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Abstract. We consider a spectrally-negative Markov additive process as a

model of a risk process in random environment. Following recent interest in
alternative ruin concepts, we assume that ruin occurs when an independent

Poissonian observer sees the process negative, where the observation rate may

depend on the state of the environment. Using an approximation argument
and spectral theory we establish an explicit formula for the resulting survival

probabilities in this general setting. We also discuss an efficient evaluation of

the involved quantities and provide a numerical illustration.

1. Introduction

In classical risk theory, ruin of an insurance portfolio is defined as the event that
the surplus process becomes negative. In practice, it may be more reasonable to
assume that the surplus value is not checked continuously, but at certain times
only. If these times are not fixed deterministically, but are assumed to be epochs of
a certain independent renewal process, then one often still has sufficient analytical
structure to obtain explicit expressions for ruin probabilities and related quantities,
see [1, 2] for corresponding studies in the framework of the Cramér-Lundberg risk
model and Erlang inter-observation times. An alternative ruin concept is studied
in [3], where negative surplus does not necessarily lead to bankruptcy, but bank-
ruptcy is declared at the first instance of an inhomogeneous Poisson process with
a rate depending on the surplus value, whenever it is negative. When this rate
is constant, this bankruptcy concept corresponds to the one in [1, 2] for exponen-
tial inter-observation times. Yet another related concept is the one of Parisian ruin,
where ruin is only reported if the surplus process stays negative for a certain amount
of time (see e.g. [8, 19]). If this time is assumed to be an independent exponential
random variable instead of a deterministic value, one recovers the former models
with exponential inter-observation times and constant bankruptcy rate function, re-
spectively. Recently, simple expressions for the corresponding ruin probability have
been derived when the surplus process follows a spectrally-negative Lévy process,
see [18].

In this paper we extend the above model and allow the surplus process to be
a spectrally-negative Markov additive process. The dynamics of such a process
change according to an external environment process, modeled by a Markov chain,
and changes of the latter may also cause a jump in the surplus process. We assume
that ruin occurs when an independent Poissonian observer sees the surplus process
negative, and we also allow the rate of observations to depend on the current state

Key words and phrases. Markov additive process; level-crossing probabilities; Poissonian ob-
servation; ruin probability; occupation times.

1

ar
X

iv
:1

31
0.

30
54

v1
  [

m
at

h.
PR

] 
 1

1 
O

ct
 2

01
3
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of the environment (one possible interpretation being that if the environment states
refer to different economic conditions, a regulator may increase the observation rates
in states of distress). Using an approximation argument and the spectral theory for
Markov additive processes, we explicitly calculate for any initial capital the survival
probability and the probability to reach a given level before ruin in this model. The
resulting formulas turn out to be quite simple. At the same time, these formulas
provide information on certain occupation times of the process, which may be of
independent theoretical interest.

In Section 2 we introduce the model and the considered quantities in more detail.
Section 3 gives a brief summary of general fluctuation results for Markov additive
processes that are needed later on. In Section 4 we state our main results and
discuss their relation with previous results, and the proofs are given in Section 5.
In Section 6 we reconsider the classical ruin concept and show how the present
results implicitly extend the classical simple formula for the ruin probability with
zero initial capital to the case of a Markov additive surplus process. Finally, in
Section 7 we give a numerical illustration of the results for our relaxed ruin concept
in a Markov-modulated Cramér-Lundberg model.

