
 

Functional 
Ecology

 

 2004 

 

18

 

, 563–570

 

© 2004 British 
Ecological Society

 

563

 

Blackwell Publishing, Ltd.

 

Delayed costs of growth and compensatory growth rates

 

J. M. YEARSLEY,†‡ I. KYRIAZAKIS§ and I. J. GORDON*‡

 

‡

 

The Macaulay Institute, Craigiebuckler, Aberdeen AB15 8QH, UK, and 

 

§

 

Animal Nutrition and Health Department, 
Scottish Agricultural College, West Mains Road, Edinburgh EH9 3JG, UK 

 

Summary

1.

 

Many studies recognize that growth carries with it a mortality risk that can influence
an animal’s growth rate.

 

2.

 

Data suggest that these costs of growth act over a range of time-scales, from instan-
taneous to an animal’s lifetime.

 

3.

 

Models of adaptive growth rate have not addressed the issue of differing time-scales
over which the costs of growth act. Here, we develop an adaptive growth model in
which the costs of growth are delayed for a period of time, to assess optimal growth
strategies in relation to delays in growth costs.

 

4.

 

The optimal growth rates are calculated assuming one of  two possible fitness
measures: the reproductive rate, 

 

R

 

0

 

 and the intrinsic population growth rate, 

 

r

 

.

 

5.

 

It is shown that if  the costs of  growth are felt only after maturity, then growth
compensation can be an adaptive strategy, even in an unchanging environment.

 

6.

 

Compensatory growth is predicted only when 

 

R

 

0

 

 is the relevant fitness measure,
implying that this mechanism of compensatory growth is sensitive to the processes of
population regulation.

 

7.

 

The effect of time-delayed costs for other life-history problems is discussed in light
of these results.
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Introduction

 

Theoretical predictions of maximal growth rate do not
fit empirical data (Arendt 1997). Case (1978) reviewed
evidence, in terrestrial vertebrates, for the idea that an
animal need not grow at its physiological maximum
rate, but may instead show submaximal growth rates,
and suggested that submaximal growth rates could be
adaptive. Nowadays evidence exists, over a wide range
of taxa, in support of this view (for a review see Arendt
1997). A submaximal growth strategy may be rigid, in
which case related individuals will have similar growth
irrespective of environmental conditions; alternatively,
a submaximal growth strategy may be plastic, allowing
variation in the growth rate in response to an individual’s
environment or internal state. Evidence for growth
rate plasticity exists for a range of taxa, especially in
insects (for a review see Nylin & Gotthard 1998; and
references therein). In fact, growth rate plasticity is
common enough for Abrams 

 

et al

 

. (1996) to have made
the statement that they knew of ‘no study in which

growth plasticity has been investigated and proven to
be absent’.

Submaximal growth rates appear to be adaptive
from the perspective of life-history theory (Stearns
1992), provided that growth incurs a fitness cost as well
as a benefit. Case (1978) perceived the cost of increased
growth rate to be a mortality associated with the
increase in resource acquisition effort. Evidence for
resource acquisition costs, such as predation risk, have
since been found (for reviews see Lima & Dill 1990;
Lima 1998) and constitute an immediate cost of growth.
Other costs of growth rate have also been suggested
(Arendt 1997; Mangel & Stamps 2001), including
trade-offs between: growth and somatic development,
growth and immune response, growth and resistance
to environmental stressors, and growth and competi-
tive ability. In addition to these costs of growth rate,
other growth costs exist in which growth rate does not
play a role. For example, predation risk can be greater
for individuals with large body sizes, and this cost
need not depend upon the rate at which the individual
approached its present size. These additional growth
costs can be directly related to either body size
(Blanckenhorn 2000) or development time (Stearns
1992; Bernardo 1993).

The growth costs listed above will have an effect over
a range of time-scales (Metcalfe & Monaghan 2001).
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For example, when the cost of growth is predation, no
time-delay would be expected between the cost being
incurred and its effect being felt; however, if  the growth
cost is associated with somatic development then
there may be a long time-delay until this cost is fully
manifest. Delayed life-history costs are increasingly
being recognized as an important demographic factor
(Beckerman 

 

et al

 

. 2002), and a number of  recent
studies are emphasizing the delayed costs of poor foetal
and neonatal nutrition (e.g. Blount 

 

et al

 

. 2003; Ozanne
& Hales 2004).

