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1. Résumé 
Le but de ma thèse a été d’approfondir nos connaissances immunologiques dans des patients atteints de 

mélanomes en étendant nos recherches à trois types cellulaires moins étudiées dans ce cadre : les cellules 

NK, les lymphocytes B et une population que nous avons baptisé cellules lymphoïdes orphelines.  

Pendant mon premier projet, on a étudié les différents rôles des cellules tueuses naturelles (NK) dans des 

patients atteint d’un mélanome avancé (stade III/IV). Une analyse de régression multivariée Cox montre 

que l’abondance des cellules NK CD56bright corrèle négativement avec la survie globale, ainsi qu’avec la 

présence de métastases distantes. Les cellules NK CD56bright des patients expriment plus de CD11a, CD38 

et CD95 en comparaison avec les cellules dérivées de donneurs sains. Ceci démontre que les cellules ont 

un phénotype activé qui jouer un rôle dans la régulation immunitaire des patients atteint d’un mélanome. 

Après stimulation in vitro des cellules NK CD56bright des patients, nous mesurons une production moindre 

de TNFα et de GMCSF en comparaison avec ces mêmes cellules provenant de contrôles sains. En outre, la 

production d’IFNγ par les cellules NK CD56bright corrèle inversement avec la survie globale. Nos résultats 

soulignent que l’abondance et la fonction des cellules NK CD56bright sont associées avec la survie des 

patients atteint d’un mélanome, ce qui accentue le potentiel des sous-classes des cellules NK pour la 

découverte des marqueurs biologiques et pour le ciblage thérapeutique.  

Comme deuxième projet, j’ai caractérisé les cellules B de patients atteints d’un mélanome. Nos résultats 

montrent que la réponse fonctionnelle des cellules B périphériques des patients traités par 

immunothérapie est moins capable de produire du TNFα, de la LTα et de l’IL-10 en comparaison avec les 

patients qui n’ont pas reçu d’immunothérapie. Les cellules B trouvées dans les patients qui ne répondent 

pas à l’immunothérapie (Ipilimumab) produisent plus d’IL-6, de TNFα et d’IL-10 mais moins de GMCSF. De 

plus, le niveau d’IL-6, de TNFα et d’IL-10 corrèlent inversement avec la survie globale. Ceci montre que les 

cellules B ont en même temps un potentiel pro-inflammatoire et régulateur qui impacte négativement la 

survie. Le séquençage de l’ARN des cellules B pures dérivées de l’environnement tumoral montre un 

enrichissement des gènes inflammatoires comme l’IL-6, l’IL-10 et la LTα. Un des gènes le plus 

significativement surexprimé est IDO. Globalement, notre recherche indique que les cellules B contribuent 

à l’établissement et à la soutenance d’une réponse immunitaire pro-tumorale par la production de 

cytokines en même temps pro-inflammatoires et régulatrices. Les cellules B peuvent servir comme 

nouvelles cibles et/ou marqueurs biologiques pour la thérapie. 
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Pour mon troisième projet, nous avons caractérisé une population de cellules, qui est jusqu’à maintenant 

inconnue, nommé cellules lymphoïdes orphelines (CLOs). Elles constituent environ 0.2% des lymphocytes 

périphériques. Les CLOs n’expriment aucun des marqueurs de lignées standards mais elles expriment 

CD44, CD45, CD132 et pour une fraction de cellules, CD62L. La morphologie, analysée par l’Amnis Image 

Stream, et l’analyse des composants principaux obtenus par séquençage d’ARN montre une population 

homogène. En plus, le profil obtenu par séquençage d’ARN montre un phénotype proche, mais 

suffisamment différents des cellules T et NK. Plus de recherches sont nécessaires pour établir la fonction 

de ces cellules, leur distribution dans les tissus et le lien avec les autres cellules immunitaires. 
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2. Summary 

According to the World Health Organisation, cancer is the second leading cause of death in the world, 

causing an estimated 9.6 million deaths in 2018. In the last decades, huge strides have been made into 

new therapy avenues producing long lasting effects. Most of these immune-therapies focus on activating 

cytotoxic T cells within the tumour-microenvironment. Within the tumour-microenvironment the tumour 

cells as well as other types of immune cells like regulatory T cells and myeloid-derived suppressor cells can 

suppress the function of the anti-tumour immune response. 

We hypothesized that some of the still infrequently studied lymphocytes my also hamper anti-tumour T 

cell responses. The aim of my thesis work was to determine whether NK cells, B cells and/or further non-

T lymphocyte populations may have immunosuppressive roles, and thus could be harmful for melanoma 

patients. 

During my first project, we studied the roles of peripheral NK cells in human late stage (III/IV) melanoma 

patients. We found that the abundance of CD56bright NK cells negatively correlate with overall patient 

survival, together with distant metastases, in a multivariate cox regression analysis. The patients’ CD56bright 

NK cells showed upregulation of CD11a, CD38 and CD95 as compared to healthy controls, pointing to an 

activated phenotype as well as a possible immune regulatory role. After stimulation in vitro, CD56bright NK 

cells produced less TNFα and GMCSF in patients than controls. Our results emphasizing the potential of 

NK cell subsets for biomarker discovery and future therapeutic targeting. 

The characterisation of B cells in melanoma patients became the topic of my second project. Peripheral B 

cells from patients not responding to immunotherapy (Ipilimumab) produced higher levels of IL-6, TNFα 

and IL-10 but less GMCSF. Moreover, IL-6, TNFα and IL-10 levels also inversely correlate with overall 

survival. RNA sequencing from sorted B cells from within the tumour micro-environment show an 

enrichment in inflammatory genes, including expression of IL-6, IL-10 and LTα. One of the highest 

overexpressed genes is IDO. Overall, our research suggests that B cells contribute to the pro-tumoural 

immune response by producing both inflammatory and regulatory cytokines. B cells could thus be new 

targets, and/or exploited as biomarkers for therapy.   

During my third project we identified a so far unknown cell population which we termed Orphan Lymphoid 

Cells (OLCs). They make up around 0.2% of human circulating lymphocytes. OLCs are negative for all major 

lineage markers but express CD44, CD45, common γ-chain (CD132) and partially CD62L. Morphological 

analysis and principal component analysis by RNA sequencing shows a homogeneous population. 

Moreover, RNA sequencing profiling shows a phenotype between T and NK cells while being distinctly 

different. While these data establish the existence of a new lymphocyte population in humans, more work 

is needed to clarify their functionality, tissue distribution and link to other immune cells. 
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3. Résumé grande public 
Il est estimé qu’en Europe 27 personnes sur 100 000 sont mortes d’un mélanome en 2018. De nouvelles 

thérapies efficaces sont basées sur l’amplification de la réaction immunitaire contre le cancer. Pendant ma 

thèse le but était d’approfondir notre connaissance dans le domaine de l’immunologie lors de cette 

pathologie. 

Pendant mon premier projet, nous avons étudié les différents rôles des cellules tueuses naturelles (NK) 

dans des patients atteints d’un mélanome avancé. Nous avons trouvé que l’abondance d’un sous type de 

cellules NK corrèle négativement avec la survie globale. Ce sous type de cellules NK des patients ont un 

phénotype de cellules plus activées que les cellules des donneurs sains. Après stimulation, les cellules NK 

dérivées de patients sont moins capables de produire des agents pro-inflammatoires. Nos résultats 

soulignent que l’abondance et la fonction des cellules NK sont associées avec la survie des patients atteints 

d’un mélanome, ce qui accentue le potentiel des sous-classes des cellules NK pour la découverte des 

marqueurs biologiques et pour le ciblage thérapeutique.  

La caractérisation des cellules B, un deuxième type de cellules immunitaire plus connu pour leur capacité 

à produire des anticorps, dans les patients atteint d’un mélanome est devenue le sujet mon deuxième 

projet. Nous avons montré que la réponse fonctionnelle des cellules B périphériques des patients ayant 

reçu un traitement par immunothérapie, sont moins capable de produire des agents pro-inflammatoires 

et régulateurs en comparaison avec des patients qui n’ont pas reçu l’immunothérapie. De plus, des 

patients qui n’ont pas répondu à la thérapie immunitaire ont des cellules B qui sont plus actives. Le taux 

de fonctionnalité corrèle négativement avec la survie globale de ces patients. L’analyse des cellules B 

dérivées de l’environnement tumoral montre un enrichissement des gènes inflammatoires et régulateurs. 

Nos recherches suggèrent que les cellules B contribuent à l’établissement et à la soutenance d’une réponse 

immunitaire pro-tumorale. Les cellules B peuvent servir comme nouvelles cibles et/ou marqueurs 

biologiques pour la thérapie. 

Lors de mon troisième projet, nous avons caractérisé une population de cellules, qui est jusqu’à 

maintenant inconnue, nommé cellules lymphoïdes orphelines (CLOs). Elles représentent environ 0.2% des 

lymphocytes périphériques. Les CLOs n’expriment aucun des marqueurs de lignées standards mais elles 

expriment CD44, CD45, CD132 et pour une fraction, CD62L. Nous avons pu établir que ces cellules ont un 

profil proche des lymphocytes T et NK, mais avec des distinctions majeures. Plus de recherches sont 

nécessaires pour établir la fonction de ces cellules, leur distribution dans les tissus et le lien avec les autres 

cellules immunitaires. 
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5. Abbreviations 
ADCC Antibody-dependent cell cytotoxicity 

ALR AIM2-like receptor 

APC Antigen presenting cell 

BCR B cell receptor 

Breg Regulatory B cell 

C Complement 

CHILP common helper ILC progenitor 

CLR C-type lectin receptor 

CMP Clonogenic common myeloid progenitor  

DAMP Danger associated molecular patterns 

DC Dendritic cell 

EILP the early innate lymphoid progenitor 

GMP Granulocytes and macrophages progenitor cells 

HSC Hematopoietic stem cells 

IDO Indole amine 2,3 dioxygenase 

IFN Interferon 

IL Interleukin 

ILC Innate lymphoid cell 

ITAM Intracellular tyrosine-based activating motive 

ITIM Intracellular tyrosine-based inhibitory motive 

LMPP Lymphoid-primed multipotent progenitor  

LT HSC Long lived hematopoietic stem cells 

LTi Lymphoid tissue inducer cell  

MDSC Myeloid-derived suppressor cell 
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MEP Megakaryocytes and erythrocytes  

MHC Major histocompatibility complex 

MPP Multipotent progenitor cells  

NCR Natural cytotoxicity receptor 

NK cell Natural killer cell 

NLR NOD-like receptor 

OLC Orphan lymphoid cell 

PAMP Pathogen associated molecular patterns 

PRR Pattern recognition receptors 

RLR RIG-I-like receptor 

SEREX 
serological analysis of tumour antigens by recombinant cDNA 

expression cloning 

ST HSC Short lived hematopoietic stem cells 

TAM Tumour-associated macrophages 

TCR T cell receptor 

TGF Transforming growth factor 

Th T helper cell 

TIL Tumour-infiltrating lymphocytes 

TILN Tumour-infiltrated lymph nodes 

TLR Toll-like receptor 

TLS Tertiary lymphoid structures 

TME Tumour micro-environment 

TNF Tumour necrosis factor 

Treg Regulatory T cell 

VEGF Vaso-endothelial growth factors 
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αLP α lymphoid precursor  
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6. General introduction 

6.1. The Immune system 

Every day our body encounters numerous pathogens and foreign agents. A human being is protected by a 

first line of defence, barriers that physically protect us from the outside world. These first barriers between 

the outside world and the inner body are amongst others the skin, the mucosa in the gastrointestinal tract 

and the respiratory tract. Epithelial surfaces not only act as a physical barrier but also combat pathogens 

with chemical and biological compounds 1. When a pathogen has succeeded to overcome these barriers, 

the immune system of our body comes in action. It consists of a fast-acting component, the innate immune 

system, and a slower acting component, the adaptive immune system. Both are tightly interrelated 2.  

6.2. Cells of the immune system 

Immune cells are derived from long-term hematopoietic stem cells (HSC) which reside in the bone marrow. 

Cells in the bloodstream have a defined half-life and thus need to be regularly replaced to ensure 

homeostasis in the body. HSC consists of long lived (LT) and short lived (ST) HSC. LT HSC possess a broad 

range of self-renewability capabilities. These capacities diminish with increasing lineage differentiation. ST 

HSC give rise to a multipotent progenitor cells (MPP). They split into several lineages, the common myeloid 

progenitor (CMP) giving rise to megakaryocyte and erythrocyte progenitor (MEP), as well as the 

granulocyte and macrophage progenitor cells (GMP) and the lymphoid-primed multipotent progenitor 

(LMPP) 3. The LMPP is able to give rise to the common lymphoid progenitor (CLP), the GMP and 

granulocyte/macrophage T cell progenitor. A lot of the steps for full commitment to a lineage are still 

unproven and up to debate 4. The LMPP also gives rise to the dendritic cell (DC) progenitor 5. DCs can be 

found all over the body and many subtypes exist. Differentiation can differ for different subtypes and take 

place in different organs 6. The CLP gives rise to T and B cell progenitors as well as the common innate 

lymphoid cell (ILC) progenitor. This common ILC progenitor in turn gives rise to natural killer (NK) and ILC 

progenitor cells 7.  

6.2.1. Innate immunity 

The innate immune system is the first line of defence once the physical barriers of the body have been 

breached. This system responds rapidly and in a non-pathogen-specific way. Cells like NK cells, ILCs, 
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neutrophils, basophils and macrophages are part of the innate immune system as well as soluble 

molecules such as the complement system and anti-microbacterial peptides 8,9.  

Cells of the innate immune system do not recognize pathogen specific antigens, but danger signals 10. 

These dangers signals can be certain structures or molecules derived from the pathogen (pathogen 

associated molecular patterns (PAMP)) or signals derived from stressed or dying cells (danger associated 

molecular patterns (DAMP)) 11,12. PAMPs are conserved structures expressed constitutively by pathogens 

including lipopolysaccharide, lipoproteins, peptidoglycan and lipoteichoic acids, but also nucleic acids from 

viral origin or viral coat proteins 13,14. These conserved structures are recognized by specialized receptors, 

termed pattern recognition receptors (PRR) on immune cells. PRRs are found extra-and intracellularly 15. 

PRRs can be divided into five different classes: Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-

like receptors (RLRs), C-type lectin receptors (CLRs) and two AIM2-like receptors (ALRs), which are absent 

in melanoma16. TLRs are expressed on members of both the innate and adaptive immunity as well as some 

non-immune cells like fibroblasts. They are the most described PRRs family member. Ten receptors have 

been identified in humans 17. The leucine rich repeats of the outer membrane are responsible for binding 

and recognizing PAMPs. Upon ligation, a dimerization (hetero/homo) occurs, leading to the recruitment 

of adaptor molecules to the intracellular signalling domain 18. Downstream signalling can be dependent or 

independent of adaptor molecule MyD88. The downstream targets of this pathway are the transcription 

factors NF-kB , AP-1 and IRFs resulting in inflammation and an anti-pathogen response 19. TLR3/4 can also 

interact directly or indirectly with the adaptor protein TRIF independent of MyD88, leading to type I 

interferon production and a delayed activation of NF-κB 20.  

