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Phenotypic and genetic characteristics of
retinal vascular parameters and their
association with diseases

Sofía Ortín Vela 1,2,11 , Michael J. Beyeler 1,2,11 , Olga Trofimova1,2,
Ilaria Iuliani1,2, Jose D. Vargas Quiros3,4, Victor A. de Vries 3,4, Ilenia Meloni5,6,
Adham Elwakil5,6, Florence Hoogewoud5, Bart Liefers3,4, David Presby1,2,
Wishal D. Ramdas 3, Mattia Tomasoni 5,6, Reinier Schlingemann5,7,
Caroline C. W. Klaver 3,4,8,9 & Sven Bergmann 1,2,10

Fundus images allow for non-invasive assessment of the retinal vasculature
whose features provide important information on health. Using a fully auto-
mated image processing pipeline, we extract 17 different morphological
vascular phenotypes, including median vessels diameter, diameter variability,
main temporal angles, vascular density, central retinal equivalents, the number
of bifurcations, and tortuosity, from over 130,000 fundus images of close to
72,000 UK Biobank subjects. We perform genome-wide association studies of
these phenotypes. From this, we estimate their heritabilities, ranging between
5 and 25%, and genetic cross-phenotype correlations, which mostly mirror the
corresponding phenotypic correlations, but tend to be slightly larger. Pro-
jecting our genetic association signals onto genes and pathways reveals
remarkably low overlap suggesting largely decoupled mechanisms modulat-
ing the different phenotypes. We find that diameter variability, especially for
the veins, associates with diseases including heart attack, pulmonary embo-
lism, and age of death. Mendelian Randomization analysis suggests a causal
influence of blood pressure and body mass index on retinal vessel morphol-
ogy, among other results. We validate key findings in two independent smaller
cohorts. Our analyses provide evidence that large-scale analysis of image-
derived vascular phenotypes has sufficient power for obtaining functional and
causal insights into the processes modulating the retinal vasculature.

The retina provides a unique opportunity for imaging human vas-
culature. In particular, retinal colour fundus images (CFIs) allow for
noninvasive in-vivo assessment of the vascular system of the
superficial inner layer of the retina. Such images have been acquired
in several cohorts and there is a large body of research on automatic
extraction of vascular properties and their associations with medi-
cally relevant information.

It is well established that vascular properties obtained from
retinal imaging not only enable the monitoring of ocular diseases
such as diabetic retinopathy, macular degeneration, and glaucoma,
but can also serve as a powerful screening tool for early detection of
systemic diseases, including stroke1–4, coronary heart disease5,6,
peripheral artery diseases7, hypertension3,4,8–18, atherosclerosis2,3,19,
and myocardial infarction20,21. Retinal abnormalities have also been
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associated with common comorbidities such as diabetes8,22–24 and
obesity25.

The processing of CFIs typically can be divided into three steps.
First, the image is processed at the level of pixels to identify which of
them represents blood vessels (possibly distinguishing between
arteries and veins26–28), or other structures, like the optic disc (OD). In
the second step this pixel-wise information is used to annotate the
retina in terms of objects, such as vessel segments represented as a list
of points along their midline, as well as the vessel widths along these
points. Finally, the information from these objects is used to measure
different vascular properties such as vessel diameter or tortuosity,
number of bifurcations, as well as certain angles between major ves-
sels. Some simple vascular phenotypes, such as vascular density or
fractal dimension, can also be computed directly from the pixel-wise
information.

While there have been several studies analysing retinal vascular
phenotypes29–34, most of them focused on measuring just one or few
retinal phenotypes, often in small image sets, and some required
expert input rather than being fully automated35–37. Furthermore, the
software used for vascular phenotyping is usually not openly acces-
sible, with two recent exceptions38,39. Together this precludes the
establishment of a comprehensive and reproducible characterisation
of large retinal image collections.

Recently, Deep Learning (DL) approaches have gained popularity
in retinal image analysis. The first contribution is at the level of pixel-
wise annotation, where state-of-the-art segmentation can be achieved
with Convolutional Neural Network (CNN) architectures. For example,
the little W-Net (LWNET) annotates pixels as being part of an artery or
vein, outperforming classical segmentation approaches40. Such net-
works can also be used to annotate pixels belonging to theOD41, vessel
bifurcations42, or other structures. The second contribution of deep
CNNs is to learn latent variables providing efficient low-dimensional
representations of retinal images43,44. Such self-supervised, image-
based phenotyping can generate additional phenotypes com-
plementing explicit retinal features. Finally, DL approaches have been
used to directly predict health-relevant phenotypes from retinal
images45–47.

Beyond their value for assessing ocular or systemic health, retinal
phenotypes have also been used in Genome-Wide Association Studies
(GWAS) to identify genetic variants modulating these phenotypes.
However, previous GWAS have focused on a limited set of vascular
properties, such as vessel diameter28,48–50, tortuosity26,27, vascular
density, fractal dimension51, and certain deep latent variables43

(see Supplementary Discussion “Comparison with previous GWAS”,
and Supplementary Table 1).

In this study, we present a joint analysis of 17 retinal vascular
phenotypes, including features like temporal angles, number of
bifurcations, or diameter variability, which have not been analysed
previously at a large scale. Leveraging data from the UK Biobank
(UKBB), and employing our open-source fully automated analysis
platform, we provide retinal vascular phenotyping for close to 72 k
subjects, after quality control (QC). For all phenotypes, we performed
GWAS, heritability estimates, gene and pathway analyses, as well as
associations with a broad set of systemic and ocular diseases. This
allowed us to compare cross-phenotype correlations, both at the
phenotypic and genotypic levels, study in detail which genes affect
individual or multiple phenotypes, and identify potential causal rela-
tionshipswith diseases (see Fig. 1 depicting the overallmethodologyof
our discovery study). We reproduced the phenotypic correlation
structure in two independent smaller cohorts: the Rotterdam Study
(RS, N = 8.1k) and OphtalmoLaus (N = 2.2k)52,53. Analysis of RS data also
provided consistent estimates for phenotypes heritabilities and
genetic correlations, as well as replication of a large number of our
genome-wide significant hits for the vast majority of phenotypes.

Results
Automated pipeline for phenotyping of the retinal vasculature
To analyse the retinal vasculature, we developed an automated
pipeline building on our previous work on retinal vessel tortuosity27.
This pipeline enabled us to segment and annotate the retinal vascu-
lature and OD from 130 361 colour fundus images (CFIs) of 71 494
subjects after Quality Control (QC). We used a previously established
method for computing a QC score51, and removed images in the
lowest quartile of this score. Applying a range of QC thresholds, we
observed that phenotype heritabilities tended to be higher, while
disease incident rates were lower when applying more stringent
thresholds, possibly because some diseases impact the vascular
density which is a good proxy for image quality (see Supplementary
Figs. 1–3 “UKBB Quality control threshold effect on results”
for details).

We selected 17 representative image-derived phenotypes (IDPs)
from a broader set of 36 phenotypes to characterize each image,
including vascular densities, median tortuosities, central retinal
equivalents, median diameters, diameter variabilities, and main tem-
poral angles for arteries and veins. We also calculated the ratios
between artery and vein values for the first four phenotypes, and we
estimated the total number of vessel bifurcations. These IDPs were
chosen based on their associations with diseases and the reliability of
measurement. The distributions of these main IDPs are presented in
Supplementary Fig. 4 “UKBB Distribution of retinal vascular IDPs”. The
broader set of 36 IDPs can be found in Supplementary Methods
“Phenotype extraction”.