This paper describes an optimality model which
incorporates a time-delay in the cost of growth. The
model is used to examine the effect of this delayed cost
upon an individual’s growth strategy and the response
of this growth strategy to changes in the environment.
In particular, the model re-examines the adaptive
explanations for compensatory growth (Sibly, Calow
& Nichols 1985). Compensatory (or ‘catch-up’) growth
is a commonly observed flexible growth strategy.
Experimental studies, mainly from animal science,
show that 

 

ad-libitum

 

 access to food after a period of
growth limitation can result in abnormally rapid growth
relative to age (Wilson & Osbourn 1960; Donovan 1984;
Ryan 1990; Metcalfe & Monaghan 2001). The mech-
anisms underlying compensatory growth are poorly
understood, but several suggestions have been made
(Wilson & Osbourn 1960; Sibly 

 

et al

 

. 1985; Broekhuizen

 

et al

 

. 1994). In view of  the ideas on submaximal
growth, one hypothesis was that growth compensation
is an adaptive response. However, theoretical studies
of simple adaptive models have concluded (Sibly 

 

et al

 

.
1985; Sibly & Calow 1986) that compensatory growth
is unlikely to be an adaptive strategy without the envi-
ronment changing over time (e.g. decreasing available
resources, increasing mortality risk with time, or cer-
tain environmental conditions being better than others
for reproduction). Recently, the suggestion that com-
pensation may be adaptive has re-emerged in relation
to delayed life-history effects (Metcalfe & Monaghan
2001). Compensatory growth is of general ecological
interest because growth limitation can occur whenever
there is a severe reduction in the availability of a resource
to a growing animal (e.g. poor maternal condition,
changes in temperature, seasonal changes in food
availability, increased competition), suggesting that
under natural conditions animals are frequently grow-
ing at submaximal rates. Here we investigate the
conditions under which a time-delay in growth costs
is expected to produce adaptive compensatory growth
even in an unchanging environment.

 

The model

 

A life-history model was developed to look at the
adaptive changes in an animal’s growth rate assuming
that growth incurs a fitness cost. The model is not
intended to reproduce the detailed form of an animal’s
growth curve, but rather to explore the adaptive growth

rate. For the purposes of  this paper the growth curve
is considered as linear, although the qualitative results
are unchanged for other two parameter growth curves.
A schematic of a model animal’s life history is shown
in Fig. 1. An animal is assumed to have reached sexual
maturity when its body size is 

 

M

 

m

 

, and the time taken
to reach maturity is 

 

t

 

m

 

. The fecundity per unit time for
a mature animal is a constant, 

 

F

 

. The life cycle of an
animal starts with an initial period of growth, which
lasts until time 

 

t

 

i

 

. This is followed by a period of
growth limitation, which lasts for a time 

 

t

 

L

 

, during
which body size remains constant. After this period of
limitation the animal has still to grow by 

 

∆

 

M

 

 before it
reaches maturity. To achieve this, the animal continues
to grow at a rate 

 

g

 

2

 

. Growth is unlimited in this period,
and 

 

g

 

2

 

 is a variable whose optimal value is to be deter-
mined. For a linear growth curve the growth rate is
related to the maturation time by the equation 

 

g

 

2

 

 =

 

∆

 

M/

 

(

 

t

 

m

 

 

 

– t

 

i

 

 

 

– t

 

L

 

).
Growth is assumed to carry a mortality cost. The

mortality rate at time 

 

t

 

 due to growth is written as 

 

µ

 

g

 

(

 

t

 

).
All costs associated with growth are felt after a time-
delay of 

 

t

 

d

 

, and all costs of growth are a function of
growth rate raised to the power of 

 

n

 

 (where 

 

n >

 

 1 so
that doubling the growth rate more than doubles the
cost). One mechanism that links growth rate to
mortality is considered in detail. It is assumed that
the mortality rate at time 

