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Summary 
Competition for scarce water resources in the Volta River Basin (VRB) of West Africa will 

increase in the near future due to the combined effects of rapid population growth and climate 

change. Residents are dependent on subsistence, mainly rainfed agriculture that is sensitive to 

climate variabilities. Recurrent floods and droughts damage properties and take lives. 

Information on water resources and their future trends is fundamental for water actors, as the 

basis for proper management and implementation of adequate measures to bolster resilience to 

water scarcity and foster water security. 

This PhD thesis proposes a novel and clear demonstration of combining the Water Accounting 

Plus (WA+) framework with hydrological modelling and climate change scenarios to report on 

the current and future states of water resources in the VRB. WA+ is a standardized framework 

that provides a comprehensive view of the water resources in terms of water availability and 

consumptive uses with respect to different land uses. 

The adopted methodological framework addresses key challenges posed by large-scale 

hydrological modelling in data scarce environments such as the VRB. These challenges include 

the issue of missing data in streamflow records, the reliability of satellite and reanalysis data 

for forcing or calibrating hydrological models as an alternative to in-situ measurements, and 

the accuracy of the spatial and temporal representation of hydrological processes with spatially 

explicit models. A novel multivariate model calibration strategy is proposed to improve the 

representation of hydrological flux and state variables simulated with the fully distributed 

mesoscale Hydrologic Model (mHM). The proposed calibration strategy relies on the use of 

multiple satellite and reanalysis datasets from various sources. Then, a large ensemble of 

climate models are used to assess the impacts of climate change on water resources under 

various scenarios. The outputs of the mHM model are used to feed the WA+ framework to 

comprehensively report on the current and future conditions of water resources in the VRB. 

The results show a clear increase in the projected exploitable water fraction while a decrease is 

expected in the available water fraction in the near future (2021-2050). Consequently, there is 

a clear need for adaptation measures to increase the water storage capacity in the VRB to 

facilitate a good exploitation of the projected increase in the net inflow, which would be 

beneficial for agriculture production and hydropower generation. 
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Résumé 
La compétition pour l'usage de l'eau dans le bassin de la Volta (VRB) en Afrique de l'Ouest va 
s'intensifier dans un futur proche en raison des effets combinés de la croissance démographique 
galopante et du changement climatique. Les populations du bassin dépendent fortement d'une 
agriculture pluviale de subsistance qui demeure très sensible aux variabilités climatiques. Les 
inondations et les sécheresses récurrentes endommagent les infrastructures et créent des pertes 
en vie humaine. Les informations sur les ressources en eau et leurs tendances futures sont 
essentielles pour les acteurs de l'eau, car elles constituent la base d'une bonne gestion de l'eau 
et de la mise en œuvre de mesures adéquates pour renforcer la résilience à la pénurie d'eau et 
favoriser la sécurité de l'eau. 

Cette thèse de doctorat propose une démonstration élaborée et innovante de la combinaison du 
Water Accounting Plus (WA+) avec la modélisation hydrologique et les scénarios de 
changement climatique pour faire un rapport de l'état actuel et futur des ressources en eau dans 
le VRB. WA+ ou "comptabilité de l'eau" est un outil standard de gestion de l'eau qui fournit 
une analyse complète des ressources en eau en termes de disponibilité et de consommation 
d'eau en fonction de différents usages du sol. La méthodologie adoptée aborde les principaux 
défis posés par la modélisation hydrologique à grande échelle dans des régions où les données 
sont rares, comme le VRB. Ces défis comprennent la question des données manquantes dans 
les séries temporelles de débit, la fiabilité des données satellitaires et de réanalyse pour faire 
tourner ou calibrer des modèles hydrologiques comme alternative aux mesures sur site, et la 
justesse de la représentation spatiale et temporelle des processus hydrologiques avec des 
modèles spatialement distribués. Une nouvelle stratégie de calibration multivariée est proposée 
pour améliorer la représentation des processus hydrologiques avec le modèle mesoscale 
Hydrologic Model (mHM). La nouvelle stratégie de calibration de modèle repose sur 
l'utilisation de plusieurs données satellitaires et de réanalyse provenant de diverses sources. Un 
large ensemble de modèles climatiques est utilisé pour évaluer les impacts du changement 
climatique sur les ressources en eau en considérant divers scénarios. Les sorties du modèle 
mHM sont utilisées pour alimenter le WA+ afin de faire une description complète des 
conditions actuelles et futures des ressources en eau dans le VRB. 

Les résultats montrent une nette augmentation de la fraction d'eau exploitable dans un futur 
proche (2021-2050), tandis qu'une diminution de la fraction d'eau disponible est attendue. Par 
conséquent, il est opportun d'adopter des mesures d'adaptation pour augmenter la capacité de 
stockage de l'eau dans le bassin de la Volta afin de faciliter une bonne exploitation de 
l'augmentation prévue de l'apport net en eau, ce qui serait bénéfique pour la production agricole 
et la production hydroélectrique.   
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General Introduction 
 

 

Keep exploring. Keep dreaming. Keep asking why. 

Don’t settle for what you already know. 

Never stop believing in the power of your ideas, 

your imagination, your hard work to change the world. 

Barack Obama 

 

Nothing in life is to be feared, it is only to be understood.  

Now is the time to understand more, so that we may fear less.  

Marie Curie 
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1.1 Research context 

1.1.1 Water scarcity under climate change 

The unavailability of reliable water resources for consumptive uses has been the limiting factor 

for development in many parts of the world (Hoekstra et al., 2012; Milly et al., 2005). Chronic 

water scarcity, exacerbated by climate change, is a big threat to prosperity in many regions, 

exposing countries to fragility and instability (Damania, 2020; World Bank Group, 2016). It is 

estimated that 4 billion people, or about one-half of the world’s population, live in areas of 

severe physical water scarcity for at least one month per year (Mekonnen and Hoekstra, 2016). 

About 1.6 billion people, or almost one quarter of the world's population, face economic water 

shortage, which occurs when there is a lack of adequate infrastructure to ensure access to water 

(UN-Water, 2020). Moreover, it is foreseen that water scarcity will keep increasing in the 

future, with about 52% of the world’s population living in water-stressed regions by 2050 

(Kölbel et al., 2018). Climate change, urbanization, population growth, deforestation and land 

degradation are likely to exacerbate water scarcity, which might lead to food insecurity and to 

conflicts between those who share the resources (Gaupp et al., 2020; Zeitoun et al., 2016). In 

addition, projected water scarcity by 2030 is expected to displace between 24 million and 700 

million people living in arid and semi-arid regions (UN-Water, 2009). Reliable information on 

the current and future states of water resources is therefore essential for coping with water 

scarcity and strengthening water security (Vörösmarty et al., 2010). 

 

1.1.2 Water accounting for evidence-informed water management 

While water problems around the world are increasing, information useful for water 

management seems to be decreasing (Bastiaanssen et al., 2015). Decision in water resources 

management have long time been taken without reliable spatially explicit information on water 

resources, or without considering interaction among natural resources. Quantified and reliable 

information on the amount of water available, utilizable and utilized by means of consumptive 

use can help decision and policy makers to develop and implement mitigation measures (Karimi 

et al., 2013b). Therefore, a systematic approach is needed to communicate how water is being 

used and how water resource developments will affect present and future water use patterns. 

This should lead to the efficient, effective and sustainable use of scarce water resources for food 

security and economic development, while maintaining the ecosystem services. Information on 

current and future water resources and their uses is thus fundamental for water actors. Water 

accounting frameworks are useful tools that can support water management as they serve to 
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provide a comprehensive view of the state of water resources. Among the existing water 

accounting frameworks (cf. Section 8.1), Water Accounting Plus (WA+) is a standardized 

framework that provides estimates of manageable and unmanageable water flows, stocks, 

consumption among users, and interactions with land use (Karimi et al., 2013a). The results of 

WA+ are presented with standardized sheets accompanied with a set of indicators that 

summarize complex hydrological processes in a more accessible format to a broad panel of 

water professionals. Input data for WA+ are generally derived from satellite remote sensing 

observations, thereby making WA+ a suitable tool for data scarce regions. However, there are 

limitations in the use of earth observation data because of their usually coarse spatial 

resolutions, which limit the applicability of WA+ to large river basins. Moreover, using only 

satellite data poses challenges for closing the water balance (FAO and IHE Delft, 2020). 

Alternatively, hydrological models can be used to simulate hydrological flux and state variables 

(e.g., evaporation, runoff) necessary for analyses with the WA+ framework (Delavar et al., 

2020). In this case, climate change scenarios can be integrated in the hydrological modelling to 

predict future water resource conditions with WA+, which would be desirable for developing 

mitigation and adaptation policies (Hunink et al., 2019). 

 

1.2 Research objectives and challenges 

1.2.1 Main research objective and hypothesis 

The overarching goal of this PhD thesis is to demonstrate the applicability of the WA+ 

framework in combination with hydrological modelling and climate change scenarios in the 

Volta River basin (VRB). The VRB is a transboundary basin located in the semi-arid to sub-

humid climatic zones of West Africa. It covers about 415,600 km2, which are occupied at 82.5% 

by Burkina Faso and Ghana. The population in the VRB was estimated at 23.8 million people 

in 2010 and is expected to reach 38.4 million in 2030 (Williams et al., 2016). Challenges for 

transboundary water resources management are increasing in the VRB as water demand is 

expected to increase by 1000% between 2000 and 2025, while the upstream and downstream 

countries have different priorities in terms of water uses (Biney, 2010). Burkina Faso 

increasingly builds reservoirs to develop small-scale irrigation upstream (de Fraiture et al., 

2014), while Ghana prioritises hydropower production downstream (Boadi and Owusu, 2019). 

The diverging national priorities for water uses remain a source of tension between the 

countries. In this context, an independent and unbiased assessment of the spatiotemporal 
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availability of water resources and their future evolutions could improve water governance and 

potentially alleviate the existing tensions.  

The main research hypothesis is that WA+ can be combined with hydrological modelling and 

climate change scenarios to comprehensively report on the current and future states of water 

resources in the VRB. Reaching the main research objective requires answering several 

research questions and overcoming many challenges posed by large-scale hydrological 

modelling in data scarce environments such as the VRB. These challenges include: (i) the 

missing data issues in time series of streamflow records needed for hydrological modelling, (ii) 

the reliability of satellite and reanalysis data for forcing or calibrating hydrological models as 

an alternative to in-situ measurements, and (iii) the accuracy of the spatial and temporal 

representation of hydrological processes with spatially explicit models. 

 

1.2.2 Missing streamflow data challenge 

Missing data in streamflow records is a universal problem in hydrology, but exacerbated in 

developing countries where limited resources exist for data collection and management 

(Elshorbagy et al., 2000; Serrat-Capdevila et al., 2016). Missing values in streamflow records 

originate from various factors including the malfunctioning or failure of monitoring equipment, 

limited accessibility to measurement sites and human-induced errors. Water resources studies 

including hydrological modelling are limited by problems of missing values in observed 

streamflow data (Giustarini et al., 2016; Tencaliec et al., 2015). It is therefore essential to fill 

the gaps in streamflow time series before using them in water resources assessment studies 

(Bárdossy and Pegram, 2014; Enders, 2010). Gap-filling methods range from simple nearest 

neighbour data transfer methods (Bárdossy and Pegram, 2014; Giustarini et al., 2016) to very 

sophisticated approaches such as dynamic state-space models (Amisigo and van de Giesen, 

2005; Berendrecht and van Geer, 2016) and various forms of artificial neural networks 

(Dastorani et al., 2010; Tfwala et al., 2013). Each method has its advantages and limitations as 

described in different reviews (Harvey et al., 2012; Marwala, 2009). An alternative to classical 

gap-filling methods is the Direct Sampling (DS) method (Mariethoz et al., 2010), which is a 

multiple-point statistics (MPS) algorithm based on pattern reproduction. In contrast to 

deterministic methods, DS has the advantage of being a stochastic method that provides 

probabilistic estimates of the missing values, thereby allowing uncertainty quantification, 

which is very important for hydrograph estimation (Beven, 2016). This PhD thesis answers 

some questions related to the application of the DS method. Can the DS method be used to 
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simulate missing values under various lengths of data gaps? What is the performance of the DS 

method for different climatic zones and hydrological regimes in the VRB? How to choose the 

predictor station to obtain the most accurate simulations?  

 

1.2.3 Reliable meteorological data challenge 

Precipitation is the key input variable for hydrological modelling because it determines the 

spatiotemporal variability of other hydrological fluxes and state variables (Bárdossy and Das, 

2008; Thiemig et al., 2013). The in-situ measurements of precipitation have limitations, which 

include limited and uneven areal coverage, deficiencies in instruments and costly maintenance 

(Awange et al., 2019; Harrison et al., 2019; Kidd et al., 2017). These drawbacks have led to 

the advent of precipitation estimation from space (Barrett and Martin, 1981), which produces 

spatially homogeneous estimates and covers inaccessible regions with uninterrupted records 

over time (Beck et al., 2019b; Funk et al., 2015). The advent of satellite-based rainfall products 

(SRPs) has opened up new avenues for large-scale hydrological modelling, especially in data 

sparse regions (Hrachowitz et al., 2013; Serrat‐Capdevila et al., 2014; Sheffield et al., 2018). 

However, SRPs also have limitations, which include measurement bias, inadequate 

spatiotemporal resolutions (e.g., for extreme event simulation) and shortness of the records for 

some applications (e.g., climate change impact assessment) (Marra et al., 2019). Many SRPs 

have been developed over the past decades with different objectives and characteristics that are 

reviewed in the literature (e.g. Le Coz and van de Giesen, 2019; Maggioni et al., 2016; 

Maidment et al., 2014; Sun et al., 2018). In addition to SRPs, precipitation estimates can be 

obtained from atmospheric retrospective analysis (or reanalysis) datasets (Lorenz and 

Kunstmann, 2012; Schröder et al., 2018). Reanalysis datasets are sometimes preferred over 

SRPs because of their usually long-term records suitable for climate change studies and because 

of their higher performance in predicting complex climate systems (Potter et al., 2018; Seyyedi 

et al., 2015). While SRPs are subject to systematic biases, reanalysis products have 

uncertainties resulting from their model parametrization and low spatial resolution with poor 

representation of sub-grid processes (Bosilovich et al., 2008; Laiti et al., 2018). With the 

increasing number of SRPs and reanalysis datasets, it is fundamental to evaluate their adequacy 

for hydrological modelling. Choosing the best precipitation datasets that generate the most 

plausible hydrological processes in a region is a prerequisite to any water resources assessment 

studies. Research questions related to the reliability of meteorological datasets for large-scale 

hydrological modelling are addressed in this thesis. What is the impact of different gridded 
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rainfall and temperature datasets on the simulation of hydrological fluxes and state variables? 

How important is the choice of meteorological datasets for the representation of spatial 

patterns versus temporal dynamics of hydrological processes? 

 

1.2.4 Accurate process representation challenge 

With the development of distributed hydrological models that facilitate large-scale predictions 

(Clark et al., 2017; Fatichi et al., 2016; Ocio et al., 2019), there is a growing interest in the 

accurate spatiotemporal representation of processes (Baroni et al., 2019; Hrachowitz and Clark, 

2017; Paniconi and Putti, 2015). Hydrological models are conventionally calibrated using 

streamflow data. However, a good prediction of streamflow does not guarantee a reliable spatial 

and temporal representation of other hydrological fluxes and state variables when using a 

spatially distributed hydrological model (Clark et al., 2016; Minville et al., 2014). This is 

explained by the fact that streamflow is the result of several inter-linked processes, thereby it 

masks spatial heterogeneity (Tobin and Bennett, 2017; Wambura et al., 2018). The increasing 

availability of satellite-based earth observation data has promoted the development of spatial 

hydrology and large domain water management applications including the monitoring of floods 

and droughts (Revilla-Romero et al., 2015; Senay et al., 2015; Teng et al., 2017; Wu et al., 

2014). Multivariate parameter estimation based on the simultaneous use of multiple satellite-

derived remote sensing data sources can reduce the feasible parameter search space and lead to 

better model performances by improving the internal model dynamics and the representation of 

spatial differences in hydrological processes (Clark et al., 2017; Shafii and Tolson, 2015). 

However, satellite data are not free of uncertainties and using different data from different 

satellite-derived remote sensing products simultaneously is not straightforward so that the value 

of such an approach remains rather under-explored (Rajib et al., 2018b; Silvestro et al., 2015). 

Combining multiple data sources in model calibration requires a meaningful integration of the 

datasets, which should harness their most reliable contents to avoid the accumulation of their 

uncertainties and mislead the parameter estimation procedure (Dembélé et al., 2020a). 

Although satellite products are characterized by uncertainties, their most reliable key feature is 

the representation of spatial patterns, which is a unique and relevant source of information for 

distributed hydrological models (Dembélé et al., 2020b; Stisen et al., 2018). Key research 

questions are formulated to address the challenge of the spatial representation of dominant 

hydrological processes in a spatially distributed model. Is it possible to simultaneously calibrate 

a distributed hydrological model with multiple non-commensurable variables without 
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significantly deteriorating the streamflow signal? How can a distributed hydrological model 

be calibrated using only the spatial patterns of remote sensing data to improve the spatial 

patterns of hydrological fluxes and state variables? What is the importance of model calibration 

strategies for improving process representation in multivariate calibration with satellite and 

reanalysis data? 

 

1.3 Research questions 

The main fundamental research questions of this PhD thesis concern the applicability of the 

WA+ framework under climate change. How can hydrological modelling and climate change 

scenarios be used to feed the WA+ framework for predicting water accounts? How will climate 

change impact on future water accounts in the VRB? Should we be prepared for a wet or a dry 

future? To address these questions, the abovementioned challenges (cf. Section 1.2) on the 

accurate spatiotemporal representation of hydrological processes with the use of reliable 

satellite and reanalysis datasets need to be addressed first. A robust methodological framework 

is therefore deployed to address the research questions and achieve the main research goal. 

 

1.4 Methodological framework 

The methodological framework of this PhD thesis is articulated around different steps, which 

consist in addressing key identified challenges in hydrology and answering fundamental 

research questions. First, the Direct Sampling method (Mariethoz et al., 2010) is used for the 

gap-filling of streamflow time series. Direct Sampling is a non-parametric and stochastic 

method that can generate new simulated values based on a conditional resampling of a provided 

training dataset. Secondly, a clear demonstration of the benefits of satellite and reanalysis 

datasets in improving the process representation of the fully distributed mesoscale Hydrologic 

Model (mHM) (Kumar et al., 2013; Samaniego et al., 2010) is proposed. Then, a large ensemble 

of global climate models (GCMs) and regional climate models (RCMs) under various 

representative concentration pathways (RCPs) is used to assess the impacts of climate change 

on water resources in the VRB. Finally, the WA+ framework is combined with hydrological 

modelling and climate change scenarios to provide an evidence-informed report on water 

conditions under current and future situations. 

Overall, this PhD thesis contributes to the state-of-the-art by striving to provide answers to 

fundamental research questions that are identified as some of the key unsolved problems in 
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hydrology in the twenty-first century (i.e. uncertainty in large-scale measurements and data, 

spatial heterogeneity and modelling methods; Blöschl et al., 2019; Wilby, 2019). The efforts 

deployed to address the identified challenges also respond to the recent call of the scientific 

community to embrace a fourth paradigm in hydrology (i.e. data-intensive science, Peters-

Lidard et al., 2017). Moreover, the main goal of this thesis is a scientific contribution to the UN 

sustainable development goals (SDGs), as it aligns with the SDG 6, and particularly the target 

6.4, which is: “by 2030, substantially increase water-use efficiency across all sectors and ensure 

sustainable withdrawals and supply of freshwater to address water scarcity and reduce the 

number of people suffering from water scarcity” (UN-Water, 2015). 

 

1.5 Outline of the thesis 

The outline of the thesis is provided here with a brief summary of the chapters (Figure 1.1). 

Most of the results presented in this thesis have been presented to different conferences and 

published in international peer-reviewed scientific journals. A list of the presentations and 

papers resulting from this PhD thesis is provided at the Page 251. Therefore, the resulting thesis 

is a collection of papers published (Chapters 3, 5 and 6), submitted for publication (Chapter 4) 

and in preparation for publication (Chapters 7 and 8) in scientific journals. However, the content 

of the papers are modified to interconnect the chapters and avoid repetitions in the thesis. For 

instance, an entire chapter is dedicated to the description of the study area (Chapter 2), which 

is no longer presented in the subsequent chapters. Moreover, the description of the hydrological 

model and the modelling datasets are only presented in the Chapter 4, although the same model 

configuration is used from the Chapter 4 to the Chapter 8. Finally, a unique list of appendices 

and a unique list of references are provided after the general conclusion (Chapter 9). The thesis 

is organized as follows: 
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Figure 1.1. Outline of the main chapters of the thesis 

 

Chapter 1 introduces the research undertaken in this thesis. It gives an overview of the research 

motivation, the research objectives, the fundamental questions addressed, the methodological 

development and the outline of the thesis.  

Chapter 2 provides a comprehensive description of the Volta River basin, which is the study 

area for this thesis. 

Chapter 3 proposes a robust framework for filling gaps in time series of streamflow data using 

the Direct Sampling (DS) approach. The methodological development includes the selection of 

predictor stations, the optimization of the DS parameters and the gap-filling of streamflow data 

collected in the Volta River basin. First, the performance of the method is assessed by applying 

it to various synthetic missing data scenarios. Then, a real-case application is done for the 

existing gaps in the streamflow records. Moreover, this study includes the assessment of the 

method for different climatic zones and hydrological regimes and for different upstream-

downstream relations among the gauging stations used for gap filling (Dembélé et al., 2019).  

Chapter 4 assesses the skill of ten satellite-based precipitation products (TAMSAT, CHIRPS, 

ARC, RFE, MSWEP, GSMAP, PERSIANN-CDR, CMORPH-CRT, TRMM3B42, 

TRMM3B42-RT), and of seven reanalysis precipitation products (JRA55, EWEMBI, WFDEI-

GPCC, WFDEI-CRU, MERRA2, PGF, ERA5) if used as forcing data in the mHM hydrological 

model (Dembélé et al., 2020c). The subsequent ability of the meteorological datasets to 
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reproduce the temporal and spatial dynamics of several hydrological flux and state variables 

(i.e., streamflow, actual evaporation, soil moisture and terrestrial water storage) is evaluated. In 

total, 102 rainfall-temperature input data combinations are tested using six different temperature 

datasets (JRA55, EWEMBI, WFDEI, MERRA2, PGF, ERA5) for the calculation of potential 

evaporation. The mHM hydrological model is recalibrated for each of the 102 input data 

combinations and the outputs are evaluated with in-situ streamflow data, soil moisture data 

from ESA CCI, evaporation data from GLEAM and terrestrial water storage data from GRACE. 

Chapter 5 evaluates the performance of twelve different global evaporation products 

(MOD16A2, SSEBop, ALEXI, CMRSET, SEBS, GLEAM v3.2a, GLEAM v3.3a, GLEAM 

v3.2b, GLEAM v3.3b, ERA5, MERRA-2 and JRA55) when used as calibration variables in 

hydrological modelling. The ability of the gridded evaporation datasets in improving the 

spatiotemporal variability of multiple hydrological state and flux variables (i.e. streamflow, 

evaporation, soil moisture and terrestrial water storage) under multivariate calibration strategies 

with streamflow data is assessed using the mHM model (Dembélé et al., 2020a). Four different 

calibration strategies that differently harness the information content of the evaporation 

products are tested: (i) temporal basin average, (ii) temporal pixel-wise, (iii) spatial bias-

accounting, and (iv) spatial bias-insensitive. A set of 48 combinations of evaporation products 

and calibration strategies are tested and compared to the benchmark model calibrated only on 

streamflow. Independent datasets of soil moisture (ESA CCI) and terrestrial water storage 

(GRACE) are used for a process-diagnostic evaluation. 

Chapter 6 tests a novel multivariate parameter estimation approach for modelling daily 

hydrological flux and state variables based on the simultaneous incorporation of spatial patterns 

derived from three remote sensing products in the mHM model. Each of the remote sensing 

products describes a different component of the hydrological system (i.e., evaporation from 

GLEAM, soil moisture from ESA-CCI and terrestrial water storage change from GRACE). A 

new bias insensitive multicomponent spatial pattern metric used as objective function is 

developed to incorporate the different data sources in the calibration procedure. The goal is to 

investigate the potential improvement of the predictions of the spatial and temporal patterns 

together with the resulting effect on streamflow predictions, as compared to traditional model 

calibration on streamflow data alone (Dembélé et al., 2020b). 

Chapter 7 provides a comprehensive evaluation of the impacts of climate change on water 

resources in the VRB. A large ensemble of twelve GCMs that are dynamically downscaled by 

five RCM from CORDEX-Africa under three representative concentration pathways (RCP2.6, 
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RCP4.5 and RCP8.5) is used. A multivariate bias correction is applied to the climate projection 

datasets before using them to force the mHM hydrological model. The past and future trends in 

climatic variables (i.e., precipitation, temperature and potential evaporation) and hydrological 

variables (i.e., streamflow, surface runoff, actual evaporation, groundwater recharge, soil 

moisture and terrestrial water storage) are analysed over the period from 1991 to 2100. 

Chapter 8 demonstrates the possibility of using the Water Accounting Plus (WA+) framework 

combined with hydrological modelling to comprehensively report on the state of water 

resources under climate change. Water fluxes, stocks and flows are predicted with the fully 

distributed mHM hydrological model for the historical period 1999-2020 and the near term 

future period 2021-2050. A large ensemble of nine GCMs and four RCMs under the RCP8.5 

scenario is used. The WA+ framework is fed with hydrological processes derived from the 

mHM model. An evidence-informed reporting on the state and trends of water resources is 

proposed for the VRB. 

Chapter 9 summarizes the key findings of this thesis, draws conclusions and offers suggestions 

for future studies.  

 

 

  



Chapter 1 

12 
 

 

 



 
 

Chapter 2 
 

 

Case Study: Volta River Basin 
 

 

How could drops of water know themselves 

to be a river? Yet the river flows on. 

Antoine de Saint-Exupery 

 

When you put your hand in a flowing stream, 

you touch the last that has gone before 

and the first of what is still to come. 

Leonardo da Vinci 
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2.1 Location and overview 

The Volta River Basin (VRB) is a major transboundary basin in West Africa (Figure 2.1). It is 

the ninth largest drainage basin in sub-Saharan Africa (UNEP-GEF, 2013), and is located 

between latitudes 5°40’ N and 14°55’ N and longitudes 2°20’ E and 5°25’ W. The VRB covers 

approximately 415,600 km2 and represents almost 28% of the African West Coast (Frenken, 

1997). The basin area lies across parts of six countries, namely, Benin, Burkina Faso, Côte 

d’Ivoire, Ghana, Mali and Togo. Burkina Faso and Ghana have the largest portions with 

respectively 42.3% and 40.2% of the basin area (Table 2.1). Togo has 6.4% of the basin area 

and the remaining 11.1% is shared among Benin, Côte d’Ivoire and Mali. The VRB was home 

to 23.8 million people in 2010 and projected to reach 38.4 million in 2030, and 56.1 million in 

2050 (Williams et al., 2016). 

 
Data source: GADM & HydroSHEDS, 2016 

Figure 2.1. Volta River Basin in West Africa 
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Table 2.1. Proportions of the Volta River Basin in the riparian countries 

Countries 
Area of basin 

(km2) 
% of basin 

% of country 

area in basin 

% of basin 

population 

Benin 15,375 3.7 12.1 2.6 

Burkina Faso 175,740 42.3 62.4 47.7 

Cote d'Ivoire 13,422 3.2 3.1 2.2 

Ghana 167,165 40.2 70.1 35.5 

Mali 17,440 4.2 1 3.4 

Togo 26,463 6.4 45 8.6 

Total 415,605    

Source: adapted from Williams et al. (2016) 

 

2.2 Physical features 

2.2.1 Relief 

The relief of the VRB is predominately flat with altitudes ranging from zero to 940 m (Figure 

2.2b). Most of the basin topography lies below 400 m above sea level with a mean altitude of 

about 255 m (Dembélé et al., 2020c). The global slope index is between 25 and 50 cm km-1 

(Moniod et al., 1977). 

The eastern border of the VRB is delimited by a series of hills and mountain ranges, namely 

from south to north, the Akwapim Range, the Togo Mountains, the Fazao Mountains and the 

Atacora Range in Benin, which reaches the Niger basin, with the Oti River flowing along its 

western side. The Kwahu plateau starts at the Akosombo Gorge and leads northwestwardly. 

The Banfora plateau is the main relief on the north-western part of the basin (De Condappa and 

Lemoalle, 2009). 
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Figure 2.2 Physical and hydroclimatic characteristics of the Volta River basin. Adapted from 
Dembélé et al. (2020a). 

 

2.2.2 Geology 

Three major geological provinces underlie the VRB. Two of them underlie over 90 % of the 

basin (Mul et al., 2015), namely the basement crystalline province (crystalline and metamorphic 

rock formations) of the Precambrian age associated with the West African Craton, and the 

consolidated sedimentary province (Voltaian formations) of the Proterozoic to Palaeozoic ages. 

The third province is the unconsolidated sedimentary province of the Proterozoic to Palaeozoic 

ages and tertiary sedimentary rocks (Continental Terminal), consisting mainly of sandstones, 

schists, conglomerate and dolomite (Barry et al., 2005; Martin, 2006; Obuobie and Barry, 2012; 

Sandwidi, 2007). The most dominant geological province in the VRB is the basement 

crystalline province, which underlies 80% of Burkina Faso and 54% of Ghana (Mul et al., 

2015). It is mainly composed of metamorphic, igneous, granite-gneiss-greenstone rocks and 

anorogenic intrusions. The consolidated sedimentary province mainly underlies the central-

west and southwestern parts of the VRB. It consists of sandstone intercalated with politic schist, 

arkoses, shale, dolomitic limestone and conglomerate, sandy and pebbly beds, and mudstones 
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(Williams et al., 2016). Figure 2.3 shows the lithological map of the VRB based on the Global 

Lithological Map (GLiM v1.0; Hartmann and Moosdorf, 2012). 

 

Figure 2.3. Lithological classes in the Volta River Basin based on GLiM v1.0 data 

 

2.2.3 Soil 

The formation of soils in the VRB resulted from weathered parent materials of the mid-

Palaeozoic age or older, with a long period of leaching (Andah et al., 2003; Benneh et al., 

1990). The dominant soil types in the VRB are Luvisols except for the northern areas where 

Regosols and Arenosols are dominant. These Luvisols have unstable structures and with low 

nutrient content, which facilitate their erosion and make them susceptible to slaking (Mul et al., 

2015). The coarse-textured Regosols resulting from unconsolidated materials are prone to 

erosion due to low coherence of the soil matrix material (Mando, 1997). Their high permeability 

and low water-holding capacity make them vulnerable to drought. The Arenosols with high 
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clay content are present in the upland areas. Their low water-holding capacity and low fertility 

limit their suitability for agriculture. Lithosols are the most important soils after Luvisols and 

they are found in the southern parts of the VRB. They are largely well-drained, gravelly with a 

light-textured matrix. The organic content and fertility of the Lithosols increase southwards 

(Mul et al., 2015). 

 

2.2.4 Land Cover and Land Use 

The dominant land cover in the VRB is savannah, which is composed of grassland interspersed 

with shrubs and trees over 75% of the basin area, followed by cropland (13%), forest (9%), 

water bodies (2%) and bare land and settlements (1%) (Figure 2.2c). Extensive farming, wood 

extraction and overgrazing are limiting factors for large coverage of trees (Abubakari et al., 

2012). The density and vigour of the vegetation follow a south-north decreasing gradient, which 

is similar to the rainfall pattern. Grassy savannah is mostly found in the northern parts of the 

basin, while woody savannah is found in the south. Major cultivated staple food crops in the 

VRB are millet, sorghum, maize, rice, cassava, yam, cowpea and groundnut (Williams et al., 

2016). Protected areas represent about 10.7% of the basin area and include national parks and 

wildlife reserves. 

 

2.3 Climate 

Climate in West Africa is unique and complex (Berthou et al., 2019; Bichet and Diedhiou, 

2018; Nicholson et al., 2018a). Rainfall is characterized by interannual and multidecadal 

variabilities (Biasutti et al., 2018; Nicholson et al., 2018b; Thorncroft et al., 2011). The 

seasonal and latitudinal oscillation of the Inter-Tropical Convergence Zone (ITCZ) is the 

predominant rainfall generation mechanism in West Africa (Biasutti, 2019), thereby depicting 

a south-north gradient of increasing aridity in the VRB. The ITCZ is a narrow belt of clouds 

associated with low pressure and intense convective activities resulting from the near-surface 

convergence of warm and moist trade winds (Dezfuli, 2017; Schneider et al., 2014). The warm 

northeasterly Harmattan winds emanate from the Sahara and the moist southwest monsoon 

winds originate in the Atlantic ocean (Nicholson, 2013; Vizy and Cook, 2018). Actual 

evaporation exceeds 80% of annual rainfall in the basin (Andreini et al., 2000; De Condappa 

and Lemoalle, 2009; Dembélé et al., 2020a). 
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The VRB extends over four eco-climatic zones identified as follows: 

- The Sahelian zone located in the northern part of the basin and above the 14° N parallel; 

- The Sudano-Sahelian zone located between the 11° 30’ N and 14 °N parallels. It covers 

a greater part of Burkina Faso; 

- The Sudanian zone located below 11° 30’ N parallel. It comprises the northern part of 

Ghana and some parts of Côte d’Ivoire, Benin and Togo; 

- The Guinean zone extending from approximately 8° N to 11° N. It covers the southern 

part of Ghana. 

The four eco-climatic zones are characterized by increasing vegetation density and receive 

increasing precipitation from north to south (Figure 2.2; Table 2.2). The information provided 

in Table 2.2 is obtained from the global aridity index database (Trabucco and Zomer, 2018), 

and the WFDEI meteorological data (see Table 4.1; Weedon et al., 2014) for the period 1979-

2016. The maps of spatial patterns of rainfall and temperature in the VRB for different datasets 

are shown in Figure 4.2 and Figure 4.3. The climatology of rainfall and temperature per climatic 

zones are provided in Appendix 8 to Appendix 11. 

Table 2.2. Characteristics of the four eco-climatic zones in the Volta River basin with the 
Aridity Index (AI). The annual mean value with the range ([min-max]) is provided for 
Precipitation (P) and average air Temperature (Tavg). Adapted from Dembélé et al. (2020b) and 
Dembélé et al. (2020c). 

Eco-climatic zones Climate class AI (-) P (mm/year) Tavg (°C) 

Sahelian zone Arid 
0.16  

[0.12-0.20] 

570  

[470-610] 

29.3  

[29.0-29.7] 

Sudano-Sahelian zone Semi-arid 
0.29  

[0.16-0.43] 

790  

[570-980] 

28.6  

[28.0-29.3] 

Sudanian zone 
Semi-arid/ 

Dry sub-humid 

0.47  

[0.33-0.98] 

1010  

[890-1290] 

28.1 

[26.4-28.8] 

Guinean zone 
Dry sub-humid/ 

Humid 

0.70  

[0.49-1.22] 

1190  

[1030-1420] 

27.6  

[26.0-28.6] 

 

2.4 Hydrology and surface water 

The Volta River was named by early Portuguese traders because of its twisting and meandering 

course. It flows from north to south from Burkina Faso to Ghana over a distance of 1,850 km 
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before it drains into the Atlantic Ocean at the Gulf of Guinea through the Volta Estuary 

(Williams et al., 2016). Before reaching the Atlantic Ocean, the Volta River transits in the Lake 

Volta, which is the World’s largest manmade lake in terms of area. The Lake Volta has a 

dendritic shape covering an area of 8,502 km2 with a storage capacity of 148 km3, an average 

depth of 19 m, and a residence time of 4.3 years. The Lake Volta has been formed because of 

the construction of the Akosombo dam in Ghana, which begun in 1961 and was completed in 

1965. It is a rockfill dam with an embankment of 119 m high and 640 m long resulting in a total 

storage volume of 7.94 106 m3 (ILEC, 2017). 

The drainage system of the VRB is composed of four major sub-basins and rivers (Figure 2.4; 

Table 2.3), namely: 

1- The Black Volta (Mouhoun in Burkina Faso) is the westerly tributary shared by Mali, 

Burkina Faso, Ghana, and Côte d’Ivoire. It originates from the Kong Mountains in the 

Dinderesso Forest Reserve in the southwest of Burkina Faso at the altitude 500 m above 

sea level (Moniod et al., 1977), flows in a north-easterly direction and receives on its 

left bank side the Sourou, a tributary originating in Mali, before changing its path into 

a south-easterly direction. The main tributaries of the Black Volta are the Sourou, 

Benchi, Chuko, Laboni, Gbalon, Pale, Kamba and Tain rivers. After reaching Bamboi, 

the river takes a west-easterly direction towards the Lake Volta. 

2- White Volta (Nakambe in Burkina Faso) originates in northern Burkina Faso at 335 m 

above sea level (Moniod et al., 1977), flows southeastward, and then westwards before 

flowing in a southerly direction. It receives water from one of its most important 

tributaries, the Sissili, and flows towards the Lake Volta by crossing the border between 

Burkina Faso and Ghana. The Red Volta (Nazinon in Burkina Faso) originates in the 

central part of Burkina Faso, near Ouagadougou, and flows southeastward to the border 

with Ghana. After crossing the border, it joins the White Volta near Gambaga in Ghana. 

The main tributaries of the White Volta are the Mole, Kulpawn, Sisili, Red Volta, 

Asibilika, Agrumatue, Nasia, Morago, Tamne and Nabogo rivers. 

3- The Oti River (Pendjari in Benin), the easterly tributary, originates at 600 m above sea 

level (Moniod et al., 1977) in the north of Benin. It flows near the Benin’s rainy Atakora 

Mountains, which are an extension of the Togo’s Akwapim Ranges, where it is known 

as the Pendjari River. It crosses Togo, where it is known as the Oti River, and flows 

down to Ghana border where it joins the Volta River near Kete Krachi and continues 

into the Lake Volta. The main tributaries of the Oti River are the Koumongou, Kéran, 
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Kara, Mô, Kpanlé, Wawa, Ménou, Danyi, Afram, Obosom, Sene, Pru, Kulurakun, 

Daka, and Asukawkaw rivers. 

4- The Lower Volta is shared between Ghana and Togo, and encompasses the Lake Volta, 

which is fed by the Black Volta, the White Volta and the Oti River. It also includes a 

series of small streams flowing directly into Lake Volta, and the portion of the river 

downstream from the Kpong dam. The Lower Volta discharges into the Gulf of Guinea 

in Ghana, near the town of Ada Foah (Mul et al., 2015). 

 

Figure 2.4. Hydrography of the Volta River Basin 

 

Figure 2.5 shows the hydrographs of daily streamflow at gauging stations located at the outlets 

of the Black Volta (Bui amont), the White Volta (Daboya) and the Oti River (Saboba). 
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Figure 2.5. Hydrographs of daily streamflow at the outlets of the major sub-basins in the Volta 

basin 

The VRB is one of the rare basins in the world where upstream is drier than downstream. Most 

of the streams at higher latitudes are not perennial in the White Volta, unlike those at more 

southern latitudes (UNEP-GEF, 2013). The river network is poorly gauged with an estimated 

average density of about one station per 3,000 km2 while the World Meteorological 

Organization (WMO) recommends a maximum of about 1,900 km2 per station (WMO, 2008). 

The annual groundwater recharge rate of the Volta River system varies between 5% and 10% 

of the mean annual rainfall (Williams et al., 2016). 

 

Table 2.3. Characteristics of the sub-basins in the Volta River basin 

Sub-basins Area (km2) 
% of the Volta 

River basin 

Mean annual 

flow (km3/year) 

Mean annual 

runoff 

coefficient (%) 

Black Volta 152,829 36.8 8.6 4.8 

White Volta 113,423 27.3 7.6 6.9 

Oti 74,501 17.9 9.8 10.5 

Lower Volta 74,852 18.0 9.6 10.3 

Source: adapted from MWH (1998); UNEP-GEF (2013) 

 



 
 

Chapter 3 
 

 

Gap-filling of Streamflow Data with Direct Sampling*  

 
 

Errors using inadequate data are much less 

than those using no data at all.  

Charles Babbage  

 

You can have data without information, 

but you cannot have information without data. 

Daniel Keys Moran 

 

 

  

                                                 
* This chapter is based on the following publication: 
Dembélé, M., F. Oriani, J. Tumbulto, G. Mariethoz, and B. Schaefli (2019), Gap-filling of daily 
streamflow time series using Direct Sampling in various hydroclimatic settings, Journal of Hydrology, 
569, 573-586, https://doi.org/10.1016/j.jhydrol.2018.11.076  

https://doi.org/10.1016/j.jhydrol.2018.11.076
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Abstract 

Complete hydrological time series are necessary for water resources management and 

modelling. This can be challenging in data scarce environments where data gaps are ubiquitous. 

In many applications, repetitive gaps can have unfortunate consequences including ineffective 

model calibration, unreliable timing of peak flows, and biased statistics. Here, Direct Sampling 

(DS) is used as a non-parametric stochastic method for infilling gaps in daily streamflow 

records. A thorough gap-filling framework including the selection of predictor stations and the 

optimization of the DS parameters is developed and applied to data collected in the Volta River 

basin, West Africa. Various synthetic missing data scenarios are developed to assess the 

performance of the method, followed by a real-case application to the existing gaps in the flow 

records. The contribution of this study includes the assessment of the method for different 

climatic zones and hydrological regimes and for different upstream-downstream relations 

among the gauging stations used for gap filling. Tested in various missing data conditions, the 

method allows a precise and reliable simulation of the missing data by using the data patterns 

available in other stations as predictor variables. The developed gap-filling framework is 

transferable to other hydrological applications, and it is promising for environmental modelling. 
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3.1 Introduction 

In many regions around the world, observed streamflow records contain missing values that 

hinder their use for water resources management, engineering applications or hydrological 

modelling (Giustarini et al., 2016; Tencaliec et al., 2015). When riddled with gaps, the usability 

of streamflow records dwindles substantially and therefore infilling gaps in time series is an 

essential step in planning, design and operation of water resources systems (Bárdossy and 

Pegram, 2014; Enders, 2010).  

Missing data can occur because of the malfunctioning or failure of monitoring equipment, 

extreme weather conditions, limited accessibility to measurement sites, fortuitous absence of 

observers, human-induced errors, budget restraints, and public turmoil or political conflicts 

among other factors (Elshorbagy et al., 2000; Serrat-Capdevila et al., 2016). Depending on the 

usually unpredictable factors for which missing data occurs, the gaps in the time series can vary 

from one time step (i.e. sub-daily to one day) to several months, or even a complete lack of data 

for several years. Problems related to missing data are universal in hydrology, but exacerbated 

in developing countries where limited resources exist for data collection, quality assessment, 

repository provision, and maintenance.  

For many applications, the recommended approach is to infill the gaps and flag the 

corresponding values (Harvey et al., 2010). Gap-filling methods range from simple linear 

models to complex deterministic or stochastic techniques. The most common approaches 

include the simple nearest neighbour method by data transfer (Bárdossy and Pegram, 2014; 

Giustarini et al., 2016), interpolation techniques (Pappas et al., 2014; Piazza et al., 2015; 

Teegavarapu, 2014), autoregressive models (Bennis et al., 1997; Tencaliec et al., 2015), simple 

and multiple regressions (Hirsch, 1979; 1982; Woodhouse et al., 2006), classification and 

regression trees (Sidibe et al., 2018), recession methods (Gyau-Boakye and Schultz, 1994), 

recursive models (Lambert, 1969), nonlinear and storage models (Coulibaly and Baldwin, 

2005; Dawdy and O'Donnell, 1965), satellite data applications (Papadakis et al., 1993), 

dynamic state-space models (Amisigo and van de Giesen, 2005; Berendrecht and van Geer, 

2016), and various forms of artificial neural networks (Dastorani et al., 2010; Tfwala et al., 

2013) among others (Dumedah and Coulibaly, 2011). Different studies provided a review of 

these methods (Harvey et al., 2012; Marwala, 2009), which all have their limitations depending 

on the application. For instance, the nearest neighbour method brings discontinuity in the time 

series (Lepot et al., 2017; Peterson and Western, 2018). Interpolation techniques offer a limited 

representation of the space-time structure of the time series, being therefore unsuitable for 
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periods with floods, major rainfall events, or long sequences of gaps (Di Piazza et al., 2011). 

Linear regression methods assume linearity between variables, which may not always be valid 

(Mwale et al., 2012). Multiple regression approaches ignore existing information in the target 

variable and need many explanatory variables, which can lead to multicolinearity issues 

(Miaou, 1990). Autoregression and recession models require considerable amount of data for 

training and validation (Amisigo and van de Giesen, 2005). Dynamic state-space models require 

prior knowledge of the model parameters and the modelling system while the conditioning is 

done only on past observations (Berendrecht and van Geer, 2016). Regression trees like 

Random Forests (Breiman, 2001) suffer of a lack of understanding of the construction of the 

trees (Sidibe et al., 2018). Artificial neural networks (ANNs) have complex formulations 

leading to intense calculations with high computational cost (Dawson et al., 2002), and the 

resulting model parameters generally have no physical interpretation. Findings from 

comparison studies revealed that methods can outperform each other depending on the dataset 

used (Campozano et al., 2015). The choice of an appropriate infilling technique depends on 

factors including the length of the gaps, the seasons of gap occurrence, the climatic region of 

the measurement sites, the length and characteristics of the existing records, the availability of 

ancillary or proxy data, the accuracy of the estimates versus the complexity of the approach, 

and the purpose of the use of the gap-filled records . 