Correlation structure and heritabilities of retinal vascular IDPs
To explore the relationships between our main IDPs, we calculated
pair-wise phenotypic Pearson correlations, r(p) (upper right triangle in
Fig. 2a). We observed that the same IDPs measured for arteries and
veins tended to cluster together, in particular for the temporal angles,
tortuosities, and vascular densities. Vascular densities were highly
correlated with each other and the number of bifurcations, the
strongest correlation observed. They also correlated with venous, but
not arterial, tortuosity and anti-correlated withmedian diameters. The
temporal angles exhibited low correlations to the other phenotypes.
Finally, most artery-vein ratios were highly correlated with their cor-
responding arterial, and highly anti-correlated with their correspond-
ing venous measures.

To assess the genetic relationships between the IDPs, we esti-
mated pair-wise genetic correlations, r(g), using cross-trait Linkage
Disequilibrium Score Regression (LDSR)54 (lower left triangle in
Fig. 2a). On average, genetic correlations were slightly higher than
phenotypic correlations (standardized mean difference across the 136
pairs (ij) is d = 0.34, t(135) = 6.53, p = 6.2 × 10−10). The largest difference
occurred between the temporal angles. Overall there was a strong
correspondence between genetic and phenotypic correlations,
corr(r(g), r(p)) = 0.86, permutation p < 1 × 10−4. Please refer to “Correla-
tion structure and heritabilities of extended list of retinal vascular
IDPs” in Supplementary Methods for the corresponding analysis for
our broad set of 36 IDPs. The exact values of genetic and phenotypic
correlations are available on Figshare.

To gain deeper insights into the genetic control of retinal vascular
morphology, we estimated the single nucleotide polymorphism (SNP)
heritability, h2, for each IDP (Fig. 2b), using LDSR55. Our analysis
revealed varying levels of heritability across our IDPs. Arterial tortu-
osity exhibited the highest heritability, h2 = 0.25 ± 0.02, followed by
the tortuosity ratio, h2 = 0.20 ± 0.02, and venous diameter variability,
h2 = 0.18 ± 0.02. In contrast, the median diameter measures, particu-
larly arterial median diameter, showed the lowest heritability,
h2 = 0.05 ± 0.01 (see Supplementary Fig. 5 and 6 for Manhattan and
Quantile-Quantile plots from the GWAS of each IDP).
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Gene and pathway level analysis of retinal vascular IDPs
To identify the genes modulating specific vascular IDPs, we employed
our PascalX analysis tool56,57. This tool aggregates SNP-wise association
signals within gene windows and generates gene scores.

The number of genes associated with IDPs (diagonal of Fig. 3a)
ranged from 1 gene for the arterial median diameter to 252 genes for
arterial tortuosity. We observed the highest number of genes for tor-
tuosities, venous diameter variability, and venous central retinal
equivalent. The off-diagonal elements in Fig. 3a show the number of
common genes for each pair of IDPs. Generally, more correlated IDPs
tended to sharemoregenes. However, even among highly similar IDPs,
a significant portion of genes were phenotype-specific, and some IDPs
shared only a few or no genes.

While no single gene was shared among all IDPs, two genes,
LINC00461 and CTC-498M16.4, were associated with 9 of the 17 IDPs

(Fig. 3b). Other genes associated with multiple IDPs included SIX6,
FLT1, FUT1, HERC2, and PDE6G. The complete list of significant genes
associated with each IDP is available on Figshare.

Furthermore, we conducted pathway analysis using PascalX to
identify gene sets, or “pathways”, that exhibited higher association
signals for each IDP GWAS than expected by chance. Although no
single pathway was shared among all IDPs, some of the most frequent
pathways included ‘Fetal retina fibroblast’, and ‘Abnormal retinal
morphology’ (Supplementary Note 1). The complete list of significant
pathways per IDP is available on Figshare.

To further investigate pleiotropic genes, we employed PascalX
cross-GWAS analysis57, amethod that examines coherent effects across
the SNPs associated with two phenotypes within a gene window. This
approach has more power than just intersecting the gene sets of two
individual phenotypes and also allows for distinguishing between
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Fig. 1 | Discovery pipeline and measurement of retinal vascular image-derived
phenotypes (IDPs). a Overview of discovery pipeline. Subjects’ basic and medical
information, genotypes, and CFIs were collected from the UKBB. Applying the
ImageQCmethodof51 removed∼25%of all CFIs. Pixel-wise vessel segmentationand
classification were performed using LWNET40. ARIA77 was used to identify vessel
segment objects. ADLnetworkwasused tomeasure the position of theOD41. Based
on this primary information our bespoke algorithms measured vascular IDPs. IDPs
(z-scored and corrected for covariates) were associated with diseases through
linear and logistic regressions, and Cox models. GWAS was performed on all IDPs
after rank-based inverse normal transformation (rb-INT) and correction for

covariates, and the resulting summary statistics were used to estimate heritabilities
and genetic correlations, to identify relevant genes and pathways, and to study the
genetic association and potential causal relationships between the IDPs and some
of the disease phenotypes. bOverview of IDPmeasuring process. Top: original CFI
from DRIVE dataset. Middle: Pixel-wise segmented vasculature with artery-vein
classification using LWNET40. Bottom: Vessel segment objects in terms of cen-
trelines and diameterswere identified using ARIA77, providing the starting point for
measuring vascular IDPs (see Supplementary Methods “Vesssel segmentation”,
“Optic disc segmentation”, and “Phenotype extraction” for details).
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coherent and anti-coherent effects. However, even in this more sen-
sitive analysis, no single gene was shared between all pairs of pheno-
types. The most pleiotropic genes largely overlapped with those
identified by simple gene-scoring, yet they tended to be shared among
more IDPs (Fig. 3c, d). The complete list of PascalX IDP-IDP cross gene
scores is available on Figshare. Generally, IDP pairs with positive LDSR
genetic correlation shared more coherent gene signals, while those
with negative LDSR genetic correlation had predominantly anti-
coherent signals (see Supplementary Fig. 7 “UKBB LDSR genetic cor-
relation against PascalX”).

Phenotypic association with diseases and risk factors
To evaluate the clinical relevance of retinal vascular morphology, we
examined the phenotypic associations between the retinal vascular
IDPs and various eye-related diseases, vascular diseases, and their
associated risk factors. We employed linear regression for continuous
diseases variables (that correspond to risk factors) (Fig. 4a), logistic
regression for binary disease states (Fig. 4b), and Cox models for

diagnoses with age-of-onset (Fig. 4c). All IDPs were standardized (z-
scored) and adjusted for potential confounders.

Amongst the risk factors, diastolic blood pressure (DBP) and
systolic blood pressure (SBP) displayed similar associations with most
IDPs. Smoking pack-years exhibited the strongest positive association
with venous diameter variability, β = 0.12, while the strongest negative
correlations were observed between blood pressure (BP) and arterial-
related IDPs, particularly the central retinal equivalent, vascular den-
sity, and median diameter β∈ [−0.18, −0.13] (Fig. 4a).

