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Abstract  

Many Leishmania (Viannia) parasites harbor the double-stranded RNA virus Leishmania RNA virus 1 

(LRV1), which has been associated with increased disease severity in animal models and humans, and 

drug treatment failures in humans. Remarkably, LRV1 survives in the presence of an active RNAi 

pathway, which in many organisms controls RNA viruses. We found significant levels (0.4-2.5%) of small 

RNAs derived from LRV1 in both L. braziliensis and L. guyanensis, mapping across both strands and with 

properties consistent with Dicer-mediated cleavage of the dsRNA genome. LRV1 lacks cis or trans-acting 

RNAi inhibitory activities, suggesting that virus retention must be maintained by a balance between 

RNAi activity and LRV1 replication. To tilt this towards elimination, we targeted LRV1 using long-

hairpin/stem-loop constructs similar to those effective against chromosomal genes. LRV1 was 

completely eliminated, at high efficiency, accompanied by a massive overproduction of LRV1-specific 

siRNAs, representing as much as 87% of the total. For both L. braziliensis and L. guyanensis, RNAi-

derived LRV1-negative lines were no longer able to induce a Toll-like receptor 3-dependent hyper-

inflammatory cytokine response in infected macrophages. This is the first demonstration of a role for 

LRV1 in L. braziliensis virulence in vitro, the Leishmania species responsible for the vast majority of 

mucocutaneous leishmaniasis cases. These findings establish the first targeted method for elimination of 

LRV1, and potentially of other Leishmania viruses, which will facilitate mechanistic dissection of the role 

of LRV1-mediated virulence. Moreover, our data establish a third paradigm for RNAi-viral relationships 

in evolution, one of balance rather than elimination. 
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Significance statement:  

Leishmania parasites can be infected with Leishmaniavirus (LRV1), a double-stranded RNA virus whose 

presence in L. guyanensis parasites exacerbates disease severity in both mouse models and humans. 

Studies of the role of the virus on parasite biology and virulence are hampered by the dearth of isogenic 

lines bearing and lacking LRV, particularly in the clinically important species L. braziliensis. Here we 

describe a method to systematically generate LRV1-free Leishmania parasites using the parasite RNA 

interference (RNAi) pathway. The ability of transgene-driven RNAi to overcome the ability of LRV1 to 

withstand the endogenous RNAi attack suggests a new paradigm of virus-RNAi interaction, where RNAi 

and virus replication exist in balance to maintain persistent infection. 
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Introduction 

Leishmania is a genus of early-diverging protozoan parasites that cause leishmaniasis in many 

regions of the world, with an estimated 12 million symptomatic cases, at least 120 million asymptomatic 

cases, and nearly 1.7 billion at risk (1-5). The disease has three predominant clinical manifestations, 

ranging from the relatively mild cutaneous form to mucocutaneous disease, where parasites 

metastasize to and cause destruction of mucous membranes of the nose, mouth, and throat, and fatal 

visceral disease. Disease phenotypes segregate primarily with the infecting species; however, it is not 

fully understood which parasite factors affect severity and disease manifestations. 

One recently identified parasite factor contributing to disease severity in L. guyanensis is the 

RNA virus Leishmaniavirus (6, 7). This virus is a member of the Totiviridae family, and consists of a single-

segmented dsRNA genome that encodes only a capsid protein and an RNA-dependent RNA polymerase 

(RDRP) (8, 9). It is most frequently found (as LRV1) in New World parasite species in the subgenus 

Viannia such as L. braziliensis (Lbr) and L. guyanensis (Lgy), which cause both cutaneous and 

mucocutaneous disease (6), but it has also been found sporadically in Old World subgenus Leishmania 

species (as LRV2) (10, 11). Like most totiviruses, LRV1 is neither shed nor infectious, and thus can be 

viewed as a long-term evolutionary endosymbiont whose activities on the mammalian host arise 

indirectly through the parasite, rather than by direct infection of the mammalian host by the virus (6). 

