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Abstract

In this paper we provide model-independent lower bounds for prices of arithmetic Asian
options expressed through prices of European call options on the same underlying that are
assumed to be observable in the market, and the corresponding subreplicating strategy is
identified. The first bound relies on the no-arbitrage assumption only and turns out to
perform satisfactory in various situations. It is shown how the bound can be tightened
under mild additional assumptions on the underlying market model. This considerably
generalizes lower bounds in the literature which are only available in the Black-Scholes
world. Furthermore, it is illustrated how to adapt the procedure to the case where only
a finite number of strikes is available in the market. As a by-product, we rederive the
finite strike solution for the upper bound on the Asian call price of Hobson et al. [15], who
considered basket options. Numerical illustrations of the bounds are given together with
comparisons to bounds resulting from model specifications.

1 Introduction

Let S; denote an underlying asset price at time ¢ and r > 0 the riskless interest rate, which will
be assumed to be constant. The payoff of an arithmetic Asian option with strike K is then given

by
+

1 n
E;Stﬁff :

where t1,...,t, are the discrete monitoring times and T is the maturity of the option (w.l.0.g.
we will assume ¢, = T’; for simplicity of notation S; will sometimes be written instead of S;,).

The pricing of such arithmetic Asian options is in general a challenging task, since their payoff
involves a sum of dependent random variables whose distribution is not available even in the
Black-Scholes market model. During the last years a lot of research activity was devoted to both
pricing and hedging of these financial products. In terms of pricing, numerical methods based on
partial (integro-)differential equations, moment matching, Monte Carlo and quasi Monte Carlo
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as well as fast Fourier transform have been developed (for a recent overview see for instance Ju
[18], Klassen [19], Lord [20], Vecef [28] and Vedef & Xu [29]). However, most of the obtained
results rely on rather restrictive model assumptions.

For risk management purposes, it would be preferable to have (at least) bounds for derivative
prices that are solely implied by information available in the market, trying to avoid model as-
sumptions (which also bypasses the problem of identifying the appropriate martingale measure
to price the option in an incomplete market). Such model-independent bounds are sometimes
implied by static (or semi-static) super- and subreplicating strategies on the product (see e.g.
Hobson [14] for lookback options, Brown et al. [5] for barrier options and Davis et al. [10] for
installment options).

For Asian call options (AC), upper price bounds in terms of European call prices on the underly-
ing have been developed by Simon et al. [25] for arbitrary models (see also Nielsen & Sandmann
[22] for the Black-Scholes model). The interpretation of these bounds as a superreplicating port-
folio of the Asian call in terms of European call options can be found in Albrecher et al. [1].
In Albrecher & Schoutens [2], the implementation of such a static hedge portfolio was further
investigated and extended to a model-independent framework, assuming only that market prices
for European call options on the underlying are available for any strike and maturity.

For lower bounds on the AC price, Curran [9] and Rogers & Shi [23] pioneered a quite accurate
method to determine lower price bounds in the Black-Scholes model based on the following idea:

Jensen’s inequality gives
i=1 i=1

where Z is an arbitrary random variable and >, is the convex ordering relation, i.e:
X ZuY € E[g(X)] =2 E[g(Y)]

for every convex function g. Since the function g(z) = (z — K)* is convex, (1) leads to a
lower price bound for the Asian call (in contrast to upper price bounds based on the concept of
comonotonicity, this bound in general does not imply a subreplication strategy).

Since for the Black-Scholes model the distribution of the geometric mean ([T, S;) ™ is explicitly
available, the choice of Z as the geometric mean (or a function of it) is very popular and leads
to tight lower price bounds, since the arithmetic and geometric average are strongly correlated
(see e.g. Curran [9], Rogers & Shi [23], Nielsen & Sandmann [22], Thompson [26] and Vanmaele
et al. [27]).

On the other hand, it is widely agreed that the Black-Scholes model is not an appropriate model
for real markets (see e.g. Schoutens [24]), and it is natural to look for extensions of the above
bounds to more realistic models. This, however, turns out to be a delicate issue in general and
the available lower bounds for AC prices almost exclusively rely on the assumption of a Black-
Scholes framework.

In this paper, we aim at finding arbitrage-free model-independent lower bounds for AC prices, i.e.
bounds which hold uniformly, without specifying any model (hence being robust against model
misspecification). The only information used are the prices of traded European call prices, which
can be observed in the market, reflecting information on marginal distributions of the underlying
asset. In Section 2, one such price bound based on conditioning will be developed and it will



also be shown that there is a feasible subreplicating strategy associated to it.

The resulting bound significantly improves upon the trivial bound based on the Asian call-put
parity. If the option is far out of the money, however, the performance of the bound deteriorates
and we investigate improvements under some mild additional assumptions on the market.

In contrast to bounds derived by conditioning, Hobson et al. [16] found model-free lower bounds
for basket options (whose payoff depends on a weighted sum of different underlyings) written
on exactly two different underlyings, showing that perfect negative dependence between the two
assets (the lower Frechet bound) provides the minimal value (so that the lower bound is in fact
attained and thus optimal). This result clearly implies a lower price bound for Asian options
with two maturity days, but since there is no meaningful model with perfect negative dependence
of prices of the same asset over some time period, this lower bound will not be attained in the
Asian case (see Section 2 for details).

An extension of this model-free lower bound for basket (and also Asian) options with more than
two assets (averaging days, respectively) seems however out of reach, since the lower Frechet
bound is not a copula for more than two random variables. The lower bounds derived in this
paper can be seen as a generalization of [16] that is applicable for arbitrarily many assets (aver-
aging days, respectively).

The bounds discussed in Section 2 are derived under the assumption that European call prices
with arbitrary strikes and maturities are available in the market. This assumption will be relaxed
in Section 3 and it is shown how to obtain price bounds if only a finite number of strikes is available
in the market. For model-independent upper bounds on the AC price that are also based on
the entire option price surface, Hobson et al. [15] derived the optimal relaxation when in fact
only finitely many strikes are available and this weaker bound is identified with a particular
discretisation of the asset price process (in [15] the result was formulated for basket options).
For an elegant re-derivation of this result based on comonotonicity, see Chen et al. [8]. As a
by-product of our approach, in Section 3 we will state a simple direct algorithm for obtaining
this upper bound in the spirit of [15].

Note in passing that corresponding bounds for Asian put options can be derived through the
Asian call-put parity (3). Moreover, the case of discrete marginal distributions of the underlying
asset S; can also be handled (which is in fact merely a matter of appropriately defining the
inverse distribution function).