For binary disease states, hypertension was positively associated
with venous tortuosity and less with arterial tortuosity, while nega-
tively associatedwith central retinal artery equivalent, and the ratios of
central retinal equivalents and vascular densities, among others. Eye
diseases such as amblyopia were negatively associated with the num-
ber of bifurcations and venous vascular density, β ≈ −0.16. Others like
presbyopia, hypermetropia, and myopia showed smaller effects,
β∈ [−0.08, 0.06], butwere still statistically significant. Retinal diabetes
was negatively associated with the vascular densities and the number

Fig. 2 | Phenotypic and genetic correlations of retinal vascular IDPs and their
heritabilities. a Phenotypic (upper-right orange triangle) and genetic (lower-left
green triangle) correlations between retinal vascular phenotypes, clustered by
absolute phenotypic correlation distance, 1 − |corr | . The 17 phenotypes are (A:
artery, V: vein):main temporal angles (‘A/V temporal angle’),median tortuosities and
their ratio (‘A/V tortuosity’ and ‘ratio tortuosity’), central retinal equivalents and their
ratio (‘A/V central retinal eq’ and ‘ratio central retinal eq’), diameter variabilities (‘A/V
std diameter’), vascular densities and their ratio (‘A/V vascular density’ and ‘ratio
vascular density’),mediandiameters and their ratio (‘A/Vmediandiameter’ and ‘ratio
median diameter’), and the number of bifurcations (‘bifurcations’). Phenotypes were
corrected for age, sex, eye geometry, batch effects, and ethnicity before phenotypic
clustering and before GWAS (see Methods). b Corresponding phenotype SNP

heritabilities, h2, and their standard error, estimated using LDSR55. In LDSR, herit-
abilities are estimated as the OLS slope from regressing the mean Chi-squared sta-
tistics of SNPs onto their corresponding LD scores, while accounting for the sample
size and the total number of SNPs. Sample sizes (phenotypic and genetic respec-
tively): A temporal angle [55.3 k, 54.9 k], V temporal angle [57.9 k, 57.5 k], A tortuosity
[68.6 k, 68.1 k], V tortuosity [68.5 k, 68.0k], Ratio tortuosity [68.5 k, 68.0 k], A central
retinal eq [65.5 k, 65.0 k], V central retinal eq [65.8 k, 65.4 k], Ratio central retinal eq
[64.9 k, 64.4 k], A std diameter [68.5 k, 68.0 k], V std diameter [68.5 k, 68.0 k],
Bifurcations [68.2 k, 67.8 k], A vascular density [68.7 k, 68.2 k], V vascular density
[68.7 k, 68.2 k], Ratio vascular density [68.4 k, 68.0 k], A median diameter [68.6 k,
68.1 k], V median diameter [68.5 k, 68.0 k], Ratio median diameter [68.5 k, 68.0 k].
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Fig. 3 | Gene associations with vascular IDPs. a Number of genes associated with
the different IDPs. The diagonal shows the number of genes significantly associated
with each IDP. The lower triangle shows the number of genes in the intersection
between pairs of IDPs. b 30 genes most frequently associated with the IDPs. Dot
sizes are inversely proportional to p-values. c Number of genes showing coherent
(top right) or anti-coherent (bottom left) signal between pairs of IDPs. d 30 genes

most frequently found in the cross-phenotype analysis. Dot colour represents
pleiotropy, i.e. the number of phenotype pairs showing (anti-)coherent signal for a
given gene.Dot sizes are inversely proportional to p-values. Obtainedusing PascalX
gene and cross-scoring respectively57 PascalX, p-values are based on a two-sided
Chi-square test and were corrected for multiple testing using the Bonferroni
method (significance threshold set to 0.05/number of tested genes).
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of bifurcations, β∈ [−0.30, −0.25], while atherosclerosis was positively
associated with venous diameter variability, β =0.34 (Fig. 4b).

The Cox model analysis for age-of-onset phenotypes included
severe eye- and cardiovascular diseases, diabetes, and age at death. Both
vascular densities displayed consistent associations with the age of
diagnosis for all eye-related diseases. Diabetes age-at-diagnosis shared
similar associations with our vascular IDPs as retinal diabetes, but was
also associated with venous tortuosity and central retinal arterial
equivalent, among others. Heart attack was associated with larger

median arterial diameter and central retinal arterial equivalent, aswell as
diameter variability inboth vessel types. Importantly, earlierdeathswere
most strongly associatedwith increased venous diameter variability and
less strongly with increased central venous retinal equivalent, increased
venous temporal angles, decreased vascular density, and fewer bifur-
cations. In general, venous diameter variability was associated with
almost all diseases, including the only associations with pulmonary
embolism and stroke (Fig. 4c). The complete table of the standardized
effect sizes, hazard ratios and p-values is available on Figshare.

Fig. 4 | Phenotypic association of IDPs with risk factors and diseases. The x-axis
shows IDPs and the y-axis shows risk factors and diseases. The numbers in par-
entheses correspond to the number of subjects with this information for which we
were able tomeasure at least one of the 17 IDPs, for continuous diseases. For binary
disease states, it represents thenumberof subjectswhowerecases andhaddata for
at least one of the 17 IDPs. Linear (a) and logistic (b) regressions were used for
continuous and binary disease states, respectively. For age-of-death and other
severe diseases with the age-of-onset information, Cox proportional hazards
regression was performed (c). In all models, phenotypes were corrected for age,
sex, eye geometry, batch effects, and ethnicity. The colour indicates standardized

effect sizes for linear and logistic regressions or hazard ratios for Cox models.
Asterisks indicate the level of statistical significance (∗p <0.05/Ntests, ∗∗p <0.001/
Ntests, where Ntests =NIDP s ×Ntraits, and Ntraits is the number of diseases or risk traits
considered in each panel). Labels: PR Pulse rate, PWASI Pulse wave arterial stiffness
index, HDL High-density lipoprotein, LDL Low-density lipoprotein, HbA1c Glycated
haemoglobin, Alcohol Alcohol intake frequency, Smoking pack-years, BMI Body
mass index, Diabetes-eye Diabetes related to the eye, DVT Deep vein thrombosis,
Other ED: all types of severe eye diseases not included explicitly, PE Pulmonary
embolism.
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While the vascular densities and the number of bifurcations were
highly inter-correlated, their associations with diseases sometimes
differed. For instance, SBP and hypertension were associated with
arterial vascular density and the number of bifurcations but not with
venous vascular density. An equivalent analysis of 17 leading principal
components (PCs) of our IDPs revealed no additional or stronger dis-
ease associations compared to the raw IDPs (see Supplemen-
tary Note 2).

Genetic associations with diseases and causality analysis
To investigate the extent of common genetic architectures between
the vascular IDPs and risk factors, we first used LDSR to estimate their
genetic cross-correlations. Notably, we observed the strongest nega-
tive correlations (≈−0.30) between BP measures and the ratios of the
central retinal equivalents, and vascular densities. Body mass index
(BMI) was correlated positively withmedian vein diameter (≈0.15), and
its variation (≈0.18), and negatively with arterial vascular density and
the number of bifurcations (Fig. 5a). HbA1c was also negatively cor-
related with the number of bifurcations, while HDL was negatively

correlated with venous diameter variability, but only with marginal
significance. For binary disease states, we found weaker associations;
however, hypertension exhibited associations similar to those of
BP. For further details on binary disease states, see Supplemen-
tary Note 3.

To compare the phenotypic and genetic associations between
vascular IDPs and risk factors, we plotted the effect sizes of the phe-
notypic linear regressions against genetic correlations for each IDP/
risk factor pair (Fig. 5b). The slopes of the best-fitting lines through the
corresponding points were positive for all risk factors, except for LDL
cholesterol.