Previous work has shown that mice infected with LRV1-bearing strains of Lgy exhibit greater footpad 

swelling and higher parasitemia than mice infected with LRV1-negative Lgy (7). Similarly, macrophages 

infected in vitro with LRV1+ Lgy or LRV2+ L.aethiopica release higher levels of cytokines, phenotypes 

which were dependent on Toll-like receptor 3 (7, 10). The assignment of the LRV1-specificity of these 

phenotypes benefited greatly from the availability of a single isogenic LRV1-free line of Lgy (12). 
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Importantly, recent studies show that disease severity is increased in patients infected with LRV1+ Lgy, 

relative to LRV1-negative parasites (13).  

In humans, Lbr is associated with cutaneous leishmaniasis, as well as the larger share of the 

more debilitating mucocutaneous leishmaniasis (MCL) (14, 15). While in some studies LRV1 was not 

correlated with MCL (16, 17), in others there was a strong association (6, 18, 19). Recent studies show 

that LRV1 in Lbr and Lgy clinical isolates correlates with drug treatment failure (16, 20). Thus, while 

other parasite or host factors may play a significant role in the development of MCL (21, 22), current 

data support a role for LRV1 in exacerbating the pathogenesis of human leishmaniasis caused by Lbr and 

Lgy.  A similar role in pathogenicity has been proposed for the Trichomonas vaginalis totiviruses (23).   In 

contrast, endobiont viruses in other systems more often impair the host or have no known effect on 

disease.  Hypoviruses of Cryphonectria parasitica are associated with decreased virulence of their fungal 

host, while the L-A totivirus of Saccharomyces cerevisiae is not thought to affect  pathogenicity, instead 

contributing to inter-microbial competition (24-27) . 

Research into the role of LRV1 in Lbr disease is hampered by the fact that animal models are less 

well developed than for other Leishmania (28), and the absence of isogenic lines bearing or lacking 

LRV1. Since reverse genetic systems for Totiviridae do not exist and attempts to stably transfer LRV1 

have proven unsuccessful (29), we asked whether RNA-interference (RNAi) could be used to generate 

LRV1-free isogenic isolates. Unlike Old World Leishmania, species of the Viannia subgenus, including Lbr 

and Lgy, retain an active endogenous RNAi pathway (30). The RNAi pathway converts double-stranded 

RNA into siRNAs, which trigger the degradation of an mRNA with complementary sequence (31). 

Importantly, the RNAi pathway acts as a defense against RNA viruses in plants and some animals, 

leading to great reductions or complete elimination (32, 33). Further, introduction of RNAi pathway 

proteins from Saccharomyces castellii into the naturally RNAi-null S. cerevisiae resulted in greatly 

decreased levels of persistently-infecting L-A totivirus (26). In mammals, siRNA-mediated RNAi activity 
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appears to play a smaller direct role in antiviral responses in adult mice (34, 35), although evidence of a 

direct response has been found in embryonic stem cells and young animals (36, 37). 

Here we explore further the interactions of the RNAi pathway with LRV1 in both Lbr and Lgy, 

and show first that LRV1 is indeed seen by the endogenous RNAi pathway, as judged by the presence of 

significant levels of antiviral sRNAs. Thus and different than other systems, RNAi and viral replication 

appear to be balanced. However, by increased siRNA expression RNAi could be used to efficiently 

eliminate the virus. Importantly, these LRV1 negative transfectants recapitulate the in vitro macrophage 

cytokine release defect seen in naturally-occurring LRV1-negative lines, suggesting that the engineered 

LRV1-negative isogenic lines will be valuable in studying the role of LRV1-mediated biology and 

virulence. 

Results 

Naturally abundant siRNAs directed against LRV1 of L. braziliensis and L. guyanensis 

Previous siRNA studies in Leishmania analyzed RNAs using a tagged Argonaute inserted into an 

ago1- knockout of Lbr M2903, which lacks LRV1 (9, 29, 38, 39). Because the lines bearing LRV1 studied 

here had not been similarly modified, we sequenced total small RNAs (sRNAs) as an alternative. Lbr 

siRNAs bear a 5’-P and 3’-OH, reflecting their origin through the action of cellular Dicer nucleases (39), 

and we used these properties to make siRNA-focused sRNA (<42 nt) libraries for next-generation 

sequencing (Table S1). For Lgy we chose the established LRV1+ Lgy M4147 strain (7), and three different 

Lbr shown to bear LRV1 by PCR and/or anti-dsRNA antibody tests (40).  

