constrained. This is exemplified in Figure 2 in Laloy
et al. (2016), which suggests that when re-simulated parameters are distributed throughout
the model domain, a large fraction of the domain has to be re-simulated (50% and above) to
obtain significant large differences in the likelihood (and as a result in the data RMSE). The
effect of such an approach on the results would need to be tested but the potential reduction
in the computational time is substantial.

The IDCS method is suitable when a conceptual model of the subsurface is available in terms
of a training image and the physical response is either linear or can be linearised. Examples
with linear physics include: tomographic problems where parameters are integrated along
straight lines such as muon (Rosas-Carbajal et al., 2017) and x-ray tomography, as well as
potential-field applications such as gravity, magnetics (Blakely, 1996) and the self-potential
method (Revil and Jardani, 2013). The method can of course also be used, as in this example,
when a linear physics assumption might be acceptable as in GPR amplitude inversion (Jensen
et al., 2022). Some additional improvement could probably be gained by using a preferential
path strategy (Hansen et al., 2018; Jóhannsson and Hansen, 2023). This approach prioritises
the simulation of locations that are highly constrained by the available data, such as those
traversed by multiple rays and thereby, might decrease the risk of artefacts. In challenging
scenarios where conditional MPS simulations struggle to fit the data, particularly in cases
involving categorical models, the approximation can be improved by using the MPS condi-
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tional realisations as an initial solution for MCMC chains. For instance, one can run multiple
conditional MPS simulations and use the realisations that fit the data best to initialise the
MCMC chains. By doing so, we effectively shorten the burn-in period and possibly speed up
convergence compared to using MCMC only.

4.6 Conclusions

We have introduced a novel approach for conditioning multiple-point statistics simulations
to geophysical data represented as linear averages over the model domain. These linear
averages are either constant during the simulation (linear physics) or varies as the simulation
is built up (non-linear physics). Our method, named IDCS, is stochastic in nature and offers
an efficient framework for approximating the posterior distribution by performing many
simulation runs in parallel. The conditioning of the geophysical data is performed, for each
simulated grid cell, by drawing k conditional values from the prior and accepting one of
them proportionally to a kriging-based approximation of the intractable likelihood. In non-
linear problem settings, the forward response has to be linearised, leading to a first-order
approximation of the likelihood. Considering crosshole ground-penetrating radar data, the
method was found to successfully approximate the posterior distribution for three subsurface
models: multivariate Gaussian, connected high-conductivity structures, and binary channel.
Its main practical limitation is that the computational time scales non-linearly with the size
of the model domain due to operations involving the covariance matrix. Nonetheless, for
the model size tested in this paper, IDCS was found to be one to two orders of magnitude
faster than MPS-based MCMC inversion for a posterior approximation of similar quality.
Possible directions for future work include more sophisticated approaches to estimate the
intractable likelihood, enhancing the efficiency of IDCS by exploring more sophisticated
matrix multiplication techniques and use more elaborate simulation strategies (i.e. ending
data conditioning when the data misfit is sufficiently low).

4.7 Appendix

4.7.1 Analytical posterior PDF for a multi-Gaussian field

Under the assumptions of linear physics and a Gaussian prior p(θ) = N (θ;µθ,Σθ), where
µθ and Σθ are the mean and covariance of the property field of interest θ, there exists
an analytical expression for the posterior PDF p(θ|d). Considering normally distributed
observational noise, the likelihood can be expressed as follows:

p(d|θ) =N (d;Gθ+b,Σd ). (4.29)

A closed-form expression for the posterior is then obtained by (Bishop and Nasrabadi, 2006)
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p(d) =N (d;Gµθ+b,Σd +GΣθGT ) (4.30)

p(θ|d) =N (θ;Σ
{

GTΣ−1
d (d−b)+Σ−1

θ µθ
}

,Σ), (4.31)

where Σ= (Σ−1
θ

+GTΣ−1
d G)−1.

4.7.2 Choice of QS parameters

There are two main hyper-parameters in the QS implementation used herein: (1) kcand

the number of candidates proposed by QS, sorted in ascending order of mismatch (in the
original implementation of Gravey and Mariethoz (2020), kr ank is a rank that represents
the probability of sampling the sorted candidates) and (2) n the number of informed grid
cells around the simulated location on which to calculate the misfit map. To determine the
appropriate values for kcand and n, we run several IDCS simulations for different kcand and
n values. We compare the different runs with respect to the SSIM and the WRMSE, as well as
by visually inspecting the different realisations.

