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SUMMARY
Drugs targeting genes linked to disease via evidence from human genetics have increased odds of approval.
Approaches to prioritize such genes include genome-wide association studies (GWASs), rare variant burden
tests in exome sequencing studies (Exome), or integration of a GWAS with expression/protein quantitative
trait loci (eQTL/pQTL-GWAS). Here, we compare gene-prioritization approaches on 30 clinically relevant
traits and benchmark their ability to recover drug targets. Across traits, prioritized genes were enriched for
drug targets with odds ratios (ORs) of 2.17, 2.04, 1.81, and 1.31 for the GWAS, eQTL-GWAS, Exome, and
pQTL-GWAS methods, respectively. Adjusting for differences in testable genes and sample sizes, GWAS
outperforms e/pQTL-GWAS, but not the Exome approach. Furthermore, performance increased through
gene network diffusion, although the node degree, being the best predictor (OR = 8.7), revealed strong
bias in literature-curated networks. In conclusion, we systematically assessed strategies to prioritize drug
target genes, highlighting the promises and pitfalls of current approaches.
INTRODUCTION

Drugs whose targets have genetic support were found to be

more likely to succeed in clinical trials.1,2 Although multiple

methods have been proposed to establish such genetic support,

leveraging genetic data to find disease genes, and ultimately

drug targets, has proven to be challenging.3–6 The most straight-

forward approach maps genome-wide association study

(GWAS) signals to the closest genes, with more sophisticated

methods incorporating linkage disequilibrium (LD) structure

and gene annotation information to compute gene scores.7–9

Over the past decade, large-scale molecular quantitative trait

loci (mQTL) datasets facilitated the discovery of disease mecha-

nisms and the identification of potential new drug targets.10–15

Several methods, including Mendelian randomization studies,

transcriptome-wide association studies, and colocalization

methods have integrated expression and protein QTL data with

GWASs to pinpoint likely causal genes for complex traits and

diseases.16–22 More recently, the availability of high-throughput

sequencing data enabled the discovery and analysis of rare var-

iants and their aggregated effects to reveal gene-disease asso-

ciations.23,24Whole-exome sequencing (WES) in theUKBiobank

(UKBB) showed that genes prioritized this way are 3.6 times

more likely to be targets of drugs approved by the US Food

and Drug Administration (US FDA).25
This is an open access article und
Genes prioritized by GWASs, mQTL-GWAS integration

methods, and WES burden tests may not be drug targets them-

selves, but may be up- or downstream of those in pharmacolog-

ical pathways. Propagating gene prioritization scores on net-

works has proven to be a promising approach to identify

known drug target genes.26–30 Starting from seed genes (i.e.,

prioritized disease-associated genes), network connectivity

can identify neighboring genes that strongly interact with disease

genes, but lack direct genetic evidence that explains their thera-

peutic effect. Gene networks can be derived from literature or

high-throughput experiments and thus are prone to yielding

very different results when used for (seed) gene score diffusion.31

Here, we took a comprehensive approach to examine the

contribution of each method component to the success of

drug target prioritization. First, we focused on four different ap-

proaches to prioritize (seed) genes: (1) LD-aware gene score

computation from the largest GWASs with full publicly available

summary statistics (Pascal9); (2) Mendelian randomization (MR)

combining tissue-wide expression QTLs and GWASs (eQTL-

GWAS); (3) MR combining plasma protein QTL with GWAS

(pQTL-GWAS); and (4) UKBB WES burden tests (Exome). We

then used three different networks to diffuse the seed gene

scores: (1) the STRING protein-protein interaction (PPI)

network32; (2) an RNA-sequencing (RNA-seq) coexpression

network33; and (3) the FAVA network.34 All 12 combinations of
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Figure 1. Overview of the analysis workflow

(A) Three different gene prioritization methods were tested in this study. The first one uses GWAS summary statistics as input (GWAS). The second combines

molecular QTL and GWAS summary statistics (QTL-GWAS): either expression QTL (eQTL) or protein QTL (pQTL) data. The third leverages individual-level whole-

exome sequencing (WES) data (Exome). In the GWAS method, gene p values are based on the sum of squared SNP Z scores (Tsum) that follows a weighted c2
1

distribution. The QTL-GWAS method integrates QTL and GWAS summary statistics through Mendelian randomization (MR). MR causal effect sizes (bMR) are

calculated from GWAS and mQTL effect sizes (GWAS b and mQTL b, respectively) and gene scores are the corresponding p values. The Exome method ag-

gregates rare variants from WES data. Putative loss-of-function and missense variants with minor allele frequencies (MAF) below 1% are collapsed in burden

tests, which results in gene p values. The different approaches were benchmarked for their ability to prioritize drug target genes.

(legend continued on next page)
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the four seed-generating methods and the three networks were

applied to 30 traits (Figure 1) using five different reference sets of

target genes (DrugBank,35 Ruiz et al.,36 ChEMBL,37 DGIdb,38

and STITCH39). Overall, we provide an in-depth comparison of

all combinations of these approaches, identifying their respec-

tive strengths and caveats.

RESULTS

Overview of the analysis
In this study, we calculated gene prioritization scores and tested

their ability to identify drug targets across 30 traits (Figure 1). We

focused on three types of method, termed GWAS, QTL-GWAS,

and Exome, that allow the computation of gene scores provided

genetic association data (Figure 1A).

The GWAS method takes as input GWAS summary statistics

together with a matching LD reference panel. Gene p values

are calculated based on the sum of squared test statistics for

SNPs falling into the gene region.9 The QTL-GWAS methods

integrate GWAS summary statistics with mQTL data for the

gene of interest. We calculated gene scores using (1) eQTL-

GWAS data from the largest available whole-blood eQTL study

(eQTLGen study, n = 31,684)13 as well as tissue-wide eQTL

data from the GTEx Consortium v.8 (n = 65–573 for 48 tissue

types)40 and (2) pQTL-GWAS data from the largest available

plasma pQTL study (deCODE study, n = 35,559).14 Integration

was done by performing MR analyses using either the protein

or the transcript as exposure and the GWAS trait as outcome.

If not specified otherwise, the eQTL-GWAS method refers to

the tissue-wide analysis in which the eQTLGen and GTEx data

are combined by considering the tissue for which the MR effect

was the most significant (STAR Methods). While the GWAS and

QTL-GWAS methods focus on common genetic variants, the

Exome method considers only rare variants from WES data

with minor allele frequencies (MAFs) below 1%. Gene scores

were based on gene burden tests that aggregate putative loss-

of-function and missense variants, and we used the resulting p

values from the WES analysis in the UKBB.25 To allow for a fair

comparison with the Exome method while also exploiting dis-

ease-specific consortium GWAS summary statistics with maxi-

mized case counts, we calculated gene prioritization scores for

the GWAS and QTL-GWAS methods using both consortium

GWAS and UKBB GWAS data that matched Exome sample

sizes (Tables S1 and S2; STAR Methods).