A strong genetic association between two phenotypes does not
imply the existence of a causal link. To systematically assess potential
causal relationships between vascular IDPs and risk factors, we per-
formed bidirectional two-sample Mendelian Randomisation (MR)
analyses58,59. Causal estimates were derived from the inverse variance
weighted method using the TwoSampleMR R package60,61. We used
false discovery rate (FDR) to correct for multiple testing and we also
performed sensitivity analyses that confirmed the robustness of our

(a) (b)

(c) (d)

Fig. 5 | Genetic correlations and causal effect estimates between IDPs and risk
factors. a Genetic correlation between IDPs and risk factors, computed using
LDSR55. UKBB sample sizes are given in the ‘N GWAS’ column in Supplementary
Table 2, and corresponding disease sample sizes are described on the Neale lab
website (seeMethods). The colour indicates the genetic correlation coefficient and
the asterisks indicate the level of statistical significance (∗p <0.05/Ntest, ∗∗p <0.001/
Ntest, being Ntest=NIDP s ×NLinearDiseases). b Correlation between phenotypic and
genetic correlations of IDPs with risk factors. c Causal effect estimates with risk
factors as exposures and IDPs as outcomes. d Causal effect estimates with IDPs as
exposures and risk factors as outcomes. The colour indicates the causal effect

estimates based on the F statistic of the inverse variance-weightedMRmethod. The
level of statistical significance is indicated with a single asterisk for nominal sig-
nificance without correction for multiple testing (∗puncorrected <0.05) and two
asterisks for a FDR (∗∗pFDR<0.05). Risk factor genetic sample sizes: DBP and SBP:
340 k; High BP: 360 k; PR: 340 k; Pulse wave ASI: 118 k; HDL cholesterol: 315 k; LDL
direct: 344 k; Triglycerides: 344 k; HbA1c: 344 k; Alcohol intake frequency: 361 k;
Smoking status: 360 k; BMI: 360 k. And, IDPs genetic sample sizes: A temporal
angle: 55 k; V temporal angle: 58 k; A/V and ratio tortuosity: 68 k; A, V and ratio
central retinal eq: 65 k; A/V std diameter and bifurcations: 68 k; A/V and ratio vas-
cular density: 68 k; A/V and ratio median diameter: 68 k.
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results (see Methods). Full MR risk factors (IVW) are available on
Figshare.

Using risk factors as exposures, we observed evidence for causal
effects on most of the IDPs, even after adjusting for multiple testing
(Fig. 5c).Notably, we found strong evidence for negative effects ofDBP
and SBP on many different vascular IDPs, including arterial (and ratio)
central retinal equivalent, arterial (and ratio) median diameter, vas-
cular density and bifurcations. Also, SBP had a positive effect on
arterial and venous tortuosity. BMI had a positive effect on venous
(and arterial) diameter variability and venous central retinal equiva-
lent, while it showed a negative effect on ratio central equivalent, ratio
vascular density and bifurcations. Furthermore, alcohol intake had a
positive effect on arterial (but not venous) diameter variability, while
HbA1c levels had a weak negative effect on arterial vascular density,
bifurcations and arterial diameter variability. We also observed other
potential causal effects, but only with marginal significance
(puncorrected <0.05). For example, PR had a positive effect on venous
diameter variability and a negative effect on arterial temporal angle,
while LDL levels had a positive effect on arterial tortuosity and ratio
central equivalent.

In contrast, using IDPs as exposures, only the causal effect of ratio
central equivalent on BP (SBP and DPB) survived FDR correction. We
also observed potential causal effects on risk factors for many other
vascular traits, but only with marginal significance (puncorrected < 0.05)
(Fig. 5d). For example, we identified arterial tortuosity and venous
diameter variability as positive causal factors for BP, while the ratio of
central equivalent had a negative effect on BP. Venous diameter
variability (and venous median diameter) also had a negative effect on
HDL levels, while arterial median diameter had a positive effect on PR.
Significant causal effects were also found between vascular IDPs and
binary disease states; see Supplementary Note 4.

To identify genes that were jointly associated with IDPs and risk
factors, we first computed simple intersections between the corre-
sponding gene sets of such pairs (Fig. 6a). This revealed some sizable
overlaps, in particular for vein diameter variability and central
equivalent with BP measures, triglycerides, HbA1c, and BMI. Applying
PascalX cross-GWAS analysis57, as previously for the pairs of two vas-
cular IDPs, we were able to identify many additional candidates for
pleiotropic genes (Fig. 6b, c). We observed that the sets of coherent
genes (Fig. 6b) tended to be largest for phenotype pairs whose sets of
associated genes already had a sizable overlap, while we found large
sets of anti-coherent genes (Fig. 6c) for some phenotype pairs whose
associated genes had no or only little overlap, notably for DBP and the
ratio of the central retinal equivalents, the ratio of the vascular den-
sities and the median arterial diameter and its variability. Moreover,
the ratio of central retinal equivalents shared multiple anti-coherent
genes with BP and BMI. All PascalX IDP-disease cross gene scores are
available on Figshare. For a similar analysis for binarydisease states, we
found weaker associations; however, hypertension exhibited associa-
tions similar to those of blood pressure. For further details on binary
disease states, see Supplementary Note 3.

Shared pathways between the IDPs and diseases can be found in
Supplementary Note 5, and on Figshare.

Replication analysis
We had access to CFIs from two independent smaller cohorts, namely
the Rotterdam Study (RS, N = 8 142 participants) and OphtalmoLaus
(N = 2 276 participants), from which we computed our 17 IDPs. While
we used an identical analysis pipeline for OphtalmoLaus, a specialized
annotation softwarewasdeveloped for theRS images, adapted to their
specifics, notably including a dedicated and internally validated vessel
segmentation tool (“VascX”, manuscript in preparation). Phenotypic
correlations r(p) between IDPs obtained in the two replication cohorts
were globally concordant with those from the UKBB data (ρ = 0.86,
p = 7.5 × 10−42 for OphtalmoLaus and ρ =0.69, p = 1.8 × 10−20 for RS, see

Fig. 7a, and Supplementary Note 6). Notably, we replicated the high
phenotypic correlation between vascular densities and the number of
bifurcations and the low correlation between the temporal angles and
the other IDPs. Themain difference was that for RS data we observed a
positive correlation between the variability in arterial diameter and
vascular densities, while it was negative for UKBB and OphtalmoLaus,
whichmaybedue to the different vessel segmentation tool used for RS
images. We also observed many consistent associations between IDPs
and disease traits in the RS (see Supplementary Figs. 8–11).

Because of its larger sample size we used exclusively RS data to
attempt replication of our genetic associations results in the UKBB.
SinceRS consists of four sub-studieswith different sample sizes (RS-I: 2
391, RS-II: 877 RS-III: 2 811, and RS-IV: 2 063 participants) GWAS were
performed independently for each of them, and then meta-analysed
(see Supplementary Figs. 12 and 13 for the corresponding Manhattan
and QQ-plots). Applying LDSR to estimate IDP SNP heritabilities and
genetic cross-trait correlations, we observed overall consistency
with the estimates from the UKBB data (ρ =0.74, p = 0.001 for the
former and ρ =0.45, p = 5.63 × 10−12 for the latter, see Fig. 7b, c).
Notably, in RS arterial tortuosity (h2 = 0.22 ± 0.07), the tortuosity ratio
(h2 = 0.20 ± 0.06) and variability in venous diameter (h2 = 0.18 ± 0.06)
also had the highest heritability estimates. Plotting the effect sizes for
significant SNPs in the UKBB against those of the RS (Fig. 7d) revealed
highly significant correlations and concordance in direction for the
vast majority of IDPs. We then sought to replicate individual genetic
associations. To this end, we applied the well-established Benjamini-
Hochberg procedure62.With afixed FDRof0.05,we replicated 86 SNPs
out of 195 across the four IDPs shown in Fig. 7e, and 232 SNPs out of
566were replicated across the 17main IDPs (see SupplementaryNote 7
and Supplementary Table 3).

Finally, to identify the genes modulating specific vascular IDPs in
the replication cohort (RS), we employed PascalX56,57. We applied the
Benjamini-Hochberg procedure62 for the genes. With a fixed FDR of
0.05, we replicated 93 genes out of 310 across the four IDPs shown in
Fig. 7f. The complete set of RS gene scores are available on Figshare,
and a table with genes associated with each RS IDP can be found in
Supplementary Table 4.

