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Abstract
Background Superimposition of farfield (FF) and nearfield (NF) bipolar voltage electrograms (BVE) complicates the con-
firmation of pulmonary vein (PV) isolation after catheter ablation of atrial fibrillation. Our aim was to develop an automatic 
algorithm based on a single-beat analysis to discriminate PV NF from atrial FF BVE from a circular mapping catheter during 
the cryoballoon PV isolation.
Methods During freezing cycles in cryoablation PVI, local NF and distant FF signals were recorded, identified and labelled. 
BVEs were classified using four different machine learning algorithms based on four frequency domain (high-frequency 
power  (PHF), low-frequency power  (PLF), relative high power band,  PHF ratio of neighbouring electrodes) and two time 
domain features (amplitude  (Vmax), slew rate). The algorithm-based classification was compared to the true identification 
gained during the PVI and to a classification by cardiac electrophysiologists.
Results We included 335 BVEs from 57 consecutive patients. Using a single feature,  PHF with a cut-off at 150 Hz showed 
the best overall accuracy for classification (79.4%). By combining  PHF with  Vmax, overall accuracy was improved to 82.7% 
with a specificity of 89% and a sensitivity of 77%. The overall accuracy was highest for the right inferior PV (96.6%) and 
lowest for the left superior PV (76.9%). The algorithm showed comparable accuracy to the classification by the EP specialists.
Conclusions An automated farfield-nearfield discrimination based on two simple features from a single-beat BVE is feasible 
with a high specificity and comparable accuracy to the assessment by experienced cardiac electrophysiologists.
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Abbreviations
BVE  Bipolar voltage electrogram
CMC  Circular mapping catheter

NF  Nearfield
FF  Farfield
LA  Left atrium
PV  Pulmonary vein
PVI   Pulmonary vein isolation
PV-NF  Pulmonary vein nearfield
atrial-FF  Atrial farfield

1 Introduction

Pulmonary vein (PV) isolation (PVI) is the cornerstone 
of catheter ablation for the treatment of atrial fibrillation 
[1]. A lesion set around the PV antrum is performed using 
point-by-point radiofrequency or “single-shot” ablation 
devices. Without PV ectopy, the endpoint of the interven-
tion is the electrical elimination of the local PV electrogram 
using a circular mapping catheter (CMC) placed distal to 
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the ablation lesion (entrance block). The bipolar voltage 
electrogram (BVE) measured between two electrodes of 
the CMC may, however, not only consist of nearfield (NF) 
local PV BVEs representing the target for ablation, but also 
be superimposed by farfield (FF) atrial BVE arising from 
the surrounding structures such as the right atrium, the left 
atrial appendage or the left atrium (LA). Discrimination of 
FF from NF BVE can be challenging, especially when both 
BVE temporally overlap. By pacing manoeuvres from the 
distal coronary sinus or the left atrial appendage, discrimi-
nation between FF and NF BVE can be facilitated [2, 3]. 
However, especially for single-shot devices such as cryobal-
loon (CB) catheters, additional diagnostic catheters enabling 
such pacing manoeuvres are often not advanced into the LA.

Temporal splitting of the CMC BVE into FF and NF with 
subsequent disappearance of the FF BVE is an established 
endpoint of the freezing cycle of CB PVI. However, due to 
the design-specific distance of the CMC from the occluded 
ostium during the freezing cycle, PV BVE are not always 
present at the location of the CMC during the freeze. Fur-
thermore, the CMC sometimes needs to be positioned even 
deeper in the PV for stabilization purpose without penetrat-
ing myocardial sleeves. For this condition, ostial confirma-
tion before and after ablation needs to be performed without 
the benefit of visible signal splitting and disappearance. To 
address this challenge of FF vs NF discrimination, a single-
beat algorithm independent of the ablation technique would 
be beneficial to identify PV NF to assess the success of an 
ablation. Such an algorithm would allow as well for a reli-
able confirmation of PVI using the CMC during RF PVI, 
since only one CMC is commonly used and synchronous 
disappearing of the PV BVE in the other ipsilateral vein 
cannot be documented.

The aim of the current study was to develop an automatic 
algorithm based on a single-beat analysis to discriminate 
PV nearfield from LA farfield BVE from a circular mapping 
catheter after cryoballoon PVI.