Section 4 gives some numerical illustrations for the bounds obtained in the paper. Since some
of the bounds hold uniformly for every arbitrage-free model, they will certainly be weaker than
those obtained by specifying a particular model. We nevertheless compare them to the available
model-specific lower bounds for the Black-Scholes, the Variance-Gamma Lévy model and the
Heston model, and the robust bounds turn out to be not far off the latter for options in the
money (recall that by specifying the model, one implicitly assumes that the full option surface
is available).

Finally, we give a numerical illustration for a situation, where only a finite number of quoted
European call options is available. Using data from the S&P 500 from a specified trading day,
model-independent lower bounds for some AC options are determined and compared with Monte
Carlo estimates for several corresponding model prices that result from calibrating each of the
models to the same set of data.



2 Model-independent lower bounds for Asian options

Lower bounds by sub-replication

Denote by AC(K, n) the price of an Asian call option at time 0

n +
1
AC(K,n)=E [T [ =38 - K

with strike K and n averaging days, where the expectation is taken with respect to an appropriate
risk-neutral pricing measure. If the conditioning variable Z is assumed to be independent of the
asset price process, we obtain from Jensen’s inequality (1)

- . N
1

AC(K > E | —E 2] —

C(K,n) > e (ni_lE[S|Z] K)

n +
= E|e'T (%ZE[&]K)

. +
(% Z: Xp( ti)) So — Kexp(—rT)) , (2)

which is exactly the (very rough) lower bound for AC(K,n) implied by the call-put parity for
Asian options

AC(K,n)+ Kexp(—r(T —t)) = AP(K,n) Zexp( (T — max(t, t; )))St/\t“ (3)

(when all information up to time ¢t is available) and setting ¢t = 0 and AP(K,n) = 0.

This bound may sometimes be acceptable for options deep in the money, but deteriorates as
the moneyness decreases (cf. Section 4). It can be improved considerably by choosing another
conditioning random variable Z that still leads to a tractable expression in a model-independent
setup. In what follows the concept of comonotonicity of a random vector will be used, which,
roughly speaking, means that the components of the vector are perfectly positively dependent,
which is equivalent to the fact that each component is a non-decreasing function of a single
random variable (for a detailed introduction to this concept we refer to Dhaene et al. [12]). The
particular advantage of this approach is the fact that the stop-loss transform of a comonotonic
sum of random variables can be expressed as the sum of appropriate stop-loss transforms of the
individual summands.

Let us consider the choice Z = S, then

zn: E[S;[S1] = ZS@T(“ )= gl
i=1

The random vector (Sl, erlta=ti) g, er(tn—ti) Sl) is comonotone, because e"(ti~t1) S is a non-
decreasing function of S; for every 7, and hence standard comonotonicity theory (see [12]) implies:

E l(%sl _ K)Jr] = %ZXEE [( ety — B L (Fs (nK)))T .



Altogether, we obtain

AC(K,n) > E{e_TT%(San)JF]

e—rT% ;E ( r(ti—t) g, _ FoL, g, Fsr (nK)))T

n +
1 nk
_ —rT — r(ti—t1) _ 1
= e " l:zl E < S F er(t; —tl)s <FS1 (z:?—l e’r‘(tj—h) ) ) )

n +

1 nk
—rT T(ti*tl)
e — E E = —

n | < Zj:l eT(tJ tl))
1 nk

= - Cle=—r— —rl=h) = 1B 4

n (z;a et )Z ; @

where C(K,t;) denotes the price of a European call (at time 0) with strike K, maturity ¢;,
current asset price Sp and is defined by C(K,t1) = e "M E[(S; — K)T].

LB, provides a lower price bound for the AC in terms of a call with maturity ¢; and strike at
nK/ Z ~%1)_ One should keep in mind that (in contrast to other available lower price
bounds) thls bound holds for any arbitrage-free market model and significantly improves upon
the trivial bound (2), in particular if the Asian option is in or at the money.

If the call option in the above lower bound is traded in the market, this also implies a simple
sub-replicating trading strategy:

At time t; the value V1 of the portfolio specified in equation (4) is given by:

+
nKk
v, = = -r(T-t) [ g _ "%
1 Ze 1= E L er(t—h)
51 & i
©1 § —r(T—t;) _ K —r(T—t1)

i=1

which is exactly the bound obtained by the Asian call-put parity (3) evaluated at time ¢t = ¢;.
The subreplicating strategy is then to do nothing, when ,5’1 < nK/Y" et~ or to buy
L5 L e7"(T=%) assets in the case that S; > n K/ " e"(*~t)  The cost for this trade is
exactly the payoff of the options in the portfolio plus Ke T(T t1), which one should borrow. At
each monitoring time ¢; sell e~"(T—%) /n assets and invest the gain in the riskless bank account.
Then at maturity 7" of the Asian call the payoff of the trading strategy will be:

1 n
<ﬁ Z Si — K) 1{2?:1 er(ti =t 8y >nK o
i=1

where 14 stands for the indicator function of event A.
Clearly the payoff of the Asian call dominates the payoff of this trading strategy and hence this
is indeed a sub-replicating strategy.



Tightening the lower bounds

The following inequality obviously holds for every random variable Y:

n + n
E (%Z&—K) >E (%Z&—K) 1{Y>C}]. (5)

i=1

ForY =[]}, Si, the evaluation of the above bound boils down to pricing the payoff SilIre, si>c}-
In affine Lévy market models this can be done by formulas developed in Duffie et al. in [13].
Since in this paper we are interested in a robust bound, we will investigate the bound (5) without
assuming a specific model for the underlying market. To that end, set Y = S; in inequality (5)
for ¢ to be chosen later on. As in the sequel we will use calls struck at ¢, we assume ¢ > 0. This

leads to
e TR l g" S, — K |1
n i {Si>c}

=1

AC(K,n)

Y

1 Jj)—1 n
= T Y E[Siliszal + Y E(lszaE[SiI Al - E [nKls,>q)
i=1 i=5(t)
1 Jj)—1 n
= 6*7“'11E Z E [Sil{Stzc}] + Z E |:1{St20}er(ti7t)st:| —P [St Z C] nk
i=1 i=5(t)
1 jt)—1 n n
= e’TTE E [Sil{s,,zc}] + Z e Cle,t) —P[S; > ] | nK —¢ Z er(ti=t)

—

1=

i=j(t) i=3(t)
where j(t) = min{i : t; > t}.
If we assume that
St, and 1¢g,>.} are non-negatively correlated for ¢ > ¢; and for all ¢ > 0, (7
we can bound the first term in the last equality from below by
E [Si1{s,5c}] = Soexp(rt;) P[S; > (]
and subsequently

n (1)—1 n
1 J
AC(Ka TL) Z eirT_ § erti C(Ca t) -P [St Z C] nk — E ertiSO —C E er(tiit)
" i=5(t) i=1 i=35(t)
(8)