Here, the Direct Sampling (DS) method (Mariethoz et al., 2010) is proposed as an alternative 

to the above approaches. It is a multiple-point statistics (MPS) algorithm suited to pattern 

reproduction (Guardiano and Srivastava, 1993). The main advantage of DS, as a stochastic 

method, is its ability to provide probabilistic estimates of the missing values, which allows 

uncertainty quantification, a very important feature in hydrograph estimation (Beven, 2016), in 

contrast to deterministic methods. Moreover, as a data driven approach, it can fit various data 

structures and simulate the outcome of a complex natural process without assuming a specific 

statistical model (Oriani et al., 2016). Other advantages of DS are the simplicity of its 

application, the multisite capability, the possibility to use auxiliary variables and predictors that 

contains gaps, and the ability to condition the simulation on both past and future observations 

for a given gap. In the present study, DS is used to infill gaps in daily streamflow data in the 

transboundary Volta River basin (VRB), located in West Africa. It is a data scarce region with 

a poor streamflow gauging density, and the available data often present long gaps in the time 

series. On average, many stations show gaps up to 80% of daily records per year, while about 

10% of them have complete time series in some years between 1950 and 2016 (Figure 3.1). 
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Some studies have proposed valuable approaches to infill gaps in streamflow data in the VRB. 

However, they often present limitations (Dembélé et al., 2019). The aim of this study is to 

formulate a simple infilling method that is relevant for the entire VRB and accessible to a large 

audience so that different water resources practitioners can adopt it. The method should be user-

friendly and only require basic analytic skills, limited computational power, and solely 

streamflow records to avoid dependence on supplemental data. Therefore, a good candidate to 

that demand is the DS technique. The current study extends the gap-filling approach with DS 

to a large number of stations and assesses for the first time the performance of the method at a 

large scale. The benefit of this work is the development of a thorough gap-filling framework 

with a stepwise implementation of the method that includes the choice of the predictor station 

and the setup of the algorithm. This involves the consideration of different climatic zones, the 

upstream-downstream and spatiotemporal relations among a large number of gauging stations 

with different flow regimes, the strong streamflow seasonality, and the application to an entire 

river basin, which altogether constitute the novelty of this study. The resulting complete daily 

streamflow dataset can be used for a better understanding of the water balance in the entire 

VRB, and more specifically for water accounting purposes. 

 

3.2 Streamflow data 

Data acquisition in West Africa is a rather complicated task (Paturel et al., 2003; Taylor et al., 

2006). For this study, daily streamflow records were obtained from different national 

hydrological services, regional project databases, and global online platforms (see the 

acknowledgement section). The time series are available between 1950 and 2016 and, for 81 

streamflow gauging stations spread all over the VRB (Figure 3.1), with different completeness 

per year and per station. In the pre-processing phase, the data collected from different sources 

have been quality-checked and merged into a unique dataset. As the datasets were gathered 

from different sources, it often happens that a gauging station has data from several sources. 

Therefore, a first comparison was done among the sources to complete the missing portions of 

the time series when they had similar data in overlapping periods. The data from the official or 

national data centre was kept when differences were found in the data from several sources. 

Moreover, errors in floating point notation were corrected. No-data values were uniformed in 

all sources and streamflow units were converted from cfs to m3 s-1 for some stations. 
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Figure 3.1. Proportion of missing data between 1950 and 2016 per streamflow gauging stations 
located in different climatic zones in the VRB 

 

3.3 Gap-filling with Direct Sampling 

3.3.1 Direct Sampling method 

The principle of the Direct Sampling (DS) algorithm (Mariethoz et al., 2010) is that it generates 

new simulated values based on a conditional resampling of a provided training dataset (TI). The 

newly simulated values are called simulation grid (SG). The methodology is generic and can 

be adapted to various application cases of stochastic conditional or unconditional simulations, 

requiring the definition of a specific simulation framework, i.e. the choice of the TI, the SG, the 

nature of the auxiliary variables, and the parametrization of the algorithm. In the proposed 

framework, the simulated data (stored in the SG) are sampled from the historical record of the 

same station (used as TI), where a similar neighbourhood data pattern occurs. Only uninformed 
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time steps (i.e. missing values in the time series) are simulated in the SG, and the existing data 

is used for conditioning. Other auxiliary variables can be used as conditioning dataset to better 

inform the simulation. The auxiliary variables can be streamflow time series from other stations. 

Those stations can be chosen based on their proximity and their similarity with the target station 

(Rees, 2008; Wagener et al., 2007). The DS implementation used in this study is DeeSse 

(Straubhaar, 2017). The code is available upon request to the Randlab team at the University of 

Neuchâtel. Here, the target variable is simulated with one or more auxiliary variables that are 

used for conditioning, and can be partially or fully informed (i.e. with or without gaps). The 

workflow for continuous variables is described hereafter. 

The inputs required for the simulation are: 1) a TI that contains the target variable Z at informed 

time steps, as well as auxiliary variables, and 2) a simulation grid (SG) that is a time vector 

hosting the simulated target variable. The time steps are uniformly spaced and identical in both 

TI and SG. The simulation of the target variable follows a random path and completes the SG 

at non-consecutive time steps. The SG is filled progressively and becomes the actual output of 

the simulation.  

With the time vectors 𝑥𝑥 = [𝑥𝑥1, … , 𝑥𝑥n] allocated to the SG and 𝑦𝑦 = [𝑦𝑦1, … ,𝑦𝑦m] allocated to the 

TI, the algorithm runs through the following steps: 

1. Each continuous variable is linearly normalized to a range of [0,1] using the 

transformation 𝑍𝑍 → 𝑍𝑍 ∙ (𝑚𝑚𝑚𝑚𝑚𝑚(𝑍𝑍) −𝑚𝑚𝑚𝑚𝑚𝑚(𝑍𝑍))−1  for patterns comparison at step 6. 

2. A random simulation path 𝑡𝑡 ∈ {1,⋯ ,𝑀𝑀} of same length as the SG is generated by doing 

a random permutation of the index vector in the SG. 

3. An uninformed time step 𝑡𝑡 of the SG is chosen for simulation by following the random 

simulation path. 

4. A data event 𝑑𝑑(𝑥𝑥t) = �𝑍𝑍�𝑥𝑥t+𝑙𝑙1�,⋯ ,𝑍𝑍�𝑥𝑥t+𝑙𝑙n��, representing a pattern of neighbouring 

data of 𝑡𝑡, is retrieved from the SG according to a radius 𝑅𝑅 centred on 𝑥𝑥t. It consists of 

at most 𝑁𝑁 informed time steps, closest to 𝑥𝑥t. This defines a set of lags 𝐿𝐿 = {𝑙𝑙1, … , 𝑙𝑙n} 

with |𝑙𝑙i| ≤  𝑅𝑅 and 𝑛𝑛 ≤  𝑁𝑁. For example, if 𝑅𝑅 = 50 and 𝑁𝑁 = 10, the pattern is composed 

by the 10 informed time steps closest to 𝑡𝑡 inside the time span [𝑡𝑡 ±  50]. The size of 

𝑑𝑑(𝑥𝑥t) is therefore limited by 𝑁𝑁 and the available informed time steps inside the search 

neighbourhood window of 2𝑅𝑅. 
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5. A random time step 𝑦𝑦i is scanned and the corresponding data event 𝑑𝑑(𝑦𝑦i) is retrieved to 

be compared with 𝑑𝑑(𝑥𝑥t) based on the same time lags. 

6. A distance 𝐷𝐷�𝑑𝑑(𝑥𝑥t),𝑑𝑑(𝑦𝑦i)� is calculated as a measure of dissimilarity between both data 

events, defined as follows:  

 𝐷𝐷�𝑑𝑑(𝑥𝑥t),𝑑𝑑(𝑦𝑦i)� = 1
𝑛𝑛
∑ �𝑍𝑍�𝑥𝑥j�𝑛𝑛
𝑗𝑗=1 − 𝑍𝑍�𝑦𝑦j��, (3.1) 

where 𝑛𝑛 is the number of elements of the data event. Independently from their position, 

the elements of 𝑑𝑑(𝑥𝑥t) play an equivalent role in conditioning the simulation of 𝑍𝑍(𝑥𝑥t). 

The normalization at step 1 ensures the distances to be in the range [0,1].  

7. If 𝐷𝐷�𝑑𝑑(𝑥𝑥t),𝑑𝑑(𝑦𝑦i)� is below a defined threshold 𝑇𝑇 ∈ [0,1], meaning that the two data 

events are sufficiently similar, the iteration stops and the datum 𝑍𝑍(𝑦𝑦i) is assigned to 

𝑍𝑍(𝑥𝑥t) for all uninformed variables. Otherwise, the procedure is repeated from step 5 to 

7 until a suitable 𝑑𝑑(𝑦𝑦i) is found or a prescribed TI fraction 𝐹𝐹 is scanned. 

8. In case no time step corresponding to 𝐷𝐷�𝑑𝑑(𝑥𝑥t),𝑑𝑑(𝑦𝑦i)� < 𝑇𝑇 is found, the datum 𝑍𝑍(𝑦𝑦i∗) 

minimizing this distance is assigned to 𝑍𝑍(𝑥𝑥t). 

9. The procedure from step 3 to 8 is iterated for the simulation at each 𝑥𝑥𝑡𝑡 until the entire 

SG is completely informed. 

10. The variables are linearly back transformed to their original range. 

The auxiliary variables simultaneously undergo the same simulation steps as 𝑍𝑍(𝑦𝑦t). Figure 3.2 

gives a synthesized description of the DS algorithm. More details on the method can be found 

in the work of Mariethoz et al. (2010) and Oriani et al. (2016). 

The main DS user-defined parameters are the search window radius 𝑅𝑅, the maximum number 

of conditioning neighbour data 𝑁𝑁, and the threshold 𝑇𝑇 for the dissimilarity measure. Each of 

them can have a different value for each variable. Another parameter is the maximum TI 

fraction scanned, called 𝐹𝐹.  
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Figure 3.2. Synthesized workflow of the DS algorithm for continuous variables. 𝑅𝑅 is the radius 
of the search neighbourhood window ([𝑡𝑡 ± 𝑅𝑅]) composed by a number of neighbours 𝑁𝑁 closest 
to 𝑥𝑥t, with lags 𝐿𝐿 = {𝑙𝑙1, … , 𝑙𝑙n}, such that 𝑙𝑙i ≤ 𝑅𝑅 and 𝑛𝑛 ≤ 𝑁𝑁. 𝐷𝐷min is the minimum dissimilarity 
found in the TI. 𝐹𝐹 is the maximum TI fraction scanned. 

The resampling technique used in DS has two main features that make it different from the k-

nearest neighbour bootstrap (k-NN) technique (Efron, 1992). First, the algorithm uses a random 

path during the simulation and completes the SG at non-consecutive time steps. Consequently, 

the simulation at each 𝑥𝑥𝑡𝑡  allows conditioning on both past and future time steps, as opposed to 

the classical Markov chain techniques that uses a linear simulation path conditioned on past 

data only. Secondly, the simulation follows a variable conditioning scheme that uses the 𝑛𝑛 

informed neighbours closest to 𝑥𝑥t. Large-scale patterns are used at the beginning of the 

simulation and denser small-scale patterns toward the final iterations as the SG becomes more 
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populated. This variable time-dependence allows the preservation of the statistical structure of 

the data without a prior formulation of a high-dimensional statistical model (Oriani et al., 2014). 

Figure 3.3 shows the simulation procedure with the DS technique. 

 

Figure 3.3. Sequential simulation of streamflow time series with DS. The dashed rectangle 
represents the search window defined as twice the radius 𝑅𝑅, and contains the data event that is 
formed by the simulated datum in green and the 𝑁𝑁 neighbouring data in red.  

 

3.3.2 DS setup for gap-filling of streamflow data 

The DS setup adopted for this study is composed of the target variable 𝑍𝑍(𝑦𝑦) and several 

auxiliary variables. A typical example of the setup is described in Table 3.1. 𝑄𝑄(𝑦𝑦) is the 

streamflow at another correlated station, preferably located nearby, called the predictor station. 

The target variable contains the missing portions that are generated during the simulation and 

its informed time steps are considered as conditioning data. The correlated streamflow variable 

𝑄𝑄(𝑦𝑦) is given as auxiliary variable. In the example of Table 1, 𝑄𝑄(𝑦𝑦) is complete, but in practice 

it can also present missing data. It helps restricting the uncertainty and provides guidance 

around the missing values. Considering the strong annual seasonality of streamflow in the VRB, 

two out-of-phase periodic triangular functions �𝐴𝐴1(𝑦𝑦) and 𝐴𝐴2(𝑦𝑦)�, each with a period of 

365.25 days, are used as auxiliary variables to constrain the position of the simulated values 

inside the annual cycle.  
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Table 3.1. Example of a training dataset (TI) with DS parameters (𝑅𝑅: search window radius; 𝑁𝑁: 
maximum number of conditioning neighbour data; 𝑇𝑇: distance threshold; and 𝐹𝐹: maximum TI 
fraction scanned, 𝐹𝐹 = 0.5). 

Variables R N T  TI example 

𝑍𝑍(𝑦𝑦) 200 3 0.005 

D
ai

ly
 st

re
am

flo
w

 [m
3  s

-1
] 

 

𝑄𝑄(𝑦𝑦) 200 7 0.01 

 

𝐻𝐻(𝑦𝑦) 200 10 0.1 

[-
] 

 

𝐴𝐴1(𝑦𝑦) 1 1 0.05 

[-
] 

 𝐴𝐴2(𝑦𝑦) 1 1 0.05 

Time [years] 

 

Another auxiliary variable is the recession indicator 𝐻𝐻(𝑦𝑦), computed based on 𝑄𝑄(𝑦𝑦) and used 

to constrain the occurrence of high and low flows. It takes a value of 𝐻𝐻 = 0 for a rising 

hydrograph limb and 𝐻𝐻 = 1 during a recession. Its computation requires two user-defined 

parameters (𝑤𝑤, 𝑣𝑣) as follows: the minimum and maximum (local extremes) of 𝑄𝑄(𝑦𝑦) are 

identified inside a moving temporal window [𝑦𝑦 ± 𝑤𝑤]. Each new extreme is considered only 

when its difference with the previous extreme is greater than 𝑣𝑣, and the next extreme is of a 

different type (minimum or maximum). A logical test is finally used to obtain 𝐻𝐻. A rising limb 

is activated with a local minimum until the occurrence of a local maximum activates a recessing 

limb, with a continuous alternation of both states (Oriani et al., 2016). The values 𝑤𝑤 ∈

[10 − 30] and 𝑣𝑣 ∈ [80 − 120] are used in the current setup. The DS parameters for each 

variable for an example of TI are given in Table 3.1. Following Meerschman et al. (2013), the 

DS parameters values were taken in the ranges: 𝑅𝑅 ∈ [100 − 300], 𝑁𝑁 ∈ [3 − 20] and 𝑇𝑇 ∈

[0.002 − 0.1]. 𝑅𝑅 and 𝑁𝑁 are in the unit of the time series in the TI, and 𝑇𝑇 is unitless. For variables 

𝐴𝐴1(𝑦𝑦) and 𝐴𝐴2(𝑦𝑦) which have a predictable behavior, high-order conditioning is not necessary 
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and therefore R and N are set to 1. The maximum TI fraction scanned is set to 𝐹𝐹 = 0.5 for all 

the simulations. This value allows sampling a sufficient portion of the TI and avoids the 

phenomenon of verbatim copy, which results in mimicking portions of the TI.  

 

3.3.3 Calibration and evaluation 

In a first step, a calibration procedure is carried out to obtain an adequate set of DS parameters. 

Contrary to the DS setup in (Oriani et al., 2016), where the target variable Z(y) and the predictor 

variable Q(y) have the same DS parameters, in this case study all variables can have different 

parameters values. Consequently, several sets of parameters are used to simulate the same time 

series and the resulting realizations are compared to the reference data using six pairwise 

statistical indicators. The statistical indicators, as described in the work of Dembélé and Zwart 

(2016), are: the Pearson correlation coefficient (r), the Spearman rank-order correlation 

coefficient (rs), the Mean Error (ME), the Bias, the root mean square error (RMSE), and the 

Nash–Sutcliffe Efficiency coefficient (NSE). The best set of parameters is chosen as the one 

yielding the smallest prediction error. The rank of each set of parameters is calculated for each 

of the statistical indicators. The best set of parameters is taken as the one with the best 

cumulative rank. All results are evaluated based on visual comparison and statistical indicators. 

Quantile-Quantile (QQ) plots (Chambers, 2017) are used to compare the probability 

distribution of the simulated gap portions and reference data portions, for daily QQ-plots. The 

monthly and yearly QQ-plots represent the 1-month and 1-year moving average of daily values 

for the entire reconstructed time series. 

 

3.3.4 Experimental set-up for artificial gap scenarios 

To assess the DS performance, artificial random gaps are created inside the streamflow records 

of some stations having long and complete records. Representative stations are selected based 

on their locations in different sub-catchments with specific climatic and physical characteristics 

to account for different hydroclimatic settings in the VRB (Figure 2.2a). For each station, a 

predictor station 𝑄𝑄(𝑦𝑦) is selected, which can be fully or partially informed. The Daboya station 

is chosen as the target station for all the gap-filling scenarios proposed hereafter. It is located at 

the outlet of the White Volta sub-catchment and receives the water drained from the semi-arid 

to the sub-humid zone of the VRB. A strong annual seasonality of the streamflow is depicted 

in Figure 3.4, which also shows the artificial gaps. The randomly created gaps vary in size from 

5 to 30 consecutive days and represent 50% of the whole time series over a period of 6 years. 
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Ten scenarios are developed to assess the performance of the DS method (Table 3.3). Among 

them, five scenarios are developed by simulating 𝑍𝑍(𝑦𝑦) with the time series of a predictor station 

𝑄𝑄(𝑦𝑦) that is fully informed (i.e. without gaps). Those scenarios are numbered with odd numbers 

between 1 and 9. The predictor stations in scenarios 1 and 3, the Yarugu and Nuwuni stations 

respectively, belong to the same sub-catchment as the target station Daboya. However, in 

scenarios 5, 7 and 9, the predictor stations, Akosombo, Lawra and Saboba respectively, belong 

to different sub-catchments from Daboya. They are located downstream of the Lower Volta, 

Black Volta and Oti sub-catchments (Figure 3.1), respectively. Therefore, they all receive 

streamflow from different sub-catchments and with different characteristics from that of 

Daboya. 

 

Figure 3.4. Time series of the target station with artificial gaps 

 

The five remaining scenarios, numbered with even numbers between 2 and 10, are duplicates 

of the scenarios in the first group with the exception that the time series of the predictor stations 

are not fully informed (i.e. contain gaps). For each scenario, 𝑍𝑍(𝑦𝑦) always contains 50% of gaps, 

and when 𝑄𝑄(𝑦𝑦) contains gaps, they represent 30% of the time series or about 2 out of 6 years 

of missing values. To determine whether the dependence between target and predictor variables 

is maintained in the simulated values, the corresponding correlations before and after simulation 

are given in Table 3.3 for each scenario. The predictor variables are chosen purposely to have 

some with weak correlation and others with strong correlation with the target variable. For each 

scenario, ten realizations of the target variable are produced. A comparison of DS with the linear 

regression method is carried out and the results can be found in the Appendix 2. After 

demonstrating the performance of the DS for infilling artificial gaps in streamflow time series 

with various scenarios, the method is used to infill real gaps. 
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3.3.5 Predictor station selection for real gaps reconstruction 

The selection of the most appropriate predictor station is not a trivial task . Here, the most 

similar station to the target station is chosen as predictor. Only one predictor is used to condition 

the target station, which avoids conflicting information among potential predictors, prevents 

unrealistic simulated time-series structures, and reduces computational time. Therefore, the 

choice of the predictor station is crucial and depends on its similarity with the target station 

(Wagener et al., 2007). Both 𝑟𝑟 and 𝑟𝑟s are used to estimate the statistical similarity of the 

variables. When several stations show the same correlation with the target station, the one with 

the longest overlapping time steps, the smallest proportion of gaps and the highest spatial 

proximity with the target is chosen as the predictor station. A priority index based on these 

criteria allows ranking all the stations of the river network from the one that is easiest to be gap-

filled, to the one that is the most challenging. In a first run, only the overlapping periods are 

simulated, i.e. common years of data between the target and the predictor stations. Thereafter, 

the next best predictor candidate is considered to simulate the remaining portions. This 

procedure is executed with different predictors until a fully informed SG is obtained. In case 

there is no other predictor that overlaps the remaining non-covered portions of the data after the 

first run, the first predictor is used to fully inform the SG. 

 

3.3.6 Simulation procedure for real gaps 

The simulation is done in two steps: (1) additional gaps are created in the target variable before 

the simulation. A calibration is done based on the simulation of these newly created gaps only. 

It allows obtaining a suitable set of parameters that yield the best scores for the statistical 

indicators in section 3.3.3. This step is similar to the scenarios (section 3.3.4), but additional 

gaps are created in the target variable that already contains gaps; (2) the suitable set of 

parameters obtained in the first step is used to simulate the real missing values in the target 

variable, and therefore to reconstruct the entire time series. Six applications for real gaps 

reconstruction are presented and discussed using representative stations of the hydrological 

regimes, the agro-climatic zones, and the sub-catchments of the VRB (Table 3.2).  
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Table 3.2. Applications for real gaps reconstruction (App: application, WV: White Volta, BV: 
Black Volta, LV: Lower Volta, 𝑄𝑄 position: predictor station position relative to the target) 

 

The fourth and the sixth applications are duplicates of the third and the fifth, respectively, with 

the exception that the predictor station became the target and vice versa. This inversion is done 

to assess the influence of the upstream-downstream position of the predictor station on the 

performance of the simulation. Five hundred realizations are produced per application. 

 

3.4 Results and discussions 

3.4.1 Gap-filling scenarios evaluation 

In Table 3.3, the minimum and maximum values of the Pearson (𝑟𝑟(𝑍𝑍,𝑄𝑄)) and the Spearman 

(𝑟𝑟s(𝑍𝑍,𝑄𝑄)) correlation coefficients among the ten realizations highlight the possibility of 

obtaining a similar target variable with the same strength and degree of association with the 

predictor variable as before the simulation and before creating the artificial gaps. 

 

The correlation values 𝑟𝑟(𝑍𝑍,𝑄𝑄) and 𝑟𝑟s(𝑍𝑍,𝑄𝑄) before the simulation usually lie in the same range 

as after the simulation, with an average error of 2%. Therefore, DS is able to preserve the 

correlation between the target and the predictor stations. However, this statistical relation is 

preserved more or less faithfully depending on the performance in reproducing the missing 

portions. The capability of the DS to reproduce the missing portions of the target variable is 

highlighted in Figure 3.5. DS usually performs better when the predictor station is fully 

informed. For that reason and due to the recurrence of gaps in the collected data in the VRB, 

attention is paid to the even-numbered scenarios from 2 to 10 (Table 3.3), which represent the 

scenarios with gaps in the predictor variable.  

 

App Target (Z ) Predictor (Q ) Q  position
Z 

length 
(years)

missing 
in Z 
(%)

catchment r(Z,Q) r s  (Z,Q)

1 Daboya Nawuni upstream 26 18 WV 0.85 0.86
2 Saboba Mango upstream 39 21 Oti 0.95 0.94
3 Dapola Lawra upstream 60 15
4 Lawra Dapola downstream 60 22
5 Kpong Akossombo upstream 31 4
6 Akosombo Kpong downstream 31 0.05

BV 0.93 0.93

LV 0.89 0.89
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Table 3.3. Pearson (𝑟𝑟(𝑍𝑍,𝑄𝑄)) and the Spearman (𝑟𝑟𝑠𝑠(𝑍𝑍,𝑄𝑄)) correlation coefficients between the 
target (𝑍𝑍) and the predictor (𝑄𝑄) variables (SC: same catchment; indicates where the target and 
the predictor stations are located. WV: White Volta, BV: Black Volta, LV: Lower Volta). 
Before gaps, 𝑍𝑍 and 𝑄𝑄 are fully informed. After gaps, 𝑍𝑍 (Daboya station) contains 50% of gaps 
for all scenarios, while 𝑄𝑄 contains 30% of gaps for only even-numbered scenarios.  

 

 
Figure 3.5. Boxplots of six statistical indicators (Y-axis) of the realizations for the ten gap-
filling scenarios (X-axis). The statistical indicators (𝑟𝑟, 𝑟𝑟s, 𝑁𝑁𝑁𝑁𝑁𝑁, 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, 𝑀𝑀𝑀𝑀, and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) are 
computed only between the simulated missing portions of the newly simulated target variable 
(𝑍𝑍sim) and their corresponding values in the reference target variable (𝑍𝑍). 

 

 

r r s r r s

1 Yarugu WV 0.593 0.669 0.656 0.680 0.580 0.604 0.611 0.619
3 Nawuni WV 0.984 0.913 0.988 0.908 0.988 0.989 0.910 0.916
5 Akosombo LV -0.309 -0.302 -0.475 -0.356 -0.318 -0.289 -0.256 -0.238
7 Lawra BV 0.871 0.809 0.920 0.814 0.840 0.876 0.752 0.781
9 Saboba Oti 0.947 0.822 0.951 0.828 0.944 0.950 0.789 0.819
2 Yarugu WV 0.593 0.669 0.689 0.660 0.550 0.606 0.608 0.629
4 Nawuni WV 0.984 0.913 0.988 0.904 0.983 0.986 0.881 0.899
6 Akosombo LV -0.309 -0.302 -0.430 -0.265 -0.301 -0.277 -0.270 -0.260
8 Lawra BV 0.871 0.809 0.911 0.824 0.852 0.869 0.720 0.739
10 Saboba Oti 0.947 0.822 0.952 0.857 0.939 0.950 0.795 0.816

no
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In this regard, scenario 4 outperforms the other scenarios for all statistical indicators. It is 

followed by scenarios 10, 2, and 8 in increasing order. Scenario 6 gives the weakest scores. 

This performance in scenario 6 can be linked to the negative and weak correlation between the 

target and predictor station (Table 3.3). Notwithstanding that scenario 6 gives the lowest 

performance, it still has good scores in terms of prediction. Such results might have been 

possible due to the parameter optimization step preceding the simulation. Therefore, a relevant 

set of parameters is obtained for a good prediction. The overall performance of the DS is good 

and for all considered scenarios according to the statistical indicators calculated only between 

the simulated portions and the corresponding reference values (Figure 3.5). The parameters 

used for the simulation are given in Table 3.4 for each scenario. 

 

Table 3.4. DS parameters for the gap-filling scenarios. (see section 3.3.2 for parameters and 
variables description). 

 
 

3.4.2 Time series reconstruction for different scenarios 

Figure 3.6 shows the time series of the reconstructed target variable and the corresponding 

predictor station. The average scores of the statistical indicators are given alongside the plots. 

Flow duration curves for the scenarios are provided in Appendix 3. Except for scenario 1, only 

scenarios where the predictor variable contains artificial gaps are presented because they 

represent the most challenging cases and are the most likely situation in data scarce regions. A 

comparison between scenarios 1 and 2 highlights an increase in the width of the simulation 

ensemble, meaning a higher uncertainty in the prediction, and a deviation of the mean of the 

realizations from the reference time series (𝑍𝑍(𝑦𝑦)), when the predictor variable (𝑄𝑄(𝑦𝑦)) is not 

H Q Z H Q Z H Q Z
1 200 200 200 10 7 3 0.1 0.02 0.02
3 200 200 200 10 7 3 0.1 0.002 0.005
5 200 200 200 10 3 7 0.1 0.02 0.005
7 200 200 200 10 7 3 0.1 0.02 0.002
9 200 200 200 10 7 3 0.1 0.01 0.005
2 200 200 200 10 3 3 0.1 0.07 0.005
4 200 200 200 10 3 3 0.1 0.002 0.002
6 200 200 200 10 7 3 0.1 0.07 0.02
8 200 200 200 10 3 7 0.1 0.05 0.02

10 200 200 200 10 7 3 0.1 0.05 0.02
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fully informed (scenario 2). A visual check of the scenarios shows that the realizations ensemble 

usually contains the target variable. Mismatches often depend on the predictor station used. 

In scenario 2, the target and predictor stations are located in the same sub-catchment but they 

are weakly correlated (𝑟𝑟(𝑍𝑍,𝑄𝑄)=0.69). The realizations mostly cover the reference time series 

but miss some local flow peaks, predict some false high flows, and show lags in the prediction. 

This is due to the inability to sample a similar data pattern in the predictor variable, therefore 

suboptimal patterns are chosen. In scenario 4, the reconstructions are of high quality because 

the target and predictor stations are in the same sub-catchment and strongly associated 

(𝑟𝑟(𝑍𝑍,𝑄𝑄)=0.99). The overall prediction is excellent in scenario 4. The average magnitude of the 

simulation error (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅=61.44 m3 s-1) is due to the unmet peak flows but this is balanced by 

the alternation of under- and overestimated high flows, which finally results in a small 𝑀𝑀𝑀𝑀=-

2.3 m3 s-1. 

In scenarios 6, 8 and 10, the target and the predictor stations are located in different catchments. 

In scenario 6, a negative and low correlation is observed between the variables (𝑟𝑟(𝑍𝑍,𝑄𝑄)=-0.43). 

The predictor station measures the discharge of the Akosombo dam located downstream of the 

Lower Volta sub-catchment (Figure 3.1). This scenario is the most challenging and is not 

recommended even if the results show acceptable prediction performance (𝑁𝑁𝑁𝑁𝑁𝑁= 0.76). The 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is higher as observed during the second year of the simulation period. The under- and 

overestimated flow portions balance and result in a small average error with 𝑀𝑀𝑀𝑀=-2.36 m3 s-1. 

However, this might not be the case for a shorter or longer period of simulation. Consequently, 

simulating the target variable with a poorly informative predictor station is not advisable. In 

scenario 8 (𝑟𝑟(𝑍𝑍,𝑄𝑄)=0.91), the predictor station is located in the Black Volta sub-catchment, 

where the main river is perennial and characterized by low flows. Conversely, the river gauged 

by the target station is mainly not perennial in its upstream part and is characterized by a long 

low flow period followed by a short high flow period with a long recession time. The mean of 

the realizations matches well the reference time series, except for some extreme flows as in the 

third, fourth and fifth years. Despite a narrow ensemble range, the evaluation scores are lower 

than those of scenario 4.  
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Figure 3.6. Selected gap-filling scenarios. The six statistical indicators compare the reference 
to the simulated values only, and represent the average for ten realizations produced per 
scenario. 𝑄𝑄(𝑦𝑦) is shifted on the y-axis (y-shift) for display purpose. 
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In scenario 10 (𝑟𝑟(𝑍𝑍,𝑄𝑄)=0.95), the predictor station is located downstream of the Oti sub-

catchment where the river drains the steepest region of the VRB, and is characterized by a long 

low flow period followed by a short high flow period with a short recession time. The prediction 

shows good average evaluation scores, with some mismatches of local flow peaks and time lags 

in the second, third, and fifth years. The scores in scenario 10 are slightly better than those in 

scenario 8. This can be due to the higher proximity of the predictor station to the target station 

in scenario 10, which presents similar hydrological regimes and climate conditions. 

The alternating under- and overestimation of flow extremes, when they occur, are balanced over 

time and result in a low average error. This brings to attention a possible improvement or 

conservation of the statistical content of the predicted time series at a lower temporal resolution. 

This assumption is investigated in the next section. In addition, DS performs generally well 

compared to the linear regression (Appendix 2). 

 

3.4.3 Probability distributions for gap-filling scenarios 

For some applications (e.g. water balance), it is important that the simulated time series 

reproduce the statistical content at larger temporal scales. Consequently, the probability 

distribution of the reference and simulated time series at different temporal resolutions are 

analysed. In Figure 3.7, the QQ-plots depict the probability distribution of the simulated missing 

values against the reference values for each scenario at daily scale, while the entire 

reconstructed time series is considered for monthly and yearly scales. 

Daily, monthly and yearly scales are considered to assess the temporal scale effect on the DS 

simulations. The comparison between the daily probability distribution of the scenarios in 

which the predictor variable is fully informed (odd-numbered scenarios, Figure 3.7a) and those 

with the predictor variables partially informed (even-numbered scenarios, Figure 3.7b), shows 

higher deviations from the first bisector when the predictor variable is partially informed. 

Moreover, the uncertainty of the prediction, indicated by the range between the 5th and 95th 

percentiles, increases in those scenarios. At daily scale (Figure 3.7a-b), the simulations 

considerably overestimate (scenarios 2, 3, 7, 9 and 10) or underestimate (scenarios 1, 4, 5, 6 

and 8) streamflow in the range 700-1200 m3 s-1, which is seemingly the flow peak during the 

second year (Figure 3.4). With a short time series, finding a similar pattern to infill this gap at 

the peak of the hydrograph has been challenging. This was even more acute for scenarios 1, 2, 

5 and 6, in which the predictor is not strongly correlated with the target variable (Table 3.3). 

Moreover, the comparison between scenario 3 versus 7, 9 and scenario 4 versus 8, 10 reveals 
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that the simulation is better when the predictor and the target are located in the same catchment. 

This might be due to common factors influencing flow generation at both the predictor and 

target stations locations.  

In general, the probability distribution is better preserved at the monthly scale (Figure 3.7c-d) 

and yearly scale (Figure 3.7e-f). These results suggest that the daily simulation is not 

significantly biased and that it preserves the large-scale variability by generating realistic daily 

patterns. However, the yearly QQ-plots unveil greater uncertainties of simulation compared to 

the monthly scale. This can be explained by the interannual variability of the streamflow. 

 

 
Figure 3.7. Comparison of the empirical probability distribution of the reconstructed artificial 
gaps (Y-axis) against the corresponding reference data (X-axis) for each scenario, using daily 
(a-b), monthly (c-d), and yearly (e-f) QQ-plots. The dots represent the median of the realizations 
and the dashed lines indicate the 5th and 95th percentiles. The predictor variable is partially 
informed in even-numbered scenarios (b-d-f) and fully informed in odd-numbered scenarios (a-
c-e). All units are in m3 s-1. 
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3.4.4 Plausibility of the parameters set for simulating real gaps 

Table 3.5 presents the DS parameters obtained from the calibration step.  

Table 3.5. DS parameters for the reconstruction of real gaps. (see section 3.3.2 for parameters 
and variables description). 

 

 

The results of the calibration carried out before the reconstruction of real gaps are evaluated 

with QQ-plots shown in Figure 3.8. 

 

Figure 3.8. Probability distribution obtained for the calibration step, for the predicted values in 
six gap-filling applications with daily, monthly and yearly QQ-plots. The dots represent the 
median of the realizations and the dashed lines indicate the 5th and 95th percentiles. All units 
are in m3 s-1. 
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1 Daboya Nawuni 200 200 200 10 5 5 0.1 0.01 0.002
2 Saboba Mango 200 200 200 10 5 5 0.1 0.01 0.002
3 Dapola Lawra 200 200 200 10 5 5 0.1 0.01 0.01
4 Lawra Dapola 200 200 200 10 5 5 0.1 0.01 0.002
5 Kpong Akosombo 200 200 200 10 5 10 0.1 0.002 0.002
6 Akosombo Kpong 200 200 200 10 10 5 0.1 0.002 0.0021

0.05
0.05
0.05
0.05
0.05
0.05

1
1
1
1
1

1
1
1
1
1

A 1 , A 2 A 1 , A 2

Predictor 
(Q )

Target 
(Z )App

1

DS parameters for all variables in TI

R N T

A 1 , A 2



Gap-filling of Streamflow Data with Direct Sampling 

45 
 

For all the considered application cases, the proposed setup gives fairly sharp predictions with 

average 𝑁𝑁𝑁𝑁𝑁𝑁 scores between 0.77 and 0.90, and average 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 scores between 0.89 and 1.01. 

The probability distribution of the predicted values matches very well that of the reference at 

daily scale and is further improved at monthly and yearly scales. However, some noteworthy 

deviations occur at daily scale for cases 4 and 6. In those cases, as the predictor station is located 

downstream of the target station, its streamflow records exceed those of the target station, with 

some flow extremes that might not be identified in the target variable. These differences can 

result in false high flow signals, and ultimately result in large deviations in the prediction. At 

yearly scale, the underestimated simulations in cases 2, 3 and 4 can be attributed to the 

interannual variability of the streamflow. This underestimation was predictable mainly for case 

4 where the simulation is not able to predict values above 700 m3 s-1 at daily scale. For cases 1, 

2 and 3, the bias in the yearly QQ-plots can be explained by the bias for extreme values in the 

daily QQ-plots. The good conservation of the probability distribution at yearly scale for case 5 

and 6 is due to the high fluctuation of the flow at both the target and predictor stations that 

measure the discharge of the Akosombo and Kpong dams. Therefore, similar patterns to the 

gap portions can be easily identified in the remaining time series to match the peak flows. While 

for other cases, the peak flows usually occur once a year due to the annual seasonality (Figure 

3.9). 

 

3.4.5 Reconstruction of real gaps in time series 

Figure 3.9 shows the reconstructed streamflow time series. While the full time series span 

decades, only some portions containing long gaps are shown for visualization. The 

characteristics of the time series are given in Table 3.2. The shape of the predicted hydrograph 

is well reproduced with a good timing and representation of the annual seasonality. The mean 

of 500 realizations has a shape that is consistent with the predictor variable. Such consistency 

reveals a conservation of the high strength of association between the target and the predictor 

variable, which is critical for the choice of the predictor variable and remains the base of the 

simulation. The prediction is more challenging when several consecutive years of data are 

missing (Figure 3.9c-d). In this case, the nearest neighbours to the uninformed time step to be 

simulated can be located in very different years during which other conditions might have 

contributed to streamflow generation. Consequently, higher uncertainty is expected and mostly 

during high flows (Figure 3.9a, c, d). However, this effect is minimized when flow peaks 

periods are exhaustively represented in the data, for example during the fifth year in Figure 
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3.9b. Infilling gaps in the fifth reconstruction (Figure 3.9e), should be easier due to the small 

proportion of missing data. The roughly one year of missing data seems to be well predicted 

but the strong increase in discharge at the end of the second year is suspicious in the absence of 

trend in the predictor variable. However, DS provides prediction with very low uncertainty for 

short gaps (Figure 3.9f). Flow duration curves for each of the cases are provided in the 

Appendix 4. 

 

Figure 3.9. Reconstruction of streamflow records of selected stations in different sub-
catchments of the VRB. Note that the time series have been shifted on the y-axis (y-shift) for 
display purpose and the number of years is different for each simulation. 
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3.5 Conclusion 

This study proposes a robust framework for gap filling of streamflow data with the Direct 

Sampling (DS) technique, which is a data-driven approach relying on a small set of parameters. 

It presents the first application of DS for comprehensive gap filling of streamflow data along a 

complex river network in a large basin. The key elements of the developed gap-filling 

framework are the performance assessment based on artificial data gaps, the selection of 

predictor stations and the calibration of the small set of parameters.  

The overall performance of the framework is satisfactory after a test for different hydroclimatic 

settings of the Volta River basin (VRB), West Africa. As for all data-driven approaches, the 

main limitation of DS is the need for historical records that are sufficiently informative for the 

simulation of missing data. However, as shown in this study, the proposed gap-filling 

framework is able to yield good predictions for large data gaps in streamflow time series. It 

shows a satisfying predictive performance in terms of sharpness and reliability: the statistical 

content of the target variable is preserved, the probability distribution of the simulation matches 

accurately the reference, and the shape of the hydrograph shows a good timing with a strong 

preservation of the annual seasonality. Even if some local over- or underestimations of flow 

extremes do occur, they are usually balanced over time and result in a small bias. The statistical 

behaviour is preserved from daily to monthly scale, giving the possibility to use the output at a 

temporal scale higher than the one of the simulation. The outcomes highlight that better results 

are obtained in the following conditions: 

- the target and the predictor stations are located in the same sub-catchment; 

- the predictor station is well correlated with the target variable;  

- the predictor station is located upstream of the target station; 

- the predictor station is fully informed; 

- the target station contains rather short gaps.  

For the application to time series gap filling, the technique relies on a small set of parameters 

that can be set up by a simple calibration procedure. Moreover, an optimization of the 

parameters yields better results even in case of moderate correlation between the target and 

predictor stations. The results obtained for the VRB with the proposed framework clearly show 

that DS is a promising approach for time series simulation in environmental sciences.  

The DS performs better than the simple linear regression method. Although DS has several 

advantages compared to competing gap-filling methods, future studies should compare DS to 

other methods and investigate the benefit of using complex methods as compared to DS. 
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The uncertainty of the DS results increases with the complexity of the gap-filling scenarios (e.g. 

large gaps, high and low flows). Therefore, the gap-filled data should be used with caution. 

When using the gap-filled data for further applications such as hydrological modelling, the most 

reliable gap-filled datasets (i.e. short gaps to be filled) should be preferred to limit the 

propagation of uncertainties into subsequent applications. 

The possibility of using the DS without an exogenous auxiliary variable (e.g. rainfall, 

evaporation) and its ability to use a predictor variable that also contains gaps make it a powerful 

tool that can be easily used in data scarce regions and elsewhere. Further development of the 

current gap-filling framework might focus on the simultaneous use of multiple predictor 

variables and exogenous auxiliary variable to inform the simulation. 
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Evaluation of Satellite and Reanalysis Meteorological 

Datasets for Hydrological Modelling* 

 

 

It is presumed that there exists a great unity in nature, 

in respect of the adequacy of a single cause to account for 

many different kinds of consequences. 

Immanuel Kant 

 

Doubt is not a pleasant condition, but certainty is absurd. 

Voltaire 

 

  

                                                 
* This chapter is based on the following publication: 
Dembélé, M., B. Schaefli, N. van de Giesen, and G. Mariéthoz (under revirew in HESS), Suitability of 
17 rainfall and temperature gridded datasets for large-scale hydrological modelling in West Africa, 
Hydrol Earth Syst Sci. https://doi.org/10.5194/hess-2020-68  

https://doi.org/10.5194/hess-2020-68
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Abstract 

This study evaluates the ability of different gridded rainfall datasets to plausibly represent the 

spatiotemporal patterns of multiple hydrological processes (i.e. streamflow, actual evaporation, 

soil moisture and terrestrial water storage) for large-scale hydrological modelling in the 

predominantly semi-arid Volta River Basin (VRB) in West Africa. Seventeen precipitation 

products based on satellite data (TAMSAT, CHIRPS, ARC, RFE, MSWEP, GSMaP, 

PERSIANN-CDR, CMORPH-CRT, TRMM 3B42, TRMM 3B42RT) and on reanalysis (JRA-

55, EWEMBI, WFDEI-GPCC, WFDEI-CRU, MERRA-2, PGF and ERA5) are compared as 

input for the fully distributed mesoscale Hydrologic Model (mHM). To assess the model 

sensitivity to meteorological forcing during rainfall partitioning into evaporation and runoff, 

six different temperature reanalysis datasets are used in combination with the precipitation 

datasets, which results in evaluating 102 combinations of rainfall-temperature input data. The 

model is recalibrated for each of the 102 input combinations, and the model responses are 

evaluated by using in-situ streamflow data and satellite remote sensing datasets from GLEAM 

evaporation, ESA CCI soil moisture, and GRACE terrestrial water storage. A bias-insensitive 

metric is used to assess the impact of meteorological forcing on the simulation of the spatial 

patterns of hydrological processes. The results of the process-based evaluation show that the 

rainfall datasets have contrasting performances across the four climatic zones present in the 

VRB, which suggests cautiousness in performance generalizability to different spatial domains. 

No single rainfall or temperature dataset consistently ranks first in reproducing the 

spatiotemporal variability of all hydrological processes. A dataset that is best in reproducing 

the temporal dynamics is not necessarily the best for the spatial patterns. In addition, the results 

suggest that there is more uncertainty in representing the spatial patterns of hydrological 

processes than their temporal dynamics. Finally, some region-tailored datasets outperform the 

global datasets, thereby stressing the necessity and importance of regional evaluation studies 

for satellite and reanalysis meteorological datasets. 
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4.1 Introduction 

Our understanding of environmental systems is underpinned by observational data whose 

unavailability and uncertainties hinder research and operational applications. Among other 

factors, atmospheric data quality is of prime importance for the reliability of hydro-

meteorological and climatological studies (Ledesma and Futter, 2017; Zandler et al., 2019). 

Precipitation is one of the major components of the water cycle, which has led to numerous 

initiatives on understanding its generation, and estimating its amount and variability on Earth 

(Cui et al., 2019; Maidment et al., 2015). In hydrological modelling (Beven, 2019b; Singh, 

2018), precipitation is the most important driver variable that determines the spatiotemporal 

variability of other hydrological fluxes and state variables (Bárdossy and Das, 2008; Thiemig 

et al., 2013). 

With the development of distributed hydrological models that facilitate large-scale predictions 

(Clark et al., 2017; Fatichi et al., 2016; Ocio et al., 2019), there is a growing need to inform 

and evaluate those models with distributed observational datasets to improve spatiotemporal 

process representation (Baroni et al., 2019; Hrachowitz and Clark, 2017; Paniconi and Putti, 

2015). A key challenge is the spatiotemporal intermittency of precipitation, which is a major 

challenge for its measurement and its spatial interpolation (Acharya et al., 2019; Bárdossy and 

Pegram, 2013; Tauro et al., 2018; Wagner et al., 2012a) , especially in regions with particular 

features such as complex topography, convection-driven precipitation or snowfall occurrence. 

A comprehensive description of precipitation measurement techniques can be found in previous 

studies (e.g. Kidd and Huffman, 2011; Stephens and Kummerow, 2007; Tapiador et al., 2012). 