Discussion
In this study, we established an automated analysis pipeline to extract
17 retinal vascular phenotypes from CFIs and applied it to over 130 k
CFIs of close to 72 k UKBB subjects. While some of these phenotypes
had previously been studied individually, our work provides a com-
mon reference. Our phenotyping procedure, automated and open
access, enabled us to study jointly a large panel of retinal vascular
phenotypes, some of which (temporal angles, central equivalents,
number of bifurcations) had not been assessed previously in a large
cohort. We provided a comparison of the phenotypic with genotypic
correlation structures of these IDPs. We estimated their heritabilities,
and elucidated associated genes and pathways, allowing us to identify
commonanddisjoint genetic architectures.We studied associations of
our IDPs with a spectrum of diseases and risk factors providing evi-
dence of their complementarity for indicating specific disease risks.
For validation, we reproduced the phenotypic correlation structure in
two independent cohorts, the RS and OpthalmoLaus, with 8.1 k and
2.2 k participants respectively, and validated numerous GWAS results
in the RS. Importantly, the RS analysis pipeline was coded indepen-
dently (to adapt to the specifics of their CFIs), such that these suc-
cessful replication results provide strong evidence that our
phenotyping is robust and not driven by cohort specific effects.

The phenotypic correlations revealed distinct clusters of vascular
IDPs. One cluster includes vascular arterial and venous density, pre-
viously linked to fractal dimension51, and the number of bifurcations.
Our results, both the discovery and replications, suggest that the
number of bifurcations,which is challenging to identify, canbe reliably
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estimated using vascular densities. Interestingly, diameter variabilities
showed stronger correlations with central retinal equivalents (of the
same vessel type) than with the median diameters, suggesting that
larger vessels dominatediameter variability. Indeed,mediandiameters
(especially for veins) are confounded by vascular density, which is
probably due to CFIs with lower vascular density exhibiting less blood
vessels of small caliber. The latter may be due to degeneration of the
vasculature, but also to poorer image quality, in particular blurriness,
which is impacted by corneal opacity. More work is needed to disen-
tangle the different distributions to establish robust diameter mea-
sures for blood vessels not proximal to the OD. Finally, the temporal
angles exhibited little correlation with other vascular IDPs, both in the
discovery and replication cohorts, indicating that they may be influ-
enced by non-vascular factors, such as eye anatomy.

The genetic correlation between IDPs largely mirrored their
phenotypic correlation, supporting Cheverud’s conjecture which
states that phenotypic correlation can be used as a proxy for genetic
correlation63. However, in our study genetic correlations were slightly
larger on average, indicating potential differential effects of environ-
mental factors on correlated IDPs.

We observed significant variation in heritability estimates among
different vascular IDPs. Tortuosity and vascular density showed com-
paratively high heritability, consistent with some previous findings27,51.
A recent study26 estimated heritability of retinal arteriolar tortuosity at
0.51 using UKBB data, substantially higher than our 0.25 estimate. Our
point estimate in the RS is 0.22 ± 0.07, which is consistent with our
estimate from UKBB data. We note that here we used median tortu-
osity across all vessel segments independent of their caliber and

Fig. 6 | Number of genes shared between IDPs and risk factors. a Gene-scoring
plain intersection. Each cell shows the number of intersected genes in phenotype
pairs.b, cCross-phenotype coherenceanalysis showing thenumberof coherent (b)
and anti-coherent (c) genes between phenotype pairs. Summary statistics for risk
factors were obtained from http://www.nealelab.is/uk-biobank (see for risk factor
sample sizes). Gene-level p-values were derived from two-sided Chi-square test
statistics using PascalX57 and corrected for multiple testing with the Bonferroni
method (significance threshold set to 0.05/number of tested genes). Risk factor

genetic sample sizes: DBP and SBP: 340k;High BP: 360 k; PR: 340 k; Pulsewave ASI:
118 k; HDL cholesterol: 315 k; LDL direct: 344 k; Triglycerides: 344 k; HbA1c: 344 k;
Alcohol intake frequency: 361 k; Smoking status: 360 k; BMI: 360 k. And, IDPs
genetic sample sizes: A temporal angle: 55 k; V temporal angle: 58 k; A/V and ratio
tortuosity: 68 k; A, V and ratio central retinal eq: 65 k; A/V std diameter and bifur-
cations: 68 k; A/V and ratio vascular density: 68 k; A/V and ratio median diameter:
68 k. Retinal IDP sample sizes are listed in the ‘N GWAS’ column in Supplementary
Table 2.

Article https://doi.org/10.1038/s41467-024-52334-1

Nature Communications |         (2024) 15:9593 9

http://www.nealelab.is/uk-biobank
www.nature.com/naturecommunications


length, even though tortuosity may vary as a function of blood vessel
length and diameter, calling for more refined or stratified measures.

Notably, venous diameter variability also exhibited high herit-
ability, which may be partially attributed to vascular beading, severe
forms of which are known to be inherited64. Interestingly, the herit-
ability of temporal angles was relatively low, likely reflecting sensitivity

to environmental factors, as well as measurement noise and metho-
dological variations, such as variability in the position of the OD across
images, and variation due to refraction that may be insufficiently
corrected by spherical and cylindrical power as our covariates. Future
work could use heritability as a guide for developing more robust
measures of these angles both in terms of the methodology for

(a) (b) (c)

(d)

(e)

(f)

Fig. 7 | Phenotypic and genetic replication of IDPs. UKBB sample sizes are given
in Supplementary Table 2, RS sample size is 8 142, OphtalmoLaus sample size is 2
276. a Scatter plot of the phenotypic correlations between our 17 IDPs in the UKBB
and in the replication cohorts, OphtalmoLaus (left) and RS (right). IDPs were cor-
rected for age, sex, eye geometry, and ethnicity (see Methods). Correlations of
correlations and their corresponding p-values are displayed. b Correlation of SNP
heritabilities, using LDSR (see Methods for statistical test), between our 17 IDPs in
the discovery (UKBB) and the replication cohort (RS). c Scatter plot of the genetic
correlations, using LDSR (see ref. 54 for statistical test), between our 17 IDPs in the
discovery (UKBB)and the replication cohort (RS).Weighted-least square regression
was used to determine trendline and the significance of the association. To dis-
tinguish between the different IDPs, the following colour and shape legend was
utilized: ‘S’ denoted tortuosity, ‘*’ for standard deviations, ‘◁’ for temporal angles,

the ‘≺’ for bifurcations, and ‘□’ for vascular density. While the red colour is used for
arteries, blue for veins, and black for no specific vessel type. Genetic correlations
are measured as the correlation of their effect sizes across genetic variants,
accounting for linkage disequilibrium (LD) (see ref. 54).dCorrelationof effect sizes
at the SNP level in the discovery (UKBB) and the replication cohort (RS), based on
OLS of SNP genotype onto phenotype value. e Benjamini-Hochberg procedure on
discovery lead SNPs from the UKBB using the RS. FDR =0.05 in red, FDR =0.5 in
orange, and observed = expected line in black. The label “missing” indicates that
these SNPs were not available in the replication cohort. P-values are based on OLS
of SNP genotype onto phenotype values. f Benjamini-Hochberg procedure on
genes discovered in the UKBB using the RS. The colour code is the same as in the
previous subfigure. The complete figures can be found in Supplementary Note 7.
P-values are based on PascalX’s two-sided Chi-square test statistic.
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extracting them (see Supplementary Methods “Phenotype extraction”
for our procedure) and implementing proper corrections for potential
confounders. Finally, median vessel diameters obtained the smallest
heritabilities, consistent with their known dependence on the envir-
onment, such as vasoconstriction induced by stress, and diseases, as
well as the aforementioned confounding by image quality and age-
dependent reduction in detectable small blood vessels.