Since the tail of the asset price distribution is given by P[S; > ¢] =

rt OC(K,t) .
—€ K P :
the right hand side of (8) can be rewritten as

n

AC(K,n) >e TE Z et <C(C,t)+CK(Cvt) ( S =1 (ti—1) o )

i=j(t) i=i(t) ¢

7ert CK (Ca t);



Recalling that the no-arbitrage condition implies convexity of the call price function with respect
to the strike, it becomes clear that the optimal choice for ¢ (i.e. the value for which the right-hand
side becomes maximal) is given by

s _ K = S et s, 9)
t Z?:j(t) or(ti—t)
Hence the best lower bound with the form of inequality (8) is given by:
—rT n
~(1) (1)
>
AC(K,n) > - OréltaéxTC ¢, t) Z e™ =: LB; (10)

i=j(t)

and this bound holds whenever (7) is justified in an arbitrage-free market (if the partial derivative
60([15 ) does not exist, which for instance is the case for discrete asset price distributions, one
can simply replace the partial derivative by the left-hand derivative).

The optimization problem above can further be simplified by the observation

~(1)
~(1) _ ng

“ T ep (r(t; — 1)

and consequently

c@t) = B (s, - )]
o (s, 4) ]

i, : (1)
— 7rtE _ J — ~ t
‘ (Sf exp (r(t; — t))) RS

where we wrote j instead of j(¢).
Hence the maximum in (10) must be attained at a monitoring time, which makes the evaluation
of the bound computationally simple.

Y]

The performance of LBgl)

is of course at least as good as LB; for all strikes, since LBgl) = LBy,
and in many cases superior, in particular for options at and out of the money (cf. Section 4).
This stems from the fact that especially in this strike region the slope of the call option price
with respect to the maturity is large implying that it can be worth more to own a smaller amount
of calls with a longer maturity than more calls with shorter maturity. This is also the reason

why max; LBZ(l) is LBq for small strikes.

Let us now consider another assumption on the asset price process:
E[Silis,5e)) = E [L{s,50E[Si|S)]] > E {Sé_“/tst Mysisey| for0<ti<t,e>0 (11)

Intuitively this assumption means that the expectation of S;, given Sy and S, should be bounded
by some sort of weighted geometric average of Sy and S; (where the weights depend on the
distance of ¢; to 0 and ¢, respectively).

Let us now give a sufficient (but not necessary) criterion for the validity of assumption (11).



Proposition 2.1 The assumption (11) holds for arbitrary erponential Lévy models with asset
price process Sy = Sy exp (Xy), where (X¢)i>0, Xo = 0 is a Lévy process.

Proof: Due to Jensen’s inequality we find for any ¢ > ¢;:

E [Stil{StZC}} = E [E [SO exp(Xti) Xt = ln(St/So)] 1{5}20}}
SolE [exp (B [Xy, [ X¢, + (Xi — Xy,) = In(S;/S0)]) 118, >c}]

ti S\ "/
E |:SQ exp (?hl(st/SO)) 1{St>c}:| =E SO (S_O) 1{St2¢:} ,

where the first equality in the last line above is due to the stationarity and independence of
increments and the right-continuity of the paths of a Lévy process (see for instance Jacod &
Protter [17, pp. 624] for a detailed discussion). O

Y

Note that

JF
St ti/t St ti )t c ti/t c ti/t
E — 1 =E — — | = P > — .
|:S’0 (So) {StZC} SO (So SO + SO [St = C] So

Hence with (11) we find for (6):

Jt)—-1 i/t n
AC(K,n) > e*TT% (f(c) —PI[S, > (] (nK > (Sio) So—c Y e““))) , (12)
= )

i=j(t

fle) j(i—lE [So ((g—;)ti/t (Sio>ti/t> +] + an e C(e, t).

i=j(t)

where

As for any ¢ we want to find the largest possible bound, we have to maximize over c.
Consider c( ) , which solves:

i()—1 Fe) i/t
nk — Z SO< : ) & Z r(ti=t) = (13)

i=5(t)

Then inequality (12) can be rewritten as:

ne™ AC(K,n)

J(t) 1 ~(2) c ti/t ) n
flc) =P[S; > (] Z So (—) - <S_o> + (5§ ) _ ¢) Z o7 (ti—t)

i=5(t)

J(t)—1 s, b/t 5§2) ti/t "
E — — | = 1 t) t
; So <SO> Sy {Se>cy| T Z (e;t) + Ckl(e, )( C))

Y

i=7(t)

=:g(c)



But since for arbitrary ¢ > 0

j(t)—1 g 5@ i/t
Z E | So (_0) <s—0> +3 e @, = o) = £,

i=j(t)

the lower bound (12), for each ¢, is maximized by the choice ¢ = cg ) (note that the left hand
side of (13) is strictly decreasing in c( ) and hence the numerical computation of &,@ is trivial).

Altogether we arrive at

—rT

AC(K,n) > “—f(@?) = LBP? . (14)

Since LB§2) is a lower bound for all ¢ the optimal lower bound along this approach is given by:

AC(K,n) > max LB() (15)
0<t<T

—rT Jj)—1 n

e g\t @\ T
_ 2t -t rt; ~(2)
= = max Z E |Sy < 0> (50> + Z e C(e,7t) |,

i=j(t)

where 6,52) solves (13). In the examples considered in Section 4, LBg

maximum always at a monitoring time ¢ = ;.
Whereas the second summand of (15) is expressed in terms of European call prices which are as-
sumed to be available, for the first summand we need to evaluate prices of contingent claims with

2) turns out to attain its

payoff (S ANV, ) ! for some constant M, which can be done using the Carr-Madan formula [7],
whenever the characteristic function of the asset price at time ¢ is available (alternatively, one
can use the approach outlined in Carr & Chou [6] to price contingent claims from the European
option surface). Hence these power options can be priced using only the information of the call
prices and LB§2) provides a computationally tractable lower price bound for the Asian call under
assumption (11).

Remark 2.1: Neither of the assumptions (7) and (11) is implied by the other (for instance one
can construct simple discrete-time models in which only one of them is fulfilled). Nevertheless,
LB(Q) will have a better performance than LB(l) for not too small strikes K. To see this, observe
that for any fixed ¢, c( ) > ¢ ~(2) ,if nK > 37" | e Sy, in which case c( ) > 6( ) > Spe and

St oD
[SQ (So) 1{St>6§2)}] -8y exp(rt ) |:St >c } >

. t/t\ T 2)\ ti/t
s, ti/t Ez) @) 5§ .
>E | So| 5 —So PS> . — et .
= 0 <SO> SO + |:St Py ] So SO e SO >0

So for nK > Y7 | €Sy the required properties for the second lower bound are stronger than
those for the first one, which immediately implies an ordering of the obtained bounds.