The drawbacks of in-situ measurements of precipitation include limited and uneven areal 

coverage, deficiencies in instruments and costly maintenance (Awange et al., 2019; Harrison et 

al., 2019; Kidd et al., 2017), and have led to the advent of precipitation estimation from space 

(Barrett and Martin, 1981). Precipitation estimates from space are spatially homogeneous and 

cover inaccessible regions with uninterrupted records over time (Beck et al., 2019b; Funk et 

al., 2015). 

The advent of satellite-based rainfall products (SRPs) has opened up new avenues for water 

resources monitoring and prediction, especially in data sparse regions (Hrachowitz et al., 2013; 

Serrat‐Capdevila et al., 2014; Sheffield et al., 2018). Although, the use of SRPs in hydrology 

is increasing (Chen and Wang, 2018; Xu et al., 2014), they have not been fully adopted for 

operational purposes yet (Ciabatta et al., 2016; Kidd and Levizzani, 2011). The limited uptake 

of SRPs in hydrology is due to measurement bias, inadequate spatiotemporal resolutions (e.g. 
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for extreme event simulation) and shortness of the records for some applications (e.g., climate 

change impact assessments), and the skepticism of some potential users with regard to the data 

quality (Marra et al., 2019). In the past decades, a large number of SRPs have been developed 

with different objectives, spatial and temporal resolutions, input sources, algorithms and 

acquisition methods (Ashouri et al., 2015; Brocca et al., 2019; Ciabatta et al., 2018). Several 

studies provide a review of SRPs (e.g. Le Coz and van de Giesen, 2019; Maggioni et al., 2016; 

Maidment et al., 2014; Sun et al., 2018). 

In addition to SRPs, there are also atmospheric retrospective analysis (or reanalysis) datasets of 

precipitation. A reanalysis system is composed of a forecast model and a data assimilation 

scheme that integrates spatiotemporal observations of meteorological variables (i.e. 

temperature, humidity, wind and pressure) to generate gridded atmospheric data (Lorenz and 

Kunstmann, 2012; Schröder et al., 2018). Precipitation is one of the reanalysis model-generated 

fields that generally has more uncertainties than the meteorological state fields (Roca et al., 

2019). Reanalysis datasets are often used in hydrological modelling (Duan et al., 2019; 

Gründemann et al., 2018; Tang et al., 2019), and sometimes they are preferred over SRPs 

because of their usually long-term records suitable for climate change studies, and because of 

their higher performance in predictable large-scale stratiform systems (Potter et al., 2018; 

Seyyedi et al., 2015). 

Despite the progress in satellite instruments, which has led to substantial advances in improving 

precipitation estimates (Sorooshian et al., 2011; Tang et al., 2019), there are known 

inconsistencies among the available SRPs (Sun et al., 2018; Tapiador et al., 2017). SRPs are 

subject to inherent errors originating mainly from precipitation retrieval instruments and 

algorithms, sampling frequency, and inadequate representation of cloud physics in some 

regions (Alazzy et al., 2017; Laiti et al., 2018; Romilly and Gebremichael, 2011). While on the 

one hand SRPs are subject to systematic biases, reanalysis products on the other hand have 

uncertainties resulting from their model forcing parameters, low spatial resolution with poor 

representation of sub-grid processes, and the model physics (Bosilovich et al., 2008; Laiti et 

al., 2018). Uncertainty quantification both in SRPs and reanalysis data is subject to intense 

research (e.g. Awange et al., 2016; Gebremichael, 2010; Maggioni et al., 2016; Westerberg and 

Birkel, 2015). The errors quantification of SRPs and reanalysis products is usually done by 

comparing them with in-situ measurements (e.g. Beck et al., 2019a; Caroletti et al., 2019; 

Dembélé and Zwart, 2016; Satgé et al., 2020; Thiemig et al., 2012), or by assessing their 

reliability as forcing for hydrological models (e.g.Duethmann et al., 2013; Nkiaka et al., 2017; 
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Pan et al., 2010). Other evaluation approaches include triple collocation, which is a technique 

that estimates the variance of unknown errors of three independent variables without a reference 

or observed variable (e.g. Alemohammad et al., 2015; Massari et al., 2017; McColl et al., 2014; 

Roebeling et al., 2012). Compared to the ground-truthing approach, the hydrological evaluation 

approach has received limited attention (Camici et al., 2018; Poméon et al., 2017). 

The non-linearity of hydrological processes in rainfall-runoff modelling can reduce or amplify 

the errors in the used input rainfall data and result in a satisfactory or poor representation of the 

hydrological responses  (Beven, 2011; Blöschl and Zehe, 2005; Clark et al., 2009; Maggioni 

and Massari, 2018; Nijssen, 2004; Peel and McMahon, 2020; Wagener et al., 2004). 

Consequently, the hydrological model can give a good representation of a hydrological state or 

flux variable for the wrong reasons (cf. Kirchner, 2006), thereby potentially leading to 

unfortunate consequences for water resources management (Zambrano-Bigiarini et al., 2017). 

When testing models as hypotheses (Beven, 2018; Pfister and Kirchner, 2017), type I errors 

(i.e. false positive model acceptability; Beven, 2010) should be avoided to ensure a high 

predictive skill of the model and its correctness for good decision-making. This sheds light on 

the importance of assessing the reliability of hydrological predictions generated with the use of 

SRPs and reanalysis products (Behrangi et al., 2011; Kuczera et al., 2010). In this context, 

knowing the adequacy and coherence of meteorological data in reproducing hydrological 

processes is a prerequisite to data selection for water resources management (Casse et al., 2015; 

Laiti et al., 2018). 

In the context of hydrological evaluation of precipitation datasets, some limitations can be 

identified in previous studies. Some studies only evaluate a small number of precipitation 

datasets or do not consider reanalysis products (e.g. Bhattacharya et al., 2019; Bitew and 

Gebremichael, 2011; Liu et al., 2017; Ma et al., 2018). Usually, the influence of temperature 

datasets in combination with rainfall datasets is not tested (e.g. Camici et al., 2018; Casse et al., 

2015; Qi et al., 2016; Satgé et al., 2019; Zhang et al., 2019), with the exception of a few studies 

(e.g. Laiti et al., 2018; Lauri et al., 2014), despite the importance of this interaction for 

evaporation simulation. Most studies evaluate a single hydrological state or flux variable, 

generally streamflow (e.g. Li et al., 2012c; Poméon et al., 2017; Seyyedi et al., 2015; Shayeghi 

et al., 2020), or soil moisture (e.g. Brocca et al., 2013). Some studies use lumped or semi-

distributed models, therefore averaging the rainfall amount on large areas (e.g. Duan et al., 

2019; Gosset et al., 2013; Shawul and Chakma, 2020; Tang et al., 2019; Tobin and Bennett, 

2014), which reduces the bias effect that could occur at the pixel level with a fully distributed 
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model. Often, the model is not recalibrated for each precipitation dataset (e.g. Li et al., 2012b; 

Su et al., 2008; Tramblay et al., 2016; Voisin et al., 2008), which is, however, a prerequisite 

for reliable input field assessment (Stisen et al., 2012). Moreover, some studies perform a 

global-scale analysis and ignore regionally tailored products (e.g. Beck et al., 2017b; Fekete et 

al., 2004; Mazzoleni et al., 2019), which can outperform global products (e.g. Thiemig et al., 

2013). Finally, no study evaluated the simultaneous impact of various precipitation and 

temperature datasets on the spatial patterns of several hydrological processes (i.e. soil moisture 

and evaporation).  

In light of the above, this study assesses the adequacy of different combinations of 17 

precipitation datasets (10 SRPs and 7 reanalysis products) and 6 temperature datasets from 

reanalysis, when used as forcing data for a fully distributed hydrological model, in reproducing 

the spatiotemporal variability of multiple hydrological processes (i.e. streamflow, actual 

evaporation, soil moisture, and terrestrial water storage). In total, 102 rainfall-temperature input 

data combinations are tested with the mesoscale Hydrologic Model (mHM) by recalibrating the 

model for each of the input data combinations. The experiment is carried out in the poorly 

gauged and predominantly semi-arid Volta River Basin (VRB) located in West Africa, over the 

period 2003-2012. It is noteworthy that the goal of this study is not to estimate the intrinsic 

quality of the meteorological forcing (i.e. precipitation and temperature) but rather to 

understand the impact of the propagation of associated uncertainties on the simulation of 

hydrological processes (Bhuiyan et al., 2019; Falck et al., 2015; Marthews et al., 2020). 

The VRB case study is particularly interesting from both scientific and societal perspectives. 

On the one hand, precipitation modelling in tropical monsoon climates is a challenging task due 

to strong seasonality and diurnal variations of rainfall (Cook and Vizy, 2019; Pfeifroth et al., 

2016; Turner et al., 2011), and due to isolated convection systems in semi-arid regions (Mathon 

et al., 2002; Parker and Diop-Kane, 2017; Taylor et al., 2017). On the other hand, open access 

and good quality datasets are needed for water resources management in West Africa (Di 

Baldassarre et al., 2010; Dinku, 2019; Roudier et al., 2014a; Serdeczny et al., 2017). The 

following research questions are addressed: 

- What is the impact of different gridded rainfall and temperature datasets on the 

simulation of hydrological fluxes and state variables? 

- How important is the choice of meteorological datasets for the representation of spatial 

patterns versus temporal dynamics? 
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A growing interest in using satellite remote sensing data in hydrological modelling is expected 

(McCabe et al., 2017; Peters-Lidard et al., 2017; Wilkinson et al., 2016). Therefore, knowing 

the suitability of the input data for hydrological modelling is a prerequisite for reliable 

spatiotemporal predictions, as the goal is to increase model performance with minimum 

uncertainty (Beven, 2016; McMillan et al., 2018; Savenije, 2009). 

 

4.2 Overview of the modelling experiment 

The adequacy of the rainfall and temperature datasets to plausibly reproduce various 

hydrological processes is tested with all the 102 possible combinations of 17 rainfall and 6 

temperature datasets used as meteorological forcing (see section 4.3). Different temperature 

datasets are used to allow flexibility in rainfall partitioning into evaporation and runoff because 

temperature is a key variable for the calculation of potential evaporation (Kirchner and Allen, 

2020; Van Stan et al., 2020; Zheng et al., 2019). The hydrological model is recalibrated for 

each of the 102 combinations of rainfall-temperature datasets (Figure 4.1).  

 

Figure 4.1. Flowchart of the methodology used to evaluate the suitability of meteorological 
datasets in reproducing plausible hydrological processes. 

 

The differences in the performance of model outputs are assumed to result from the propagation 

of the input data uncertainty through the model simulations (Fallah et al., 2020; Nikolopoulos 

et al., 2010). In case of uncertainties resulting from the hydrological model structure, these 

uncertainties can be assumed to remain consistent for all the input datasets and therefore it 
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should not hinder the interpretation of the results, because only the parameters change during 

model calibration and not the model structure (Raimonet et al., 2017). 

 

4.3 Meteorological datasets 

This study evaluates 17 rainfall products composed of 10 satellite-based products: TAMSAT, 

CHIRPS, ARC, RFE, MSWEP, GSMaP, PERSIANN-CDR, CMORPH-CRT, TRMM 3B42 

and TRMM 3B42RT; and 7 reanalysis products: JRA-55, EWEMBI, WFDEI-GPCC, WFDEI-

CRU, MERRA-2, PGF and ERA5 (Table 4.1). The data access portals and their full names are 

provided in Appendix 5. Widely used global and Africa-tailored datasets were selected based 

on their availability in the period for which streamflow data is available for the hydrological 

modelling (2000-2012). For SRPs having multiple versions, the gauge-corrected version was 

selected to avoid the known systematic biases found in the SRPs as compared to ground 

measurements (Jiang and Wang, 2019; Pellarin et al., 2020). The selected rainfall datasets 

include single and multi-sensor, with various merged and gauge-corrected products obtained 

from rain gauges, microwave sensors on low Earth orbits and infrared sensors on geostationary 

satellites (Golian et al., 2019; Maggioni and Massari, 2018; Thiemig et al., 2013). Moreover, 

six different datasets of air temperature (at 2 m above ground) are used for the calculation of 

potential evaporation and they are obtained from the reanalysis products: JRA-55, EWEMBI, 

WFDEI, MERRA-2, PGF and ERA5. 

The maps of spatial patterns of rainfall and temperature in the VRB for different datasets are 

shown in Figure 4.2 and Figure 4.3. The climatology of rainfall and temperature per climatic 

zones are provided in Appendix 8 to Appendix 11. 
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Figure 4.2. Mean annual rainfall totals over the period 2003-2012 for 17 rainfall datasets the 
Volta River basin 

 

 

Figure 4.3. Mean annual air temperature (average (a), maximum (b) and minimum (c)) over the 
period 2003-2012 for 6 temperature datasets in the Volta River basin 
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Table 4.1. Meteorological datasets with used spatial resolution; the table presents the 
characteristics of the datasets used in this study, although different spatial and temporal 
resolutions can be available from the data providers. G: gauge, S: satellite, R: reanalysis, NP: 
near-present. 

Datasets Data 
sources 

Spatial 
coverage 

Spatial 
resolution 

Temporal 
coverage 

Temporal 
resolution 

References 

TAMSAT v3.0 S, G 
Africa 
38°N – 36°S, 
19°W – 52°E 

0.0375° 1983-NP daily 

Maidment et al. 
(2017), Tarnavsky 
et al. (2014), 
Maidment et al. 
(2014)  

CHIRPS v2.0 S, G, R 
Land 
50° N/S,  
180° E/W 

0.05° 1981-NP daily Funk et al. (2015)  

ARC v2.0 S, G 
Africa 
40°N – 40°S, 
20°W – 55°E 

0.1° 1983-NP daily Novella and Thiaw 
(2013) 

RFE v2.0 S, G 
Africa 
40°N – 40°S, 
20°W – 55°E 

0.1° 2001-NP daily 
Xie and Arkin 
(1996), Herman et 
al. (1997) 

MSWEP v2.2 S, G, R Global 0.1° 1979-NP 3-hourly Beck et al. (2017a) 

GSMaP-std v6 R, G 
60◦ N/S,  
180° E/W 0.1° 2001-2013 daily 

Ushio et al. (2009), 
Ushio et al. (2019) 

PERSIANN-
CDR v1r1 

S, G 60◦ N/S, 
180° E/W 

0.25° 1983-2016 6-hourly 
(daily) 

Ashouri et al. 
(2015) 

CMORPH-CRT 
v1.0 

S, G 
60◦ N/S, 
180° E/W 

0.25° 1998-2015 daily 
Joyce et al. (2004), 
Xie et al. (2017) 

TRMM 3B42 v7 S, G 
50◦ N/S, 
180° E/W 0.25° 2000-2017 3-hourly 

Huffman et al. 
(2007) 

TRMM 3B42 RT 
v7 

S 50◦ N/S, 
180° E/W 

0.25° 2000-NP 3-hourly Huffman et al. 
(2007) 

WFDEI-CRU R, G Global 0.5° 1979-2018 3-hourly 
Weedon et al. 
(2014) 

WFDEI-GPCC R, G Global 0.5° 1979-2016 3-hourly Weedon et al. 
(2014) 

PGF v3 R, G Global 0.25° 1948-2012 3-hourly 
Sheffield et al. 
(2006) 

ERA5 R Global 0.25° 1979-NP hourly 
Hersbach et al. 
(2018) 

MERRA-2 S, G, R Global 0.625° x 
0.5° 

1980-NP hourly Gelaro et al. (2017), 
Reichle et al. (2017) 

EWEMBI v1.1 R, G Global 0.5° 1976-2013 daily Lange (2016) 

JRA-55 R Global 1.25° 1959-NP 3-hourly Kobayashi et al. 
(2015) 
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4.4 Modelling datasets 

In addition to the meteorological datasets (Table 4.1), an ensemble of datasets is required for 

the set-up and the calibration and evaluation of the hydrological model (Table 4.2; Appendix 

6).  

Table 4.2. Modelling datasets. ESA CCI SM: European Space Agency Climate Change 
Initiative Soil Moisture; GIMMS: Global Inventory Modelling and Mapping Studies; GLEAM: 
Global Land Evaporation Amsterdam Model; GLiM: Global Lithological Map; GMTED: 
Global Multi-resolution Terrain Elevation Data; GRACE: Gravity Recovery and Climate 
Experiment; WFDEI: WATCH Forcing Data methodology applied to ERA-Interim data. 

Variables Products 
Spatial 

resolution 
Temporal 
resolution 

References 

Morphological data     
Terrain characteristics 
(elevation, slope, aspect, flow 
direction and flow 
accumulation) 

GMTED 
2010 

225 m 
(0.0021°)  static 

Danielson and Gesch 
(2011) 

Soil properties (horizon depth, 
bulk density, sand and clay 
content,) 

SoilGrids 
250 m 

(0.0023°) 
static Hengl et al. (2017)   

Geology GLiM v1.0 0.5° static 
Hartmann and 
Moosdorf (2012) 

Land use land cover 
Globcover 

2009 
300 m 

(0.0028°)  static Bontemps et al. (2011) 

Phenology (leaf area index) GIMMS 
8 km 

(0.0833°) 
bimonthly 

Tucker et al. (2005), 
Zhu et al. (2013) 

Model calibration/evaluation     

Streamflow - point daily 
VBA and DGRE in 
Burkina Faso, HSD in 
Ghana 

Terrestrial water storage 
anomaly (St) 

GRACE 
TellUS 

v5.0 
1° monthly 

Tapley et al. (2004), 
Landerer and Swenson 
(2012)  

Surface soil moisture (Su) 
ESA CCI 
SM v4.2 0.25° daily Dorigo et al. (2017) 

Actual evaporation (Ea) 
GLEAM 

v3.2a 
0.25° daily Martens et al. (2017), 

Miralles et al. (2011) 
Land surface temperature (Ts) 

(only for model evaluation) 
MYD11A2 

v6 
1 km 

(0.0083°) 
8-day Wan et al. (2015) 

 

The streamflow datasets obtained from national and international organizations were pre-

processed (i.e. gap-filling and quality control) in the work of Dembélé et al. (2019). Although 

https://www.isric.org/explore/soilgrids
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a large number of streamflow datasets was considered in the gap-filling procedure (cf. Chapter 

3), only 11 streamflow stations that are found to have the highest data quality are used for 

hydrological modelling. This limits the propagation of the gap-filled streamflow data 

uncertainty in the hydrological modelling. 

 

4.5 Distributed hydrological model setup 

The fully distributed mesoscale Hydrologic Model (mHM) is a conceptual model that simulates 

dominant hydrological processes (e.g., evaporation, soil moisture and discharge) per grid cell 

in the modelling domain (Kumar et al., 2013; Samaniego et al., 2010). Samaniego et al. (2011) 

provide a schematic representation of the processes accounted for in mHM. A multiscale 

routing model based on the Muskingum-Cunge method (Cunge, 1969) is used for the routing 

of the total grid-generated runoff through the river network (Thober et al., 2019). The sub-grid 

variability of the basin physical characteristics (e.g., soil texture, land cover) is accounted for 

with a multiscale parameter regionalization technique (Samaniego et al., 2017). The model 

parameters (e.g., hydraulic conductivity, soil porosity) are linked to the basin physical 

characteristics via pedo-transfer functions and global parameters. Thirty-six global parameters 

(cf. Pokhrel et al., 2008) are tuned during model calibration for this study (Appendix 17). The 

version 5.9 of mHM is used in this study. 

Reference evaporation (Eref) is calculated following the method of Hargreaves and Samani 

(1985), which was found to be reliable for semi-arid regions like the VRB (Bai et al., 2016; Er-

Raki et al., 2010; Gao et al., 2017). Eref is formulated as follows: 

 𝐸𝐸ref = 𝜅𝜅
𝑅𝑅a
𝜆𝜆
�𝑇𝑇avg + 17.8�(𝑇𝑇max − 𝑇𝑇min)0.5 (4.1) 

where Ra (MJ/m2/day) is the extra-terrestrial radiation computed based on the latitude of the 

location and the day of the year (Allen et al., 1998), λ = 2.45 MJ/kg is the latent heat of 

vaporization of water. The unit of radiation is converted into equivalent water evaporation in 

mm/day with the ratio Ra/λ. The differences in advection or vapour transfer effect are 

compensated by the constant κ = 0.0023, and Tavg, Tmax and Tmin represent the daily average, 

maximum and minimum air temperature in degrees Celcius (°C) at a given location. 

Potential evaporation (Ep) is calculated by adjusting Eref with a dynamical scaling function (FDS) 

based on leaf area index  (Allen et al., 1998; Demirel et al., 2018), therefore accounting for 

vegetation-climate interactions (Bai et al., 2018a; Birhanu et al., 2019; Jiao et al., 2017). Ep is 

formulated as follows: 
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 𝐸𝐸p = 𝐹𝐹DS ∙ 𝐸𝐸ref, with (4.2) 

 𝐹𝐹DS = 𝑎𝑎 + 𝑏𝑏�1 − 𝑒𝑒(𝑐𝑐∙𝐼𝐼LA)� (4.3) 

where a is the intercept term, b is the vegetation dependent component, and c represents the 

degree of nonlinearity of the leaf area index (ILA). The coefficients a, b, and c are determined 

through model calibration. 

In this study, actual evaporation (Ea) is defined as the sum of transpiration and evaporation from 

interception, land and water bodies (Coenders-Gerrits et al., 2020; Shuttleworth, 1993). Ea is 

calculated as a fraction of Ep from soil layers depending on soil moisture availability and the 

rooting depth (Feddes et al., 1976). Soil moisture is estimated by a multi-layer infiltration 

capacity approach adopting a three-layer soil scheme (0-5, 5-30 and 30-100 cm depths). 

Terrestrial water storage at each grid cell is the sum of the surface and subsurface water storage 

(i.e., lakes, wetlands, soil moisture reservoirs, interflow and baseflow). 

 

4.6 Multisite model calibration on streamflow data 

A multisite calibration strategy is adopted by simultaneously constraining the model with the 

11 streamflow (Q) gauging stations (Figure 2.2) to infer a unique parameter set for the whole 

basin. The objective function 𝛷𝛷𝑄𝑄 combines the Nash-Sutcliffe efficiency (Nash and Sutcliffe, 

1970) of streamflow (ENS) and the Nash-Sutcliffe efficiency of the logarithm of streamflow 

(ENSlog), and it is formulated such that it has to be minimized: 

 𝛷𝛷𝑄𝑄 = 1
𝑔𝑔
∑ �(1 − 𝐸𝐸𝑁𝑁𝑁𝑁)2 + �1 − 𝐸𝐸𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁�

2𝑔𝑔
1 , with (4.4)  

 𝐸𝐸𝑁𝑁𝑁𝑁 = 1 −
∑ �𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) −𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡)�

2𝑡𝑡
1

∑ (𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) − 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜������)2𝑡𝑡
1

 and  (4.5)  

 𝐸𝐸𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 1 −
∑ �log�𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)� − log�𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡)��

2𝑡𝑡
1

∑ �log�𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡)� − log(𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜)�������������
2𝑡𝑡

1

  (4.6)  

where Qmod and Qobs are the modelled and observed streamflow data, t is the number of time 

steps of the calibration period, and g is the number of streamflow gauging stations present 

within the modelling domain. 𝛷𝛷𝑄𝑄 is obtained by equally weighing the streamflow gauging 

stations, and it ranges from its ideal value that is 0 to positive infinity. 

The model is calibrated solely with Q data because it is the only available in-situ measurement, 

and to avoid potential trade-offs of a multivariate calibration that would result in difficulties in 

identifying the source of variation in the model performance (i.e. input data vs. model 
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parametrization). The parameter estimation is done with the dynamically dimensioned search 

algorithm (Tolson and Shoemaker, 2007) using 4,000 iterations for each of the 102 rainfall-

temperature dataset combinations. 

 

4.7 Multivariable model evaluation with streamflow and satellite data 

4.7.1 The Kling-Gupta efficiency 

The Kling-Gupta efficiency (EKG) (Kling et al., 2012) is used to evaluate the model performance 

for streamflow. 

 𝐸𝐸KG = 1 −�(𝑟𝑟KG − 1)2 + (𝛽𝛽KG − 1)2 + (𝛾𝛾KG − 1)2 (4.7) 

Where 𝑟𝑟KG is the Pearson correlation coefficient, 𝛽𝛽KG is the bias term (i.e. the ratio of the 

means), and 𝛾𝛾KG is the variability term (i.e. the ratio of the coefficients of variation) between 

the observed (Qobs) and modelled (Qmod) streamflow. The EKG ranges from negative infinity to 

its optimal value that is unity. As a reference, EKG > -0.41 indicates that the model is better than 

the mean observed flow (Knoben et al., 2019). 𝛷𝛷Q ranges from its optimal value that is 0 to 

positive infinity. 

In addition to Q, several non-commensurable and satellite-based variables are used for model 

evaluation (Table 4.2). The model performance for Q is evaluated with EKG. The bias-

insensitive Pearson’s correlation coefficient (r) is used to assess the temporal dynamics of St, 

Su and Ea because the model is not calibrated on these variables, and their evaluation datasets 

are satellite-derived products that encompass uncertainties and can be biased. 

 

4.7.2 Spatial pattern efficiency 

The spatial pattern representation of hydrological processes is assessed by using a bias-

insensitive and multi-component metric developed by Dembélé et al. (2020b). The proposed 

spatial pattern efficiency (ESP) metric only considers the spatial pattern of the underlying 

variables and ignores their absolute values. ESP is an integrated measure of the dynamics, the 

spatial variability, and the locational matching of grid cells between the modelled (Xmod) and 

observed (Xobs) variables. With Xobs and Xmod composed of n cells, ESP is defined as follows: 

 𝐸𝐸SP = 1 −�(𝑟𝑟s − 1)2 + (𝛾𝛾 − 1)2 + (𝛼𝛼 − 1)2, with (4.8) 

 𝑟𝑟s = 1 − 6∑ 𝑑𝑑i
2𝑛𝑛

1
𝑛𝑛(𝑛𝑛2−1), (4.9) 
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 𝛾𝛾 = 𝜎𝜎mod 𝜇𝜇mod⁄
𝜎𝜎obs 𝜇𝜇obs⁄  and (4.10) 

 𝛼𝛼 = 1 − 𝐸𝐸RMS�𝑍𝑍Xmod ,𝑍𝑍Xobs�, with (4.11) 

where rs is the Spearman rank-order correlation coefficient with di the difference between the 

ranks of the ith cell of Xmod and Xobs. 𝛾𝛾 is the variability ratio (i.e., the ratio of the coefficients of 

variation) that assesses the similarity in the dispersion of the probability distributions of Xmod 

and Xobs, with 𝜇𝜇 and 𝜎𝜎 representing the mean and the standard deviation of the variable. 𝛼𝛼 is the 

spatial location matching term calculated as the root mean squared error (ERMS) of the 

standardized values (z-scores, ZX) of Xmod and Xobs (Dembélé et al., 2020b).  

The standardized values (z-scores, ZX) of Xmod and Xobs and the root mean squared error (ERMS) 

of a modelled variable (Xmod) and an observed variable (Xobs) of n elements, are defined as 

follows: 

 𝑍𝑍𝑋𝑋 = 𝑋𝑋−𝜇𝜇
𝜎𝜎

 and (4.12) 

 𝐸𝐸RMS(𝑋𝑋mod,𝑋𝑋obs) = �1
𝑛𝑛
∑ (𝑋𝑋mod − 𝑋𝑋obs)2𝑛𝑛
1   (4.13) 

where 𝜇𝜇 and 𝜎𝜎 are the mean and the standard deviation of a given variable X. 

The z-score is a standardization of the scale of a distribution that facilitates its comparison with 

another distribution. The z-scores identify and describe the exact location of each observation 

in a distribution (Gravetter and Wallnau, 2013). For a given variable with values represented 

spatially as a 2-D matrix, the z-scores represent the number of standard deviation the value in 

each grid cell is from the population mean (Oyana and Margai, 2015). Consequently, forcing 

the z-scores of Xmod and Xobs to be equal (i.e. minimizing their ERMS) corresponds to matching 

their grid cell locations (i.e. spatial patterns). ESP ranges from negative infinity to its optimal 

value that is unity. ESP = 0 when there is a moderate relationship between the ranks of the 

observed and modelled variables (i.e., rs = 0.55), and ESP = -0.67 when the ranks are not related 

(i.e., rs = 0). A comparison of ESP to SPAEF, another spatial pattern metric, is provided in the 

Appendix 7.  

The spatial pattern evaluation is done for Su and Ea, while only the temporal dynamics of St are 

assessed due to the coarse spatial resolution of the GRACE data. 
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4.7.3 Second-order coefficient of variation 

The relative variation in model performance is assessed with the second-order coefficient of 

variation (V2) (Kvålseth, 2017). V2 is an alternative to the classic Pearson’s coefficient of 

variation (CV), which has significant limitations that are comprehensively discussed by 

Kvålseth (2017). For all sample data x = (x1,…, xn) ∈ Rn, with R = (-∞, ∞), V2 is defined as 

follows: 

 𝑉𝑉2 = �
𝑠𝑠2

𝑠𝑠2 + 𝑥̅𝑥2
�
1 2⁄

 (4.14) 

where s is the standard deviation and 𝑥̅𝑥 is the mean of x. V2 varies from 0 to 1 or 0% to 100%, 

and represents the distance between x and 𝑥̅𝑥 relative to the distance between x and the origin 

zero.  

 

4.8 Results 

The results are presented and discussed for the entire simulation period (2003-2012, i.e. 

combined calibration and evaluation periods) because reliable meteorological datasets are 

expected to produce a plausible representation of hydrological processes independently of the 

modelling period (Bisselink et al., 2016). Additional results are provided in the supporting 

information of Dembélé et al. (2020c). 

 

4.8.1 Model performance for streamflow 

Similar model performance patterns are obtained with EKG, ENS and ENSlog of daily streamflow 

(Q) (Figure 4.4). Therefore, only EKG is retained for the description of the results.  All input 

dataset combinations show a median EKG > 0.5, except those having JRA-55 as rainfall input 

(Figure 4.4); this can be justified by the coarse spatial resolution of that product. The ranking 

of the rainfall and temperature datasets based on the model performance for Q is provided in 

Figure 4.6. The analysis of model performance for Q is done for the entire VRB and not per 

climatic zone due to the limited number of stations. As expected, the discrepancies in median 

EKG are more pronounced across rainfall datasets than across temperature datasets, as visible in 

the colour-coded ranking of the products in Figure 4.4. For a given rainfall product, the ranking 

among all rainfall products hardly varies with different temperature products. The ranking of 

all the datasets for the model performance for Q is also summarized in Figure 4.6. For rainfall 

datasets, the second-order coefficient of variations (V2) across temperature datasets varies 
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between 0.5% for GSMaP-std and 4% for JRA-55, with an average V2 of 2%. For temperature 

datasets, the V2 of median EKG of Q across rainfall datasets varies between 10% for MERRA-2 

and 12% for ERA5, with an average V2 of 11%. This result suggests that the choice of a rainfall 

dataset has a stronger impact on the EKG of Q than the choice of a temperature dataset.  

The analysis of the components of EKG (i.e. the Pearson correlation 𝑟𝑟KG, the bias 𝛽𝛽KG and the 

variation 𝛾𝛾KG) reveals that, when choosing a rainfall dataset, there is more uncertainty in the 

bias of Q (V2 = 14%) than in its variability (V2 = 6%) and in its dynamics (V2 = 3%), which is 

in agreement with the work of Thiemig et al. (2013).  

 

Figure 4.4. Kling-Gupta efficiency (EKG), Nash-Sutcliffe efficiency (ENS) and Nash-Sutcliffe 
efficiency of the logarithm (ENSlog) of daily streamflow (Q) over the simulation period (2003-
2012) for 102 combinations of 17 rainfall datasets (y-axis) and 6 temperature datasets (x-axis) 
used as forcing for the hydrological model. 

 

4.8.2 Model performance for terrestrial water storage 

The model performance for the temporal dynamics of monthly terrestrial water storage (St) 

compared to the GRACE product is shown in Figure 4.5. The average Pearson correlation 

coefficient (r) of St for all datasets in the entire VRB is 0.80, with discrepancies across climatic 

zones. The driest and wettest climatic zones show the lowest performances, i.e. Sahelian (r = 
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0.67) and Guinean (r = 0.60) zones, compared to the intermediate climatic zones, i.e. Sudano-

Sahelian (r = 0.72) and Sudanian (r = 0.79) zones. Figure 4.6 provides the ranking of all the 

meteorological datasets for the model performance for St. 

The rainfall datasets show different performances across climatic zones, with ARC showing the 

highest score for all the climatic zones except the Guinean zone, where CMORPH-CRT ranks 

first. The choice of the rainfall dataset leads to an average V2 of 15% for the r of St, while the 

average V2 is 5% for the choice of the temperature dataset. 

 

Figure 4.5. Pearson correlation coefficient (r) of modelled terrestrial water storage compared to 
GRACE data in four climatic zones in the Volta River basin over the simulation period (2003-
2012) considering 102 combinations of rainfall (y-axis) and temperature datasets (subplots on 
x-axis) used as forcing for the hydrological model.  
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4.8.3 Model performance for soil moisture 

Figure 4.7 shows the model performance for the temporal dynamics of monthly soil moisture 

(Su) compared to the ESA CCI product. The average r of Su for the entire VRB over all datasets 

is 0.93. The r of Su decreases from the drier to the wetter climatic zones: Sahelian (r = 0.94), 

Sudano-Sahelian (r = 0.94), Sudanian (r = 0.92) and Guinean (r = 0.86). The ranking of the 

meteorological datasets based on the model performance for Su is provided in Figure 4.6. 

EWEMBI and WFDEI-GPCC show the highest performance in the Sahelian and Suadano-

Sahelian zones respectively, while MERRA-2 shows the highest performance in the Sudanian 

and Guinean zones. The choice of the rainfall dataset leads to an average V2 of 4% for the 

temporal dynamics of Su, while the average V2 is 2% for the choice of the temperature dataset. 

The spatial patterns of Su show considerable differences when using different combinations of 

rainfall and temperature input datasets, as illustrated in Figure 4.8 (see Appendix 13 for all 

datasets). The south-north gradient of increasing aridity is not similarly spread among the 

rainfall-temperature dataset combinations. More interestingly, west-east differences in the 

spatial patterns of Su can be observed. These differences in spatial pattern reproduction can also 

be seen in the spatial pattern efficiency metric (ESP) of Su for the 102 rainfall-temperature dataset 

combinations (Figure 4.9). The average ESP of Su in the VRB over all datasets is -0.11.  

 

Figure 4.7. Pearson correlation coefficient (r) of modelled soil moisture (Su) compared to ESA 
CCI data over the simulation period (2003-2012) considering 102 combinations of rainfall (y-
axis) and temperature datasets (subplots on x-axis) used as forcing for the hydrological model. 
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For the entire VRB, the choice of the rainfall dataset leads to an average variation of 61% for 

the ESP of Su, while the choice of the temperature dataset involves a variation of 45%. Lower 

impacts of data choices are observed in the climatic zones where the climate is homogeneous 

as compared to the entire VRB. The choice of a rainfall dataset is more critical for the ESP of Su 

in the driest and wettest climatic zones, i.e. Sahelian (ESP = -0.47, V2 = 25%) and Guinean (ESP 

= -0.40, V2 = 26%) zones, than the intermediate zones, i.e. Sudano-Sahelian (ESP = -0.37, V2 = 

11%) and Sudanian (ESP = -0.39, V2 = 17%) zones. A smaller impact on the ESP of Su is observed 

for the choice of the temperature dataset: Sahelian (V2 = 8%), Guinean (V2 = 19%), Sudano-

Sahelian (V2 = 5%) and Sudanian (V2 = 9%) zones. 

 

 

Figure 4.8. Maps of long-term (2003-2012) average of annual soil moisture (Su) obtained with 
different forcing of rainfall (y-axis, blue font) and temperature (x-axis, red font) datasets. The 
values are normalized between 0 and 1 to emphasize spatial patterns and to use a unique colour 
scale. 
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Figure 4.9. Spatial pattern efficiency (ESP) of soil moisture (Su) over the entire simulation period 
(2003-2012) for the Volta River basin (VRB) using different combinations of precipitation and 
temperature datasets used as input for hydrological modelling. Each boxplot has 120 values 
corresponding to the number of months. The boxplots are coloured from the best (blue) to the 
worst performance (red) based on the median value. 

 

4.8.4 Model performance for actual evaporation 

The model performance for the temporal dynamics of monthly actual evaporation (Ea) 

compared to the GLEAM product is shown in Figure 4.10. The average r of Ea for the entire 

VRB over all datasets is 0.93. Similarly to Su, the r of Ea is higher is the driest climatic zones: 

Sahelian (r = 0.94), Sudano-Sahelian (r = 0.94), Sudanian (r = 0.89) and Guinean (r = 0.81). 

However, the predictive skill of the model for the temporal dynamics of Ea is higher than its 

predictive skill for Ea in the wetter climatic zones. Figure 4.6 shows the ranking of all the 

meteorological datasets for the model performance for Ea. The rainfall datasets show different 

performances across climatic zones, with the following best datasets: PERSIANN-CDR in the 

Sahelian zone, EWEMBI and WFDEI-GPCC in the Soudano-Sahelian zone, ARC in the 

Sudanian and Guinean zones. The choice of the rainfall dataset leads to an average V2 of 4% 

for the temporal dynamics of Ea, while the average V2 is 1.5% for the choice of the temperature 

dataset, which aligns with the findings of Jung et al. (2019).  
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Figure 4.10. Pearson correlation coefficient (r) of modelled actual evaporation (Ea) compared 
to GLEAM data over the simulation period (2003-2012) considering 102 combinations of 
rainfall (y-axis) and temperature datasets (subplots on x-axis) used as forcing for the 
hydrological model. 

 

As for Su, the choice of input datasets has a considerable impact on the reproduction of the 

spatial patterns of Ea (Figure 4.11; see Appendix 14 for all datasets). It can be observed that 

different rainfall-temperature combinations used to force the model result in large discrepancies 

in the spatial pattern of Ea, especially in the southern region. The south-north gradient of 

increasing aridity with west-east differences is represented differently among the rainfall-

temperature dataset combinations (see e.g., the difference between the first two columns of the 

first row in Figure 4.11). 
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Figure 4.11. Maps of long-term (2003-2012) average of annual actual evaporation (Ea) obtained 
with different forcing of rainfall (y-axis, blue font) and temperature (x-axis, red font) datasets. 
The values are normalized between 0 and 1 to emphasize spatial patterns and to use a unique 
colour scale. 

 

The ESP of Ea for the 102 rainfall-temperature dataset combinations in the VRB and the climatic 

zones is given in Figure 4.12. The average ESP of Ea in the VRB over all datasets is 0.07, which 

is higher than for Su (ESP = -0.11). The choice of the rainfall dataset for the VRB affects the ESP 

of Ea on average by 93%, while the choice of the temperature dataset involves a variation 33%. 

However, lower impacts of data choices are observed in the climatic zones. The choice of 

rainfall dataset is more critical for the ESP of Ea in the driest and wettest climatic zones, i.e. 

Sahelian (ESP = -0.99, V2 = 49%) and Guinean (ESP = -0.79, V2 = 37%) zones, than the 

intermediate zones, i.e. Sudano-Sahelian (ESP = -0.35, V2 = 36%) and Sudanian (ESP = -0.42, 

V2 = 49%) zones. A smaller impact on the ESP of Ea is observed for the choice of the temperature 

dataset: Sahelian (V2 = 21%), Guinean (V2 = 10%), Sudano-Sahelian (V2 = 17%) and Sudanian 

(V2 = 21%) zones. 
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Figure 4.12. Spatial pattern efficiency (ESP) of actual evaporation (Ea) over the entire simulation 
period (2003-2012) for the Volta River basin (VRB) and its climatic zones, using different 
combinations of precipitation and temperature datasets used as input for hydrological 
modelling. Each boxplot has 120 values corresponding to the number of months. The boxplots 
are coloured from the best (blue) to the worst performance (red) based on the median value. 

 

4.9 Discussions 

This study builds upon and expands existing research studies on the evaluation of 

meteorological datasets in several ways:  

(i) The evaluation of the spatial patterns of multiple hydrological processes (i.e. streamflow, 

actual evaporation, soil moisture, and terrestrial water storage) in addition to the 

more classically evaluated temporal dynamic. 

(ii) The evaluation of a high number of both satellite-based and reanalysis rainfall datasets 

considered in combination with different temperature datasets.  

(iii) The assessment of the model performance across four considerably different climatic 

zones from semi-arid to sub-humid. 

The overall outcome of this analysis is the ranking of all the meteorological datasets based on 

their ability to simulate various hydrological processes across different climatic zones in the 

VRB (Figure 4.6). It is worth noting that the overall ranking shows which product is best or 

worst at simulating a given hydrological flux or state variable. However, the ranking does not 
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systematically tell whether a dataset is good or bad. Only the skill scores can be used to draw a 

judgement on the adequacy of a given dataset to produce plausible model outputs. 

The results show that there is no single rainfall dataset outperforming the others in reproducing 

all hydrological processes across different climatic zones. These findings align with previous 

studies in the sense that there is no rainfall dataset that is the best everywhere (Beck et al., 

2017b; Sylla et al., 2013). For datasets providing both rainfall and temperature data, the 

combination of the two variables as model input is not necessarily the best option for obtaining 

the highest performance in modelling a given hydrological state or flux variable. The best 

rainfall-temperature combinations for the spatiotemporal representation of each hydrological 

flux and state variable are provided in the Appendix 12.  

The results can be considered valid for West Africa and regions with similar hydroclimatic and 

physical features. A wider generalization of the findings should be done with caution and after 

repeating similar evaluation studies in other places. Nevertheless, the key message is that: there 

is no rainfall dataset of all hydrological processes and the best rainfall dataset for temporal 

dynamics might not be the best for spatial patterns. 

Despite the efforts to produce a comprehensive evaluation of the meteorological datasets, the 

results obtained might be subject to uncertainties related to the potential model structural 

deficiencies as well as errors in the observational datasets used for the model evaluation (Gupta 

and Govindaraju, 2019; McMillan et al., 2010; Renard et al., 2010). The distribution of the final 

model parameters (Appendix 18; Appendix 19) highlights the possibility of obtaining equally 

good model performances for different parameter sets (i.e. equifinality), which can be a 

justification for model recalibration. Moreover, it can be noticed that most of the model 

parameters are sensitive to the change in meteorological input datasets (Appendix 18). A 

detailed analysis of parameter variability as a function of input data is beyond the scope of the 

current study, but could build the basis of future research, namely to identify data errors by 

analyzing parameter patterns (e.g. rooting depth), and resolve potential structural deficiencies 

of the mHM model. However, the mHM is chosen because of its adequacy for the experiment 

of this study (for model selection, see Addor and Melsen, 2019). The structure of mHM allows 

the representation of seamless spatial patterns of hydrological processes through the MPR 

scheme (Samaniego et al., 2017). In addition, mHM facilitates parameter regionalization and is 

therefore convenient for large-scale modelling, and it harnesses the full potential of the forcing 

datasets as it is a fully distributed model that has performed well in previous studies including 

those in the VRB (e.g. Dembélé et al., 2020b; Poméon et al., 2018). Regarding the model 
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evaluation, the comparison between the observed and modelled hydrological processes is done 

only on their temporal dynamics and spatial patterns using bias-insensitive metrics, except for 

streamflow, which limits the potential impact of satellite data uncertainty.  

The model is calibrated only on Q data despite the known limitations of the Q-only calibration 

(Demirel et al., 2018). However, regarding the goal of this study, that was the best option to 

obtain the impact of various meteorological forcing datasets on the plausibility of hydrological 

processes. As no rainfall dataset ranks first in simulating all the hydrological processes, this 

study confirms that model calibration on multiple variables is a way forward in improving the 

overall representation of the hydrological system and increasing the predictive skill of 

hydrological models (Dembélé et al., 2020a; Dembélé et al., 2020b). The domain-wide 

calibration strategy adopted in this study generates a unique parameter set for the simulation of 

multiple hydrological processes across several catchments with different hydroclimatic 

features, which has the consequence of having local differences in model performance. 

However, domain-wide calibration has proved to perform similarly to domain-split calibration 

in previous studies (Mizukami et al., 2017), and it was ideal for this study because of the interest 

in simulating seamless spatial patterns, which might have not been possible with separately 

simulated portions of the basin. Moreover, the main goal of this study is to assess the adequacy 

of the meteorological datasets for large-scale hydrological modelling, knowing that these 

datasets usually have a coarse spatial resolution with pixels often averaged over regions with 

strong sub-grid variability. 

Finally, the importance of regional evaluation is emphasized by this study because some region-

tailored datasets (e.g. TAMSAT and ARC) which are not included in global scale studies (e.g. 

Beck et al., 2017b; Essou et al., 2016; Mazzoleni et al., 2019) outperform global datasets. The 

decision to use a given dataset is not only motivated by the availability or the accuracy of the 

data, but also by data accessibility (i.e. storage platforms, openness, format, pre-processing 

requirement, etc.). The findings of this study provide further awareness for the data users and 

improvement avenues for data producers in their quest of the most accurate products  (Beck et 

al., 2017a; Berg et al., 2018; Brocca et al., 2014; Contractor et al., 2020; Cucchi et al., 2020; 

Massari et al., 2020). 
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4.10 Conclusion 

This modelling study evaluates the ability of multiple combinations of rainfall-temperature 

datasets to reproduce plausible hydrological processes and patterns. The experiment is done in 

the Volta River basin with the fully distributed mesoscale Hydrologic Model (mHM) over a 10-

year period (2003-2012), using 17 rainfall and 6 temperature datasets from satellite and 

reanalysis sources. The spatial and temporal representation of streamflow, terrestrial water 

storage, soil moisture and actual evaporation are evaluated using in-situ and satellite remote 

sensing observational datasets. The key findings are: 

- No rainfall dataset consistently outperforms all the others in reproducing the highest 

model performance for all hydrological processes, and the best dataset for the temporal 

dynamics is not necessarily the best for the spatial patterns. 