Although large values are usually recommended for n in MPS simulations (≥ 30; Gravey and
Mariethoz, 2020; Meerschman et al., 2013), we found that n has little effect on the data fit
and that better simulation quality (based on visual appearance and SSIM values) is achieved
for small n (10) when the model parameters are continuous. For n ≥ 25 the quality of the
simulation decreases significantly and the realisations become noisy. For the binary channels
model, a balance between the quality of the simulation (reflected in better visual appearance
having less artefacts) and good model fit is found for n = 25. This difference in the optimal
n between the continuous and binary models may be the result of the features’ different
characteristic sizes. It can be seen in Table 4.1 that the binary training images have greater
correlation lengths, thus, the larger the radius within which neighbours contain relevant
information.

As the value of kcand increases, the WRMSE decreases and approaches 1.00 (see Table 4.3).
With a larger kcand , there is a larger chance that one of the proposals have a high likelihood. In
most of the tested models, the model’s SSIM values generally show improvement when kcand

is increased to 100. Further increasing kcand to 500 enhances the SSIM only for the Gaussian
model, possibly due to the greater variety of patterns and values present in a continuous
Gaussian training image. It is important to note that raising kcand too much can introduce
undesired artefacts. This occurs because the algorithm is forced to generate more candidates,
which given a finite training image, inevitably leads to a decrease in their quality.

Additionally, Gravey and Mariethoz (2020) indicated that using a weighting kernel can improve
the quality of the QS simulation. As previously mentioned tests suggest that shorter distances
are more important in continuous models, we performed tests with the weighting kernel
w = e−α||d ||2 on the connected high-conductivity structures model, where d is the distance
from the simulated pixel, α is the kernel parameter and || · ||2 is the Euclidean distance. This
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Table 4.3: Average model SSIM and data WRMSE for 50×50 pixels simulation given different
k values and training image size of 500×500; these are calculated on 10 different simulations.

k n TI type SSIM WRMSE

10 10

Gaussian

0.49 1.02
25 10 0.49 1.01
50 10 0.51 1.00

100 10 0.51 1.00
500 10 0.52 1.00
10 10

Connected
high-

conductivity
structures

0.47 1.04
25 10 0.56 1.02
50 10 0.50 1.02

100 10 0.54 1.02
500 10 0.49 1.01
10 25

Channels

0.66 4.14
25 25 0.84 1.81
50 25 0.89 1.05

100 25 0.89 1.05
500 25 0.89 1.04

Table 4.4: Average model SSIM and data WRMSE of 10 simulations given a connected high-
conductivity structures model of size 50×50 pixels for different α values, k = 100 and n = 10.

α SSIM WRMSE

0 0.54 1.02
0.03 0.53 1.02
0.3 0.48 1.03

kernel gives more weight to closer neighbours as the α increases. Nonetheless, this type of
kernel did not lead to improvements for our considered examples (see Table 4.4).

4.7.3 Sensitivity matrix: binary channelised subsurface model

When attempting to approximate the posterior of the binary channels subsurface model
(Fig. 4.10a) using linear physics, we notice anomalous simulations. This could be attributed
to the Gaussian approximation involved in computing the kriging mean and covariance to
approximate the likelihood. This problem worsens in the presence of non-linear physics,
as the Gaussian approximation is combined with the insufficient coverage of the channels
by the rays (Fig. 4.10b), leading to inadequate constraints from the available data and as a
consequence to an uninformative likelihood for these grid cells.
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Figure 4.10: True sensitivity associated with the binary channels subsurface model in Section
4.4.2. (a) is the reference model and (b) is the ray path given the reference model.
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Chapter 5

Conclusions and outlook

5.1 Conclusions

Sampling techniques used to estimate intractable posterior probability distributions for
high-dimensional problems often suffer from long computation times. Given the significant
impact of the repeated computation of the forward response on computation time, as it is
necessary to compare model proposals, there are several ways to reduce the computational
burden. It can be achieved by either simplifying the forward model, thereby reducing the
time required for computing one forward response, or by the overall number of forward
response computations needed. This thesis offers several approaches that can mitigate the
computational burden and optimise the overall efficiency of the inversion process. These
approaches adopt techniques from the fields of deep learning and geostatistics. They are
either integrated into probabilistic, well-established algorithms like Metropolis-Hastings,
allowing for the incorporation of modelling errors, or serve as powerful inversion tools outside
standard geophysical inversion frameworks.

Surrogate models offer a cost-effective and simplified means to compute the forward re-
sponse. The utilisation of computationally-inexpensive forward models becomes particularly
significant when repetitive forward evaluations are necessary. Nonetheless, one must account
for the error arising due to simplifications. In chapter 2, we introduced an approach that
enables the use of a surrogate model as a substitute to a more accurate yet computation-
ally intensive forward model. In our tests we used a simple straight-ray solver to model a
crosshole GPR travel-time tomography. This solver is significantly faster than its high-fidelity
alternative solvers: Eikonal and FDTD. To avoid bias and over-confident solutions we ac-
count for the modelling error due to the simplified physics through a generative adversarial
network. Generating modelling errors through a deep generative model offer two key ad-
vantages. First, it eliminates the need for assumptions regarding the statistics of the error
model, as the DGM is trained on a collection of modelling error realisations that represent the
differences between the high-fidelity and surrogate models. Second, it enables the encoding
of modelling errors within a low-dimensional space, thereby avoiding the inclusion of nu-
merous additional inferred parameters. In comparison to the results obtained from running
a MCMC inversion without accounting for modelling errors, or alternatively, accounting
for the errors by inflating the likelihood error covariance, our approach yielded solutions
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that demonstrated low bias and better data fit. Moreover, as the modelling error is inferred
during inversion, one obtains a posterior representation of the modelling error for a given
experiment.