The complement (C) system plays a central role in the innate immune response, involving multiple 

different molecules and cells. Its function consist of opsonisation, inflammation and lysis 21. In humans, 

complement molecules are mostly produced in the liver, however certain molecules can also be produced 

by other cell types like monocytes, fibroblasts and epithelial cells. The complement system is organized in 

a proteolytic cascade 22. Activation can occur in three different ways: via the classical, the alternative and 

the lectin pathway. All pathways lead to the formation of a membrane attack complex, resulting in the 

release of inflammatory proteins in the bloodstream. Consequentially, dilatation of blood vessels, 

promotion of leukocyte adhesion and infiltration of these leukocytes in the tissues is promoted 10,21,22. 

Cells of the innate immune system comprise neutrophils, eosinophils, basophils, ILCs, NK, mast cells, DCs 

and macrophages. Neutrophils, eosinophils, mast cells and basophils are also referred to more generally 

as granulocytes and are important in inflammatory reactions. They develop completely in the bone 
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marrow before migrating into the periphery 23,24. Granulocytes are known for their capability to release 

granules upon activation. These granules can hold proteolytic enzymes, antimicrobial peptides or 

cytotoxins 25,26. An added functionality of neutrophils and eosinophils is the formation of extracellular 

traps. The cells explode when they die and thus release their DNA into the extracellular space, hence 

trapping pathogens and exposing them to proteases 27,28.  

DCs are the bridge between innate and adaptive immunity. They possess the capability to present antigens 

to members of the adaptive immune system, in turn activating them. DCs are professional antigen 

presenting cells (APC). They are found in tissues as well as lymphoid organs. DCs capture antigens within 

the tissues where they reside or within the periphery and travel to the lymphoid organs to present them. 

They can than promote either inflammation or central tolerance 29. Many different subsets exist. 

Conventional DCs (cDC) 1 in mice or CD141+ DCs in human can be found in lymphoid as in non-lymphoid 

tissues. They are strong interferon (IFN) III producers 30. In both humans and mice cDC1s are proficient 

cross-presenting cells, which means that they can present antigens taken up from the cytosol on major 

histocompatibility complex (MHC) class I molecules in order to prime CD8 T cells. They are mostly efficient 

in presenting antigens derived from dead cells 31. cDC2 in mice or CD1c+ DCs in humans are present in 

lymphoid tissues as well as the periphery. They are potent producers of interleukin (IL)-12 upon activation, 

moreover they are also potent cross-presenting cells 5,31. Plasmacytoid DCs (pDCs) are specialized in 

producing type I interferons and inducing anti-viral immune responses 32.  

Macrophages are granular cells that can be tissue-resident or derived from monocytes upon inflammation. 

Dependent upon external stimuli they will respond in a different way. Macrophages mostly activated by 

TLR ligation, leading to IFNγ signalling, are mainly associated with viral and bacterial inflammation. These 

macrophages are most commonly called M1 macrophages. However, macrophages responding to 

allergies, helminths and asthma are mostly associated with the production of type two cytokines like IL-4 

and IL-13. They are important in the wound healing process. They are called M2 macrophages 33,34. Rather 

than being mutually exclusive, these states often (partly) co-exist 35. 

The group of innate lymphoid cells consists of ILCs and NK cells. They mirror the different subsets of T cells 

but lack antigen-specific receptors. Beside NK cells, three groups of ILCs exists: ILC1, ILC2 and ILC3. These 

subsets mirror the functions of CD4+ T cells and NK cells mirror cytotoxic T cells 36. ILC1s express the 

transcription factor T-bet and produce IFNγ and tumour necrosis factor (TNF)α after stimulation with IL-

12 and IL-18. ILC2s produce IL-4 (in humans), IL-5, IL-13 and AREG after stimulation with IL-25, IL-33 and 

TSLP and express GATA3 as transcription factor. Group 3 ILCs can be further subdivided into lymphoid 
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tissue inducer (LTi) cells, natural cytotoxicity receptor (NCR)- and NCR+ ILC3. They all express RORγT and 

produce IL-17A/F (except NCR+ ILC) and IL-22. The inducing cytokines are IL-23 and IL-1β 37. ILCs are 

activated very early on in the immune response as a reaction to signals or cytokines expressed by tissue-

resident cells resulting in a strong amplification of the signal 7. NK cells are cytotoxic cells able to kill altered 

self-cells like tumour and virally infected cells. The fate of a cell is based on the balance of ligation of 

activation and inhibitory receptors. Inhibitory receptors recognize amongst others MHC I molecules. 

Activating receptors recognize for example stress and viral inducible ligands (Figure 1) 38. Moreover, they 

are able to release large amounts of pro-inflammatory cytokines, like IFNγ and TNFα when activated 39. 

Two different subsets of human NK cells exists, based on the expression level of CD56 (neural adhesion 

molecule NCAM) and CD16 (low affinity Fc receptor). CD56bright cells express high amounts of CD56 and do 

not express CD16. In the periphery they are a minor subset, around 5% of NK cells, but most prominent in 

lymph nodes and tissues. They have a lower cytolytic capacity but are very potent cytokine producers. 

CD56dim cells on the other hand are also CD16 positive, they represent around 95% of NK cells in the 

periphery. They are considered as the most mature and are potent killers 40. 

 

Figure 1| NK cell activation or tolerance depends on the balance of inhibitory and activatory signals received. A. NK cell tolerance 
occurs when more self-antigens (ligand) are present on the cell surface than activatory ligands. Leading to the NK cell 
ignoring/tolerating this cell. B. NK cells become activated if no inhibitory ligands are present or if the number of activatory ligands 
is higher than the number of inhibitory, leading to a net activatory signal in the NK cells 41.  

 

6.2.2. Adaptive immunity or acquired immunity 

The innate immunity works fast but it is pathogen non-specific, the adaptive or acquired immunity needs 

more time to generate a response. However, cells involved in this part of the immune system recognize 
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antigens in a specific way and are capable of memory formation, meaning that upon a second encounter 

of the same antigen, the response is faster and more vigorous 42. This specificity is made possible due to 

the occurrence of gene rearrangements within the B and T cell receptors (BCR and TCR) during 

development, leading to an enormous number of possibilities. A diversity of 1018 B cell receptors and 1015 

α:β TCRs is estimated 43,44.  

T cells develop in the bone marrow but maturation takes place in the thymus. Due to the nature of the 

TCR generation by gene rearrangement many TCRs have unwanted specificities, either recognizing a self-

antigen either being unable to interact with self-MHC. The thymus eliminates the former (negative 

selection) and the latter (positive selection), thus assuring that the α:β TCRs of mature T cells are restricted 

to self-MHC and are inefficient in recognizing self-peptides 45.  

T cells can be divided into two major subsets, based on the expression of CD4 or CD8. Both cell types 

recognize antigens loaded on MHC molecules on APCs or target cells. The provenance of the antigens can 

be self or non-self 46. MHC class I molecules present peptides of 8-10 amino acids, MHC class II present 

peptides with a length of 13-25 amino acids 47,48. Peptides loaded on MHC class I molecules are from 

endogenous origin. They are degraded in the proteasome and represent the endoplasmic reticulum (ER) 

of the cell. This allows the immune system to identify viral infected or tumour cells. CD8 or cytotoxic T cells 

bind to MHC I 49. Since MHC I allows for the cell to convey its inner state, they are present on all cells. MHC 

class II molecules on the other hand are only expressed on APCs (macrophages, DCs and B cells) 48. MHC 

II- peptide complexes interact with CD4 T cells. Antigens are taken up by APCs from the extracellular space, 

processed and presented. However, cross-presentation can occur in some DCs, during this process 

antigens from exogenous descent are presented to CD8 T cells on MHC I molecules. In this case the DCs 

themselves do not need to be infected 50. T cell priming does not only involve TCR-peptide-MHC interaction 

but also ligation of co-stimulatory molecules 51. IL-12 or type I interferons are important as a third 52. 

Without these two additional signals T cells become anergic 51.  

Cytotoxic T cells (CTL), characterized by the expression of CD8, kill their target by releasing lytic granules. 

These granules contain among others perforins, a pore forming peptide and granzymes, a serine esterase. 

Once granzymes reach the cytosol of the target cells, they trigger apoptotic cell death by activating 

caspases 53.  

CD4 or helper T cells can be further subdivided into a number of helper subsets and contain as well a 

subset of regulatory cells. Dependent on the immunological situation, different effector cytokines are 
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produced. These polarization states are defined by a master transcription factor and the cytokines 

produced 54. Th1 cells provide protection from intracellular pathogens and differentiation is mainly 

induced by IL-12 and IFNγ, produced by NK cells and other T cells 55. This leads to the activation of the 

transcription factor T-bet and the production of IFNγ 56. T helper type 2 cells are important in helminth, 

allergy and asthma responses. They are induced from naïve cells by IL-4. This induces GATA-3 expression 

and in turn production of IL-4 is established 57,58. A third polarization state of CD4 T cells is Th17. They are 

induced by TGFβ and IL-6, which induces the transcription factor RORγT. In turn Th17 cells produce IL-17, 

they are potent inducers of tissue inflammation and have also been associated with auto-immune diseases 

59,60. Newer subsets include Th9 and Th22, both based on the cytokines they produce, IL-9 and IL-22 61. IL-

9 is induced by IL-4 and TGFβ and the activation of transcription factor PU.1. IL-9 seems to play a role in 

helminth and allergic responses 61,62. Th22 cells produce IL-22 and TNFα, they can mostly been found in 

the skin. They are induced by IL-23 and IL-1β in combination or not with IL-6 63. Follicular helper T cells are 

a separate subset of CD4 T cells that reside in the secondary lymphoid organs, they are necessary for B cell 

activation and memory formation. TFH express the master regulator Bcl-6 64. A separate subset of helper T 

cells exists that counteracts inflammation, they are termed regulatory T cells (Treg). The regulatory 

cytokines produced are IL-10 and TGFβ, under the master transcription factor FoxP3 65. 

B lymphocytes recognize antigens via their BCR, a membrane-bound antibody, and mainly characterized 

by the expression of CD19, CD20, CD21, CD81 and BAFF-family receptors. They develop totally within the 

bone marrow. Just as for T cells gene rearrangement takes place to ensure maximal diversity of receptors. 

However, the possibility exists that some of these receptors recognise self-antigens. Negative selection 

thus takes place to limit this option 66. Naïve B cells can be activated in a T cell dependent or independent 

manner. They express both IgM and IgD on the cell surface. T-cell independent activation leads to IgM 

secretion, however, without T cell support no affinity maturation or class switching takes place. This 

response is mostly polyspecifc and acts like a barrier between innate and adaptive immunity 67. Activation 

of B cells with the help of T helper cells prompts a germinal centre reaction leading to not only highly 

effective antibody secreting cells (plasma cells) but also memory formation. In order for memory cells to 

be formed, activated B cells undergo somatic hypermutation leading to enhanced affinity BCRs and 

induces class switching of the antibodies. The class of isotype depends on the type of immune response 

needed 68. These switched memory cells express the marker CD27 but do no longer express IgD 69. An 

unswitched type of memory B cells also exists, they have left the germinal centre after the hypermutation 

but before the class switching, they thus still express IgD or IgM 70. A subset that expresses neither IgD nor 

CD27 exists within the periphery of humans, they also seem to belong to the memory compartment but 
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are poorly characterized. Within this population a mixture of IgA, IgM or IgG expressing B cells that have 

undergone hypermutation 71,72. The isotype of the antibody defines a lot its functionality. IgM is secreted 

as a pentamer increasing the avidity of multi-epitope binding. IgD has a long hinge region allowing for the 

ability to bind to low density antigens 73,74. This makes these isotypes very useful in early infections 75. IgG 

can be further subdivided into four classes IgG1-4. IgG3 having the greatest effector function, before IgG1, 

IgG2 and IgG4 76. The distribution and the affinity for the Fc-receptors determines for the most part their 

effector function 77. IgA is a mucosal antibody that can be excreted within the lumen 78. IgE is involved in 

helminth immunity and allergy and are potent activators of mast cells 79,80. 

Recently, a population of regulatory B cells (Bregs) has been described, in mice called B10 cells. Up to date 

no markers have been described to characterize these cells specifically except for their function 81. Even 

sequencing of IL-10 producing B cells did not lead to the identification of a specific transcription factor, 

giving rise to the theory that these cells are primarily induced by the environment and do not represent a 

separate lineage 82. Regulatory B cells have been described to be able to inhibit numerous cell types like 

CTL, CD4 T cells, effector B cells, DCs and myeloid cells 83–91. Inhibition is induced via multiple mechanisms 

including IL-10, IL-35 or TGFβ81. 

6.3. Melanoma 

Melanoma is a type of skin cancer that develops in melanocytes 92. 

6.3.1. Epidemiology 

An estimated 144 new cases with 27 deaths per 100 000 inhabitants for both sexes was assessed in 2018 

in Europe 93. In Switzerland 6.7% of all new cancer cases are malignant melanoma, it’s the fourth most 

prevalent cancer type in men and women. 2% of all cancer deaths are attributed to melanoma (period 

2011-2015) 94. 

6.3.2. Risk factors 

Melanoma risk factors can be divided into environmental and genetic factors. They are multifactorial. 

Almost 8-10% of patients have a family history of melanoma. People with a light complexion (light skin, 

hair and eye colour) have a considerable higher risk of developing melanoma 95. The number of naevi 

(common and atypical) was found to be a very important risk factor 96. The most important environmental 

risk factor is sun exposure, but also artificial UV exposure in tanning beds contributes 97,98. UV radiation is 

able to induce DNA damage, when this damage is inadequately repaired, activation of oncogenes or 

silencing of tumour suppressor genes can induce oncogenesis 99,100.  
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6.3.3. Diagnosis 

Early detection is very important in lowering the chances of disease severity. This is made possible by 

localization of melanoma on the skin. A number of criteria were developed to be used by the public and 

physicians, called ABCDE, which stands for Asymmetry, Border irregularity, Colour variegation, Diameter 

> 6mm and Evolving 101. A histology report gives more clarification and should indicate the maximum 

thickness (mm) (Breslow), mitotic rate, presence of ulceration, presence and extent of regression and 

clearance of the surgical margins, as well as information on the anatomical site and the type of melanoma 

(superficial spreading melanoma, lentigo maligna melanoma, acrolentiginous melanoma, nodular 

melanoma, others). Mutational genotyping is recommended in case of metastatic disease 102. Melanomas 

are staged, from I to IV with IV being the most advanced disease stage, based on the characteristics of 

tumour, the nodes and the presence and location of metastases 103.  

6.3.4. Treatment  

Localized disease is treated by surgical removal of the tumour while respecting sufficient safety margins. 

Radiotherapy can be considered in the case of inadequate resection margins. In the case of non-resectable 

in-transit metastases other treatment options can be considered like infusion with Melphalan, a 

chemotherapeutical agent. In the case of systemic metastatic disease, immunotherapy strategies like α-

CTLA-4 or α-PD-1 have shown good results as well as kinase inhibitors. A second line of treatment is 

chemotherapy 104. 