Disease genes may not coincide with drug target genes, but

they may be in close proximity in terms of molecular interaction

(Figure 1B). Through diffusion based on randomwalks, we lever-

aged network connectivity to prioritize neighbors of disease

genes, which may be drug targets. We tested this hypothesis

on three different network types: the STRINGPPI network, which

relies on literature interactions, among other data types32; a gene
(B) The effects of network diffusion using three different network types and diffe

genes may be prioritized only following signal propagation from neighboring dise

(C) Diseases were linked to target genes through public drug databases: first, w

leveraged drug target information to link the drugs to genes. Prioritized disease ge

and B) were then tested for overlap with drug target genes through Fisher’s ex

operating characteristic curve (AUC) values.
coexpression network based on 31,499 RNA-seq samples

(CoXRNAseq)33; and a gene coexpression network based on

single-cell RNA-seq and proteomics data (FAVA).34 Gene priori-

tization scores were obtained following diffusion at six different

restart parameter values (r = 0, 0.2, 0.4, 0.6, 0.8, 1) (STAR

Methods).

Disease drug target genes were defined using public data-

bases. Specifically, drug-disease indications were retrieved

from DrugBank,35 Ruiz et al.,36 and ChEMBL,37 while

drug-drug target pairs originated from DGIdb,38 STITCH,39 and

ChEMBL.37 Drug target enrichment analyses were calculated

for the following five database combinations: DrugBank/

DGIdb, DrugBank/STITCH, Ruiz/DGIdb, Ruiz/STITCH, and

ChEMBL/ChEMBL.

Finally, prioritized disease genes, defined as the top 1% of

genes identified through the 12 combinations of gene prioritiza-

tion and network diffusion methods (5% for combinations

involving the pQTL-GWAS method to account for the smaller

set of testable genes), were then tested for enrichment with the

five drug target genes using Fisher’s exact test (Figure 1C).

Background genes were defined as all genes that could be

tested by the respective method, and sensitivity analyses were

performed on background genes testable for all methods. Sec-

ond, we calculated the area under the receiver operating charac-

teristic curve (AUC) values, which has the advantage of not

requiring any thresholds. To compute a combined enrichment

score per method, we aggregated results across traits and

drug databases termed overall odds ratios (ORs) or overall

AUC values (STAR Methods).

Concordance of prioritized genes among gene scoring
methods
We first analyzed whether genes prioritized by the GWAS, QTL-

GWAS, and Exome methods were concordant (Figure 2). For

each of the 30 traits, we calculated gene scores for the

testable autosomal protein-coding genes (GWAS, �19,150;

eQTL-GWAS, �12,550 (blood) and �16,250 (tissue-wide); pQTL-

GWAS, �1,870; Exome, �18,800). In the tissue-wide eQTL-

GWAS method, the tissue with the most significant MR p value

was selected. In Figure S1, we show the proportion of genesmap-

ped to a particular tissue category. The contributions of glandular-

endocrine, neural central nervous system (CNS), andwhole-blood

(eQTLGen) tissue categories were the highest (respective means

of 15.3%, 12.8%, and 12.6% across the 30 traits; Tables S3 and

S4). Although each trait had genes mapped to nearly all tissues,

a few distinctive patterns could be observed: cardiac muscle tis-

sues contributed themost to atrial fibrillation (16.4%); vascular tis-

sues themost to coronary artery disease (16.5%), followedbydia-

stolic (11.1%) and systolic (9.9%) blood pressure; and the neural

CNS the most to schizophrenia (16.9%) and bipolar dis-

ease (16.6%).
rent diffusion strengths (i.e., restart parameter r) were evaluated. Drug target

ase genes.

e used drug-indication information to connect the 30 traits to drugs and then

nes and corresponding diffusion scores (obtained via strategies described in A

act test, resulting in odds ratios (ORs), and through area under the receiver

Cell Genomics 3, 100341, July 12, 2023 3
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Figure 2. Evaluating the concordance of prioritized genes among gene scoring methods

(A–D) The top prioritized genes between pairs of methods were compared at different thresholds for each of the 30 traits/drug indications. The logarithm of odds

ratios (log-OR) was calculated from Fisher’s exact tests. Log-ORs are plotted only for percentiles at which common genes between pairs of methods were found.

Comparisons were conducted on the same background genes and same data origins (i.e., on UK Biobank GWASs for comparisons with the Exome method).

Tissue-wide eQTL-GWAS gene prioritizations were considered for the comparison with the GWAS and Exome methods and the blood-only eQTL-GWAS gene

prioritization method for the comparison with the pQTL-GWAS method.
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The concordance of prioritized genes among pairs of methods

is summarized in Figure 2. For each trait, we calculated Fisher’s

exact tests between the top prioritized genes at thresholds

ranging in the top 0.1%–10% (STAR Methods). The overlap

was the highest between the GWAS and the eQTL-GWAS

methods (Figure 2A). At 1%, the median OR was 212.2, which

dropped to 51.0 and 22.1 at 5% and 10%, respectively. The

overlap of prioritized genes was the lowest with the Exome

method. The top 1% GWAS vs. Exome and eQTL-GWAS vs.

Exome overlaps (based only on UKBB GWAS summary statis-

tics), yielded median ORs of 1.7 and 1.9, respectively, which

dropped to 1.0 at 10% for both methods (Figures 2B and 2C).
4 Cell Genomics 3, 100341, July 12, 2023
Median ORs between eQTL-GWAS (whole blood) and pQTL-

GWAS (blood plasma) were 8.5 and 4.6 at the top 5% and

10%, respectively (Figure 2D).

Enrichment of prioritized genes for drug targets
Next, we assessed the extent to which prioritized genes overlap-

ped with drug target genes. For each trait, we conducted enrich-

ment analyses for the GWAS, eQTL-GWAS, pQTL-GWAS, and

Exome methods using our five definitions of drug target genes.

In Figure 3A, we show the resulting ORs for the DrugBank/

DGIdb database combination. Across methods, genetic support

for drug targets was the highest for low-density lipoprotein (LDL)
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Figure 3. Enrichment of prioritized genes for drug targets

(A) Left: bar plot with odds ratios (ORs) calculated from Fisher’s exact tests between drug target genes and the top 1% (5% for pQTL-GWAS) prioritized genes for

the four tested methods and 30 traits, classified according to trait category. Drug target genes were defined by DrugBank/DGIdb, and only drug target genes that

could be tested by the respective method were considered. The number on the right of each bar indicates the number of identified drug target genes. Right:

overlap of identified drug target genes between pairs of methods quantified through the Jaccard index. The blood-only eQTL-GWAS gene prioritization method

was used for the comparison with the pQTL-GWAS method. Plots using UKBB GWASs only are shown in Figure S3.

(B) ORs at different top prioritized gene percentiles for the four methods. The plotted dots correspond to the median OR across the 30 traits, and the shaded area

bounds the 10% and 90% percentiles.

(C) Boxplots showing the area under the receiver operating characteristic curve (AUC) values. AUC values were calculated for each trait as indicated by the points

(legend in Figure 2) and using the same background genes and drug target definitions as in (A).