- Rainfall datasets have a higher impact on the spatiotemporal representation of 

hydrological processes than temperature datasets, but the later have a higher influence 

on the spatial patterns of soil moisture. 

- The large-scale performance for the meteorological datasets is not always valid for sub-

regions in the same basin. 

The findings of this study give a critical insight of the performance for several meteorological 

datasets in the challenging hydroclimatic environment of West Africa. They are expected to 

foster further research initiatives in improving the gridded meteorological datasets and further 

draw users’ attention on the contrasting performances of these datasets in modelling 

hydrological fluxes and state variables. Efforts should be devoted in reporting on the impact of 

data uncertainties on process representation in hydrological modelling, especially when model 

outputs are used for decision-making.  

Future studies can test the transferability of the model’s global parameters across different input 

datasets, i.e. how reliable a parameter set obtained with a given input dataset is for running the 

same model with a different input dataset. The answer to this research question will shed light 

on the necessity of model recalibration when using different meteorological forcing. 

Furthermore, the predictive skill of the model can be improved with a parameter sensitivity 

analysis to determine parameters that affect the spatiotemporal representation of each 

hydrological flux and state variable. 
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Are you asking the right questions? 

Patrick P. Gelsinger 

 

Exactness and neatness in moderation is a virtue, 

but carried to extremes narrows the mind. 

Francois Fenelon 

 

  

                                                 
* This chapter is based on the following publication: 
Dembélé, M., Ceperley, N., Zwart, S. J., Salvadore, E., Mariethoz, G., & Schaefli, B. (2020). Potential 
of Satellite and Reanalysis Evaporation Datasets for Hydrological Modelling under Various Model 
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Abstract 

Twelve actual evaporation datasets are evaluated for their ability to improve the performance 

of the fully distributed mesoscale Hydrologic Model (mHM). The datasets consist of satellite-

based diagnostic models (MOD16A2, SSEBop, ALEXI, CMRSET, SEBS), satellite-based 

prognostic models (GLEAM v3.2a, GLEAM v3.3a, GLEAM v3.2b, GLEAM v3.3b), and 

reanalysis (ERA5, MERRA-2, JRA-55).  Four distinct multivariate calibration strategies (basin-

average, pixel-wise, spatial bias-accounting and spatial bias-insensitive) using actual 

evaporation and streamflow are implemented, resulting in 48 scenarios whose results are 

compared with a benchmark model calibrated solely with streamflow data. A process-

diagnostic approach is adopted to evaluate the model responses with in-situ data of streamflow 

and independent remotely sensed data of soil moisture from ESA-CCI and terrestrial water 

storage from GRACE. The method is implemented in the Volta River basin, which is a data 

scarce region in West Africa, for the period from 2003 to 2012. 

The results show that the evaporation datasets have a good potential for improving model 

calibration, but this is dependent on the calibration strategy. All the multivariate calibration 

strategies outperform the streamflow-only calibration. The highest improvement in the overall 

model performance is obtained with the spatial bias-accounting strategy (+29%), followed by 

the spatial bias-insensitive strategy (+26%) and the pixel-wise strategy (+24%), while the basin-

average strategy (+20%) gives the lowest improvement. On average, using evaporation data in 

addition to streamflow for model calibration decreases the model performance for streamflow 

(-7%), which is counterbalance by the increase in the performance of the terrestrial water 

storage (+11%), temporal dynamics of soil moisture (+6%) and spatial patterns of soil moisture 

(+89%). In general, the top three best performing evaporation datasets are MERRA-2, GLEAM 

v3.3a and SSEBop, while the bottom three datasets are MOD16A2, SEBS and ERA5. However, 

performances of the evaporation products diverge according to model responses and across 

climatic zones. These findings open up avenues for improving process representation of 

hydrological models and advancing the spatiotemporal prediction of floods and droughts under 

climate and land use changes. 
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5.1 Introduction 

Assessing the spatiotemporal variability of hydrological processes is the crux of effective water 

resource management. Global warming is expected to intensify (i.e., accelerate) the 

hydrological cycle, thus increasing or decreasing evaporation depending on places (Donat et 

al., 2016; Famiglietti and Rodell, 2013; Huntington, 2006).  

Evaporation is a dominant flux of the water cycle (Martens et al., 2018; Oki and Kanae, 2006). 

It represents the exchange of water and energy between terrestrial ecosystems and the 

atmosphere. Therefore, evaporation can be used as a proxy for moisture availability and its 

consumption rate (He et al., 2019; Joiner et al., 2018; Van der Ent et al., 2010). The basic 

theories and estimation methods of evaporation are widely documented (e.g., Chen and Liu, 

2020; Liou and Kar, 2014; McMahon et al., 2013; Pan et al., 2019; Zhang et al., 2016). As 

evaporation is the central flux that defines land-atmosphere interactions, improving its 

simulation in hydrological models is a prerequisite for reliable studies that link climate and land 

use change (Fisher et al., 2017; Mueller et al., 2011). This is particularly the case for catchments 

with strong anthropogenic influences (e.g., irrigation schemes, dams, etc.), and in data scarce 

regions (Becker et al., 2019; Jiang and Wang, 2019), where there is insufficient data on human 

water use for robust model calibration. Accordingly, calibrating hydrological models solely 

based on streamflow is not sufficient to guarantee a plausible representation of the hydrological 

system because streamflow is the result of several inter-linked processes, thereby it masks 

spatial heterogeneity (Tobin and Bennett, 2017; Wambura et al., 2018). This limitation in model 

implementation has been overcome by the advent of multivariate calibration techniques using 

satellite-based datasets, which offers models a chance for better spatial heterogeneity 

(Efstratiadis and Koutsoyiannis, 2010; Rakovec et al., 2016b). 

In the quest to improve process representation in hydrological models, large scale distributed 

hydrological modelling faces the challenging requirement of spatially explicit observational 

datasets for model setup and performance evaluation (Clark et al., 2017; Fatichi et al., 2016; 

Hrachowitz and Clark, 2017). Correspondingly, Satellite Remote Sensing (SRS) and reanalysis 

datasets of various hydrological processes have been used as input data (Beck et al., 2017b; 

Maggioni and Massari, 2018; Sheffield et al., 2018) or as calibration and evaluation data for 

hydrological models (Koppa and Gebremichael, 2020; McCabe et al., 2017). Evaporation 

estimates from SRS are increasingly used in multivariate calibration of hydrological models. 

Because it is a key indicator of surface water availability, evaporation is an essential source of 

information for better constraining the spatiotemporal representation of processes in 
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hydrological models (Bai and Liu, 2018; Cui et al., 2019; Talsma et al., 2018). The increasing 

availability and diversity of gridded evaporation datasets has triggered many evaluation and 

comparison studies (Long et al., 2014; Vinukollu et al., 2011b), which highlight significant 

differences between the datasets and thereby indicate underlying uncertainty in the evaporation 

estimates (Baik et al., 2018; López et al., 2017). The uncertainty stems from the strong 

variability of bio-geophysical variables that drive evaporation (e.g., albedo, net radiation, 

surface roughness and temperature) and the diversity of the model structures, model 

parametrizations and input datasets used to estimate evaporation (Badgley et al., 2015; Wang 

and Dickinson, 2012; Zhang et al., 2020). Therefore, the choice and use of SRS evaporation 

data in hydrological modelling should be done cautiously, particularly in catchments with 

strong anthropogenic influences (Senkondo et al., 2019; Yang et al., 2016). Generally, the 

following four approaches are adopted to evaluate gridded evaporation products:  

- Analysis of the variance between several products (e.g., Jimenez et al., 2011; Khan et 

al., 2018; Mueller et al., 2011; Senkondo et al., 2019; Trambauer et al., 2014);  

- Point-to-pixel comparison with ground-based measurements (e.g., Chen et al., 2014; 

McCabe et al., 2015; Michel et al., 2016; Ramoelo et al., 2014; Velpuri et al., 2013); 

- Hydrological consistency by water balance calculation (e.g., Liu et al., 2016; McCabe 

et al., 2008; Miralles et al., 2016; Wang et al., 2018; Weerasinghe et al., 2019); and  

- Assessing the ability of evaporation datasets in improving the parameter estimation of 

hydrological models (e.g., Demirel et al., 2018; Immerzeel and Droogers, 2008; Jiang 

et al., 2020; Poméon et al., 2018; Winsemius et al., 2008). 

Assessing the uncertainty of evaporation estimates at large-scale is challenging due to the 

limited availability of ground-based measurements (Bhattarai et al., 2019; Ceperley et al., 

2017). The uncertainty in evaporation varies in space and according to climate regions (Jung et 

al., 2019; Long et al., 2014; Vinukollu et al., 2011a). In evaluating the contribution of gridded 

evaporation datasets to hydrological model calibration, some limitations can be denoted in 

previous studies. Most previous studies only use or compare few evaporation datasets (e.g., 

Kunnath-Poovakka et al., 2016; Vervoort et al., 2014), and rarely (if any) investigate the use of 

reanalysis datasets (i.e., retrospective analysis; cf. Bosilovich et al., 2008), which are an 

important source of spatial evaporation estimates (Feng et al., 2019). Usually, a lumped or semi-

distributed model is used (e.g., Odusanya et al., 2019; Rientjes et al., 2013), which does not 

harness the full potential of the gridded evaporation datasets that is their spatial patterns 
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(Armstrong et al., 2019; Stisen et al., 2018). Most studies do not test different model calibration 

strategies, with some exceptions that use a semi-distributed model (e.g., Herman et al., 2018; 

Rajib et al., 2018a). Finally, a few studies use a bias-insensitive metric to focus only on the 

spatial patterns of gridded evaporation products (Dembélé et al., 2020b; Koch et al., 2018). 

This study aims to fill current knowledge gaps by evaluating the utility of nine satellite-based 

and three reanalysis evaporation datasets in improving the performance of a distributed 

hydrological model using four distinct calibration strategies. This study does not intend to 

quantify the intrinsic accuracy of the evaporation products nor determine whether a product is 

better than the others in terms of absolute values. Rather it strives to evaluate their ability to 

improve the simulations of a distributed hydrological model when used as a calibration variable. 

Besides the high number and diversity of gridded evaporation datasets evaluated, the novelty 

of this study is the implementation of four distinct model calibration strategies with a fully 

distributed hydrological model, the evaluation of the model responses with multiple variables 

(i.e., streamflow, soil moisture and terrestrial water storage) to test evaporation error 

propagation on other hydrological processes, and the application of the experiment in a large 

basin spread across four eco-climatic zones with considerable anthropogenic influence. This 

study strives to answer two inter-related research questions. Firstly, what is the ability of 

satellite and reanalysis evaporation datasets to improve the overall predictive skill of a fully 

distributed hydrological model? Secondly, how important is the model calibration strategy in 

improving the representation of hydrological processes? The proposed research is carried out 

in the Volta River basin located in West Africa, using the mesoscale Hydrologic Model (mHM) 

(cf. Section 4.5, Chapter 4) over a period of ten consecutive years (2003-2012). 

 

5.2 Evaporation datasets 

Twelve gridded actual evaporation datasets including nine SRS-based products (MOD16A2, 

SSEBop, ALEXI, CMRSET, SEBS, GLEAM v3.2a, GLEAM v3.3a, GLEAM v3.2b, GLEAM 

v3.3b) and three reanalysis products (ERA5, MERRA-2, JRA-55) are evaluated in this study. 

Based on evaporation modelling approaches (Yilmaz et al., 2014), the SRS-based datasets can 

be further classified as diagnostic products (MOD16A2, SSEBop, ALEXI, CMRSET, SEBS) 

or prognostic products (GLEAM v3.2a, GLEAM v3.3a, GLEAM v3.2b, GLEAM v3.3b), while 

the reanalysis datasets are all prognostic products. A summary of the evaporation datasets is 

provided in Table 5.1. The data access portals and their full names are provided in Appendix 

20. Four versions of the GLEAM product are evaluated. They differ in terms of input data used 
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for their production and in terms of their spatiotemporal coverage (cf. Table 1 in Martens et al., 

2017). The version v3.3 differs from the v3.2 in the following forcing datasets: surface 

radiation, near-surface air temperature and land cover maps. The versions v3.3a and v3.2a are 

produced with reanalysis, satellite and gauge-based datasets, while the versions v3.3b and v3.2b 

are mainly produced with satellite datasets. 

Considerable differences can be observed both in the temporal dynamics and the spatial patterns 

of the 12 gridded evaporation datasets across the climatic zones in the VRB (Figure 5.1 and 

Figure 5.2).  

 

Figure 5.1. Mean monthly total actual evaporation (Ea) of 12 gridded evaporation datasets 
averaged for the four climatic zones (sub-figures b-e) in the Volta River basin over the period 
2003-2012.   
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Figure 5.2. Spatial distribution of total annual actual evaporation (Ea) for 12 gridded 
evaporation datasets in the Volta River basin averaged for the period 2003-2012. A min-max 
normalization of the values allows rescaling them between 0 and 1 to facilitate the 
intercomparison of the spatial patterns among the datasets. 

 

Table 5.1. Gridded actual evaporation datasets. The characteristics of the datasets are those used 
in this study although the same datasets can be available from the data providers with different 
versions and spatiotemporal resolutions. 

Datasets Spatial 
coverage 

Spatial 
resolution 

Temporal 
coverage 

Temporal 
resolution 

References 

MOD16A2 Global 0,0085° 
(~1 km) 

2001-2014 Monthly Mu et al. (2011) 

SSEBop Global 0.0083° 
(~1 km) 

2003-2014 Monthly Senay et al. (2007), 
Senay et al. (2013) 

ALEXI 70° N–60° S 
0.05° 

(~5.6 km) 2003-2015 Monthly 
Anderson et al. (1997), 
Anderson et al. (2007) 

CMRSET Global 0.05°  
(~5.6 km) 

2001-2013 Monthly Guerschman et al. 
(2009) 

SEBS 40° N–40° S 
0.05° 

(~5.6 km) 2001-2012 Monthly Su (2002) 

GLEAM v3.2a 
Global 

0.25° 
(~28 km) 

1980-
present 

Daily 
Martens et al. (2017), 
Miralles et al. (2011) 

GLEAM v3.3a 
GLEAM v3.2b 

50° N–50° S 2003- 
present GLEAM v3.3b 

ERA5 Global 
0.25° 

(~28 km) 
1979- 

present 
Hourly Hersbach et al. (2018) 

MERRA-2 Global 
0.5° x 0.625° 

(~56 km) 
1980- 

present Hourly 
Gelaro et al. (2017), 
Reichle et al. (2017) 

JRA-55 Global 
1.25° 

(~140 km) 
1959- 

present 3-hourly 
Kobayashi et al. (2015), 

Harada et al. (2016) 
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5.3 Model calibration and evaluation strategies 

The description of the hydrological model setup is provided in the Section 4.5 of Chapter 4. 

The modelling period extends from 2000 to 2012 with 3 years of model warm-up (2000-2002), 

6 years for calibration (2003-2008), and 4 years for evaluation (2009-2012). Available daily in-

situ streamflow datasets from 11 gauging locations are used for model calibration and 

evaluation, while monthly datasets of Ea (Table 5.1) are used for model calibration, and monthly 

datasets of Su (ESA CCI) and St (GRACE) are used for model evaluation. All the Ea datasets 

are rescaled to 0.25° using bilinear interpolation to match the modelling spatial resolution, and 

sub-monthly data are aggregated to monthly resolution. Only the first soil layer of mHM is 

compared to the ESA CCI data, which represents the surface soil moisture. 

 

Figure 5.3. Overview of the modelling approach to evaluate the reanalysis and satellite-based 
evaporation datasets. 

 

First, a streamflow-only calibration is adopted as benchmark. Then, the contribution of 

evaporation datasets in improving hydrological model calibration is tested by simultaneously 

constraining the model with streamflow and each of the twelve gridded evaporation datasets 

using four calibration strategies for each (Figure 5.3). Therefore, 48 scenarios (i.e., 12 datasets 

times 4 calibration strategies) are developed and compared to the benchmark calibration to 
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evaluate the impact of different calibration strategies on model performance. The dynamically 

dimensioned search algorithm (Tolson and Shoemaker, 2007) is used for parameter estimation, 

using 5,000 iterations for each of the 48 scenarios and for the benchmark model calibration. 

The computational runtime is about 6 days for each of the 49 model simulations on a computer 

Intel Xeon Processor E5-2697 v3 with 64 GB of RAM. 

 

5.3.1 Calibration on streamflow data – benchmark 

The benchmark calibration (case Q) is elaborated by calibrating the hydrological model solely 

with streamflow (Q) data. The objective function for case Q (𝛷𝛷Q) to be minimized is obtained 

by calculating the average Kling-Gupta efficiency (EKG) over the 11 gauging points for Q in the 

basin, and subtracting it from 1. 𝛷𝛷Q ranges from its optimal value that is 0 to positive infinity, 

and is formulated as follows: 

 𝛷𝛷Q = 1 − �1
𝑔𝑔
∑ 𝐸𝐸KG,i�𝑄𝑄mod,i,𝑄𝑄obs,i�
𝑔𝑔
𝑖𝑖=1 �, with (5.1) 

 𝐸𝐸KG = 1 −�(𝑟𝑟 − 1)2 + (𝛽𝛽 − 1)2 + (𝛾𝛾 − 1)2 (5.2) 

where g is the total number of streamflow gauging stations in the basin, EKG is the modified 

Kling-Gupta efficiency (Kling et al., 2012) calculated for the observed (Qobs,i) and modelled 

(Qmod,i) streamflow of the ith gauging point. EKG is composed of the Pearson correlation 

coefficient (r), the bias term (𝛽𝛽, i.e., the ratio of the means) and the variability term (𝛾𝛾, i.e., the 

ratio of the coefficients of variation). EKG ranges from negative infinity to its optimal value that 

is 1. A model is better than the mean observed flow if EKG > -0.41 (Knoben et al., 2019). 

 

5.3.2 Multivariate calibration with evaporation and streamflow 

A bias-insensitive and multi-component metric developed by Dembélé et al. (2020b) is used to 

quantify the degree of reproduction of the spatial patterns of hydrological processes. The 

proposed spatial pattern efficiency (ESP) metric only considers the spatial pattern of the 

underlying variables and ignores their absolute values (cf. Eq. 4.8 in Section 4.7, Chapter 4). 

Four multivariate calibration strategies with distinct objective functions are proposed to 

simultaneously consider Q and Ea data as calibration variables (Equations 5.4, 5.8, 5.10 and 

5.12). Each objective function is formulated based on the Euclidean distance approach, in which 

all elements are equally weighted (Khu and Madsen, 2005). The Euclidian distance (DE) 
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between two points X and Y of coordinates (x1, x2,…, xn) and (y1, y2,…, yn) in an n-dimensional 

space (Upton and Cook, 2014) is given by: 

 𝐷𝐷E = ��(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 (5.3) 

The four multivariate calibration strategies differ from each other based on the formulation of 

the sub-objective function for Ea (i.e., 𝛷𝛷Ea), while 𝛷𝛷Q remains unchanged. The observed 

variable (Ea,obs) and the modelled variable (Ea,mod) of actual evaporation are represented each 

by a 3D array of dimension [M x N x T], with M the number of rows, N the number of columns, 

and T the number of time steps (Figure 5.4). For this study, M represents 40 latitude rows, N 

represents 36 longitude columns and T represents 72 months (i.e. calibration period). The 

modelling domain has 1440 grid cells of which 619 are active (i.e. grid cells representing the 

basin area). The inactive grid cells are masked out during the calculation of the performance 

metrics. 

In the following, 𝐄𝐄a𝑡𝑡  is a 2D array of actual evaporation represented by all cells (i,j) in the spatial 

domain Ω, and 𝐸𝐸a
𝑖𝑖𝑖𝑖 is the time series of actual evaporation for a given cell at row i and column 

j. The four multivariate calibration strategies are defined as follows: 

 

1- Temporal basin average (BA): the matching of the observed and modelled Ea is done 

on basin-averaged time series. The sub-objective function (𝛷𝛷Ea_BA) to be minimized is 

obtained by calculating the EKG for the observed and modelled time series of basin 

average actual evaporation (𝐸𝐸a,obs������� and 𝐸𝐸a,mod��������) and subtracting it from 1. The objective 

function (𝛷𝛷BA) is formulated as follows: 

 𝛷𝛷BA = �𝛷𝛷Q
2 + 𝛷𝛷Ea_BA

2, with (5.4) 

 𝛷𝛷Ea_BA = 1 − 𝐸𝐸KG�𝐸𝐸a,mod��������,𝐸𝐸a,obs��������, where (5.5) 

 𝐸𝐸a,mod��������(𝑡𝑡) =
1

𝑀𝑀 × 𝑁𝑁
� 𝐄𝐄a,mod

𝑡𝑡 (𝑖𝑖, 𝑗𝑗)
𝑇𝑇

𝑡𝑡=1
∀ 𝑖𝑖,𝑗𝑗 ∈ Ω

, and (5.6) 

 𝐸𝐸a,obs�������(𝑡𝑡) =
1

𝑀𝑀 × 𝑁𝑁
� 𝐄𝐄a,obs

𝑡𝑡 (𝑖𝑖, 𝑗𝑗)
𝑇𝑇

𝑡𝑡=1
∀ 𝑖𝑖,𝑗𝑗 ∈ Ω

 (5.7) 
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2- Temporal pixel-wise (PW): the matching of the modelled and observed Ea is done 

individually on the time series of each grid cell in the basin. The EKG is calculated for 

the observed and modelled time series of Ea at each grid cell in the basin, and the sub-

objective function (𝛷𝛷Ea_PW) to be minimized is the average of the EKG calculated for all 

grids, subtracted from 1. The objective function (𝛷𝛷PW) is formulated as follows: 

 𝛷𝛷PW = �𝛷𝛷Q
2 + 𝛷𝛷Ea_PW

2, with (5.8) 

 𝛷𝛷Ea_PW = 1 − � 1
𝑀𝑀×𝑁𝑁

∑ 𝐸𝐸KG�𝐸𝐸a,mod
𝑖𝑖𝑖𝑖 ,𝐸𝐸a,obs

𝑖𝑖𝑖𝑖 �1≤ 𝑖𝑖 ≤ 𝑀𝑀
1≤ 𝑗𝑗 ≤ 𝑁𝑁
∀ 𝑡𝑡 ∈ 𝑇𝑇 

� (5.9) 

3- Spatial bias-accounting (SB): the matching of the modelled and observed Ea is done for 

all pixels at each time step. The EKG is calculated at each time step between all the pixels 

of the observed and modelled Ea. The sub-objective function (𝛷𝛷Ea_SB) to be minimized 

is the average of the EKG calculated for all time steps, subtracted from 1. The objective 

function (𝛷𝛷SB) is formulated as follows: 

 𝛷𝛷SB = �𝛷𝛷Q
2 + 𝛷𝛷Ea_SB

2, with (5.10) 

 𝛷𝛷Ea_SB = 1 −
1
𝑇𝑇

� 𝐸𝐸KG�𝐄𝐄a,mod
𝑡𝑡 (𝑖𝑖, 𝑗𝑗),𝐄𝐄a,obs

𝑡𝑡 (𝑖𝑖, 𝑗𝑗)�
𝑇𝑇

𝑡𝑡=1
∀ 𝑖𝑖,𝑗𝑗 ∈ Ω

 (5.11) 

 

4- Spatial bias-insensitive (SP): the sub-objective function (𝛷𝛷Ea_SP) to be minimized is 

similarly calculated as for the SB calibration except that a bias-insensitive metric (i.e., 

ESP) is used as skill score instead of EKG. ESP is a bias insensitive metric of spatial 

patterns developed by Dembélé et al. (2020b), cf. Eq. 4.8 (Section 4.7, Chapter 4). The 

objective function (𝛷𝛷SP) is formulated as follows: 

 𝛷𝛷SP = �𝛷𝛷Q
2 + 𝛷𝛷Ea_SP

2, with (5.12) 

 𝛷𝛷Ea_SP = 1 −
1
𝑇𝑇

� 𝐸𝐸SP�𝐄𝐄a,mod
𝑡𝑡 (𝑖𝑖, 𝑗𝑗),𝐄𝐄a,obs

𝑡𝑡 (𝑖𝑖, 𝑗𝑗)�
𝑇𝑇

𝑡𝑡=1
∀ 𝑖𝑖,𝑗𝑗 ∈ Ω

 (5.13) 

All the objective functions (𝛷𝛷BA, 𝛷𝛷PW, 𝛷𝛷SB and 𝛷𝛷SP) vary between their optimal value that is 

0 and positive infinity. Except case SP that is a bias-insensitive approach, other calibration 

strategies consider the absolute values (i.e. raw data) of evaporation. 
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Figure 5.4. Graphical and programming syntax description of the use of evaporation data in the 
four calibration strategies.  The blue matrix represents the observed data while the brown matrix 
represents the modelled data. For the syntax, (i, j, :) means ith element of the first dimension 
(latitude), jth element of the second dimension (longitude) and all elements of the third 
dimension (time). Similarly, (:, :, t) means tth element of the third dimension and all elements 
of the first and second dimensions. The objective functions are calculated based on the Kling-
Gupta efficiency (EKG) and the spatial pattern efficiency (ESP) metrics. 

 

5.3.3 Model output evaluation 

In addition to daily streamflow data, independent monthly datasets of satellite-based soil 

moisture and terrestrial water storage (Table 4.2) are used for model evaluation. The temporal 

dynamics of streamflow is evaluated with EKG. Both the temporal dynamics and the spatial 

patterns of modelled Su are evaluated using the Pearson correlation coefficient (r) and the spatial 

pattern efficiency metric (ESP), while only the temporal dynamics of modelled St is assessed 

using r, due to the coarse spatial resolution of the GRACE data. The skill scores for the temporal 

dynamics are calculated for each pixel (or gauging point) in the basin, while spatial skill scores 

are calculated per time step. 
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5.4 Results 

In general, the trend of the model performance (high vs. low scores) among the scenarios (i.e., 

evaporation datasets vs. calibration strategies) is conserved between the calibration and the 

evaluation periods for all variables. Therefore, the following results are presented for the entire 

simulation period that comprises the calibration and evaluation periods.  Additional and detailed 

results are provided in the supplementary material of Dembélé et al., (2020a). 

 

5.4.1 Model performance for multiple hydrological processes in the VRB 

The model performance for various hydrological processes in the VRB reveals the potential of 

SRS and reanalysis evaporation datasets to improve the model responses if the appropriate 

calibration strategy is used (Figure 5.5).  

For Q, the benchmark model (i.e., Q-only) yields a median EKG of 0.69. In the multivariate 

calibration scenarios (i.e., Q+Ea), the EKG of Q varies between 0.42 for SEBS with case PW to 

0.73 for CMRSET with case SP. The best multivariate calibration strategy is the case SB with 

an average EKG of 0.68 and 75 % of the evaporation datasets producing a higher model 

performance than the benchmark, followed by case SP (EKG = 0.67), case PW (EKG = 0.63) and 

case BA (EKG = 0.60). The top 3 best evaporation datasets for the average EKG of Q over the 

calibration strategies are GLEAM v3.2b (EKG = 0.71), GLEAM v3.3b (EKG = 0.71) and 

GLEAM v3.3a (EKG = 0.70), while the worst are ALEXI (EKG = 0.61), SEBS (EKG = 0.56) and 

ERA5 (EKG = 0.51). The decrease in the model performance for Q in the multivariate calibration 

might be an artefact caused by equifinality (i.e., non-uniqueness of model parameters; Beven, 

2006b; Savenije, 2001) that occurred with the Q-only calibration, which gives more degrees of 

freedom for constraining the model parameter space (Dembélé et al., 2020b). In fact, Appendix 

24 to Appendix 27 show that the high performance for Q achieved with the Q-only calibration 

is obtained at the expense of poor performance for other hydrological processes, while the 

multivariate calibrations with Q+Ea result in parameter sets that provide equivalent model 

performance for Q but higher model performance for St and Su. Appendix 23 shows the 

distribution of the global parameters. 
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Figure 5.5. Model performance in the entire simulation period (2003-2012) for the temporal 
dynamics (a, b, c) of streamflow (Q), terrestrial water storage (St) and soil moisture (Su), and 
the spatial patterns (d) of Su in the Volta River basin. The x-axis gives the objective functions 
for different model calibration strategies. The y-axis indicates the variables used for the model 
calibration. Q-only is the benchmark calibration. Circle colour represents the median model 
performance obtained with 11 gauging points for Q, with 52 pixels for St, with 619 pixels for 
Su (c) or with 120 months for Su (d). The colour bars show the skill score (i.e., EKG, r, ESP). 
Circle size represents model performance variability in terms of relative Interquartile Range 
(IQR) computed as (IQR – IQRmin)/(IQRmax – IQRmin). The IQR range for the 49 scenarios is 
given in the subplot titles. The best model is the bluest and smallest circle, while the worst 
model is the reddest and largest circle. 
 

The evaporation datasets show a high potential to improve the temporal dynamics of modelled 

St as 79% of the multivariate calibration scenarios outperform the case Q (r = 0.73) with an 

average r of 0.81. The lowest average r of St among the calibration strategies is given by case 

SP (r = 0.79), but interestingly, it outperforms the case Q. The highest performances for median 

r of St are obtained with MERRA-2 (r = 0.87), SSEBop (r = 0.87) and ALEXI (r = 0.84) while 

lowest performances are given by SEBS (r = 0.77), MOD16A2 (r = 0.76) and ERA5 (r = 0.74).  

The temporal dynamics of modelled Su show a higher model performance than that of St, with 

an average r of 0.91 and 98% of the multivariate calibration scenarios that outperform the case 

Q (r = 0.86). The case BA performs similarly to case PW and case SP with an average r of 0.91 

across evaporation datasets, and outperformed by case SB (r = 0.93). The highest r of Su is 0.93, 
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and it is obtained with GLEAM v3.3a, MERRA-2 and GLEAM v3.2a, while the weakest scores 

are obtained with MOD16A2 (r = 0.91), SEBS (r = 0.89) and ERA5 (r = 0.89). 

The representation of the spatial patterns of Su improves for all the multivariate scenarios as 

compared to the case Q. However, case SB (ESP = 0.0) has the highest average performance 

across the evaporation datasets, while case BA (ESP = -0.04) has the lowest performance. The 

best evaporation datasets for the simulation of the spatial patterns of Su considering all the 

calibration strategies are SSEBop (ESP = 0.02), MERRA-2 (ESP = 0.01) and GLEAM v3.3a (ESP 

= 0.01), while the worst are MOD16A2 (ESP = -0.04), SEBS (ESP = -0.07) and ERA5 (ESP = -

0.09). 

In general, it is observed that the model performances for St and Su  improve for any multivariate 

calibration scenario. Among the multivariate calibration strategies, case SB gives the best 

results considering the average model performance for all variables (Q, St and Su). In Figure 

5.6b, the highest average relative change in model performance by multivariate calibration 

strategies as compared to the Q-only calibration is obtained with case SB is (+29%), followed 

by case SP (+26%), case PW (+24%) and case BA (+20%). Consequently, all grid-based model 

calibration strategies outperform the basin-average calibration (case BA), which gives the 

lowest average model performance. These results highlight the value of calibrating hydrological 

models on the full extent of gridded evaporation datasets. It is noted that, in most of the 

scenarios, calibrating the model only on the spatial patterns (case SP) of the evaporation 

datasets, thereby ignoring their absolute values, improves the predictive skill of the model with 

a higher performance than that of case Q and case BA. With these findings,  case SP (i.e., only 

spatial patterns of evaporation datasets) is preferred to case SB (i.e., absolute values of 

evaporation datasets) for the calibration of hydrological models because the propagation of the 

errors of the evaporation estimates into the modelling process can be case specific and depends 

on the model structure. This observation also draw attention on the adequacy of the model for 

a given experiment (Addor and Melsen, 2019). Moreover, for a given evaporation dataset, the 

spatial variation in biases in the estimates can lead to contrasting performance across regions 

(Jung et al., 2019; Nicholson, 2000). 
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Figure 5.6. Relative change in the hydrological model performance as compared to the Q-only 
calibration strategy when (a) adopting a multivariate calibration strategy (Q+Ea) with twelve 
evaporation datasets, or (b) using four different calibration strategies. The values on the line 
from each vertex to the center of the polygons give the relative difference in model performance 
as compared to the Q-only calibration. The change in model performance is given in percentage 
of the performance metrics (i.e., EKG, r, ESP) for streamflow (Q), terrestrial water storage (St), 
and soil moisture (Su). For instance in (a), using SSEbop in multivariate calibration increases 
ESP of Su by 110%, while in (b), the calibration strategy case BA decreases EKG of Q by of -
13%, as compared to the Q-only calibration. 

 

The spatial patterns of ALEXI, followed by those of MOD16A2 and CMRSET, were the least 

informative for the model calibration in case SP. Considering all hydrological processes and 

model calibration strategies, the top three best performing evaporation datasets are MERRA-2, 

GLEAM v3.3a and SSEBop, while the bottom three datasets are MOD16A2, SEBS and ERA5. 

However, it is noteworthy that they outperform the Q-only calibration when used in case SP, 

meaning that only their spatial patterns improve the model performance. In general, the versions 

3.3 of GLEAM show a slightly higher model performance than the versions 3.2. Moreover, it 

is noteworthy that the reanalysis Ea products (i.e. MERRA-2 and JRA-55, with the exception 

of ERA5) perform better than the satellite-based products for the temporal dynamics of St, 

which can be justified by the fact that access to deep groundwater is not considered in the 

satellite-based products. 
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5.4.2 Impact of calibration strategies on spatial patterns 

Different model calibration strategies result in different spatial patterns of modelled Ea and Su, 

as shown for selected scenarios in Figure 5.8, and for the Q-only calibration in Figure 5.7. In 

general, the south to north gradient of increasing aridity observed with modelled Ea and Su is 

well depicted for all the calibration strategies. However, considerable mismatches in the 

variability of the patterns are observed among the calibration strategies. Such discrepancies in 

spatial patterns have implications for water resources assessment including water accounting, 

flood and drought monitoring and prediction (AghaKouchak et al., 2015; Klemas, 2014; Teng 

et al., 2017; West et al., 2019). Knowing when flood or drought events occur is important, but 

knowing the spatial extent of the event is crucial for deploying efficient adaptation and 

mitigation strategies (Diaz et al., 2019; He et al., 2020). Consequently, improving the 

representation of the spatial patterns of hydrological processes should be a key consideration in 

modelling with spatially distributed models. The comparison of the maps of modelled Ea 

(Figure 5.8a) with the reference ALEXI dataset (Figure 5.2) reveals that the spatial patterns of 

Ea in the case BA show the highest mismatch with the reference, thereby unveiling the potential 

pitfalls of the basin-average calibration. 

 

 

Figure 5.7. Maps of long-term (2003-2012) annual average of modelled actual evaporation (Ea), 
soil moisture (Su) and terrestrial water storage (St) using streamflow alone to calibrate the mHM 
model. The values are normalized by their range to better emphasize on patterns and use a 
unique color scale.  
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Figure 5.8. Maps of long-term (2003-2012) average of annual (a) actual evaporation (Ea) and 
(b) soil moisture (Su) obtained by calibrating the mHM model with two evaporation datasets (y-
axis, blue font) and different calibration strategies (x-axis, red font). The values are normalized 
between 0 and 1 for to emphasize the spatial patterns and use a unique colour scale. 

 

5.4.3 Analysis per climatic zone 

The analysis of the model performance according to climatic zones is done for all hydrological 

processes except Q because of the few gauging stations, which are unevenly distributed across 

the VRB (cf. Figure 2.2). The results reveal contrasting model performances across climatic 

zones (Figure 5.9). 

In average, the model performance at predicting the temporal dynamics of St and the spatial 

patterns of Su is higher in the intermediate climatic regions (i.e., Sudano-Sahelian and Sudanian 

zones) than in the driest and wettest regions (i.e., Sahelian and Guinean zones) of the VRB. In 

terms of the temporal dynamics of Su, the model performance decreases slightly from the driest 

to the wettest regions. 

In general, the multivariate calibration scenarios with evaporation datasets lead to a higher 

model performance for all hydrological processes in all climatic zones, as compared to the Q-

only calibration. Although the GLEAM products globally perform well, they are the least 

effective at predicting the temporal dynamics of St in the Sahelian zone. The top three best 
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evaporation datasets for improving the average model performance across climatic zones are 

SSEBop, MERRA-2 and ALEXI for the temporal dynamics of St, MERRA-2, GLEAM v3.3a 

and GLEAM v3.2a for the temporal dynamics of Su, and GLEAM v3.3b, GLEAM v3.3a and 

GLEAM v3.2a for the spatial patterns of Su. Similar to results obtained at the entire VRB scale 

(Section 5.4.1), MOD16A2, SEBS and ERA5 still show the lowest contribution in improving 

the model performance across different climatic zones. 

Contrary to the basin scale analysis, case SP is the least efficient calibration strategy per climatic 

zones. This result can be justified by the fact that the model calibration on the spatial patterns 

of evaporation datasets is done at the scale of the VRB. Consequently, the spatial variability of 

hydrological processes at large scale is not representative of the climatic zones where the 

patterns are more homogenous. For regions with strong spatial variability, sub-region model 

calibration on spatial patterns can be a way forward in overcoming the pitfalls of domain-wide 

calibration, thereby ultimately resulting in a higher model performance. 

 



Chapter 5 

96 
 

Figure 5.9. M
odel perform

ance for stream
flow

 (Q
), terrestrial w

ater storage (S
t ) and soil m

oisture (S
u ) using various evaporation datasets and 

m
odel calibration strategies w

ith the m
H

M
 m

odel. The results are show
n for the four clim

atic zones in the V
olta R

iver B
asin (V

R
B

) over the 
sim

ulation period (2003-2012). Each score for a given evaporation product represents the average over the scores obtained w
ith 4 calibration 

strategies, w
hile the score is the average over scenarios w

ith 12 evaporation datasets for each calibration strategy. The skill scores of the 
tem

poral dynam
ics are obtained w

ith the K
ling-G

upta efficiency (E
K

G ) for Q
 and the Pearson’s correlation coefficient (r) for S

t  and S
u . The 

spatial pattern efficiency (E
SP ) is used to assess the spatial representation of S

u . The benchm
ark m

odel perform
ance is given for the Q

-only 
calibration as a reference. The skill scores are ranked from

 the best (bluest) to the w
orst (reddest). 

 

 

 

Spatial 
patterns

Spatial 
patterns

Spatial 
patterns

Spatial 
patterns

Spatial 
patterns

Q
St

Su
Su

St
Su

Su
St

Su
Su

St
Su

Su
St

Su
Su

Q
 only

0.69
0.73

0.86
-0.18

0.73
0.91

-0.36
0.72

0.88
-0.35

0.75
0.86

-0.40
0.60

0.78
-0.50

M
O

D16A2
0.68

0.76
0.91

-0.04
0.70

0.93
-0.37

0.75
0.92

-0.35
0.82

0.91
-0.36

0.69
0.83

-0.41
SSEBop

0.67
0.87

0.92
0.02

0.71
0.92

-0.46
0.84

0.93
-0.33

0.92
0.92

-0.38
0.83

0.85
-0.38

ALEXI
0.61

0.84
0.92

-0.04
0.73

0.94
-0.48

0.83
0.93

-0.34
0.89

0.92
-0.36

0.78
0.86

-0.47
CM

RSET
0.64

0.77
0.91

-0.04
0.68

0.94
-0.44

0.77
0.92

-0.35
0.83

0.92
-0.38

0.75
0.86

-0.36
SEBS

0.56
0.77

0.89
-0.07

0.70
0.91

-0.48
0.79

0.90
-0.35

0.83
0.89

-0.42
0.72

0.84
-0.29

GLEAM
 v3.2a

0.69
0.82

0.93
0.00

0.61
0.94

-0.46
0.78

0.94
-0.34

0.89
0.93

-0.35
0.80

0.86
-0.39

GLEAM
 v3.3a

0.70
0.83

0.93
0.01

0.60
0.94

-0.46
0.80

0.94
-0.33

0.89
0.93

-0.37
0.80

0.86
-0.40

GLEAM
 v3.2b

0.71
0.81

0.92
0.00

0.63
0.94

-0.49
0.78

0.93
-0.33

0.88
0.92

-0.35
0.78

0.85
-0.41

GLEAM
 v3.3b

0.71
0.81

0.92
0.01

0.65
0.94

-0.48
0.79

0.93
-0.34

0.88
0.92

-0.34
0.77

0.85
-0.41

ERA5
0.51

0.74
0.89

-0.09
0.72

0.92
-0.43

0.76
0.90

-0.36
0.80

0.88
-0.40

0.68
0.83

-0.30
M

ERRA-2
0.68

0.87
0.93

0.01
0.66

0.95
-0.48

0.83
0.94

-0.33
0.93

0.93
-0.37

0.83
0.86

-0.45
JRA-55

0.62
0.83

0.91
-0.01

0.67
0.93

-0.43
0.81

0.92
-0.33

0.89
0.91

-0.38
0.78

0.85
-0.38

φ
_BA

0.60
0.81

0.91
-0.04

0.69
0.92

-0.41
0.81

0.92
-0.34

0.86
0.91

-0.38
0.74

0.84
-0.40

φ
_PW

0.63
0.83

0.91
-0.03

0.68
0.92

-0.39
0.82

0.93
-0.34

0.89
0.92

-0.38
0.78

0.85
-0.37

φ
_SB

0.68
0.81

0.93
0.00

0.66
0.94

-0.51
0.79

0.94
-0.34

0.88
0.93

-0.36
0.78

0.86
-0.38

φ
_SP

0.67
0.79

0.91
-0.01

0.66
0.95

-0.52
0.76

0.92
-0.34

0.86
0.91

-0.36
0.76

0.85
-0.40

Tem
poral 

dynam
ics

Tem
poral 

dynam
ics

Q + Evaporation datasets
Calibration 
strategies

Skill scores
For tem

poral dynam
ics: EKG of Q

, r of St and Su  |  For spatial patterns: ESP of Su

VRB
Sahelian zone

Sudano-Sahelian zone
Sudanian zone

Guinean zone

Tem
poral dynam

ics
Tem

poral 
dynam

ics
Tem

poral 
dynam

ics



Potential of Gridded Evaporation Datasets for the Calibration of Hydrological Models 

97 
 

5.5 Discussions 

The results presented are primarily valid for the VRB because errors in evaporation estimates 

are known to vary according to region (Hartanto et al., 2017; Sörensson and Ruscica, 2018). 

However, the innovative model evaluation approach proposed in this study is not location-

specific and can be applied to other regions using a grid-based hydrological model. The robust 

evaluation approach for evaporation datasets is based on multiple hydrological processes, and 

responds to the recent call of the scientific community for process-oriented diagnostics of earth 

system models (Maloney et al., 2019; Melsen et al., 2016). Moreover, this study highlights the 

potential of satellite and reanalysis evaporation datasets to improve the representation of various 

hydrological processes, which might guide modellers in choosing the adequate product for their 

applications, and support the data developers in their quest of improving global estimates of 

evaporation (McCabe et al., 2019). It must be noted that the overall ranking in Figure 5.9 does 

not systematically determine whether a dataset is good or bad, rather it shows which 

evaporation product provides the highest or lowest model performance for a given hydrological 

flux or state variable. Only the skill scores allow a judgement on the ability of a given dataset 

to yield a good model performance.  

There might be uncertainties related to the rescaling of the evaporation datasets from their 

native spatial resolutions to that of the hydrological modelling resolution. However, for a fair 

comparison, all the datasets should be used at the same spatiotemporal resolution. The high 

performance of the GLEAM datasets is most likely due to the integration of soil moisture 

information in the calculation of actual evaporation. Therefore, GLEAM is expected to perform 

well for hydrological modelling. Surprisingly, MERRA-2 ranks among the best evaporation 

datasets notwithstanding its coarse spatial resolution. The high performance of MERRA-2 can 

be explained by its high temporal resolution, which might compensate its lower spatial 

resolution. In general, there is no clear tendency of SRS datasets to outperform the reanalysis 

datasets, and vice versa. Thus, besides their use as forcing data, reanalysis datasets represent a 

valuable source of information for the calibration of hydrological models. Satellite data of soil 

moisture and terrestrial water storage used for model evaluation in this study are not free of 

errors. However, at large scale and in poorly gauged regions, they are the only source of data 

that can be used for spatial model evaluation (Peters-Lidard et al., 2019). 

Overall, this study strives to provide solutions to some of the current challenges in hydrology 

(i.e., modelling methods, uncertainty and spatial variability; Blöschl et al., 2019). The proposed 

methodology represents an innovative way to use satellite and reanalysis datasets to improve 
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process representation in hydrological models (Clark et al., 2015; Peters-Lidard et al., 2017), 

develop hydrological water accounting (Hunink et al., 2019) and advance prediction in 

ungauged basins (Hrachowitz et al., 2013; Zhang et al., 2019).  

Future studies should test the advantages of a multi-scale calibration framework that accounts 

for both domain-wide and sub-domain (i.e. climatic regions or sub-basins) spatial 

heterogeneity, which might lead to better prediction of spatial patterns across climatic zones at 

large scale. Calibration strategies with multiple non-commensurable variables as well as spatial 

patterns is a way forward in advancing process representation in hydrological models (Dembélé 

et al., 2020b; Nijzink et al., 2018; Zink et al., 2018). More importantly, the choice of the 

calibration strategy or the objective function is determinant for high model performance, mainly 

under a changing environment (Fowler et al., 2018b; Schaefli et al., 2010). Uncertainties in the 

structure of the mHM model might influence the modelled hydrological processes. Further 

work should investigate the impact of different model structures on the methodology proposed 

in this study, and assess the parameter sensitivity of mHM depending on calibration strategies 

and variables, which is beyond the scope of the current study. As the accuracy of the satellite 

and reanalysis datasets depends on the quality of the input meteorological datasets used for their 

production, it is also important to assess the impact of precipitation datasets on evaporation 

modelling (Mao and Wang, 2017; Or and Lehmann, 2019). 