 

t

 

 + 

 

t

 

d

 

 is proportional to the
accumulated growth cost up to time 

 

t

 

. This type of
mortality is plausible for the gradual build-up of growth-
related costs, such as developmental errors, or cell
damage. This form of mortality can be expressed
mathematically as:

where 

 

σ

 

 is a constant of proportionality giving the
mortality rate when the growth rate is unity. In addition

Fig. 1. The life history of a model animal described in the
main text. The mature body size of an animal is fixed at Mm,
while the growth rate g2 is free to be varied. The time-delay,
td, in the costs of growth is represented as being greater than
the maturation time (td > tm), but any time-delay can be
considered. In this diagram, growth is represented as being
linear, but any two parameter growth curves could be used.

µ σg d(   )   ( )t t g t dt
t

n+ = ′ ′
0

�
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to the mortality due to growth there is an extrinsic
mortality rate of 

 

µ

 

j

 

 and 

 

µ

 

m

 

 for juvenile and mature
individuals, respectively.

The net reproductive value (Charlesworth 1980), 

 

R

 

(also known as the reproductive value at birth), of an
animal in a large population of identical individuals
can be written as:

where 

 

r

 

 is the intrinsic growth rate of the population
and 

 

S

 

(

 

t

 

) is the probability that an animal survives until
time 

 

t

 

. For 

 

t > t

 

m

 

, the function 

 

S

 

(

 

t

 

) can be written as:

If  the population size is stable, so that 

 

r

 

 = 0, then 

 

R

 

 is
the net reproductive rate, commonly written as 

 

R

 

0

 

. If  

 

R

 

is set to unity then equation 2 can be numerically
solved to give the intrinsic population growth rate, 

 

r

 

(Charlesworth 1980).
Both 

 

R

 

0

 

 and 

 

r

 

 are two commonly used measures of
fitness out of a whole family of possibilities (Mylius &
Dickmann 1995; Benton & Grant 2000; Brommer
2000; de Valpine 2000). To examine the model for
different mechanisms of population regulation, both
these proxies for fitness were considered (Mylius &
Dickmann 1995; Benton & Grant 2000; Brommer
2000). The suitability of each fitness measure depends
upon the properties of the population (Koz

 

l

 

owski
1999), and especially on the action of density depend-
ence in the population (Mylius & Dickmann 1995).
For example, if  density dependence affects only the
juvenile survival probability then 

 

R

 

0

 

 is an appropriate
fitness measure, while if  density dependence affects
the mortality rate of  all age-classes equally then 

 

r

 

 is
an appropriate fitness measure. The choice of fitness
measure becomes more complicated when a model
considers phenotypic plasticity. Firstly, the underlying
genetics of the phenotypic plasticity are important in
determining the evolution of phenotypic plasticity
(Falconer 1952; Via & Lande 1985; de Jong & Bijima
2002). Phenotypic plasticity is the expression of dif-
ferent phenotypic traits in different environments, and
the genetic correlation between these traits is import-
ant in determining the selection gradient on a trait
(Via & Lande 1985; de Jong & Bijima 2002). In the
extreme case when there is no correlation between traits
selection will operate independently on each trait. In
general, fitness cannot be defined separately for each
environment in which an animal finds itself  (Houston
& McNamara 1992; Koz

 

l

 

owski 1992; Kawecki & Stearns
1993). Instead, all environments must be considered
at the same time. However, for the model considered
in this paper, the phenotypic response of  a parent
does not influence the state of  its offspring, and in
this special case phenotypic plasticity can be studied

by considering each habitat individually (Houston &
McNamara 1992). The optimal growth strategy is
the value of 

 

g

 

2

 

 that maximizes our chosen measure of
fitness, either 

 

R

 

0

 

 or 

 

r

 

. The numerical solutions to the
model were calculated using the optimization routines
in Matlab (The Mathworks Inc., Natick, MA, USA).
The model was analysed by first calculating the opti-
mal growth rate with no growth limitation, so that

 

t

 

i

 

 = 0,

 

 t

 

L

 

 = 0. Compensatory growth was then investi-
gated by allowing an initial period of growth at the
optimal rate for no limitation, followed by a period of
growth limitation which lasts for a time 

 

t

 

L

 

. The optimal
growth rate, 

 

g

 

2

 

, after this limitation period was then
calculated. This scenario is depicted in Fig. 1, and a
summary of the model’s parameters and their default
values is given in Table 1.