(D) ORs calculated for the five drug target definitions and for all four methods (legend in B). The OR was set to 1 for traits with no identified drug target genes. In

(C) and (D), the boxplots bound the 25th, 50th (median, center), and 75th quantiles. Whiskers range fromminima (Q1 � (1.53 IQR)) to maxima (Q3 + (1.53 IQR))

with points outside representing potential outliers.
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and total cholesterol (average ORs of 5.99 and 6.12, respec-

tively). Lowest enrichment ratios were obtained for neuropsychi-

atric traits (average OR of 1.56) and glaucoma (average OR of

1.14). The average OR across traits was 2.48, 2.68, 1.65, and

1.26 for the GWAS, eQTL-GWAS, Exome, and pQTL-GWAS

methods, respectively. We explored a range of top disease

gene percentiles (0.1%–5%), and the corresponding ORs are

shown in Figure 3B. Restricting disease genes to the top 0.1%

for all methods increased the average ORs without changing

the method ranking, with average ORs of 3.68, 4.02, 2.40, and

1.44 for the GWAS, eQTL-GWAS, Exome, and pQTL-GWAS

methods, respectively. We further analyzed whether identified

drug targets were the same across methods and found that

prioritized drug target genes were similar between GWAS and

eQTL-GWAS methods (average Jaccard index of 0.39), were

less so between eQTL-GWAS and pQTL-GWASmethods (blood

tissues; average Jaccard index of 0.15), and were very different

from Exome identified targets (average Jaccard index of 0.06 be-

tween GWAS and Exome and between eQTL-GWAS and Exome

methods). Average AUC values across traits were 53.4%,

51.9%, 50.5%, and 49.9% for the GWAS, eQTL-GWAS, Exome,

and pQTL-GWAS methods (Figure 3C).

While the number of drugs reported per indication was similar

across databases (average of 43.9, 41.8, and 40.4 for Ruiz et al.,

ChEMBL, and DrugBank, respectively), the average number of re-

ported drug targets wasmuch higher for Ruiz/STITCH (285), Ruiz/

DGIdb (274.8), DrugBank/DGIdb (263.4), and DrugBank/STITCH

(244.2) than for ChEMBL/ChEMBL (24.8; Table S6). We repeated

drug targetenrichmentcalculations forall drugdatabasecombina-

tions (Figures 3D and S2). The average ORs for the GWAS/eQTL-

GWAS methods were 2.48/2.68, 2.80/2.53, 2.18/2.12, 1.78/1.61,

and 1.78/1.51 for DrugBank/DGIdb, ChEMBL/ChEMBL, Ruiz/

DGIdb, Ruiz/STITCH, and DrugBank/STITCH, respectively. Over-

all, the variability in ORs across traits was the highest in the

ChEMBL database (Figures 3D and S2), likely due to the low

average number of reported drug targets, which leads to very

high ORs when drug targets figured among the prioritized genes

(e.g., for LDL and total cholesterol), but for many traits drug target

genes were not among the prioritized genes (e.g., for type 1 dia-

betes, atopic dermatitis, and inflammatory bowel disease).

Since enrichment results can differ widely across traits and

reference databases, we calculated overall enrichment and

AUC values across traits and drug databases, including sensi-

tivity analyses on UKBB data only, to match Exome sample sizes

and common background genes (Table S8 and Figure S4; STAR

Methods). The overall ORs were 2.17 (UKBB, 1.72), 2.04 (UKBB,

1.67), and 1.81 and 1.31 (UKBB, 1.30) for the GWAS, eQTL-

GWAS, and Exome and pQTL-GWAS methods, respectively.

There were no significant differences between these four

methods in terms of enrichment OR (pdiff > 0.05, including in

the sensitivity analyses). Overall AUCs were 54.3% (UKBB,

52.8%), 52.8% (UKBB, 51.4%), and 51.7% and 51.3% (UKBB,

50.6%) for the GWAS, eQTL-GWAS, and Exome and pQTL-

GWAS methods, respectively. Judging by the AUC values,

GWAS performed significantly better than eQTL-GWAS (pdiff =

3.1e�5) and also when considering only testable eQTL genes

(pdiff = 2.9e�4). When excluding eQTLGen from the tissue-

wide eQTL-GWAS, the performance of eQTL-GWAS dropped
6 Cell Genomics 3, 100341, July 12, 2023
slightly (AUC of 52.2% compared with 52.8%; pdiff = 0.019).

Significantly higher AUC values were obtained for GWAS

comparedwith Exome on consortium data (pdiff = 2.2e�4), which

was no longer the case on UKBB data (pdiff = 0.06). The differ-

ence between eQTL-GWAS and Exome was not significant on

either dataset (pdiff = 0.12 and 0.77 on consortium and UKBB

data, respectively). The number of testable genes was much

lower for the pQTL-GWAS method (�1,870 genes). With this

set of background genes, GWAS still scored a higher overall

AUC (55.1%, pdiff = 2.1e�3). No difference was observed be-

tween the pQTL-GWAS and the tissue-wide or whole blood

eQTL-GWAS methods (pdiff = 0.66 and 0.87, respectively).

Examples of drug target prioritization ranks
In Figure 4, we highlight drug targets and their gene prioritization

ranks for a few examples (complete list in Table S9). Major anti-

hypercholesterolemic drug targets PCSK9 (evolocumab, aliro-

cumab), HMGCR (statins), and NPC1L1 (ezetimibe) were top

ranked by all methods (except for no pQTLs being available for

HMGCR andNPC1L1; Figure 4A). HCN4, the target of the antiar-

rhythmic drug dronedarone, was prioritized as a disease gene for

atrial fibrillation only through the GWASmethod. Although highly

expressed in the atrial appendage and left ventricle of the heart,

no eQTL was reported for this gene (Figure 4B). Several antiep-

ileptic drugs target SCN1A, which was highly prioritized by the

GWAS and eQTL-GWAS methods, with the strongest MR effect

found in the nucleus accumbens (basal ganglia) of the brain (Fig-

ure 4C). The antiplatelet drug dipyrimadole used in the preven-

tion and treatment of vascular diseases such as stroke and cor-

onary artery disease is listed to target 23 genes of the PDE

superfamily in ChEMBL. Of these, four (PDE4D, PDE3A,

PDE3B, PDE6B) were ranked in the top 1% by the exome

method for stroke (Figure 4D). None of the other methods prior-

itized any of these 23 genes. For coronary artery disease,

another superfamily member (PDE5A) had a low ranking (<2%)

by the GWAS and QTL-GWAS methods, supported by solid

GWAS and e/pQTL colocalization (Figure 4E).

Heritability of drug target transcripts and proteins
Previous drug target enrichment analyses have shown that drug

target genes are more likely to have lower residual variance intol-

erance scores (RVISs), i.e., are less tolerant to change.1 Further-

more, limited overlap between eQTL and GWAS hits has been

found, and it has been suggested that GWAS and eQTL genes

are under different selective constraints.41 Hence, under the

assumption that drug target genes are more likely to be key

(core) GWAS genes, we expected that drug target genes are

less likely to harbor QTLs. To test this hypothesis, we assessed

whether drug target transcript or protein levels are less amenable

to regulation by common genomic variations, which could explain

the lower than expected performance ofQTL-GWASapproaches.