Gene analysis of individual IDPs replicated some previously
identified gene associations with explicit vascular phenotypes, namely
tortuosity26–28, fractal dimension, vascular density51, and vessel width26,
as well as DL vascular phenotypes representing the latent space of an
autoencoder43 (see Supplementary Discussion “Comparison with pre-
vious GWAS” for complete list). Diameter variability and central retinal
equivalent, particularly for veins, received numerous gene associa-
tions, providing evidence for the genetic complexity of these pheno-
types. Finally, the ratios of vascular measures, combining arterial and
venous components, showed associations with genes not found in
individual measures, indicating sensitivity to vessel-type specific
effects. Generally, phenotypes with higher heritability tended to have
more associated genes, with some exceptions like arterial diameter
variability.

No single gene was significantly associated with all the vascular
IDPs. The most frequently observed gene was LINC00461, also known
as visual cortex-expressed gene (VISC), an evolutionarily conserved
long non-coding RNA that produces several alternatively spliced
transcripts65. Other frequently observed genes are related to eye dis-
eases (PDE6G has been linked to Retinitis Pigmentosa, and SIX6 to
glaucoma, myopia, and retinal degeneration) or vascular processes
(FLT1 linked to hypertension and heart disease). Also, HERC2 and
OCA2, two neighbouring genes related to pigmentation, were linked to
multiple IDPs.OCA2 is involved in theproductionofmelanosomes, and
therefore directly contributes to the formation of pigments, while
mutations in HERC2 have been found to modulate OCA2 expression66.
We speculate that less eye pigmentation leads to reduced protection
from damaging light, which could cause global changes on the retinal
surface, including vascular morphology.

Our study of phenotypic associations between vascular IDPs and
disease-relevant phenotypes confirmed some previously known asso-
ciations, such as the link between vessel diameter and hypertension,
likely due to alterations in vascular resistance and blood flow3,4,67.
Interestingly our MR analysis provides support for a low ratio of the
central retinal equivalent being causal for high BP. This is consistent
with a positive (but not significant) phenotypic and genetic correlation
between central retinal venular equivalent and hypertension/BP. We
also observed significant associations between IDPs capturing arterial
vessel caliber and heart attack, consistent with previous
findings18,48–50,68,69, and the previously observed link between tortuosity
and cardiovascular risk factors10,70. For a more complete discussion
refer to Supplementary Discussions “Previous associations with dis-
eases”, and “Replication of previously identified associations of retinal
vascular phenotypes with diseases”.

Additionally, we found diameter variability in both vessel types to
be positively associated with heart attack, possibly due to the forma-
tion of plaques that enlarge the vessel while reducing lumen diameter
and negatively impacting blood flow. While atherosclerosis has a
similar association profile across the vascular phenotypes, interest-
ingly the association with venous diameter variability was the stron-
gest and the only one passing statistical significance. This signal may
be driven by artery-vein crossings and calls for further investigation.

Type-2diabetes is known to affect themicrovascular circulation in
the retina resulting in a range of structural changes unique to this
tissue, such as neovascularization71, which can affect vascular density51

and arteriolar tortuosity72, among others. We note that the association
profile of our IDPs with HbA1c, which is used to diagnose type-2

diabetes73, is similar, but typically a bit weaker in terms of effect size
and significance than the latter, suggesting that our Cox model taking
into account the age of onset of the disease endpoint hasmore power.
Given that diabetes is a known risk factor for cardiovascular disease,
including angina, this could explain why many associations between
type-2 diabetes and IDPs related to vessel caliber are also observed for
angina and heart attack.

Age at death is the only trait, besides myopia, that is associated
with the venous temporal angle. Moreover, age at death also shares
some of the associations of specific diseases with our IDPs, such as a
negative association with the number of bifurcations (in line with the
results for hypertension and type-2 diabetes reported above), and
positive associations with several vein-related phenotypes besides the
temporal angle, including the diameter variability, the median dia-
meter (in line with the results for stroke, type-2 diabetes, heart attack
and atherosclerosis reported above). It seems plausible that the
reduced lifespan for these common diseases explains the observed
associations.

MR analysis allowed assessment of potential causal directions for
the links observed in the correlation analysis. Overall the effects of
CVD risk factors on our vascular IDPs tend to be stronger and more
significant than the reverse, underlining the usefulnessof IDPs for early
diagnosis of CVD. Consistent with previous findings, we found that
individuals with genetically elevated BP tend to have lower retinal
vascular density51. In addition, we found several other IDPs being
affected, suggesting that vascular remodelling can be caused by ele-
vatedBP. Also, elevatedBMImaycausehigher variability in venous and
arterial diameter, consistent with the finding that obesity may
decrease venous return of blood from the lower extremities thereby
increasing the risk of chronic venous insufficiency74. Amongst the
strongest potential reverse causal effects is the aforementioned
decrease in BP due to a higher ratio of the central retinal equivalent.
Additionally, we found that higher arterial tortuosity tends to increase
BP, confirming previous findings26. Interestingly, we also found that
vein diameter variability may also cause higher BP, which could be
mediated by anatomical alterations such as venous beading. However,
thosefindingswerenot significant after correcting formultiple testing.
The recent paper by Jiang et al.26 also reported a causal effect of arterial
tortuosity on Coronary Heart Disease (CHD). We were able to confirm
this causal link of arterial tortuosity onCHD,while no other retinal trait
was found to be causal (see Supplementary Note 4).

In the gene analysis, we observed that the pairs of diseases and
IDPs with the highest positive correlations tended to have a greater
number of shared genes, both in the intersection and coherence ana-
lyses (see Supplementary Fig. 7 “LDSR genetic correlation against
PascalX”). It is worth noting that this was not limited to pairswith high-
significance values. Besides, we again observed that the patterns dif-
fered in the analysis of coherent and anti-coherent genes. For example,
vein diameter variability and BMI had multiple genes associated
coherently, implying that the genes modulating them acted in the
same direction. Conversely, between BMI and the central equivalent
ratio, the majority of genetic effects acted in the opposite direction.
This is consistent with the previous finding that vein diameter varia-
bility and ratio central equivalent shared many anti-coherent genes.

While our study pushes the boundaries of analysing retinal vas-
cular phenotypes, it has several important limitations: First, limiting
our study to data from the UKBB, RS, and OphtalmoLaus makes our
findings specific to a population ofmostly European ancestry. Second,
there are some other potentially relevant vascular IDPs that we did not
analyse, including branching angles, artery-vein crossings, and neo-
vascularization. Third, our GWAS did not include the analysis of sex
chromosomesor rare variants. The exclusion of these factorsmayhave
limited the scope of the study and prevented the identification of
potential associations between genetic variations and the
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development of certain diseases or phenotypes. Fourth, the variability
in the number of cases with severe diseases, as shown in Fig. 4, may
influence the results. Finally, summary statistics used for the genetic
analysis of binary disease states were not obtained using GWAS with
logistic regression, but linear regression, which can have an effect a
sensitivity effect on their results (see methods: Genetic association
with diseases).

In summary, this study establishes a common framework for
studying multiple vascular phenotypes of the retina. The explicit
characterisation of retinal vasculatures will be useful both for clinical
research further exploring their usefulness as biomarkers for systemic
diseases, and fundamental research, where we provide an important
alternative reference to implicit characterizations of the retina, such as
the recent “Foundation model” for retinal images44. Our analysis of
genes and pathways unveiled a strikingly limited intersection, indi-
cating that the mechanisms governing these phenotypes are largely
independent. Our findings regarding the association between disease
phenotypes affirmed some established knowledge while uncovering
numerous additional connections. Specifically, we observed a plethora
of additional links between diameter variability, particularly in veins,
and various disease phenotypes such as age of mortality, pulmonary
embolism, and myocardial infarction. While more work is needed to
further validate and extend our findings, our analyses provide evi-
dence thatwe start to have sufficient power for obtaining functional, as
well as some initial causal insights into the genetic and disease-related
processes modulating the retinal vasculature.