In the examples in Section 4 it can be seen, that nK > > | ¢S, is not at all a necessary
condition for a better performance of LB§2).



On the other hand, for small K it can happen that LBgl) < LB§2) for all ¢t > ¢ (for example use
Jensen’s inequality for K = 0).

Remark 2.2: A close look into the above derivations shows that the assumptions (7) and (11)
to hold are not necessary for LB and LB(Q), respectively. The following weaker conditions are
sufficient (although perhaps less intuitive):

j(£)—1 n

1 1(’

=N Sz [ YD Seemt 4+ > ertg, | =i S" and (16)
" "\ = i=5(t)

n j(t)—1 n

1 ZSi sl 1 JZ Sitt/ g/t Z ertimtg, | =: gt respectively (17)
n 4 - n . 0 t 9 )

=1 =1 i:j(t)

where for any 0 < ¢t < T, again j(¢) = min{i : t; > t} and > denotes the stop-loss ordering of
two random variables X,Y > 0 defined by:

X>.Y & E[(X-dT]>E( -dt] vd>o.

Remark 2.3: Hobson et al. [15] illustrate that their model-independent upper bound for the
basket option is in fact attained for comonotonic asset prices. Similarly, the lower bound LB;
for the Asian option would be attained for comonotonicity among the prices of the underlying
asset over time. This dependence structure can however not be conciliated with the martingale
property of the discounted asset price (which is implied by the no-arbitrage assumption). To see
this, assume the S; to be comonotone and to fit the observable option price surface. Then the
following holds:
E[Si|Sk = 5] = Fg' (Fs,(s)) i>k.

On the other hand, the martingale property implies
E[S|S) =s] = se"ti7t) > k.

Hence,
FS:l (Fs, (s)) = se"t7t) > |

has to hold, which is equivalent to
Cre(s, ty) = e" i) Cpe (et ), (18)

putting a restriction on the option price surface, but the latter is actually an input parameter
for the bound LB;. Hence LB, is in fact not attained by some market model.
Note that the last line also shows that in the case of comonotonicity the following holds:

K
C(K, 1) = C (m,tl) :

which also explains, why in this case the lower bound LB; would be equal to the upper comono-
tonicity bound.
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Remark 2.4: In general it is not possible to check whether conditions (7) or (11), respectively,
are fulfilled by the market, if only European call prices are available, since the latter only give
information on the marginal distributions and not on path properties of the underlying asset
price process. However, there might be situations in which, in addition to European option
prices, some prices of derivatives that depend on both, S;, and S;, are available (for instance
correlation derivatives), which could then give some confidence into the validity of (7) or (11).
Moreover and more importantly, market analysts often have an intuition on properties of the
market and LB and LB® provide improvements of pure no-arbitrage bounds in case one has
good reasons to believe that the correlation properties (7) or (11), respectively, are appropriate.
In particular, as shown above, exponential Lévy models provide a large set of models, for which
both assumptions, (7) and (11), hold.

3 The finite strike case

Up to now we have assumed that European call option prices are available for all strikes at a
specified maturity. In the following we will relax this assumption to the case of having only a
finite number of observable option prices available in the market. Obviously the lack of complete
knowledge of the option surface (hence less information about the price process) will weaken the
developed bounds, as one has to look for the next-best alternative.

For completeness, we first give a relaxation of the comonotone upper bound developed by Simon
et al. [25] to the case of finitely many strikes. Note that this problem was solved by Hobson et
al. [15] (formulated for basket options); here we state a simple and direct algorithm to represent
the solution.

Upper bounds

Recall from [25] that an upper bound in terms of a portfolio of European options is given by

1 n
AC(K,n) < — —r(T —t;)) C(ki, 1), 19
( ,n)_n;exp( r( )) C (ki) (19)
where
ki = Fx ! (Fse(nK)) (20)
and 5S¢ = X{+ X5+ ---+ X¢ denotes the comonotone sum of the random variables X1, ..., X,,.

In particular, Y ;" | k; = nK.

In practice the optimal choice (20) of strikes will not necessarily be available in the market.
Moreover for the determination of the x; one needs a specification of the underlying model or at
least the knowledge of the complete option price surface (cf. [2]). Given a set of traded European
options, it is natural to try to find the best choice of strikes such that (19) is minimized without
further specification of the model (which will usually lead to a weaker bound than in the situation
of a specified model). In Chen et al. [8] it is shown how this can be done using comonotonicity
arguments. Alternatively, Hobson et al. [15] derived the optimal value of the x; in this situation
using Lagrangian optimisation. The following algorithm provides a simple representation of that

11



latter approach.

Assume w.l.o.g. t, = T and that for maturity ¢; there are m(i) European call prices available in
the market. The strikes of these calls may be ordered by size and denoted by K; ;, j =0, ...m(3),
where K o = 0 (due to the martingale property in an arbitrage-free market the price of an option
with strike 0 is the current value Sy of the asset price) and K ,,(;) = max;(K; ;).

Step 1: Since option prices are convex and non-increasing functions of the strike price, an upper
bound for the price of a European option with maturity ¢; and strike K in terms of the available
prices C(Kj ;,t;) = ¢; ; is certainly given by

fi(K) = max {g(K)|g(K) convex, non-increasing and g(K; ;) =¢; ;Vj € {0,...,m(i)}}. (21)

The maximum in (21) is obtained by connecting the given points (K;;,¢; ), 7 = 0,...,m(7)
linearly and setting f;(K) = ¢; m(;) for K > K )

Note that this bound is not sharp, i.e. there is no model consistent with the option price functions
fi(K), since for any maturity ¢;, lim oo C(K,t;) = 0 # ¢; m(;)- Nevertheless, f;(K) is the best
(smallest) upper no-arbitrage bound for C(K,t;) knowing only ¢; ;. Hence in order to get a
bound for the Asian call, which is based on the no-arbitrage principle only, we have to use
C(K,t;) = fi(K) for all K >0 in (19). The best bound in the sense of (19) is then the solution
to the following problem:

minz exp(—r(T —t;))fi (ki), such that Z ki <nkK. (22)
b=l i=1
Step 2: The slope Af of the call price bound f;(K) with maturity ¢; at each point K # K, ;,j =
0,...,m(i) and 0 < K < K ;) is given by:

Ci,j — Cij—1
Afi(K)=—2—2—  K,; 1 <K<K,
fi(K) K, _Ki,j—17 =1 < B

whereas at traded strike values K ;, the left- and the right-hand slope are in general different:
For1 <j<mf(i)—1