6.4. Tumour micro-environment 

A cancer is not only made up of tumour cells but the environment also contains immune and stromal cells, 

which we call the tumour micro-environment (TME) 105. Cells of the immune system, adaptive and innate, 

are able to recognize tumour cells. Tumour-specific antibodies have been found in patients, indicating a 

successful B cell response 106,107. Tumour-specific CD8 T cells can be found within the tumour as well as in 

the periphery 108,109. Tumour-specific CTLs are able to lyse autologous tumour cells in vitro 110. The antigens 

recognized can be from mutated proteins, which are patient specific (neo-antigens), as well as specific to 

the tissue of origin of the tumour, genes overexpressed in the tumour, of viral descent or cancer-germline 

genes 111,112. In melanoma the presence of tumour-infiltrating lymphocytes (TILs) is a prognostic factor for 

survival 113,114. Especially the presence of T cells, both CD8 and CD4 T (mostly Th1) cells was found to 

correlate with survival in multiple cancer types 115–117. Additionally NK cells are able to kill tumour cells in 

vitro as well as in vivo 118–120. For a successful anti-tumour response a lot of different steps need to take 

place in an efficient way. First of all, antigens (neo- or germline encoded) released by the tumour need to 

be taken up for processing by DCs 121,122. Uptake of antigens needs to be accompanied by additional pro-
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inflammatory signals like cytokines, TLR ligands from dying tumour cells, but also chemotherapeutical 

agents are able to induce immunogenic cell death in order to avoid peripheral tolerance and the induction 

of Tregs by APCs 123–125. For potent stimulation of T cells, presentation on the cell surface by class I or II MHC 

molecules needs to be accompanied by co-stimulatory molecules and cytokines, this last step takes 

traditionally place in the lymph nodes 126. It can, however, also take place in so called tertiary lymphoid 

structures (TLS), these structures form spontaneously within the tissue and have lymphoid properties, like 

a distinct T and B cell zone 127. Once the priming is complete the T cell needs to traffic back to the TME to 

carry out their effector function 128. Killing the cancer cells will complete the circle since it leads to a 

consecutive release of antigen (Figure 2). However, in cancer patients this circle does not work optimally, 

at each of these steps things can go wrong.  

 

Figure 2| The cancer immunity cycle consists of seven distinct steps, including the release of cancer antigen at the tumour site, 
uptake of these antigens by APCs and trafficking to the lymph nodes, priming of T cells, homing of activated T cells to the tumour 
site, infiltration in the tumour and killing of the recognized tumour cells, which restarts the cycle with the release of antigens 129.  

Dysfunctional T cells can disrupt the cancer-immunity cycle. After the induction of a strong inflammatory 

response, multiple mechanisms are in place to limit unnecessary inflammation that could damage the body 

130. Since tumours express self-antigens, a regulatory response is put in place, often strengthened by 

molecules produced or ligands expressed on the surface of the tumour cells 131. Tregs
 can be found, 

sometimes in high numbers within the TME, their presence is associated with bad prognosis. They are able 
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to suppress T cell response by producing regulatory cytokines IL-10, transforming growth factor (TGF)-β 

and express the inhibitory receptor CTLA-4 132–134. Treg depletion was shown to retard tumour growth in 

vivo 135. Moreover, immune checkpoint blockade antibodies against CTLA-4 could lead via antibody-

dependent cell cytotoxicity (ADCC) to the depletion of CTLA-4 expressing Tregs.
136. DCs found in the TME are 

often immature and tolerogenic 137. They can induce anergy in T cells or induce Tregs 
138. Myeloid-derived 

suppressor cells (MDSC) are cells from myeloid descent that did not differentiate further into DCs, 

macrophages or granulocytes. They have potent immunosuppressive capacities, their mechanisms 

include: production of nitric oxide, reactive oxygen species, indole amine 2,3 dioxygenase (IDO), IL-10 and 

TGFβ 139. The functionality of tumour associated macrophages (TAM) depends on the polarization. M1 type 

macrophages are able to suppress tumour growth 140. M2-like macrophages reside in hypoxic regions of 

the tumour and suppress type I inflammatory responses by producing arginase-1, suppressive cytokines 

like IL-10 and stimulate directly tumour progression by producing angiogenic factors like vaso-endothelial 

growth factors (VEGF), metalloprotease (MMP)-9, due to the production of tissue remodelling factors 

metastasis is favoured by M2-like TAMS 141–144. New therapies are focusing on reprogramming TAMs to 

support complementary therapies and improve efficacy 145–148. A big part of the TME is made up of 

fibroblasts, they exhibit great plasticity and are able to suppress immune responses and facilitate tumour 

growth and metastasis 149–151. Also tumour cells themselves produce immunosuppressive factors via a 

conserved mechanism to limit tissue inflammation, like the expression of PD-L1 or IDO 152. They are also 

able to downregulate MHC expression to avoid T but not NK cell recognition 153. All these factors interplay, 

leading to the creation of an immunosuppressive TME (Figure 3).  

Dysfunctional T cells are characterized by the expression of one or more inhibitory receptors like, PD-1, 

CTLA-4, TIM-3, LAG-3, etc. 154. This state is defined by a effector-function impaired state, a condition first 

described in chronical viral infections 155–157. Immunotherapy has taken advantage of the expression of 

these inhibitory receptors by developing blocking antibodies 158. This strategy has led to durable response 

in a number of cancer types and patients, especially antibodies targeting CTLA-4 and PD-1 are a big success 

159,160. 
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Figure 3| Several immunosuppressive mechanisms have been discovered within the tumour microenvironment. Ranging from 
direct T cell expression by the tumour cells to the recruitment of immune suppressive cells like CAFs, Tregs and myeloid cells 161.  
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7. My PhD projects 
According to the World Health Organisation, cancer is the second leading cause of death in the world, 

causing an estimated 9.6 million deaths in 2018. Strategies to reduce this number are: diminishing risk 

factors like smoking, alcohol use and unhealthy diet as well as early detection. There is a good chance for 

a cure if cancer is detected early and treated adequately. In the last decades, huge strides have been made 

into new therapy avenues producing long lasting effects. Especially the development of immune 

checkpoint blocking antibodies have been a big breakthrough, leading Science magazine to call cancer 

immunotherapy the breakthrough of the year 2013. However, not all patients respond to immunotherapy 

and it is more successful in some cancers than others. New avenues need thus to be explored. 

Immunotherapy as we mostly know it today, is highly focussed on the role of cytotoxic T cells, however 

they are not the only cells taking part in immune responses in the tumour microenvironment and 

systemically. 

In my thesis, I asked the question whether other types of lymphocytes impact on tumour growth and 

clinical outcome of melanoma patients. My work was focused on three lymphocytic populations: NK cells, 

B cells, and a novel not yet described type of human lymphocytes. 

NK cells are innate cells that have an innate ability to kill tumour cells in vitro. They have been shown to 

be important in immune surveillance. However, most information we have on the functionality of NK cells 

comes from mouse models. Moreover, conflicting studies have reported that NK cells are both, tumour-

promoting and tumour-inhibiting. Therefore, my first project is focussed on the possible role of NK cells 

and its subsets in the immune response to melanoma. 

During my second project, we delved into the characterisation of B cells in melanoma patients, their 

implications in tumour still being unclear. B cells have been described to have a dual role within the tumour 

immune response, both pro-and anti-tumorigenic. We characterized B cells in the periphery and the 

tumour microenvironment of patients before receiving treatment. 

The object of these two first projects was to better understand the complexity of the immune response in 

patients against melanoma in the hopes of advancing the knowledge leading to new therapeutic avenues 

as well as biomarker discovery. 

The third project was born out of the NK cell project. During the course of my PhD we stumbled upon an 

undescribed immune population that comprises around 0.2% of lymphocytes within the PBMCs of healthy 
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donors. We have termed these cells Orphan Lymphoid Cells (OLCs). During this project, the objective was 

to characterize this novel cell population and to identify their molecular features. 

Overall our goal was to further our knowledge about the immune system in health and disease, particularly 

in cancer.  
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8. Circulating CD56bright NK cells inversely correlate with survival of melanoma 

patients 

8.1. Introduction 

NK cells are important players in anti-intracellular pathogen immunity. Different subsets exists in different 

tissues 162. NK cells have been shown to be particularly important in controlling infections of the herpes 

virus family in patients with NK cell deficiencies 163. The expression of both inhibitory and activating 

receptors results in tolerance towards healthy cells and activation upon the encounter of unhealthy cells. 

Moreover, NK cells adapt highly to the environment in which they find themselves 41. NK cells do not only 

contribute to immunity by killing target cells but also modulate responses. They are major producers of 

the cytokines IFNγ and TNFα, but also IL-10, GMCSF, GCSF and IL-3. Moreover, they have also been 

reported to produce multiple chemokines like MCP-1 (CCL2), MIP1α (CCL3), MIP1β (CCL4), RANTES (CCL5), 

lymphotactin (CCL5) and IL-8 (CXCL8) 164. During T cell priming, NK cells are an early source of IFNγ, able to 

induce a Th1 response 165. Early in infection cross-talks take place between DCs and NK cells. Mature DCs 

promote NK cell activation by producing type I IFNs, IL-12 or TNFα. As a consequence, NK cells produce 

TNFα and IFNγ leading to a further maturation of DCs 166. NK cells can also enhance cross-presentation. 

Namely, during killing of target cells, antigens are released that can be presented to CTLs 167. Moreover, 

NK cells participate in a process called DC-editing. During this process NK cells specifically kill immature 

DCs and spare the mature ones. This mechanism ensures proper activation of T cells by DCs expressing 

sufficient co-stimulatory molecules 168. 

In humans, the two main subsets of NK cells are CD56bright and CD56dim NK cells. It is thought that CD56bright 

cells are the precursors of the cytotoxic CD56dim NK cells. The former gain a CD56dim signature upon 

cytokine activation and possess longer telomeres than their more mature counterpart 169. NK cell 

activation or tolerance is based on a balance of interactions between activating and inhibitory receptors 

(Figure 4). Activating receptors could be receptors for soluble ligands like cytokines or receptors involved 

in cell-to-cell contact. All NK cells express the common γ chain. CD56bright express additionally IL-2Rα 

whereas CD56dim express the lower affinity receptor IL-2Rβ. The latter is able to bind both IL-2 and IL-15 

170. A variety of receptors induces cytotoxicity upon ligation of NCRs, including NKp46, NKp30 and NKp44. 

NKp46 and NKp30 are expressed at all activation stages. NKp46 has also been used as an NK cell specific 

marker 171. It has been reported that NKp46 binds to hemagglutinin on virus-infected cells 172. NCR 

receptors transduce signals intracellularly via CD3ζ, FcεRIγ and DAP12 173. One of the abilities of NK cells is 

not only to recognise virally infected cells but also stressed cells. The receptor responsible for this 
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recognition is NKG2D. The ligands on target cells are related to MHC I molecules, the MIC-A/B and ULBP1-

6 ligands 119. Another activating receptor that is preferentially expressed on CD56dim NK cells is the FcγRIIIA 

(CD16) receptor that binds the Fc-portion of antibodies with low affinity and is important in inducing NK 

cell mediated ADCC 174. Many ligands for activating receptors are also expressed by normal and healthy 

cells. However, mechanism need to be in place to ensure the absence of auto-reactivity 175. The amount 

of inhibitory ligands engaged counterbalances the activating receptors engaged. If this balance tips over 

to activation due to too low inhibitory signals or overwhelming activating ligands, the NK cell will get 

activated 41. MHC class I molecules are widely expressed and are one of the types of molecules recognised 

by inhibitory receptors on NK cells. The recognition of MHC is ensured by a number of receptors: leukocyte 

Ig-like receptor B1 (LILRB1), human killer Ig-like receptors (KIR) and NKG2A. These receptors are not 

expressed by all NK cells but rather in a random fashion. Other inhibitory receptors include LAIR-1 and 

KLRG1 176. 

 

Figure 4| NK cells express a wide array of receptors, including activating receptors (green) and their corresponding adaptor 
molecules, inhibitory receptors (red), chemotactic receptors (purple), cytokine receptors (black and adhesion receptors (blue). h 
specifies only expression in humans, m in mice, no specification indicates expression in both humans and mice 41. 
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Recent findings have demonstrated that NK are not only able to promote the immune response but are 

also able to impair them. It was shown in a mouse model of LCMV infection that in the absence of NK cells 

early in infection, CTL responses but not T helper responses were more potent and let to the clearance of 

an otherwise chronic infection. This increased responses seem to depend on the co-stimulatory capacity 

of DCs. In vitro DCs isolated from NK cell depleted mice were able to activate CD8 T cells better than DCs 

from wild-type mice. This mechanisms is especially important in early infection 177. During MCMV infection, 

it was shown in mice that NK cells can directly kill infected DCs limiting T cell immunity 178. Moreover, 

during the bidirectional crosstalk between NK cells and DCs, NK cells also produce some IL-10, leading to 

a negative regulation 179. It seems that the mechanism to improve DC presentation or limit it, is dependent 

on the ratio of NK cells to DCs. A low ratio induces activation whereas a high ratio favours limitation of T 

cell priming by DCs 168. During early infection, T cells undergo a rapid clonal expansion. NK cells are able to 

kill these early activated T cells. Some of the NK cells receptors involved in this process have been 

described and include NKG2D, DNAM-1, NKp46, 2B4, LFA and FasL 180,181. Indirect regulation of T cells has 

also been reported, NK cells produce IL-10 during chronic viral infection in mice thus limiting the immune 

pathology 182. T cells are protected after type I interferon sensing, this leads to a downregulation of NK cell 

ligands 183. This mechanisms seem to ensure that only fully activated T cells, having received the three 

signals for activation survive as well as limiting immune pathology 181. These mechanism seem particularly 

important during early infection. However, NK cells also play a regulatory role during the later stages of 

chronic infection, since depletion of NK cells after the peak of the CTL response led to an improvement 

184,185. NK cells are thus able to shape the immune response in a multitude of ways (Figure 5). 

NK cells are often seen as a positive factor in the anti-tumour immune response since their involvement 

in immune surveillance has been shown multiple times118–120,186. NK cells are a valuable alternative to CTLs 

for tumour killing. They do not require clonal selection and expansion, moreover they are safe to use in an 

allogeneic setting for adoptive transfer. Furthermore, their important interactions with DCs are also 

relevant in the TME. NK cells have been shown to produce CCL5 and XCL1 that attract cDC1, important for 

the establishment of an anti-tumour immune response 187. Also the trafficking of stimulatory DCs to the 

TME is mediated by, among others, NK cells via the production of FLT3LG 188. Multiple ligands for activating 

receptors are also expressed by tumour cells as reviewed by Vitale, et al. 189. NK cells are indispensable in 

the success of graft-versus-leukaemia by transfer of T cell-depleted, MHC haploid-identical, allogeneic, 

hematopoietic stem cells. In this instance a mismatch between the KIRs of the donor and the MHC class I 

expressed by the host cell can lead to NK cell activation based on the missing self-hypothesis. The success 

of this therapy has sparked further interest into the development of NK cell based therapies like adoptive 
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NK cell transfer, infusion of recombinant cytokines (IL-2/IL-15) to boost NK cell functionality and infusion 

of chimeric antigen receptor (CAR) NK cells 190. NK cell infiltration was associated with a favourable disease 

outcome in oesophageal carcinoma patients, head and neck squamous cell carcinoma patients, gastric 

cancer, HCC patients and CRC patients 191–194. 