2. The model

Let (X(t), J(t)), t ≥ 0 be a Markov additive process (MAP), where X(t) is a
surplus process and J(t) is an irreducible Markov chain on n states representing
the environment, see e.g. [4]. While J(t) = i, X(t) evolves as some Lévy process
Xi(t), and X(t) has a jump distributed as Uij when J(t) switches from i to j. Con-
sequently, X(t) has stationary and independent increments given the corresponding
states of the environment. We assume that X(t) has no positive jumps, and that
none of the processes Xi(t) is a non-increasing Lévy process. The latter assump-
tion allows to simplify notation and to avoid some tedious algebraic manipulations.
Note that the Markov-modulated Cramér-Lundberg risk model with

X(t) = u+

∫ t

0

cJ(v) dv −
N(t)∑
j=1

Yj(1)

is a particular case of the present framework, where u is the initial capital of an
insurance portfolio, ci > 0 is the premium density in state i, N(t) is an inho-
mogeneous Poisson process with claim arrival intensity βi in state i, and Yj are
independent claim sizes with distribution function Fi if at the time of occurrence
the environment is in state i (in this case Uij ≡ 0 for all i, j), see [4].

Write Eu[Y ; J(t)] for a matrix with ijth element E(Y 1{J(t)=j}|J(0) = i,X(0) =
u), where Y is an arbitrary random variable, and Pu[A, J(t)] = Eu[1A; J(t)] for the
probability matrix corresponding to an event A. If u = 0, then we simply drop the
subscript. We write I,O,1,0 for an identity matrix, a zero matrix, a column vector
of ones and a column vector of zeros of dimension n, respectively. For x ≥ 0 define
the first passage time above x (below −x) by

τ±x = inf{t ≥ 0 : ±X(t) > x}.

As in [2] we assume that ruin occurs when an independent Poissonian observer
sees X(t) negative, where in our setup the rate of observations depends on the state
of J(t), i.e. the rate is ωJ(t) ≥ 0 for given ω1, . . . , ωn. Recall that a Poisson process
of rate ω has no jumps (observations) in some Borel set B ⊂ [0,∞) with probability
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exp(−ω
∫
B

dt). Hence the probability of survival (non-ruin) in our model with initial
capital u is given by the column vector

φ(u) = Eue−
∑
j ωjAj , whereAj :=

∫ ∞
0

1{X(t)<0,J(t)=j}dt,(2)

which follows by conditioning on the Ajs. The ith component of this vector refers
to the probability of survival with initial state J(0) = i. Define for any u ≤ x the
n× n matrix

R(u, x) := Eu[e−
∑
j ωjAj(x); J(τ+

x )], with Aj(x) :=

∫ τ+
x

0

1{X(s)<0,J(s)=j}ds,(3)

so R(u, x) is the matrix of probabilities of reaching level x without ruin, when
starting at level u.

It is known that X(t)/t converges to a deterministic constant µ (the asymptotic
drift of X(t)) a.s. as t→∞, independently of the initial state J(0). If µ < 0, then
X(t)→ −∞ a.s., so Aj →∞ a.s. for all j, and consequently ruin is certain (unless
all ωj = 0). If µ ≥ 0 then τ+

x <∞ a.s. for all x, and so

φ(u) = lim
x→∞

R(u, x)1.

Finally, note that R(u, x) can be interpreted as a joint transform of the occupation
times Aj(x). Moreover, with the definition R(x) := R(0, x), the strong Markov
property and the absence of positive jumps give

(4) R(x)R(x, y) = R(y)

for 0 ≤ x ≤ y (see also [11]). Hence R(x, y) can be expressed in terms of R(x)
and R(y), given that these matrices are invertible. That is, it suffices to study the
matrix-valued function R(x).

Remark 2.1. The present framework can be extended to include positive jumps
of phase type, cf. [4]. One can convert a MAP with positive jumps of phase type
into a spectrally-negative MAP using so-called fluid embedding, which amounts to
expansion of the state space of J(t), see e.g. [13, Sec. 2.7]. Next, we set ωi = 0
for all the new auxiliary states i and compute the corresponding survival probability
vector for the new model, which – when restricted to the original states – yields the
survival probabilities of interest.