_ Cij — Cij—1 Cij+1 — Cij
AT Kz ) = ) ) >J ) = A + Ki ).
fz ( 7]) Kz,j o Ki,jfl # Ki,j«l»l _ Kz,] f?, ( a])

Furthermore we have Af;" (K, ;) = 0 and Afi(K) = 0 for K > K; ;n(:)-
The solution of (22) can now be found by the following straight-forward greedy algorithm:

Alg-1 If Y0 K m(i) < nkK, then the solution is given by x; = K; (), else set r; = K.
Alg-2 Determine Af;"(x;) and Af; (k;) for all i = 1,...n.
Alg-3 Set

I = argmin, e "TtIAfF (k),

J = argmax; e "TTHA LT (ky),

=e "TTAfF (k)  and

A
A= e_T(T_t")Af; (k).
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Note that for all i both Af;"(k;) and Af; (k;) are negative, unless r; > K () (in which
case they are equal to zero).
If A < A then set

ur = Ky 41— k1, where Kj; <kr < Kpjn

and u']:anKJj, where KJ3<I€J§KJ3+1

and

kr = kr +min{ur,uy}, ky=ky;—minf{ur,us}.

If A > A, go to Alg-4.
Else update Af;"(k;) and Af; (k;) for i = I, J and return to the start of Alg-3.

Alg-4 Set M = {i | i # K;;¥j=1,...,m(i)}. If M| =1 Stop.
Else choose any pair {m1,ma} € M x M, m; # my and calculate

Uy = Km17j+1 — Kmy, where Kmlv]- < Kmy < Km17j+1a

U2 = Rmy — Km%ja m

where K, = <km, <K, 5.1

Kmy = fm, +min{ug,us}  and Ky, = fm, — min {ug, ua}.
Then return to the start of Alg-4.

After the step Alg-4 has terminated, there will be at most one index ¢ € {1,2,...,n}, for which
ki does not equal a traded strike K ; for some j € {1,...,m(i)}. For this strike, f;(x;) can be
expressed as follows:

Kijt1 — ki P K .
i, i,7+15
Kijin—Kig 7 Kijp— Kij o

fi(ki) = for K ; < ki < Kjj41.
Note that the algorithm without Alg-4 would also lead to a solution of (22), but possibly with
more than one non-liquid strike «;.

The idea of the algorithm is to augment the current strike at the maturity time ¢; of the fastest
price decrease and - in order to keep > ", k; = nK unchanged - to reduce the strike at the
maturity time ¢; of the slowest price increase. This is done as long as the decrease is not smaller
than the increase and hence in every step the price for the portfolio does not increase and the
upper bound is improved.

Proposition 3.1 The algorithm presented above converges and solves (22).

Proof: Due to the convexity of the European option price function, Af;"(K) and Af; (K)
are non-decreasing in K. Hence in Alg-3 A = max; e "T"%Af (K) is lowered or/and A =
min; e (T4 A f;7(K) is raised. Furthermore either x; or k is set to a new traded strike and
the algorithm has to converge, since there are only finitely many strikes in the market.

To show the optimality, assume that &;,i = 1,...,n is another combination fulfilling >~ | &; =

13



nK. Then due to the convexity of the call price:

1 n n

- Z e—r(T—ti)fi(ki) _ % Z e_"'(T—ti)fi(K/i)

i=1 i=1

> %Ze_T(T_ti) (filke) = DS (ki) (ki — Ra) T+ AfF (ki) (i — )T = fi(ki))

> % (miin (e*r(Tfti)Af;r(m)) il(f%z — Ryt — max (e*T(T*ti)Afi_ (nz)) il(nz _ [%Z)Jr)
=z - in (e_T(T_ti)Af;r(“i)) ) (Fi — ki) =0,

n

i=1

where the last inequality holds due to the terminating condition of the algorithm (A > A).
Hence ) ., fi(k;) is indeed a solution to (22). O

Observe that if Y 7" | K @iy > nK, the optimal super replicating portfolio calculated by the
algorithm does not involve calls struck at x; > Kj ,,(;) or x; < 0. This holds because: If there
were some K; > K, 1,(;), then max; Af; (k;) = 0. On the other hand, as Y1 | K ) > nkK,
there is a #; < K, ,,(; and due to the convexity of the call prices Af;"(k;) < 0 and hence
min; Af;H(R;) < 0 =max; Af; (r;). Thus the stopping condition of the algorithm is not fulfilled
and it would not have terminated.

Lower bounds

For both lower bounds LB; and LBgl) only one European call is needed, namely the call struck
=1 ety

at ST :f;tﬁtl) and £ ?:ijzlemfft)so respectively. In practice, this particular strike might not

be traded and we need to bound its price from below with traded strikes. To cover also this case

we use a convex optimization result of Bertsimas & Popescu [3]:

Proposition 3.2 The best model-independent lower bound for the price of a European call struck
at K; < K @), Kij~—1 < K; < K; j- and maturing at t; is given by

C(K;, t;) > max {Ci,j*fl AL (K joo1) (K — Kije 1), cige — AfiT (K o) (K j= — f(i)} ,

with Af;(0) = —e ", and by

C(K;,t;) > max {Ci,m(i) + Afi_(Ki,m(i))([(i — Kim@#)); 0} (24)
fOT' f(z > Ki,m(i)'

Here we will give an alternative proof of inequalities (23) and (24), which simplifies the one given
in [3]:

Proof: Inequalities (23) and (24) follow in fact directly from the convexity of C(Kj;, ;). So it
just remains to show that there exist arbitrage-free asset price models consistent with the ob-
served call prices for which inequalities (23) and (24) become equalities. Note that in the case
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K; = K; ; for some j, the inequalities are obviously equalities and hence we only have to consider
K; # K; ; Vj. We distinguish three cases:

(1) K j=—1 < K; < K; j« < K m(i)—1° In this case one possible choice is the arbitrage-free discrete
asset price model described by:

e”i (Afj_(KZJ*) — Afi_(Ki,j*fl)) fOI‘ s = Kz

Plsi=s]=4 _C Af Kimw) for s = M(i)
U (AR Ey) - AfT(Ky)) fors =K, ¢ {57 - 157 mli)
0 else,

where K; is such that
Cijoo1 + AfT(Kije—1)(K; — Kijo—1) = iy — AfiT (K j< ) (K j — K;)

and M (i) solves
Cism(i) T AL (K miy) (M (i) — K; m(iy) = 0.

(ii) K; > K m(i): Here a possible arbitrage-free discrete asset price model is

*ertiAfii (Kl,m(l)) fOI' S = M(Z)
P [Sz = S] = e”i (Af:r(KZJ) — Af;(Kiyj)) fOI’ S = Ki,j; ] 7é m(z)
0 else.