 

Figure 5| NK cells influence the immune response in a both stimulatory (green) and inhibitory (red) manner. They are able to 
induce APC maturation by producing IFNγ. APC elimination can lead to the release of antigens for cross-presentation but also 
limits the amount of DCs available for antigen-presentation. They are able to induce a Th1 response by producing IFNγ and limit 
the T cell response by producing IL-10. T cell killing occurs to ensure only persistence of fully activated T cells. Type I interferon 
sensing by T cells protects them from NK cell mediated killing 195. 

However, during previous research often NK cell non-specific markers are used like CD56 and CD57. In 

solid cancers the efficacy of NK cell-mediated cytotoxicity remains unclear 189. Just as described for T cells, 

NK cells can become exhausted within the TME. It was shown that NK cells isolated from human tumours 

displayed impaired effector functions, characterized by a decrease in IFNγ, granzyme B and perforin 

production, lower degranulation capacity (as measured by CD107a) and an impaired killing capacity 196–198. 

This functional exhaustion can co-incite with a downregulation of activation receptors like NKG2D, NCRs 

and CD16 199. Upregulation of the immune checkpoint PD-1 has also been reported 200. Not only activating 

receptors are decreased, but also the upregulation of inhibitory receptors like NKG2A has been described 

196. NKG2A blocking antibodies are able to reverse this exhaustion and increase the effector functionality 

of both NK and T cells 201. Research has also discovered a role for NK cells in the direct promotion of tumour 

progression. NK cells are found in the peritumoural and stromal area of the tumour in NSCLC patients, 
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displaying a decidual NK cell phenotype (CD56superbright CD16-) producing angiogenic factors like VEGF, PIGF 

and IL-8 197,202,203. It is thought that the presence of TGFβ and hypoxia within the TME could lead to the 

induction of a decidual phenotype derived from CD56bright NK cells 204,205. The tumour employs additional 

methods to escape NK cell killing, for example by expressing PD-L1 and producing IL-10 and PGE2 
206. 

Moreover, tumour cells can shed soluble ligands for activating receptors NKp30 and NKG2D, which can 

lead to their desensitization 207. The inhibitory ligand HLA-G is expressed and secreted by tumour cells, 

upon interaction with NK cells via KIR2DL4, NK cells secrete pro-inflammatory and pro-angiogenic factors 

208. Soluble HLA-G also modulates chemokine receptor expression and thus an alteration of trafficking to 

the TME could take place 209. The interaction between NK cells and tumour cells are very complex and can 

be both anti-as pro-tumoural (Figure 6). 
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Figure 6|The interplay between NK cells and tumour cells as well as other cells of the TME is complex. NK cells can directly kill by 
lysis or inhibit tumour progression by producing IFNγ or TNFα. They can via those cytokine also induce T cell activation. However, 
multiple mechanisms are in place to inhibit their functionality ranging from ligand shedding, inhibition by IL-10 and PGE2 produced 
by the tumour and TGFβ and IL-10 produced by regulatory T cells, IL-10 by MDSCs or tryptophan catabolites produced by 
fibroblasts. Ligation of PD-L1 on tumour or tumour-associated macrophages with PD-1 on NK cells can also lead to the attenuation 
of their functionality 206.  
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8.2. Aim 

In melanoma patients NK subsets (CD56bright and CD56dim) frequencies have been described as either 

unaltered or decreased in the blood of metastatic melanoma patients 210–212. Alterations in receptor 

expression was reported, including lower expression levels of activation receptor NKG2D on CD56dim NK 

cells and increased KIR levels on CD56bright cells, as well as an overall downregulation of NKp46 was 

reported by others 210,211. Functional assessments showed either impaired IFNγ production and 

degranulation as measured by CD107a expression or no changes in functionality 210,211,213. Thus making it 

unclear what the role of NK cells is. Functionality was mostly assessed on total NK cell populations, 

irrespective of the underlying subsets, they however differ substantially in their cytolytic and cytokine 

producing capacities.  

Our aim is to describe phenotypically and functionally NK cells and their subsets in the blood of melanoma 

patients. We used a cohort of patients studied extensively in the lab included in a clinical trial 

(ClinicalTrials.gov; Identifier: NCT00112229) and focussed on the time point before treatment in order to 

have a better view on the inherent immune response. Using patient samples from this clinical trial gives 

us the possibility to access a vast amount of clinical data and evaluate the parameters in relationship to 

clinical outcome. 
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8.3. Co-author contributions 

This work is presented in an article published in March 2019 in the journal Scientific Reports.  

Figure 1 Kaat de Jonge designed and performed the experiment 

Figure 2 
Kaat de Jonge designed and Kaat de Jonge and Petra Baumgärtner 

performed the experiment 

Figure 3 Kaat de Jonge designed and Anna Ebering performed the experiment 

Table 1 Kaat de Jonge designed and performed the experiment 

Supplementary Figure 1 Kaat de Jonge designed and performed the experiment 

Supplementary Figure 2 
Kaat de Jonge designed and Kaat de Jonge and Anna Ebering performed 

the experiment 

Supplementary Figure 3 Kaat de Jonge designed and Anna Ebering performed the experiment 

Supplementary Figure 4 Kaat de Jonge designed and performed the experiment 

Supplementary Table 1 Hélène Maby-El Hajjami provided the clinical data 

 

Kaat de Jonge wrote the manuscript and received feedback from all co-authors. The experiments in Figure 

3, Supplementary Figure 2A and Supplementary Figure 3 were designed by Kaat de Jonge and performed 

by Anna Ebering, a master student under my supervision. Sina Nassiri performed bio-informatics 

experiments that were unfortunately, at this stage, too preliminary to include in the manuscript. He 

provided additional advice and support on the statistical analysis performed during this study. Hélène 

Maby-El Hajjami and Hajer Ouertatani-Sakouhi performed the clinical follow-up of the patients in this study 

and provided the necessary information. Petra Baumgärtner provided support and advice for the cell 

culture, stimulation protocols and flow cytometry. She also, together with Daniel Speider provided 

supervision and guidance during my PhD thesis.  
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Supplementary Figure 1: Distribution of total NK cells, CD56bright, CD56dimCD16+ and CD56dimCD16- NK cells 

in different clinical conditions. A. Distribution of NK cell frequencies and their subsets (%) from patients 

with late stage (III/IV) melanoma and healthy donors. B. Distribution of the absolute numbers of CD56bright 

NK cells in stage III and stage IV melanoma patients. C,D,E. Distribution of total NK cells, CD56bright, 

CD56dimCD16+ and CD56dimCD16- NK cells (%) in relation to previous chemotherapy (C), radiotherapy (D) or 

immunotherapy (E). ns not significant, * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. 
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Supplementary Figure 2: Phenotypical characterization by flow cytometry of NK cells. A. Annexin V 

expression levels on CD56bright NK cells in patients and healthy donors before and after activation 

(PMA/Ionomycin, 4 hours) B. Expression levels (MFI) of CD11a, NKG2D, CD95, NKp46 and CD38 on 

CD56dimCD16+ NK cells. C: Summary histograms of the expression (%) of CD57, CD158b1,b2,j, KLRG1 and 

NKG2A on CD56dimCD16+ NK cells. ns not significant, * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. 
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Supplementary Figure 3: Functional characterization of CD56dimCD16+ NK cells by flow cytometry. A. 

Histograms of TNFα, GMCSF, CCL3, CCL4 and IFNγ production (%) (CD56dimCD16+) as well as the expression 

level of NKp44 (%) in healthy donors and patients before and after stimulation (4h PMA/Ionomycin). B. 

Histograms of the expression levels of granzyme B and perforin by CD56dimCD16+ NK cells. ns not 

significant, * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. 
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Supplementary Figure 4: CD56bright NK cells (%) from melanoma patients with or without distant 

metastases. ns not significant, * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. 
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Supplementary Table 1: Clinical characteristics of the 29 late stage (III/IV) melanoma patients included in this study 

  
Diagnosis Status at study entry Study outcome 

Patient Sex Age Melanoma 

type‡ 

TNM Stage Breslow  Clark Age TNM  Stage Disease 

status# 

Previous 

treatment¤ 

Study entry 

date 

Death  

(1=yes/ 

0=no) 

OS* Relapse 

(1=yes/ 

0=no) 

PFS* 

LAU 

205 

M 24 SSM pT2aN1bM0 IIIB 1.40 IV 33 pT2aN2cM0 IIIB NED IFNa adjuvant, 

Immuno-therapy (a) 

09.03.2005 1 50.6 1 25.2 

LAU 

321 

M 60 SSM pT3aN0M0 IIA 1.50 III 69 pT3aN3M1b IV ED Immuno-therapy 

(b), Chemo-

immuno-therapy (c) 

30.06.2003 0 75.5 1 3.2 

LAU 

371 

M 29 SSM pT3aN1bM0 IIIB 2.38 IV 33 pT3aN1bM1b IV NED Immuno-therapy (d) 28.07.2003 1 11.9 1 3.6 

LAU 

392 

F 29 SSM pT3aN0M0 IIA 2.50 IV 37 pT3aN3M0 IIIC ED Immuno-therapy (b) 16.09.2004 1 11.8 1 2.5 

LAU 

444 

F 27 NM pT3aN0M0 IIA 1.90 IV 33 pT3aN2cM1c IV ED Radiotherapy, 

Immuno-therapy (e) 

15.09.2003 1 30.8 1 15.2 

LAU 

618 

F 69 NM pT4aN0M0 IIB 8.00 V 74 pT4aN2cM0 IIIB ED IFNa adjuvant, 

Chemo-immuno-

therapy (c) 

26.05.2003 1 35.5 1 1.4 

LAU 

627 

M 49 SSM pT3bN1aM0 IIIB 2.23 IV 51 pT3bN2bM1b IV ED NA 19.05.2003 1 15.2 1 3.4 

LAU 

648 

M 64 UK pT2aN0M0 IB 1.60 IV 70 pT2aN3M0 IIIC NED Radiotherapy, 

Immuno-therapy (e) 

25.10.2004 0 153.

7 

0 153.

7 

LAU 

660 

F 22 NM pT2bN0M0 IIA 1.72 IV 25 pT2bN0M1c IV NED NA 16.08.2004 1 14.8 1 2.1 

LAU 

672 

M 34 SSM pT1aN0M0 IA 0.70 III 38 pT1aN3M0 IIIC ED IFNa adjuvant, 

Immuno-therapy (f), 

Chemo-immuno-

therapy (c) 

14.10.2003 1 45.5 1 1.9 
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LAU 

701 

F 70 UK pT3bN0M0 IIB 2.50 IV 71 pT3bN3M0 IIIC NED Chemo-immuno-

therapy (c) 

24.09.2003 0 140.

6 

1 2.9 

LAU 

706 

F 64 UK pTxN0M0 UK UK UK 67 pTxN3M0 IIIC ED  Chemo-immuno-

therapy (c), 

Immuno-therapy (a) 

08.11.2004 1 44.1 1 3.8 

LAU 

818 

M 55 UK pT3aN0M0 IIA 2.44 III 58 pT3aN2bM0 IIIB NED NA 09.05.2003 0 61.2 1 7.3 

LAU 

936 

F 52 SSM pT3aN0M0 IIA 2.70 IV 54 pT3aN1bM0 IIIB NED Radiotherapy 08.03.2006 1 15.1 1 1.5 

LAU 

944 

F 20 OM pT2aN0M0 IB 6.80 UK 28 pT2aN1bM0 IIIB NED Radiotherapy 26.01.2004 0 168.

0 

1 23.8 

LAU 

972 

F 60 NM pT2bN1aM0 IIIB 1.60 III 60 pT2bN1aM0 IIIB NED NA 02.09.2004 0 129.

3 

0 129.

3 

LAU 

975 

M 51 NM pT4aN1bM0 IIIB 12.00 IV 52 pT4N1bM0 IIIB NED NA 11.04.2005 1 7.5 1 4.2 

LAU 

1013 

M 55 SSM pT3bN3M0 IIIC 3.00 IV 56 pT3bN3M0 IIIC NED NA 25.04.2005 1 25.1 1 8.8 

LAU 

1015 

M 75 SSM pT2aN0M1a IV 1.20 III 75 pT2aN0M1a IV NED NA 03.03.2005 1 50.7 1 8.9 

LAU 

1017 

F 28 NM pT3bN2bM0 IIIC 3.80 IV 28 pT3bN2bM0 IIIC NED NA 25.04.2005 1 22.0 1 1.4 

LAU 

1022 

M 69 NM pT2bN2bM0 IIIB 1.49 IV 69 pT2bN2bM0 IIIB NED NA 11.07.2005 1 19.8 1 8.8 

LAU 

1034 

M 47 SSM pT2aN2bM0 IIIB 1.35 III-IV 47 pT2aN2bM0 IIIB NED NA 15.08.2005 0 117.

2 

1 51.8 

LAU 

1090 

M 68 NM pT3aN2bM0 IIIB 3.10 IV 69 pT3aN2bM0 IIIB ED NA 20.02.2006 1 21.0 1 3.8 

LAU 

1106 

M 36 SSM pT2aN1aM0 IIIA 1.35 IV 36 pT2aN1aM0 IIIA NED NA 21.03.2006 0 106.

8 

0 106.

8 
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LAU 

1129 

M 52 SSM pT3N0M0 II 2.50 IV 66 pT3N3M0 IIIC NED Chemotherapy (g) 29.06.2006 1 17.0 1 9.4 

LAU 

1144 

M 68 NeM pT3aN0M0 IIA 0.60 IV 72 pT3aN0M1b IV NED NA 19.09.2006 1 29.4 1 8.9 

LAU 

1164 

M 51 UK pTxNxM1a IV UK UK 52 pTxNxM1a IV NED NA 16.10.2006 0 56.6 0 56.6 

LAU 

1189 

F 68 ALM pT3bN2M0 IIIB 4.00 IV 68 pT3bN2M0 IIIB NED NA 05.06.2007 0 38.9 1 10.9 

LAU 

1264 

M 46 SSM pT3bN0M0 IIB 4.00 IV 48 pT3bN1bM0 IIIC NED Radiotherapy 11.10.2007 0 90.8 1 15.8 

 
‡ The melanoma type is shown: ALM: acral lentiginous melanoma, NM: nodular melanoma, NeM: nevoid melanoma, OM: ocular melanoma, SSM: 
superficial spreading melanoma 
UK: unknown. 
# The disease status before the start of the vaccination trial is presented: NED: no evidence of disease; ED: evidence of disease. 
¤ Previous therapies are listed: All patients underwent surgery. 
a: P40/ELA cancer vaccine study: Melan-A 26-35 (A27L) analogue peptide (ELA)+ P40 adjuvant 
b: LUDWIG 96-010 cancer vaccine study: Melan-A 26-35 (A27L) analogue peptide (ELA)+ FluMa 58-66 peptide + low dose rhIL-2+ SB AS-2 
c: Isolated limb perfusion with Melphalan+IFNγ+TNFα 
d: LUDWIG 98-009 cancer vaccine study: Melan-A 26-35 (A27L) analogue peptide (ELA)+FluMa 58-66 peptide + SB AS-2 
e: LUDWIG 96-010 cancer vaccine study: Melan-A 26-35 (A27L) analogue peptide (ELA)+ FluMa 58-66 peptide + low dose rhIL-2+ Montanide ISA-
51 
f: LUDWIG 96-010 cancer vaccine study: Melan-A 26-35 (A27L) analogue peptide (ELA)+ FluMa 58-66 peptide + Montanide ISA-51 
g: Cisplatine+ Dacarbazine+ Methotrexate 
NA (not applicable) means no systemic treatment was administered before the start of the vaccination trial. 
The study outcome with overall survival (OS) and progression-free survival (PFS) is displayed. * Interval from the start of vaccination protocol to 
event (in months) 
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8.5. Discussion and perspectives 

Our research identifies a possible biomarker for metastatic melanoma. We and others reported that 

CD56bright NK cells inversely correlate with overall survival 214. In the case of Tietze, et al. patients were 

included in a clinical trial receiving Ipilimumab (α-CTLA-4 antibody). However, patient numbers are very 

low in both case, 29 and 23 respectively. So these results need to be confirmed using larger cohorts.  