2  Method

2.1  Specifications

We included consecutive patients referred for first-time 
catheter ablation of atrial fibrillation in which a cryobal-
loon system (Arctic Front Advanced, Medtronic, USA) in 
combination with an inner lumen diagnostic CMC catheter 
(Achieve, Medtronic) was used. All patients signed informed 
consent prior to the study, which was approved by the local 
ethics committee (Ethics Committee Northwest and Central 
Switzerland) and conducted in accordance with the Declara-
tion of Helsinki. The authors had full access to and take full 
responsibility for the integrity of the data.

The loop diameter of the octapolar CMC was 20 mm 
with an inter-electrode spacing of 10 mm and an electrode 
size of 1mm. Only patients in sinus rhythm during abla-
tion enabling them to identify a distinct PVI with BVE 
from the PVs showing delay and subsequent disappearance 
during the freezing cycle (representing entrance block) 
were included in the study. Intracardiac bipolar signals 
were acquired and stored using a standard electrophysi-
ology system (Sensis, Siemens Healthineers, Erlangen, 
Germany). For intracardiac signals, a high-pass and low-
pass filter with cut-offs at 30 Hz and 300 Hz respectively 
was used. A 50-Hz notch filter was enabled for all signals, 
which were recorded with a sampling rate of 2000 Hz.

2.2  Cryoballoon ablation

Cryoballoon ablation was performed under conscious 
sedation as published in detail elsewhere [4]. Briefly after 
a single transseptal puncture, the CB in combination with 
the CMC catheter was advanced into the LA through a 
steerable sheath (FlexCath Advance, Medtronic). With the 
CMC positioned in the PV distal to the CB, the CB was 
inflated and advanced to the ostium of the PV. Confirma-
tion of PV occlusion with contrast injection was performed 
at the physician’s discretion. Before the freezing cycle was 
started, the CMC was retracted to the CB catheter tip to 
enable PV BVE documentation. The start of the freeze and 
the instance of complete PV isolation were tagged in the 
EP system for subsequent BVE characterization.

2.3  Manual electrogram classification

To create the database for the development of the auto-
matic algorithm, only freezing cycles with apparent delay 
and subsequent disappearance of local pulmonary vein 
signals, proving successful acute PVI confirmed by the 
operating physician and EP engineer, were included. The 
relevant intracardiac BVEs were imported into a custom 
software for manual classification by the EP engineer. 
With a sweep speed of 100 mm/s, the relevant BVE were 
reviewed from the beginning to the end of the freezing 
cycle and the electrograms were selected from their onset 
to the offset (Fig. 1). In the three beats before acute PVI, 
the remaining electrogram components were manually 
classified as atrial farfield (atrial-FF) and the disappear-
ing electrogram as PV nearfield (PV-NF). One of the three 
selected beats of each group was randomly selected for 
further analysis. The BVEs at the start of the ablation were 
either classified as atrial-FF, as PV-NF or as combined 
atrial-FF and PV-NF (combined FF-NF) according to the 
observation during isolation.
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2.4  Feature development

To reduce artefacts, noisy electrograms were discarded 
based on the assessment of a reference period before the 
P-wave. Six features were extracted from the BVE to feed 
the classification algorithms. For the four frequency domain 
features, the power spectrum was calculated using the fast 
Fourier transform (FFT) with a window width of 35 ms and 
zero-padding in order to have a frequency resolution of 10 
Hz. We split this spectrum into a low  (PLF: 0 to 150 Hz) and 
high power frequency band  (PHF: 150 to 300 Hz) at a cut-off 
of 150 Hz based on the observed characteristic of the power 
spectrum (Fig. 2). The power spectrum was calculated for 
all eight bipolar electrode pairs of the CMC while sliding the 
window from the onset to the offset of the BVE as delimited 
in the electrogram characterization step. Out of the eight 
electrode pairs, only the BVE having the highest absolute 
value of  PHF, suggesting the closest NF source to this elec-
trode pair, was retained. Figure 2 shows the representation in 
the time and frequency domains for a typical example of the 
three classes of BVE (PV-NF, atrial -FF, combined FF-NF). 
As a third frequency domain feature, we calculated the rela-
tive high power band  (PHF_rel) as  PHF divided by the overall 
power between 0 and 300 Hz.