3. Review of exit theory for MAPs

Let us quickly recall the recently established exit theory for spectrally-negative
MAPs, which is an extension of the one for scalar Lévy processes (see e.g. [16,
Sec. 8]). A spectrally-negative MAP (X(t), J(t)) is characterized by a matrix-valued
function F (θ) via E[eθX(t); J(t)] = eF (θ)t for θ ≥ 0. We let π be the stationary
distribution of J(t). It is not hard to see that J(τ+

x ), x ≥ 0 is a Markov chain and
thus

P(J(τ+
x ) = j|J(0) = i) = (eΛx)ij

for a certain n × n transition rate matrix Λ, which can be computed using an
iterative procedure or a spectral method, see [5, 9] and references therein. It is easy
to see that J(τ+

x ), x ≥ 0 is non-defective (with a stationary distribution πΛ) if and
only if µ ≥ 0.
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The two-sided exit problem for MAPs without positive jumps was solved in [15],
where it is shown that

Pu[τ+
x < τ−0 , J(τ+

x )] = W (u)W (x)−1

for 0 ≤ u ≤ x and x > 0, where W (x), x ≥ 0 is a continuous matrix-valued function
(called scale function) characterized by the transform

(5)

∫ ∞
0

e−θxW (x)dx = F (θ)−1

for θ sufficiently large. It is known that W (x) is non-singular for x > 0 and so is
F (θ) in the domain of interest. In addition,

(6) W (x) = e−ΛxL(x),

where L(x) is a positive matrix increasing (as x → ∞) to L, a matrix of expected
occupation times at zero (note that in the case of the Markov modulated Cramér-
Lundberg model (1), cjLij provides the expected number of times when the surplus
is 0 in state j given J(0) = i and X(0) = 0). If µ 6= 0, then L has finite entries and
is invertible. Finally,

(7) Eu[eθX(τ−0 ); τ−0 < τ+
x , J(τ−0 )] = Z(θ, u)−W (u)W (x)−1Z(θ, x),

where

Z(θ, x) = eθx
(
I−

∫ x

0

e−θyW (y)dyF (θ)

)
is analytic in θ for fixed x ≥ 0 in the domain <(θ) > 0.

Importantly, all the above identities hold for defective (killed) MAPs as well, i.e.
when the state space of J(t) is complemented by an absorbing ‘cemetery’ state; the
original states of J(t) then form a transient communicating class, and the (killing)
rate from a state i into the absorbing state is ωi ≥ 0. We refer to [14] for applications
of the killing concept in risk theory.

Note that killed MAPs preserve stationarity and independence of increments
given the environment state. Furthermore, we get probabilistic identities of the
following type:

(8) eΛ̂x = P̂[J(τ+
x )] = E[e−

∑
j ωj

∫ τ+x
0 1{Jt=j}dt; J(τ+

x )],

where P̂ and Λ̂ refer to the killed process, and we are still concerned with the
original n states only. The right hand side of (8) is similar to the definition of
the matrix R(x) in (3); it is also the joint transform of certain occupation times.
However, R(x) is more complicated, as there the killing is only applied when the
surplus process is below zero, so with the setup of this paper one leaves the class
of defective MAPs (the increments now depend on the current value of X(t)). Let

us recall the relation between F (θ) and its killed analogue F̂ (θ):

F̂ (θ) = F (θ)−∆, ∆ = diag(ω1, . . . , ωn).(9)

Letting ∆π be a diagonal matrix with the stationary distribution vector π of J
on the diagonal, we note that F̃ (θ) = ∆−1

π F (θ)T∆π corresponds to a time-reversed
process, which is again a spectrally-negative MAP (with no non-increasing Lévy
processes as building blocks) with the same asymptotic drift µ, see [4]. Using the
characterization (5) one can see that the corresponding scale function is given by

W̃ (x) = ∆−1
π W (x)T∆π.
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4. Results

The following main result determines the matrix of probabilities of reaching a
level x without ruin:

Theorem 4.1. For x ≥ 0 we have

R(x) = E[e−
∑
j ωjAj(x); J(τ+

x )] = eΛ̂x

(
I−

∫ x

0

W (y)∆eΛ̂ydy

)−1

,

where Λ̂ corresponds to the killed process with killing rates ωi ≥ 0 identified by F̂ (θ)
in (9).