 

Results

 

 

 

R

 



 

    

 

The effect of an increasing time-delay in the cost of
growth is shown in Fig. 2. A discontinuity in behaviour
occurs when the time-delay is equal to the optimal
maturation time (

 

t

 

d

 

 = 

 

t

 

m

 

). For time-delays that exceed
the optimal maturation time, the effect of increasing
the delay is to weaken the selective strength of the
growth costs, producing an increase in the optimal
growth rate. Other models of growth costs (discussed
later in this section) were explored, and this result was
found to be a robust feature of all models. For time-
delays that are less than the optimal maturation time,
the behaviour of the model is to decrease optimal
growth rate as the time-delay increases. Even for

 

t

 

d

 

 

 

< t

 

m

 

, there is still a tendency for increasing 

 

t

 

d

 

 to
weaken the selection strength on growth rate; however,
there is an opposing mechanism because the growth
costs are felt both before and after maturation. As

 

t

 

d

 

 increases, fewer of the growth costs are felt before

R FS t e dt
t

rt   ( )=
∞

−

m

�

ln{ ( )}     (   )   ( )S t t t t t dt
t

t

= + − + ′ ′µ µ µj m m m g

d

�

Table 1. The default parameters used for the numerical runs
of the model. Unless otherwise stated all numerical runs used
these parameter values. These default values give an optimal
growth strategy of tm = 1·58, g2 = 0·65 when R0 is the fitness
measure and tm = 1·07, g2 = 0·99 when r is the fitness measure
(figures quoted to two decimal places). The fecundity, F, was
chosen so that the population’s intrinsic growth rate, r, was
small but positive (r ≈ 0·04) for the default parameters.
Changing F had no qualitative effect on our results
 

Parameter Value

Duration of growth before limitation, ti 0·5
Duration of growth limitation, tL 0·0
Time-delay of growth costs, td 0·0
Mortality rate of juvenile individuals, µj –ln(0·9)
Mortality rate of mature individuals, µm –ln(0·9)
Mortality rate due to unit growth rate, σ 0·1
Exponent linking growth rate and cost, n 1·5
Fecundity, F 0·3
Mature body size, MM 1
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maturation. This has the same effect as decreasing the
juvenile mortality and increasing the adult mortality,
which acts so as to decrease the optimal growth rate.
For our model this second mechanism dominates,
leading to a minor decrease in optimal growth rate as
the time-delay increases. Unlike the model’s behaviour
for large time-delays, this behaviour is not robust, so
that different models of growth costs can easily change
the balance between the two selective forces. As the
initial period of growth, ti, is increased, and growth
limitation is considered, further discontinuities in the
optimal growth rate are seen for td ≤ tm. However, the
discontinuity at td = tm is a robust feature of this and
other models.

The sensitivity of the growth rate to changes in all
the parameters is shown in Table 2. Each sensitivity
is the slope of the relationship between a parameter and
the optimal growth rate, g2. As the time-delay increases,
the sensitivity of g2 to all parameters generally increases.
This is in keeping with the idea discussed above, where
the strength of selection decreases as the costs of
growth move towards later ages in an animal’s life his-
tory. The sensitivity of the optimal growth rate to F can
be used to assess the effect of changing F, provided
that F is not functionally related to the growth strategy.
Making F a function of the growth rate changes the
trade-offs in our life-history model, and would require
a reanalysis of the model. The problems associated
with this are raised in the discussion where an adaptive
mature body size is considered.