It remains unclear if there is any link between the functionality of NK cells in the periphery and those 

present within the TME. However, serious questions have been raised about the relevance of NK cells 

within the TME as limited tissue infiltration has been reported in a number of cancer types like melanomas, 

hepatocellular carcinoma, breast cancer, renal cancer and colon cancers 215–217. In two out of three of these 

studies NK cells were characterized as CD56+ by immunohistochemistry. However, CD56 is not exclusively 

expressed in NK cells. Moreover, these techniques haven’t allowed for the differentiation between 

CD56bright and CD56dim NK cells. Other techniques like using RNA signatures to study TCGA data have not 

yielded any results yet, due to the difficulties of designing gene signatures of NK cell populations as well 

as their plasticity in tissues. Recent studies have shown a tissue signature in spleen compared to blood of 

humans 162. However, single cell RNA sequencing might provide a solution. Multiple single cell analysis in 

melanoma have shown clustering of cells identified as NK cells 218–220. However, these have not been 

studied in detail. 

We found that CD56bright NK in the periphery of melanoma patients have an altered functionality. They 

produce lower levels of TNFα and GMCSF. Further questions remain how or if these changes have any 

impact on tumour killing and/or interactions with other immune cells. We additionally found that NK cells 

from melanoma patients express higher levels of CD11a, CD95 and CD38. CD56bright NK cells have been 

shown to inhibit CD4 T cell proliferation via the adenosine pathway 221. CD73 another member of the 

adenosine pathway has already been shown to play an important tumour-promoting role in melanoma 

222,223. The role of CD38 on NK cells might be an interesting avenue to pursue as a possible therapy. 

Overall, our data suggests that CD56bright NK cells may have a negative effect on the anti-tumour response 

or could be used as a potential biomarker as our study provides evidence that the frequency and absolute 

numbers of CD56bright NK cells inversely correlate with overall survival.  
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9.  Characterisation of immune-modulating B cells in late stage melanoma patients 

9.1. Introduction 

Since the ‘80s multiple antibody types directed against tumour antigens have been discovered, indicating 

that B cells recognize and respond to tumour development 224,225. Since then new techniques have been 

developed to detect autoantibodies either in the serum via the SEREX method (serological analysis of 

tumour antigens by recombinant cDNA expression cloning) or the mini-array displaying distinct tumour-

associated recombinant antigens 226–228. The presence or absence of tumour antigen-specific antibodies 

has been used as a diagnostic marker in a number of cancers. A panel of antigens (p53, c-myc, HER2, NY-

ESO-1, BRCA1, BRCA2 and MUC1) were used to fish out antibodies from the sera of early breast cancer 

patients as well as patients with ductal carcinoma in situ. A response to one of the antigens was reported 

in 64 and 45% respectively 229. A similar panel of antigens (p53, c- myc, HER2, NY-ESO-1, CAGE, MUC1 and 

GBU4-5) was used in patients with non-small cell lung cancer and small cell lung cancer. Antibody specific 

response could be measured in 76% of the patients 230. Years before cancer induction antibodies directed 

against nuclear antigens, like p53 could be found in high risk patients, like people working/living in an 

asbestos environment or patients with liver cirrhosis or chronic hepatitis 231,232. However, autoantibodies 

do not only have value as diagnostic but also prognostic markers. The presence of antibodies against 

tumour antigens, has been associated in some cases with a poor prognosis. For examples α-NY-ESO-1 titers 

in hormone refractory prostate cancer 233. Moreover, the titer seems to correlate with the size of the 

tumour mass in different tumour types 234. Titers of anti-nuclear antibodies were associated with bad 

prognosis in breast cancer and gastric cancer 235,236. Other examples are the presence of α-laminin 

antibodies in breast cancer, α-p53 antibodies in breast, gastric, colon cancer, NSCLC, oral cancer 237,238. A 

positive correlation between antibody titers and prognosis has been found in prostate carcinoma (CTSP-

1), hepatocellular carcinoma (p53), non-small cell lung cancer (antineural, MUC1, ANA), colon carcinoma 

(cardiolipin, tropomyosin, ds-DNA, MUC5AC), CLL (laminin receptor), CML (CML66), glioblastoma (GLEA3, 

PHF3), ovarian cancer (MUC1), gastric cancer (Thomsen-Friedenreich, MUC1), small cell lung cancer (SOX 

group B, ZIC2), Hodgkin lymphoma (carbo-anhydrase 1) and breast cancer (CEA, endostatin) 239–253. 

In 1979 Wood et al. reported that the sera of some patients produced cytotoxicity in vitro against allogenic 

cells 254. An antibody derived from peripheral B cells from a melanoma patients was able to induce ADCC 

in vitro 255. ADCC is mediated by the binding of immunoglobulins to Fc Receptors. Four groups of FcR exists, 

classified based on their affinity for IgG, function and distribution. FcγRI and FcγRIII have a pro-

inflammatory function mediated by intracellular tyrosine-based activating motives (ITAMs). Ligation 
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triggers ADCC by NK cells as well as cytokine release, oxidative burst and phagocytosis by macrophages on 

top of degranulation of mast cells. On the other hand, ligation of FcγRII inhibits these inflammatory 

response via tyrosine-based inhibitory motifs (ITIM) signalling. This receptors play thus a central role in 

determining the direction of the immune response 256. Terminal glycans on terminal Fc part of IgG 

determine a lot their binding capacity. For example, terminal galactose residues promote binding to C1q 

complement factor, whereas the absence of fructose increases ADCC by improved binding 257,258. 

Siacylated immunoglobulins are able to bind to APCs and induce the upregulation of FcγRII. This 

glycosylation pattern was found on a part of the NY-ESO-1 specific antibodies in the circulation of 

melanoma patients 259. Immunoglobulins can also be carriers for latent TGFβ 260.  

Class switched antibodies are not only present in the circulation but can also be found within the TME. 

Within the skin lesions of melanoma mRNA profiles indicate the presence of maturated B cells and 

antibody response as indicated by class switching, shorter CDR3 regions, clonal expansion as well as 

distinct repertoire in healthy and malignant skin 261. In breast cancer IgG and IgA antibodies have been 

found in the TME 262. IgA isotypes were also observed in TLS in cutaneous melanoma, normally this isotype 

is only found in lymph nodes draining the mucosal tissues 263. Class-switching to IgA expressing cells is 

induced by TGFβ suggesting the presence of an immunosuppressive microenvironment 264. IgA+ B cells 

have been shown to produce IL-10 in liver cancer and thus directly suppress CTL responses 265. Another 

anti-inflammatory antibody is IgG4. Class switching to IgG4 is induced by a Th2 environment. It has poor 

FcR and complement binding. It has been reported in melanoma that B cells from melanoma lesions 

produced higher proportions of IgG4 than B cells from healthy counterparts. IgG4 antibodies not only lack 

effector functions but also compete with IgG1 for FcR binding 266. Some IgG4 expressing B cells have also 

been shown to produce IL-10 82. Immunoglobulins can not only have a suppressive role but can also be 

important in the establishment of a chronically inflamed environment. Sustained inflammation is one of 

the emerging hall marks of cancer as described by Hanahan and Weinberg. Immune cells can provide in 

these settings growth, pro-angiogenic and survival factors as well as facilitate metastasis 267. Immune 

complexes, which are the association of immunoglobulins with complement, deposited within the tumour 

have been shown to be the result of leaky vasculature 268. Tumorigenesis is halted in a model of squamous 

cell carcinoma upon the absence of B and T cells. Transfer of B cells or serum from tumour-bearing mice 

restores tumour development 269. It was shown that accumulation of autoantibodies in the stroma 

interacts with resident and recruited myeloid cells via FcγR. This interaction leads to an array of responses 

from the innate immune compartment leading to tissue remodelling, angiogenesis, recruitment of 

leukocytes as a final results leading to squamous carcinogenesis 270. 
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B cells are able to infiltrate the tumour in multiple types of cancer 271–275. Their presence within the TME 

has been associated with a both favourable and poor prognosis in melanoma 276–280. Mostly, favourable 

prognosis are related to the presence of B cells in TLS 281. TLS are lymphoid like structures with distinct B 

and T cells zones that can be found outside the lymphoid tissues 282. The presence of TLS itself are 

associated with a favourable prognosis, these areas are important in generating effector and memory T 

cells within the tissues. In the B cells zones a germinal centre is present for memory generation of B cells 

and class switching 283,284. In patients with lung cancer or melanoma all stages of B cells were observed, 

naïve, memory B cells, class switching and plasma cells 263,284. B cells are in this capacity not only able to 

produce antigen but can also act as APCs 285. Activated B cells were able in vitro to present antigens from 

melanoma lysates to T cells and efficiently activate them 286. Higher clonality of CD4+ T cells was observed 

in lung cancer patients that had TLS present in the tumour with B cells continuously presenting antigens 

287. B cells are able to cross-present peptides on a class I MHC from a 30-mer peptides derived from the 

NY-ESO-1 antigen to CTL in vitro 288. In high-grade ovarian cancer, B cells were found in close proximity to 

CD8 T cells, moreover they express MHC class I and II as well as co-stimulatory molecules CD40, CD80 and 

CD86. The combination of B and T cell presence correlates with survival 273. It is thus important to consider 

the spatial repartition of B cells within the TME when considering their function. 

In 1982 it became clear that B cells can also have a tumour promoting role. In a mice experiment, B cells 

were depleted using a chronic administration of an α-IgM antibody. This depletion led to a lower tumour 

incidence 289. In a more recent study, Inoue et al. showed that splenic cells from wild type or B cell knock 

out mice co-cultured with irradiated tumour cell lines showed impaired production of IFNγ production by 

CD8 T and NK cells in the presence of B cells. In vivo experiments showed a similar results. The tumour 

promoting role of B cells was associated with their IL-10 production 290. In a carcinogenesis mouse model 

it was shown that in the absence of the cytokine TNFα derived by B cells, CTLs produce more IFNγ and B 

cells produce less IL-10 291. In a 4T1 breast cancer model it was reported that metastasis was dependent 

on a subset of B cells, regulatory B cells (CD19+ CD25High CD69High) which were able to induce Tregs in a TGFβ-

dependent manner 87. The same group was also able to show that regulatory B cells have an important 

role in educating MDSCs. This educational process is also TGFβ dependent 91. It was shown that tumour 

cells are able to induce regulatory B cell formation, through the metabolite 5-lipoxygenase 292. Tumours 

can also have a long distance effect on B cells via exosomes. It has been shown by Pucci, et al. that tumour-

derived extracellular vesicles interacts with B cells within the lymph nodes. As a consequence, B cells 

produced more immunoglobulins that induces in turn cancer growth. Transfer of sera to another mouse, 

accelerated tumour progression 293.  
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In humans, a partial depletion of B cells using Rituximab in patients with colorectal cancer let to a reduction 

in tumour burden in 50% of patients at the end of the treatment 294. Different types of Bregs have been 

found in different types of cancer 295. In gastric cancer, IL-10 producing B cells expressing high levels of 

CD24 and CD38. Depletion of Bregs from the PBMCs increased the secretion of IFNγ by Th cells in vitro. 

Moreover, they were able to induce Tregs via TGFβ 296. In patients with tongue squamous cell carcinoma 

double staining for IL-10 and CD19 showed double expression within the TME. Tongue squamous cell 

carcinoma cell lines were able to induce Bregs. This induction was blocked by an α-CD40L antibody. Bregs 

derived in vitro were able to induce Tregs independent of IL-10. The ratio of regulatory cells (B or T cells) 

compared to the whole population (B or T) correlated with overall survival of the patients 84. Patients with 

hepatocellular carcinoma had more regulatory B cells in the circulation and in the evasive margins of the 

tumour. Regulatory B cells in the periphery correlated with clinical parameters like staging, venous 

infiltration and tumour multiplicity. When transferred into SCID mice, Bregs were able to promote tumour 

progression independent of Tregs 297. Additional mechanisms have been described apart from IL-10 and 

TGFβ. It was reported that regulatory B cells from the PBMCs from patients with invasive carcinoma of the 

breast expressed a high level of PD-L1. A positive correlation was found between PD-L1+ Bregs and Tregs. An 

inverse correlation exists between PD-L1+ Bregs and CTL 298. Resistance to BRAF inhibitors is fairly common 

in melanoma. It was shown that melanoma cells produce the growth factor FGF-2. This in turn interacts 

with tumour-infiltrating B cells via FGR3. It activates them to produce IGF1, but also IL1, VEGF and 

PDGFA/B. Growth factor IGF1 has a feedback effect on melanoma cells, leading to an upregulation of FGR3 

on melanoma cells, a positive feedback loop is thus instated where FGF2 produced by melanoma cells can 

act on themselves. This leads to a more heterogeneous population 299. 

B cells have a dual role in tumour immunity. They can promote anti-tumour response via the presentation 

of antigens or by inducing ADCC. The tumour promoting roles of B cells can be either direct or indirect and 

are very complex (Figure 7). B cells can be a potential target to improve current treatment or find new 

avenues to treat patients that do not benefit from the current strategies 281. 
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Figure 7|B cells can interact in multiple ways with the tumour and other immune cells within the TME. (1) Cancer-immune 
complexes (CIC) can act over a long distance and interact with FcR on cells from the myeloid compartment at the TME. (2) Type II 
cytokines produced by Th cells at the TME induce a type two polarization in those myeloid cells. (3) B cells can interact and activate 
myeloid cells in an FcR independent manner via cytokine production. (4) Myeloid cells are able to produce pro-tumoural factors 
that are pro-metastatic, pro-invasive, pro-angiogenic and pro-survival. (5) Myeloid cells limit CTL activation and tumour cell killing 
in the TME. (6) B cells produce pro-survival, pro-proliferative and pro-metastatic factors at the TME. (7) Tumour cells can induce 
regulatory B cells or pro-tumoural B cells via excreted factors. (8) Tumour cells recruit myeloid cells to the TME 300. 
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9.2. Aim 

The role of B cells in the response to human melanoma is still unclear. Especially the role of B cells within 

the tumour micro-environment is poorly documented. Most studies have used CD19 or CD20 antibodies 

in immunohistochemistry, whereas phenotype and functionality of B cells remain mostly unknown. We 

decided to phenotypically and functionally characterize B cells within the periphery and the TME by using 

flow cytometry and RNA sequencing in melanoma patients before treatment. We screened patients 

enrolled in clinical studies including vaccination and immunotherapy trials and aimed at determining 

eventual correlations with clinical outcome. 