The ratio of the high power band  (PHF) with the two 
neighbouring bipolar electrode pairs  (PHF_Neighbor) was calcu-
lated, and the highest power ratio  (PHF/PHF_Neighbor) was used 
as the fourth frequency domain feature. This was designed 
based on the hypothesis that an electrical potential generated 
by a close-by source should have a higher spatial resolution 

than a distant one [5]. To take into account the wide range 
of BVE amplitude, which can be explained by the number of 
myocardial fibre bundles, their orientation and the distance 
with regard to the bipolar electrode pairs, we also included 
the amplitude of the BVE  (Vmax) as the fifth feature. Finally, 
we calculated the first derivative over the width of the BVEs 
and characterized these samples based on their proportion 
with a steep slew rate >0.15 V/s (slew-rate) as the sixth fea-
ture. The features were normalized to approximate Gaussian 
distributions in the case of skewed distribution.

Due to the relationship of the BVE characteristics with 
the distance of the electrical dipole source, we additionally 
measured the minimal 3D distance (CartoSeg, Biosense 
Webster, USA) of the left atrial appendage from the left 
superior PV on the reconstructed LA anatomy using the 
pre-procedural cardiac magnetic resonance imaging as an 
anatomical feature.

2.5  Machine learning electrogram classification

To discriminate a FF from NF BVE based on the features 
extracted from the three classes (PV-NF, atrial-FF, combined 
FF-NF), we used the following machine learning (ML) clas-
sifiers: decision tree, linear discriminant analysis, support 
vector machine (SVM) and k-nearest neighbour (KNN). To 
protect against overfitting, we evaluated the predictive model 
with a 4-fold cross-validation and kept 25% of the patients 
as a test subset for the final estimation of the performance of 
the model. To calculate confidence intervals for the accuracy 
and ROC curves, we used bootstrapping. Feature selection 

Fig. 1  Representative bipolar 
voltage electrograms (BVE). 
The width of the coloured block 
represents the onset and offset 
of the analysed electrogram. 
Before ablation (left column): 
BVE within a yellow block 
was defined as combined 
FF-NF since no isoelectric line 
between the amplitudes could 
be observed. The informa-
tion of a combined BVE was 
retrospectively gained based on 
the observation of the delayed 
PV-NF (red block) BVE dur-
ing ablation (middle column). 
Green-circled BVE represents 
the FF of the red-encircled 
PV-NF. After isolation, only 
atrial-FF was visible. Ventric-
ular-FF was excluded from the 
analysis. FF, farfield; ICEG, 
intracardiac electrogram; NF, 
nearfield; PV, pulmonary vein
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was achieved by systematic experimentation, using a for-
ward-wrapped method based on the overall accuracy of the 
prediction model.

2.6  Clinical classification

To assess the clinical value of the automatic algorithm, we 
randomly extracted a set of 80 BVE from the overall dataset 
for classification by four experienced physicians and one EP 
engineer. The classification was performed in a single-beat 
time window based on the presence or absence of an NF 
BVE. The accuracy of their judgment was compared to the 
automatic results of our algorithm. Interrater reliability was 
assessed using the intra-class correlation coefficient  (ICC).

2.7  Statistical analysis

Continuous variables are presented as mean ± standard devi-
ation or as median and interquartile range as appropriate. 
Receiver-operating characteristic (ROC) curves were gener-
ated, and the area under the curve (AUC) was calculated for 
uni- and multivariate analyses. For statistical analyses, we 
used Matlab (Mathworks, Inc., USA).

3  Results

3.1  Dataset

We analysed 57 patients for a total number of 2680 BVE 
(eight electrode pairs of the CMC per acquisition). The 
analysis was performed for the electrode pair with the high-
est high-frequency band power of each separate recording, 
resulting in 335 analysed BVEs. The examples were bal-
anced between the two classes with the presence of PV-NF 
(51.3%) (Table 1). The median duration of the BVE from 
onset to offset was 58 ms (95% CI: 26 to 86) for PV-NF, 70 
ms (95% CI: 50 to 100) for Atrial-FF and 94 ms (95% CI: 
71 to 139) for combined potentials.

3.2  Features

The absolute high-frequency power  (PHF) was identified as 
the best single-feature classification with an overall accu-
racy of 79.4% (Supplemental Fig. 1). Performance of other 
single-feature classifications can be found in Supplemental 
Table 1. No significant difference in variability of the fea-
tures derived from the BVEs during PVI with those before 

Time [ms]

Frequency [Hz]

]V
m[ GE ralopiB

]V
m[ edutilp

mA TFF
PV-NF + Atrial-FF Atrial-FF PV-NF

Fig. 2  Representation of time and frequency domain measures. Time 
and corresponding frequency domain representation of the three 
exemplary classes during ablation in the same vein. The blue lines 
in the bipolar electrogram (EG) (upper row) represent the manually 
defined onset and offset of the analysed bipolar voltage electrogram. 