(i11) Kim(i)—1 < K; < K m(iy: In this case we define for any n € N

erts (2L Eimw) _ Afi_(Ki,m(i)*l)) for s = Rz'(n)

P [S; = 5] = — AT (K for s = K; (i) + (M (i) — Kim(i)
et (AfH (K ) — Af7 (Kij)) for s = K; 5, j & {m(i),m(i) — 1}
0 else,

where K™ solves

AfT (Kime))

n

Cim(iy—1 + AL (Kim(iy-1)( i~ Kim(i)—1) = Ciym(i) — (Ki (i) — KM

Then the price C™ of a European call option struck at K; in the model described by P(™) is
given by

- % 0 i (n)
COV Ry t) = { Com®=1 ‘ettiAfi (Eim(iy-1) (K = Kij- ) for K < ffz(n)
ci,m(i) — TAfl (Kz,m(z))(Kl,m(l) — Kz) fOI' I(z > Ki ,
which is equivalent to:
CN(Kit;) = max{ci,m(i)fl +Af (Kz',m(z')q)(f(i — K m(iy—=1)s

erti

Cim(s) — TAfi_ (Kim(i)) (K m(i) — f(z)}

15



payof f payof f
2 2

1.75 1.75 -
1.5 1.5
1.25 1.25

1 1
0.75 0.75
0.5 0.5
0.25 0.25

100 150 200 250 300St 100 150 200 250 3OOSt

Figure 1: Payoff of the subreplicating portfolio and the contingent claim (St1 /3 _100Y 37 re-
spectively.

Now letting n grow arbitrarily large, one sees that any lower bound on the price of a European
call struck at K; maturing at ¢; is bounded above by

max {Ci,m(i)—l +Af (Ki,m(i)—l)([(i — K m(i)—1)s Ci,m(i)} ,

which is the bound claimed in (23) (recall that Af;"(K; () = 0). O

Note that the bound in Proposition 3.2 can also be derived using the no-arbitrage principle
directly, i.e. the right hand side of inequalities (23) and (24), respectively, represent static sub-
replicating portfolios.

In order to adapt LB§2) to the finite strike case we have to find a bound for a contingent claim
of the form (S7 — K )* for 0 < z < 1. The payoff function is clearly concave, when the power
option finishes in the money (see left part of Figure 1).

Hence a simple lower bound on the payoff of this contingent claim is given by the following:
Assume the strikes K7 < Ky < --+ < K, to be liquid for the European calls with maturity ¢
(where K¥ > K), then the payoff (Sf — K)* clearly dominates the payoff

K{ —K " _ K*, —K*
—2 (S, —K;)"1 K- K il g — K; ) 1 ) 2
Ky — Kl( t 1) {S:<K2} +Z (( i ) + K1 — K, ( t ) {Ki<S:<Kiy1}> ( 5)

=2

where K, 1 is set to the maximum of possible outcomes of S;. If S; is unbounded, then simply
the last term in the sum becomes (K? — K) (see right part in Figure 1 for an example with
no finite maximum and traded strikes 100,110,120,150,250). The payoff in equation (25) can be
obtained by trading European type calls only, namely by the portfolio given in Table 1.

4 Numerical illustration

For a given option surface, the bounds developed in this paper provide a model-independent
lower bound for the Asian option price and, for some mild additional model assumptions, im-
provements of this bound. Clearly, these bounds cannot be compared to the actual (model) price
of the option, since the latter can only be determined by fully specifying an underlying model
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strike number

K$-K
Ky Ko—K; ~
Ko KS—K2 Ki—-K

Ks—Ko  Ko—K;

| Emer ek,
g Kit1—-K; Ki—K;_1

Kﬁ*Kﬁfl

Kn C Kn—Kn1

Table 1: Strikes and number of calls with maturity ¢ needed for payoff (25) in the unbounded
case

(and for incomplete models even then the price is not unique). Yet, in order to get some illus-
tration of the numerical performance of the bound, we will first look at a Black-Scholes model
with specified parameters and compare the lower bounds available for that situation with the
model-independent ones of this paper (where the necessary call prices are then also calculated
as Black-Scholes prices). One should however keep in mind that the strength of the bounds in
this paper is its wider applicability beyond model specifications (and, clearly, for a fully specified
model one can improve the bounds considerably).

In Figures 2 and 4 an AC with Sy = 100, riskless interest rate r = 0.05, volatility o = 0.1812
and expiry 3 years is considered, while in figures 3 and 5 the expiry is changed to 10 years (with
yearly averaging in each case). The plots depict the difference between the Black Scholes price
and the developed lower bounds LBgl) and LBEQ), ie.

AC(K,T)-LBY, (i=1,2)

where all necessary contingent claims for the bounds are priced in the Black-Scholes model. Note
that for each averaging time t, LBEl) provides a lower bound and the best among all the ¢ then
determines the actual lower bound for the Asian option price.

In Table 2, such a comparison is given for a Black-Scholes model and an Asian option with
maturity 7' = 120 days and averaging at times t; = 91,¢3 = 92...,t30 = 120 (daily compounded
interest rate r = In(1+0.09/365)). The other lower bounds in the table are taken from Vanmaele
et al. [27]. It can be seen that the optimal ¢ for LBgl) is t = 91 for all considered strikes and
hence there is no improvement of the bound by assuming that S; and 15>} are non-negatively
correlated. Surprisingly the performance of the model-independent L.B; is nearly as good as
LBBr (which is the bound of [27] obtained by conditioning on the value at the maturity date of
the Brownian motion governing the asset price process) and LB§2) is even tighter than LBB7.
MC denotes the Monte Carlo approximation of the actual model price and is almost identical to
LBG 4, which is the best bound given in [27] and obtained by conditioning on the standardized
logarithm of the geometric average. One can see that although LB§2) is not designed to lead to
tight bounds in this case, it still yields quite satisfying results.

Tables 3 & 4 compare the lower bounds for a Black-Scholes model and Asian option with monthly
averaging and maturity 7' = 3 and T" = 10 years, respectively with those of other approaches
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(taken from Nielsen & Sandmann [22] and called Ni & Sa) and the parameters are given in the
figures. GA refers to the price of a geometric Asian option with the same strike (which is always
a lower bound and can be computed easily in the Black-Scholes model, see Vorst [30]). Moreover,
MC is the Monte Carlo price of the AC and UCB refers to the comonotonic upper bound which
gives a model-independent upper bound. Note that, again, the bound Ni & Sa crucially relies on
the structure of the Black-Scholes model. The performance of LB§2) seems satisfying again (and
the difference to the actual price is less than for the model-independent upper bound UCB).
Tables 5 and 6 compare the bounds of this paper for various maturities for the Heston model

dS/S = rdt+vdW,
dv = k(0 —v(t)) dt + o,V dWs,

with vg = 0.0175, x = 1.5768, 6 = 0.0398, o, = 0.5751 and for the correlation between the
Brownian motions W; and W5 we choose p = —0.5711. Although it is a priori not clear whether
assumptions (7) and (11), respectively, are fulfilled in the Heston model, numerical experiments
give strong indications that both of them are met, at least for this parameter set.