Our goal is to advance the knowledge on the role of B cells in melanoma patients.  
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9.3. Material and Methods 

9.3.1. Melanoma patients 

Blood was obtained from melanoma patients included in three different clinical trials. Two of them were 

interventional and registered on ClinicalTrials.gov as follows: NCT00112229 and NCT00306566). One study 

was observational with EC number: 400/11. Patients were enrolled upon written informed consent. 

Eligibility criteria and study design has been previously described 301–303. The study was designed, approved 

and conducted according to relevant regulatory standards approved by the Ethics Commission for Clinical 

Research of the Faculty of Medicine and University of Lausanne (Lausanne, Switzerland), Swissmedic 

(Swiss Agency for Therapeutic Product) and the Protocol Review Committee of the Ludwig Institute for 

Cancer Research (New York). Only baseline samples from before the trial treatment were used in this 

study. Control PBMCs from healthy donors where isolated from blood donations obtained from the Blood 

Transfusion Centre.  

Human melanoma tissue specimens used for RNA sequencing analysis were collected in the framework of 

the research protocol 87/06 approved by the Ethics Committee for Clinical Research of the Faculty of 

Biology and Medicine of the University of Lausanne. 

9.3.2. Human cell preparation and flow cytometry 

Patient or healthy donor PBMCs were isolated from whole blood cells by Lymphoprep (Axis-Shield) 

centrifugation gradient and cryopreserved in liquid nitrogen. Frozen PBMCs were thawed in a water bath 

at 37°C. Cells were kept, for resting, overnight at 37°C and 5% CO2 in RPMI (Gibco), 10% FSC (Gibco) and 

100U/ml IL-2 (Proleukin). Cells were than stimulated with 3 µg/ml CpG 7909 (PF-3512676) which was 

provided by Pfizer and Coley Pharmaceutical Group, Wellesley MA, for 14 hours after which 50ng/ml PMA 

(Sigma-Aldrich) and 500ng/ml Ionomycin (Thermo Fischer) was added. After another two hours 2nM 

Monensin (Sigma-Aldrich) and 10µg/ml Brefeldin A (Sigma-Aldrich) were added for another 4 hours. 

Control samples were kept in RPMI, 10% FSC Monensin and Brefeldin A were added at the same time point 

as their stimulated counterpart.  

The first step in the staining for flow cytometry analysis is the blocking of the Fc-receptor to avoid 

unspecific staining using an Fc-blocking reagent (Miltenyi, 130-059-901). The following antibodies were 

used for the phenotyping and functional characterization of B cells from PBMCS: CD4 (BD Bioscience, 

562970), CD8 (Biolegend, 344732), CD14 (Beckman Coulter, B01175), CD19 (Biolegend, 302208), CD27 

(eBioscience, 61-0279-42), IgD (BD Bioscience, 555778), CD95 (Biolegend, 305606), CD126 (IL6-R) (BD 

Bioscience, 551850), PD-1 (Biolegend, 329920), T-bet (BD Bioscience, 562467), IL-2 (BD Bioscience, 
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554565), IL-4 (Biolegend, 500810), IL-5 (BD Pharmigen, 554396), IL-6 (Biolegend, 501106), IL-13 (BD 

Pharmigen, 561162), IL-17A (Biolegend, 512308), IFNγ (BD Pharmigen, 557844), TNFα (BD Pharmigen, 

557996) and LTα (Invitrogen, BMS105FI).  

After staining with extracellular antibodies a live/dead staining (LIVE/DEAD™ Fixable Near-IR Dead Cell 

Thermo Fisher Scientific Cat# L-34975) was performed. Cells were fixed at RT during 30 minutes (FoxP3 

intracellular staining kit, eBioscience). Intracellular staining was performed at RT during 30 minutes in 

FoxP3 intracellular staining kit permeabilisation buffer (eBioscience). Cells were acquired using the Gallios 

flow cytometer (Beckman Coulter) and analysed using FlowJo 10.4.2 (FlowJo LCC). 

9.3.3. Cell sorting and RNA sequencing 

Tumour-specific T cells from tumour-infiltrated lymph nodes (TILN) were prepared after finely mincing 

surgery specimens to yield a single cell suspension, which was cryopreserved on the same day as the 

surgery was performed. Cell sorting by flow cytometry was performed in collaboration with Laure Tillé 

(Gregory Verdeil, UNIL, Lausanne). In short, cells were thawed and rested overnight in RPMI and FCS. B 

cells were sorted based on the expression of CD19 (Beckman Coulter, A96418) using the Astrios (BD 

Bioscience). Cells were sorted directly into RNA later (Invitrogen, AM720) to conserve RNA upon 

cryopreservation. RNA was extracted using the RNeasy Plus Micro kit (Qiagen, 74034) following the 

manufacturer’s protocol. Quality of RNA was tested using a fragment analyser (Advanced Analytical). Total 

RNA from all samples used for sequencing had an RQN ≥ 7. Libraries were obtained using the Clontech 

SMART-Seq v4 (Takara). Single read (100bp) was performed using an Illumina HiSeq 2500 sequencer 

(Illumina). These last two steps were performed at the Lausanne Genomics Technologies Facility (UNIL, 

Lausanne). 

RNA-sequence quantification was performed using Kallisto 304. In brief, target transcript sequences were 

obtained from ENSEMBLE (GRCh38.p12), and the abundance of transcripts was quantified using Kallisto 

0.44.0 with sequence-based bias correction. All other parameters were set to default when running 

Kallisto. Kallisto's transcript-level estimates were further summarized at the gene-level using tximport 

1.8.0 from Bioconductor 305. For downstream analysis, lowly abundant genes were filtered out and 

differential expression analysis was performed using DESeq2 1.22.0 from Bioconductor 306. Significant 

genes were identified using FDR<0.1. Gene Set Enrichment Analysis (GSEA) was performed using fgsea 

1.8.0 package from Bioconductor with fold change estimates as gene-level statistic 307. Prior to GSEA, 

ENSEMBL gene ids were converted to human gene symbols using biomaRt 2.38.0 from Bioconductor 308. If 

a gene symbol was associated with more than one ENSEMBL id, the ENSEMBL id with maximum variation 
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was selected using the collapseRows functionality within the WGCNA R package 309. Signaling pathways 

analyzed by GSEA were obtained from the Hallmark gene sets of the MSigDB 310. Heatmap was generated 

using the pheatmap R Package 311, with clustering distance and method set to Euclidean and ward.D2, 

respectively. RNA sequencing analysis was performed by Sina Nassiri (Prof. Daniel Speiser, UNIL, 

Lausanne). 

9.3.4. Statistics and analysis 

Significance of single comparisons was assessed using the Mann–Whitney test, multiple comparisons a 

Kruskal-Wallis test, using the GraphPad Prism 8 software. Overall survival (OS) was defined as the time 

between enrolment in the clinical trial and latest follow-up or death. The significance of Kaplan-Meier 

survival analysis was assessed by the Log-rank test (Prism 8).  
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9.4. Results 

9.4.1. Patient B cells are potent cytokine producers 

For the characterisation of B cell populations we used samples from patients from three different clinical 

trials. All samples were from the baseline time point, so none of the patients received any treatment at 

the time of sampling. One study included only early stage melanoma patients (stage I-II) who received 

virus-like particles for vaccination 302. In a second study late stage melanoma patients (stage III-IV) were 

recruited into a vaccination trial using short Melan-A peptide and adjuvants to induce an immune response 

301. In the third and last trial patients received immunotherapy under the form of an α-CTLA-4 blocking 

antibody 303.  

Carpenter, et al., found a decrease in the memory compartment (CD27+ B cells) in metastatic melanoma 

patients in the blood 312. We however did not find a significant difference between memory cells either 

switched (IgD-) or unswitched (IgD+) memory B cells (Figure 8A). Moreover, we did not find any differences 

between the frequencies of circulating B cells or naïve B cells (Figure 8A). 

Not much is known about the functionality of B cells in cancer patients apart from antibody production 

even though B cells are also known for their potent production of cytokines 313. We found that B cells 

produce IL-2, GMCSF, TNFα, LTα, IL-6 and IL-10 (Figure 8B,C). We did not find any significant differences 

between cytokine production in patients and healthy donor controls (Figure 8B,C). We did not observe any 

production of IL-4, IL-5, IL-13, IL-17A or IFNγ (data not shown).  

9.4.2. Previous immunotherapy and stage of the patients correlate with B cell functionality 

We observed a big range in the degree of cytokine production by B cells from melanoma patients. We 

decided to look into more detail into the clinical parameters that set these patients apart. Interestingly, B 

cells from stage III/IV melanoma patients produce less IL-2, TNFα and LTα than stage I/II patients (Figure 

9A). These results show a partial impairment in B cell functionality from late stage patients (stage III/IV). 

Moreover, we found a deficiency in the functionality of patients having received previous immunotherapy. 

B cells from patients having received previous immunotherapy are less able to produce TNFα, LTα and IL-

10 (Figure 9B). Immunotherapy includes mostly vaccinations with peptides as well as cytokines. An 

overview of the previous immunotherapy can be found in Table 1. Radiotherapy and chemotherapy had 

minor effects on the production of cytokines (Figure 9C,D). 
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Figure 8|Frequencies and functionalities of peripheral B cells. A. Frequencies of circulating B cells and its subsets including naïve, 
unswitched memory and switched memory B cells from healthy donors (n=27) and melanoma patients (n=51). B. Representative 
dot plots from a healthy donor of cytokine production by B cells. C. Summary of the cytokine production by B cells from healthy 
controls (n=15/26) and melanoma patients (n=37/31) after CpG and PMA/Ionomycin stimulation. ns not significant, * p<0.05, ** 
p<0.01, *** p<0.001, **** p<0.0001. 
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Figure 9| Distribution of cytokine production by B cells (IL-2, GMCSF, TNFα, LTα, IL-6 and IL-10) in different clinical conditions. A. 
Distribution of cytokines produced by B cells from patients in stage I/II, III and IV. B,C,D. Distribution cytokine production by B cells 
in melanoma patients in relation to previous immunotherapy (IT) (B), radiotherapy (RT) (C), chemotherapy (CT) (D). ns not 
significant, * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. 
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Table 1| Detailed information about the patients that received previous immunotherapy as well as the type of immunotherapy 
received. 

Patient Immunotherapy 

LAU 205 P40/ELA cancer vaccine study: Melan-A 26-35 (A27L) analogue peptide (ELA)+ P40 adjuvant 

LAU 321 LUDWIG 96-010 cancer vaccine study: Melan-A 26-35 (A27L) analogue peptide (ELA)+ FluMa 58-66 peptide + 
low dose rhIL-2+ SB AS-2 

Isolated limb perfusion with Melphalan+IFNγ+TNFα 

LAU 371 LUDWIG 98-009 cancer vaccine study: Melan-A 26-35 (A27L) analogue peptide (ELA)+FluMa 58-66 peptide + 
SB AS-2 

LAU 392 LUDWIG 96-010 cancer vaccine study: Melan-A 26-35 (A27L) analogue peptide (ELA)+ FluMa 58-66 peptide + 
low dose rhIL-2+ SB AS-2 

LAU 444 LUDWIG 96-010 cancer vaccine study: Melan-A 26-35 (A27L) analogue peptide (ELA)+ FluMa 58-66 peptide + 
low dose rhIL-2+ Montanide ISA-51 

LAU 618 Isolated limb perfusion with Melphalan+IFNγ+TNFα 

LAU 648 LUDWIG 96-010 cancer vaccine study: Melan-A 26-35 (A27L) analogue peptide (ELA)+ FluMa 58-66 peptide + 
low dose rhIL-2+ Montanide ISA-51 

LAU 672 LUDWIG 96-010 cancer vaccine study: Melan-A 26-35 (A27L) analogue peptide (ELA)+ FluMa 58-66 peptide + 
Montanide ISA-51 

Isolated limb perfusion with Melphalan+IFNγ+TNFα 

LAU 701 Isolated limb perfusion with Melphalan+IFNγ+TNFα 

LAU 706 Isolated limb perfusion with Melphalan+IFNγ+TNFα 

P40/ELA cancer vaccine study: Melan-A 26-35 (A27L) analogue peptide (ELA)+ P40 adjuvant 

LAU 518 Vaccinations with long NY-ESO-1 long-peptide and Montanide with CpG adjuvant 

LAU 1131 VLP vaccination with Melan-A analogue peptide and Montanide 

LAU 1394 Vaccinations with Melan-A ELA+ Melan-A EAA+ MAGE-A10+ NY-ESO-1 long-peptide and Montanide adjuvant 

LAU 1397 Vaccinations with Melan-A ELA+ Melan-A EAA+ MAGE-A10+ NY-ESO-1 long-peptide and Montanide adjuvant 

Vaccinations with Melan-A ELA+ sLAG-3 Iong-peptide and Montanide adjuvant 
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9.4.3. Pro-inflammatory B cells correlate inversely with overall survival in Ipilimumab treated 

patients 

Due to the heterogeneity in patients, we decided to focus on the patients treated with the checkpoint 

blocker Ipilimumab (α-CTLA-4). These are patients with the most advanced disease, mostly stage IV with 

substantial disease burden. B cells from patients produced more GMCSF than B cells from healthy donors. 

We did not see any differences between the production of IL-2, IL-6, IL-10, TNFα and LTα (Figure 10A). At 

a phenotypical level, we also observe higher expression of IL-6R and FasR and the transcription factor T-

bet. We did not observe any differences between PD-1 expression on B cells from patients and healthy 

controls (Figure 10B). T-bet has been shown to be expressed in pathological B cells driving a lupus-like 

disease in mice 314. 

Patients recruited in this clinical trial had an extensive follow-up, up to 7 years. The advantage of an 

Ipilimumab treatment is that significant numbers of patients had clear clinical responses, allowing the 

comparison of responders with non-responders. We found that B cells from non-responders produce more 

TNFα, IL-6 and IL-10, but less GMCSF (Figure 10C). This suggests that cytokine producing B cells are more 

potent in non-responders. None of the phenotypical markers was differentially expressed between 

responders and non-responders (data not shown). Interestingly, we found that IL-6, TNFα and IL-10 levels 

negatively correlate with overall survival (Figure 10D). This seems to indicate that both inflammatory and 

regulatory B cells have negative effects on patient prognosis. From our analysis it was impossible to 

determine if these are separate populations or a single multifunctional population of B cells. 

9.4.4. B cells from the TME are significantly different from peripheral B cells from patients and 

healthy donor controls 

The research presented above gives us an indication about the phenotype and the functionality of B cells 

within the periphery, but we do not know if this is reflected within the TME. To our knowledge, sorted B 

cells from the TME have not been sequenced to this date. We decided to sequence B cells from melanoma 

metastases (n=5), and corresponding B cells from the PBMCs (n=5). The data analysis was performed in 

collaboration with Sina Nassiri (Prof. Speiser lab, UNIL, Lausanne). 