The vector of survival probabilities according to our relaxed ruin concept has
the following simple form:

Theorem 4.2. Assume that the asymptotic drift µ > 0, all obervation rates ωi
are positive, and Λ and Λ̂ do not have a common eigenvalue. Then the vector of
survival probabilities is given by

φ(0) = lim
x→∞

R(x)1 = U−11,

where U is the unique solution of

(10) ΛU − U Λ̂ = L∆.

Equation (4) then immediately gives

Corollary 4.1. Under the conditions of Theorem 4.2 we have for every u ≥ 0

φ(u) = R(u)−1φ(0)

and for every 0 ≤ u ≤ x

R(u, x) =

(
I−

∫ u

0

W (y)∆eΛ̂ydy

)
eΛ̂(x−u)

(
I−

∫ x

0

W (y)∆eΛ̂ydy

)−1

.

Equation (10) is known as the Sylvester equation in control theory. Under the
conditions of Theorem 4.2 it has a unique solution [20], which has full rank, because
L∆ has full rank [10, Thm. 2]. Moreover, the solution U can be found by solving a
system of linear equations with n2 unknowns. With regard to coefficient matrices,
there are two methods to compute Λ and Λ̂, see Section 3. In principle, the matrix
L can be obtained from W (x), cf. (6). This method, however, is ineffective and
numerically unstable. In the following we give a more direct way of evaluating L.

Proposition 4.1. Let µ 6= 0. Then for a left eigenpair (γ,h) of −Λ, i.e. −hΛ =
γh, it holds that

hL = lim
q↓0

qhF (γ + q)−1.

More generally, if h1, . . . ,hj is a left Jordan chain of −Λ corresponding to an
eigenvalue γ, i.e. −h1Λ = γh1 and −hiΛ = γhi + hi−1 for i = 2, . . . j, then

hjL = lim
q↓0

q

j−1∑
i=0

1

i!
hj−i[F (q + γ)−1](i).
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Remark 4.1. Consider the special case n = 1, i.e. X(t) is a spectrally-negative
Lévy process with Laplace exponent F (θ) = logEeθX(1), with observation rate ω.

Then Λ̂ = −Φ(ω), where Φ(·) is the right-inverse of F (θ), i.e. F (Φ(ω)) = ω.
According to Theorem 4.1 we have

(11) R(x) = e−Φ(ω)x/

(
1− ω

∫ x

0

e−Φ(ω)yW (y)dy

)
= 1/Z(Φ(ω), x).

Note that 1/Z(θ, x) is a certain transform corresponding to X(t) reflected at zero
at the time of passage over level x, see [15], which may lead one to an alternative
direct probabilistic derivation of (11). Finally, if µ = EX(1) > 0 then Λ = 0 and
hence L = 1/F ′(0) = 1/µ according to Proposition 4.1. Accordingly, in this case
Theorem 4.2 reduces to

φ(0) = E exp

(
−ω

∫ ∞
0

1{X(t)<0}dt

)
=

Φ(ω)

ω
µ,

which coincides with [18, Thm. 1].

5. Proofs

The proofs rely on a spectral representation of the matrix Λ̂, which we quickly
review in the following. Let v1, . . . ,vj be a Jordan chain of −Λ̂ corresponding to

an eigenvalue γ, i.e. −Λ̂v1 = γv1 and −Λvi = γvi + vi−1 for i = 2, . . . j. From the
classical theory of Jordan chains we know that

(12) e−Λ̂xvj =

j−1∑
i=0

xi

i!
eγxvj−i

for any x ∈ R and j = 1, . . . , k, and in particular e−Λ̂xv1 = eγxv1. Moreover,
this Jordan chain turns out to be a generalized Jordan chain of an analytic matrix
function F̂ (θ),<(θ) > 0 corresponding to a generalized eigenvalue γ, i.e. for any
j = 1, . . . , k it holds that

(13)

j−1∑
i=0

1

i!
F̂ (i)(γ)vj−i =

j−1∑
i=0

1

i!
F (i)(γ)vj−i −∆vj = 0

and in particular F (γ)v1 = ∆v1, see [9] for details.