The effect of a period of growth limitation is shown
in Figs 3 and 4, and by the sensitivity of g2 to changes
in tL in Table 2. The ratio of optimal growth rates with
and without limitation is used as a measure of com-
pensatory growth. A ratio greater than 1 indicates a
compensatory growth response, while a ratio less than

1 indicates that growth rate decreases following a
period of limitation. When the time-delay is less than
the optimal maturation time, growth compensation is
never predicted. For these short time-delays the opti-
mal growth rate is independent of  the period of growth
limitation, which is shown in Fig. 3 by the horizontal
dotted line and in Table 2 by the zero sensitivity of g2

to tL when td = 0. For time-delays greater than the
optimal maturation time, the model predicts compen-
satory growth. As the period of limitation increases the
compensatory growth response becomes stronger. Even

Fig. 2. The optimal growth rate as a function of the time-
delay in the costs of growth. The solid and dashed lines use R0

and r as fitness measures, respectively. The discontinuities
occur when tm = td. To the left of this discontinuity tm > td,
while to the right of this discontinuity tm < td. For these
results there was no growth limitation (tL = 0) and the initial
period of growth was set to zero (ti = 0).

Table 2. Sensitivity of the optimal growth rate, g2, to each
parameter using both R0 and r as the fitness measure and for
two values of  time-delay, td = 0, 3 (all values are quoted to
two decimal places). Each sensitivity is the slope of the
relationship between the parameter in the first column and
the growth rate. Growth compensation in response to an
increasing duration of growth limitation occurs when td > tm

under a fitness measure of R0 (shown in bold). The optimal
growth strategy when td = 3 is g2 = 0·74, tm = 1·41 for a fitness
measure of R0 and g2 = 1·33, tm = 0·83 for a fitness measure of
r (i.e. td > tm in both cases)
 

Parameter

Fitness measure 
is R0

Fitness measure 
is r

td = 0 td = 3 td = 0 td = 3

µj 4·34 5·12 2·89 4·45
µm 3·45 5·27 −2·89 −4·45
σ −2·08 −0·53 −9·63 −12·37
n −1·40 −2·10 −1·64 −3·48
td 0·00 0·10 0·00 0·38
tL 0·00 0·03 –0·20 −0·37
ti 0·13 0·18 0·18 0·27
F 0·00 0·00 4·82 10·75
Mm 0·39 0·77 −0·58 −0·70

 

 

Fig. 3. Growth compensation for three time-delays as the
period of growth limitation is increased (fitness measure is
R0). Growth compensation is measured as the ratio of optimal
growth rates with and without limitation (compensatory
growth produces a ratio greater than 1). For all time-delays
less than the optimal maturation time (td < tm) no growth
compensation occurs. Growth compensation becomes stronger
as the limitation becomes more severe and as the time-delay
increases.
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large time-delays, where the costs of growth occur late
in an animal’s life history, have an impact upon the
adaptive pattern of its growth. Compensatory growth
also increases as the time-delay increases. The predic-
tion of compensatory growth when td > tm seems to be
a robust prediction which can be reproduced for
several other models of growth costs. For example,
changing the function linking growth rate to cost
conserves the qualitative properties of the model pro-
vided that there is sufficient acceleration of damage
with increasing growth rate. Letting the growth cost
be a function of the maximum past growth rate also
predicts adaptive compensatory growth.

Growth limitation can occur at any point during an
animal’s development. The effect of a growth limitation
at different stages of development was investigated by
varying ti (Fig. 4). Increasing ti has two direct effects.
Firstly, it means that the animal is larger, and therefore
closer to maturity when the growth limitation occurs
(i.e. a smaller ∆M ). Secondly, it means that the accu-
mulated growth cost is larger when limitation occurs.

The plastic response to delaying growth limitation
until later in an animal’s development is a stronger
growth compensation response (provided that the time-
delay exceeds the maturation time). From Fig. 4 it is
unclear whether this response is related to the effect
of ti on ∆M or its effect on the accumulated growth
cost at limitation. Further simulations (not presented)
which varied Mm while keeping ti constant showed
that decreasing Mm on its own (which decreases ∆M )
decreased the compensatory growth response. This
shows that it is the accumulated growth cost that is
responsible for the behaviour shown in Fig. 4. Fur-
thermore, decreasing Mm is equivalent to varying the
initial size of an animal at t = 0. The model predicts
that increasing Mm will increase optimal growth rate,
so that animals that are initially small will grow faster,

and the variance in body size will decrease as a cohort
of equally aged animals develops.