Efficient optimisation together with low-dimensional parameterization can effectively and
efficiently locate the solution to the inversion problem, hence, reduce the number of forward
responses required and consequently the overall computation time. In chapter 3, we train
inverse autoregresive flows through variational Bayesian inference to infer the posterior
distribution of the low-dimensional latent space encoded by a deep generative model. This
approach uses random sampling and gradient optimisation to approximate the posterior on
the latent space of either a GAN or a VAE. The reduction in the number of inferred parameters
coupled with efficient gradient-based optimisation led to a speedup of seven times compared
to MCMC inversion. Although deterministic gradient-based approaches were unsuccessful
in performing inversion that involves the highly-nonlinear GAN transformation, training
the inverse autoregressive flows led to a successful reproduction of the reference model.
While the posterior approximations in the low-dimensional latent space of the GAN were
broad and did not encompass the true value, the posterior in the low-dimensional latent
space of the VAE not only included the true value but also exhibited comparable uncertainty
quantification as obtained from MCMC sampling.

The use of MPS simulations offers an efficient means of generating geologically-realistic
subsurface models that can be conditioned on known (hard) data points. In chapter 4, a
novel methodology was presented to condition MPS simulations on indirect (linear) geo-
physical data, allowing for the approximation of the posterior distribution without the need
for time-consuming sampling frameworks. Our synthetic case-studies involve three distinct
subsurface models with their priors being sampled using the QS algorithm. The QS simula-
tions were conditioned in a sequential manner on GPR crosshole tomography data generated
using a straight-ray solver. By considering each realisation obtained from the conditional
QS simulation as a draw from the posterior distribution, we were able to approximate the
posterior distribution using multiple realisations. The posterior approximations obtained
through this approach were found to be on par with approximations obtained via a Gibbs
sampler, but with at least one order of magnitude difference in computation time in favour of
the conditional QS simulations. This approach has potential uses in field applications, where
a linear forward model adequately represents the physical process and where two-point
statistics fail to provide a suitable representation of the subsurface model.

The latter two methods also provide parallelism capabilities that scale well with available
computational resources, allowing for the simultaneous execution of multiple realisations.
Moreover, all three approaches use either deep generative models or MPS to sample the prior.
Such representations ensure geologically-realistic subsurface models and reduces the search
space compared to more general prior models.
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5.2 Limitations and outlook

The approaches introduced in this thesis offer substantial improvements in terms of compu-
tational cost; however, it is essential to acknowledge their limitations. The approach proposed
in Chapter 2 was able to account for modelling errors that are a result of using a simplified
forward solver. It is important to note that numerical models are abstractions of real physical
processes, and as such, they introduce a certain level of error into their predictions. The
errors accounted for in our approach do not capture the discrepancy between the forward
solver and the true physics, that is for the most part impractical to accurately quantify. This
means that solutions obtained from inverting real field data are inevitably biased, even when
the discrepancy between high- and low-fidelity solvers is perfectly represented. Furthermore,
the subsurface model and the modelling error are learned by two separate GANs, implying
that any prior correlations are ignored. Our approach could be extended by encoding the
pairing of subsurface model and model error into a shared latent space on which inversion is
performed. From the perspective of surrogate modelling, physics-informed neural networks
(Raissi et al., 2019) offer a compelling advantage in obtaining efficient and accurate surrogate
models (Song et al., 2021a; Rasht-Behesht et al., 2022). These networks incorporate the gov-
erning equations of the system as additional constraints during their optimisation process.
By doing so, they seamlessly integrate domain-specific physics knowledge, leading to more
robust and reliable predictions.