Proof of Proposition 4.1. Observe that he−Λx = eγxh and so (5) and (6) yield

hF (θ)−1 =

∫ ∞
0

e−θxeγxhL(x)dx

for large enough θ. Since L(x) is bounded from above by L, this equation can be
analytically continued to <(θ) > <(γ) with F (θ) non-singular. Hence for small
enough q > 0 we can write

qhF (q + γ)−1 = q

∫ ∞
0

e−qxhL(x)dx = hEL(eq),

where eq is an exponentially distributed r.v. with parameter q. Letting q ↓ 0
completes the proof of the first part.
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According to (12) we have hj−ie
−Λx =

∑j−i−1
k=0

xk

k! e
γxhj−i−k. Next, consider

hj−i[F (θ)−1](i) =

∫ ∞
0

(−x)ie−θxhj−ie
−ΛxL(x)dx

=

j−1∑
k=i

(−1)i

(k − i)!
hj−k

∫ ∞
0

xke−θx+γxL(x)dx,

where differentiation under the integral sign can be justified using standard argu-
ments. Finally,

j−1∑
i=0

1

i!
hj−i[F (θ)−1](i) =

j−1∑
k=0

k∑
i=0

(−1)i

i!(k − i)!
hj−k

∫ ∞
0

xke−θx+γxL(x)dx

= hj

∫ ∞
0

e−θx+γxL(x)dx,

because the second sum is (1− 1)k = 0 for k ≥ 1. The final step of the proof is the
same as in the case of j = 1. �

The proof of Theorem 4.1 relies on an approximation idea, which has already
appeared in various papers, see e.g. [6, 7, 18]. We consider an approximation Rε(x)
of the matrix R(x). When computing the occupation times we start the clock when
X(t) goes below −ε (rather than 0), but stop it when X(t) reaches the level 0.
Mathematically, we write, using the strong Markov property,

Rε(x) = P[τ+
x < τ−ε , J(τ+

x )]

+

∫ −ε
−∞

(
P[τ−ε < τ+

x , X(τ−ε ) ∈ dy, J(τ−ε )]Ey[e−
∑
j ωj

∫ τ+0
0 1{Jt=j}dt; J(τ+

0 )]

)
Rε(x).

Using the exit theory for MAPs discussed in Section 3 we note that the first term
on the right is W (ε)W (x+ ε)−1 and the second, according to (8), is∫ ∞

0

(
Pε[τ−0 < τ+

x+ε,−X(τ−0 ) ∈ dy, J(τ−0 )]eΛ̂(y+ε)
)
Rε(x).

By the monotone convergence theorem the approximating occupation times con-
verge to Aj(x) as ε ↓ 0, and then the dominated convergence theorem implies con-
vergence of the transforms: Rε(x) → R(x) as ε ↓ 0 for any x > 0. Hence we
have

W (x) lim
ε↓0

(
W (ε)−1

[
I−

∫ ∞
0

(
Pε[τ−0 < τ+

x+ε,−X(τ−0 ) ∈ dy, J(τ−0 )]eΛ̂(y+ε)
)])(14)

×R(x) = I,

where we also used continuity of W (x). We will need the following auxiliary result
for the analysis of the above limit.

Lemma 5.1. Let f(y), y ≥ 0 be a Borel function bounded around 0. Then

lim
ε↓0

W (ε)−1

∫ ε

0

f(y)W (y)dy = O.



8 HANSJÖRG ALBRECHER AND JEVGENIJS IVANOVS

Proof. Consider a scale function W̃ (x) = ∆−1
π W (x)T∆π of the time-reversed pro-

cess. It is enough to show that limε↓0
∫ ε

0
f(y)W̃ (y)dyW̃ (ε)−1 = 0, but∫ ε

0

f(y)W̃ (y)dyW̃ (ε)−1 =

∫ ε

0

f(y)P̃y(τ+
ε < τ−0 ; J(τ+

ε ))dy,

which clearly converges to the zero matrix. �

Proof of Theorem 4.1. First we provide a proof under a simplifying assumption and
then we deal with the general case.