Methods
UK Biobank data
The UKBB is a population-based cohort of ~488k subjects with rich,
longitudinal phenotypic data including a complete medical history,
and a median 10-year follow-up75,76. Standard retinal 45° CFIs were
capturedusing a Topcon 3D-OCT 1000Mark II. 173 814 images from84
813 individuals, were analysed. Genotyping was performed on Axiom
arrays for a total of 805 426 markers, from which ~96million geno-
types were imputed. We used the subset of 15 599 830 SNPs that had
been assigned a rsID. Baseline and disease information about the
subjects whose images were analysed can be found in Supplementary
Tables 2 and 5.

Image segmentation and quality control
Raw CFIs were segmented into pixel-wise segmentations of arteries
and veins using the DL model LWNET40, which had been trained and
validated on the publicly available DRIVE dataset. Briefly, the LWNET
consists of two concatenated small U-Nets, allowing for faster training.
To detect the OD, a random set of 100 CFIs of varying quality from the
UKBB were first annotated, and the resulting ground truths were then
used to retrain a standard U-Net previously trained to detect the OD in
various public datasets41. Last, branch points of vessels and vessel-
segment-wise and centerlines were extracted using skeletonization,
and diameters were extracted using the distance transform, both
provided in ARIA77.

A published QCmethod51 to assess image quality in the UKBB was
used, and the 75% highest-quality CFIs according to this method were
retained for further analysis. In thismethod, the image quality of 1000
CFIs was quantified by professional graders, and a CNN was then
trained to imitate the graders’ quality assessment. A significant nega-
tive correlationbetween imagequality and agewas observed, r = −0.21,
but was not corrected. For more information refer to Supplementary
Methods. Additionally, to see how the threshold on the QC can affect
the results refer to Supplementary Figs. 1–3.

Phenotyping
Retinal vessel morphology was broadly phenotyped, drawing on a set
of known relevant ophthalmological phenotypes, including a few that

were previously undescribed, such as diameter variability. Due to the
lack of consensus definitions and methods for their measurements,
their implementation can vary. Therefore, we implemented different
definitions and methods for most phenotypes, see Supplementary
Methods “Phenotype extraction” and Supplementary Methods “Cor-
relation structure and heritability of extended list of retinal vascular
IDPs”. In this study, we focused on 17 representative phenotypes with
significant heritability and relevant disease associations. These phe-
notypes were selected for independence, removing highly redundant
phenotypes with similar definitions, but keeping some highly corre-
lated phenotypes when they resulted from significantly different
definitions. The mean between left and right eye measurements was
taken whenever measurements from both eyes passed quality
control, otherwise, the single eye measurement was used. Measure-
ments from only the first measured time point were used whenever
measurements from multiple time points were present. Cohen’s d,

ð �rg � �rpÞ=ððSD2
g � SD

2

p
Þ=2Þ

0:5
, was used to quantify themean difference

between genetic and phenotypic correlations.

We used two validation procedures: (1) visual inspection of ran-
dom images in the UKBB to identify and refine potential confounders
affecting certain phenotypes, and (2) the use of the DRIVE dataset as a
proxy to assess performance in other datasets with similar character-
istics, using ground truth on it for the number of bifurcations and
temporal angles (Supplementary Methods “Validation of retinal vas-
cular IDPs”). The measured DRIVE temporal angles are available on
Figshare.

Correction for covariates
IDPs were corrected for sex, age, age-squared, sex-by-age, sex-by-age-
squared, spherical power, spherical power-squared, cylindrical power,
cylindrical power-squared, instance, assessment centre, genotype
measurement batch, and genomic PCs 1–20. Their associations with
each phenotype have been visualized in Supplementary Fig. 14 “UKBB
Covariates effects”. For GWAS, raw phenotypes were transformedwith
the rank-based inverse normal transformation (rb-INT) before
correction.

Disease association
The list of diseases analysed includes vascular and eye-related dis-
eases, risk factors, mortality, and other conditions previously found to
be associated with the retina vascular system. The disease data were
collected from the UKBB, and the official datafield identifier corre-
sponding to each disease can be found in Supplementary Table 6, and
on Figshare.

Different regression models were employed based on the nature
of the disease traits. For risk factors, ordinary least squares (OLS) linear
regression was used to estimate standardized effects using the ‘stats-
mod-els.formula.api’ library in Python 3.8.13. For binary and catego-
rical disease phenotypes, logistic regression was applied, using the
logit function from the ‘statsmodels.formula.api’ library.

Prior to conducting the regression analyses, a pre-processing step
was performed to address potential con-founding effects. Covariates
were regressedout of retinal IDPs and theobtained residualswere then
used as regressors in the linear/logistic regression analyses. For Cox
models, the covariates were added again to the models to adjust for
potential non-linear effects.

The regression models were fitted using the adjusted indepen-
dent variables, the estimates of regression coefficients (betas), and
their corresponding standard deviation (std), or odds ratios were
obtained. To determine the significance of regression coefficients, p-
values were computed and compared to predefined alpha thresholds
(0.05 and 0.001), divided by the total number of tests conducted (i.e.,
the number of independent variables multiplied by the number of
diseases analysed).
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In cases where time-to-event data was available and accurate
diagnosis was feasible, multivariate Cox proportional hazards regres-
sion was utilized. This approach allowed us to estimate hazard ratios
for diseases with time-to-event outcomes and reliable diagnoses.
‘coxph’ from the R packages ‘survival’ and ‘survminer’ were used with
default parameters.

Genome-wide analyses
GWAS for UKBB data was performed using BGENIE76. SNP-wise herit-
abilities and genetic correlations between IDPs were derived using
LDSR55. LDSR estimates SNP-wise heritabilities as the OLS slope
regressing SNP LD scores on their respective mean mean chi-squared
statistics. LDSR estimates gentic correlations as the shared genetic
basis between two traits by assessing the correlation of their effect
sizes across genetic variants, accounting for linkage disequilibrium
(LD). Gene and pathway scores were computed using PascalX57,78. Both
protein-coding genes and lincRNAs were scored using the approx-
imate “saddle” method, taking into account all SNPs within a 50kb
window around each gene. All pathways available inMSigDB v7.2 were
scored using PascalX’ ranking mode, fusing and rescoring any co-
occurring genes <100 kb apart. PascalX requires LD structure to
accurately compute gene scores, which in our analyses was provided
with the UK10K (hg19) reference panel. Gene-level cross-GWAS
coherence test between IDP pairs and between IDPs and diseases or
risk factors was computed using the PascalX cross-scoring zsum
method, testing for both coherence and anti-coherence of GWAS sig-
nals. Variants with a minor allele frequency of at least 0.001 were
considered. Correction for bias due to sample overlap was done using
the intercept from pairwise LDSR genetic correlation. The significance
thresholdwas set at0.05dividedby thenumberof testedgenes. GWAS
top hits are available on Figshare.

Genetic association with diseases
For the genetic correlation between IDPs and diseases, the summary
statistics of the diseases in LDSR format were obtained from the Neale
lab (nealelab-ldsc-sumstat-files). LDSR was computed for the diseases
and the IDPs.We limited ourselves to diseases that were categorized as
‘High confidence’ by the Neale lab.

Regarding the genes shared between IDPs and diseases, we used
the GWAS summary statistics for diseases (nealelab-sumstat-files).
However, in this case, we applied some additional filters deleting rsid
values that did not start with ‘rs’, p-values that were missing, and low
confidencevariants. The significant genes for eachdisease are listed on
Figshare.