Finally we investigated the effect of including two
time-scales in the model. Growth costs were assumed
to have both an immediate and a delayed effect, with
both having the same mortality rate (changing the
relative importance of  the two time-scales had no
qualitative effect). The effect of adding an immediate
growth cost was to increase the optimal growth rate, in
accordance with other life-history models of adaptive
growth (Stearns 1992). In response to a period of growth
limitation, catch-up growth was still found to be
adaptive even in the presence of an immediate growth
cost, but the strength of the compensation was slightly
reduced.

 r     

In order to gauge the importance of the fitness measure
upon the results of the model, the intrinsic population
growth rate, r, was also used as a proxy for fitness.
Results are expected to differ from those where R0 is
used, but will the qualitative results remain?

The sensitivity of the optimal growth rate to all
parameters for fitness measures of both R0 and r are
shown in Table 2. Comparing the signs and relative
magnitudes of  the sensitivities for the two fitness
measures shows many similarities. The response of the
optimal growth rate to changes in the time-delay for
both fitness measures is shown in Fig. 2. The same
qualitative behaviour emerges; large time-delays allow
the optimal growth rate to increase, but there is a dis-
continuity when the time-delay is equal to the matura-
tion time. For time-delays shorter than the maturation
time, growth rate decreased with increasing td. How-
ever, the behaviour for td < tm is not robust to changes
in the model linking growth rate to the growth costs.
Changing the fitness measure from R0 to r preserves
many of the qualitative properties of the model.

Differences between the results for the two fitness
measures are seen with the parameters µm, σ, ti, F and
Mm. Importantly, when r is the fitness measure, the
effect of increasing the period of growth limitation is to
decrease the optimal growth rate. So the prediction of
compensatory growth is not robust to changes in the
fitness measure. The decrease in optimal growth rate
with increasing limitation becomes more pronounced
as td increases, showing that a time-delay selects for
a subnormal growth rate following limitation. The
optimal intrinsic population growth rate was varied by
changing the fecundity parameter F, but this had no
qualitative effect upon our results.

Discussion

The results of the growth model have an intuitive
explanation. The simplest result from the model is that
the greater the time-delay of a cost, the less important
it is in regulating an animal’s optimal growth rate. This

Fig. 4. Compensatory growth as a function of the time at
which limitation starts (fitness measure is R0). The time at
which growth limitation starts, ti, can be reinterpreted as a
change in ∆M, and this is shown on the upper axis. The
duration of the growth limitation is fixed at tL = 0·5 and the
time-delay in the growth costs is td = 3.
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is apparent in both the increase in the optimal growth
rate, and the increase in the sensitivity of the adaptive
growth rate as td increases. This result is not surprising,
since it bears many similarities to current theories of
ageing, where the later in life a cost is felt, the weaker
is the selective force associated with the cost (Rose
1991). A more surprising result from the model is that
a time-delay in the cost of growth can produce com-
pensatory growth as an adaptive response to growth
limitation. Sibly et al. (1985) point out that an adap-
tive strategy is determined by an animal’s present state
and its reproductive future, not its past. This argument
suggests that compensatory growth cannot generally
be an adaptive response because when growth limita-
tion is removed, the period of limitation is in the past.
For compensatory growth to be adaptive it has been
argued that the environment must be time-dependent
(Sibly et al. 1985; Sibly & Calow 1986; Ludwig & Rowe
1990; Rowe & Ludwig 1991; Abrams et al. 1996), such
as a seasonal variation in breeding success (Abrams
et al. 1996). Objections may be raised against this
argument: the state of an animal may be changed by
growth limitation, some fitness measures do not allow
past and future to be simply split (e.g. intrinsic popu-
lation growth rate, r), the past state of an organism
may have implications for its reproductive future.