Part I: Assume that −Λ̂ has n linearly independent eigenvectors v: −Λ̂v = γv.
Considering (14) we observe that the integral multiplied by v is given by∫ ∞

0

(
e−γ(y+ε)Pε[τ−0 < τ+

x+ε,−X(τ−0 ) ∈ dy, J(τ−0 )]
)
v =

e−γεEε[eγX(τ−0 ); τ−0 < τ+
x+ε, J(τ−0 )]v = e−γε(Z(γ, ε)−W (ε)W (x+ ε)−1Z(γ, x+ ε))v,

according to (7). Hence the limit in (14) multiplied by v is given by

lim
ε↓0

W (ε)−1

∫ ε

0

e−γyW (y)dyF (γ)v +W (x)−1Z(γ, x)v = W (x)−1Z(γ, x)v,

according to the form of Z(γ, ε) and Lemma 5.1. Finally, from (13) we have

Z(γ, x)v = eγxv −
∫ x

0

W (y)∆eγ(x−y)vdy =

(
e−Λ̂x −

∫ x

0

W (y)∆eΛ̂(y−x)dy

)
v,

which under assumption that there are n linearly independent eigenvectors shows
that (

e−Λ̂x −
∫ x

0

W (y)∆eΛ̂(y−x)dy

)
R(x) = I,

completing the proof.
Part II: In general we consider a Jordan chain v1, . . . ,vj of −Λ̂ corresponding

to an eigenvalue γ. Using (12) we see that the integral in (14) multiplied by vj is
given by

j−1∑
i=0

1

i!
Eε[(X(τ−0 )− ε)ieγ(X(τ−0 )−ε); τ−0 < τ+

x+ε, J(τ−0 )]vj−i,

where all the terms can be obtained by considering (7) for θ = γ, multiplying it
by e−εγ and taking derivatives with respect to γ. Again Lemma 5.1 allows to show
that various terms converge to 0, which results in

(15)

j−1∑
i=0

1

i!
Z(i)(γ, x)vj−i

for the expression on the left of R(x) in (14) when multiplied by vj . The definition
of Z(γ, x) leads to

Z(i)(γ, x) = xieγxI−
i∑

k=0

i!

k!(i− k)!

∫ x

0

(x− y)keγ(x−y)W (y)dyF (i−k)(γ).
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Plugging this in (15), interchanging summation and using (13), we can rewrite (15)
in the following way:

j−1∑
i=0

1

i!
xieγxvj−i −

j−1∑
k=0

1

k!

∫ x

0

(x− y)keγ(x−y)W (y)dy∆vj−k,

which is just (
e−Λ̂x −

∫ x

0

W (y)∆eΛ̂(y−x)dy

)
vj

according to (12). The proof is complete since there are n linearly independent
vectors in the corresponding Jordan chains. �

Proof of Theorem 4.2. First, we provide a proof under the assumption that both
−Λ and −Λ̂ have semi-simple eigenvalues, and that the real parts of the eigenvalues
of −Λ̂ are large enough. Assume for a moment that every eigenvalue γ of −Λ̂ is
such that the transform (5) holds for θ = γ. In the following we will study the limit
of M(x) = eΛxR(x)−1.

Consider an eigenpair (γ,v) of −Λ̂ and a left eigenpair (γ∗,h∗) of −Λ, i.e. −Λ̂v =
γv and −h∗Λ = γ∗h∗. Then Theorem 4.1 implies

h∗M(x)v = h∗
(
I−

∫ x

0

e−γyW (y)dy∆

)
ve(γ−γ∗)x,

where <(γ) > <(γ∗) by the above assumption. Note that the expression in brackets
converges to a zero matrix, because of (5) and (13). So we can apply L’Hôpital’s
rule to get

lim
x→∞

h∗M(x)v =
1

γ − γ∗
lim
x→∞

e−γ
∗xh∗W (x)∆v =

1

γ − γ∗
h∗L∆v,

where the second equality follows from (6). Under assumption that all the eigenval-

ues of Λ and Λ̂ are semi-simple (there are n eigenvectors in each case), this implies
that M(x) converges to a finite limit U and

ΛU − U Λ̂ = L∆.