To this end, we compared the cis heritability of drug target

genes vs. non-drug target genes that were measured in the

respective studies (i.e., also those with no reported e/pQTLs;

STAR Methods), where lower heritability would point toward a

negative selection.42 We conducted the analysis per trait and

for each of the five drug target gene definitions; however, we

could not observe a clear difference between cis heritabilities
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Figure 4. Examples illustrating drug target genes and their prioritization ranks

(A) Three drug target genes (PCSK9 [evolocumab, alirocumab], HMGCR [statins], and NPC1L1 [ezetimibe] shown in purple) for LDL cholesterol (blue box) and

their prioritization ranks (top percentiles shown in parentheses) of each of the four methods (GWAS in green, eQTL-GWAS in yellow, Exome in blue, and pQTL-

GWAS in red). Genes that were not testable by a givenmethod are reported as NA (no e/pQTLmeans that the genewasmeasured, but had noQTL), and a range of

ranks (i.e., 1–52) indicates tied p values.

(B) Top plot shows the prioritization ranks of HCN4, the target of the antiarrhythmic drug dronedarone. Bottom plot shows the gene expression profile of HCN4

across GTEx tissues (TPM, transcripts per million) with ‘‘testis,’’ ‘‘heart-atrial appendage,’’ and ‘‘heart-left ventricle’’ dominating.

(C) Top plot shows the prioritization ranks ofSCN1A (sodium voltage-gated channel alpha subunit 1), a drug target gene of several antiepileptic drugs. Bottomplot

shows Mendelian randomization (MR) effects (red dots) with 95% CI (black bars) across tissues in which there was a significant eQTL.

(D) Antiplatelet drug dipyrimadole and gene prioritization ranks of its multiple drug targets (a non-exhaustive selection) of the phosphodiesterase (PDE) superfamily.

(E) Top plot shows the gene prioritization ranks of PDE5A, another reported target for dipyrimadole. Bottom plot shows the regional SNP associations (�log10(p))

with coronary artery disease (CAD; GWAS, green), PDE5A protein (pQTL, red), and PDE5A transcript (eQTL, yellow) (red dashed lines indicate the significance

thresholds of the respective SNP association, and gray shading marks the position of PDE5A). Bottom row illustrates the position and strand direction of the

genes in the locus.
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of drug target and non-drug target genes (Figure S5). While this

means that we cannot explain why the QTL-GWAS approach

does not perform better, it may also imply that drug target genes

are not necessarily typical GWAS genes or so-called core genes.
Network diffusion to prioritize drug target genes
Finally, we assessed whether network diffusion can identify drug

target genes for which there is no direct genetic evidence. Gene

scores from prioritization methods defined the initial distribution
Cell Genomics 3, 100341, July 12, 2023 7
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p0 of the diffusion process. This process is regulated by a restart

parameter r, whereby lower values result in a stronger diffusion

(i.e., genes can be prioritized even when distant from initial dis-

ease genes; STAR Methods). The stationary distribution was

calculated for six different restart parameters, ranging from no

diffusion (r = 1) to complete diffusion (r = 0), and for each of the

three networks: the STRING PPI network,32 an RNA-seq coex-

pression network (CoXRNAseq),33 and a coexpression and pro-

teomics network (FAVA).34 Since the set of testable proteins

(�1,870) is enriched for drug target genes (two-sided binomial

test: p = 1.3e�47 for DrugBank/DGIdb; complete results in

Table S15; STAR Methods), the AUC values were artificially in-

flated upon projecting the gene scores onto the network, and

pQTL-GWAS results are hence not discussed.

Applying diffusion using the STRING network massively

boosted the overlap between the diffused prioritized genes

and the drug target genes (Figures 5A, 5B, S6, and S7). At no

diffusion, overall AUC values across the 30 traits were 54.3%,

52.8%, and 51.7% for the GWAS, eQTL-GWAS, and Exome

methods, respectively, which increased to 68.9%, 67.7%, and

66.9% at a diffusion parameter of r = 0.6, and further increased

to 73.5%, 72.9%, and 72.3% at stronger diffusion (r = 0.4;

Figures 5A and S6 and Table S11). A stronger enrichment of

prioritized genes for drug targets upon diffusion was also

observed when enrichment scores for the top 1% genes were

calculated, with overall ORs of 4.63, 5.21, and 5.07 at r = 0.4

(Figures 5B and S7 and Table S11). On the other hand, improve-

ments were modest when considering coexpression networks.

At r = 0.6, overall AUC values increased to 54.9%, 54.7%, and

53.5% in the case of the CoXRNAseq network for the GWAS,

eQTL-GWAS, and Exome methods, respectively. Although

small, the difference was significant compared with no diffusion

(pdiff of 5.11e�3, 4.12e�14, and 4.83e�5, respectively). In the

same scenario, overall ORs at r = 0.6 were 2.28, 2.04, and

1.91, which were not significantly different (pdiff > 0.05)

compared with no diffusion. Likewise, in the FAVA network,

overall AUC values at r = 0.6 were 55.9%, 54.2%, and 53.6%

(pdiff compared with no diffusion of 2.23e�5, 3.08e�3, and

7.3e�6), and ORs were 2.38, 2.02, and 1.77 (pdiff > 0.05), for

GWAS, eQTL-GWAS, and Exome methods, respectively

(Figures S6 and S7; Tables S11 and S12).

We further assessed which method’s AUC values benefited

the most from network diffusion. To allow fair comparison with

the Exome methods, we used UKBB GWAS data for the

GWAS and eQTL-GWAS methods. Across all diffusion parame-

ters r, overall AUC values were significantly higher for GWAS

compared with eQTL-GWAS in the STRING and FAVA network

(pdiff < 4.45e�4), but not any different in the RNA-seq coexpres-

sion (CoXRNAseq) network (pdiff > 0.05). A nominally significant

difference in favor of GWAS compared with Exome was

observed only in the STRING network at r values of 0.4, 0.6,

and 0.8 (pdiff of 0.0262, 7.36e�3, and 0.0146, respectively). No

statistical differences were observed between the eQTL-

GWAS and the Exome method except for a nominally significant

difference in favor of eQTL-GWAS at r = 0.2 in the CoXRNAseq

network (pdiff = 0.0113).

When investigating the network connectivity, we observed that

drug target genes were significantly more likely to be hub genes,
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i.e., to have more connections in the network in comparison with

other genes (Figures 5C and S8). This observationwas particularly

strong in the STRING network (mean log-degree = 13.0 vs. 12.3,

pdiff = 6.6e�284 for DrugBank/DGIdb), but also present in the co-

expression networks (D log-degree = 0.064, pdiff = 0.011 for

CoXRNAseq; D log-degree = 0.3, pdiff = 6.6e�11 for FAVA). As

a consequence, the network’s node degree (a gene’s number of

connections to other genes adjusted by the edge weight) was

found to be a good predictor of drug targets, and the best perfor-

mance was found for the network degree in STRING (overall

AUC = 77.6%, overall OR = 8.71). Given this bias, we generated

random initial disease gene scores and determined towhat extent

genetically informed p0 distributions performed better compared

with random p0 distributions. Although the GWAS, eQTL-GWAS,

and Exome methods had significantly higher AUC values

compared with random score distributions for any given r value

in the STRING network (pdiff < 1.62e�7; Table S12), the perfor-

mance of a mildly diffused (r = 0:8) random score (which is un-

aware of the target disease) performed significantly better than

any disease gene prioritization method without diffusion (pdiff of

4.18e�6, 3.58e�10, and 2.10e�12 compared with GWAS,

eQTL-GWAS, and Exome, respectively). In line with this observa-

tion, the network degreewas still significantly better than gene pri-

oritization methods at a stronger diffusion of r = 0.2 (pdiff of

8.98e�6, 9.87e�13, and 1.89e�11 compared with GWAS,

eQTL-GWAS, and Exome, respectively).