Visualization of significantly differentially expressed genes (FDR=0.1) of B cells from TILs compared to B 

cells from healthy donors in a heatmap shows that B cells cluster together based on their anatomical 

localization (Figure 11A). This indicates a stronger tissue signature than a patient signature. 131 genes are 

differentially expressed based on a false discovery rate of 0.1. The highest differentially expressed gene is 

the transcription factor SOX5. SOX5 is expressed during the later stages of B cell maturation when the 

proliferation capacity is reduced 315. Other genes in the top 30 include an interferon response gene (IFIT5), 
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immunoregulatory molecules (IDO1) and IgA heavy constant alpha 2 (Figure 11B). A top thirty genes based 

on a the highest positive log2 of the fold change between TILs and PBMCs shows as well some of the same 

genes like SOX5, IDO1, IgA heavy constant alpha 2 and Immunoglobulin Lambda Variable 8-61, as well as 

some immune-related genes like CXCL11, CD86, Interferon Regulatory Factor 6 (IRF6) and Interleukin 4 

Induced 1 (IL4l1) (Figure 11C). Gene enrichment analysis (GSEA) shows the presence of some important 

hallmarks, like Myc targets, interferon response as well as the inflammatory response and IL-6 signalling 

(Figure 11D). 

There is evidence that B cells from the TILs are activated as can be seen from increased CD86 expression 

as well as the enrichment in inflammatory response genes and IL-6 signalling genes. The role of IL-6 

produced by B cells may play an important role as well. We found that patients that do not respond to 

Ipilimumab treatment possess peripheral B cells that produce higher levels of IL-6. Moreover, high levels 

of IL-6 producing B cells inversely correlates with overall survival. Inflammatory genes are enriched in B 

cells from TILs, one of the hits within the GSEA enrichment is IL-6.  
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Figure 10| Association of phenotypical and functional characteristics with clinical parameters of Ipilimumab. A. Cytokine 
production (%) in patients (n=14) and healthy donor controls (n=15/26). B. Phenotypical characteristics including T-bet (%) CD95 
or FasR (%), IL-6R (%) and PD-1 (%) in patients (n=14) and healthy donor controls (n=15). C. Differentiation of patients into 
responders (n=6) and non-responders (n=8) to treatment and their associated cytokine production. D. Overall survival (log rank 
test) based on the median production of IL-6, TNFα and IL-10 in B cells from late stage melanoma patients. ns not significant, * 
p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. 



70 | P a g e  
 

 



71 | P a g e  
 

Figure 11| RNA sequencing of sorted B cells from melanoma metastatic lymph nodes and sorted B cells from the periphery from 
corresponding patients. A. A pairwise comparison represented in a heatmap of significantly differentially expressed genes 

comparing TILs and peripheral B cells with an FDR of 0.1. The heatmap is based on the z-score, red indicating negative and blue 
positive values. B. Top 30 differentially expressed genes, list based on adjusted p-values. C. Top 30 differentially expressed genes 
based on the biggest log2 of the fold change. C. Hallmarks enriched in B cells from TILs compared to PBMCs, enrichment was 
analysed using a pre-ranked list using GSEA with a nominal p < 0.05 and FDR < 0.1. 
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9.5. Discussion and perspectives 

Different roles for B cells have been described especially in mouse tumour models, with pro-inflammatory 

as well as regulatory features 300. However, the role of B cells in cancer patients is less described 316. We 

found that although B cell frequencies and subsets did not differ between patients and healthy donors, 

patients who received previous immunotherapy, mostly under the form of a peptide vaccination and 

adjuvants showed reduced production of TNFα, LTα and IL-10 as compared to patients not having received 

previous immunotherapy. Moreover, it seems that B cells become less functional with disease progression 

as indicated by stage. 

These results made us focus on patients enrolled in a clinical trial receiving Ipilimumab (α-CTLA-4). Not 

much research has been performed trying to elucidate the role of B cells in clinical responses to checkpoint 

blockade. We focussed on the baseline time point in order to study characteristics of B cells driven by the 

disease. 

We found that peripheral B cells from patients produce more GMCSF and have a higher expression of T-

bet, FasR and IL-6R. GMCSF administration in melanoma in an adjuvant setting has shown limited success 

317,318. On the other hand, it has also been shown to promote malignant cell growth in mouse models of 

head and neck squamous cell carcinomas 319. We also observed an upregulation of IL-6R on patient B cells, 

which is something we can also find on B cells from the TME. We observed an enrichment in genes involved 

in IL-6 signalling in B cells. This cytokine can have both pro and anti-inflammatory properties. Some of the 

hits within the inflammatory response hallmarks are IL-6, IL-10, IL-1B and LTα. Together with IDO1 found 

in the top hits, these results suggest that B cells from the TME are at the same time pro-inflammatory and 

regulatory, similarly as the circulating B cells. Both IL-10 and IL-6 produced by peripheral B cells negatively 

correlate with overall survival and can be found at higher levels produced by circulating B cells from non-

responder patients. IL-6 plays an important role in B cell development and maturation of B cells and 

plasmablasts 320. In combination with IL-1β it has been able to induce regulatory B cells 321. This mechanism 

was described in gut-immunity, an environment where also IgA plays an important role and is the most 

prevalent isotype. We found that one of the genes overexpressed in B cells of the TME is part of the IgA 

molecule. IgA has been shown to be expressed by B cells in the TME of breast cancer as well 262. In liver 

cancer, IgA+ B cells were show to express PD-1 and produce IL-10. 265. IgA class-switching occurs in the 

presence of TGFβ 322. The presence of TGFβ indicates an overall suppressive TME 161. 

Regulatory B cells have been quite elusive, since no transcription factor nor any surface markers have been 

found. Thus far the only way to identify them is with functionality 81,323. We found that circulating B cells 
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from non-responders produced more IL-10 than B cells from responders. In the TME we found that IL-10 

was one of the hits within the inflammatory response hall marker significantly enriched in B cells from TILs 

compared to peripheral B cells. Regulatory B cells have been shown to limit T cell activation and 

proliferation as well as induce regulatory T cells 88. An additional pathway that could contribute to the 

suppressive character of intra-tumoural B cells is by the production of IDO1 which is one of the top hits we 

found by RNA sequencing. B cells have been shown to be able to regulate T cell response in an IDO-

dependent manner 324. It remains to be determined whether we can identify suppressive functions by the 

patients’ B cells. 

Suppression of T cell responses is not the only way in which B cells promote tumour progression. It has 

been shown that TNFα had a tumour promoting role in squamous cell carcinoma 291. We observed a 

negative correlation between TNFα and overall survival, moreover non-responsive patients to treatment 

produced more TNFα. However, we did not find any TNFα overexpression within the TME compared to 

peripheral B cells. 

Overall, B cells have an immune-modulating phenotype by producing pro- as well as anti-inflammatory 

cytokines like IL-6, TNFα and IL-10. mRNA levels of IL-6, IL-10, LTα and IDO1 were also upregulated. Further 

research is needed to increase the number of patients. One of the possible avenues to follow is to use 

publicly available single cell RNA sequencing data from melanoma patients 218–220. During this previous 

research, as described in the literature, B cell profiles were not analysed in detail. Especially the recently 

published data from Sade-Feldman, et al., is of particular interest to us since they used samples from 

before and after α-PD-1 and/or α-CTLA-4 treatment in melanoma patients 220. They have described that a 

B cell cluster and not a plasma cluster was more frequent in responder patients, irrespective of the time 

point. However, the functional profile of these B cells has not been described in more detail 220. It would 

be interesting to see if inflammatory genes are also enriched in these samples compared to corresponding 

blood samples. Moreover, we would like to see if the profile changes before and after treatment. We 

would like to complement this data, with flow cytometry analysis of B cells from tumour-infiltrated lymph 

nodes, including functionality after stimulation and phenotype. As controls we would also like to analyse 

lymph nodes from healthy donor controls. The discrepancies in the role of B cells could be explained by 

the favourable prognostic role of B cells when they are present in TLS compared to unaccompanied by T 

cells 283. Our data is derived from TILNs where naturally a lot of B cells are present, it would be interesting 

to compare to non-lymphoid metastases.  
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Overall, our research suggests that B cells contribute to the pro-tumoural immune response by producing 

both inflammatory and regulatory cytokines. This opens up new avenues for therapy, since we find 

increased cytokine producing B cells in non-responding patients. B cells could thus be new targets, and/or 

exploited as biomarkers for therapy. 
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10. Characterization of a new lymphocytic population, termed Orphan lymphoid cells 

(OLC), in the blood of healthy humans 

10.1. Introduction  

Even though it was thought that all major lineages of immune cells had been discovered, 10 years ago a 

new type of immune cells was discovered, the ILCs 7. In mice, the ILC group cells, including ILCs and NKs, 

differentiate from the CLPs, which already expresses the IL7Rα (CD127), the expression is conserved down 

to the ILC lineage but not the NK cell lineage 325. CLPs differentiate into integrin α4β7-expressing ILC 

progenitor α lymphoid precursors (αLP). This lineage differentiation is induced by transient expression of 

the transcription factor NFIL3 326. NFIL3 induces the expression of transcription factors TOX and ID2 327,328. 

This stage is also called the early innate lymphoid progenitor (EILP). This EILP is able to give rise to the NK 

cell progenitor as well as the common helper ILC progenitor (CHILP) 329. CHILP1 express high levels of ID2 

but no PD-1, they are able to give rise to lymphoid-tissue inducer cells. CHILP2 on the other hand, also 

express high levels of ID2 but also PD-1 as well as the transcription factor PLZF giving rise to the other ILC 

helper subsets (Figure 12) 326.  

 

Figure 12| ILC and NK cell development originates in the bone marrow from CLP that in turn gives rise to αLP progenitors 
characterized by the expression of α4β7 integrin. The first progenitor in this cascade is called the EILP and is able to give rise to all 
ILC subsets including NK cells. IL7Rα is firmly expressed from this stage on. CHILP progenitors are no longer able to give rise to NK 
cells but only helper ILCs. CHILP1 characterised by high ID2 expression and absence of PD-1 and PLZF, CHILP1 is able to give rise 
to LTi cells. CHILP2 progenitors on the other hand express PD-1 and the transcription factor PLZF, they can give rise to helper ILC 
subsets: ILC1,2 and 3 330.  

The developmental path of ILCs and NK cells as well as at which step exactly their development 

differentiates is not entirely understood in humans. CLPs can be found in the human CD34+ compartment 

however, the exact phenotyping remains unclear 331. NK cells, ILC1, ILC2s and ILC3s can be generated from 
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human CD34+ bone marrow cells in vivo, when transplanted in immune-deficient mice 332,333. In vitro 

differentiation from more CLP-like cells has been able to deliver NK, cells as well as ILC2s and ILC3s 332,334. 

More recently a subset of progenitor cells have been identified in the periphery of humans with the 

following phenotype: CD34-CD7+CD127+CD117+CD45RA+ that are able to give rise to all ILC subsets (helper 

and cytotoxic). Transcription factors found to be important in mice were also upregulated in human cells 

(TCF7, TOX, ID2, ZBTB16 and GATA3) 335. Moreover, the phenotype of the CHILP is not clear either. CD34+ 

CD45RA+ α4β7+ precursor cells have been identified in human tonsils and lymph nodes, however they still 

have the potential to produce T cells and DCs, thus making further refinement necessary 334,336. In humans, 

the phenotypical differences between CILP and CHILP, indicating the difference between the potential of 

NK and/or ILC differentiation as it exists in mice is not clear 337. Recently an NK cell precursor has been 

identified in cord blood, bone marrow and tonsils having the following phenotype: Lin-CD34+ CD38+CD123-

CD45RA+CD7+CD10+CD127-. It is unclear if they are able to give rise to ILC1 cells 332. ILC precursor 1 and 2 

are still unknown in humans. However, ILC precursor 3 cells have been found in tonsils and the intestinal 

lamina propria expressing CD34, c-kit, α4β7+ as well as the transcription factor RORγT 336. An overview can 

found in Figure 13. 

 

Figure 13| The lineage differentiation of human NK and ILCs starts in the bone marrow with a CLP like cell that differentiates 
further in CILP that can directly give rise to NKp as well as CHILP that in turn is able to produce ILC1p, ILC2p and ILC3p (adapted 
from 337).  
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10.2. Aim 

While characterizing NK cells, we identified a new type of human lymphoid cells in PBMC of healthy donors. 

Therefore we set the goal to confirm that these cells indeed represent a novel population, and to 

characterize them molecularly and functionally. We used flow cytometry and RNA sequencing to identify 

potential functions as well as to compare gene signatures to well-known immune cell types. In general, we 

aim at contributing to improved understanding of the human immune system by characterizing the 

lympho-hematopoietic system as comprehensively as possible. 
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10.3. Material and Methods 

10.3.1. Human cell preparation and flow cytometry 

Blood donations were obtained from the Blood Transfusion centre. PBMCs were isolated from whole blood 

cells by Lymphoprep (Axis-Shield) centrifugation gradient and used immediately.  

The following antibodies were used for identification and phenotype of OLCs: CD3 (Biolegend, 300440), 

CD4 (Biolegend, 300538), CD8 (Immunotools, 21270083x2), CD14 (Biolegend, 325604), CD15 (Biolegend, 

301904), CD16 (Biolegend, 302006), CD19 (Biolegend, 302206), CD20 (Biolegend, 302304), CD33 

(Biolegend, 303304), CD34 (Biolgend, 343604), CD203 (Biolegend, 324614), FcεRIα (Biolegend, 334608). 

CD127 (eBioscience, 11-1278-73) and CD56 (Biolegend, 318304) make up the lineage markers. Additional 

antibodies used were: CD3 (Biolegend, 344806), CD62L (Biolegend, 322605), CD62L (Biolegend, 304824), 

CD132 (Biolegend, 338607), CD44 (BD Bioscience, 560532), CD45 (Biolegend, 304032), mouse IgG1 isotype 

control (Biolegend, 400150), mouse IgG2b isotype control (Biolegend, 400611) and mouse IgG2b isotype 

control (BD Bioscience, 560183). Afterwards, a live/dead staining (LIVE/DEAD™ Fixable Aqua Dead Cell 

Stain Thermo Fisher Scientific Cat# L34965) was performed. 

Cells were acquired using the Gallios flow cytometer (Beckman Coulter) and the Amnis Imagestream (EMD 

Milipore). Data was analysed using FlowJo 10.4.2 (FlowJo LCC) and IDEAS 6.2 (EMD Milipore). Statistical 

significance was assessed using the Mann–Whitney test using the GraphPad Prism 8 software.  

10.3.2. Cell sorting and RNA sequencing 

PBMCs used for cells sorting were further processed for RNA sequencing. OLCs were selected based on 

the absence of markers stained by the following antibodies: CD3 (Biolegend, 344806), CD16 (Biolegend, 

302008), CD19 (Biolegend, 302208), CD33 (Beckman Coulter, 6603042), CD56 (Biolegend, 318328), CD123 

(Biolegend, 306010) and CD127 (BD Bioscience, 557938) were used for negative control. OLCs were 

positively selected using two antibodies: CD45 (Biolegend, 304012) and HLA-A,B,C (Biolegend, 311420). 

Cells were sorted immediately into RTL plus buffer (Qiagen) with DTT (Applichem). 