Finally, an ensemble product that merges different evaporation datasets is a potential way 

forward in reducing regional uncertainties and thereby improving global estimates (da Motta 

Paca et al., 2019; Jiménez et al., 2018). Such advances in evaporation product development can 

facilitate prediction in ungauged basins using earth observations. 

 

5.6 Conclusion 

Four model calibration strategies are used to evaluate twelve satellite and reanalysis datasets in 

the large transboundary Volta River basin located in West Africa. The experiment is done with 

the mHM model over the period 2003-2012. The key findings can be summarized as follows: 

- Satellite and reanalysis datasets can improve the predictive skill of the hydrological 

model if the appropriate calibration strategy is used. 

- Overall, MERRA-2, GLEAM v3.3a and SSEBop individually provide the highest 

contribution in improving the model performance. 
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- Model calibration on the full extent of the gridded evaporation datasets result in a higher 

model performance than calibration on basin-average estimates. 

- Using only the spatial patterns of gridded evaporation data for model calibration, and 

not their absolute values, yields higher model performance than classical approaches 

based on basin average evaporation signal or based only on streamflow. 

- Contrasting spatial patterns of soil moisture are obtained depending on the modelling 

scenarios, with differences in the model performances according to climatic zones. 

These findings contribute to solving current challenges related to large-scale hydrological 

modelling and provide avenues for improving process representation with the use of 

increasingly available satellite and reanalysis datasets. Moreover, the results provide insights 

to the developers of the evaporation datasets and might serve of guidance for future 

developments. However, a replication of the proposed methodology to evaluate evaporation 

datasets should be applied in other regions with different hydro-climatic conditions, and with 

different hydrological and land surface models. Future work should also investigate the 

possibility of prediction in ungauged basins solely from earth observation datasets, which are 

increasingly and readily becoming available. 
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Improving Spatial Patterns in Multivariate 

Distributed Hydrological Modelling* 

 

 

Nature uses only the longest threads to weave her patterns, 

so that each small piece of her fabric reveals 

the organization of the entire tapestry. 

Richard P. Feynman 

 

Continuous improvement is better 

than delayed perfection. 

Mark Twain 

 

  

                                                 
* This chapter is based on the following publication: 
Dembélé, M., M. Hrachowitz, H. H. G. Savenije, G. Mariéthoz, and B. Schaefli (2020), Improving the 
Predictive Skill of a Distributed Hydrological Model by Calibration on Spatial Patterns With Multiple 
Satellite Data Sets, Water Resources Research, 56(1), https://doi.org/10.1029/2019wr026085  

https://doi.org/10.1029/2019wr026085
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Abstract 

Hydrological model calibration combining Earth observations and in situ measurements is a 

promising solution to overcome the limitations of the traditional streamflow-only calibration. 

However, combining multiple data sources in model calibration requires a meaningful 

integration of the data sets, which should harness their most reliable contents to avoid 

accumulation of their uncertainties and mislead the parameter estimation procedure. This study 

analyses the improvement of model parameter selection by using only the spatial patterns of 

satellite remote sensing data, thereby ignoring their absolute values. Although satellite products 

are characterized by uncertainties, their most reliable key feature is the representation of spatial 

patterns, which is a unique and relevant source of information for distributed hydrological 

models. This study proposes a novel multivariate calibration framework exploiting spatial 

patterns and simultaneously incorporating streamflow and three satellite products (i.e., Global 

Land Evaporation Amsterdam Model [GLEAM] evaporation, European Space Agency Climate 

Change Initiative [ESA CCI] soil moisture, and Gravity Recovery and Climate Experiment 

[GRACE] terrestrial water storage). The Moderate Resolution Imaging Spectroradiometer 

(MODIS) land surface temperature data set is used for model evaluation. A bias-insensitive and 

multicomponent spatial pattern matching metric is developed to formulate a multiobjective 

function. The proposed multivariate calibration framework is tested with the mesoscale 

Hydrologic Model (mHM) and applied to the poorly gauged Volta River basin located in a 

predominantly semiarid climate in West Africa. Results of the multivariate calibration show 

that the decrease in performance for streamflow (-7%) and terrestrial water storage (-6%) is 

counterbalanced with an increase in performance for soil moisture (+105%) and evaporation 

(+26%). These results demonstrate that there are benefits in using satellite data sets, when 

suitably integrated in a robust model parametrization scheme. 
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6.1 Introduction 

One of the key challenges in hydrological modelling (Beven, 2019b; Singh, 2018) is the reliable 

representation of the spatiotemporal variability of natural processes, to which the footprint of 

human activity is often superimposed. In most places, available in-situ observations are not 

sufficient to capture the spatiotemporal heterogeneity of dominant hydrological processes 

(AghaKouchak et al., 2015; Hrachowitz and Clark, 2017). With the upswing in development 

of distributed hydrological models that offer spatially explicit predictions as an essential tool 

for decision-making (Fatichi et al., 2016; Paniconi and Putti, 2015; Semenova and Beven, 

2015), there is a growing interest in the plausibility of their spatial patterns (Ko et al., 2019; 

Koch et al., 2018; Wealands et al., 2005). 

Most commonly, hydrological models are calibrated using streamflow data alone (Becker et 

al., 2019; Yassin et al., 2017). The streamflow signal represents an integrated response of the 

hydrological system to a set of natural drivers (e.g. climate and landscape) and anthropogenic 

influences (e.g. deforestation and reservoirs) occurring upstream of the measurement’s location. 

Although streamflow is key to understanding the temporal dynamics of a system, it does not 

disclose much information on the system-internal spatial heterogeneity of the hydrological 

processes (McDonnell et al., 2007; Rajib et al., 2018a). It therefore has little discriminatory 

power to constrain the feasible parameter space of a distributed model, i.e. the boundary flux 

or closure problem (Beven, 2006a). Consequently, a spatially distributed hydrological model 

(DHM) calibrated only on streamflow is very unlikely able to reproduce a reliable 

spatiotemporal representation of other hydrological fluxes and states (Clark et al., 2016; 

Minville et al., 2014), even if a multiscale parameter regionalization scheme is used (Rakovec 

et al., 2016a). Mismatches between temporal and spatial patterns should therefore be expected 

when comparing hydrological models outputs to other distributed observational datasets 

(Vereecken et al., 2008; Xu et al., 2014). 

For a few decades, satellite remote sensing (SRS) has opened up new avenues for the 

development of spatial hydrology (Cui et al., 2018; Lettenmaier et al., 2015; Pasetto et al., 

2018). The increasing and unprecedented availability of SRS data at increasingly finer spatial 

and temporal resolutions has triggered the development of large domain water management 

applications including flood and drought monitoring (Revilla-Romero et al., 2015; Senay et al., 

2015; Teng et al., 2017; Wu et al., 2014). The use of SRS data in water resources monitoring 

is promising and it has led to an increasing number of studies on a variety of topics in hydrology, 

including precipitation, evaporation and soil moisture estimation (Cazenave et al., 2016; Chen 
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and Wang, 2018; NASEM, 2019; Schultz and Engman, 2012). SRS data complement in-situ 

hydro-meteorological data (Balsamo et al., 2018), which are typically scarce and whose 

unavailability hinders the understanding of environmental systems (Tang et al., 2009). This 

aspect is particularly relevant for developing countries where research for development 

initiatives have been increasing in the recent years (Montanari et al., 2015). 

Besides direct use of SRS data for water resources monitoring and management (Sheffield et 

al., 2018), an increasing body of literature addresses the question of how these datasets can be 

used to improve hydrological modelling (Baroni et al., 2019; Liu et al., 2012a; Parajka et al., 

2009). The scientific community has, in fact, long been advocating the use of spatial data for 

DHM evaluation (Beven and Feyen, 2002; Grayson and Bloschl, 2001). SRS datasets have the 

potential to improve models either via data assimilation (Leroux et al., 2016; Tian et al., 2017) 

or via calibration (Li et al., 2018; Rientjes et al., 2013). In this context, data assimilation is used 

to update the states of a given model, e.g. to compensate for model structural deficiencies 

(Spaaks and Bouten, 2013). For parameter estimation (i.e. model calibration) with SRS data, 

the existing approaches consist in using SRS data alone or in combination with in-situ data, 

usually streamflow data (Immerzeel and Droogers, 2008; Wambura et al., 2018). Calibration 

of hydrological models without concomitant streamflow data remains challenging and attempts 

to do so have only shown limited success (Sutanudjaja et al., 2014; Wanders et al., 2014).  

The simultaneous calibration of hydrological models with streamflow and different 

combinations of complementary data from SRS is increasingly discussed in recent literature 

(Stisen et al., 2018). Multivariate (i.e. multiple variables) parameter estimation (Efstratiadis and 

Koutsoyiannis, 2010) can substantially reduce the feasible model and parameter space and lead 

to more realistic internal model dynamics and related hydrological signatures (Clark et al., 

2017; Shafii and Tolson, 2015), which can ultimately enhance the overall representation of 

catchment functioning. Furthermore and intimately linked to the above, multivariate calibration 

strategies can considerably reduce equifinality (i.e. non-identifiable model parameters in 

inverse modelling approaches; Beven, 2006b; Savenije, 2001) and reduce prediction 

uncertainty (Fenicia et al., 2008; Fovet et al., 2015; Gupta et al., 2008; Schoups et al., 2005). 

However, important open questions remain with respect to the combination of SRS data with 

streamflow data for model parameter estimation. While some studies observed a significant 

improvement in the representation of model outputs after SRS data incorporation (Chen et al., 

2017; Leroux et al., 2016; Werth et al., 2009), others found minor changes or even major 

deteriorations (Demirel et al., 2018; Tangdamrongsub et al., 2017). Such apparently 
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contradictory conclusions are case-study specific and need to be understood as resulting from 

model structures, model parametrizations, and trade-offs between improving water balance 

estimates and related streamflow dynamics and better representing other hydrological fluxes 

and states (Euser et al., 2013). More generally, the key challenge results from the integration 

of several data sources (SRS or in-situ) in parameter estimation, which can be attributed to 

conflicting information from different types of SRS data. Nonetheless, multivariate parameter 

estimation with SRS data remains promising, especially when streamflow data availability is 

limited or the data quality is questionable.  

Although SRS data are more accessible with higher spatiotemporal resolution compared to in-

situ observations, they are generally not direct measurements of hydrological processes, which 

adds a level of uncertainty to any SRS based parameter estimation study (Ehlers et al., 2018; 

Knoche et al., 2014; Ma et al., 2018). However, they provide spatial information on 

hydrological processes, which makes them a unique and relevant information source for 

spatially distributed representations of the system in models (Stisen et al., 2018). For instance, 

many studies report different model performances when using different satellite-based products 

as input (e.g. precipiation; Dembélé et al., 2020c; Poméon et al., 2018; Thiemig et al., 2013) or 

as calibration variables (e.g. evaporation, soil moisture, terrestrial water storage; Bai et al., 

2018b; Nijzink et al., 2018). Nevertheless, for a given region, different products can give 

considerably different absolute values of a specific variable while they may exhibit plausible 

and similar spatial patterns (Beck et al., 2017b; Dembélé and Zwart, 2016). Additionally, 

retaining only the spatial pattern information of SRS data can substantially mitigate the 

uncertainty resulting from the fact that they are not direct observations, as long as their relative 

values are used rather than their absolute values (Dembélé et al., 2020a; Mendiguren et al., 

2017). 

In the context of using SRS data for DHM calibration, the simultaneous use of more than one 

SRS product to constrain several hydrological state or flux variables is uncommon (Lopez et 

al., 2017), as is the incorporation of spatial pattern in the calibration scheme using bias-

insensitive metrics (Demirel et al., 2018; Zink et al., 2018). Using different variables from SRS 

products simultaneously in parameter estimation is in general not straightforward because they 

all have limitations (e.g. spatiotemporal resolutions and accuracy), which can lead to significant 

trade-offs in multivariate calibration (Rajib et al., 2018b; Silvestro et al., 2015).  

In light of the above, this study proposes to test a novel multivariate calibration strategy in 

which a DHM will be trained to simultaneously reproduce spatial pattern, i.e. relative spatial 
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differences, of three variables from different SRS products describing different components of 

the hydrological system (i.e. evaporation, soil moisture and terrestrial water storage), as well as 

in-situ observations of streamflow. The proposed calibration framework combines 

simultaneously four non-commensurable variables and a new bias-insensitive metric for spatial 

pattern representation, which as a whole is different from previous studies (e.g. Demirel et al., 

2018; Koppa et al., 2019; Nijzink et al., 2018; Rakovec et al., 2016a; Zink et al., 2018) and 

therefore makes the novelty of this study. The following research hypotheses are tested:  

- Simultaneously calibrating a DHM on four non-commensurable variables and spatial 

patterns of satellite data considerably improves the predictive skill of the model, even 

for a DHM integrating a multiscale parameter regionalization scheme; 

- The newly proposed bias-insensitive metric based on pixel-by-pixel locational matching 

can be used to improve the calibration of a DHM on observed spatial patterns of 

hydrological processes. 

The overall goal of this study is to improve the spatial representation of dominant hydrological 

processes of a DHM without significantly deteriorating the streamflow signal, and reproducing 

plausible dynamics of the hydrological system using spatial pattern information from SRS 

datasets. Such improvement will be an asset for spatial hydrology and large domain water 

management applications (e.g. water accounting, drought monitoring and flood prediction), and 

might subsequently lead to advances in prediction in ungauged basins (Blöschl et al., 2013; 

Hrachowitz et al., 2013; Sivapalan, 2003) with the use of readily accessible SRS data (Butler, 

2014; Wulder and Coops, 2014). This work embraces the fourth paradigm for hydrology (i.e. 

data-intensive science, Peters-Lidard et al., 2017), and contributes to solving some of the issues 

(e.g. spatial variability and modelling methods) recently identified as the twenty-three unsolved 

problems in hydrology (UPH) in the twenty-first century (Blöschl et al., 2019). The proposed 

multivariate calibration framework is tested with the mesoscale Hydrologic Model (mHM) (cf. 

Section 4.5, Chapter 4), with a case study in the poorly gauged Volta River basin in West Africa. 

 

6.2 Distributed hydrological modelling 

The setup of the mHM hydrological model is described in Section 4.5 of Chapter 4. In-situ 

streamflow data and complementary data from SRS are used to calibrate and to evaluate the 

model performance. A description of the modelling datasets with their characteristics and their 
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sources is given in Table 4.2 (Section 4.4, Chapter 4). The streamflow data was quality checked 

and missing data portions were gap-filled (Dembélé et al., 2019).  

Concerning the SRS products, the terrestrial water storage (St) anomaly data derived from 

changes in surface mass, which is related to the Earth’s gravity field, is obtained from GRACE 

(Landerer and Swenson, 2012; Tapley et al., 2004). Over land, St is the sum of snow, ice, surface 

water, soil moisture and groundwater. The data release RL05 (Swenson, 2012) is used in this 

study. It is a simple arithmetic mean of different solutions from three processing centers: Jet 

Propulsion Laboratory (JPL), Center for Space Research at University of Texas (CSR), and 

Geoforschungs Zentrum Potsdam (GFZ). Sakumura et al. (2014) found this ensemble mean 

product more effective in reducing noise in the Earth’s gravity signal compared to the individual 

products. As the original baseline for GRACE-derived St anomaly data is the period 2004-2009, 

the St data is converted to a new baseline corresponding to the modelling period (2003-2012) 

used in this study, by averaging each grid point over the new baseline and subtracting that value 

from all time steps (NASA, 2019).  

The surface soil moisture (Su) data for a soil layer depth of 2-5 cm is obtained from ESA CCI 

(Dorigo et al., 2017). The combined product used in this study is a blended product of both 

active and passive microwave products derived from scatterometer (ERS AMI and ASCAT) 

and radiometer (SMMR, SSM/I, TMI, AMSR-E, WindSat, AMSR2, and SMOS) retrievals (Liu 

et al., 2012b; Wagner et al., 2012b). The merging algorithm of the combined product version 

4.2 is described by Gruber et al. (2017). 

Actual evaporation (Ea) data is obtained from the GLEAM land surface model that uses satellite 

data as input (Martens et al., 2017; Miralles et al., 2011). It separately estimates the components 

of terrestrial evaporation (i.e. transpiration, bare soil evaporation, open-water evaporation, 

interception loss, and sublimation) based on the fraction of land cover types (i.e. bare soil, low 

vegetation, tall vegetation and open water) before aggregating them for each grid cell. In 

GLEAM, potential evaporation (Ep) is calculated based on the Priestley-Taylor (1972) equation 

and thereafter converted into transpiration or bare soil evaporation using a stress factor, which 

is a parameter that accounts for environmental conditions limiting evaporation. The stress factor 

is estimated from microwave vegetation optical depth (i.e. water content in vegetation) and 

root-zone soil moisture that is calculated with a multi-layer water balance algorithm. The 

fraction of open-water evaporation is assumed to equal Ep. The Gash (1979) analytical model 

further refined by Valente et al. (1997) is used to calculate rainfall interception by forests. 
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Land surface temperature (Ts) data from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) instrument of the NASA satellites is used as an independent data for model 

evaluation, and it is not used during model calibration. The daytime product from the Aqua 

platform is used because that satellite passes over our study region around 13:45 in local time, 

corresponding to the highest daily temperature period with a clear-sky coverage (Wan et al., 

2015). 

 

6.3 Model calibration and evaluation strategies 

The modelling period spans from 2000 to 2012 and consists of 3 years (2000-2002) model 

warm-up period, 6 years (2003-2008) calibration period, and 4 years (2009-2012) evaluation 

period. Based on data availability and quality in the VRB (Dembélé et al., 2019), 11 streamflow 

gauging stations are chosen to have a good coverage of the river network (Figure 2.2), and the 

calibration is done on them simultaneously to obtain a single parameter set for the whole VRB. 

The domain-wide calibration, which was proven to give similar performance as the domain-

split calibration (Mizukami et al., 2017), is preferred here because of the limited number of 

streamflow stations and for seamless spatial pattern representation across sub-basins (Figure 

2.4).  

Two main calibration approaches are adopted to evaluate the benefit of including spatial 

patterns in multivariate parameter estimation with SRS data. The first approach is the 

streamflow-only calibration, and the second approach uses multiple SRS datasets in addition to 

streamflow. In both cases, the formulation of the objective functions follows the Euclidian 

distance approach in which all elements are equally weighted (Khu and Madsen, 2005), cf. Eq. 

5.3 (Section 5.3.2, Chapter 5).  

 

6.3.1 Calibration on streamflow – benchmark 

The first calibration approach is the benchmark calibration case (case Q) where the hydrological 

model is constrained with in-situ streamflow (Q) data only. The objective function 𝛷𝛷𝑄𝑄 combines 

the Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970) of streamflow (ENS) and the Nash-

Sutcliffe efficiency of the logarithm of streamflow (ENSlog), as in Eq. 4.4 (Section 4.6, Chapter 

4). 
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6.3.2 Calibration on multiple variables with spatial patterns 

6.3.2.1 Multivariate calibration strategies 

In contrast to the first calibration strategy, which only considers Q as target variable (case Q), 

the second calibration strategy involves multiple variables (case MV). The potential 

improvement of the modelled fluxes and states is estimated by constraining the parameter 

estimation with a simultaneous combination of three variables from SRS products (St, Su and 

Ea), in addition to Q. Here, the spatial patterns of Ea and Su are used in the multivariate 

calibration, while the temporal dynamics of St are averaged over the whole basin due to the 

relatively coarse spatial resolution of the GRACE data. The temporal dynamics of St per grid 

cell is also assessed during model evaluation.  

The degree of reproduction of the spatial patterns of Ea and Su is quantified with a new spatial 

pattern matching metric, denoted ESP (cf. Eq. 4.8 in Section 4.7, Chapter 4), developed by 

Dembélé et al. (2020b). The multivariate objective function 𝛷𝛷𝑀𝑀𝑀𝑀 (Eq. 6.1) is defined as follows: 

 𝛷𝛷MV = �𝛷𝛷Q
2 + 𝛷𝛷St

2 + 𝛷𝛷Su
2 + 𝛷𝛷Ea

2, with (6.1) 

 𝛷𝛷Ea = 1 − 1
𝑡𝑡
∑ 𝐸𝐸SP �𝐸𝐸a,mod(𝑡𝑡),𝐸𝐸a,obs(𝑡𝑡)�𝑡𝑡
1 , (6.2) 

 𝛷𝛷Su = 1 − 1
𝑡𝑡
∑ 𝐸𝐸SP �𝑆𝑆u,mod(𝑡𝑡),𝑆𝑆u,obs(𝑡𝑡)�𝑡𝑡
1 , and  (6.3) 

 𝛷𝛷St = 𝐸𝐸RMS �𝑍𝑍St,mod
(𝑡𝑡),𝑍𝑍St,obs

(𝑡𝑡)� (6.4) 

where t is the number of time steps of the calibration period. The sub-objective functions 𝛷𝛷Ea 

and 𝛷𝛷Su are based on the ESP (Eq. 4.8) of modelled and observed Ea and Su, while 𝛷𝛷St denotes 

the root mean squared error (ERMS) of the z-scores of the modelled and observed basin-averaged 

St anomaly. 

Consequently, 𝛷𝛷Q ensures a reliable prediction of streamflow signatures (i.e. high and low 

flows), 𝛷𝛷Ea and 𝛷𝛷Su serve to improve the spatial patterns of the modelled Ea and Su, while 𝛷𝛷St 

constrains the temporal dynamics of the modelled St, which should contribute to a better 

prediction of the water balance at monthly and annual scales. In fact, 𝛷𝛷Eaand 𝛷𝛷Su are calculated 

such that the spatial pattern efficiencies of Ea and Su are determined over the grid cells at each 

monthly time step, before averaging them over the calibration period, while 𝛷𝛷St is calculated 

for the basin-averaged St over the calibration period. Note that in the ERMS metric (Eq. 4.13), n 

denotes the number of grid cells in the spatial domain when calculating 𝛷𝛷Ea and 𝛷𝛷Su (i.e. 𝛼𝛼 in 

ESP), while it corresponds to the length of the calibration period (i.e. n = t) in the calculation of 



Chapter 6 

110 
 

𝛷𝛷St. All constituents of 𝛷𝛷𝑀𝑀𝑀𝑀 (i.e. 𝛷𝛷Q,𝛷𝛷Ea ,𝛷𝛷Su ,𝛷𝛷St) vary in the same range from 0 to positive 

infinity. Therefore, 𝛷𝛷𝑀𝑀𝑀𝑀 has the same range of values with an optimal value of zero. The 

Dynamically Dimensioned Search (DDS) algorithm (Tolson and Shoemaker, 2007) is used for 

parameter estimation using 3,000 iterations. Daily streamflow data are used for model 

calibration while monthly SRS data are preferred to avoid errors due to potential time lags 

among satellite sensor measurements and model simulations. 

 

6.3.2.2 Contribution of individual variables to multivariate calibration 

Assessing the individual contribution of variables used in multivariate calibration is rarely done, 

whereas it can help quantify trade-offs in modelling flux and states variables (Koppa et al., 

2019). Here, the contribution of each SRS dataset to the multivariate calibration case is 

investigated with a leave-one-out approach. The procedure consists in removing one SRS data 

type from the calibration case MV and evaluating the predictive skill of the model. In addition, 

multivariate calibration without streamflow data, and thus exclusively based on SRS data, is 

tested to determine the potential of SRS data for hydrological model calibration in regions 

where little or no streamflow data are available. Consequently, four additional objective 

functions (Table 6.1) are used for multivariate calibration cases without Ea (case MV-Ea), 

without Su (case MV-Su), without St (case MV-St) and without streamflow (case MV-Q).  

 

Table 6.1. Variants of multivariate calibration cases in the leave-one-out approach 

Calibration 
cases 

Calibration 
variables Objective functions Specificities  

case MV-Ea Q, St, Su 𝛷𝛷MV−Ea = �𝛷𝛷Q
2 + 𝛷𝛷St

2 + 𝛷𝛷Su
2 

No direct constraint on 
evaporation (6.5) 

case MV-Su Q, St, Ea 𝛷𝛷MV−Su = �𝛷𝛷Q
2 + 𝛷𝛷St

2 + 𝛷𝛷Ea
2 

No specific constraint on 
surface soil moisture (6.6) 

case MV-St Q, Su, Ea 𝛷𝛷MV−St = �𝛷𝛷Q
2 + 𝛷𝛷Su

2 + 𝛷𝛷Ea
2 

No direct constraint on 
deep subsurface processes (6.7) 

case MV-Q St, Su, Ea 𝛷𝛷MV−Q = �𝛷𝛷St
2 + 𝛷𝛷Su

2 + 𝛷𝛷Ea
2 

Only satellite-based 
variables with no direct 

constraint on streamflow 
(6.8) 
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6.4 Post-calibration model evaluation 

The predictive skill of the model is evaluated by assessing the transferability of the global 

parameters across temporal periods and spatial scales obtained by the abovementioned 

calibration strategies. First, the temporal transferability is evaluated following a split-sample 

test that consists in assessing performances for a period that is different from the calibration 

period (Klemes, 1986). Secondly, spatial scale transferability is evaluated by using different 

grid cell (i.e. pixel) sizes as modelling resolution (Kumar et al., 2013; Samaniego et al., 2010). 

The global parameters of the model for all calibration cases are obtained for a resolution of 

0.25° (~28 km, i.e. 619 pixels in the basin) and the same parameters are used to run the model 

without recalibration at four different finer scales: 0.125° (~14 km, i.e. 2,320 pixels), 0.0625° 

(~7 km, i.e. 8,974 pixels), 0.03125° (~3.5 km, i.e. 35,231 pixels) and 0.015625° (~1.75 km, i.e. 

139,494 pixels). The evaluation data for model parameter transferability are streamflow for 

streamflow, using the Kling-Gupta efficiency (EKG), fine scale Ts data to evaluate Ea and Su, 

using rs, while no high-resolution data is available for St evaluation. Ts is used has proxy data 

for the evaluation of Su and Ea because past studies found significant negative correlation 

between Ts and Su (Kumar et al., 2013; Lakshmi et al., 2003; Wang et al., 2007), and a control 

of Ts over Ea (Boni et al., 2001; Lakshmi, 2000). 

Following Biondi et al. (2012), supplemental skill metrics different from those used in model 

calibration are computed for a thorough model evaluation because every metric has its own 

limitations (Fowler et al., 2018b; Knoben et al., 2019; Santos et al., 2018; Schaefli and Gupta, 

2007). In addition to ENS, ENSlog, ESP, ERMS, and rs, the EKG is reported for model evaluation. 

 

6.5 Results and Discussions 

The following section presents and discusses the results of model performances for different 

variables used in the calibration procedure. The results refer to the evaluation period when 

analysing the results if not clearly specified. However, both calibration and evaluation results 

are presented in figures. Hereafter, the SRS datasets are called reference data, as they are not 

direct observations. Additional results on model performances for each of the four climatic 

zones in the VRB are provided in the supplementary information of Dembélé et al. (2020b). 
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6.5.1 Model performance for streamflow 

The model performance for streamflow (Q) at 11 gauging stations is given in Figure 6.1. For 

the calibration period, the mean EKG is 0.67 (ENS = 0.71, ENSlog = 0.72) for the model calibration 

with only Q data (i.e. case Q). The performance of Q in the calibration period decreases when 

multiple variables are used to constrain the parameters search. The mean EKG is 0.55 (ENS = 

0.57, ENSlog = 0.66) for the multivariate calibration (i.e. case MV), corresponding to a decrease 

of 18% compared to case Q.  

 

Figure 6.1. Statistics of model performance for streamflow. The best score of all the metrics is 
1. The dots give the mean score and the bars represent the min-max range of values for 11 
streamflow gauges. The colours correspond to the model calibration cases. 

 

Regarding the other multivariate calibration cases, the best performance with respect to Q is 

obtained in case MV-St with a mean EKG of 0.65 (ENS = 0.67, ENSlog = 0.70) that represents a 

slight decrease of 3% compared to case Q, while the weakest performance is given by case MV-

Q with a mean EKG of 0.19 (ENS = 0.33, ENSlog = -0.38). Differences in measurements scales 

between Q data and satellite products (i.e. river dimensions vs. pixel size) can justify a low 

performance for case MV-Q (see section 6.5.5). In general, all calibration cases give a good 

timing of Q with a mean correlation coefficient of  r > 0.79, but they underestimate it with a 

mean bias of 𝛽𝛽 < 0.85, except case MV-Q that shows overestimation with a positive bias (𝛽𝛽 = 

1.19). They all show a higher variability of Q than the observed data, with mean 𝛾𝛾 > 1.04, 
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except case Q (𝛾𝛾 = 0.98) and case MV-Q (𝛾𝛾 = 0.40) that produce a lower variability. A subset 

of the hydrographs of three stations from different climatic zones are depicted in Figure 6.2. 

 

Figure 6.2. Hydrographs at selected stations in different climatic zones for all model calibration 
cases. Only a subset of the simulation period (2003-2012) is shown for visualization.  
 

During the evaluation period, as compared to the calibration period, the model performance for 

the mean EKG decreases by 2% for case Q (from 0.67 to 0.66) and case MV-St (from 0.65 to 

0.64) and 90% for case MV-Q (from 0.19 to 0.02), while it increases by 7% for case MV-Ea 

(from 0.61 to 0.65), 12% for case MV-Su (from 0.56 to 0.62) and 14% for case MV(from 0.55 

to 0.63). Considering the mean EKG, case MV performs less well than case Q by 11% on 

average, which means 18% less during the calibration and 4% less during the evaluation period. 

The deterioration of streamflow performance in a multivariate calibration setting is also 

reported in previous studies (Bai et al., 2018b; Livneh and Lettenmaier, 2012; Poméon et al., 

2018; Rakovec et al., 2016a). However, this is largely an artefact of Type I error (i.e. falsely 

accepting poor models, Beven, 2010) induced by the Q-only calibration, resulting in 

inconsistency in the representation of processes (Gupta et al., 2012; Hrachowitz et al., 2014). 

In addition, the performance of Q slightly increases when Ea (+7%) or St (+11%) are left out of 

the multivariate calibration with case MV during the evaluation period. Therefore, as shown in 

Figure 6.1, the combinations Q+St+Su (i.e. case MV-Ea) and Q+Su+Ea (i.e. case MV-St) are the 
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best for streamflow prediction, while Q+St+Ea (i.e. case MV-Su) performs similar to 

Q+St+Su+Ea (i.e. case MV). 

 

6.5.2 Model performance for terrestrial water storage 

The statistics for the monthly terrestrial water storage (St) anomalies are given in Figure 6.3. A 

similar trend in skill scores (i.e. ERMS and r) among all calibration cases is observed in the 

calibration and evaluation periods with weaker scores during evaluation. 

 

Figure 6.3. Statistics of model performance for terrestrial water storage (St). The y-axis is 
reversed for ERMS. The number of elements per boxplot (n = 52) corresponds to the number 
of gird cells for GRACE data in the study area. The colours correspond to the model calibration 
cases. 

 

The evaluation period is characterized by a substantial improvement from model case Q 

(median ERMS = 8.41 cm, r = 0.73) to case MV (ERMS = 7.38 cm, r = 0.81). In general, all 

multivariate calibration cases reproduce the variability in St better than case Q. Previous studies 

also reported improvement of St prediction in multivariate settings (Chen et al., 2017; Livneh 

and Lettenmaier, 2012; Werth et al., 2009). The lowest performance increase is observed when 

Ea (ERMS = 8.21 cm, r = 0.76) or St (ERMS = 8.18 cm, r = 0.78) are removed from the multivariate 

setting. The best prediction is obtained with case MV-Q, yielding median ERMS of 6.65 cm and 

r of 0.84.  

Figure 6.4a shows the climatology of the basin-averaged St for all models. The temporal 

dynamics of the normalized GRACE-derived St is well reproduced by all models (r > 0.89) with 

different degrees of underestimation from September to March, which is a period with little or 

no rainfall, and slight overestimation from April to June, which is the beginning of the rainy 

season. All models fit well the period July-August, which is the wettest period of the rainy 

season.  
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Figure 6.4. Climatology of terrestrial water storage (a), soil moisture (b) and actual evaporation 
(c) with the Pearson correlation coefficient (r) indicating the performance of all model 
calibration cases. 

 

In general, case MV-Ea shows the highest deviation from the satellite signal (r = 0.90) followed 

by case Q (r = 0.92). Removing spatial patterns of Ea from the calibration leads to St 

overestimation during the rainy season and an underestimation during the dry season. The same 

trend can be observed when only Q is used for model calibration (i.e. case Q). The St simulation 

improves in the multivariate calibration including Q (i.e. case MV, r = 0.97), but the best match 

is obtained when Q is left out (i.e. case MV-Q, r = 0.99). When GRACE-derived St is excluded 

from the parameter estimation (i.e. case MV-St), the model still performs well for St climatology 

with r = 0.96. Consequently, Ea is the most critical variable for predicting the St signal in the 
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proposed multivariate calibration setting, while Su is less critical, probably because the 

GRACE-derived St signal already accounts for Su (Li et al., 2012a). 

 

6.5.3 Model performance for soil moisture 

The climatology of the basin-averaged reference (i.e. ESA CCI) soil moisture (Su) and different 

modelled Su are depicted in Figure 6.4b. All calibration cases give a good performance (r > 

0.91), with a good representation of Su seasonality during both calibration and evaluation 

periods.  

All simulations overestimate the reference Su during the rising limb (February-August) 

corresponding to the increasing rainfall period, and underestimate it during the recession limb 

(September-January). Simulations that show the highest deviation from the reference during the 

rising limb, on the contrary, show the lowest deviation during the recession and vice versa. The 

overall best performance is obtained with case MV-Ea (r = 0.96), with a better match when the 

basin is not water limited (i.e. September-January). Case MV-St and case MV-Su show similar 

performances (r ≈ 0.95) with a consistent deviation from the reference Su for all months, while 

case MV and case MV-Q have similar performances (r ≈ 0.94), but with a better fit of the 

reference Su in the recession limb. It can be inferred that Q is the most critical variable for Su 

reproduction during the rising limb, while St and satellite Su improve the simulation during the 

recession limb. Case Q outperforms all multivariate calibration cases when soil water content 

increases and it underperforms them when the maximum water content is reached and starts 

decreasing. The overall lowest performance is given by case Q (r = 0.92), followed by case 

MV-Q (r = 0.93), Suggesting that Q alone is not sufficient for predicting the temporal dynamics 

of Su, but it remains useful in the multivariate calibration setting. Surprisingly, Ea does not bring 

substantial information to the multivariate prediction of Su. Contrastingly, Poméon et al. (2018) 

obtained a slight improvement in Su simulation (+7%) when using absolute values of satellite 

Ea in their multivariate calibration. The model performance in reproducing spatial patterns is 

measured with ESP and its components (i.e. rs, 𝛾𝛾, and 𝛼𝛼) summarized in Figure 6.5a. 
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Figure 6.5. Spatial statistics of model performance for soil moisture (a) and actual evaporation 
(b). The best score is 1 for all the metrics. The number of elements per boxplot corresponds to 
the number of months in the calibration period (n = 72) or in the evaluation period (n = 48). 
The colours correspond to the model calibration cases. 
 

The evaluation and calibration periods depict similar trends when comparing the different 

efficiency metrics (i.e. ESP, rs, 𝛾𝛾, and 𝛼𝛼). The lowest performance is given by the Q-only 

calibration (i.e. case Q) with median ESP = -0.07 (rs = 0.54, 𝛾𝛾 = 0.85, and 𝛼𝛼 = 0.13), followed 

by case MV-Su with median ESP = -0.02 (rs = 0.53, 𝛾𝛾 = 0.84, and 𝛼𝛼 = 0.16). Case MV shows 

better performances with median ESP = 0.03 (rs = 0.57, 𝛾𝛾 = 0.88, and 𝛼𝛼 = 0.19). The best 

performance even with a low score is given by case MV-Ea with median ESP = 0.09 (rs = 0.60, 

𝛾𝛾 = 0.93, and 𝛼𝛼 = 0.19), followed by case MV-Q with median ESP = 0.05 (rs = 0.58, 𝛾𝛾 = 0.82, 

and 𝛼𝛼 = 0.18) and case MV-St with median ESP = 0.02 (rs = 0.55, 𝛾𝛾 = 0.87, and 𝛼𝛼 = 0.16). 

Removing Ea or Q from the multivariate setting results in better performances, while the 
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removal of St or satellite Su results in lower performances. Consequently, satellite Su and St are 

the most important variables for improving the spatial patterns of modelled Su. Better simulation 

of Su in multivariate settings is also reported by Lopez et al. (2017) using Ea+Su calibration, and 

by Poméon et al. (2018) with Q+Ea calibration. 

The long-term monthly average (2003-2012) of Su is illustrated in Figure 6.6a. See section 

6.5.5.2 for Su comparison with Ts. Although the spatial patterns of modelled Su in the 

multivariate cases are still different from the reference Su (Figure 6.6a), they are better than the 

Q-only case. 

 

6.5.4 Model performance for evaporation 

The climatology of basin-averaged reference (i.e. GLEAM) actual evaporation (Ea) and 

different modelled Ea are depicted in Figure 6.4c. All calibration cases give a good performance 

(r > 0.91), reproducing well Ea seasonality during both the calibration and the evaluation 

periods.  

The best performance is obtained with case MV-Q (r = 0.99). In general, all simulations tend 

to underestimate Ea. During the rising limb (February-August), corresponding to the increasing 

rainfall period, the highest deviation is given by case MV-Ea, although the overall performance 

is good (r = 0.98). Mismatches are more prominent during the recession limb (September-

January), where all modelled Ea decrease faster than the reference. The highest deviation is 

observed when only Q data is used for model calibration (r = 0.92), followed by case MV-St (r 

= 0.96). It can be inferred that the model case MV-St is missing adequate information on the 

available water amount to be evaporated, which can be obtained from the satellite St signal. 

During the recession period, little to no rainfall occurs in the basin, but a part of antecedent 

rainfalls is stored in reservoirs and lakes, which represents a major source of land evaporation. 

It can be argue that Q alone is not sufficient for modelling Ea, while St brings additional and 

useful information for simulating Ea, which supports the research hypothesis. The performance 

of case MV-Su is similar to case MV (r ≈ 0.98), meaning that Su is not critical for predicting the 

temporal dynamics of Ea. Moreover, satellite Ea improves the modelled Ea during water 

accumulation in the basin (i.e. February-August) and is no longer critical when the basin is not 

water limited (i.e. September-January). This result suggests that the model can mainly rely on 

GRACE-derived St to reproduce Ea. Similar results on the good estimation of Ea with GRACE-

derived St are found in literature (e.g. Bai et al., 2018b; Livneh and Lettenmaier, 2012; Rakovec 
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et al., 2016a). Poméon et al. (2018) also obtained a higher model performance for Ea in their 

multivariate setting (i.e. Q+Ea) with mHM in West Africa. 

Figure 6.5b gives the spatial pattern efficiency of Ea for all model calibration cases. In general, 

the performance decreases from the calibration to the evaluation period, and the modelled Ea 

with all model calibration cases has higher spatial pattern efficiency scores (ESP > 0.25) 

compared to modelled Su (ESP < 0.1). All multivariate calibration cases outperform the Q-only 

calibration, giving the lowest performance with median ESP = 0.28. The Q-only calibration gives 

a good spatial correlation (rs = 0.8) but overestimates the variability (𝛾𝛾 = 1.28) and struggles to 

match the spatial location of grid cells (𝛼𝛼 = 0.39) of Ea. The best spatial patterns matching is 

given by case MV with median ESP = 0.46 (rs = 0.86, 𝛾𝛾 = 0.95, and 𝛼𝛼 = 0.53). Removing Q 

from the multivariate setting (i.e. case MV-Q) results in underestimation of the spatial 

variability of Ea, with median ESP = 0.43 (rs = 0.88, 𝛾𝛾 = 0.84 and 𝛼𝛼 = 0.52). In contrast, the 

spatial variability of Ea is overestimated for case MV-Ea with median ESP = 0.45 (rs = 0.85, 𝛾𝛾 = 

1.13 and 𝛼𝛼 = 0.52), while case MV-Su yields a lower spatial location score with median ESP = 

0.42 (rs = 0.85, 𝛾𝛾 = 0.95 and 𝛼𝛼 = 0.50). The spatial pattern performance of Ea is more sensitive 

to the removal of St, as shown by case MV-St with median ESP = 0.35 (rs = 0.81, 𝛾𝛾 = 1.07  and 

𝛼𝛼 = 0.49). These results indicate that spatial patterns of Su can improve the spatial patterns of 

Ea and St is critical for reproducing both the temporal and spatial dynamics of Ea. Demirel et al. 

(2018) similarly reported better spatial pattern performance for Ea when using a multivariate 

setting (i.e. Q+Ea) compared to the Q-only calibration.  

Figure 6.6b illustrates the long-term (2003-2012) monthly average of Ea. See section 6.5.5.2 for 

Ea comparison with Ts. The southern region of the basin, with a sub-humid climate, is where 

the multivariate calibration cases show more differences in spatial patterns compared to case 

Q. Besides the south-north differences, it is interesting to see strong differences in the west-East 

variability of the spatial pattern. As the southern part is sub-humid (Ea ≥ 70%), small variations 

in Ea are not well represented when the model is calibrated using only Q compared to the semi-

arid northern part. These findings are in agreement with the study of Rakovec et al. (2016a), 

which revealed a more pronounced sensitivity in Ea estimation in humid catchments in Europe 

through a multivariate calibration setting (Q+St). Similar results are obtained by Bai et al. 

(2016) when testing different Ep formulas in China. Contrastingly, Bai et al. (2018b) found that 

their multivariate calibration setting (Q+St) benefitted more to Ea simulation in dry catchments 

than wet catchments in China.  
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Figure 6.6. Long-term monthly average of soil moisture (a) and actual evaporation (b) for all 
model calibration cases over the simulation period (2003-2012). The reference map represents 
the satellite product (ESA CCI for Su and GLEAM for Ea). Masked pixels are gaps in satellite 
measurements or lake areas not modelled in mHM. The values are normalized for better 
emphasizing on patterns and using a unique colour scale. 

 

6.5.5 Parameter transferability across spatial scales 

6.5.5.1 Streamflow evaluation across spatial scales 

The model performance of streamflow in terms of scale transferability of the global parameters 

is given in Figure 6.7. The differences in model performance among calibration cases are 

conserved across spatial scales, with a median coefficient of variation of 1.6% for EKG, 0.1% 

for r, and 6.4% for 𝛽𝛽.  
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Figure 6.7. Statistics for model parameter transferability across spatial scales for streamflow 
performance for all calibration cases. The dots give the mean score and the bars represent the 
min-max range of all values for 11 streamflow gauges. The colours correspond to the model 
calibration cases. 

 

6.5.5.2 Spatial pattern evaluation across spatial scales 

Long-term monthly maps of Su (Figure 6.8a) and Ea (Figure 6.8b) are plotted along with Ts maps 

at various spatial resolutions. Here, only the coarsest and finest resolutions (i.e. 28 and 1.75 

km) are shown. 

The patterns of Su is consistent with the patterns of Ts because the expectation is that the higher 

the Ts, the lower the Su and vice versa (Figure 6.8a). For semi-arid regions, Ea largely depends 

on water availability (i.e. rainfall) and is dominant for open water storages. In the VRB, Ea 

depicts an opposite pattern to Ts, which is shown in Figure 6.8b. The reproduction of both Su 

and Ea in the multivariate calibration cases and across spatial scales show more plausible 

patterns with Ts, which are well preserved across scales with higher consistency, than their 

representation with case Q. 
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Figure 6.8. Long-term monthly average of land surface temperature compared to soil moisture 
(a) and actual evaporation (b) for all model calibration cases over the simulation period (2003-
2012) at various spatial resolutions. The values are normalized for better emphasizing on 
patterns and using a unique colour scale.  

 

6.5.6 Benefit of spatial patterns and data types in multivariate calibration 

6.5.6.1 Analysis of the Lake Volta region 

Evidence of the benefit of multivariate calibration with SRS data is exemplified on Figure 6.9 

by zooming-in on the Volta Lake region in the southern part of the VRB (cf. Figure 2.2). 

Notwithstanding that mHM does not have a lake module, it is nicely noticeable that the model 

represents the heterogeneity in spatial patterns with the multivariate calibration cases better than 

the Q-only calibration case. As it should be expected from the Ts patterns, case MV shows 

higher Su and Ea over the Lake Volta but with lower Ea in its surroundings. This improvement 

in spatial patterns is not observed with case Q, confirming the limitations of the Q-only 

calibration and emphasizing the importance of patterns of SRS data for model calibration. 

Moreover, it can be inferred from the results that St is the most important variable for 

representing the lake area while Q is the less critical variable. 
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Figure 6.9. Comparison of the spatial patterns of soil moisture (top row) and actual evaporation 
(bottom row) with land surface temperature (first map from left) in the Volta Lake region. The 
Ts map used as benchmark shows the Lake Volta depicted in dark blue with the lowest 
temperature in the region. The ability of the mHM model to highlight the lake area is assessed 
with the patterns of Su and Ea for all model calibration cases. 

 

6.5.6.2 Comparison of the multivariate calibration cases to the benchmark 

Figure 6.10 gives the gain or loss in model performance with different multivariate model 

calibration cases compared to the Q-only calibration case (i.e. the benchmark).  