Incorporating highly-nonlinear transformations, such as those learned in DGMs, to repre-
sent model and model error parameters can present challenges for deterministic inversion
algorithms and may result in convergence issues in probabilistic algorithms, as observed in
Section 2.3.2. While the neural-transport approach (Chapter 3) has shown success in handling
highly nonlinear transformations, future research could explore the use of normalising flows
with surjective transformations or multi-scale architectures and investigate their applicability
to geophysical inverse problems (Das et al., 2019; Nielsen et al., 2020). In the multi-scale
architecture for generative flows, the importance of each dimension (an input parameter)
is taken into account based on its contribution to the overall log-probability of the target
density. This leads to a dimension factorization process, where certain dimensions are fac-
tored out, while others undergo more flow layers. Although this architecture does not provide
a dimensionallity reduction in the strict sense, it makes generative flows computationally
efficient. On the other hand, surjective transformations overcome the limitation of requiring
equal dimensional sizes in flow models. Surjective transformations are deterministic in one
direction and stochastic in its inverse, therefore, enabling changes in dimensionality between
the input and output variables. Both of these approaches eliminate the need for an inter-
mediate DGM that is trained separately from the flow-based model and make flow-based
generative models even more computationally efficient.

Other promising directions for geophysical inversions, is to implement DGMs as a full inver-
sion framework (Laloy et al., 2021; McAliley and Li, 2021), where the reconstructed model is
the output given input data. The accuracy of any framework that relies on DGMs, however,
depends on the generalisation and goodness of the trained model and as highlighted in
Section 1.1, it heavily relies on the availability of data, which in geophysics, and geoscience
in general (Karpatne et al., 2018), might not always be readily available or easy to compute.
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Future efforts should, therefore, be dedicated to increasing data availability in geophysics
and further improve the capabilities of DGMs to learn high-quality representations of spatial
models and physical processes.

Although gradient-based variational optimisation techniques such as in Chapter 3 are effi-
cient, they require a fully differentiable forward response and prior. In the case of DGMs,
this imposes a limitation on subsurface models with strongly varying features, such as in
channelised models. This limitation can have a strong impact in some applications, for
instance modelling fluid flow. On the contrary, differentiating the forward model can be
accomplished either by implementing the forward solver within a framework that supports
automatic differentiation (Margossian, 2019) or by manually performing the differentiation
by, for instance, the adjoint-state method (Plessix, 2006). Manually differentiating the forward
response can be laborious and challenging, particularly for highly complex multi-physics
forward models. Furthermore, many legacy forward solvers are typically implemented in
programming languages in which automatic differentiation is not readily available. Future
research aimed at developing machine learning-based surrogate models capable of accu-
rately capturing the forward response holds great potential in providing practical solutions.
These models are fully differentiable and are implemented in libraries supporting automatic-
differentiation, making them easily integratable into inversion schemes that necessitate
model differentiation.

The approach introduced in Chapter 4 was so far tested only on cases where the forward
response can be described in terms of linear physics. Nevertheless, the application of this
method would offer significant advantages for nonlinear forward responses, which typically
incur a higher computational burden when utilised within a sampling framework. A possible
partial extension to nonlinear problems would involve a linearization of the forward response.
Alternatively, one can adopt the idea of surrogate modelling with covariance inflation of
the likelihood error (Hansen et al., 2014), thereby, reducing the computational cost and
eliminating the need to linearize the forward response. The simulations in our case studies,
were performed with random simulation paths. It is possible that using preferential paths
that visit locations that are better constrained by the data first, might help improve the quality
of the model realisations. A prominent limitation in our approach is the non-linear growth in
computation as the size of the simulation grid increases. This is attributed to the covariance
matrix multiplication, which implies that the method remains computationally favourable
only in 2D grids and up to a certain grid size. Future advancements in matrix multiplication
algorithms hold the potential to reduce the computational cost associated with the size of
the covariance matrix, thereby enhancing the applicability of this approach to larger grids.

The methodologies presented in Chapter 3 and 4 could serve as preliminary approximations
to MCMC sampling. By initially approximating the posterior using these efficient techniques,
we can initialise the MCMC chains with samples from these approximate posteriors and
further improve the posterior approximation. One notable advantage of such an approach
is that it allows us to start MCMC sampling with posterior samples that are likely to have
high probability (Hoffman et al., 2019), thereby significantly reducing the time required to
adequately sample the posterior distribution. As a result, such a hybrid approach strikes a
balance between computational efficiency and accurate posterior representation. Future
research could explore different strategies to build such hybrid approaches.
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All approaches introduced in this thesis were tested within a GPR crosshole setting. In order
to further assess the performance of these approaches and their generalisation, they should
also be tested and evaluated for different geophysical problems, for instance, seismics, gravity
and magnetics and eventually tested on real data. One major drawback of DGMs in that
context is that they are specifically trained for a particular problem, and any modification to
the prior or the experimental design would necessitate re-training the DGM, which can be a
time-consuming process in itself. Additionally, these generative models have to be general
enough to be able to accurately represent real data. Possible avenues for further research can
be built on recent developments in generative models, such as, training a single DGM on
multiple TIs, learning multiple textures and using conditional GANs to generate environment
specific realisations (Mirza and Osindero, 2014; Bergmann et al., 2017; Lopez-Alvis et al.,
2022).
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