Tables 7 and 8 compare the different bounds for a Variance Gamma model, where the charac-
teristic function of In(St) is given by

—T/v
or(u) =exp (In(Sy) + (r +w)T) (1 —ibvu + %O‘QV’U) )

withw =11In (1 - 6v — 10%v) ~Tiv (see Madan et al. [21]). The parameters used are o = 0.2684,
v =1.1737, 0 = —0.1280.

The values show that the relative errors of the bounds are comparable to the ones of the Black-
Scholes model. The prices for the plain vanillas and needed contingent claims were in this case
obtained by the Fast Fourier Transform approach of Carr & Madan [7].

Note that the lower bounds are sharper if the averaging starts at a later point during the lifetime
of the option (forward-start options). At the same time, the performance of the bounds gets
weaker if the number of averaging days increases.

Finally, we consider an illustration of the bound of Section 3, where only a finite number of option
prices is available in the market (which is a main field of application of the bounds developed in
this paper). Table 9 shows the bounds for an Asian option on the S&P 500 index with monthly
averaging, maturity 7' = 1 year and Sy = 1124.47. The bounds are based on the 77 European call
prices available on April 18, 2002 (see Schoutens [24]). LB; provides the lower bound solely based
on no-arbitrage. If there is evidence to believe that assumptions (7), (11) (or assumptions (16),
(17)) hold, then the bounds LB LB® apply respectively. The columns in the table give LBgl)
for all averaging days t. As can be seen from the table, for LB(Y) the best lower bound (bold-
faced in the table) is achieved for ¢ = 5, while for LB® it is achieved for either t = 5 or t = 8.
Finally, the three columns on the right give Monte Carlo estimates for the actual AC price based
on a model specification (Black Scholes, Variance Gamma and Heston model) and calibration of
each model to the available call prices using a least-square approach (see [24]). Especially when
the option is not far out of the money, the lower bounds seem to be quite satisfying, keeping in
mind that these bounds are model-independent and purely based on quoted European call prices.
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time to maturity 120 days
o strike || trivial LB, LB ¢+ | LBBr LB t | LBGA MC
0.2 80 21.9755 | 21.9934 | 21.9934 1 | 21.9948 | 21.9947 4 | 22.0026 || 22.00271
90 12.2671 | 12.6771 | 12.6771 1 | 12.6918 | 12.725 13 | 12.7601 || 12.76012
100 2.5586 | 5.3285 | 5.3285 1 | 5.3650 | 5.4633 15 | 5.5217 || 5.521652
110 0 1.4860 | 1.4860 1 | 1.5183 | 1.6069 16 | 1.6528 || 1.652697
03 80 21.9755 | 22.2384 | 22.2384 1 | 22.2502 | 22.2667 9 | 22.3097 || 22.30976
90 12.2671 | 13.7284 | 13.7284 1 | 13.7636 | 13.8464 13 | 13.9246 || 13.92461
100 2.5586 | 7.2401 | 7.2401 1 | 7.2957 | 7.4390 14 | 7.5347 || 7.534506
110 0 3.2339 | 3.2339 1 | 3.280 | 3.4338 15 | 3.5175 || 3.517352
04 80 21.9755 | 22.866 | 22.866 1 | 22.8945 | 22.9452 11 | 23.0348 || 23.03488
90 12.2671 | 15.1176 | 15.1176 1 | 15.1727 | 15.2998 13 | 15.4238 || 15.42367
100 2.5586 | 9.1699 | 9.1699 1 | 9.2444 | 9.4277 14 | 9.5641 || 9.563843
110 0 5.1232 | 5.1232 1 | 5.1997 | 5.3924 15 | 5.5176 || 5.517215

Table 2: Lower bounds in [27] vs. lower bounds in this paper for an Asian call with Sy = 100
and averaging days t; = 91,f2 =92...,t30 = 120

time to maturity 10 years

strike || trivial LB, LBV t GA LB t | Ni& Sa MC UCB

60 42.3382 | 42.3382 | 42.3585 30 | 38.4767 | 42.3382 1 | 42.8949 || 42.9428 || 43.4824
70 35.635 35.635 | 35.7897 33 | 32.7909 | 35.9635 43 | 37.0393 || 37.0906 || 37.9911
80 28.9318 | 28.9318 | 29.5498 35 | 27.6674 | 30.3629 53 | 31.7404 || 31.7916 || 33.0538
100 15.5254 | 15.5285 18.992 39 | 19.2427 | 21.3014 65 | 22.9595 || 23.0116 || 24.8433
110 8.8222 8.9639 14.914 41 | 15.9132 | 17.7675 68 | 19.4444 || 19.4942 || 21.5084
120 2.1190 3.5560 11.618 43 | 13.1114 | 14.8071 71 | 16.4497 || 16.4999 || 18.6246
130 0 0.8042 9.0092 44 | 10.7756 | 12.3422 73 | 13.9148 || 13.9705 || 16.1398
140 0 0.0963 6.9745 46 | 8.8413 | 10.2976 75 | 11.7776 || 11.8417 || 14.0029
150 0 0.0063 5.4005 47 | 7.2469 8.6047 77 | 9.9796 10.0514 || 12.1666
160 0 0.0002 4.1890 48 | 5.9369 7.2044 78 8.468 8.5427 10.5993
180 0 ~ 1077 2.5437 50 | 3.9834 5.0852 80 | 6.1275 6.2062 8.0615
200 0 ~ 1071 1.5698 52 2.676 3.6264 82 | 4.4662 4.5457 6.182

Table 3: Lower bounds of Vorst and Nielsen & Sandmann vs. lower bound in this paper for an