When a local PV-NF is present, high frequencies are visible in the 
frequency domain, as illustrated in the lower row by the highlighted 
150 to 300 Hz frequency band. The area under the curve reflects the 
power. FF, farfield; FFT, fast Fourier transform; NF, nearfield; PV, 
pulmonary vein
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and after PVI was identified. Furthermore, the feature 
variations over the three beats were small compared to the 
range of values from all BVEs, suggestive of stable feature 
characteristics.

3.3  Machine learning classification

The six frequency and time domain features were fed to 
the four classification algorithms. The SVM algorithm per-
formed best and achieved a good accuracy of 82.7% (95% 
CI: 80.3% to 85.1%) using two features only: the power in 
the high-frequency band  (PHF) and the maximal amplitude 

of the bipolar voltage  (Vmax) (Table 2). The ROC curves 
of this model for all veins and the stratified right and left 
PVs are shown in Fig. 3. Analysing the accuracy on an indi-
vidual, the PV-selective level showed an accuracy of 96.6% 
for the RIPV, 85.2% for the RSPV, 80.8% for the LIPV and 
76.9% for the LSPV. Including the distance between LAA 
and LSPV as measured on the pre-procedural cardiac mag-
netic resonance imaging with a cut-off of < 5mm (n=29) or 
> 10mm (n=9) for the LSPV results in a specificity of 75% 
(22 of 29) and 100% (9 of 9) for the atrial-FF prediction. 
Adding more features to the SVM algorithm resulted in an 

increase of overall accuracy of only 1 or 2% at the cost of 
more complexity and a lower accuracy with the holdout set 
being suggestive of overfitting.

3.4  Clinical evaluation

The mean accuracy, sensitivity and specificity for the signal 
assessment by the five EP specialists were 85.2%, 91.9% 
and 78.5%, respectively, with an ICC of 0.69. For the same 
samples, the ML algorithm showed a comparable accuracy 

Table 1  Classification of 
PV signals. Dataset from 57 
patients from all four PVs. 
The table shows the number of 
examples for each of the four 
PVs, taken before ablation, 
during the ablation and after 
the complete block. In the 
latter case, PV-NF is always 
absent, by definition. The 
total number of signals with a 
farfield component is balanced 
compared to signals without a 
farfield component (163 to 172)

Classification LSPV LIPV RSPV RIPV Total

Atrial-FF Before 2 3 6 0 11 Signals 
without 
nearfield 
compo-
nent:

163 (48.7%)

During 32 28 15 10 85
After 31 21 7 8 67

PV-NF Before 2 3 9 0 14 Signals with 
nearfield 
compo-
nent:

172 (51.3%)

During 19 21 21 8 69
After

Combined PV-NF 
and atrial-FF

Before 38 25 8 9 80
During 6 1 1 1 9
After

Total 130 102 67 36 335

Table 2  Confusion matrix using the optimized SVM model for the 
classification of signals into nearfield and farfield for all veins. The 
SVM algorithm classified the signals correctly in 277 of 335 (82.7%) 
cases

True class Nearfield
N=172

132 (77%) 40 (23%)

Farfield
N=163

18 (11%) 145 (89%)

Nearfield Farfield
Predicted class

Fig. 3  ROC curves of the 
classification algorithm. Left: 
ROC curve of the automatic 
classification for all veins. The 
red dot corresponds to the best 
overall accuracy. The light blue 
zone represents the 95% CI. 
AUC=0.907 (0.874 to 0.935). 
Right: ROC curve of the auto-
matic classification stratified 
for the right PVs (plain line), 
AUC=0.943 (0.875 to 0.978), 
or left PVs (dashed line), 
AUC=0.887 (0.842 to 0.924).



2052 Journal of Interventional Cardiac Electrophysiology (2023) 66:2047–2054

1 3

of 82.7% with a lower sensitivity (76.3%) but higher speci-
ficity (89.2%).