 

Figure 6.10. Relative difference in performance of multivariate (MV) calibration cases 
compared to Q-only calibration case. For every MV case, the values on the line from each 
vertex to the centre of the polygon give the relative difference in performance with the Q-only 
calibration case, for all variables (i.e. Q, St, Su and Ea). 
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In general, the multivariate calibration cases show higher model predictive skill for many 

components of the hydrological system (i.e. Q, St, Su and Ea) when compared to Q-only 

calibration. The decrease in the model performance for Q is usually counterbalanced with an 

increase in performance for St, Su and Ea, which might simply be the result of a solution to the 

artefacts caused by the Q-only calibration. These results reveal that the simulation of spatial 

patterns of Su benefits most from the multivariate settings, followed by the simulation of Ea and 

St, while the decrease in Q performance varies widely depending on the multivariate calibration 

cases. A summary of the importance of each variable in predicting the others (i.e. Q, St, Su and 

Ea) is given in Table 6.2. 

Table 6.2. Importance of different variables in predicting others in a multivariate calibration 
setting. Degree of importance: Low (+), Moderate (++), High (+++) and Very High (++++) 

  Predictands 

  Temporal dynamics Spatial patterns 

  Q St Ea Su Ea Su 

Predictors 

Q ++++ + ++ +++ + + 

St ++ ++ ++++ +++ ++++ ++ 

Ea ++ ++++ +++ + ++ + 

Su ++ + + +++ +++ +++ 

 

The most determinant variable for streamflow prediction in a multivariate setting is streamflow 

itself, similarly for Su, while it is Ea for St, and St for Ea. Zeng and Cai (2016) also found that St 

controls the temporal variability of Ea. Surprisingly, Ea is the less critical variable for Su 

prediction. However, it is worth stressing that only the spatial patterns of satellite Ea is exploited 

here. Moreover, Ea calculation in the model setup might be a reason of the limited contribution 

of satellite Ea in Su prediction. The Ep calculation (cf. Section 4.5 of Chapter 4) is done with 

time-variant and gridded leaf area index data that imposes heterogeneity on modelled Ea 

(Birhanu et al., 2019). Consequently, additional contribution from the satellite Ea in Su 

prediction is expectedly limited in case the leaf area index data is in agreement with the satellite 

Ea. Moreover, not explicitly weighting the components of the multivariate objective function 

might have led to implicit weighting, which led to the artefact that some variables are not very 

good predictors for themselves. 
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6.6 Summary and Outlook 

This work is a follow up on several recent studies on multi-objective calibration and spatial 

pattern improvement in hydrological modelling. The proposed multivariate calibration 

approach is a step forward in improving the realism of hydrological model predictions (Clark 

et al., 2015; Rakovec et al., 2016a) because not only a reliable temporal dynamic is sought for 

in the modelling objective but also plausible spatial patterns of several hydrological processes 

simultaneously. A key element of this study is the assessment of the plausibility of spatial 

patterns of soil moisture and evaporation with independent data of land surface temperature not 

used during the model calibration. With respect to the obtained performances, it can be 

concluded that spatial patterns of satellite data are a highly relevant and robust feature that can 

be used in multivariate calibration to improve the overall representation of the hydrological 

system even with trade-offs among the variables, which thereby confirms the research 

hypothesis.  

A rigorous comparison of the proposed bias-insensitive metric with other spatial pattern metrics 

is left for future works. Further investigations can focus on setting a threshold for the 

acceptability of the modelled spatial patterns, which was not required here as the goal was to 

check the increase or the decrease of spatial pattern performance rather than determining 

whether the patterns are good or bad in an absolute sense, when switching between streamflow-

only and multivariate calibration cases. 

Our methodology lacks in-situ data for model evaluation, except streamflow. However, in-situ 

measurements of soil moisture, evaporation and terrestrial water storage at large scale are rather 

rare (Vereecken et al., 2008), and are also subject to uncertainties due to the non-uniformity of 

the data collection in space (Stisen et al., 2011). As this study focuses on spatial pattern 

assessment, satellite data remain the only possible option for the large Volta River basin in West 

Africa, where ground measurements are a luxury.  

The presented multivariate calibration reveals trade-offs among the objective functions for 

streamflow and for satellite data. However, trade-offs cannot be avoided as they originate from 

errors in input data, model structure and lack of knowledge of the hydrological system 

(Bergström et al., 2002; Gupta et al., 1998). Moreover, it was a deliberate choice to equally 

weight the components of the multivariate objective function (Eq. 6.1) because no prior 

knowledge on the importance of each variable was available, and it was an objective of this 

study to know their contributions in the calibration procedure. In such situation, the default 

choice is to weight them equally (Bergström et al., 2002; Stisen et al., 2018). Weights are 
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sometimes assigned to objective function components by iterative optimization testing different 

weights, which is however computationally demanding. It is also possible to transform the 

components of the multivariate objective functions to solve differences in their magnitudes 

(Madsen, 2003), but the effects of such transformations on the calibration procedure are 

unknown and they are not required if the metrics are dimensionless or of the same order of 

magnitude (Bergström et al., 2002). 

The climatic inputs influence somehow the spatial variability of the hydrological processes due 

to the aridity gradient in the VRB. The detailed results are valid for the VRB but they can be 

generalized to regions with similar hydroclimatic characteristics. However, the applicability of 

the proposed multivariate calibration framework is, in principle, universal, as long as a DHM 

is used and spatial datasets are available. Further research can explore the applicability of the 

presented multivariate calibration strategies in different hydroclimatic regions with different 

spatial data sources, and different DHMs to understand how the model structure interacts with 

the performance of different calibration strategies. Choosing an adequate hydrological model 

(Addor and Melsen, 2019) is key to any good experiment. The MPR scheme used in mHM 

might have facilitated to some extent the reproduction of spatial patterns, but the MPR scheme 

can be similarly implemented with other models as demonstrated by previous studies (e.g. VIC 

and PCR-GLOBWB models, Mizukami et al., 2017; Samaniego et al., 2017). A sensitivity 

analysis to identify the model parameters that influence the representation of spatial patterns is 

a recommended outlook. 

Future methodological developments could in particular focus on improved formulation of the 

multi-objective functions inspired by previous findings on following topics: fitting of low flows 

and system signatures (Fowler et al., 2018b; Krause et al., 2005; Pushpalatha et al., 2012), 

gauge measurement weighting (Madsen, 2003) or sub-period calibration (Gharari et al., 2013). 

Additional key questions to address in this context include the model structural deficiencies 

(Gupta et al., 1998; Gupta et al., 2012), and the uncertainties of modelling datasets (i.e. input, 

calibration and evaluation data), which can lead to erroneous model rejection (Beven, 2010; 

2018; 2019a). 

The above efforts in model improvement are particularly important for prediction in a changing 

environment (Fowler et al., 2018a), and they can set avenues for prediction in ungauged basins 

solely from space. 
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6.7 Conclusion 

This study presents a calibration approach using multiple data sources simultaneously, with the 

specificity of integrating only spatial patterns of satellite remote sensing data in the parameter 

estimation procedure. A bias-insensitive and multicomponent metric is proposed for spatial 

pattern matching. The study is carried out in the Volta River basin in West Africa. Results 

reveal the benefit of the multivariate calibration setting over the traditional calibration using 

only streamflow data. The main findings are as follows: 

- Streamflow is a necessary variable but alone it is not sufficient for reliably reproducing 

other hydrological fluxes and states; 

- Spatial patterns of satellite data, without the absolute values, can be incorporated in the 

calibration procedure with bias-insensitive metrics; 

- Multivariate calibration based on streamflow and satellite data can improve the overall 

representation of the hydrological system, and thereby increase the model predictive 

skill; 

- The reduction in streamflow performance in multivariate setting is largely compensated 

by the gain in performance for other hydrological processes (i.e. terrestrial water 

storage, soil moisture and evaporation). 

It is advocated to adopt a multivariate calibration procedure focusing on spatial patterns in 

distributed hydrological models because it is a robust approach for addressing equifinality, 

reducing uncertainties and enhancing the predictive skill of hydrological models in a changing 

environment. 
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Impacts of Climate Change on Hydrological 

Processes in the Volta River Basin* 

 

 

The past is certain, the future obscure. 

Thales 

 

Not everything that is faced can be changed. 

But nothing can be changed until it is faced. 

James A. Baldwin 

 

 

  

                                                 
* This chapter is in preparation for publication.  
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Abstract 

A comprehensive evaluation of the impacts of climate change on water resources of the Volta 

River basin located in West Africa is proposed in this study. A large ensemble of twelve global 

climate models (GCM) from CMIP5 that are dynamically downscaled by five regional climate 

models (RCM) from CORDEX-Africa is used. In total, 43 RCM-GCM combinations are 

considered under three representative concentration pathways (RCP2.6, RCP4.5 and RCP8.5). 

The reliability of the climate datasets is first evaluated with satellite and reanalysis reference 

datasets. Subsequently, a multivariate bias correction method is applied to the climate datasets 

before using them as input to the fully distributed Hydrologic Model (mHM) for hydrological 

projections. The analyses cover the twenty-first century and are carried out for the historical 

period 1991-2020, with projections over three future periods 2021-2050, 2051-2080 and 2071-

2100.  

Results reveal contrasting changes in the seasonality of precipitation depending on the RCPs 

and the future projection periods, while a clear increase in the seasonality of temperature is 

expected. Although temperature and potential evaporation increase under all RCPs, the 

intensification of the complete hydrological cycle during the twenty-first century is only 

expected under the RCP8.5 scenario. In this case, an increase is foreseen for the long-term 

annual estimates of precipitation (+6.2%), average temperature (+9.5%) and potential 

evaporation (+5.0%). These changes in climatic variables will lead to changes in actual 

evaporation (+4.2%), surface runoff (+42%), streamflow (+84%), groundwater recharge 

(+37%), soil moisture (+2.3%) and terrestrial water storage (+3.2%). As shown in this study, 

floods and droughts will be recurrent under these conditions, thereby weakening the water-

energy-food security nexus and amplifying the vulnerability of the local population to climate 

change. These findings could serve as a guideline for decision makers, and contribute to the 

elaboration of adaptation and mitigation strategies to cope with dramatic consequences of 

climate change, and strengthen the regional socio-economic development. However, 

variabilities between climate models highlight uncertainties in the projections. While there is a 

100% agreement between the RCM-GCM models for projections of temperature, only an 

agreement of 62% on the direction of change is obtained for precipitation, which underscores 

the complexity of modelling climate and hydrological systems in West Africa, and sparks a new 

call to both the scientific community and policymakers for further efforts in investigating 

climate change in the region. 
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7.1 Introduction 

Climate warming is expected to occur at a faster rate in West Africa as compared to the global 

average during the twenty-first century (Todzo et al., 2020). Anthropogenic greenhouse gas 

emissions have led to an unprecedented increase in surface air temperature, which has resulted 

in the intensification of the hydrological cycle (Sylla et al., 2016). Therefore, recurrent floods 

and droughts could persist in the future because precipitation is expected to decrease in 

frequency but increase in intensity, whereas runoff variability is tightly linked to changes in 

rainfall (Aich et al., 2014; Dosio et al., 2020; Roudier et al., 2014b). In the face of climate 

change and variability, West Africa is particularly vulnerable because of its high reliance on 

rainfed agriculture and limited institutional capacities to cope with climate change and 

variability (Karambiri et al., 2011; Sultan and Gaetani, 2016; Yira et al., 2017). Climate change 

and anthropogenic pressures pose an increasing stress on water resources (Sood et al., 2013). 

Freshwater shortages with a decline in basin-scale irrigation potential could have dire 

consequences for sustainable agriculture (Sylla et al., 2018b). Consequently, global warming 

is a serious thread for water and food security in West Africa. 

In the transboundary Volta River basin (VRB) located in West Africa, water resources are 

fundamental for agriculture, hydroelectricity, fisheries and ecosystem services (Williams et al., 

2016). Most of the agriculture is rainfed but many regions rely on irrigated agriculture (Roudier 

et al., 2014b). Hydropower is a major source of electricity production with the potential to 

unlock more access to energy in the region (Kling et al., 2016; Stanzel et al., 2018). Future 

water resources developments in the VRB focus primarily on hydroelectricity and irrigation 

(McCartney et al., 2012). Nevertheless, severe impacts of climate change on water resources in 

the VRB will impede future socio-economic development (Sood et al., 2013). Knowledge on 

the future evolution of the hydrological cycle in the VRB is capital to increase the adaptive 

capacities of the riparian countries to the regional consequences of global warming. However, 

there is little knowledge on the impacts of climate change on water resources in West Africa in 

general (e.g., Kasei, 2010; Oyerinde et al., 2016; Yira et al., 2017), and only a few studies 

focused on the VRB (Jung et al., 2012; Okafor et al., 2019; Roudier et al., 2014b). Therefore, 

it is urgent to quantify the future changes in hydrological processes because of the fragility of 

the region to extreme hydroclimatic events and its high reliability on water resources for 

economic development (Jin et al., 2018; Stanzel et al., 2018). 

The limitations of climate change impacts studies on water resources in West Africa arise from 

the lack of hydrological and meteorological observations to drive models, in addition to 
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uncertainties related to climate projection data as well as hydrological models (Dembélé et al., 

2019; Oyerinde et al., 2016; Sidibe et al., 2020; Sylla et al., 2018a). Currently, there is a high 

variability in climate projections with different storylines over West Africa (Dosio et al., 2020), 

which makes it a scientifically particular and interesting region, and underlines the necessity to 

further investigate the impacts of climate change on hydrological processes. Despite substantial 

progress in improving climate projections data and the number of studies investigating climate 

change in West Africa (e.g., Diallo et al., 2016; Kebe et al., 2017; Mahé et al., 2013; Nikiema 

et al., 2017), uncertainties still exist in the climate projections data (Eyring et al., 2019; Sidibe 

et al., 2020; Sylla et al., 2016). However, knowledge on the impacts of climate change on water 

resources needs to be updated continuously.  

This study assesses the impacts of climate change on water resources in the VRB, and the 

implications for water resources management. The goal is to analyse changes in patterns of 

precipitation and temperatures, and their associated repercussions on various components of the 

hydrological cycle (i.e., streamflow, surface runoff, potential and actual evaporation, 

groundwater recharge, soil moisture and terrestrial water storage) in the twenty-first century. 

Uncertainties in the climate projections are addressed by employing a large ensemble of twelve 

Global Climate Models (GCMs) downscaled by five Regional Climate Models (RCMs) under 

three Representative Concentration Pathways (RCPs; Moss et al., 2010; Van Vuuren et al., 

2011). The RCMs are obtained from the COordinated Regional-climate Downscaling 

Experiment (CORDEX) for Africa (Giorgi et al., 2009). CORDEX generates high-resolution 

historical and future climate projections for regional applications, by downscaling GCMs 

participating in the Coupled Model Intercomparison Project (CMIP5; Taylor et al., 2012). As 

not all GCMs are downscaled by the RCMs, there are 21 RCM-GCM combinations available 

in the historical period (1951-2005), while 43 RCM-GCM combinations are available for the 

future projections (2006-2100) under various emission scenarios (RCP2.6, RCP4.5 and 

RCP8.5). Several RCPs are used in this study to consider the possibility of different futures. In 

fact, only considering the highest RCP8.5 scenario as the “business as usual” scenario in climate 

change studies is increasingly criticized because the assumption of the heavy use of coal in 

RCP8.5 is unrealistic (Hausfather and Peters, 2020; Ritchie and Dowlatabadi, 2017). However, 

the current emissions are found to be in line with the RCP8.5 scenario (Peters et al., 2013), and 

there are suggestions for giving RCP8.5 a high priority (O'Neill et al., 2016).  

The RCM-GCM datasets are first evaluated by comparing them to the best satellite and 

reanalysis datasets of rainfall and temperature for hydrological modelling in the VRB (Dembélé 
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et al., 2020c). Subsequently, a multivariate bias correction is applied to the climate projection 

datasets using the Rank Resampling for Distributions and Dependences (R2D2) method (Vrac 

and Thao, 2020). Finally, the bias corrected climate projection datasets are used as input in the 

fully distributed mesoscale Hydrologic Model (mHM) to assess the impact of climate change 

on multiple hydrological fluxes and state variables. Although the performance of a model 

during past and present conditions does not guarantee its reliability for future projections 

(Stanzel et al., 2018), having a well performing model that simulates realistic hydrological 

processes is a prerequisite for any sound impact study. The mHM model is thoroughly 

calibrated to reproduce plausible spatiotemporal patterns of hydrological processes in the VRB, 

following a robust approach based on multivariate and spatial patterns of satellite data 

(Dembélé et al., 2020b). The following research questions are investigated: 

- What are the changes in rainfall and temperature during the twenty-first century in the 

VRB? 

- How will hydrological processes evolve under a changing climate? 

- How uncertain are the projections in terms of multi-model variability? 

- What are the implications of a changing climate for floods and droughts? 

Overall, this study seeks to explore the implications of climate change for water resources 

management, and to provide knowledge that can serve to deploy adaptation and mitigation 

strategies to limit the negative impacts of global warming on the socioeconomic development 

of the VRB. 

 

7.2 Overview of the methodology 

The methodology adopted for the assessment of climate change impacts on hydrological 

processes is summarized in Figure 7.1. The main steps consist of the bias correction of the RCM 

and GCM datasets, the modelling of hydrological processes based on the climate projection 

datasets, and the analysis of the future changes in the modelled hydrological processes. 



Chapter 7 

134 
 

 

Figure 7.1. Overview of the procedure for assessing the impacts of climate change on 
hydrological processes  

 

7.3 Climate datasets 

Based on data availability on the Earth System Grid Federation (ESGF) platform, twelve GCMs 

from CMIP5 dynamically downscaled with five RCMs available from the CORDEX-Africa 

initiative are selected for this study (Table 7.1). Daily datasets of precipitation and minimum, 

maximum and average air temperature are obtained for the realization r1i1p1 over the historical 

period (1951-2005) and the future projections period (2006-2100). Three RCPs are used in this 

study, and they correspond to different future concentrations and emissions of greenhouse gases 

and air pollutants, and land-use change until 2100, relative to the pre-industrial times (Moss et 

al., 2010; Van Vuuren et al., 2011). The three RCPs are (i) RCP2.6 corresponding to a 

mitigation scenario with a very low radiative forcing level that peaks at ~3 W m-2 (~490 ppm 

CO2 equivalent) before 2100 and then declines; (ii) RCP4.5 representing a medium stabilization 

scenario without overshoot pathway to 4.5 W m-2 (~650 ppm CO2 equivalent) at stabilization 

after 2100; and (iii) RCP8.5 corresponding to a very high emission scenario with rising radiative 

forcing pathway leading to 8.5 W m-2 (~1370 ppm CO2 equivalent) by 2100.  
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Table 7.1. List of the CORDEX-Africa Global Climate Models (GCMs) datasets downscaled 
by Regional Climate Models (RCMs) and their availability per Representative Concentration 
Pathways (RCP) marked with a cross (x). 

RCMs GCMs RCP2.6 RCP4.5 RCP8.5 

CCLM4-8-17 
CNRM-CM5  x x 
HadGEM2-ES  x x 
MPI-ESM-LR  x x 

CRCM5 CanESM2  x  
MPI-ESM-LR  x  

RACMO22T EC-EARTH  x x 

RCA4 

CanESM2  x x 
CNRM-CM5  x x 
CSIRO-Mk3-6-0  x x 
EC-EARTH   x 
CM5A-MR  x x 
MIROC5 x x x 
HadGEM2-ES x x x 
MPI-ESM-LR x x x 
NorESM1-M x x x 
GFDL-ESM2M  x x 

REMO2009 

CM5A-LR x  x 
MIROC5 x  x 
HadGEM2-ES x  x 
MPI-ESM-LR x x x 
GFDL-ESM2G x   

 TOTAL 9 16 18 
 

7.4 Bias correction 

Assessing the reliability of climate projections data in reproducing observations is a 

precondition to impact studies (Eyring et al., 2019). However, observations can also be subject 

to uncertainties. To address these uncertainties, the climate projection datasets are evaluated 

with ten rainfall datasets (TAMSAT v3.0, CHIRPS v2.0, ARC v2.0, MSWEP v2.2, 

PERSIANN-CDR v1r1, PGF v3, ERA5, WFDEI-GPCC, WFDEI-CRU and MERRA-2) and 

six temperature datasets (PGF v3, ERA5, WFDEI, EWEMBI, MERRA-2 and JRA-55), which 

demonstrated the best performances for large scale hydrological modelling in the VRB 

(Dembélé et al., 2020c). In the following, these datasets composed of both satellite and 

reanalysis products will be referred to as observations. 

As discrepancies are observed between the observations and the climate projection datasets 

(Figure 7.2), a bias correction is applied before using the climate datasets in hydrological 
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modelling. The Rank Resampling for Distributions and Dependences (R2D2) method (Vrac 

and Thao, 2020) is adopted for a multivariate bias correction of climatic variables. R2D2 is a 

stochastic and analogue-based method that adjusts not only the univariate distributions of 

climatic variables relying on their ranks, but also the inter-variable and inter-site dependence 

structures (Vrac, 2018). Bias correction with the R2D2 approach is achieved in two steps. First, 

the marginal distributions of univariate time series are adjusted using any univariate bias 

correction method. Here, the cumulative distribution function transform (CDF-t) approach 

(Michelangeli et al., 2009; Vrac et al., 2012) is used to adjust the marginal properties of the 

univariate time series. Secondly, R2D2 is used to adjust the dependence structure between 

several variables independent of their marginal distribution (i.e., empirical copula function). 

R2D2 showed a good performance in comparison to other bias correction methods (François et 

al., 2020). 

In this study, precipitation and temperature datasets are corrected simultaneously to preserve 

the temporal and spatial dependences between the climatic variables. The bias correction is 

done using only the WFDEI as reference data, because it has both rainfall and temperature data 

over a long period (1979-2016), and previously demonstrated good performances in the VRB 

(Dembélé et al., 2020a; Dembélé et al., 2020b; Dembélé et al., 2020c). Moreover, using a single 

observation dataset as reference avoids losing the natural variability of the time series, which 

might not be the case with a multi-dataset ensemble mean used as the reference. The period 

1981-2005 is taken as the reference period for the bias correction of the climate projection 

datasets, whose time series are divided into several 25-year periods over the period 1951-2100 

to correspond to the length of the reference period. The multivariate bias correction is applied 

by grouping the data per calendar month in each sub-period of 25 years, which allows 

preserving temporality in the corrected data.  

 

7.5 Hydrological Modelling 

The bias corrected climate projection datasets are used as forcing to the fully distributed 

mesoscale Hydrologic Model (mHM) to assess the changes in hydrological processes as a 

results of climate change. The mHM model simulates dominant hydrological processes with 

seamless spatiotemporal patterns in the modelling domain (Kumar et al., 2013; Samaniego et 

al., 2010; Samaniego et al., 2017). Dembélé et al. (2020a) and Dembélé et al. (2020b) 

demonstrated the ability of the mHM model to reproduce reliable spatiotemporal patterns of 

various hydrological processes after a robust model calibration with multiple variables and 
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spatial patterns of satellite data in the VRB. The model parameters obtained from the study of 

Dembélé et al. (2020b) are used to run the mHM model in this study. Dembélé et al. (2020b) 

provide details on the setup and the performance of mHM for hydrological modelling in the 

VRB. The model is run over the entire availability period (1951-2100) of the RCM-GCM 

datasets, with a model warm-up period of 10 years (1951-1960). The 30-year period (1991-

2020) is chosen as the baseline period (i.e., historical run) for the hydrological modelling. While 

projections are assessed for the near term future (2021-2050), the long-term future (2051-2080) 

and the late-century (2071-2100) under various emission scenarios. In total, 21 RCM-GCM 

combinations are available for the historical runs, while for future projections, 9 RCM-GCM 

combinations are available for the RCP2.6, 16 for RCP4.5 and 18 for RCP8.5 (Table 7.1). 

Although land use and land cover (LULC) scenarios are not used in this study, the temporal 

dynamic of LULC is accounted for by using different maps over the modelling period. Based 

on high resolution LULC data available between 1992 and 2015 from the European Space 

Agency Climate Change Initiative (ESA, 2017), LULC maps of 1992, 2005 and 2015 are used 

for the periods 1951-1990, 1991-2020 and 2021-2100, respectively. 

The realism of the hydrological simulations is checked with the Budyko framework (Budyko, 

1974), which is a tool to estimate mean annual water availability as a function of aridity. The 

supply-demand framework is valid for large catchments under steady state, considering long-

term water and energy balance (Donohue et al., 2010). The exercise consists in verifying if the 

ratio of the long-term mean annual potential evaporation to precipitation (aridity index) and the 

ratio of actual evaporation to precipitation (evaporative index) are in the limits of acceptability 

and do not exceed the energy and water limits (Sposito, 2017). An environment is considered 

water-limited when the catchment average atmospheric evaporative demand exceeds the water 

supply (i.e., precipitation is lower than potential evaporation), while the opposite applies to an 

energy-limited environment (Donohue et al., 2011; McVicar et al., 2012). The Budyko 

framework is frequently used in hydrological modelling (Greve et al., 2020; Wang et al., 2016). 

Uncertainties in the results are assessed in terms of variability between climate models using 

the second order coefficient of variation (V2, cf. Eq. 4.14 in Section 4.7 of Chapter 4) (Kvålseth, 

2017). 
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7.6 Results 

When reporting on the changes (future minus reference) in hydroclimatic processes in the 

following, the trend of the changes is determined only by the majority of the models agreeing 

on the same direction of change. For instance, a variable is said to be increasing in the future 

only if the majority of the RCM-GCM models in the large ensemble shows an increasing trend, 

and vice versa. Therefore, the magnitude of the change is obtained by averaging only models 

agreeing on the same trend. This approach is similar to the weighted multi-model mean where 

the major agreement is weighted by one, while the minor agreement is given a weight of zero. 

In this case, at least 50% of models present in the ensemble are always considered when 

reporting on future projections. The percentage of model agreement is provided to elucidate the 

robustness of the projections. However, the figures show the projections of all the RCM-GCM 

combinations.  

 

7.6.1 Multivariate bias correction 

The raw RCM-GCM datasets are evaluated by comparing their cumulative distribution 

functions to those of the observations over the period 1983-2005 corresponding to the 

concomitant availability period of all the observation datasets (Figure 7.2). The distribution of 

most of the RCM-GCM datasets presented discrepancies with the observations, with larger gaps 

for temperature than precipitation. The multivariate bias correction with the R2D2 method 

visually performed well by adjusting the distributions of the RCM-GCM datasets to the WFDEI 

reference dataset for all the climatic variables. Therefore, the corrected RCM-GCM datasets are 

expected to provide reliable hydrological simulations in the VRB. 
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Figure 7.2. Cumulative distribution functions (CDF) of daily precipitation (P) and average, 
maximum and minimum daily air temperature (Tavg, Tmax and Tmin = 19.3 °C) before and after 
multivariate bias correction of various RCM-GCM datasets. The black line and grey-shaded 
area represent the mean and the 90% confidence interval of the best satellite and reanalysis 
datasets of rainfall (10 datasets) and temperature (6 datasets) in the Volta basin. 

 

7.6.2 Plausibility of hydrological simulations 

The plausibility of the hydrological simulations using various RCM-GCM datasets as inputs to 

the mHM model under various RCPs and long-term periods is shown with the Budyko 

framework in Figure 7.3. 

All the RCM-GCM datasets provide plausible hydrological simulations, at least in terms of 

water and energy balance, as they respect the water and energy limits imposed within the 

Budyko framework. On average, the evaporative index is between 0.86 and 0.97, while the 
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aridity index is between 2.2 and 4.4, which corresponds to expected values for sub-humid and 

semi-arid environments such as the VRB (Gunkel and Lange, 2017). 

 

Figure 7.3. Plausibility of hydrological processes with the Budyko framework representing the 
evaporative index, i.e. ratio of actual evaporation to precipitation (Ea/P), as a function of the 
aridity index, i.e. ratio of potential evaporation to precipitation (Ep/P) 

 

7.6.3 Seasonal changes in climate 

7.6.3.1 Precipitation 

The annual cycle of precipitation in the VRB shows a unimodal shape for all the RCPs (Figure 

7.4). Monthly precipitation continuously increases from 2 mm/month in January to 208 

mm/month in August and decreases to 3 mm/month in December. Uncertainties in the rainfall 

estimates are lower during the wet months (July-September) with an average variation of 4%, 

as compared to the dry months (November-March) with 43% of variation. The future evolution 

of the seasonality of precipitation depicts a contrasting trend across RCPs and across periods. 

A decline in the seasonality of precipitation by -17% is expected until the end of the twenty-

first century for RCP2.6, while an increase of +31% up to the mid-century followed by a 

decrease of -16% is observed for RCP4.5, and an average increase of +42% is recorded over 

the entire century for RCP8.5. High inter-model variabilities ranging from 82% to 98% are 

observed in future seasonal projections of precipitation between the RCM-GCM datasets. 
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Figure 7.4. Annual cycle of precipitation (P) for the reference period (1991-2020) under 
different RCPs (first column) and projections of changes for future periods (2021-2100) as 
compared to the reference period for various RCM-GCM combinations 

 

7.6.3.2 Temperature 

Average, maximum and minimum temperature present a bimodal annual cycle in the VRB 

(Figure 7.5 to Figure 7.7), with a second mode less marked for the minimum temperature. 

Monthly temperature increases from January (Tavg =  26.5 °C, Tmax = 34.7 °C, Tmin = 19.3 °C) 

and marks its first peak between March and April (Tavg = 31.7 °C, Tmax = 37.8 °C, Tmin = 26.1 

°C). Then, it decreases to its lowest record during the rainy season in August (Tavg = 26.4 °C, 

Tmax = 30.8 °C, Tmin = 22.8 °C), before rising to its second peak between October and November 

(Tavg = 28.4 °C, Tmax = 35.7 °C, Tmin = 23.1 °C) and decreases up to January. Low inter-model 

(i.e., RCM-GCMs) variabilities ranging from 0.3% to 0.9% are observed for monthly 

temperatures. Future changes in average, maximum and minimum monthly temperature agree 

to the same increasing trend across all RCPs over the twenty-first century. Temperature keeps 

increasing in time from 2021 to 2100 and with increasing radiative forcing level from RCP2.6 

to RCP8.5. Generally, monthly average temperature increases by 3% to 14% (i.e., +1.0°C to 

+4.0 °C), maximum temperature increases by 3% to 11% (i.e., +1.1°C to +3.9 °C), and 

minimum temperature increases by 4% to 18% (i.e., +1.0°C to +4.1 °C) over the twenty-first 
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century. Medium variabilities in future seasonal projections between RCM-GCM datasets range 

from 24% to 35% for Tavg, from 28% to 42% for Tmax, and from 21% to 35% for Tmin. 

 

Figure 7.5. Annual cycle of average air temperature (Tavg) for the reference period (1991-2020) 
under different RCPs (first column) and projections of changes for future periods (2021-2100) 
as compared to the reference period for various RCM-GCM combinations 

 

 

Figure 7.6. Annual cycle of maximum air temperature (Tmax) for the reference period (1991-
2020) under different RCPs (first column) and projections of changes for future periods (2021-
2100) as compared to the reference period for various RCM-GCM combinations 
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Figure 7.7. Annual cycle of minimum air temperature (Tmin) for the reference period (1991-
2020) under different RCPs (first column) and projections of changes for future periods (2021-
2100) as compared to the reference period for various RCM-GCM combinations 

 

7.6.3.3 Potential evaporation 

As expected, potential evaporation (Ep) has a bimodal annual cycle similar to that of 

temperature (Figure 7.8). Ep increases from 207 mm/month in January and peaks at 252 

mm/month in March. Then, it decreases to its minimum at 185 mm/month during the rainy 

season in August, followed by a rise to 221 mm/month in October, and finally decreases to 202 

mm/month in December. The inter-model variability is low and ranges from 0.6% during the 

dry season to 1.2% in the rainy season (June-September). Future projections of monthly Ep 

shows a concise increase across RCPs and for different periods in the twenty-first century. From 

2021 to 2100, monthly Ep is expected to increase by +2.8% for RCP2.6, from +2.3% to 4.6% 

for RCP4.5, and from 2.6% to 7.8% for RCP8.5, as compared to the historical period 1991-

2020. However, the magnitude of the changes in seasonal Ep varies highly across RCM-GCM 

models with 40% to 76% of variability. 
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Figure 7.8. Annual cycle of potential evaporation (Ep) for the reference period (1991-2020) 
under different RCPs (first column) and projections of changes for future periods (2021-2100) 
as compared to the reference period for various RCM-GCM combinations 

 

7.6.4 Seasonal changes in hydrology 

7.6.4.1 Actual evaporation 

Actual evaporation (Ea) follows a unimodal annual cycle similarly to precipitation (Figure 7.9). 

Monthly Ea increases from 24 mm/month in January to 140 mm/month in September and then 

decreases to 33 mm/month in December. The inter-model variabilities of monthly Ea is about 

1.2% during the rainy season and increases to 8.5% in the dry season. Future projections of 

monthly Ea denote a contrasting trend between the RCPs. A decline of monthly Ea is expected 

under RCP2.6 (-7.6% to -6.3%) and RCP4.5 (-8% to -4.4%) between 2021 and 2100, while an 

increase is expected under RCP8.5 (+6.1% to +13%), with high inter-model variabilities 

varying between 88% and 97%. 
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Figure 7.9. Annual cycle of actual evaporation (Ea) for the reference period (1991-2020) under 
different RCPs (first column) and projections of changes for future periods (2021-2100) as 
compared to the reference period for various RCM-GCM combinations 

 

7.6.4.2 Surface runoff 

The annual cycle of surface runoff (Qrun) presents a unimodal shape with steeper slopes as 

compared to that of precipitation (Figure 7.10). Monthly Qrun increases from 0.9 mm/month in 

February to 20 mm/month in September, and decreases to 1.2 mm/month in January. The inter-

model variabilities range from 20% in the rainy season to 33% in the dry season. Future 

projections show an increase of monthly Qrun until the mid-century (2021-2050) by +43% for 

RCP2.6, +37% for RCP4.5 and +35% for RCP8.5. While monthly Qrun keeps increasing until 

the end of the twenty-first century for RCP8.5 (+59% to +120%), it decreases for RCP4.5 (-

24% to -23%) and RCP2.6 (-24% to -20%), with inter-model variabilities ranging from 90% to 

97%.  
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Figure 7.10. Annual cycle of surface runoff (Qrun) for the reference period (1991-2020) under 
different RCPs (first column) and projections of changes for future periods (2021-2100) as 
compared to the reference period for various RCM-GCM combinations 

 

7.6.4.3 Streamflow 

Streamflow (Q) presents an annual cycle similar to surface runoff (Figure 7.11). Average 

streamflow in the VRB is calculated based on 11 gauging stations (Figure 2.5, Chapter 2), 

therefore it does not include flows within the Lower Volta sub-basin. Monthly Q increases from 

13 m3/s in February to 338 m3/s in September, and decreases to 15 m3/s in January, with inter-

model variabilities varying between 24% in the rainy season and 34% in the dry season. The 

future projections of monthly Q are similar to Qrun. An increase in monthly Q is observed from 

2021 to 2050 with variation by +53% for RCP2.6, +41% for RCP4.5 and +44% for RCP8.5. 

From the mid-century, monthly Q keeps increasing for RCP8.5 (+98% to +154%), while it 

decreases for RCP4.5 (-26% to -25%) and RCP2.6 (-30% to -25%), with high inter-model 

variabilities ranging between 91% and 97%. 
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Figure 7.11. Annual cycle of streamflow (Q) for the reference period (1991-2020) under 
different RCPs (first column) and projections of changes for future periods (2021-2100) as 
compared to the reference period for various RCM-GCM combinations 

 

7.6.4.4 Groundwater recharge 

The annual cycle of groundwater recharge (Rr) is similar to those of surface runoff and 

streamflow (Figure 7.12). Monthly Rr increases from 0.02 mm/month in February to 3.7 

mm/month in September, and decreases to 0.04 mm/month in January, with inter-model 

variabilities ranging from 18% in the rainy season to 59% in the dry season. A low groundwater 

recharge is observed in the VRB because it is mainly generated from precipitation (Williams et 

al, 2016), while actual evaporation only accounts for 93% of annual precipitation and surface 

runoff represents 7% of precipitation, based on the RCM-GCM datasets. Future projections of 

monthly Rr show similar trends to those of Qrun and Q. An increase in monthly Rr is expected 

in the period 2021-2050 by +63% for RCP2.6, +56% for RCP4.5 and +63% for RCP8.5. During 

the periods 2051-2100, monthly Rr keeps increasing for RCP8.5 (+107% to +307%), while it 

decreases for RCP4.5 (-28% to -27%) and RCP2.6 (-29% to -25%), with inter-model 

variabilities varying between 84% and 98%. 



Chapter 7 

148 
 

 

Figure 7.12. Annual cycle of groundwater recharge (Rr) for the reference period (1991-2020) 
under different RCPs (first column) and projections of changes for future periods (2021-2100) 
as compared to the reference period for various RCM-GCM combinations 

 

7.6.4.5 Soil moisture 

The root-zone soil moisture (Su) follows a unimodal annual cycle with a few months forward 

shift as compared to precipitation (Figure 7.13). Monthly Su increases from 0.50 mm/mm in 

April to 0.71 mm/mm in September, and decreases to 0.50 mm/mm in March, with inter-model 

variabilities ranging from 2.3% in the rainy season to 1.7% in the dry season. Future projections 

show a decrease of monthly Su from 2021 to 2100 for RCP2.6 (-3.8% to -3.4%) and RCP4.5 (-

4.0% to -2.1%). For RCP8.5, monthly Su is expected to increase by +2.1% in 2021-2050, then 

decrease by -4.9% in 2051-2080, and increase again by +3.7% in 2071-2100. The overall inter-

model variabilities vary between 84% and 95%. 
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Figure 7.13. Annual cycle of root-zone soil moisture (Su) for the reference period (1991-2020) 
under different RCPs (first column) and projections of changes for future periods (2021-2100) 
as compared to the reference period for various RCM-GCM combinations 

 

7.6.4.6 Terrestrial water storage 

Terrestrial water storage (St) is the sum of all water stored below and above land.  The annual 

cycle of St is similar to that of Su (Figure 7.14). Monthly St increases from 424 mm in April to 

615 mm in September, and decreases to 421 mm in March, with inter-model variabilities 

varying between 2.6% in the rainy season to 2.1% in the dry season. Future projections of St 

are similar to those of Su over the twenty-first century. A decline of monthly St is expected from 

2021 to 2100 for RCP2.6 (-4.2% to -3.7%) and RCP4.5 (-4.3% to -2.3%). For RCP8.5, monthly 

St is expected to increase by +2.7% in 2021-2050, then decrease by -5.4% in 2051-2080, and 

increase again by +5.1% in 2071-2100. The overall inter-model variabilities vary between 89% 

and 96%. 
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Figure 7.14. Annual cycle of terrestrial water storage (St) for the reference period (1991-2020) 
under different RCPs (first column) and projections of changes for future periods (2021-2100) 
as compared to the reference period for various RCM-GCM combinations 

 

7.6.5 Annual mean changes in climatic and hydrological processes 

Considering all RCPs over the historical period 1991-2020 in the VRB, the multi-model 

ensemble mean of long-term annual estimates of climatic variables is as follows: Tmax = 34.7 

°C, Tmin = 22.8°C, Tavg =  28.4 °C, Ep = 2579 mm/year, P = 999 mm/year. 

The future projections of climatic and hydrological processes over the twenty-first century 

(2021-2100) as compared to the historical period (1991-2020) show contrasting trends between 

RCPs and between projections periods (Table 7.2). All climatic variables (precipitation, 

temperature and potential evaporation) are expected to increase over the twenty-first century 

for all RCPs and projection periods, at the exception of precipitation that is expected to decrease 

under RCP2.6 and RCP4.5, and increase under RCP8.5. The average annual changes in climatic 

variables over 2021-2100 are amplified with increasing radiative forcing levels, and vary 

between RCP2.6 (Tmax = +2.8%, Tmin = +4.1%, Tavg =  +3.4%, Ep = +2.4%, P = -4.2%), RCP4.5 

(Tmax = +4.6%, Tmin = +7.1%, Tavg =  +5.7%, Ep = +3.4%, P = -3.0%) and RCP8.5 (Tmax = 

+7.5%, Tmin = +12%, Tavg =  +9.5%, Ep = +5.0%, P = +6.2%). More importantly, there is a 

100% agreement among the RCM-GCM models concerning the increase in temperature and 

98.8% of agreement for the increase of potential evaporation across all the RCPs and projection 
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periods. Therefore, there is a high confidence in future climate warming of the VRB region in 

West Africa during the twenty-first century. These findings align with previous studies in West 

Africa (e.g., Dosio et al., 2020; Jin et al., 2018; Todzo et al., 2020). In agreement with Dosio 

et al. (2019), a lower RCM-GCM agreement of 62% is found for future changes in precipitation, 

thereby highlighting the complexity of modelling climate in West Africa (Fitzpatrick et al., 

2020; Panthou et al., 2012) . The relatively low RCM-GCM agreement for precipitation can be 

justified by the difficult representation of the West African monsoon in most of the climate 

models (Akinsanola et al., 2020; Philippon et al., 2010; Xue et al., 2010). 

In contrast to the climatic variables, the hydrological processes (streamflow, surface runoff, 

actual evaporation, groundwater recharge, soil moisture and terrestrial water storage) decrease 

under RCP2.6 and RCP4.5, and only increase under the RCP8.5 scenario during the period 

2021-2100 (Table 7.2). The multi-model ensemble mean of long-term annual estimates of 

hydrological processes for all RCPs over the historical period is as follows:  Ea = 930 mm/year, 

Qrun = 73 mm/year, Q = 973 m3/s, Rr = 18 mm/year, Su = 0.58 mm/mm and St = 491 mm. The 

average annual changes in hydrological variables over 2021-2100 vary between RCP2.6 (Ea = 

-2.9%, Qrun = -2.7%, Q = -3.1%, Rr = -21%, Su = -3.7%, St = -4.0%), RCP4.5 (Ea = -2.5%, Qrun 

= -11%, Q = -2.6%, Rr = -13%, Su = -3.4%, St = -3.7%) and RCP8.5 (Ea = +4.2%, Qrun = +42%, 

Q = +84%, Rr = +37%, Su = +2.3%, St = +3.2%). It can be concluded from these findings that 

an intensification of the hydrological cycle in the VRB is to be expected only under the RCP8.5 

scenario. Moreover, it is noteworthy that surface runoff and streamflow are expected to increase 

while precipitation decreases under the RCP2.6 and RCP4.5 during the period 2021-2050. This 

paradoxical phenomenon of rainfall-runoff correlation is commonly referred to as the “Sahelian 

paradox” (Mahé and Paturel, 2009). Although the Sahelian paradox is not completely 

understood yet, several possible reasons include changes in soil properties and vegetation cover 

that can lead to a reduction in the soil water holding capacity (Gal et al., 2017). The persistence 

of the Sahelian paradox under future climate scenarios can be justified by the fact that rainfall 

is expected to decrease in frequency but increase in intensity (Todzo et al., 2020), thereby 

leading to a rapid saturation of the soil, which limits infiltration and increases runoff. Moreover, 

the parameters of the mHM model are constant from the historic to the future modelling periods, 

so that the runoff generation mechanisms do not change over time. The necessity for 

hydrological model recalibration under climate change should be further investigated in the 

future. 
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Table 7.2. Summary of annual projections of climatic and hydrological variables under different 
representative concentration pathways (RCPs) from the historical period (1991-2020) to 
different future periods (2021-2100). The trend of the changes is determined by the majority of 
the models agreeing on the same direction of change, which is expressed by the percentage of 
RCM-GCM agreement. V2 is the second-order coefficient of variation. 