For sRNAs from Lbr M2903 mapping to the Lbr reference genome, read length displayed a 

biphasic distribution, with a major peak centered around 23 nt (20-26 nt, 77.9% of total mapped reads) 

and a minor one around 33 nt (30-36nt, 9.4% of total mapped reads) (Fig. 1A, Table S1,S2). The 33 nt 

peak reads mapped primarily to structural RNA loci (62% of mapped reads; Table S2) similar to a sRNA 

class described in many eukaryotes including trypanosomes and Leishmania lacking the RNAi pathway 
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(41-44). In contrast, reads from the 23 nt peak showed properties similar to AGO1-bound siRNAs (39), 

including their size and the presence of 1-2 untemplated nucleotides at the 3’ end in about 21% of the 

reads (Fig. 1A; Table S1). The 3’ untemplated bases likely arise from the action of cellular terminal 

transferases, as Leishmania sp. lack the HEN1 methyltransferase that normally blocks their action (39). 

When both AGO1-bound siRNAs and the 23 nt sRNA peak reads were mapped to the Lbr genome their 

distributions were very similar, with the vast majority mapping to transposable elements (Figs. 1B, S2; 

Table S2) (39). We concluded that the 23 nt peak sRNAs (23 nt sRNAs) provides a reasonable proxy for 

siRNAs.  

The properties of sRNAs from the LRV1-bearing Lgy M4147 and Lbr LEM2700, LEM2780 and 

LEM3874 mapping to the Lgy or Lbr reference genomes were similar to those of Lbr M2903, including 

the 23 and 33 nt sRNA peaks, genomic mappings, and the presence and level of 3’ nt extensions in the 

23nt sRNAs (Figs. 1, S1; Tables S1 & S2). Importantly, a substantial fraction of sRNA reads obtained from 

the LRV1+ Lgy and Lbr lines mapped to the LRV1 genomes, ranging from 0.4-2.5% of the 23nt mapped 

reads (Fig. 1B, Table S1). Unlike those aligned to the nuclear genome, LRV1-mapped reads showed a 

single size distribution centered around 23 nt (Fig. 1A), with about 20% again showing short 3’ 

extensions (Table S1), typical of Lbr siRNAs and 23 nt sRNAs (39). LRV1-mapping 23 nt sRNAs showed no 

consistent strand- or region-specific biases in all four strains (Fig. S2), suggesting that they likely 

originated from the action of DICERs on the viral dsRNA genome. 

We previously showed that LRV1 does not encode a trans-acting inhibitor of RNAi activity (30), 

and the presence of high levels of LRV1-directed sRNAs similarly suggests that it does not encode a 

strong cis-acting inhibitor. Importantly, the levels of 23 nt sRNAs mapping to LRV1s were in the same 

range as siRNAs mapping to an efficiently silenced Luciferase reporter (0.4–2.5% vs. 0.8% targeted by 

long hairpin/stem loop transgene) (30, 39). Thus, LRV1 is able to persist in the face of a significant RNAi 

response, as judged by 23 nt sRNA levels.  
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LRV1 can be efficiently targeted by transgenic RNAi 

These data are consistent with a model where RNAi activity and LRV1 replication has achieved a 

‘balance’ between viral synthesis and degradation, which might be shifted by increasing or decreasing 

RNAi activity. With an eye towards virus elimination, we focused on increasing LRV1-targeting siRNA 

levels through the use of transgenic RNAi methods developed previously (30), in which long hairpin RNA 

is expressed at high levels from a stem-loop (StL) construct containing LRV1 sequences integrated into 

the ribosomal RNA locus (Fig. 2A). We targeted regions of LRV1 from the capsid or RDRP ORFs (Lgy 