Binary disease states were included in the genetic analysis,
however, their results require additional caution, since the GWAS
summary statistics from the Neale lab used linear regression for
all the disease phenotypes, which is not ideal for non-continuous
response variables. It should be noted that the covariates used for
the GWAS analysis of our IDPs and those used for the risk factors/
diseases are almost, but not exactly, the same (age, sex, age-
squared, age-by-sex, age-by-sex-squared, and first 20 PCs for risk
factors/diseases).

Mendelian Randomisation
To perform the bidirectional two-sample MR analyses we used the
TwoSamplesMRpackage in R60. We first considered independent SNPs
significantly (p < 5 × 10−8) associated with the exposure as genetic
instruments, pruning SNPs with r2 > 0.001 to a lead SNP according to
LD estimates from the UK10K reference panel79. In cases where the
number of instruments was below 10, we relaxed the selection
threshold for instruments to p < 10−6. In general, the number of
instruments tended to be lower when using IDPs, rather than disease
traits as exposures, which may be due, at least partially, to lower

sample sizes. For this reason, when using IDPs as exposures we relaxed
the selection threshold for instruments to p < 10−6.

To assess instrument strength, we computed the F-statistic from
the regression of the exposure on the instruments80 defined as
F = (R2 × (N − k − 1))/((1 −R2) × k), where R2 is the explained variance of
the exposure by the instruments, N is the sample size of the GWAS for
the exposure, and k is the number of instruments. For all the forward
and reverse MR pairs, the F-statistics were >50 suggesting that the
selected SNPs were suitable instruments.

Causal estimates were based on the inverse variance-weighted
method (IVW)61. In particular, we used a fixed-effect model when
having three or less instruments, and otherwise a random-effects
model. To complement and enhance the reliability of the results, we
applied additional methods, namely MR-Egger, weighted median, and
weighted mode81,82 MR. For all exposure-outcome pairs, the estimated
causal effects were consistent in the direction across the fourmethods
whenever significant. Differences in significance levels are likely
because the power of these additional methods is smaller than that of
the IVW method83. MR risk factors for all methods are available on
Figshare.

Notably,MR-Egger intercepts ofmost of the associationswere not
significantly different from zero, suggesting that no significant pleio-
tropy was detected (see Figshare cor complete MR-Egger results).
Lastly, leave-one-out (LOO) analyses showed that the estimates were
not biased by any single SNP (see Figshare for complete LOO results).
Overall, the sensitivity analyses confirmed the reliability ofmost of our
putative causal effects in both directions.

Since the number of UKBB subjects for which we extracted IDPs
was much smaller than the number of UKBB subjects used to study
disease phenotypes, our analysis can still be considered a two-sample
MR setup, and potential bias due to sample overlap is expected to be
small and in direction of the null84,85.

Replication
TheRS is a prospective population-based cohort study of people living
in Ommoord, a district of the city of Rotterdam86. The RS consists of
four cohorts, all of whichwere used in this replication. Each cohortwas
followed for multiple rounds of follow-up examinations every
4–5 years. Most of the patient visits in the RS involved the capture of
CFIs on both eyes. Due to the multi-decade span of the RS, multiple
devices, capture conditions and fields (macula and disc centred) are
present in the dataset. In the RS, DNA extraction was performed using
whole blood samples following standardized and previously described
protocols86. Genotyping was performed using both the Infinium II
HumanHap550(-Duo) (RS-I & RS-II) and 610-Quad Genotyping Bead-
Chip (RS-I & RS-III; Illumina, San Diego, CA, USA). Imputation of mar-
kers was performed using the Haplotype Reference Consortium
version 1.1 as the referencepanel87. The CoLaus study, initiated in 2003
in Lausanne, Switzerland, involves over 6 700 volunteers aged 35 to 75.
OphtalmoLaus, a segment of CoLaus, delves into ocular health. Oph-
talmoLaus CFIs were acquired with Topcon 2000 or Topcon triton.
The number of initial images was 6 503, corresponding to 2 276 par-
ticipants. See Supplementary Methods “Replication methods” for
more details.

Phenotyping and cross-correlations. In this study wemade use of RS
imaging from recent rounds (RS-I-4, RS-II-4, RS-III-1, RS-IV-1) due
to the generally higher quality and number of these images, even
though in some cases this meant less participants. We quality-
controlled the images by automatically filtering out images where
the OD was near or out of the bounds of the CFI. Both disc- and
macula-centred images were included. After QC, the number of
participants with usable images per RS cohort was 2 710 (RS-I), 1
169 (RS-II), 3 350 (RS-III), and 2 658 (RS-IV). Most visits in the RS
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captured multiple CFIs per participant. The average number of
usable CFIs per subject varied between 2.96 (RS-I) and 7.75
(RS-IV), including both eyes. A participant’s features were com-
puted as the mean over all their images’ features.

To accommodate the use of disc-centred images and the high
variability in imaging conditions present in the RS, we made use of
segmentation and feature extraction methods trained and tested on
RS data. The 17 phenotypes computed for the main study were
implemented in a fundus analysis software used in-house following the
original implementation.

To compute the RS phenotypic cross-correlations in Fig. 7, IDPs
were corrected for age, sex, eye geometry, imaging device (if multiple
were used within the same cohort, dummy coded), and genomic PCs
1–10. Eye geometry was included as a combination of the spherical and
cylindrical powers into one variable as spherical equivalent (spherical
power + cylindrical power/2).

For OphtalmoLaus, in the case of multiple images for the same
participant, we kept the one with the highest QC score. The number of
participants after removing the images that failed the segmentation or
IDPs computation, and after QC, wasN = 1 715 participants. If both eyes
survived this screening, we averaged out the phenotypes of the two
eyes, while if only one eye survived thenwe considered the phenotypes
of that eye. After that, we cross-referenced with the sample file and the
final number of subjects was 1 435. We corrected for the following
covariates: age, sex, age-by-sex, age-squared, cylindrical and spherical
powers, spherical-squared, cylindrical-squared, and genomic PCs 1–10.

GWAS. As imputation and QC of the four RS-cohorts were done
separately, we also performed the GWAS analyses separately and then
meta-analysed the results. For the initial GWAS analyses, we performed
linear regressions using Plink 2.088. The included covariates were the
same as for the phenotypic correlation, i.e. age, sex, eye geometry,
imaging device, and genomic PCs 1–10. We performed an inverse
variance weighted fixed-effect meta-analysis, using METAL software.89

P-values for the association results were calculated by using the z-
statistic. The meta-analysed significant hits were pruned using Plink
2.0. Variants were considered independent if they were at least 500 kb
apart and had an R2 <0.1.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source Data used to generate all figures are available on Figshare
(https://doi.org/10.6084/m9.figshare.26509756). GWAS summary sta-
tistics are available on Zenodo (https://zenodo.org/records/12779552)
and on the GWAS Calatog (https://www.ebi.ac.uk/gwas). Phenotypic
data are under restricted ac-cess. Our phenotypic data derived from
images can be accessed through the respective cohort platforms:
UKBB (https://www.ukbiobank.ac.uk/), RS (https://www.erasmusmc.
nl/en/research/departments/epidemiology), and OphtalmoLaus
(https://www.colaus-psycolaus.ch/autres-etudes/ophtalmolaus). The
raw UKBB data are protected and not open access; however, they can
be obtained upon project creation and acceptance. Similarly, replica-
tion data from theRS andOphtalmoLaus studies canbemade available
to researchers upon request through a data transfer agreement.

Code availability
Code is available on Zenodo: https://zenodo.org/records/13347953.
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