Asian call for volatility ¢ = 0.25, r = 0.04, Sp = 100 and monthly averaging

time to maturity 3 years

strike || trivial LB, LBV t GA LB t | Ni&Sa MC UCB

60 41.1749 41.1749 41.1751 9 39.7469 41.1749 1 41.2278 41.2315 41.3456
70 32.3057 | 32.3057 | 32.3225 10 | 31.2566 | 32.8057 1 | 32.6569 || 32.6621 || 33.0345
80 23.4365 | 23.4365 | 23.6676 11 | 23.4654 | 24.0987 17 | 24.7471 || 24.754 || 25.5085
100 5.69807 | 6.4074 9.603 12 | 11.4543 | 11.6059 22 | 12.4743 || 12.4799 || 13.854
110 0 1.4616 | 5.3378 13 | 7.4996 | 7.5681 23 | 8.383 8.3887 || 9.8328
120 0 0.1444 | 2.7642 13 | 4.7399 4.782 24 | 5.4825 5.4897 || 6.8529
130 0 0.0063 | 1.3601 14 | 2.9064 2.952 24 | 3.5097 3.5187 4.709

140 0 0.0001 0.6454 14 1.7355 1.7893 24 2.2082 2.2153 3.1997
150 0 ~107% | 0.2092 15 | 1.0131 | 1.0726 25 | 1.3703 1.3787 || 2.1548
160 0 ~107% | 0.1872 15 | 0.5808 | 0.6375 25 | 0.8417 0.8507 || 1.4413
180 0 ~ 10713 | 0.0285 16 | 0.1843 | 0.2226 26 | 0.3125 0.3196 || 0.6373
200 0 0 0.006 16 | 0.0573 | 0.0778 26 | 0.1159 0.1214 || 0.2811

Table 4: Lower bounds of Vorst and Nielsen & Sandmann vs. lower bound in this paper for an
Asian call for volatility o = 0.25, interest rate r = 0.04, Sy = 100 and monthly averaging
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time to maturity 120 days
strike || trivial LB, LB ¢ | LB® t MC
80 21.9755 | 22.0819 | 22.0319 1 | 22.0432 8 | 22.1182
90 12.2671 | 12.6074 | 12.6074 1 | 12.7385 17 | 12.7385
100 2.5586 | 4.2677 | 4.2677 1 | 4.3735 18 | 4.4503
110 0 0.3219 | 03219 1 | 0.3728 17 | 0.3964

Table 5: Lower bounds in this paper for an Asian call in the Heston model with » = In(1 +
0.09/365), So = 100 and averaging days ¢t; = 91,t3 = 92...,t30 = 120. MC simulation: 10.000

iterations

time to maturity 10 years

strike || trivial LB, LBV t LB t MC

60 42.0529 | 42.0520 | 42.1551 27 | 42.2450 34 || 42.5627
70 34.6447 | 34.6447 | 34.9642 32 | 35.4483 47 || 35.7649
80 27.2365 | 27.2365 | 27.9825 35 | 28.8769 56 || 29.3738
90 19.8283 | 19.8285 | 21.3838 39 | 22.9370 65 || 23.5116
100 12.4201 | 12.4272 | 15.3951 42 | 17.5832 72 || 18.3161
110 5.01196 | 5.2108 | 10.2893 45 | 13.0323 77 || 13.8686
120 0 0.3465 | 6.3135 48 | 9.3466 82 || 10.1925
130 0 0..0009 | 3.5602 50 | 6.5047 85 || 7.2785
140 0 ~107% | 1.8819 52 | 4.44041 87 || 5.08126
150 0 ~107% | 0.9637 53 | 2.9128 89 || 3.4924

Table 6: Lower bounds in this paper for an Asian call under the Heston model with » = 0.03,

So = 100 and monthly averaging. MC simulation: 10.000 iterations

time to maturity 120 days
strike || trivial LB, B ¢+ | 1B® t MC
80 21.9755 | 22.7409 | 22.7409 1 | 22.7788 10 | 22.9693
90 12.2671 | 13.8060 | 13.8060 1 | 13.9086 14 | 14.0586
100 2.5586 | 5.6593 | 5.6593 1 | 5.9080 20 | 6.0311
110 0 1.4063 | 1.4063 1 | 1.5562 19 | 1.6146

Table 7: Lower bounds in this paper for an Asian call in the Variance Gamma model with interest
rate r = In(1 4+ 0.09/365), Sp = 100 and averaging days t; = 91,t3 = 92...,t30 = 120. MC

simulation: 10.000 iterations

time to maturity 10 years

strike || trivial LB, LBV t LB t MC

60 42.0520 | 42.0737 | 42.6735 67 | 42.6644 34 || 44.5242
70 34.6447 | 34.6935 | 35.5534 29 | 36.3172 46 || 38.4817
80 27.2365 | 27.3393 | 29.1556 33 | 30.6444 54 || 33.0227
90 19.8283 | 20.0333 | 23.3909 37 | 25.6772 61 || 28.1534
100 12.4201 | 12.8175 | 18.3860 40 | 21.4012 66 || 23.8859
110 5.01196 | 5.7925 | 14.1998 43 | 17.7698 70 || 20.1845
120 0 0.6096 | 10.8219 45 | 14.7195 73 || 17.0249
130 0 0.2557 | 8.1788 47 | 12.1783 76 | 14.3239
140 0 0.1315 | 6.1618 49 | 10.0757 78 || 12.0429
150 0 0.0743 | 4.6493 50 | 8.3415 80 || 10.1395

Table 8: Lower bounds in this paper for an Asian call under the Variance Gamma model with

r = 0.03, Sp = 100 and monthly averaging. MC simulation: 10.000 iterations

24




51é

time to maturity 1 year

strike || trivial LB, LBl LB LB{ LB{}) LB LB LBY LB BS & Hest
1000 || 127.846 | 127.846 | 127.846 | 129.85 | 127.846 | 127.846 || 124.443 | 130.31 | 124.191 | 79.7406 || 134.433 | 140.1680 | 138.9464
1050 || 78.1947 | 78.1947 | 84.5217 | 88.021 | 83.6685 | 78.1947 || 83.9806 | 87.1558 | 87.4464 | 66.3315 || 95.1107 | 100.0934 | 98.8784
1100 || 28.5435 | 37.7177 | 44.5938 | 50.1769 | 44.4893 | 31.7518 || 44.7912 | 52.6707 | 52.7307 | 47.364 || 64.9239 | 64.8947 | 63.8541
1150 0 10.3623 | 17.8382 | 22.206 | 16.6089 | 4.46463 || 18.3689 | 25.6062 | 26.6335 | 24.1314 || 39.7619 | 36.5324 | 36.0124
1200 0 0 3.75691 | 7.17759 | 3.32482 0 4.4824 | 10.1533 | 9.9608 | 7.00065 || 23.0376 | 17.4360 | 16.7947
1250 0 0 0 0 0 0 0 0.476165 | 3.13161 | 1.55609 || 12.6378 8.1695 6.2069

Table 9: Lower bounds for Asian calls solely based on traded calls (maturity 7' = 1 year, monthly averaging) on the S&P