 

Annual data
Ensemble 

mean
V2 (%)

2021-
2050

2051-
2080

2071-
2100

2021-
2050

2051-
2080

2071-
2100

Tmax (°C) 34.7 0.3 +2.5 +3.0 +3.0 100.0 100.0 100.0
Tmin (°C) 22.8 0.5 +3.5 +4.4 +4.4 100.0 100.0 100.0
Tavg (°C) 28.4 0.4 +2.9 +3.6 +3.6 100.0 100.0 100.0
Ep (mm/year) 2577 0.4 +2.0 +2.7 +2.4 100.0 88.9 100.0
P (mm/year) 1005 2.7 -4.7 -4.4 -3.4 55.6 66.7 77.8
Ea (mm/year) 933 2.0 -2.9 -3.1 -2.6 66.7 77.8 77.8
Q (mm/year) 77 14.1 +34.9 -23.0 -20.1 55.6 55.6 66.7
Rr (mm/year) 12.4 13.7 -20.2 -20.6 -21.2 55.6 66.7 66.7
Su (mm/mm) 0.58 1.4 -3.8 -3.7 -3.6 55.6 66.7 66.7
St (mm) 494 1.6 -4.0 -4.0 -4.0 55.6 66.7 66.7
Q (m3/s) 1025 21.9 +47.8 -29.6 -27.6 55.6 55.6 55.6

RCP2.6
Future projections (%) % RCM-GCM agreement

Baseline 1991-2020

Annual data
Ensemble 

mean
V2 (%)

2021-
2050

2051-
2080

2071-
2100

2021-
2050

2051-
2080

2071-
2100

Tmax (°C) 34.7 0.3 +2.8 +5.2 +5.9 100.0 100.0 100.0
Tmin (°C) 22.8 0.4 +4.3 +7.9 +9.0 100.0 100.0 100.0
Tavg (°C) 28.4 0.3 +3.5 +6.4 +7.3 100.0 100.0 100.0
Ep (mm/year) 2585 0.4 +1.9 +4.0 +4.4 100.0 100.0 100.0
P (mm/year) 991 3.1 -2.4 -4.9 -1.7 56.3 62.5 50.0
Ea (mm/year) 927 2.1 -1.6 -4.3 -1.7 68.8 62.5 50.0
Q (mm/year) 69 18.7 +7.2 -18.7 -20.9 50.0 56.3 56.3
Rr (mm/year) 11.2 17.6 +5.2 -20.2 -22.8 50.0 56.3 56.3
Su (mm/mm) 0.57 1.7 -2.0 -4.1 -4.2 56.3 68.8 68.8
St (mm) 488 2.0 -2.1 -4.6 -4.4 56.3 62.5 68.8
Q (m3/s) 909 23.1 +34.0 -20.7 -21.1 62.5 56.3 56.3

Baseline 1991-2020
RCP4.5

Changes in variable (%) % RCM-GCM agreement

Annual data
Ensemble 

mean
V2 (%)

2021-
2050

2051-
2080

2071-
2100

2021-
2050

2051-
2080

2071-
2100

Tmax (°C) 34.7 0.4 +3.4 +8.1 +11.1 100.0 100.0 100.0
Tmin (°C) 22.9 0.4 +5.5 +13.0 +17.9 100.0 100.0 100.0
Tavg (°C) 28.4 0.4 +4.3 +10.2 +14.0 100.0 100.0 100.0
Ep (mm/year) 2576 0.5 +2.2 +5.5 +7.3 100.0 100.0 100.0
P (mm/year) 999 3.9 +4.6 +5.5 +8.6 61.1 55.6 72.2
Ea (mm/year) 930 2.6 +3.1 +3.7 +5.9 55.6 55.6 61.1
Q (mm/year) 74 21.2 +27.4 +31.6 +65.6 72.2 66.7 72.2
Rr (mm/year) 11.9 20.9 +24.6 +29.2 +58.0 72.2 61.1 66.7
Su (mm/mm) 0.58 2.2 +1.9 +1.7 +3.2 61.1 55.6 55.6
St (mm) 491 2.7 +2.6 +2.6 +4.3 66.7 55.6 61.1
Q (m3/s) 985 25.3 +37.4 +76.8 +137.5 83.3 72.2 77.8

Baseline 1991-2020
RCP8.5

Changes in variable (%) % RCM-GCM agreement
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The percentage of agreement of 62% for hydrological projections between the climate models 

is similar to that of precipitation, which supports that precipitation is the key driver of 

hydrological processes in the VRB. Therefore, the improvement of precipitation representation 

in climate models would ultimately enhance the reliability of the assessment of climate change 

impacts on water resources. 

 

7.7 Implications of climate change for water resources management 

The future evolutions of hydrological processes in the VRB will have implications for the 

recurrence of extreme monthly hydroclimatic events in the region. The increase of surface 

runoff and streamflow in the near future (2021-2050) is confirmed among all the RCPs, thereby 

foreseeing an increase in the likelihood of floods in the VRB, as also reported by Jin et al. 

(2018). However, the decline in root-zone soil moisture is a warning for the occurrence of 

agricultural droughts, which will have dire consequences on the livelihoods of the rural 

population that relies on agriculture. The socioeconomic development of the region might also 

be hampered under these conditions. 

Therefore, it is crucial to deploy sound water resources management practices that can help to 

cope with these intolerable impacts of climate change in the VRB. Rainfall water harvesting 

systems should be deployed in the region. Managed aquifer recharge techniques can also help 

slacken surface runoff and increase groundwater recharge, which is a non-negligible source of 

water for irrigation in some regions (McCartney et al., 2012; Williams et al., 2016). Moreover, 

there is a high potential for expanding agriculture as potential evaporation is expected to 

increase over the twenty-first century, thereby setting conditions to grow more crops if water 

availability is improved. Increasing water availability by the construction of infrastructures (e.g. 

dams) is vital for off-season agriculture as well as hydropower production. However, 

environmental and social consequences should be well thought upfront. These solutions among 

many others, accompanied by innovative initiatives like farmer-led irrigation, can help balance 

the water-energy-food nexus in the VRB, thereby providing a solid foundation for a sustainable 

socioeconomic development. However, such progress is only possible under a strong 

collaboration between climate and water resources scientists, development practitioners and 

policymakers. Finally, a better collaboration among the six riparian states for the management 

of their common water resources is key to bolster resilience and foster regional development. 
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7.8 Discussions 

The findings of this study provide a comprehensive overview of the impacts of climate change 

on water resources in the VRB over the twenty-first century. The analyses are done for the 

entire basin, so the results might differ for sub-basins or climatic zones. As such, the findings 

are valid for the development of regional adaptation and mitigation strategies of climate change. 

The large ensemble of RCM and GCM datasets along with the three RCPs are the basis of the 

robustness of this study. However, uncertainties exist in the climate projection datasets, mainly 

for precipitation, as demonstrated by the results. These uncertainties are propagated in the 

hydrological modelling as well. However, uncertainties in this study are quantified in terms of 

inter-model variabilities, which provide more insights into the findings. Moreover, only using 

the set of RCM-GCM projections that agree on the direction of future changes to predict the 

evolution of climatic and hydrological processes has both advantages and drawbacks. On the 

one hand, the advantages of a multi-model mean based on the majority of agreement are that 

models with contradictory projections are not mixed in the analysis, which avoids ending up 

with a multi-model mean that might not align with any of the models in the ensemble, and 

avoids dampening the magnitude of the change. On the other hand, adopting a multi-model 

mean based on the majority of agreement among RCM-GCM projections imposes the risk of 

falling in a “democracy-based decision” where the majority is not necessary right. However, 

conserving the trends and magnitudes of future projections as adopted in this study should be 

prioritized by avoiding mixing all RCM-GCM projections independently from their change 

direction in a multi-model mean, because the later will be influenced by the magnitude of each 

model, thereby leading to biases towards potential outliers. In fact, Rodrigues et al. (2014) 

showed that the multi-model mean is not necessarily the best approach.  

The R2D2 method used for multivariate bias correction assumes stationarity in the inter-

variable relationships, which might not hold over very long periods. However, predicting non-

stationarity of biases under climate change is not straightforward. With advances in multivariate 

bias correction methods (François et al., 2020), the added value of methods that consider non-

stationarity in climate (Robin et al., 2019) should be investigated in climate impact studies on 

water resources.  

Although multiple RCMs, GCMs and RCPs are used in this study, a single hydrological model 

is used for the hydrological projections. Therefore, the results are also subject to potential 

deficiencies of the mHM model. However, the mHM model used in this study has been 

thoroughly calibrated to provide realistic simulations of hydrological state variables and fluxes 
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in the VRB, which is evaluated with the Budyko framework, and further described in previous 

studies (Dembélé et al., 2020a; Dembélé et al., 2020b; Dembélé et al., 2020c). The calculation 

of potential evaporation based only on temperature data could lead to a strong increase in actual 

evaporation without accounting for changes in other variables that influence potential 

evaporation. However, the increase in temperature and potential evaporation that does not 

systematically lead to an increase in actual evaporation (Table 7.2). The method of Hargreaves 

and Samani (1985) was found reliable in estimating potential evaporation in the VRB (Dembélé 

et al., 2020a; Dembélé et al., 2020b) and similar semi-arid regions (Bai et al., 2016; Er-Raki et 

al., 2010; Gao et al., 2017). The plausibility of the simulated potential and actual evaporation 

is further assessed in this study with the Budyko framework. 

Furthermore, the hydrological projections focus on changes in climate and do not explicitly 

account for land use land cover change or changes in water management practices in the VRB. 

Although, land use and land cover changes play an important role in the production of 

hydrological processes, the primary focus in this study is climate change. However, land use 

changes are assumed to be accounted for to some extent in the RCPs, as their development is 

based on assumptions regarding future evolution of land use and land cover (Van Vuuren et al., 

2011). Future studies of climate change impacts on water resources should consider using 

different hydrological models, which might unveil the impacts of the choice of hydrological 

models in impact studies. Combined assessment of the impacts of climate change, land use land 

cover change, and water management practices could also provide new insights on the evolution 

of water resources in future studies. An update of impact studies should be continuously 

undertaken, considering advances in climate sciences such as the development of the new 

Shared Socioeconomic Pathways (SSPs) for instance (O’Neill et al., 2014; O’Neill et al., 2017; 

Riahi et al., 2017). 

Finally, more work is needed to improve the modelling of the West Africa monsoon and its 

representation in convection-permitting climate models (Berthou et al., 2019; Kendon et al., 

2017; Kendon et al., 2019). The conjunction of all these efforts will improve the accuracy of 

climate projections among the RCMs and GCMs, thereby improving the reliability of 

hydrological projections and fostering the adoption of the findings of impact studies by decision 

makers. 
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7.9 Conclusion 

A large ensemble of twelve GCMs from CMIP5 and five RCMs from CORDEX-Africa is used 

to investigate the impacts of climate change on water resources in the Volta River basin under 

three RCPs. The climate projection datasets are used to force the fully distributed mesoscale 

Hydrologic Model (mHM) over the twenty first century. Changes in hydrological processes 

over the period 2021-2100 are estimated relatively to the historical period 1991-2020. The 

results reveal a contrasting intensification of the hydrological cycle depending on RCPs. The 

key findings can be summarized as follows: 

- Climate warming is confirmed in the Volta basin as all RCM-GCM projections predict 

an increase in minimum, maximum and average surface air temperature under all RCPs. 

Similarly, potential evaporation is projected to increase. 

- Precipitation is projected to decrease under RCP2.6 and RCP4.5, while an increase is 

foreseen under RCP8.5. Compared to temperature, there are more uncertainties in the 

trend of the changes in precipitation as there is only an agreement of 62% between the 

RCM-GCM projections. 

- Actual evaporation, groundwater recharge, soil moisture and terrestrial water storage 

decline under RCP2.6 and RCP4.5, while they increase under RCP8.5. 

- Only surface runoff and streamflow keep increasing under all RCPs and all over the 

twenty first century.  

- A clear intensification of the entire hydrological cycle is foreseen only under RCP8.5, 

as all fluxes and state variables are expected to increase. 

The changes in the hydrological cycle will have implications for future floods and droughts in 

the Volta basin, thereby amplifying the vulnerability of the local population to climate change. 

Sound water management practices are therefore required to bolster resilience and foster 

socioeconomic development. These finding can contribute to the elaboration of regional 

adaptation and mitigation strategies of climate change. However, significant inter-model 

variabilities highlight the complexity and uncertainties related to the assessment of climate 

change impacts on water resources. Therefore, more work is required to improve climate 

modelling in West Africa. A strong collaboration between climate and water resources 

scientists, practitioners and policymakers is key for advancing knowledge and development. 
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Water Accounting for Sustainable Water Resources 

Management in the Volta River Basin* 

 

 

What gets measured gets managed. 

Peter Drucker 

 

What we know is a drop, 

what we don't know is an ocean. 

Isaac Newton 

 

 

  

                                                 
* This chapter is in preparation for publication.  
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Abstract 

Water management critically relies on quantified and reliable information on water resources 

and uses, which help decision makers to understand and deploy sound policies to cope with 

water scarcity and sustain water security. Water accounting frameworks are useful tools for 

reporting on water resources. This study demonstrates the possibility to comprehensively report 

on current and future conditions of water resources using the Water Accounting Plus (WA+) 

framework combined with hydrological modelling. The fully distributed mesoscale Hydrologic 

Model (mHM) is used to predict water fluxes, stocks and flows for the historical period 1999-

2020 and the near term future period 2021-2050. Data of climate change projections are 

obtained from a large ensemble of nine global climate models (GCMs) and four regional climate 

models (RCMs) under the representative concentration pathway RCP8.5. Hydrological 

processes derived from mHM are used to feed the WA+ framework and provide an evidence-

informed reporting on the state and trends of water resources in the Volta River basin located 

in West Africa.  

The results show that the long-term net inflow in the basin over the period 1991-2020 is 388.6 

km3/year (936 mm/year) with 96% attributable to rainfall (374.6 km3/year or 901 mm/year), 

and is projected to increase by +5% in the near future. However, only 8% of the net inflow is 

exploitable as blue water stored in reservoirs, lakes, streams, and aquifers. The remainder of 

the net inflow is depleted through landscape evaporation known as green water consumption, 

which dominantly occurs at 55% over lands that are not managed by human. The available 

water for various water uses in the basin is 14.6 km3/year or 35 mm/year, of which 79% are 

actually utilized, while the remainder 21% are utilizable but are not consumed. The non-

utilizable water is 8.3 km3/year and represents 27% of the exploitable water, while the non-

recoverable water ascribed to groundwater recharge and water pollution constitutes 28% of the 

exploitable water. Only 42% of water use is beneficial for the intended purposes, with 

agriculture representing 35% of the beneficial water consumption. Future projections show an 

increase of +20% in the exploitable water fraction, while the available water fraction is expected 

to decrease by -5%. These findings show that climate change could disproportionally affect the 

exploitable and the available water, thereby calling for adaptation measures. Finally, integrating 

climate change scenarios in water accounting should be further investigated as it is a way 

forward in improving water governance in transboundary basins. 
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8.1 Introduction 

Chronic water scarcity is a big threat to prosperity as it could cost some regions up to 6% of 

their gross domestic product, thereby exposing some countries to fragility and instability 

(Damania, 2020; World Bank Group, 2016). Water scarcity is considered as an imbalance 

between water supply and demand, with an excess of water demand over available supply 

(Steduto et al., 2012). Water scarcity results from constraints on the water availability in 

quantity and quality, on the accessibility by means of reliable supply or from the lack of 

infrastructure due to financial and technical restrictions. As such, water scarcity can be 

addressed with appropriate water management policies by deploying strategies for supply 

enhancement or demand management.  

With 9 billion people to feed by 2050, it is critically becoming important to improve water use 

efficiency and crop water productivity (Godfray et al., 2010; Guillou and Matheron, 2014). 

However, climate change and other development issues including urbanization, land 

degradation and deforestation are expected to exacerbate water scarcity, with implications for 

food insecurity and conflicts between those who share the resources (Zeitoun et al., 2016).  

Information on the state of water resources including inflows, outflows and water uses in a river 

basin is essential for sustainable water management. However, data unavailability and 

inaccessibility limit water resources management in many regions around the world (Karimi et 

al., 2013b). In transboundary basins, where water is a vital source for regional socio-economic 

development for the riparian countries, sound and transparent management of natural resources 

is key for geopolitical stability. The absence of good information systems hamper long-term 

water management and development planning, which requires adequate tools for measuring, 

reporting and monitoring water resources. In this context, key tools for water resources 

assessment are water accounting frameworks. 

Water accounting is the systematic organization and presentation of information on the status 

and trends in water supply, demand, accessibility and use in time and space within specified 

domains (Batchelor et al., 2016; Steduto et al., 2012). Water accounting serves as a basis for 

evidence-informed decision-making and should be used for any policy development and 

strategy to cope with water scarcity. Existing water accounting systems include the 

International Water Management Institute (IWMI) water accounting framework (Molden and 

Sakthivadivel, 1999), the System of Environmental and Economic Accounting for Water 

(SEEAW) of the UN Statistics Division (DESA, 2012), the Australian Water Accounting 

Conceptual Framework (Merz, 2006), the UNEP ’s Water Footprint, Neutrality, and Efficiency 
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(WaFNE) (Morrison et al., 2010), and the Water-use accounts framework of the CPWF  (Kirby 

et al., 2010). However, none of the water accounting frameworks resulting from these initiatives 

has been adopted as a general standard (Dost et al., 2013). Reasons for this include the fact that 

they present results without differentiating between managed, manageable and unmanageable 

water flows, their outputs are usually too complex for decision making, and input data are often 

not available or are based on expensive long-term monitoring activities (Karimi, 2014). 

More recently, the Water Accounting Plus (WA+) framework was developed to address the 

shortcomings of previous water accounting frameworks (Karimi et al., 2013a). WA+ provides 

estimates of manageable and unmanageable water flows, stocks, consumption among users, and 

interactions with land use. Land use is grouped into four major clusters that differ in terms of 

water management, namely, protected land use, utilized land use, managed land use and 

managed water use. The results of WA+ are presented with standardized accounting sheets 

accompanied with a set of indicators that summarize complex hydrological processes in a more 

accessible format to different water professionals. The core of the WA+ methodology is based 

on water balance calculation, spatial analysis, remote sensing, geographic information system, 

and spatial modelling. WA+ is a valuable tool for water resources planning and development, 

especially in data scarce regions, ungauged locations and transboundary basins because it 

primarily relies on remotely sensed data. Because of the usually coarse spatial resolution of 

satellite data, WA+ based on remote sensing data is more suited for large river basins and for 

regional studies. However, there are difficulties in closing the water balance when using only 

remote sensing data (FAO and IHE Delft, 2020).  

Alternatively, hydrological models can be used to provide input data to the WA+ framework 

because they can close the water balance via simulations, and the sources of uncertainties in the 

components of the water cycle can be tracked as opposed to using various sources of remote 

sensing data.  

In spite of the limitations of earth observation data, they are still a valuable source of 

information for water resources management, and they have a good potential for improving 

large scale hydrological modelling (Dembélé et al., 2020a; Dembélé et al., 2020b), which 

would ultimately enhance the information needed for WA+. Moreover, WA+ is usually done 

for the past or current periods, while decision-making for sustainable water resources 

management is becoming increasingly necessary as climate change is affecting water resources. 

Developing WA+ with climate change scenarios can help decision makers to elaborate and 

implement adaptation and mitigation strategies. 
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This study provides a comprehensive analysis of the current and future states of water resources 

using the Water Accounting Plus (WA+) framework in the Volta River basin (VRB) located in 

West Africa. The VRB is a transboundary basin covering about 415,600 km2 shared among six 

countries, namely, Benin, Burkina Faso, Côte d’Ivoire, Ghana, Mali and Togo. Burkina Faso 

and Ghana alone share 82.5% of the basin total area (Table 2.1 in Chapter 2). The population 

of the VRB is essentially rural and represents 70% of the basin total population. The annual 

population growth rate is 2.5%, which implies a doubling of the population every 28 years 

(Rodgers et al., 2006). In 2010, 23.8 million people were living in the VRB and the population 

is projected to reach 38.4 million in 2030 (Williams et al., 2016). Water resources in the VRB 

play an important role in the socio-economic development, especially in agriculture, 

hydropower production, aquaculture and domestic water supply. They provide additional 

livelihood for the rural populations that are mostly active in the agricultural sector (van de 

Giesen et al., 2001).  

Water demand in the VRB is projected to increase by more than 1000% between 2000 and 2025 

(Biney, 2010), which poses challenges for transboundary water resources management. First, 

the rainfall in the VRB is erratic and with high spatiotemporal and inter-annual variabilities, 

which is expected to be exacerbated under climate change (Nicholson et al., 2018b). Secondly, 

countries in the VRB have different national priorities in terms of water use. The upstream 

consumptive use of water in Burkina Faso is essentially dominated by agriculture. As Burkina 

Faso occupies the direst part of the VRB, the priority is the construction of small and medium 

reservoirs to develop irrigated agriculture. While the downstream priority in Ghana is the 

production of hydroelectricity from the Lake Volta’s Akosombo dam (De Condappa and 

Lemoalle, 2009). In spite of progress in water governance, the diverging water consumption 

priorities and water management differences remain sources of tension between both states 

(Biney, 2010). An independent and unbiased assessment of the spatiotemporal availability of 

water and various uses could potentially alleviate these tensions.  

The proposed methodology is based on the use of climate change projection datasets selected 

based on previous findings on the impacts of climate change on water resources in the VRB 

(Chapter 7). The selected climate projection datasets comprise nine global climate models 

(GCMs) and four regional climate models (RCMs) under the RCP8.5 scenario. Climate 

projection datasets are used to force the fully distributed mesoscale Hydrological Model 

(mHM), and thus to simulate hydrological variables necessary for WA+. The mHM model 

previously demonstrated very good performances in the VRB (Dembélé et al., 2020b). Finally, 
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the WA+ framework is used to provide a comprehensive view of water resources for the 

historical period (1991-2020) and the near term future (2021-2050). Future land use and land 

cover scenarios are not integrated in this study because the goal is firstly to understand the 

impacts of climate change on water resources, which might provide insights on future land use 

practices that can help cope with water scarcity and improve water security (Cook and Bakker, 

2012). Besides the application of an existing methodology to a highly relevant case study, the 

major contribution to the current state-of-the-art is the combined use of climate change 

scenarios and hydrological modelling to feed the WA+ framework and to assess future water 

accounts in the VRB, which  is lacking in previous studies (e.g., Delavar et al., 2020; Hunink 

et al., 2019; Karimi et al., 2013b). The following research questions are addressed: 

- What is the state and the evolution of water resources under climate change in the VRB? 

- How does water consumption relate to different land use and management practices? 

The current research aims at bringing quantified information on water resources using an 

independent and standardized framework for reporting on water resources in the VRB.  

 

8.2 Water Accounting Plus (WA+) 

WA+ is a standardized reporting framework that summarizes and displays water conditions and 

management practices in river basins (Karimi et al., 2013a). It was developed based on the 

water accounting framework of the International Water Management Institute (Molden, 1997). 

Beyond the quantification of water volumes, WA+ explicitly considers land use interactions 

with the water cycle. Therefore, WA+ differentiates between available, utilizable, manageable 

and reserved water flows and stocks among many other components of the water cycle. WA+ 

results are presented in volume of water and the water accounts are usually done for annual or 

longer periods because WA+ is meant for long-term planning. Definitions of the WA+ 

terminology are provided in the Appendix 28. More information and updates on WA+ can be 

accessed at https://www.wateraccounting.org/index.html (last accessed 07.07.2020). 

 

8.3 Land use and land cover in WA+ 

Land use and land cover (LULC) is an important factor in WA+ because it determines whether 

the water is manageable or non-manageable. Four clusters are used to group land use and land 

cover classes and they differ in terms of water management, namely, the Protected Land Use 

(PLU), the Utilized Land Use (ULU), the Managed Land Use (MLU) and the Managed Water 

https://www.wateraccounting.org/index.html
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Use (MWU) (Karimi et al., 2013a). Table 8.1 provides a description of each WA+ LULC group 

with associated examples. 

Table 8.1. Four land use and land cover groups used in Water Accounting Plus (WA+), adapted 
from Karimi et al. (2013a) 

WA+ LULC 
groups Description Examples 

Protected 
Land Use 
(PLU) 

Areas where no changes in land and/or water 
management are possible or advisable 
because they are protected by National 
Governments or Internationals NGO’s. 

Tropical rainforests, 
wetlands, mountainous 
vegetation, national parks, 
RAMSAR sites, etc.  

Utilized 
Land Use 
(ULU) 

Land where vegetation is not managed on a 
regular basis and the human influence is 
limited. Water flow is essentially natural. 

Forests, woodlands, 
shrublands, grasslands, 
lakes, natural pastures, 
savannas, deserts, etc. 

Modified 
Land Use 
(MLU) 

Areas where vegetation and/or soils are 
managed, but all water supply is natural 
(rainfall). Water is not diverted but land use 
affects the vertical soil water balance. 

Rainfed agriculture, biofuel 
crops, timber plantation, 
built-up areas, urban 
encroachment, etc. 

Managed 
Water Use 
(MWU) 

Areas where water flows are regulated by 
humans. All sectors that withdraw water 
from surface water and/or groundwater. 

Irrigation schemes, urban 
water supply, diversion 
dams, canals, ditches, weirs, 
industrial extractions, 
storage for hydropower, etc. 

 

Although LULC scenarios are not used in this study, the temporal dynamic of LULC is 

considered by using different land cover maps over the study period. Based on the availability 

of high resolution LULC data from the European Space Agency Climate Change Initiative 

(ESA, 2017), LULC data of 2005 and 2015 are used for the historical period (1991-2020) and 

for the future period (2021-2050), respectively. The ESACCI-LC-L4-LCCS v2.0.7 data with a 

high spatial resolution of 300 m is used in this study. For simplicity, the ESA maps for the VRB 

are first reclassified into ten basic and major LULC groups, namely, water bodies, bare areas, 

urban areas, rainfed croplands, irrigated croplands, grassland, shrubland, evergreen forest, 

deciduous forest and wetlands (Table 8.2; Figure 8.1). The final LULC maps for WA+ is 

obtained by crossing and overlapping the basic LULC map from ESA CCI with other spatial 

maps on various land status and uses. The maps of the World Database on Protected Areas 

(WDPA, 2016) and the Global Reservoir and Dam Database (GRanD; Lehner et al., 2011; 
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Mulligan et al., 2020) are used to reclassify the basic LULC data and distinguish between 

protected versus non-protected lands and identify managed water bodies. 

Table 8.2. Proportions of land use and land cover classes in the Volta River Basin per WA+ 
LULC classes 

  1991-2020 2021-2050 

WA+ 
class LULC Area 

(km2) Area (%) Area 
(km2) Area (%) 

PLU 

Protected Water Bodies 16 0.004 

10.73 

28 0.01 

10.68 

Protected Bare areas 1 0.0002 2 0.0004 

Protected Grasslands 6720 1.62 6885 1.66 

Protected Shrublands 17933 4.31 17432 4.19 

Protected Evergreen forest 488 0.12 487 0.12 

Protected Deciduous forest 19313 4.65 19460 4.68 

Protected Wetlands 142 0.03 83 0.02 

ULU 

Water Bodies 1004 0.24 

53.76 

1017 0.24 

53.36 

Bare areas 57 0.01 59 0.01 

Grasslands 89142 21.45 90762 21.84 

Shrublands 57705 13.88 52919 12.73 

Evergreen forest 952 0.23 1009 0.24 

Deciduous forest 74366 17.89 75802 18.24 

Wetlands 196 0.05 194 0.05 

MLU 
Urban areas 407 0.10 

33.61 
721 0.17 

34.00 
Rainfed croplands 139283 33.51 140582 33.83 

MWU 
Managed Water Bodies 6185 1.49 

1.90 
6465 1.56 

1.96 
Irrigated croplands 1693 0.41 1697 0.41 
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Figure 8.1. Land use and land cover in the Volta River basin using the ESA CCI data (a), and 
regrouped into WA+ classes (b). 

 

8.4 WA+ sheets and performance indicators 

8.4.1 Overview 

In the following, the term total terrestrial evaporation is used in replacement of the debated 

“evapotranspiration” term (Miralles et al., 2020; Savenije, 2004), which is however used in the 

terminology of WA+. To avoid changing the WA+ terminology, the abbreviation “ET” is 

conserved but is defined as total terrestrial evaporation in this study. 

WA+ is still under development with currently eight sheets to describe water conditions. These 

sheets are named: resource base, total evaporation, utilized flow, agricultural services, surface 

water, groundwater, ecosystem services and sustainability (Table 8.3). Each sheet has a set of 

indicators that are used to summarize the overall water resources situation. The first four sheets 

are considered the main sheets for reporting on water resources. However, this study focuses 

on the two most important sheets (i.e., the resource base sheet and the total evaporation sheet) 

because the other sheets require information that are not available for future predictions (e.g., 

biomass production, agriculture, etc.). Examples of the other sheets can be found in the 

literature (e.g., FAO and IHE Delft, 2019). 
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Table 8.3. Water Accounting Plus (WA+) reporting sheets. Adapted from Bastiaanssen et al. 
(2015). 

Number WA+ Sheets Purpose 

1 Resource Base 
Sheet 

Provide an overview on over-exploitation, unmanageable, 
manageable, exploitable, reserved, utilized and utilizable 
flows at river basin scale. 

2 Evapotranspiration 
Sheet 

Quantify beneficial and non-beneficial water consumption for 
all land use classes, and sectors including agriculture, 
environment, economy, energy and leisure. 

3 Agricultural 
Services Sheet 

Assess agricultural production (kg/ha) and the related water 
productivity (kg/m³). 

4 
Utilized Flow 
Sheet 

Identify manmade and natural withdrawals from surface water 
and groundwater, with a distinction between consumed and 
non-consumed water. 

5 Surface Water 
Sheet 

Quantify the natural and actual river flow and determine the 
surface water availability and utilizable withdrawals. 

6 Groundwater 
Sheet 

Assess the role of groundwater in renewable water resources 
to support safe groundwater withdrawals. 

7 Ecosystem 
Services Sheet 

Express the regulating role of vegetation in the exchanges 
between land and atmosphere and estimate the reduction of 
greenhouse gas emission to prevent biodiversity degradation. 

8 Sustainability 
Sheet 

Quantify reliability, resilience and vulnerability of water 
resources and asses various land and water changes in a spatial 
context. 

 

8.4.2 Resource base sheet 

The WA+ resource base sheet provides information on inflows and outflows of water volumes 

in a river basin and relates them to various processes (Figure 8.3). The net inflow to the basin 

is obtained by adjusting the gross inflow with the change in total water storage. A part of the 

net inflow is consumed as landscape ET, representing the total evaporation from precipitation 

and considered as green water consumption (Falkenmark and Rockström, 2006). The remaining 

water is the exploitable water, i.e. the non-evaporated water, which is considered as blue water 

(Falkenmark and Rockström, 2006).  

The exploitable water corresponds to the sum of the available water for various water uses, the 

non-utilizable outflow and the reserved outflow (i.e., downstream commitment, environmental 

flows, navigational flow, etc.). The non-utilizable outflow is the water that is difficult or 

impossible to tap during peak flows or inundations (Shilpakar et al., 2011), and is considered 
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as 30% of annual surface runoff in the VRB. The reserved outflow is estimated as 28% of the 

mean annual runoff in the VRB (Smakhtin et al., 2004).  

The available water is partitioned into utilized flow and utilizable outflow. A part of the utilized 

flow is consumed as incremental ET, which can be natural or manmade, while the other part is 

the non-recoverable flow. The non-recoverable flow comprises groundwater recharge and 

polluted water estimated as 15% of annual runoff in the VRB (Mekonnen and Hoekstra, 2015). 

The utilizable outflow is the water that is not depleted and represents additional water that could 

be utilized. The non-consumed water is the sum of the utilizable flow, the non-utilizable outflow 

and the reserved flow. The total outflow is the sum of the non-consumed water and the non-

recoverable flow. It represents the amount of water that physically leaves the basin through 

surface and subsurface water systems.  

Because of moisture recycling, a part of the terrestrial evaporation contributes to the generation 

of precipitation. In the VRB, it is estimated that 4% of the regional terrestrial evaporation is 

recycled and contributes to the total precipitation in that same region (Van der Ent et al., 2010).  

The depleted water is the net inflow minus the total outflow and minus the recycled ET. Blue 

and Green ET separation is achieved with the Budyko framework (Budyko, 1974; McVicar et 

al., 2012). The WA+ resource base sheet has a set of standard indicators described as follows 

(Karimi et al., 2013a; Karimi et al., 2013b): 

 

The Exploitable Water fraction (EWF) represents the part of the net inflow that is not depleted 

through landscape ET. 

 𝐸𝐸𝐸𝐸𝐸𝐸 =
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

𝑁𝑁𝑁𝑁𝑁𝑁 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
 (8.1)  

 

The Storage Change Fraction (SCF) defines the portion of storage change in the exploitable 

water, and expresses the degree of dependency on the total freshwater storage change, which 

include surface and subsurface water storages. 

 𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

 (8.2) 
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The Available Water Fraction (AWF) describes the proportion of the exploitable water that can 

be withdrawn from the basin. 

 𝐴𝐴𝐴𝐴𝐴𝐴 =
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

 (8.3) 

 

The Basin Closure Fraction (BCF) defines the extent of the depletion of the available water. A 

closed basin occurs when all available water is depleted. 

 𝐵𝐵𝐵𝐵𝐵𝐵 =
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊
 (8.4) 

 

The Reserved Flow Fraction (RFF) indicates the degree of commitment to downstream flow 

requirements. 

 𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

 (8.5) 

 

8.4.3 Total evaporation sheet 

The WA+ total evaporation sheet (Figure 8.4) presents water depletion and describes parts of 

water consumption that are managed, manageable and non-manageable based on the LULC 

types (Figure 4). It presents the breakdown of the total evaporation (ET) into soil and water 

evaporation (E) and vegetation transpiration (T), and then differentiates between beneficial and 

non-beneficial water consumptions. Beneficial and non-beneficial ET is determined based on a 

value judgement that has to be adjusted depending on case studies.  

In this study, transpiration is assumed to be beneficial as it reflects the amount of water 

transferred to the atmosphere from plants through stomata in the leaves, thereby indicating plant 

growth (e.g., crops). However, transpiration can be non-beneficial in case of undesirable 

vegetation such as weed infestation in croplands, alien invasive species and floating vegetation 

in water bodies. Evaporation from soil and water as well as from wet surfaces such as leaves, 

roads and building is here considered non-beneficial. However, evaporation from natural 

surfaces and from interception can be beneficial, for instance in case of plant temperature 

regulation, natural lakes, wetlands, water bodies exploited for fishing, aquatic birds, water 

sports and leisure (Karimi et al., 2013a).  
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Table 8.4. Beneficial total evaporation (ET) fraction and repartition per sector retained for the 
VRB.  

  
Beneficial ET  

fraction (%) 
Beneficial ET per sector (%) 

WA+ 

LULC 
LULC 

Transpiration 

W
ater E 

Soil E 

Interception E 

A
griculture 

Environm
ent 

Econom
y 

Energy 

Leisure 

PLU 

Protected Water Bodies 100 100 0 0 0 85 0 0 15 

Protected Bare areas 100 0 30 0 0 85 0 0 15 

Protected Grasslands 100 0 30 0 0 85 0 0 15 

Protected Shrublands 100 0 30 0 0 85 0 0 15 

Protected Evergreen forest 100 0 30 0 0 85 0 0 15 

Protected Deciduous forest 100 0 30 0 0 85 0 0 15 

Protected Wetlands 100 100 100 0 0 85 0 0 15 

ULU 

Water Bodies 0 50 0 0 35 40 5 0 20 

Bare areas 0 0 0 0 0 100 0 0 0 

Grasslands 50 0 0 0 5 95 0 0 0 

Shrublands 70 0 0 0 5 85 0 10 0 

Evergreen forest 100 0 0 0 5 90 0 0 5 

Deciduous forest 100 0 0 0 5 90 0 0 5 

Wetlands 100 50 0 0 5 80 5 0 10 

MLU 
Urban areas 70 0 0 0 0 0 35 0 65 

Rainfed croplands 100 0 0 0 90 0 10 0 0 

MWU 
Managed Water Bodies 0 100 0 0 35 5 30 20 10 

Irrigated croplands 100 0 0 0 90 0 10 0 0 
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The repartition of the beneficial water consumption for agriculture, environment, energy, 

economy and leisure is based on assumptions that can be adapted to cases studies. Table 8.4 

provides details on the decisions made here for beneficial ET fraction and its reparation per 

sector in the VRB. 

The following set of indicators are used to summarize the  information in the WA+ total 

evaporation sheet (Karimi et al., 2013a; Karimi et al., 2013b): 

The Transpiration Fraction (TF) describes the part of total evaporation (ET) that is produced by 

plants.  

 𝑇𝑇𝑇𝑇 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
 (8.6) 

 

The Beneficial Fraction (BF) represents the proportion of total evaporation that occurred as 

beneficial evaporation and beneficial transpiration. 

 𝐵𝐵𝐵𝐵 =
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐸𝐸𝐸𝐸

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
 (8.7) 

 

The Managed Fraction (MF) indicates the proportion of total evaporation that occurred by 

manipulation of land use and water management. 

 𝑀𝑀𝑀𝑀 =
𝑀𝑀𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝐸𝐸𝐸𝐸

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
 (8.8) 

 

The Agricultural ET Fraction (AEF) corresponds to the part of total evaporation related to 

agricultural production. 

 𝐴𝐴𝐴𝐴𝐴𝐴 =
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

 (8.9) 

 

The Irrigated ET Fraction (IEF) describes the portion of agricultural ET that is attributable 

irrigation. 

 𝐼𝐼𝐼𝐼𝐼𝐼 =
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸
 (8.10) 
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8.5 Hydrological modelling for climate change projections 

The fully distributed mesoscale Hydrologic Model (mHM) is used to simulate the hydrological 

variables required for WA+. The mHM model is a conceptual model that has the specificity of 

producing a seamless representation of hydrological processes across scales (Kumar et al., 

2013; Samaniego et al., 2010; Samaniego et al., 2017), including evaporation, interception, 

transpiration, runoff, streamflow and groundwater recharge. The model has shown good 

performances in modelling the hydrological cycle in the VRB, and its configuration for this 

study is comprehensively described in the work of Dembélé et al. (2020b).  

The mHM model is thoroughly constrained to produce an accurate representation of 

hydrological processes in the VRB. Particularly, the representation of spatial patterns of various 

processes including evaporation and soil moisture are improved by calibrating the mHM model 

with multiple satellite remote sensing datasets (Dembélé et al., 2020b). Moreover, the overall 

water balance of the model is simulated by calibrating the model with the GRACE data to better 

represent the terrestrial water storage. 

Based on the findings on climate change impacts assessment on water resources in the VRB 

(Chapter 7), a large ensemble of eleven combinations of GCM-RCM datasets, comprised of 

nine GCMs and four RCMs, is selected and used to force the mHM model (Table 8.5). The 

hydrological model outputs are subsequently used for the WA+ analyses. The mHM model is 

run at a daily time step with a spatial discretization of 0.25° (~28 km), which corresponds to 

619 grid cells in the VRB. 

 

Table 8.5. List of global climate models (GCMs) and regional climate models (RCMs) used for 
WA+ 

RCMs GCMs 
CCLM4-8-17 CNRM-CM5 
RACMO22T EC-EARTH 

RCA4 

CanESM2 
EC-EARTH 
CM5A-MR 
MIROC5 
HadGEM2-ES 
MPI-ESM-LR 
GFDL-ESM2M 

REMO2009 CM5A-LR 
MIROC5 
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8.6 Results 

For simplicity, the results are presented for the 30-year mean and multi-model mean of the 

RCM-GCM datasets. This allows comparing the long-term conditions of water resources from 

the historic period (1991-2020) to those of the future period (2021-2050). 

 

8.6.1 Consistency of the WA+ LULC 

A first important check is made here to show that the water fluxes simulated with mHM model 

for the LULC classes show a consistent pattern in the Budyko space (Figure 8.2). The Budyko 

space (Budyko, 1974) is formed by the aridity index (ratio of the long-term mean annual 

potential evaporation, Ep, to precipitation, P), and the evaporative index (ratio of actual 

evaporation, Ea, to precipitation, P).  

 

Figure 8.2. WA+ LULC repartition in the Budyko framework where the evaporative index 
(actual evaporation divided by precipitation) is plotted as a function of the aridity index 
(potential evaporation divided by precipitation). The y-axis is truncated at 0.7 for a better 
display. 

The simulated long-term values for the different LULC classes (period 1991-2020 and 2021-

2050) plot well in the physically possible space below  the energy and water limits (Donohue 

et al., 2011; McVicar et al., 2012), and close to the theoretical curve postulated by Budyko. 

The evaporative index is between 0.73 and 0.97, and the aridity index is between 1.5 and 3.5, 

which are expected values for sub-humid and semi-arid environments such as the VRB (Gunkel 
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and Lange, 2017). The consistency of the simulated water fluxes for the retained LULC classes 

is further demonstrated by the fact that the irrigated croplands have a higher evaporative index 

than the rainfed croplands, and forests have a lower aridity index than the other LULC classes. 

 

8.6.2 Sheet 1: Resource base 

The WA+ resource base sheet gives an overview of the water repartition into flows, stocks and 

fluxes (Figure 8.3). For the period 1991-2020, the long-term annual average net inflow in the 

VRB was 388.6 km3/year (935 mm/year) of which 96% is attributable to precipitation resulting 

from advection (374.6 km3/year or 901 mm/year). The landscape ET accounts for 92% of the 

net inflow and occurs mainly through the ULU (55%) (for abbreviations see Table 8.1) and the 

MLU (32%). The landscape ET is the green water consumption that is ascribed to rainfall. In 

the MLU, rainfed croplands represent about 33% of the basin area, which justifies the high 

portion of the landscape ET in that LULC class. The ULU is dominated by grasslands and 

shrublands, which represent together 35% (146,848 km2) of the basin area (Table 8.2).  

Only 30.7 km3/year of water in the VRB were exploitable and corresponded to 8% of the net 

inflow. The exploitable water refers to the blue water, which is water stored in reservoirs, lakes, 

streams, and aquifers. The non-utilizable water originating from peak flows or inundations and 

the reserved outflow for environmental and downstream requirements together constituted 

about 52% of the exploitable water. The available water for various uses in the basin was 14.6 

km3/year, with 79% that were utilized, while the remainder 21% were utilizable but were not 

consumed. The non-recoverable flow due to groundwater recharge and water pollution was 8.6 

km3/year and corresponds to 74% of the utilized flow. The remainder 26% of the utilized flow 

represents the incremental ET (3.03 km3/year), which refers to additional evaporation from blue 

water and is not related to rainfall. Natural processes mainly generated the incremental ET, 

while only 7% are ascribed to manmade activities. Moreover, the MWU group consumed only 

7% of the utilized flow, while it encompasses the irrigated croplands and the managed water 

bodies.  
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Figure 8.3. WA+ resource base sheets for the historical (1991-2020) and future (2021-2050) 
periods. 

The total depleted water was 346.5 km3/year and the outflow at the basin outlet was 27.7 

km3/year, corresponding to 89% and 7% of the net inflow. A part of the consumed water 

representing 4% of the net inflow is recycled and falls back in the basin as precipitation. 

The evolution of the water resources over the future period 2021-2050 shows an increase in 

most of the water accounts in the VRB (Figure 8.3). An increase in net inflow by +5% (18.9 

km3/year) relative to the historical period is expected. As a consequence of the increase in net 

inflow, other water accounts are projected to increase, including landscape ET (+3% or 11 

km3/year), exploitable water (+25% or 7.8 km3/year) and available water (+19% or 2.8 

km3/year). However, a decrease is projected for the incremental ET (-26% or -0.8 km3/year). 
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The projected increase in some water accounts are not favourable for the VRB. This includes 

the utilizable outflow (+15% or 1.8 km3/year), the non-utilizable outflow (+31% or 2.6 

km3/year) and the non-recoverable flow (+30% or 2.5 km3/year).  

 

8.6.3 Sheet 2: Total evaporation 

The WA+ total evaporation sheet summarizes water consumption and provides the breakdown 

of total evaporation (ET) into transpiration and evaporation from soil, water bodies and 

interception (Figure 8.4). Over the period from 1991 to 2020, the long-term annual ET was 361 

km3/year (869 mm/year) of which 11% were non-manageable because occurring in the PLU, 

55% were manageable from the ULU and 34% were managed from the MLU and MWU. 

Transpiration was 177.1 km3/year and alone accounted for 49% of total ET, followed by soil 

evaporation (26.4% or 95.2 km3/year), interception evaporation (24% or 86.4 km3/year), while 

water evaporation was the lowest (0.6% or 2.2 km3/year).  

From the total water consumed in the VRB during the period 1991 to 2020, only 42% were 

beneficial. The total beneficial consumption was 151.1 km3/year, with 57% attributable to the 

environment, 34.6% to agriculture, 3.6% to the economy, 3.6% to leisure and 1.2% to energy 

production. The non-beneficial water consumption represents 58% of the total water depleted. 

The large portion of non-beneficial water consumption is ascribed to interception and soil 

evaporation that occurred at 60% in the ULU and 29% in the MLU.  

The projected water accounts over the period 2021-2050 shows an increase of the overall water 

consumption in the VRB. The total ET is projected to increase by +3% (10.3 km3/year), which 

could be expected as the net inflow is projected to increase by +5% over the same period (Figure 

8.3). By maintaining the current land and water management practices, the beneficial water 

consumption could increase by +5% as a result of the +5% increase in transpiration. In the same 

momentum, the beneficial water consumption is projected to increase by +7% for agriculture 

and +4% for the environment.  

 



Chapter 8 

176 
 

 

Figure 8.4. WA+ total evaporation sheets for the historical (1991-2020) and future (2021-2050) 
periods 

The contribution of each WA+ LULC to total ET and its components as well as to the beneficial 

fraction and the water consumption in different sectors is shown in Figure 8.5. Most of the 

depleted water occurs in the ULU (55%), followed by the MLU (32%), the PLU (11%), and the 

MWU (2%). The MLU accounts for 92% of the water depleted for agriculture and 98% for the 

economy. The ULU is accountable for 78% of the water consumed by the environment, 98% 
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for energy production and 36% for leisure. The PLU contributes at 61% of the water depleted 

for leisure and at 22% for the environment. 

The beneficial water consumption mainly occurs in the ULU (48.7%) due to the forests, 

followed the MLU (36%) because of rainfed croplands, and the PLU (14.8%) because of 

protected vegetation species, forests and wetlands. Only 0.5% of the beneficial water 

consumption occurs in the MWU, which encompasses the irrigated croplands and the managed 

water bodies. 

 

Figure 8.5. Total evaporation (ET) breakdown and beneficial fraction from WA+ LULC classes 
for each activity sector 

 

8.6.4 WA+ performance indicators 

A set of indicators are used to better understand the water accounts summarized in the WA+ 

sheets. They are calculated for the historical and future periods along with their relative changes 

(Table 8.6). The indicators of the resource base sheet show that the exploitable water fraction 

(EWF) is 0.08 over the period 1991-2020 with an expected increase of +20% in the near future 

between 2020 and 2050. The low EWF indicates that a small portion of the net inflow can be 

exploited in the VRB. Moreover, the available water fraction (AWF) was 0.48 and is projected 

to decrease by -5%. The projected decrease in AWF while the EWF is expected to increase is 

justified by that fact that the exploitable water could increase by +25% while the available water 

would only increase by +19% (Figure 8.3). The AWF shows that less than half of the exploitable 

water is actually available for withdrawals from the blue water storages. The downstream flow 

requirements are met as the reserved flow fraction (RFF) is 0.41, indicating that a large portion 

of the basin outflow is dedicated to environmental flows. Therefore, the AWF indicates that a 

huge amount of water is being lost through inundations during peak flows as the commitment 

for the reserved flow is satisfied. The storage change fraction (SCF) of 0.01 indicates a low 
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contribution of the freshwater storage to the exploitable water. The basin closure fraction (BCF) 

is 0.79 and is projected to decrease by -3%, showing that although a large portion of the 

available water is utilized, there is still a substantial portion that can be used. 