Since M(x)−11 = R(x)1 is bounded and U is invertible, we see that the former
converges to U−11.

Jordan chains: When some eigenvalues are not semi-simple, the proof follows the
same idea, but the calculus becomes rather tedious. So we only present the main
steps. Consider an arbitrary Jordan chain v1, . . . ,vk of −Λ̂ with eigenvalue γ, and
an arbitrary left Jordan chain h∗1, . . . ,h

∗
m of −Λ with eigenvalue γ∗. We need to

show that M(x) has a finite limit U as x→∞, and that this U satisfies

h∗m(ΛU − U Λ̂)vk = (γ − γ∗)h∗mUvk − h
∗
m−1Uvk + h∗mUvk−1 = h∗mL∆vk,

where h∗0 = v0 = 0 by convention. For this we compute h∗iM(x)vj using (12) and
its analogue for the left chain, and take the limit using L’Hôpital’s rule, which is
applicable because of (13). This then confirms that

(γ − γ∗)h∗mM(x)vk − h∗m−1M(x)vk + h∗mM(x)vk−1 → h∗mL∆vk

and the result follows.
Analytic continuation: Finally, it remains to remove the assumption that the

real part of every eigenvalue of −Λ̂ is large enough. For some q > 0 we can define
new killing rates by ωi(q) = ωi + q and consider the corresponding new matrices
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Λ̂(q),∆(q) (note that Λ and L stay unchanged). By choosing q large enough we can
ensure that the real parts of the zeros of det(F (θ)−∆(q)) (in the right half complex

plane) are arbitrarily large. These zeros are exactly the eigenvalues of −Λ̂(q), and
so the result of our Theorem holds for large enough q.

We now use analytic continuation in q in the domain <(q) > −min{ω1, . . . , ωn}.
In this domain eΛ̂(q)x is analytic for every x, which follows from its probabilistic
interpretation. This and invertibility of Λ̂(q) can be used to show that Λ̂(q) is also
analytic. Furthermore, one can show that only for a finite number of different q’s
the matrices Λ and Λ̂(q) can have common eigenvalues. Now we express U(q) =

G(q)−1L∆(q), where G(q) is formed from the elements of Λ and Λ̂(q), see e.g. [17].
Hence U(q) can be analytically continued to the domain of interest excluding the
above finite set of points. Hence also φq(0) = U(q)−11 in the latter domain, where
U(q) is the unique solution of the corresponding Sylvester equation. In particular,
this holds for q = 0, and the proof is complete. �

6. Remarks on classical ruin

Let us briefly return to the classical ruin concept, i.e. all ωi → ∞. From (7),
the matrix of probabilities to reach level x before ruin is in this case given by

Pu[τ+
x < τ−0 , J(τ+

x )] = I− Z(0, u) +W (u)W (x)−1Z(0, x),

which for u = 0 reduces to W (0)W (x)−1Z(0, x). It is known that W (0) is a diagonal
matrix with Wii(0) equal to 0 or 1/ci according to Xi having unbounded variation
or bounded variation on compacts, and ci > 0 being the linear drift of Xi (the
premium density in case of (1)).

In order to obtain survival probabilities when µ > 0 we need to compute

t = lim
x→∞

W (x)−1Z(0, x)1,

which similarly to the proof of Theorem 4.2 is a non-trivial problem. Using recent
results from [12], in particular Lemma 1, Proposition 1 and Lemma 3, we find that
this limit is given by

t = µ∆−1
π πT

Λ̃
,

where πΛ̃ is the stationary distribution associated with Λ̃, and the latter corre-
sponds to the time-reversed process. Hence the probability of survival according to
the classical ruin concept with zero initial capital and J(0) = i is given by

(16)
µ

ci

(πΛ̃)i

πi
,

if Xi is of bounded variation, and 0 otherwise. In the case of the classical Cramér-
Lundberg model (n = 1) this further simplifies to the well-known expression µ/c.