This last objection is relevant for a time-delayed cost
of growth. The effect of a time-delay is to move the
growth costs, which were incurred before and during
the period of limitation, into an animal’s reproductive
future. This allows a period of growth limitation to
have implications for the animal’s reproductive future,
which in turn permits an adaptive compensatory growth
response. This mechanism appears to be fairly robust
to changes in the model’s formulation, although it is
not expected to be completely general. An example of
the model’s robustness is seen with the assumption that
the initial growth rate is the optimal growth rate with
no limitation (which is plausible if  growth limitation is
a rare and unexpected event). However, the qualitative
results of the model hold for any initial growth rate,
provided that growth is not complete before the onset
of limitation and that the initial growth rate is the same
for all growth limitation scenarios (i.e. an individual
cannot predict how its growth limitation will differ
from the rest of the population). So if  growth limita-
tion were a regular occurrence then the initial growth
rate may depend upon the expected growth limitation,
but the qualitative results of this model will not be
affected.

The robustness of our result suggests that time-delayed
costs will have broad implications for life-history theory.
We suggest that any adaptive trait that is constrained
for a limited period can produce an adaptive response
once the constraint is removed, provided that the costs
associated with the trait have a delayed effect. Delayed
costs, such as maternal effects, may have more implica-
tions than just their cost, since they may also entail
adaptive changes in life histories. Adaptive responses

to delayed costs would increase the diversity of life his-
tories within a population. The dependence of this var-
iation upon factors such as the typical time-scale of the
delay, or the severity and frequency of the cost within
the population should be goals for future research.

The compensatory growth predicted by our model
was not robust to the measure of fitness, but the reason
for this is not intuitively obvious. When the fitness
measure is R0, growth limitation moves an animal
closer to its future growth costs without any reproduc-
tive benefit, and this favours an increase in growth rate.
The same adaptive pressure also exists when the fitness
measure is intrinsic population growth rate, r, but in
this case there is a second factor to consider. A period
of growth limitation reduces the intrinsic population
growth rate, and this makes late reproduction rela-
tively more important, therefore favouring a decrease
in growth rate. The outcome between these two oppos-
ing adaptive forces will depend upon the relationship
between growth rate and the costs of growth, making
the outcome of using r as a fitness measure difficult to
predict. Although there is no one fitness measure that
is universally applicable, studies using a stochastic
environment show that R0 is generally a more reliable
indicator of  an adaptive traits invasion exponent
(Benton & Grant 2000). While it is important to con-
sider several fitness measures, in order to gauge the
robustness of  a model’s predictions, the results of
Benton & Grant (2000) suggest that out of R0 and r,
the results from R0 are more likely to have general
applicability.

The literature on life-history models of animal growth
is extensive (e.g. Kozlowski & Wiegert 1986; Sibly &
Calow 1986; Ludwig & Rowe 1990; Rowe & Ludwig
1991; Kozlowski 1992; Perrin 1992; Stearns 1992;
Houston, McNamara & Hutchinson 1993; Engen &
Sæther 1994; Abrams et al. 1996; Mangel & Stamps
2001). Previous growth models incorporating a cost of
growth have considered adaptive growth rates and
compensatory growth, but the topic of  a time-delay
to these costs of  growth has not been addressed
despite evidence that time-delays do exist (Metcalfe &
Monaghan 2001), and that they are likely to have import-
ant consequences for population and ecosystem processes
(Beckerman et al. 2002). Some work has looked at
modelling compensatory growth. For example, Sibly
et al. (1985) published general results on adaptive
growth strategies (see also Sibly & Calow 1986), con-
centrating mainly upon r as their measure of fitness,
and concluding that compensatory growth is not un-
equivocally adaptive. Abrams et al. (1996) followed up
this work by looking at adaptive growth strategies in
a seasonal environment. Their general results predict
that growth rate should usually (although not always)
increase as the time available to reproduce in a season
decreases. Other models have considered time constraints
and issues of  growth (Kozlowski & Wiegert 1986;
Ludwig & Rowe 1990; Rowe & Ludwig 1991; Werner
& Anholt 1993), with the general conclusion being that
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time constraints increase variation in growth rates,
because growth strategies are generally predicted to
depend upon the proximity of the time constraint as
well as an animal’s state. Broekhuizen et al. (1994)
suggested a physiological model of compensatory growth
that does not require a time-varying environment. Their
model assumes animals partition resources between
two types of tissue (tissues that can be re-mobilized
and those that cannot), and that behaviour changes in
response to the ratio of these two tissues. Tests of their
model on data from salmonids have shown a good fit
between data and model (Broekhuizen et al. 1994).