Table 8.6. Change in WA+ indicators from the historical (1991-2020) to the future (2021-2050) 
periods 

Indicators 1991-2020 2020-2050 Change (%) 
  Sheet 1: Resource Base 

Exploitable Water Fraction (EWF) 0.079 0.094 19.6 
Storage Change Fraction (SCF) 0.014 -0.016 -219.1 

Available Water Fraction (AWF) 0.477 0.454 -4.9 
Basin Closure Fraction (BCF) 0.794 0.766 -3.4 

Reserved Flow Fraction (RFF) 0.406 0.404 -0.5 
 Sheet 2: Total Evaporation 

Transpiration Fraction (TF) 0.491 0.502 2.2 
Beneficial Fraction (BF) 0.420 0.429 2.2 
Managed Fraction (MF) 0.335 0.341 1.6 

Agriculture ET Fraction (AEF) 0.145 0.151 3.6 
Irrigated ET Fraction (IEF) 0.024 0.023 -2.8 

 

The performance indicators of the total evaporation sheet only show very small changes for 

future projections of water accounts (Table 8.6). All the performance indicators are projected 

to slightly increase between +1.6% and 3.6%, except the irrigated ET fraction (IEF) that could 

decrease by -2.8%. The transpiration fraction (TF) is 0.49 and indicates that transpiration is a 

major process in water depletion in the VRB, which can be explained by the large presence of 

vegetated lands (rainfed croplands, irrigated croplands, grasslands, shrublands and forests) 

covering about 98% of the basin area. However, the beneficial fraction (BF) of the depleted 

water is only 0.42, which can be justified by the low land and water management practices as 

the managed fraction (MF) is 0.34. Although agriculture occupies 34% of the basin area, the 

agricultural ET fraction (AEF) is only 0.15, while the contribution of irrigated agriculture is 

very low with an irrigated ET fraction of 0.02. These results suggest that there are possibilities 

for improving land and water management to increase the benefits of water consumption in the 

VRB. 
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8.7 Possible adaptation measures 

Possible adaptation measures are discussed here to illustrate how the findings from this study 

can contribute to identifying required actions for water management in the VRB. The presented 

WA+ report based on independent datasets obtained from global databases provides a common 

ground for the assessment of water resources, which is very important in transboundary water 

management. Therefore, the uniformity of the data collection and the analysis techniques 

increases the acceptability of the results by the stakeholders in the VRB. 

Based on the results of the resource base sheet, the socio-economic development in the VRB 

can largely beneficiate from the available water resources by developing irrigated agriculture 

and hydropower generation, which are the top priorities of the upstream and downstream 

countries (Burkina Faso and Ghana). However, mutual agreement between the countries on the 

timing of water storage and release is key for a peaceful upstream-downstream cohabitation.  

To benefit from the projected increase in the net inflow over the period from 2021 to 2050, it 

is essential for authorities in the VRB to invest in water storage infrastructure with low 

evaporative losses, expand agriculture lands and deploy strategies to reduce water pollution. A 

conjunction of these strategies among many others can help reduce the non-consumed water, 

which is projected to increase by +32% or 6 km3/year. However, the reserved flow for 

downstream requirements should be conserved. The landscape ET in the ULU can be made 

more beneficial by increasing the proportion of livelihood-generating lands. A large portion of 

lands in the ULU group (grasslands and shrublands) can be converted to MLU or MWU with 

adequate land and water management practices. However, care should be taken to avoid 

biodiversity degradation and deforestation. Nature-based solutions such as managed aquifer 

recharge systems and blue-green infrastructure such as storm water control systems can help 

achieve better water consumption in the VRB (Keesstra et al., 2018; Nesshöver et al., 2017). 

From the total evaporation sheet, it appears that higher benefits can be obtained from the overall 

water consumption in the VRB by adopting appropriate land and water management policies 

that can improve water productivity and water use efficiency. Initiatives that can support an 

efficient water consumption include practices that seek for producing more food with less water. 

Then, agriculture lands should be expanded and small scale initiatives such as farmer led 

irrigation be encouraged and promoted (de Bont et al., 2019; Lefore et al., 2019; Woodhouse 

et al., 2017). With more water, the production of hydroelectricity becomes essential with a high 

potential to unlock more access to green energy (Gyamfi et al., 2018; Kling et al., 2016). 
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8.8 Discussions 

Despite the classical sources of uncertainty associated with climate change impact projections 

(Sylla et al., 2018b), the key uncertainties in the presented methodology are associated with the 

identification of the land use classes (LULC), with some used global data sets and with expert 

knowledge.  

LULC is the backbone of the WA+ framework. Therefore, the reliability of the results highly 

depends on the accuracy of the LULC data. However, the ESA LULC data has the advantage 

of being available at a high resolution and being subject to thorough quality check. At the very 

large scale of the VRB, having high resolution LULC data such as the ESA data is satisfactory 

for the application of WA+. Moreover, to bring confidence into the analyses, the Budyko 

framework is used to check the consistency of the LULC classification and the proportions of 

water and energy fluxes. 

Some calculations of the WA+ framework are done using global datasets, such as the level of 

water pollution in the basin and the requirements for reserved flow such as the environmental 

flow and navigational flow. However, when available and reliable, regional or local datasets 

should be used for future studies. 

The estimation of some components of the WA+ requires value judgement, which makes it a 

non-deterministic but flexible framework that can be adjusted for each case study. However, 

the value judgment requires expert knowledge so that results based on value judgement need to 

be interpreted with cautions. This concerns the estimation of the beneficial and non-beneficial 

fractions of water use, and the repartition of water depletion per sector including agriculture, 

environment, economy, energy and leisure. 

The water accounts presented in this study are for long-term averages, while annual variations 

might occur. However, the long-term analysis is best suited for comparing trends over distinct 

periods and for attributing differences to climate change, which is the main goal of this study. 

As this study aims at demonstrating the applicability of climate change scenarios with the WA+ 

framework, only the RCP8.5 scenario is used. Moreover, the analyses are done for the near 

future because the results for the far future might be less realistic and not very useful for water 

management as assumptions underlying the WA+ framework might rapidly evolve in the future.  
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8.9 Conclusion 

This study demonstrate the applicability of the WA+ framework with climate change scenarios 

and hydrological modelling. The fully distributed mesoscale Hydrologic Model (mHM) is 

forced with climate change projections of a large ensemble of four RCMs and nine GCMs. The 

projected hydrological processes from mHM are used to inform the WA+ framework. The 

results show a clear projected increase in the exploitable water fraction and a decrease in the 

available water fraction over the period from 2021 to 2050. These findings can be translated 

into a clear need for adaptation measures to increase the water storage capacity in the Volta 

River basin to facilitate a good exploitation of the projected increase in net inflow, mainly for 

agriculture and hydropower generation.  

Future studies should investigate the use of different RCPs, climate models and hydrological 

models. Scenarios of LULC can also be used to check how decisions on land use management 

can affect the water accounts. The conjunction of these efforts will move water governance 

forward and strengthen water security in the Volta River basin. 
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Concluding Remarks 
 

 

I think and think for months and years. 

Ninety-nine times, the conclusion is false. 

The hundredth time I am right. 

Albert Einstein 

 

It is the mark of an educated mind to rest satisfied 

with the degree of precision which the nature 

of the subject admits and not to seek exactness 

where only an approximation is possible. 

Aristotle 
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9.1 Overview 

This PhD thesis demonstrates the applicability of the Water Accounting Plus (WA+) framework 

combined with the fully distributed mesoscale Hydrologic Model (mHM) and a large ensemble 

of climate change scenarios to comprehensively report on the current and future states of water 

resources in the Volta River basin (VRB). Achieving the main research objective required 

efforts to first address key hydrological challenges that are posed by large-scale hydrological 

modelling in data scarce and predominantly semi-arid environments such as the VRB. 

Therefore, the methodological framework adopted in this thesis provides answers to the 

identified challenges whose results serve as the basis for answering the main research questions. 

The key findings and the future research directions are discussed in the following. 

 

9.2 Addressing the challenge of missing streamflow data 

The proposed framework for gap-filling time series of streamflow data with the Direct 

Sampling (DS) method gives satisfactory performances. The method is tested for various 

missing data scenarios and it allows an accurate simulation of the missing streamflow values 

by using data patterns from predictor variables in the VRB (Dembélé et al., 2019). In fact, the 

results show that the statistical content of the target variable is preserved, the probability 

distribution of the simulation matches accurately the reference data, and the shape of the 

hydrograph shows a good timing with a strong preservation of the annual seasonality. DS is a 

data-driven method and therefore it requires historical records that are sufficiently informative 

for the simulation of missing values, which is its main limitation. The results highlight that 

some conditions are necessary for obtaining a better prediction of the missing streamflow data. 

These conditions include the proximity and the good correlation of the target and the predictor 

streamflow stations, and the absence of missing values in the predictor variable. The findings 

suggest that DS is a promising tool for missing data simulation in environmental sciences and 

the proposed gap-filling framework could be transferred to other hydrological applications.  

 

9.3 Addressing the challenge of reliable meteorological data 

The evaluation of the adequacy of gridded meteorological datasets for large-scale hydrological 

modelling reveals that there is no single rainfall or temperature dataset that consistently ranks 

first in reproducing the spatiotemporal variability of all hydrological processes (Dembélé et al., 

2020c). The satellite-based and reanalysis rainfall datasets have contrasting performances 

across the four climatic zones present in the VRB, which suggests cautiousness in performance 
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generalizability to different spatial domains. A dataset that is best in reproducing the temporal 

dynamics might not be the best for the spatial patterns. In addition, there are more uncertainties 

in representing the spatial patterns of hydrological processes than their temporal dynamics. 

Finally, some global rainfall datasets performed less than regional datasets, which highlights 

the importance and the necessity of regional evaluation studies for satellite and reanalysis 

meteorological datasets. A final ranking of the seventeen gridded rainfall datasets is provided, 

which allows the selection of the most convenient product for simulating plausible hydrological 

flux and state variables with the mHM model in the VRB. It is noteworthy that these findings 

can be subject to uncertainties related to potential model structural deficiencies as well as errors 

in the observational datasets used for the model evaluation. However, mHM is chosen for its 

ability to produce seamless spatial patterns across scales. The findings are expected to draw the 

users’ attention on the reliability of the gridded rainfall datasets for large-scale hydrological 

modelling and trigger further efforts for the improvement of these datasets. Finally, as no 

rainfall dataset consistently ranks first in reproducing several hydrological fluxes and state 

variables, choosing the most suitable rainfall dataset is not sufficient for improving process 

representation in models. Therefore, multivariate calibration of hydrological models stands as 

a promising way for improving hydrological simulations. 

 

9.4 Addressing the challenge of accurate process representation 

The novel multivariate calibration framework exploiting spatial patterns and simultaneously 

incorporating streamflow and satellite datasets shows that there are benefits in using satellite 

datasets, when suitably integrated in a robust model parametrization scheme (Dembélé et al., 

2020a; Dembélé et al., 2020b). The relatively small decrease in the model performance for 

streamflow is greatly counterbalance by the increase in the model performance for other 

hydrological fluxes and state variables (i.e., actual evaporation, soil moisture and terrestrial 

water storage). The decrease in the performance of streamflow in the multivariate calibration 

strategies can be justified by the fact that there is an artefact caused by the non-uniqueness of 

model parameters when adopting the traditional streamflow-only calibration. Therefore, these 

findings unveil the pitfalls of the streamflow-only calibration and suggest the adoption of 

multivariate calibration strategies in hydrological modelling. Furthermore, it was found that 

spatial patterns of satellite data are a highly relevant and robust feature that can be used in 

multivariate calibration to improve the overall representation of the hydrological system. 

However, some trade-offs among the objective functions for streamflow and for satellite data 
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cannot be avoided as they originate from errors in the input data, the model structure and the 

lack of knowledge of the hydrological system.  

 

9.5 Impacts of climate change on water resources 

The assessment of the impacts of climate change on water resources in the VRB reveal 

contrasting changes in the seasonality of precipitation depending on the representative 

concentration pathways (RCPs) and the future projection periods (2021-2100), while a clear 

increase in the seasonality of temperature is expected. Although temperature and potential 

evaporation increase under all RCPs, a clear intensification of the hydrological cycle during the 

twenty-first century is only expected under the RCP8.5 scenario. Consequently, an increase is 

expected for the long-term annual estimates of precipitation, average temperature and potential 

evaporation. These changes in climatic variables subsequently lead to an increase in actual 

evaporation, surface runoff, streamflow, groundwater recharge, soil moisture and terrestrial 

water storage. In this context, floods and droughts are expected to be recurrent, which can 

weaken the water-energy-food security nexus and amplify the vulnerability of the local 

population to climate change. These findings could serve as a guideline for decision makers, 

and contribute to the elaboration of adaptation and mitigation strategies to cope with the 

dramatic consequences of climate change, and strengthen the regional socio-economic 

development. However, uncertainties exist in the projections because of the strong variabilities 

between the climate models. While there is a strong agreement between the climate models for 

the projection of temperature, there is a medium agreement on the direction of future changes 

for precipitation. These results underscore the complexity of modelling climate and 

hydrological systems in West Africa, and sparks a new call for further efforts in investigating 

climate change in the region. 

 

9.6 Water accounting for sustainable water management 

By addressing key challenges encountered in large-scale hydrological modelling, it was 

possible to comprehensively report on water resources in the VRB, using the Water Accounting 

Plus (WA+) framework combined with hydrological modelling and climate change scenarios. 

The results show that the net inflow in the VRB is projected to increase by +5% in the near 

future (2021-2050), but only 8% of the net inflow is exploitable as blue water stored in surface 

and subsurface reservoirs, while the remainder is depleted through landscape evaporation. The 

landscape evaporation, also referred to as green water consumption, dominantly occurs over 
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lands that are not managed by human, and that are essentially composed of grasslands and 

shrublands. It is estimated that only 42% of the water use is beneficial for the intended purposes, 

and agriculture represents 35% of the beneficial water consumption. The exploitable water 

fraction is expected to increase by +20% over the period from 2021-2050, while the available 

water fraction is expected to decrease by -5%. The disproportionate and contrasting changes in 

the exploitable and the available water fractions highlight the need for sound adaptation 

measures. These measures include the construction of infrastructure for water storage with low 

evaporative losses to better exploit the projected increase in the net inflow, which can help to 

boost agriculture and hydropower production in the VRB. It is noteworthy that the reliability 

of the findings highly depends on the accuracy of the land use and land cover (LULC) maps. 

However, the consistency of the LULC classification and the proportions of water and energy 

fluxes is checked with the Budyko framework, which showed satisfactory results. 

 

9.7 Lessons learnt and future research directions 

Overall, this PhD thesis presents scientific methodological developments for large-scale 

hydrological modelling and their applications in the Volta River Basin (VRB). The chapters of 

the thesis explore various aspect of hydrological data processing and analysis, spatially explicit 

model set-up and application, evolution of water resources under climate change and water 

resources assessment with standardized tools. The organization of the chapters shows a 

systematic and incremental advancement of knowledge and complexity from data preparation 

to hydrological model calibration and evaluation in a large river basin for improved water 

resources assessment using readily accessible datasets.  

The key messages from this thesis are centered on using good quality data and robust methods 

to obtain more reliable information on water resources. For instance, global satellite data are 

increasingly available and they offer a unique opportunity to observe the water cycle. Although 

these global satellite data are relevant, they are usually not direct estimates of environmental 

processes, so that they have uncertainties. Therefore, the use of these datasets requires a careful 

selection and evaluation before using them to derive information that can be used for policy-

making. Hydrological models also suffer from uncertainty in their structures and their 

parametrizations, so that they are not perfect tools but can still be improved for water resources 

assessment. The WA+ tool provides a unique opportunity to summarize complex processes in 

more readable formats through the water accounting sheets. It is a relevant tool for water 

resources management, but it still requires simplification of the sheets and clarification of some 
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underlying assumptions such as water consumption classification as beneficial or not. There are 

also uncertainties in the global and regional climate models, such that future water predictions 

should always be interpreted with cautious and followed with uncertainty analysis. 

Future research directions should focus on challenges identified in the chapters of this thesis: 

- Further development of the proposed gap-filling framework (Chapter 3) should 

investigate the simultaneous use of multiple predictor variables to inform the simulation 

of missing values. Additional research on the gap-filling of streamflow time series can 

consider the use of exogenous auxiliary variable (e.g., rainfall, evaporation), which can 

complement the predictor variables when they have gaps in their time series, and yield 

better estimates of the missing values. Although DS relies on a small set of parameters 

that are manually tuned, it would be more interesting and efficient to use a simple 

calibration technique that automatically adjust the parameters. The propagation of the 

uncertainties associated with the gap-filled data to subsequent applications (e.g. 

hydrological model calibration) should be investigated. 

- The proposed methodology for the evaluation of gridded meteorological datasets 

(Chapter 4) should be applied to different regions and with different hydrological 

models, which might give more insights in the global suitability of these datasets for 

large-scale hydrological modelling. A detailed analysis of parameter variability as a 

function of input data can build the basis of future research and resolve potential 

structural deficiencies of the mHM model. Moreover, the transferability of the model’s 

global parameters across different input datasets can be tested, which could shed light 

on the necessity of model recalibration when using different meteorological forcing.  

- The developed multivariate calibration framework based on a new spatial bias-

insensitive metric (Chapter 5 and Chapter 6) can be used with other spatially distributed 

hydrological models and can be applied to different climatic regions, which might reveal 

the advantages and the drawbacks of the approach. Further efforts in improving process 

representation in hydrological models should focus on fitting high and low flows, sub-

period model calibration and calibration based on system signatures. The conjunctions 

of these future efforts could improve the prediction of floods and droughts, and improve 

model simulations for climate change and land use change impact studies. 

- Uncertainties are ubiquitous in studies of climate change impacts on water resources 

(Chapter 7). Therefore, future studies in the VRB should consider different hydrological 
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models, which might unveil the adequacy of these models for the region. Moreover, 

new insights on the future evolution of water resources could be obtained by assessing 

the combined impacts of climate change, land use land cover change and water 

management practices. Environmental change impact studies should be continuously 

undertaken in the region, considering advances in climate and hydrological sciences. 

- Integrating climate change scenarios in the WA+ framework is a way forward in 

improving water governance in transboundary basins, and as such it should be further 

investigated in future studies. Moreover, future LULC change scenarios can be 

developed to assess changes in the water accounts based on socio-economic 

developments. The subsequent findings could provide better insights for sound policy 

development and facilitate sustainable water management. 
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Appendices 

Appendix 1. Hydrographs at different streamflow gauging stations in the Volta basin
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Appendix 2. Comparison of the Direct Sampling (DS) and the linear regression (LR) methods 

for gap-filling of streamflow time series Q(y) is shifted on the y-axis (y-shift) for display 

purpose. 

The supplementary materials contain the results of the comparison of the Direct Sampling 

method with the simple linear regression method, and flow duration curves of the gap filled 

time series. Simple linear regression (LR) is used to infill gaps in the target variable (𝑍𝑍) by 

using the corresponding predictor variable (𝑄𝑄) for scenarios described in Table 3.3. Only 

scenarios where the predictor is fully informed (i.e. without gaps) are presented because the LR 

method cannot be applied when the predictor variable also contains gaps at concomitant time 

steps with the target variable. This is, in exchange, possible with the DS method, which is one 

of its advantages over other gap-filling methods. The average scores of the statistical indicators 

are given alongside the plots with the regression equation for the LR method. 𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠 is the gap-

filled time series of the target obtained by the LR method.  

 



 

193 
 

 

 



 

194 
 

 

 

 

  



 

195 
 

Appendix 3. Flow duration curves of the gap-filling scenarios with the Direct Sampling method 

 

 

Appendix 4. Flow duration curves for different cases on the real gaps reconstruction with the 
Direct Sampling method 
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Appendix 5. Meteorological data access portals  

Datasets Name/ website 

TAMSAT 
v3.0 

Tropical Applications of Meteorology using SATellite (TAMSAT), African Rainfall 
Climatology and Time-series (TARCAT) https://www.tamsat.org.uk/data/archive  

CHIRPS v2.0 
Climate Hazards group InfraRed Precipitation with Stations (CHIRPS) V2.0 
http://chg.ucsb.edu/data/chirps/  

ARC v2.0 
Africa Rainfall Estimate Climatology (ARC 2.0) 
https://www.cpc.ncep.noaa.gov/products/international/data.shtml  

RFE v2.0 
Climate Prediction Centre (CPC) African Rainfall Estimate (RFE) 
https://www.cpc.ncep.noaa.gov/products/international/data.shtml  

MSWEP 
v2.2 

Multi-Source Weighted-Ensemble Precipitation (MSWEP) V2.2 
http://www.gloh2o.org/ 

GSMaP-std 
v6 

Global Satellite Mapping of Precipitation (GSMaP) Moving Vector with Kalman 
(MVK) Standard V6 https://sharaku.eorc.jaxa.jp/GSMaP/ 

PERSIANN-
CDR v1r1 

Precipitation Estimation from Remotely Sensed Information using Artificial Neural 
Networks (PERSIANN) Climate Data Record (CDR) V1R1 
http://chrsdata.eng.uci.edu/ 

CMORPH-
CRT v1.0 

Climate Prediction Centre (CPC) MORPHing technique (CMORPH) bias corrected 
(CRT) V1.0 www.cpc.ncep.noaa.gov  

TRMM 3B42 
v7 

TRMM Multi-satellite Precipitation Analysis (TMPA) 3B42 V7 
https://mirador.gsfc.nasa.gov/  

TRMM 3B42 
RT v7 

TRMM Multi-satellite Precipitation Analysis (TMPA) 3B42 Real Time V7 
https://mirador.gsfc.nasa.gov/  

WFDEI-CRU 
WATCH Forcing Data ERA-Interim (WFDEI) corrected using Climatic Research 
Unit (CRU) dataset www.eu-watch.org 

WFDEI-
GPCC 

WATCH Forcing Data ERA-Interim (WFDEI) corrected using Global Precipitation 
Climatology Centre (GPCC) dataset ftp://rfdata:forceDATA@ftp.iiasa.ac.at/  

PGF v3 
Princeton University global meteorological forcing (PGF) 
http://hydrology.princeton.edu/data/pgf/ 

ERA5 
European Centre for Medium-range Weather Forecasts ReAnalysis 5 (ERA5) hourly 
data on single levels https://cds.climate.copernicus.eu/  

MERRA-2 
Modern-Era Retrospective Analysis for Research and Applications 2 (rainfall: 
M2T1NXFLX_V5.12.4; temperature: M2SDNXSLV_V5.12.4) 
https://disc.gsfc.nasa.gov/datasets/ 

EWEMBI 
v1.1 

EartH2Observe, WFDEI and ERA-Interim data Merged and Bias-corrected for 
ISIMIP (EWEMBI) http://doi.org/10.5880/pik.2016.004  

JRA-55 
Japanese 55 year ReAnalysis (JRA-55); rainfall: fcst_phy2m125; temperature: 
anl_surf125 https://jra.kishou.go.jp/JRA-55/index_en.html  

 

 

 

https://www.tamsat.org.uk/data/archive
http://chg.ucsb.edu/data/chirps/
https://www.cpc.ncep.noaa.gov/products/international/data.shtml
https://www.cpc.ncep.noaa.gov/products/international/data.shtml
http://www.gloh2o.org/
https://sharaku.eorc.jaxa.jp/GSMaP/
http://chrsdata.eng.uci.edu/
http://www.cpc.ncep.noaa.gov/
https://mirador.gsfc.nasa.gov/
https://mirador.gsfc.nasa.gov/
http://www.eu-watch.org/
ftp://rfdata:forceDATA@ftp.iiasa.ac.at/
http://hydrology.princeton.edu/data/pgf/
https://cds.climate.copernicus.eu/
https://disc.gsfc.nasa.gov/datasets/
http://doi.org/10.5880/pik.2016.004
https://jra.kishou.go.jp/JRA-55/index_en.html
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Appendix 6. Hydrological modelling data access portals  

Products Data access portals 

GMTED 2010 https://topotools.cr.usgs.gov/  

SoilGrids https://www.isric.org/explore/soilgrids 

GLiM v1.0 https://doi.pangaea.de/10.1594/PANGAEA.788537  

Globcover 2009 http://due.esrin.esa.int/page_globcover.php  

GIMMS http://cliveg.bu.edu/modismisr/lai3g-fpar3g.html  

GRACE TellUS v5.0 https://grace.jpl.nasa.gov/ 

ESA CCI SM v4.2 https://www.esa-soilmoisture-cci.org/  

GLEAM v3.2a https://www.gleam.eu/  

MYD11A2 v6 https://lpdaac.usgs.gov/products/myd11a2v006/ 

 

Appendix 7. Comparison of SPAEF to ESP 

The following presents an experiment to compare SPAEF (Koch et al., 2018; Demirel et al., 

2018) and ESP (spatial pattern efficiency metric, Eq. 4.8). The experiment is done as follows: 

- An observed variable (OBS) is defined as a 3x3 matrix containing a random permutation 

of values between 1 and 9.  

- A tentative to reproduce OBS is done by producing 500 random permutations of the 

cells in OBS. 

- Each permutation of OBS corresponds to a simulated variable (SIM). The best 

simulation is considered as the one having the highest SPAEF or ESP, and the worst 

simulation has the lowest values of SPAEF or ESP. The simulations are numbered from 

#1 to #500. 

 
Figure A5 shows the results of the experiment. A summary of the results is given in Table A5. 
 

https://topotools.cr.usgs.gov/
https://www.isric.org/explore/soilgrids
https://doi.pangaea.de/10.1594/PANGAEA.788537
http://due.esrin.esa.int/page_globcover.php
http://cliveg.bu.edu/modismisr/lai3g-fpar3g.html
https://grace.jpl.nasa.gov/
https://www.esa-soilmoisture-cci.org/
https://www.gleam.eu/
https://lpdaac.usgs.gov/products/myd11a2v006/
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Figure A5 Comparison of SPAEF and ESP. The best and worst simulations (SIM) of the 
observed variable (OBS) are presented with the corresponding SPAEF and ESP scores along 
with their components. Selected simulations #347, #153, #200 and #256 show the difference 
between SPAEF and ESP for different simulated spatial patterns. 
 
Knowing that the optimal value for both ESP and SPAEF is 1, we can conclude that ESP is more 

discriminant than SPAEF because for 33% of pixels being located correctly (Figure A5 and 

Table A5), the SPAEF=0.95 while ESP =0.7 for the best SIM (or SPAEF=0.55 and ESP =0 for 

SIM#256). Because of the histogram match, SPAEF overestimate the efficiency of spatial 

patterns when the spatial variability is high (i.e. β).  

 
Table A5 Results of the comparison of SPAEF to ESP for selected simulations 

SIM 
# color 

matches 

% pixel 

location 

match 

Color match SPAEF ESP 
rp or 

rs 
α 

Worst 1 11% dark green -0.8 -1.54 -0.8 -0.79 

#347 1 11% red -0.5 -0.74 -0.5 -0.63 

#153 1 11% yellow 0 -0.67 0 -0.33 

#200 2 22% dark blue, light blue 0.5 -0.07 0.5 0.06 

#256 3 33% pink, dark green, purple 0.55 0 0.55 0.11 

Best  3 33% red, pink, yellow 0.95 0.7 0.95 0.7 
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Appendix 8. Climatology of mean monthly rainfall totals over the period 2003-2012, averaged 
over four climatic zones (a, b, c and d). . The coloured bars represent 17 rainfall datasets.  

 

 

Appendix 9. Climatology of mean monthly average air temperature over the period 2003-2012, 
averaged over four climatic zones (a, b, c and d). The coloured bars represent 6 temperature 
datasets. 
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Appendix 10. Climatology of mean monthly minimum air temperature over the period 2003-
2012, averaged over four climatic zones (a, b, c and d). The coloured bars represent 6 
temperature datasets. 

 

 

Appendix 11. Climatology of mean monthly maximum air temperature over the period 2003-
2012, averaged over four climatic zones (a, b, c and d). The coloured bars represent 6 
temperature datasets. 
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Appendix 12. Best rainfall-temperature dataset combinations for simulating the spatial patterns 
and the temporal dynamics of streamflow (Q), terrestrial water storage (St), soil moisture (Su) 
and actual evaporation (Ea) in the Volta River basin. 

 

 

1 2 3 4 5

JRA-55 TAMSAT GSMaP-std CHIRPS MERRA-2 CMORPH-CRT
MERRA-2 TAMSAT GSMaP-std PERSIANN-CDR CHIRPS CMORPH-CRT
EWEMBI TAMSAT GSMaP-std CHIRPS MERRA-2 ARC
WFDEI TAMSAT GSMaP-std CHIRPS MERRA-2 ARC
ERA5 CHIRPS TAMSAT CMORPH-CRT GSMaP-std ARC
PGF v3 TAMSAT GSMaP-std PERSIANN-CDR CHIRPS MERRA-2

JRA-55 CMORPH-CRT ARC RFE TAMSAT CHIRPS
MERRA-2 ARC RFE TRMM 3B42-RT WFDEI-CRU CHIRPS
EWEMBI ARC CHIRPS TRMM 3B42-RT GSMaP-std ERA5
WFDEI ARC CHIRPS TRMM 3B42-RT GSMaP-std ERA5
ERA5 ARC RFE CMORPH-CRT TAMSAT TRMM 3B42-RT
PGF v3 CMORPH-CRT RFE ARC CHIRPS TAMSAT

JRA-55 WFDEI-GPCC EWEMBI MERRA-2 PGF TAMSAT
MERRA-2 MERRA-2 WFDEI-GPCC EWEMBI PERSIANN-CDR ERA5
EWEMBI WFDEI-CRU PGF PERSIANN-CDR MERRA-2 GSMaP-std
WFDEI WFDEI-CRU PGF PERSIANN-CDR MERRA-2 GSMaP-std
ERA5 WFDEI-GPCC EWEMBI MERRA-2 PGF ERA5
PGF v3 WFDEI-GPCC EWEMBI WFDEI-CRU MERRA-2 TAMSAT

JRA-55 ARC RFE TAMSAT WFDEI-GPCC EWEMBI
MERRA-2 ARC CMORPH-CRT RFE WFDEI-GPCC EWEMBI
EWEMBI RFE GSMaP-std ARC TAMSAT PERSIANN-CDR
WFDEI RFE GSMaP-std ARC TAMSAT PERSIANN-CDR
ERA5 ARC RFE WFDEI-GPCC EWEMBI GSMaP-std
PGF v3 TAMSAT WFDEI-GPCC EWEMBI WFDEI-CRU ARC

JRA-55 WFDEI-GPCC EWEMBI TAMSAT MSWEP RFE
MERRA-2 MSWEP PGF ARC WFDEI-CRU WFDEI-GPCC
EWEMBI TAMSAT PERSIANN-CDR MSWEP WFDEI-GPCC EWEMBI
WFDEI TAMSAT PERSIANN-CDR MSWEP WFDEI-GPCC EWEMBI
ERA5 MSWEP RFE WFDEI-GPCC EWEMBI WFDEI-CRU
PGF v3 RFE TAMSAT MSWEP ARC MERRA-2

JRA-55 TAMSAT WFDEI-GPCC EWEMBI MSWEP MERRA-2
MERRA-2 MSWEP CHIRPS MERRA-2 WFDEI-CRU PGF
EWEMBI PERSIANN-CDR TAMSAT MSWEP WFDEI-GPCC EWEMBI
WFDEI PERSIANN-CDR TAMSAT MSWEP WFDEI-GPCC EWEMBI
ERA5 MSWEP MERRA-2 WFDEI-GPCC EWEMBI PERSIANN-CDR
PGF v3 MSWEP CHIRPS TAMSAT MERRA-2 PERSIANN-CDR
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Appendix 13. Maps of long-term (2003-2012) annual average of soil moisture (Su) obtained as 
outputs of hydrological modelling using different combinations of rainfall datasets (y-axis, blue 
font) and temperature datasets (x-axis, red font). The values are normalized for better 
emphasizing on patterns and using a unique color scale. 
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Appendix 14. Maps of long-term (2003-2012) annual average of actual evaporation (Ea) 
obtained as outputs of hydrological modelling using different combinations of rainfall datasets 
(y-axis, blue font) and temperature datasets (x-axis, red font). The values are normalized for 
better emphasizing on patterns and using a unique color scale. 
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A
ppendix 15. Spatial pattern efficiency (E

SP ) of soil m
oisture (S

u ) over the entire sim
ulation period (2003-2012) for the V

olta R
iver basin (V

R
B

) 
and its clim

atic zones, using different com
binations of precipitation and tem

perature datasets used as input for hydrological m
odelling. Each 

boxplot has 120 values corresponding to the num
ber of m

onths. The boxplots are coloured from
 the best (blue) to the w

orst perform
ance (red) 

based on the m
edian value. 
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A
ppendix 16. Spatial pattern efficiency (E

SP ) of actual evaporation (E
a ) over the entire sim

ulation period (2003-2012) for the V
olta R

iver basin 
(V

R
B

) and its clim
atic zones, using different com

binations of precipitation and tem
perature datasets used as input for hydrological m

odelling. 
Each boxplot has 120 values corresponding to the num

ber of m
onths. The boxplots are coloured from

 the best (blue) to the w
orst perform

ance 
(red) based on the m

edian value. 
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Appendix 17. mHM global parameters. The description of the model parameters can be found 
in the work of Samaniego et al. (2010). 

 

 

Parameters Lower bound Upper bound Initial value
Interception
canopyInterceptionFactor 0.01 0.40 0.278
Soil Moisture
orgMatterContent_forest 0.00 200.00 105.84
orgMatterContent_impervious 0.00 1.00 0.755
orgMatterContent_pervious 0.00 4.00 2.967
PTF_lower66_5_constant 0.65 1.00 0.939
PTF_lower66_5_clay 0.000 0.004 0.003
PTF_lower66_5_Db -0.373 -0.187 -0.204
PTF_higher66_5_constant 0.536 1.123 0.924
PTF_higher66_5_clay -0.009 0.005 -0.001
PTF_higher66_5_Db -0.551 -0.091 -0.107
PTF_Ks_constant -1.700 -0.285 -0.424
PTF_Ks_sand 0.0060 0.0260 0.0064
PTF_Ks_clay 0.001 0.013 0.005
rootFractionCoefficient_forest 0.800 0.999 0.864
rootFractionCoefficient_impervious 0.800 0.950 0.912
rootFractionCoefficient_pervious 0.001 0.090 0.022
infiltrationShapeFactor 1.000 4.000 3.945
Direct sealed area runoff
imperviousStorageCapacity 0.00 100.00 5.340
Potential evapotranspiration
PET_a_forest 0.30 1.30 0.5282
PET_a_impervious 0.90 1.30 0.9743
PET_a_pervious 0.30 1.30 0.5088
PET_b 0.00 1.50 1.4993
PET_c -3.00 0.00 -1.0330
HargreavesSamaniCoeff 0.0020 0.0027 0.0023
Interflow
interflowStorageCapacityFactor 75.00 400.00 313.85
interflowRecession_slope 0.00 10.00 5.51
fastInterflowRecession_forest 0.00 3.00 2.52
slowInterflowRecession_Ks 1.00 30.00 22.21
exponentSlowInterflow 0.005 0.300 0.283
Percolation
rechargeCoefficient 0.00 200.00 183.51
Routing
streamflow_celerity 0.10 15.00 12.47
Geology
GeoParam1 1.00 1500.00 1037.16
GeoParam2 1.00 1500.00 709.99
GeoParam3 1.00 1500.00 381.09
GeoParam4 1.00 1500.00 525.30
GeoParam5 1.00 1500.00 783.83
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A
ppendix 18 D

istribution of m
H

M
 global param

eters after m
odel calibration w

ith different com
binations of precipitation and tem

perature 
datasets as inputs. Each boxplot has 102 elem

ents corresponding to param
eter values obtained w

ith different input datasets. The initial 
param

eters’ ranges are provided in squared brackets. The second-order coefficient of variation (V
2 ) is given in percentage. 
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A
ppendix 19. M

odel perform
ance for stream

flow
 (Q

) as a function of final global param
eters (subplot titles) obtained after m

odel calibration w
ith 

different com
binations of precipitation and tem

perature datasets as inputs. The x-axis give the param
eter values for 102 different input datasets. 

The y-axis gives the K
ling-G

upta efficiency (E
K

G) of Q
 over the sim

ulation period (2003-2012). The vertical lines (in blue) show
 the low

er and 
upper bounds of the param

eter ranges. 
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Appendix 20. Evaporation data access portals  

Datasets Name/ Data portal 

MOD16A2 

Moderate Resolution Imaging Spectroradiometer (MODIS) Global Terrestrial 
Evapotranspiration Algorithm version 5 
http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/MOD16A2_MONTHLY.MERR
A_GMAO_1kmALB/  

SSEBop Operational Simplified Surface Energy Balance  
https://edcintl.cr.usgs.gov/downloads/sciweb1/shared/fews/web/  

ALEXI Atmosphere-Land Exchange Inverse ftp://ftp.wateraccounting.unesco-
ihe.org/WaterAccounting/Data_Satellite/Evaporation/ALEXI/World/  

CMRSET CSIRO MODIS Reflectance Scaling EvapoTranspiration  
http://remote-sensing.nci.org.au/u39/public/data/wirada/cmrset/  

SEBS Surface Energy Balance System ftp://ftp.wateraccounting.unesco-
ihe.org/WaterAccounting/Data_Satellite/Evaporation/SEBS/SEBS/  

GLEAM v3.2a 
Global Land Evaporation Amsterdam Model  
https://www.gleam.eu  

GLEAM v3.3a 
GLEAM v3.2b 
GLEAM v3.3b 

ERA5 European Centre for Medium-range Weather Forecasts ReAnalysis 5 (ERA5) hourly 
data on single levels https://cds.climate.copernicus.eu/  

MERRA-2 
Modern-Era Retrospective Analysis for Research and Applications 2 (Evaporation_land: 
M2TUNXLND_V5.12.4) 
https://disc.gsfc.nasa.gov/datasets/M2TUNXLND_V5.12.4/summary  

JRA-55 Japanese 55 year ReAnalysis (JRA-55); evaporation: fcst_phy2m125  
https://jra.kishou.go.jp/JRA-55/index_en.html  

 

  

http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/MOD16A2_MONTHLY.MERRA_GMAO_1kmALB/
http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/MOD16A2_MONTHLY.MERRA_GMAO_1kmALB/
https://edcintl.cr.usgs.gov/downloads/sciweb1/shared/fews/web/
ftp://ftp.wateraccounting.unesco-ihe.org/WaterAccounting/Data_Satellite/Evaporation/ALEXI/World/
ftp://ftp.wateraccounting.unesco-ihe.org/WaterAccounting/Data_Satellite/Evaporation/ALEXI/World/
http://remote-sensing.nci.org.au/u39/public/data/wirada/cmrset/
ftp://ftp.wateraccounting.unesco-ihe.org/WaterAccounting/Data_Satellite/Evaporation/SEBS/SEBS/
ftp://ftp.wateraccounting.unesco-ihe.org/WaterAccounting/Data_Satellite/Evaporation/SEBS/SEBS/
https://www.gleam.eu/
https://cds.climate.copernicus.eu/
https://disc.gsfc.nasa.gov/datasets/M2TUNXLND_V5.12.4/summary
https://jra.kishou.go.jp/JRA-55/index_en.html
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Appendix 21. Maps of long-term (2003-2012) annual average of modelled soil moisture (Su) 
using different evaporation datasets (y-axis, blue font) and calibration strategies (x-axis, red 
font) to calibrate the mHM model. The values are normalized by their range to better emphasize 
on patterns and use a unique color scale.   
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Appendix 22. Maps of long-term (2003-2012) annual average of modelled actual evaporation 
(Ea) using different evaporation datasets (y-axis, blue font) and calibration strategies (x-axis, 
red font) to calibrate the mHM model. The values are normalized by their range to better 
emphasize on patterns and use a unique color scale. 
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A
ppendix 23. D

istribution of m
H

M
 global param

eters for the 48 m
odelling scenarios w

ith various evaporation datasets. Each boxplot has 48 
elem

ents corresponding to param
eter values obtained w

ith tw
elve evaporation datasets and four calibration strategies. The blue dots are the 

param
eter values obtained w

ith the Q
-only calibration. The initial param

eters’ ranges are provided in squared brackets. The second-order 
coefficient of variation (V

2, cf. K
vålseth, 2017) is given in percentage. 
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A
ppendix 24. M

odel perform
ance for stream

flow
 (Q

) as a function of final global param
eters (subplot titles) obtained after m

odel calibration. 
The x-axis gives the param

eter values for 48 m
odelling scenarios w

ith various evaporation datasets (black dots), and the benchm
ark Q

-only 
calibration (red dot). The y-axis gives the K

ling-G
upta efficiency (E

K
G) of Q

 over the sim
ulation period (2003-2012). The vertical lines (in blue) 

show
 the low

er and upper bounds of the param
eter ranges. 
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A
ppendix 25. M

odel perform
ance for terrestrial w

ater storage (St) as a function of final global param
eters (subplot titles) obtained after m

odel 
calibration. The x-axis gives the param

eter values for 48 m
odelling scenarios w

ith various evaporation datasets (black dots), and the benchm
ark 

Q
-only calibration (red dot). The y-axis gives the Pearson correlation coefficient (r) of St over the sim

ulation period (2003-2012). The vertical 
lines (in blue) show

 the low
er and upper bounds of the param

eter ranges. 
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A
ppendix 26. M

odel perform
ance for soil m

oisture (Su) as a function of final global param
eters (subplot titles) obtained after m

odel calibration. 
The x-axis gives the param

eter values for 48 m
odelling scenarios w

ith various evaporation datasets (black dots), and the benchm
ark Q

-only 
calibration (red dot). The y-axis gives the Pearson correlation coefficient (r) of Su over the sim

ulation period (2003-2012). The vertical lines (in 
blue) show

 the low
er and upper bounds of the param

eter ranges. 
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A
ppendix 27. M

odel perform
ance for soil m

oisture (Su) as a function of final global param
eters (subplot titles) obtained after m

odel calibration. 
The x-axis gives the param

eter values for 48 m
odelling scenarios w

ith various evaporation datasets (black dots), and the benchm
ark Q

-only 
calibration (red dot). The y-axis gives the spatial pattern efficiency (E

SP)  of Su over the sim
ulation period (2003-2012). The vertical lines (in blue) 

show
 the low

er and upper bounds of the param
eter ranges. 
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Appendix 28. WA+ definitions 

These WA+ definitions are retrieved from https://www.wateraccounting.org/background.html 

(last accessed 07.07.2020) 

Available water The total exploitable water minus reserved flows. It represents the 
water that is available for use at the domain. 

Beneficial 
consumption Water consumed for the intended purpose. 

Closed basin A basin where utilizable flows are negligible. 

Committed flow 
Water that has been allocated for a special purpose such as an inter-
basin transfer or cross–boundary flow. Often decrees and acts legally 
describe the agreed flows between one or more parties. 

Consumptive use 
Water withdrawn for an intended process that does not return back into 
the basin, except from atmospheric recycling. It relates to total 
evaporation, water pollution and water incorporated in products. 

Environmental flow 
Minimum river flow required for maintaining the biodiversity of 
riverine ecosystem including endangered fish species and the riparian 
corridor. 

Gross inflow 
The total amount of water that flows into the domain, this includes 
precipitation plus any inflow from surface or ground water sources and 
desalinized water. 

Incremental ET Enhancement of total evaporation (ET) due to rainfall by supplying 
additional water resources. 

Landscape ET Water from rainfall that evaporates locally from leaves, litter, soil, and 
via plants that extract moisture from the unsaturated zone. 

Managed water use 
Represents land use elements with anthropogenic regulation of 
withdrawals and water supplies. It includes water withdrawals for 
irrigation, aquaculture, domestic use and industries, among others. 

Modified land use 
Represents land use elements where vegetation is replaced with the 
intention to increase the utilization of land resources. Examples are 
plantation forests, pastures and rainfed crops, among others. 

Net inflow The gross inflow after correction of storage change (ΔS). It represents 
water available for landscape ET and exploitable water. 

Non–beneficial 
consumption Water consumed for purposes other than the use. 

Non–recoverable 
flow 

Non–consumed water that is lost to further use, by pollution that 
exceeds international standards, flows to saline groundwater sinks, 
deep aquifers that are not economically exploitable or flows to the sea. 

Productivity of water The physical mass of production or the economic value of production 
measured against consumptive use of water. 

Protected land use Environmentally sensitive land uses and natural ecosystem that cannot 
be modified due to protective measures. 

Recoverable flow Non–consumed water that can be captured and reused in streams, 
rivers, lakes, reservoirs and aquifers. 

https://www.wateraccounting.org/background.html
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Reserved flow Surface water that has been reserved to meet committed flows, 
navigational flows, and environmental flow. 

Total water stocks Water present in reservoirs, rivers, lakes and groundwater that can be 
used for withdrawals. 

Utilized land use Represents land use classes with a low to moderate utilization of 
natural resources, such as savannah, woodland and mixed pastures. 

Utilized water Part of available water that is depleted for uses. 
Utilizable water Water available for additional resources development. 

Water governance 

Political, social, economic and administrative systems that are in place, 
and which directly or indirectly affect the use, development and 
management of water resources and the delivery of water service 
delivery at different levels of society. 

Water withdrawals Water taken away from a water source, either natural (e.g. inundation, 
leakage) or artificial (i.e. pumping, diversions). 
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