Examples of prioritized genes through network diffusion
In the following, we describe several examples for which drug

targets figured among the top 1% genes only after network

diffusion (complete list in Table S13). Amyloid-beta precursor

protein (APP) targeted by the monoclonal antibody aducanu-

mab in the treatment of Alzheimer’s disease (AD) was ranked

506 (top 2.7%) prior to and 152 (top 0.8%) after diffusion on

the STRING network (r = 0.6; Figure 6A) based on the eQTL-

GWAS method. Prioritization was largely influenced by its in-

teracting neighbor apolipoprotein E (APOE), which was the

top 5 ranked gene for AD by the eQTL-GWAS method and

among the top 6 genes (tied p values) by the GWAS method.

Although rare mutations in APP are a known cause of AD,43

the Exome method did not highly prioritize this gene (>top

10%), likely because of low statistical power due to the

younger and healthier nature of the UKBB cohort. Indeed,

APP was among the top 1% for the GWAS method, leveraging

the AD consortium data, but did not reach the top 10% when

restricting the analysis to the UKBB. Tumor necrosis factor

(TNF), a drug target in the treatment of inflammatory diseases

such as psoriasis, was ranked 1,558th (top 8%; Exome-psori-

asis) prior to and 182nd (top 0.98%; r = 0.6) post-propagation

in the STRING network (Figure 6B). While initially the drug

target F2 (coagulation factor II, thrombin) for venous thrombo-

embolism (VTE) ranked only in the top 2%, it moved up to the

top 1% regardless of the network used for diffusion at r = 0.6

(top 0.9%, 0.6%, and 0.7% for STRING, CoXRNAseq, and

FAVA, respectively). In the STRING and CoXRNAseq net-

works, this boost could largely be attributed to the interacting

fibrinogen genes (FGA, FGB, and FGG) that ranked in the top

0.06% (Figure 6C).
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Figure 5. Effect of network diffusion to prioritize drug target genes

(A) Boxplots showing the area under the receiver operating characteristic curve (AUC) values for each network type (STRING, CoXRNAseq, and FAVA) and

method at different restart parameter values r. AUC values were calculated for each of the 30 traits, and drug target genes were defined by DrugBank/DGIdb. At

an r value of 1 (no network diffusion), the analysis corresponds to the results in Figure 3B, and at an r value of 0, the gene prioritization rank is based simply on the

degree of the network nodes. At r < 1, the background genes are the genes reported in the respective network. The star next to the pQTL-GWASmethod signals

that the set of testable genes for this method is enriched for drug target genes, and therefore, higher AUC values were obtained when adding background genes

with zero-valued initial scores.

(B) Odds ratios (ORs) between prioritized genes (top 1%) and drug target genes for each network type and method at different r values across the 30 traits (same

drug target and background genes as in A). The OR was set to 1 for traits with no identified drug target genes.

(C) Histograms showing the degree distribution of drug target genes and non-drug target genes in each network. The difference in log-degree (D) and the p values

from two-sided t tests are shown at the top. In (A) and (B), the boxplots bound the 25th, 50th (median, center), and 75th quantile. Whiskers range from minima

(Q1 � (1.5 3 IQR)) to maxima (Q3 + (1.5 3 IQR)) with points above or below representing potential outliers.
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Figure 6. Examples illustrating prioritized drug target genes through network diffusion

(A) Top 10 network neighbors of drug target APP (brown circle) and their prioritization values (i.e., normalized node probabilities) by the eQTL-GWAS method for

Alzheimer’s disease are shown before (r = 1) and after diffusion (r = 0:6) on the STRING network.

(B) Same representation as in (A) showing Exome prioritization values for psoriasis and tumor necrosis factor (TNF) drug target.

(C) Top 10 network neighbors of drug target F2 (coagulation factor II, thrombin) in the STRING, CoXRNAseq, and FAVA networks. GWAS prioritization values for

venous thromboembolism (VTE) are shown before (r = 1) and after diffusion (r = 0:6) on each network. In each network example (A–C), the drug target gene was

among the top 1% prioritized genes only after diffusion at r = 0:6.
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DISCUSSION

Summary of findings
We conducted a comprehensive benchmarking between

different genetically informed approaches (GWAS, QTL-GWAS,

and Exome) combined with network diffusion to prioritize drug

target genes. The strength of our analysis lies in the side-by-

side comparison of gene prioritization methods that individually
10 Cell Genomics 3, 100341, July 12, 2023
have proven to be successful in identifying drug targets. In line

with previous reports, we find a 1.3- to 2.2-fold enrichment for

drug targets among (the top 1%) prioritized genes.1,2 Recently,

methods have emerged that combinemultiple genetic predictors

to derive an aggregate score, often usingmachine-learning tech-

niques.27,44,45 These scores have demonstrated high enrichment

for drug targets but reveal little about underlying molecular

mechanisms. Our aim was to disentangle the importance of
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the choice of the ground truth (i.e., drug target genes) and the

input data (such as mQTLs, WES) in combination with different

molecular networks to highlight added benefits while also

exposing weaknesses compared with using GWAS data alone.

Comparison of gene prioritization methods
Adjusting for differences in background genes and data origins,

GWAS yielded higher AUC than eQTL- and pQTL-GWAS, but no

significant difference was found with Exome. Genes prioritized

by the Exome method were different from those identified by

the GWAS and QTL-GWAS methods, which was also reflected

in the identified drug targets. While this could imply that rare

and common variant genetic architectures are complementary,

differences could also be due to power issues. Possibly, with

increased sample size, the implicated genes will converge, but

the extent to which they can be perturbed by regulatory vs.

rare coding variants might remain different. Considering ORs,

we lacked the statistical power to claim significant differences

between methods, since the number of drug targets among

the top 1% prioritized genes can be very low. Overall enrichment

ORs for drug targets were 2.17, 2.04, 1.81, and 1.31 for the

GWAS, eQTL-GWAS, Exome, and pQTL-GWAS methods,

respectively. Although ORs for the pQTL-GWAS method may

seem lower, it should be noted that testable proteins (i.e., pro-

teins with pQTLs) accounted for �10% of GWAS-testable

genes. On the same background genes, ORs for the tissue-

wide and blood-only eQTL-GWAS methods were 1.38 and

1.22, respectively. For the AUC metric, no significant difference

between eQTL-GWAS and pQTL-GWAS was found. In the

method comparisons, we considered multiple drug target gene

definitions. The number of targets per drug drastically differed

between ChEMBL and the DGIdb or STITCH database due to

differences in their construct. Drug target genes in the

ChEMBL database are manually curated and should not contain

false positives, but it remains debatable whether one should

consider only primary or also secondary target genes. For

instance, ChEMBL lists only HMGCR as a drug target for statins,

whereas the DGIdb database also includes APOA5, APOB, and

APOE, among others. For this reason, we considered different

databases and present enrichment results for both broad and

narrow drug target definitions, as well as aggregates.

Benefits and pitfalls of network diffusion
Network diffusion was beneficial for prioritizing drug target genes

withweaker genetic support. A remarkable increase in drug target

identification was achieved when using the STRING PPI network.

