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Abstract1

2

1. Common garden experiments are valuable to study adaptive phenomenon and adaptive potential, in3

that they allow to study local adaptation without the confounding effect of phenotypic plasticity. The4

QST−FST comparison framework, comparing genetic differentiation at the phenotypic and molecular5

level, is the usual way to test andmeasurewhether local adaptation influences phenotypic divergence6

between populations.7

2. Here, we highlight that the assumptions behind the expected equality QST = FST under neutrality8

correspond to a very simple model of population genetics. While the equality might, on average,9

be robust to violation of such assumptions, more complex population structure can generate strong10

evolutionary noise.11

Synthesis We highlight recent methodological developments aimed at overcoming this issue and at providing12

a more general framework to detect local adaptation, using less restrictive assumptions. We invite13

empiricists to look into these methods and theorists to continue developing even more general meth-14

ods.15

Keywords: Local adaptation, common garden, QST − FST comparison, population structure, phenotypic di-16

vergence, population genetics, quantitative genetics.17

Introduction18

There are three main possible responses from organisms subjected to climate change (Parmesan 2006; Aitken,19

Yeaman, Holliday, Wang, and Curtis-McLane 2008): they can (i) disperse and change their range limits, match-20

ing the new geographic repartition of their ecological niche, (ii) quickly acclimate to the new climatic condi-21

tions through (possibly transgenerational) phenotypic plasticity or (iii) in the longer run, evolve genetically22

to match the new climatic conditions through an adaptive process. Predicting the likeliness of these three out-23

comes (or any combination thereof) is challenging and requires both reliable models and detailed information24
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about the focal species. Probably one of the most difficult tasks is to assess the extent to which phenotypic25

plasticity or genetic adaptation allow a species to cope with the climatic challenge. This is, in part, because26

phenotypic plasticity (including epigenetic changes) and adaptive evolution cannot be disentangled from sim-27

ple observations in the natural environment, and also because they greatly differ in their characteristics to28

respond to climate change (phenotypic plasticity having a much shorter response time).29

Fortunately, “common gardens”, experimental settings in which offspring from different populations are30

raised under the same (sets of) environmental conditions, allow to circumvent this difficulty and to assess the31

amount of adaptive genetic variation that exists among populations (Kawecki and Ebert 2004; Savolainen, Las-32

coux, and Merila 2013; de Villemereuil, Gaggiotti, Mouterde, and Till-Bottraud 2016). A particular challenge33

in the analysis of such experiment is to distinguish between neutral and adaptive genetic variation among34

populations. Indeed, even in absence of selection, and as a result of the combined effect of drift, mutation35

and migration, populations are expected to diverge from a phenotypic point of view, just as they do from a36

genetic one (Lande 1992). As the fixation index (FST) measures the genetic divergence between populations37

from a molecular point of view, the phenotypic divergence can be measured through a parameter named38

QST (Spitze 1993). Both can be defined as the ratio of the between-population genetic variance over the total39

genetic variance (Lande 1992; Spitze 1993):40

QST =
𝑉B

𝑉B + 2𝑉A
, (1)

where𝑉A is the within-population additive genetic variance and𝑉B is the between population genetic variance.41

Moreover, in the absence of selection (i.e. for a purely neutral trait), it is expected that FST = QST (Whitlock42

2008). Thus, hypothesis testing based on a null hypothesis of neutrality, as first suggested by Spitze (1993)43

has generated a lot of literature focused on the QST − FST comparison (reviewed in Leinonen, O’Hara, Cano,44

and Merilä 2008; Leinonen, McCairns, O’Hara, and Merilä 2013). In these studies, a phenotypic trait with QST45

significantly larger than the FST estimated from neutral markers is considered as being under local adaptation,46

while a QST significantly smaller than FST is taken as a sign of balancing selection (Spitze 1993; Leinonen et47

al. 2013). This framework of QST − FST comparison has been heavily criticised for being subjected to many48

issues and limitations. For example, QST is notoriously difficult to estimate and its (often large) uncertainty49

should be carefully accounted for in the comparison (O’Hara and Merilä 2005); it can also be influenced by50

the effect of dominance and inbreeding (Goudet and Büchi 2006; Goudet and Martin 2006; Santure and Wang51

2008) and mutation rates might not be comparable between theQuantitative Trait Loci (QTLs) and the neutral52

markers used to compute FST (Edelaar, Burraco, andGomez-Mestre 2011; Edelaar and Björklund 2011). Besides53

offering criticisms, these studies also provide strategies to overcome some of the limitations, and because such54

a framework is so crucial to the study of local adaptation, it is still very popular in the literature (Leinonen55
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et al. 2013).56