The simplicity of all the terms in (16) motivates a direct probabilistic argument,
which we provide in the following. Assuming that µ > 0 and Xi is a bounded
variation process with linear drift ci, we consider Pi(τ−0 > eq) = Pi(X(eq) = 0)
(with an independent exponentially distributed eq), which provides the required
vector of survival probabilities upon taking q ↓ 0. According to a standard time-
reversal argument we write

Pi(X(eq) = 0|J(eq) = j) = P̃j(X(eq)−X(eq) = 0|J(eq) = i),
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which yields

(17) Pi(τ−0 > eq) =
∑
j

P̃j(X(eq) = X(eq), J(eq) = i)
πj
πi
.

Moreover

P̃j(X(eq) = X(eq), J(eq) = i) = q Ẽj
∫ eq

0

1{X(t)=X(t),J(t)=i}dt

=
q

ci
Ẽj
∫ X(eq)

0

1{J(τ+
x )=i}dx,

where the last equality follows from the structure of the sample paths (or local
time at the maximum). It is known that X(t)/t→ µ as t→∞, which then shows
that the above expression converges to µ

ci
(πΛ̃)i as q ↓ 0, where the interchange of

limit and integral can be made precise using the generalized dominated convergence
theorem. Combining this with (17) yields (16).

7. A numerical example

Let us finally consider a numerical illustration of our results for a Markov-
modulated Cramér-Lundberg model (1) with two states, exponential claim sizes
with mean 1 in both states, premium densities c1 = c2 = 1, claim arrival rates
β1 = 1, β2 = 0.5, observation rates ω1 = 0.4, ω2 = 0.2, and the Markov chain J(t)
having transition rates 1, 1, which results in the asymptotic drift µ = 1/4 > 0.
For this model we specify the matrix-valued functions F (θ), see [4, Prop. 4.2], and

F̂ (θ), cf. (9). Using the spectral method we determine the matrices Λ and Λ̂, and
then also the matrix L according to Proposition 4.1:

Λ =

(
−1.39 1.39
1.16 −1.16

)
, Λ̂ =

(
−1.99 1.20
1.09 −1.45

)
and L =

(
2.63 1.47
1.47 2.44

)
.

We use Theorem 4.2 to compute the vector of survival probabilities for zero initial
capital:

U =

(
1.58 0.58
0.53 1.54

)
, φ(0) = U−11 =

(
0.45
0.49

)
.

Furthermore, Corollary 4.1 yields the vector of survival probabilities for an ar-
bitrary initial capital u ≥ 0 in terms of a matrix-valued function W (x). Due to the
exponential jumps, the matrix W (x) has an explicit form, which can be obtained
using so-called fluid embedding to convert our model into a Markov modulated
linear drift model for which W (x) is known, see e.g. [13, Sec. 7.7]. Figure 1 depicts
the survival probabilities as a function of the initial capital u.

Figure 2 confirms the correctness of our results. It depicts (R(x)1)1 (i.e. the
probability to reach level x before being observed ruined when starting in state 1
with zero initial capital), and the dots represent Monte Carlo simulation estimates
of the same quantity based on 10000 runs, the horizontal line representing φ1(0) =
0.45. One sees that for large values of x the numerical determination of R(x) (as
well as φ(x)) becomes a challenge, which underlines the importance of our limiting
result, i.e. Theorem 4.2.
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Figure 1. Survival probabilities φ1(u) and φ2(u).
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processes with applications. Stochastic Process. Appl., 121(11):2629–2641, 2011.

[19] R. Loeffen, I. Czarna, and Z. Palmowski. Parisian ruin probability for spectrally negative
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