However, this improvement may be due to a circularity in the data

generation process, whereby drug target genes are more re-

searched and hence have more chance to be found to interact

with other proteins, i.e., they tend to look more hub-like. Although

genetically informed gene sets performed better than random

ones, the genes prioritized by their node degree in the STRING

network resulted in the highest AUC values overall. Thus, care

has to be taken when relying on literature-derived gene-gene in-

teractions, as aggressive diffusion will point to the same drug

target genes, irrespective of the disease, due to the intrinsic

bias stemming from under- and overstudied proteins. While the

STRING network resource remains of immense value to identify
interacting proteins, non-randommissing of network edges leads

to a biased network structure, which makes this resource less

suitable as input for discovering new drug targets. The improve-

ments made with coexpression networks, which do not suffer

from publication/curation biases, were minor in comparison.

Although significant with the AUC metric, ORs were not signifi-

cantly increased with a diffusion of r = 0.6 compared with no diffu-

sion for any of the methods.

Limitations of the study
Several limitations should be considered. First, we do not take

into account the directionality of therapeutic and genetic effects,

i.e., whether the drug is an agonist or antagonist. Although found

to be less performant than GWAS, QTL-GWAS methods have

the advantage of specifying directionality, as opposed to gene

scores from the GWAS approach, which ignores SNP effect di-

rections. Second, the mQTL datasets used cover only a small

fraction of possible intermediate traits through which SNPs exert

their disease-inducing effects.46 Third, we focus only on com-

mon genetic variants when associating transcript and protein

levels. With the advent of coupled rare variant-protein level

data, either from populations enriched for rare variants or

sequencing data,14,47 more powerful QTL-GWAS methods are

likely to emerge that combine mechanistic insights gained from

QTL approaches while capturing rare variant associations previ-

ously missed. Fourth, drug target data are sparse, which limits

the statistical power in benchmarking analyses. Given the

required resources to test a drug target in clinical settings,

focusing on top ranking genes is of most interest. This scenario

is best described with a threshold that defines highly prioritized

genes for enrichment analyses. However, ROC curves that

quantify the performance at all prioritization thresholds (i.e.,

use all data at hand) were better powered to detect subtle differ-

ences betweenmethods. Resulting AUC values are relatively low

(51%–54%), whichmay be because ranks of geneswith non-sig-

nificant p values are likely unreliable, but these dominate most of

the ROC curve. Related to this, even for low false positive rates,

there is room for improvement of the gene prioritizationmethods.

Combining prioritization methods could increase AUC values, as

suggested by the distinct drug target sets identified by GWAS

and Exome methods, as could the integration of additional func-

tional genomic annotations.27,44 Finally, our analysis compares

methods using historical drug discovery data as the ground

truth. These data are highly biased, with G-protein-coupled re-

ceptors being targets of a third of FDA-approved drugs.48

Many other genes may be effective targets, but have never

been tested in clinical trials. Thus, our results may not reflect

how well the tested genetic approaches uncover true disease

genes, but rather how well they identify targets that were histor-

ically prioritized in drug development processes. Since the emer-

gence of robust GWASs, more and more clinical trials are moti-

vated by genetically informed targets. Thus, drug target

databases will tend to overlap better with GWAS-inspired genes,

leading to artificially higher overlap.

Conclusion
To conclude, we systematically evaluated major gene prioritiza-

tion approaches for their ability to identify approved drug target
Cell Genomics 3, 100341, July 12, 2023 11
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genes. Our analyses highlight the power of harnessing multiple

data sources by capitalizing on QTLs for mechanistic insights,

sequencing data for rare variant associations, GWASs when

mQTL signals are missing, and network propagation to leverage

gene-gene interactions.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
12
B Lead contact

B Materials availability

B Data and code availability

d METHOD DETAILS

B GWAS data

B GWAS gene scores

B Molecular QTL-GWAS gene scores

B Exome gene scores

B Drug target genes

B Transcript and protein level heritabilities

B Networks

B Network diffusion

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Concordance of gene scoring methods

B Drug target enrichment and AUC calculations

B Enrichment of proteins for drug targets
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

xgen.2023.100341.
ACKNOWLEDGMENTS

This work was supported by the Swiss National Science Foundation

(310030_189147) to Z.K. This research was conducted using the UK Biobank

Resource under application 16389. LD was calculated based on the UK10K

data resource (EGAD00001000740, EGAD00001000741). Computations

were performed on the JURA cluster at the University of Lausanne. We also

would like to acknowledge the participants and investigators of the UK Bio-

bank and FinnGen study. We thank Daniel Krefl for his help and support in im-

plementing the PascalX software, Doug Speed for his help and support in

calculating heritability estimates, and Liza Darrous for critically reading the

draft.
AUTHOR CONTRIBUTIONS

M.C.S. and Z.K. conceived and designed the study. M.C.S. performed statis-

tical analyses. P.D. provided guidance on statistical analyses. Z.K. supervised

all statistical analyses. C.A. contributed to the collection and interpretation of

pharmacological and biological data. All the authors contributed by providing

advice on interpretation of results. M.C.S. and Z.K. drafted the manuscript. All

authors read, approved, and provided feedback on the final manuscript.
DECLARATION OF INTERESTS

The authors declare no competing interests.
Cell Genomics 3, 100341, July 12, 2023
Received: February 27, 2023

Revised: April 25, 2023

Accepted: May 16, 2023

Published: June 15, 2023

REFERENCES

1. Nelson, M.R., Tipney, H., Painter, J.L., Shen, J., Nicoletti, P., Shen, Y.,

Floratos, A., Sham, P.C., Li, M.J., Wang, J., et al. (2015). The support of

human genetic evidence for approved drug indications. Nat. Genet. 47,

856–860. https://doi.org/10.1038/ng.3314.

2. King, E.A., Davis, J.W., and Degner, J.F. (2019). Are drug targets with ge-

netic support twice as likely to be approved? Revised estimates of the

impact of genetic support for drug mechanisms on the probability of

drug approval. PLoS Genet. 15, e1008489. https://doi.org/10.1371/jour-

nal.pgen.1008489.

3. Edwards, S., Beesley, J., French, J., and Dunning, A. (2013). Beyond

GWASs: illuminating the dark road from association to function. Am. J.

Hum. Genet. 93, 779–797. https://doi.org/10.1016/j.ajhg.2013.10.012.

4. Cao, Y., Shi, Y., Qiao, H., Yang, Y., Liu, J., Shi, Y., Lin, J., Zhu, G., and Jin,

Y. (2014). GWAS and drug targets. BMCGenom. 113, 1–9. https://doi.org/

10.1186/1471-2164-15-S4-S5.