Here, we will focus on an issue that has been been less extensively discussed and, in our experience, not57

always considered by empiricists using QST: the influence of population structure on the QST−FST comparison.58

We explain the assumptions behind the “classical” computation of QST, show a little example of how popula-59

tion structure can affect the test for local adaptation and explore some alternatives to perform statistical tests60

excluding the neutral hypothesis of divergence between populations with less restrictive assumptions.61

The typical population model62

QST is typically estimated from common garden phenotypic measurements 𝑌 , in which each individual 𝑖63

belongs to a distinct natural population of origin 𝑝 . The average population effects 𝑎𝑝 are considered as being64

of genetic origin and their variance𝑉B is assimilated to the between-population genetic variance. While Spitze65

(1993) used an ANOVA to compute the very first empirical QST, it is nowadays common (Leinonen et al. 2013)66

to use a mixed model to compute 𝑉B and the within-population additive genetic variance 𝑉A, using:67

𝑌𝑖 = 𝜇 + 𝑢𝑖 + 𝑎𝑝 (𝑖) + 𝑒𝑖 , (2)

where 𝜇 is the model intercept, 𝑢𝑖 is the individual-level genetic random effect, 𝑎𝑝 (𝑖) is the population-level68

genetic random effect (of the population 𝑝 (𝑖) the individual 𝑖 belongs to) and 𝑒𝑖 is the residual. The variance69

associated with the 𝑎𝑝 effects is 𝑉B and the variance associated with 𝑢𝑖 is 𝑉A. The assumptions about the70

population genetics model lie in how the structure of the random effects are specified. Generally, in order71

to estimate the 𝑎𝑝 effect in the model, one simply uses a “simple” random effect based on the population ID,72

which results in the assumption that the 𝑎𝑝 ’s are independent and identically distributed. In a more formal73

way:74

𝑎𝑝 ∼ N(0, I𝑉B), (3)

where I is the identity matrix and N is the normal distribution. This identity matrix is akin to assuming75

populations are structured according to an island model, where all equally-sized populations receive and76

send the same number of migrants from a common pool (see Box 1A). Note that this model is also the one77

generally used to derive FST estimates (Weir and Cockerham 1984, but see Gaggiotti and Foll 2010; Karhunen78

and Ovaskainen 2012; Weir and Goudet 2017 for other approaches). In practice, this model is quite robust to79

slight deviations from its assumptions, as shown by decades of experience from population geneticists using80

FST (Holsinger and Weir 2009).81

Theoretically, the equality FST = QST under neutrality should be valid, on average, for population structures82
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Box 1: Comparing island and stepping-stone models
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1 To illustrate the effect of population structure on the
FST − QST contrast, we compare the results of simu-
lations of the island model (A), where all populations
exchange the same number of migrants with all oth-
ers, and the one dimensional stepping stone model
(B), where each population exchanges migrants with
its nearest neighbours only. The data were gener-
ated with the ms program (Hudson 2002), assuming
a genome of 20 chromosomes each 100′000 base pair
long. Migration was adjusted to obtain an overall FST
around 0.2 for the two population structures. In both
sets of simulations, the number of populations is 20,
and 500 individuals per population are sampled.

C

Figure C shows the results.
For each scenario (IslM: Is-
land model, SS1D: Stepping-
Stone), 500 neutral, purely
additive and genetically de-
termined traits are simulated
with either 10, 100 or 1000 (top
to bottom row) causal loci and
effect sizes drawn from a nor-
mal distribution. The red hori-
zontal line on each panel is the
genomic FST, the violin plots la-
belled F𝑄ST correspond to FST es-
timated from causal loci, and
the violin plots labelled QST
show the distribution of QST
for each scenario. Dots are the
observations. The blue points
show the mean value of the
observations. For both mod-
els, F𝑄ST is essentially unbiased,
with more variation when the
number of loci encoding the
trait is small, as expected. For
QST, while more variable that
F𝑄ST, the estimation for the island model are centered around their expected value, with an empirical 95% per-
centile interval [0.1, 0.27]. For the one-dimensional stepping stone model, despite the mean being close to its
expected value, a majority of QST estimates are smaller than the expected value, with a mode around 0.1 and
the range of variation is extremely wide, from 0 to 0.7, and an empirical 95% percentile interval [0.05, 0.44].
Such a variation due to very large evolutionary stochasticity for QST (note that statistical sampling errors have
been minimized here, since𝑉𝐴 is the phenotypic variance and𝑉𝐵 is estimated from 20 populations, so using the
statistical framework in Equation 2 would most likely aggravate the issue) makes carrying a test for the null
hypothesis QST = FST prone to a high level of type I errors, if not accounting for such effect of population struc-
ture. Indeed, for the island model, 5% of the simulated QST are significant at the 5% nominal level when using
the modified Lewontin-Krakauer test proposed byWhitlock and Guillaume (2009), while 30% are significant for
the one dimensional stepping-stone model.
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other than the island model (Whitlock 1999). We show in Box 1 this equality to hold for the island model and,83