RNA was extracted immediately after sorting using the RNeasy Plus Mini kit (Qiagen, 74136) following the 

manufacturer’s protocol. Quality of RNA was tested using a fragment analyser (Advanced Analytical). Total 

RNA from all samples used for sequencing had an RQN ≥ 6.4. Since RQN is not optimal, libraries were 

obtained using NuGen RNA-seq (TECAN). Single read (100bp) was performed using an Illumina HiSeq 2500 

sequencer (Illumina). Library generation and sequencing were performed by the Lausanne Genomics 

Technology Facility (UNIL, Lausanne). 
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RNA sequencing analysis was performed by Julien Racle (Prof. David Gfeller, Ludwig Branch Lausanne). In 

short, gene expression from five RNA-seq datasets was integrated in the analysis. OLC dataset is the data 

that we generated including sorted OLCs, T cells and PBMC samples (obtained from 5 donors). ILC dataset 

was obtained from sorted ILCs, NK cells and T cells from 3 donors and ILC cell cultures. Hoek dataset (GEO 

accession GSE64655) contains samples from PBMC and sorted immune cells (B cell, monocytes, myeloid 

dendritic cells, neutrophils, NK cells and T cells) from 2 healthy donors, taken at different time points after 

an influenza vaccination, referred to hereafter as Imm_SRR174 338. Linsley dataset (GEO accession 

GSE60424) includes samples from sorted immune cells (B cells, CD4+ T cells, CD8+ T cells, monocytes, 

neutrophils and NK cells) from 20 donors (healthy donors and other donors with amyotrophic lateral 

sclerosis, multiple sclerosis, type 1 diabetes or sepsis) , referred to hereafter as Imm_SRR155 339. Pabst 

dataset (GEO accession GSE51984) includes data from various sorted immune cells (B cells, granulocytes, 

monocytes, peripheral blood CD34+ cells and T cells) from 5 healthy donors. As neutrophils constitute 

more than 90% of granulocytes, we grouped together the neutrophils and granulocytes in our analyses, 

referred to hereafter as Imm_51984 340. 

The gene expression data from Pabst dataset was directly available as gene counts. For the other four 

datasets, the reads were aligned to the human genome, hg19, with TopHat version 2.0.13 using Bowtie2 

version 2.2.4 and Samtools version 1.2. HTSeq version 0.6.1 was then used to obtain the gene counts from 

these data 341–344. The gene counts were then normalized by the library size of each sample. Batch effects 

between the datasets were finally removed with help of ComBat found in the R-package sva version 3.28.0 

345,346. Principal component analysis was performed on the top 1000 most variable genes, showing a 

clustering of the samples coming from a same cell type. The normalized expression of some selected 

immune-related genes is showed with boxplots indicating the median, first and third quartiles, grouping 

the samples by their cell type.  
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10.4. Results 

10.4.1. Discovery of Orphan Lymphoid Cells (OLCs) 

We have discovered a new subset of lymphocytes (OLCs) that make up around 0.2% of lymphocytes 

in the blood of healthy donors. We found OLCs in all studied healthy donors, at consistent frequencies 

(Figure 14A). These cells are negative for the major lineage markers (CD3, CD4, CD8, CD14, CD15, CD16, 

CD19, CD20, CD33, CD34, and CD56). They do also not express CD127/IL7Rα, the major ILC marker in 

human PBMCs. Positive identification by flow cytometry is possible based on the OLC’s expression of 

CD44 and CD45 (Figure 14B). 

 

Figure 14| OLCs are found in the periphery of healthy donors. A. Frequencies of T cells and OLC in 11 healthy donors. B. OLCs are 
gating on lymphocytes, based on the forward and side scatter. Doublets are gated out and only live and lineage negative cells are 
selected. OLCs are CD45+ CD44+. 

10.4.2. OLCs express the common γ – chain receptor 

OLC express the common γ – chain receptor (CD132) at the same levels as T cells, clearly distinguishable 

from the background (isotype control; Figure 15A,B). Also CD44 expression was confirmed during the same 

experiment (Figure 15A,B). CD62L is partially expressed by OLCs and at a significant higher level than T 

cells (Figure 15A,B). 
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Figure 15| Marker expression of OLCs. A. expression levels of CD123, CD44 and CD132 at the surface of T cells and OLCs. An 
appropriate isotype was used as a control. B. Histograms of the summary of the expression levels of CD132 and CD62L on OLCs 
and T cells. ns not significant, * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. 

10.4.3. OLCs are a morphologically homogeneous population 

In order to characterize the morphology of OLCs, we performed a flow cytometry experiment by Amnis 

Image Stream (Merck). Bright field pictures were taken at 40X (Figure 16A) and 60X (Figure 16B) 

magnification. These pictures show a homogeneous population regarding the size of the cells and the 

morphology. Using the Amnis Image Stream allowed us to also investigate expression levels of CD62L as 

well as expression of CD45, CD44 and CD132 (Figure 16C). CD62L is expressed at variable intensities on the 

surface of OLCs. Even though CD44, CD45 and CD132 are expressed by all cells, the intensities vary.  

10.4.4. RNA signatures represent a mixed T-NK cell signature 

We aimed at a full molecular characterization of OLCs, as well as studying resemblance to other immune 

cells. Therefore we sorted OLCs from five different healthy donors. Simultaneously T cells were also sorted 

from the same donors. RNA sequencing was performed of OLCs, T cells and total PBMCs. PCA analysis 

shows that OLCs cluster together and far away from neutrophils, monocytes and myeloid DCs (Figure 17A). 

We see that OLCs cluster together with T cells as well as ILCs and NK cells. For these comparisons, our own 

data as well as publicly available data and data provided by Bérengère Salomé (Jandus Group, UNIL) was 

used. Analysis was performed in collaboration with Julien Racle (David Gfeller, Ludwig Branch Lausanne). 
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Figure 16| Amnis image stream analysis of OLCs. A. 40x magnification of OLCs seen as bright field images. B. 60x magnification of 
OLCs seen as bright field images. C.A 60x images of OLCs show the absence of lineage and dead marker staining, CD62L is expressed 
at mixed intensities on OLCs, CD44, CD132 and CD45. 
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Gene signature comparisons were used to compare between OLCs and various types of immune cells. Our 

own data was combined with publicly available data. We notice that OLCs do not express any CD14, CD19 

or CD33 expression. Confirming that these cells are not myeloid or B cells. Even though we can observe a 

low expression of CD3ε, no CD8α or CD4 expression. We can observe some expression of FoxP3, granzyme 

A, LCK and CD45 (PTPRC), all at similar or lower levels than CD8 (Figure 17B). 

 

Figure 17| A. Principal component analysis of OLCs compared to data from 5 different sources, ours called MysteryPop_b, 3 
publicly available data sources as well as data provided by the Jandus lab (ILC-UNIL). A zoom-in provides further detail. B. Gene 
signature comparisons with major lineage markers for the major immune populations. 

Since we observed some expression of LCK as well as CD3ε we decided to take a closer look at T cell and 

TCR genes. We observe an overall lower expression of T cell (Figure 18A) and TCR signature genes (Figure 

18B). This confirms that OLCs are different from T cells. However, we also observed the expression, 

albeit lower than in T cells, of some T cell related genes like Granzyme K, ICOS, CD28, SIRPG and SEPT1. 
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Figure 18| Gene signature comparison. A. T cell gene signature genes compared between OLCs, T cells and PBMCs from our own 
data as well as publicly available immune populations datasets. B. Gene signature comparison of TCR related genes. 

Granzyme expression could also point us in the direction of NK cells. We thus performed a comparison 

between OLCs and NK cell gene signatures as well as ILC signatures. NK cell genes are expressed at lower 

levels than in publically available NK cell gene expression data (Figure 19A). However, we can observe low 

expression of CD247 (TCRζ), CTSW, IL2Rβ, NKG7 and SH2D1B. This profile confirms that OLCs are not NK 

cells, but nevertheless have low expression of some related genes. However, when looking at the gene 

signatures of ILCs we can observe lower expression of ILC-related genes (Figure 19B). We observe some 

expression of ID2 and IL12RB. Together with the absence of IL7R-expression (CD127) at the protein level 
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(selection of CD127-negative cells during sorting) as well as an absence on the RNA level (Figure 17B), 

makes us confident that OLCs are not a subset of ILCs. We conclude that OLCs have a mixed T-NK cell 

phenotype. Additional research is needed to further position OLCs within the immune network as well as 

elucidate their possible roles. 

 

Figure 19| Gene signature comparison. A. NK cell gene signature genes compared between OLCs, T cells and PBMCs from our own 
data as well as publicly available immune populations datasets. B. Gene signature comparison of ILC related genes.  



86 | P a g e  
 

10.5. Discussion and Perspectives 

Since the discovery of ILCs 10 years ago, the question was raised whether other immune cell populations 

are still escaping the attention of scientists 347. We discovered a new population found within the 

lymphocyte gate (FSC/SSC) in peripheral blood of healthy donors. We called these cells Orphan Lymphoid 

Cells (OLCs), as they do not yet have specific functions. 

OLCs are negative for all the major lymphocyte cell markers like CD3, CD4, CD8, CD14, CD15, CD16, CD19, 

CD20, CD33, CD56 as well as the ILC marker CD127. Positive markers expressed by OLCs are CD44 and 

CD45 that allow to identify OLCs as a homogenous population by flow cytometry. The common γ-chain 

receptor (CD132) is also expressed, as well as a partial expression of CD62L is observed. CD132 is expressed 

on T cells as well as NK cells and their precursors. The RNA sequencing data shows expression of CD122 or 

IL-2Rβ at low levels. This could indicate that OLCs might respond to IL-2 and IL-15 signalling like NK cells.  

OLCs are a homogenous population based on PCA data where they cluster together. A homogenous 

population can also be found based on morphology. We documented this by using the Amnis Image Stream 

flow cytometer. Bright field pictures taken with a 60x magnification show a homogenous population in 

morphology and size. This gives us confidence that OLCs are a not a mixture of largely different cell types. 

RNA sequencing of OLCs from different healthy donors reveals that they have a mixed T / NK cell signature, 

since they express some genes characteristic for T cells like CD3ε, FOXP3, LCK, Granzyme K, ICOS, CD28, 

SIRPG and SEPT1, as well as some NK cell genes like: CD247 (TCRζ), CTSW, IL2Rβ, NKG7 and SH2D1B. 

However, overall genes in these two signatures are either lower expressed or not expressed, showing us 

that they are distinctly different from NK and T cells. We did not find similarities with other immune cells 

like ILCs, B cells and myeloid derived cells. 

We found expression of the two transcription factors FoxP3 and ID2. FoxP3 is the transcription factor 

expressed and highly specific for regulatory T cells 348. ID2 has been shown to be important in the 

development of mouse NK cells and ILCs 330. The role and function of ID2 in the development of human NK 

cells and ILCs is less clear 335. Together with the expression of the common γ chain receptor, ID2 expression 

could indicate that OLCs are a precursor cell type. However, PCA analysis shows that they cluster away 

from CD34+ cells from the peripheral blood. It would be interesting to see if the gene signature of OLCs 

has any commonalities from the precursor cell types generated and sequenced by Renoux, et al. 332. For 

further exploration, in vitro experiments where OLCs are cultured with a cocktail of cytokines could 

elucidate if they differentiate into a different cell type. The cytokines would be a combination of all the 
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cytokines that can bind to a receptor including the common γ chain receptor, including but not limited to 

IL-2, IL-7 and IL-15. Based on the expression of common γ-receptor as well as IL2Rβ, we hypothesize that 

IL-2 and IL-15 could have the biggest chance of having specific effects. We also wonder if OLCs are able to 

upregulate cytokine receptors after stimulation e.g. via CD25. This would re-inforce the parallels between 

regulatory T cells and OLCs as we already found FoxP3 expression.  

The function of OLCs remains elusive. The sequencing data shows us that they express some cytotoxicity 

genes like granzyme K and granzyme A. On the other hand we found expression of the regulatory 

transcription factor FoxP3. These possible functionalities seem quite contradictory. In vitro experiments, 

using isolated OLCs and different types of stimulants could allow to determine which cytokines are 

produced by OLCs upon stimulation. We propose to induce activation using multiple approaches including 

PMA/ionomycin stimulation, mitogen stimulation (PHA) or using a cytokine cocktail (high dose of IL-2 for 

example). Since OLCs are quite rare within PBMCs, we have only few cells available for analysis. It would 

thus be opportune to use a multiplex method as a read-out for cytokine production like MSD, Legendplex 

or Luminex. 

It is possible that the presence of OLCs in the blood is rather transitory and that they are on route to the 

tissues. Analysis of multiple tissues including the bone marrow and lymphoid tissues could clarify their 

anatomical localizations and function within the immune system and within non-lymphoid tissues. Mouse 

models could also be used, however it is unclear for now if mice have OLCs. 

Overall, we have discovered a new type of immune cells called Orphan Lymphoid Cells (OLCs). They have 

a mixed NK-T cell phenotype but do not express any of the lineage markers. They can be identified by their 

expression of CD45, CD44, CD132 and CD62L. Their place and overall function within the immune system 

remains unknown. More work is need to clarify their functionality, tissue distribution and link to other 

immune cells. 
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11.  General discussion 
Our first two aims for this PhD were to better understand the complexity of the immune response in 

patients with melanoma, in the hopes of advancing the knowledge leading to new therapeutic avenues as 

well as biomarker discovery.  

In the first part we studied NK cell responses in late stage melanoma patients. We found that the 

frequencies and absolute number of CD56bright NK cells inversely correlates with overall patient survival. It 

is possible that CD56bright NK cells have negative effects on the anti-tumour response by inhibiting T cell 

responses, via CD38, perforin, CD11a and/or IFNγ. On the other hand, they produce less GMCSF and TNFα, 

cytokines important in establishing an anti-tumour response. Thus, it remains open whether CD56bright NK 

cells act through immune inhibition or are representative for an NK cell biology state with poor capability 

to kill tumours in vivo. Future studies are required to further clarify the roles of NK cell subsets and their 

interdependence. 

In the second part of our study, we characterized B cell responses in PBMC of Ipilimumab treated 

melanoma patients. We found that pro-inflammatory as well as regulatory B cells from the periphery 

inversely correlate with overall survival as well as response to treatment. We also studied B cells from the 

TME of melanoma patients and found the same phenotype. Specifically, IDO1 is overexpressed and 

inflammatory genes and IL-6 signalling genes are also enriched. 

These two projects create new avenues for biomarker development, for predicting overall survival as well 

as response to therapy. Additionally, we found that NK cells have partially impaired immune responses, 

creating a possible new target. On the other hand, B cells seem to be both inflammatory as well as 

regulatory. It is unclear if these are separate populations or if they are cells with a dual functionality. 

Additional research will further uncover which mechanisms drive these B cell responses in order to know 

where to interfere therapeutically. 

In our third project, we discovered a new population of Orphan Lymphoid Cells (OLCs) that do not express 

any of the major hematopoietic lineage markers. They express however CD44, CD45, CD132 and partially 

CD62L. RNA sequencing shows a signature in between NK and T cells. The exact role of OLCs remains to be 

determined. 

Overall during these projects, we contributed to the field of immunology, both to translational tumour 

immunology as well as to fundamental research. 
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13.  Annexes  
During this PhD I have been blessed to be part of two fruitful collaborations. One within the lab led by 

former PhD student Natacha Bordry on unravelling the link between lymphatics and T cell infiltration 

within the tumour micro-environment in melanoma. I joined at the end of the project and was mostly 

involved with the analysis of multiplex stainings. The second successful collaboration was with Julien Racle 

with the group of Prof. Gfeller at the Ludwig Branch in Lausanne. We performed the validation for a 

deconvolution method based on bulk RNA sequencing. 

Papers of the two projects have been published and are included below. 
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