4  Discussion

Reliable discrimination of FF from NF BVE from the 
pulmonary veins during catheter ablation of AF is of high 
clinical importance. Especially for single-shot devices 
such as the CB catheter, correct electrogram interpreta-
tion can be challenging. The main findings of our study 
are as follows: [1] For the discrimination of farfield from 
nearfield signals using a single feature, the absolute 
power in high-frequency showed the best overall accu-
racy with 79.4%, followed by the proportion with a slew 
rate > 0.15 V/s (slew-rate), voltage amplitude, absolute 
power in low-frequencies  (PLF), relative high-frequency 
power  (PHF-rel) and  PHF_Neighbor. [2] With multiple features 
in the prediction model, the combination of a frequency 
domain  (PHF) and time domain analysis  (Vmax) feature 
yielded the best overall accuracy of 82.7% to predict 
NF-PV signal from a single-beat BVE. ##With the (rela-
tively) high specificity of 89% and a sensitivity of 77%, 
the implementation as a diagnostic test to identify if addi-
tional ablation for PVI is needed is reasonable. [3] On a 
vein-selective analysis, the overall accuracy was highest 
for the right inferior PV (96.6%) and lowest for the left 
superior PV (76.9%). Implementing the information on 
the distance between LSPV and the left atrial appendage, 
the accuracy of the algorithm could be improved for the 
LSPV. [4] The algorithm showed numerically compara-
ble accuracy to the classification by five experienced EP 
specialists. However, further external testing on larger 
datasets is required to confirm the results.

Intracardiac uni- and bipolar voltage electrograms are 
the fundamental basis for any invasive electrophysiologi-
cal study. The BVE measured between two electrodes 
of an EP catheter is used to characterize the underlying 
propagation of the depolarization of the myocardial cells 
based on temporal activation, electrogram morphology 
and amplitude. Despite reflecting more local myocardium 
depolarization than for unipolar voltage electrogram, the 
BVE is still influenced to some extent by distant or far-
field depolarization of the myocardial tissue. In addition 
to the underlying tissue characteristics, the shape and size 
of the EGM [6] are strongly influenced by the electrode 
size, inter-electrode distance and relative orientation of the 
bipolar electrodes in relation to the propagating wavefront 
of the cellular depolarization [7].

4.1  Characteristics and features of local bipolar 
voltage electrogram

PV potentials are defined and colloquially described as 
“sharp” nearfield BVEs following a farfield BVE from the 
LA. Dependent on the position of the CMC within the 
PV, the PV signal is more or less easily discernible and 
separable from the atrial-FF BVE and varies between the 
veins [8]. This “sharpness” of the local PV BVE is men-
tioned throughout the publications, but to the best of our 
knowledge, a reproducible, quantitative measure has never 
been published. The sharpness of an electrogram can be 
defined in the time domain based on the signal width and 
the slew rate of the deflection. For the sensing of atrial sig-
nals in cardiovascular implantable electronic devices, for 
instance, an interpolated slew rate in the range of 0.5V/s is 
recommended as a characteristic for nearfield atrial signal 
detection [9]. In our study, with a “sharpness criteria” of a 
cumulative threshold of a slew rate above 0.15V/s for the 
local BVEs, this feature, however, was not identified as a 
reliable predictor to identify nearfield BVE. However, the 
frequency domain–based high power frequency spectrum 
at a cut-off of 150 Hz might address this lack of definition 
for nearfield characterization.

4.2  Farfield elimination

Farfield (interference) elimination was aimed at using a 
novel dipole source model to describe the impact of the 
nearfield and farfield source on the measured voltage signal 
[10, 11]. With this approach, an improvement in the spa-
tial resolution of the electrogram from approximately 10 to 
2.5 mm was expected. The assumed spatial resolution of 10 
mm with the standard voltage calculation is in line with our 
observation on the impact of the LAA on the LSPV BVE. 
With the inclusion of the distance between LSPV and LAA, 
we observed that our frequency-dependent algorithm works 
highly reliably at distances between LAA and LSPV above 
10 mm with 0% false positive LA NF detection. However, 
with distances below 5 mm, the farfield BVE of the LAA 
shows similar frequency characteristics (especially the high-
frequency power spectrum) with the nearfield PV signal. 
Using this dipole density modelling approach on our con-
tact-based BVE might help to further improve the accuracy 
of our algorithm, especially for the LSPV with the LAA in 
close proximity to the CMC.

Another established approach to eliminate the impact of 
farfield on the BVE is to use dedicated catheter designs. In 
general, catheters with closely spaced electrodes are rec-
ommended. Computational simulations showed that smaller 
electrodes with narrow spacing produce sharper BVE with 
higher electrogram amplitude [5, 7]. However, when the 
option of selecting a specific catheter design is not available 
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(as for CB PVI), the above-described frequency analysis 
with a dedicated high-frequency cut-off for the power spec-
trum might be a powerful alternative to eliminate the farfield 
impact of the local BVE.