on average indeed, for the one-dimensional stepping-stone model. However, for this last model, a majority of84

traits gave QST values (much) lower than FST, and some gave QST values much higher than FST (Box 1C). We85

argue that the test QST = FST is not reliable in general because of the much larger evolutionary stochasticity86

associated with QST, which inflates type I errors. Hence implementation of the test should take into account87

such evolutionary variance. This is particularly important when the population structure deviates from a88

simple island model because the increase in evolutionary stochasticity is much more pronounced for QST89

than for FST.90

Toward a solution: more general strategies91

It is difficult to come upwith a universal model of neutral evolution, that can account for any sort of population92

structure. However, there have been some methodological developments that aim at testing local adaptation93

in a common garden setting with more general assumptions about population structure. Here, we wish to94

highlight two of them.95

Ovaskainen, Karhunen, Zheng, Arias, and Merilä (2011) method is not based on a direct QST−FST compar-96

ison. Instead, it is based on a theoretically motivated neutral model of phenotypic divergence that allows for97

differences in migration and drift among populations, as well as preferential migration between populations.98

To achieve this, the identity matrix I is replaced by a between-population relatedness matrix (here noted B)99

in Equation 3:100

𝑎𝑝 ∼ N(0,B𝑉B), (4)

To estimate this matrix from neutral marker data the same authors propose an extension of the F-model (Gag-101

giotti and Foll 2010) that also allows the simultaneous estimation of the other parameters associated with102

Equation 2. Because B is a matrix, and not just a single number as is FST, this framework offers both a more103

accurate description of the population structure andmore power to detect deviation from neutrality. It does so104

by alleviating the issues affecting the direct comparison of QST with FST and provides a statistical test (coined105

“𝑆-test”) measuring the deviation of the population means themselves from the neutral expectation. A more106

recent implementation of the method in R (driftsel, Karhunen, Merilä, Leinonen, Cano, and Ovaskainen 2013)107

first estimates the matrix using neutral markers and an admixture F-model (Karhunen and Ovaskainen 2012),108

and then incorporates quantitative trait data to estimate all remaining parameters and further refine the esti-109

mate of the matrix. Finally, a new alternative method to estimate the B matrix (which can then be used by110

driftsel) is provided by the unified approach to characterise population structure and individual relatedness111

and inbreeding recently put forward by Weir and Goudet (2017). Using this model of neutral evolution ap-112
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plicable to both molecular and quantitative trait data also allows for the further addition of environmental113

information, and as a result, perform more powerful statistical tests using habitat information (Karhunen,114

Ovaskainen, Herczeg, and Merilä 2014) or single environmental values (de Villemereuil, Mouterde, Gaggiotti,115

and Till-Bottraud 2018), while accounting for the (potentially confounding) effect of genetic drift and popula-116

tion structure.117

Sometimes, the population structure is so complex that even defining populations can be very difficult and,118

in the end, a fairly subjective process (Waples and Gaggiotti 2006). Martins, Caye, Luu, Blum, and François119

(2016) have shown that, in such cases, an equivalent to FST can be derived even in absence of delimited120

populations, using either the genomic proportion of an individual assigned to a given cluster (theQmatrix of121

the Structure program) or the individual scores along the different axes obtained from a Principal Component122

Analysis of the genotypes. This later approach was used by Josephs, Berg, Ross-Ibarra, and Coop (2019) to123

define an equivalent to QST (coined𝑄𝑋 ) in absence of explicitly defined populations. However, to circumvent124

the need for a direct comparison to FST, Josephs et al. (2019) suggest testing for a phenotypic excess of variance125

(𝐹 -test) along some of the Principal Component axes retained for the analysis. The difficulty in the analysis lies126

in identifying the set of first axes defined to be “among” populations (the other lower axes being considered127

“within”). Josephs et al. (2019) offer various ways of defining this limit between among andwithin populations,128

ranging from using an arbitrary threshold to using the Tracy-Widom test.129

Conclusion130

Since it was first proposed by Spitze (1993), the QST − FST comparison framework has been an invaluable tool131

to investigate the prevalence and characteristics of local adaptation. Nonetheless, we encourage empiricists to132

consider the alternative strategies discussed here to better account for various effects of population structure.133

As these new strategies themselves have their own limitations, we also urge theorists to continue developing134

new methods to study the phenotypic impact of local adaptation in common garden, while accounting for135

population structure and evolution stochasticity as accurately as possible.136
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Data Availability140

We provide the code for replicating the analysis in Supplementary Information.141
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