5. Tam, V., Patel, N., Turcotte, M., Bossé, Y., Paré, G., and Meyre, D. (2019).
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Materials availability
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Data and code availability
d This paper analyzes existing, publicly available data. Accession numbers for the datasets are listed in the key resources table.

d Drug target genes and prioritized ranks are included in the supplemental material of this paper.

d All original code has been deposited at Github (https://github.com/masadler/DrugTargetMethodComparison) and archived at

Zenodo (https://doi.org/10.5281/zenodo.7857973 ).56

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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GWAS data
We used the largest (to-date), publicly available GWAS summary statistics for each analyzed condition (Table S1). GWAS data came

mostly from consortia specific to the respective disease, and were often a meta-analysis comprising the UKBB. Twenty-four out of

the 30 conditions were case/control studies, the remaining 6 being continuous traits: diastolic and systolic blood pressure (DBP and

SBP, respectively57), low-density lipoprotein and total cholesterol (LDL and TC, respectively58), estimated glomerular filtration rate

(eGFR59) and heel bone mineral density (58) proxying chronic kidney disease (CKD) and osteoporosis, respectively. For four traits

with low case count in the UK Biobank (< 20,000; chronic obstructive pulmonary disease (COPD), endometriosis, pneumonia and

psoriasis) and no large-scale GWAS meta-analysis available, we performed a meta-analysis between the UK Biobank58 and

FinnGen60 using METAL.51

GWAS gene scores
Weused PascalX9,49 to compute gene scores based onGWAS summary statistics. The software takes as input GWASp values, gene

annotations and LD structure. SNPs are assigned to genes and their squared z-scores are summed. This sum, under the null, was

shown to follow aweighted chi-square distribution with weights being defined by the local LD structure fromwhich gene p values can

be derived.9 We applied PascalX with default parameters (gene ± 50 kB) on protein-coding genes using the Ensembl identifiers and

annotations (Ensembl GRCh37.p13 version) and the UK10K reference panel.61 Across traits,�19,150 protein-coding genes could be

tested which were ranked by their PascalX p value.

Molecular QTL-GWAS gene scores
We integrated molecular quantitative trait loci (QTL) and GWAS summary statistics using Mendelian randomization (MR) imple-

mented in the smr-ivw software.22,62,50 The exposure (transcript or protein levels) and outcome disease were instrumented with in-

dependent genetic variants, also called instrumental variables (IVs; r2 < 0:01) and used to calculate putative causal effect estimates of

the exposure on the outcome (bMR). IVs were required to be strongly associated to the exposure (PQTL < 1e-6) and had to pass the

Steiger filter ensuring no significantly stronger effect on the outcome than on the exposure.63We used expression QTLs (eQTLs) from

the eQTLGen consortium13 (whole blood; n = 31,684) and tissue-specific QTLs from the GTEx v8 release40 (European ancestry;

n = 65–573 for 48 tissue types; Table S3) to estimate causal transcript-trait effects. In the eQTLGen dataset there were� 12,550 pro-

tein-coding genes with at least 1 IV which increased to �16,250 when integrating the GTEx dataset. MR results from both datasets

(whole blood from eQTLGen and 49 tissues fromGTEx) were aggregated by considering theMR causal effect with the lowest p value

across tissues (Tables S3 and S4). Protein QTLs (pQTLs) from the deCODE study14 (whole blood; n = 35,559) were used to estimate

protein-trait causal effects with�1,870 proteins having at least 1 IV. Prior to the analysis, e/pQTL and GWAS data were harmonized,

palindromic SNPs were removed as well as SNPs with an allele frequency difference > 0.05 between datasets. All transcripts and

proteins were mapped to Ensembl identifiers as provided by eQTLGen, GTEx and deCODE.

Exome gene scores
We used gene burden test results computed on WES data from the UK Biobank.25 We extracted gene-trait associations based on

putative loss of function (pLOF) and deleterious missense variants with MAF < 1% (M3.1 nomenclature in original publication) with

phenotypes matching the investigated conditions as indicated in Table S2. Associations were provided for �18,800 genes which

were ranked by the association p value and retrieved by the provided Ensembl identifier.

Drug target genes
We extracted drug target genes from public resources by combining drug-indication and drug-target links from various databases. A

given disease/indication was linked to a drug if the drug was indicated to be prescribed for the selected indication and subsequently,

the target genes of these drugs were extracted. For drug-indication pairs we consulted DrugBank, Ruiz et al. and ChEMBL:

d DrugBank 5.035 (download: May 2022): DrugBank indications are manually curated from drug labels and underwent an expert

review process. Drug indications have their own DrugBank condition numbers and drugs their DrugBank identifiers.

d Ruiz et al.36: A drug-disease dataset was created by querying multiple sources such as the Drug Repurposing Database, the

Drug Repurposing Hub, and the Drug Indication Database and extracting information from drug labels, DrugBank and the

American Association of Clinical Trials Database. Drug–disease pairs were filtered for FDA-approved treatment relationships.

This dataset uses NLM UMLS CUIDS identifiers (National Library of Medicine - Unified Medical Language System Controlled

Unique Identifier) for diseases and DrugBank identifiers for drugs.

d ChEMBL37 (download: May 2022): ChEMBL drug indications are extracted from multiple sources including DailyMed package

inserts, Anatomical Therapeutic Chemical (ATC) classification and ClinicalTrials.gov. Mapping of disease terms to Medical

Subject Headings (MeSH) vocabulary and the Experimental Factor Ontology (EFO) is done through a combination of text-min-

ing, automated mapping and manual curation/validation. Drugs are reported with ChEMBL identifiers.
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The mapping of GWAS traits to the drug indication identifiers of the respective database is shown in Table S5.

Drug target genes were extracted from the DGIdb, STITCH and ChEMBL databases:

d Drug Gene Interaction database (DGIdb) 4.038 (release: January 2021): Aggregated drug-gene interactions frommultiple sour-

ces including DrugBank, Drug Target Commons, the Therapeutic Target Database and Guide to Pharmacology. Genes were

matched to Ensembl identifiers using the provided gene vocabulary file. Drugs were reported through DrugBank or ChEMBL

identifiers, and mapping from ChEMBL to DrugBank identifiers was done with UniChem,64 using PubChem IDs as intermedi-

ates..

d Search Tool for Interacting CHemicals (STITCH) 5.039: Aggregated drug-protein interaction data from high-throughput exper-

iments data, manually curated datasets and prediction methods. Only high confidence drug-protein relationships (confidence

score R 700) of the type ‘‘inhibition" and ‘‘activation" were considered. STITCH uses PubChem Chemical Identifiers (CID) for

drugs and mapping to DrugBank IDs was done through the chemical sources file provided by STITCH. Protein Ensembl iden-

tifiers were mapped to gene Ensembl identifiers using biomaRt (GRCh37, v2.50.3)54.

d ChEMBL37 (download: May 2022): ChEMBL provides drug targets which have been manually curated from literature. Drug tar-

gets are identified by ChEMBL IDs with mapping to UniProt Accessions provided by ChEMBL. UniProt identifiers were then

mapped to gene Ensembl identifiers through the UniProt REST API65.

In this analysis we considered drug target genes resulting from the following combinations: DrugBank/DGIdb, DrugBank/STITCH,

Ruiz/DGIdb, Ruiz/STITCH, and ChEMBL/ChEMBL. The number of drugs and drug target genes per indication is shown in Table S6.