Comparison between our model’s predictions
and data show some qualitative agreement. As with
other growth models, increasing the cost of growth (σ)
generally reduces growth rate, as observed in insects
(Nylin & Gotthard 1998), although in other animal
groups the data are conflicting (Arendt 1997). An
increasing extrinsic mortality risk during growth (µj) is
predicted to increase growth rate, suggesting that any
comparison with data must make a clear distinction
between growth-related mortality, and extrinsic mor-
tality. A reduced initial body size is predicted by the
model to cause an increase in growth rate, which is
observed in rats (McCance & Widdowson 1962), and
the lack of correlation between birth or hatching
weight and mature weight has been frequently pointed
out (Wilson & Osbourn 1960). The time at which
growth limitation occurs is also important: in cattle
and sheep for example, compensatory growth tends
not to be seen in animals that are growth limited either
when very young or when close to maturity (Donovan
1984; Ryan 1990). The model predicts that early growth
limitation (small ti) gives little or no compensatory
growth. However, the model fails to predict that com-
pensatory growth should decrease when the period of
limitation is near maturity. This could be because the
model considers the mature body size as a fixed para-
meter, while in reality it too can show adaptive variation
(Blanckenhorn 2000).

In natural systems mature body size will vary, and
some of this variation may be adaptive. The question
of when to stop increasing in body size is a difficult
issue to model because the costs and benefits of different
body sizes are not clear, and depend largely upon the
system being studied (Sibly et al. 1985; Bernardo 1993).
However, if  body size is to have an adaptive explana-
tion (Reiss 1989) our model raises some questions.

If  increasing body size increases fecundity (Peters
1986; Reiss 1989) then growth rate can only be sub-
maximal if  some growth costs are felt before the end of
growth. So if  both body size and maturation time are
adaptive, there are two possibilities: either there is one
main mechanism underlying the costs of growth, which
must act before maturity, and compensatory growth
cannot be adaptive, or if  compensatory growth is to be
adaptive there must be at least two time-scales for the
costs of growth, one of which must act before maturity
and one after maturity. Extending our model to include

immediate as well as delayed costs of growth produces
no difference in qualitative behaviour. This suggests
that when mature body size and time to maturation are
both adaptive, compensatory growth may still occur,
provided the selective gradient for body size against
growth limitation is greater than that for maturation
time (i.e. mature body size is relatively constant).

The number of studies observing delayed growth
costs is increasing (e.g. Metcalfe & Monaghan 2001;
Blount et al. 2003; Ozanne & Hales 2004) to such an
extent that delayed costs seem more predominant than
immediate costs, although an objective review of the
importance of these different cost time-scales is needed.
Our model of adaptive growth shows that the time-
scale of  growth costs has important mechanistic
consequences for optimal growth rates. An increasing
time-delay in growth costs allows the optimal growth
rate to increase, and the selective strength of  the
optimum to decrease. The model highlights the matura-
tion time as a threshold time-scale for adaptive growth
strategies: only growth costs that act after an animal
has reached maturity provide an adaptive explanation
for compensatory growth, without any further assump-
tions about the environment. Furthermore, the intuitive
understanding of the model suggests that time-delays
in other life-history problems will be important in
determining phenotypic plasticity. Delayed life-history
effects are emerging as an important factor in a popu-
lation’s dynamics (Beckerman et al. 2002), and our
study shows that time-delays in life-history costs can
affect an animal’s life-history strategy. An understand-
ing of these effects requires data in order to assess the
relevant time-scale of a cost, and to distinguish clearly
between extrinsic mortality and the mortality associ-
ated with an adaptive trait.
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