4.3  Strategies to discriminate farfield and nearfield 
electrograms for PVI confirmation

A simple way to discriminate between FF and NF BVE is to 
observe the temporal evolution of the signal during ablation. 
When a local PV-NF is detectable, this signal shows a tem-
poral delay with the advancement of the lesion, allowing the 
definition of a local PV signal based on the progression of 
the PV entrance block. However, no observable delay must 
not inevitably imply that the vein is already isolated, since 
BVE might still be hidden in the LA farfield component. 
Refraining from further ablation, the endpoint of PVI will 
not be reached. On the other side, with an already isolated 
vein, additional unnecessary ablation might result in com-
plications, such as phrenic nerve palsy reported for CB PVI 
of the RSPV.

Numerous pacing strategies have been established in 
clinical practice, including decremental pacing, differen-
tial pacing, perivenous pacing or intravenous pacing [3]. 
However, when pacing from the distal CS, overlapping of 
the two BVEs (PV-NF and atrial-FF) was still observed in 
65% of the patients.

Another approach to differentiate PV nearfield from LA 
farfield has been described using a multi-electrode map-
ping catheter in combination with an automated software 
implemented in the mapping system (Rhythmia, Boston 
Scientific, USA) [12]. With this software (Lumipoint), 
areas with a simultaneous electrical activation were high-
lighted, allowing for an identification of a farfield effect 
from a surrounding structure, such as for instance the 
LAA. However, this approach requires a detailed electro-
anatomical mapping after ablation. Time domain bipolar 
voltage electrogram characteristics were used to define a 
library of characteristic PV electrograms [13]. Besides 
the typology (including the amplitude and the number of 
peaks), the minimal and maximal slope of the BVE, its 
peak angle and amplitude were used to characterize the 
BVE. Using this library, a 2-step algorithm showing an 
accuracy of 93% was developed. In a subsequent study, 
the library-dependent classification algorithm on BVE was 
expanded and validated to the herein-used octapolar CMC 
for CB PVI [14]. In contrast to this strategy, our algorithm 
is not dependent on a training library and has the poten-
tial to be implemented as fully automatic approach, since 
only two simple features are required. A frequency-based 
analysis of the PV BVE from a decapolar CMC with 15 
mm, 20 mm or 25 mm diameter (Lasso, Biosense Web-
ster) was already performed 10 years ago [15]. After FFT, 

the bimodal amplitude spectrum (similar to that shown by 
our study in Fig. 2) was characterized by the full-width 
half maximum (FWHM) for the first and maximum peak 
in the spectrum, similar to the low-frequency power fea-
ture in our manuscript. Furthermore, the frequency of the 
maximum second peak times the amplitude divided by 
the peak amplitude and the frequency cut-off that divides 
the FFT area in two equal halves were computed, similar 
to our frequency cut-off. Our model showed a comparable 
accuracy with the inclusion of only two features, making 
the interpretation and automatic implementation easier.

5  Outlook

The herein presented algorithm for discrimination of FF 
from NV BVE based on frequency analysis of BVE has the 
potential to be applied accordingly to any catheter types. 
This approach might be also helpful for ablation catheters 
to identify the nearfield and farfield component of the BVE. 
With that information and the estimated lesion size, the 
efficacy of an ablation might be estimated. Furthermore, a 
catheter-specific filter applied to the BVE might allow for 
a local NF-based onset annotation for activation mapping.

6  Limitations

Despite having analysed 335 BVEs, this is still a relatively 
small single-centre study investigating the feasibility of this 
approach. Second, the features were selected based on the 
balanced accuracy from the ROC curves to optimize sen-
sitivity and specificity. For the final clinical application as 
a diagnostic test, a cut-off based on the improved speci-
ficity might be advisable. Third, the current algorithm is 
not implemented yet as a real-time algorithm and requires 
offline data processing. Fourth, the clinical validation and 
comparison with the automatic algorithm were performed by 
an internal dataset only, which was used as well for training. 
Fifth, the results are only valid for the tested catheter and 
need to be verified for different catheter designs. Finally, the 
training was performed only with BVE during sinus rhythm. 
If and how the algorithm will work for patients in AF needs 
further clarification.

7  Conclusions

In conclusion, we presented and validated an automatic 
classification based on only two simple features extracted 
from a single-beat PV electrogram with a high specificity, 
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allowing using it as a diagnostic test. A simple frequency 
domain analysis with a high-pass cut-off of 150 Hz seems 
to be reasonable for this catheter design to discriminate far-
field from nearfield electrograms. The classification results 
were comparable to the assessment by five experienced EP 
specialists showing its clinical practicality.
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