Transcript and protein level heritabilities
Transcript and protein level cis-heritabilities were estimated from QTL effects using a restricted maximum likelihood method (reml)

with the LDAK-thin heritability model. The LDAK heritability model assumes that the expected heritability contributed by each SNP

depends on its MAF and LD. The analysis was conducted with the LDAK software (v5.2; reml method55) based on all SNPs in prox-

imity of the transcript/protein (± 500 kB) and the UK10K reference panel.61 We set the –power to�0.25 and the –ignore-weights flag

to YES to specify the LDAK-thin heritability model. The analysis was restricted to high-quality SNPswhichwere defined as being non-

ambiguous, having a sample size > 5,000 and a MAF R 0.01.

Protein heritabilities were based on the deCODE plasma protein dataset14 and transcript heritabilities for whole blood on the eQTL-

Gen dataset.13 Of the 14,022 protein-coding transcripts in eQTLGen, reml converged for 12,218. Likewise, 3,716 of the 4,502 auto-

somal proteins in deCODE converged (estimated cis-heritabilities are in Table S10). Genes not converging were omitted in cis-her-

itability downstream analyses.

To calculate the difference in heritabilities between drug target and non-drug target genes, we considered all transcripts and pro-

teins measured in the respective study which were classified accordingly. Per trait, the difference in heritability was then calculated

through a two-sided t-test. Heritability tests were only performed for traits with at least three drug targets within the respective set of

measured transcripts/proteins.

Networks
To calculate network diffusion scores, we used the following three networks:

d Search Tool for Retrieval of Interacting Genes/Proteins (STRING) v1132: The protein-protein (PPI) interaction network results

from predictions based on genomic context information, coexpression, text-mining, experimental biochemical/genetic data

and curated databases (curated pathways and protein-complex knowledge). Protein Ensembl identifiers were mapped to

gene Ensembl identifiers using biomaRt (GRCh37, v2.50.3).54 We use interaction confidence scores as edge weights.

d CoXRNAseq33: This network was constructed by first performing a principal component analysis on the gene coexpression

correlation matrix of 31,499 RNA-seq samples. Reliable principal components were retained from which the final network

was constructed via Pearson correlations. We filtered pairwise interactions to only retain those with z-scores above 4. Genes

were reported with Ensembl identifiers and z-scores were used as edge weights.

d Functional Associations using Variational Autoencoders (FAVA)34: This network is based on single cell RNA-seq read-count

data from the Human Protein Atlas and proteomics data from the PRoteomics IDEntifications (PRIDE) database. First, the

high-dimensional expression data was reduced into a latent space using variational autoencoders. From this latent space,

the network was derived via pairwise Pearson correlations. Each reported interaction has a score which we use as edge weight

(final network reports interactions with scores above 0.15). Protein Ensembl identifiers were mapped to gene Ensembl identi-

fiers using biomaRt.

A summary of network properties is given in Table S14. In all analyses, we use weighted networks, and we refer to weighted node

degrees (i.e., sum of edge weights linking the node of interest to adjacent nodes) as node degrees.
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Network diffusion
We calculated network diffusion scores based on Markov random walks. Starting from an initial node distribution p0, a stationary

distribution is calculated based on network connectivity. This diffusion process depends on a restart parameter r which determines

how often the random walker returns to the initial values. Analytically, the stationary distribution (pN) is given by:

pN = ðI � ð1 � rÞ$WÞ� 1$p0 (Equation 1)

whereW is the column-normalized weighted adjacencymatrix and I the identitymatrix of the same dimension asW66. The initial node

distribution p0 was determined by the squared z-scores derived from the gene p values (normalized to sum up to 1). Genes that could

not be tested by a givenmethod had their initial value set to 0. Additionally, we tested the performance of network diffusion on random

initial distributions p0. For each trait, a random distribution was generated which all were different, but consistent across analyses.

Resulting network diffusion scores pN were ranked for AUC calculations, and the top 1% scored genes were used in the enrichment

analyses.

Network manipulations, visualization and degree calculations were performed with the R igraph package v1.3.5.52

QUANTIFICATION AND STATISTICAL ANALYSIS

Concordance of gene scoring methods
We tested whether prioritized genes were similar or dissimilar between pairs of methods. First, only genes (based on Ensembl iden-

tifiers) that were common between the two tested methods were selected into the gene background. Then, prioritized genes were

defined at different top percentile cut-offs (0.1%, 0.2%, 0.5%, 1%, 2%, 3%, 5%, 7.5%, 10%). The enrichment of prioritized genes

between methods was quantified by a Fisher’s exact test using common genes as background genes. When calculating median

ORs, ORs of traits for which no prioritized genes overlapped at a given percentile were set to 1. Results of this analysis are presented

in the result section ‘‘concordance of prioritized genes among gene scoring methods".

Drug target enrichment and AUC calculations
Enrichment for drug target genes was calculated through two-sided Fisher’s exact tests. A contingency table was constructed based

on testable genes (i.e., background genes), with genes categorized into prioritized (top 1% or 5% for the pQTL-GWAS) and drug

target genes. In rare instances (i.e., pQTL-GWAS background genes and ChEMBL/ChEMBL drug targets) where diagonal values

were 0, these were changed to 1. If no prioritized gene coincided with a drug target gene, the resulting OR was set to 1 (for visual-

ization purposes this was not done in barplots where each trait was shown individually). AUC values and standard errors were calcu-

lated using the R package pROC v1.15.3.53

Log-OR and AUC values (both are denoted bi herein) were aggregated across traits and drug databases (m = 30$5 = 150 obser-

vations per method) as follows:

b =
1

m

Xm

i

bi (Equation 2)

with corresponding variance:

varðbÞ = 10 $S $R $S$1
�
m2 (Equation 3)

where S is a diagonal matrix of sizemxm containing standard errors of bi andR is the correlation matrix between drug databases and

traits. This matrix was derived from the Kronecker product of the drug database correlation matrix and phenotypic trait correlation

matrix (Tables S6 and S7). The drug database correlation matrix was derived on the gene level (i.e., 1 if the gene was a drug target for

any of the 30 traits, 0 if not) and the phenotypic trait correlation on individual-level data from the UKBB (codes in Table S1B). b was

referred to as the overall AUC/ log-OR (overall OR after an exponential transformation).

To calculate the statistical difference of b1 and b2 for method 1 and 2, respectively, we derived the variance of the difference as

follows:

varðb1 � b2Þ = varðb1Þ + varðb2Þ � 2$covðb1;b2Þ (Equation 4)

with covðb1;b2Þzr3 ð10 $S1 $R $S2 $1 =m
2Þ, where r is the empirical correlation between b1 and b2. From the resulting z-score, a two-

sided p value was calculated and significance was defined at a p value below 0.05. Results of these analyses are presented in the

result sections ‘‘enrichment of prioritized genes for drug targets" and ‘‘network diffusion to prioritize drug target genes".
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Enrichment of proteins for drug targets
We conducted binomial tests to verify whether the set of testable (i.e., at least 1 pQTL) and measured proteins (�1,870 and� 4,450,

respectively) were enriched for drug target genes. We performed the analysis on each of the five drug target definitions and pro-

ceeded as follows: 1) we extracted the number of testable/measured proteins that are drug targets (‘‘number of successes"), 2)

considering all protein-coding autosomal genes (19,430), we extracted those that are drug targets (‘‘number of trials"), 3) we deter-

mined the proportion of testable/measured proteins among all protein-coding genes (‘‘expected probability of success"). From these

numbers, we conducted two-sided exact binomial tests (Table S15).
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