M4147, Lbr LEM2700 and LEM2780), or a region that spanned them (Lbr LEM3874), ranging in length 

from 794 to 1,143 bp (Fig. 2B & Table S3); since the two viral genes reside within the same RNA 

segment, targeting either should lead to degradation of the entire LRV1 RNA. Since LRV1 sequences 

diverge substantially between parasite strains (69-90% nt identity), ‘stems’ specific for each 

species/strain were used. To assess non-specific effects, we integrated an StL construct for an AT-rich 

GFP (GFP65 StL), which efficiently silences expression of GFP65 (30). The untransfected parental lines 

served as LRV1+ controls, and Lbr M2903 or Lgy M4147/HYG (12) served as LRV1-negative controls.  

To screen for loss of LRV1, StL transfectants were analyzed by flow cytometry of fixed, 

permeabilized cells using an antibody raised against the Lgy M4147 LRV1 capsid (45), which cross reacts 

with Lbr LRV1. For both Lgy M4147 (Fig. 3, top) and Lbr LEM2780 (Fig. 3, bottom), there was a clear 

separation in capsid staining between the LRV1-positive (red) and LRV1-negative controls (green). While 

control GFP65 StL lines (purple) had capsid protein levels similar to WT, capsid protein was undetectable 

in LRV1-targeted StL lines (Fig. 3, light & dark blue), indistinguishable from the LRV1-negative control. 

This was observed whether the capsid or RDRP was targeted (Fig. 3). Similar results were obtained with 

LRV1 StL transfectants from Lbr LEM2700 and Lbr LEM3874. In support of the flow cytometry data, 

western blot analysis with an anti-capsid antibody showed high LRV1 levels in the Lgy parental line and 

GFP65 StL transfectants, while capsid protein was undetectable in the capsid StL transfectants (Fig. S3).  
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StL constructs result in high levels of siRNAs mapping to the LRV1 stem 

 Despite the insensitivity of LRV1 to ‘natural’ levels of RNAi, as judged by the abundance of 23nt 

sRNAs, introduction of StL constructs targeting LRV1 resulted in great reduction in LRV1 levels. To 

understand the basis for this, we analyzed 23 nt sRNA peak reads mapping to the nuclear and LRV1 

genomes, for one LRV1 StL transfectant of each species (Fig. 4). Remarkably, the percentage of total 23 

nt sRNAs mapping to LRV1 had increased greatly from that seen in the WT parent, from 2.5% to 86.7% 

for Lgy and from 1.8% to 73.0% for Lbr LEM3874 (Figs. 4A, S4). Concomitantly, the percentages of 23 nt 

sRNAs mapping to the nuclear genome was proportionately reduced, with some variability amongst loci 

and/or lines (for example, rRNA reads were unchanged in both species, while tRNA reads decreased in 

Lgy; Figs. 4A, S1A). While we did not measure the absolute levels of sRNAs, previous studies show these 

are tightly controlled by the level of Argonaute 1 and thus are unlikely to differ significantly (39). 

Essentially all LRV1-mapping sRNAs in LRV1 StL lines now mapped only to the RNAi-targeted ‘stem’ 

region (Fig. 4B, dark grey), as expected since LRV1 had been eliminated (below). This also argues against 

the occurrence of ‘transitive’ siRNA formation (46, 47). 

 The levels of LRV1 23 nt sRNAs (76-87%) in LRV1 StL-transfectants were much greater than seen 

with siRNAs mapping to the LUC ORF/stem targeted using the same StL transfection construct (0.8%) 

(39). To rule out the possibility that this arose from reliance on 23nt sRNAs, we analyzed these from a 

line bearing the LUC StL RNAi reporter used in the siRNA studies (IR2-LUCStL(b)-LUC(a)). For this, 1.14% 

of the 23nt sRNA peak reads mapped to the LUC ORF/stem, suggesting that use of 23nt sRNAs vs siRNAs 

did not significantly impact quantitation. To assess the target-specific effects, we compared these results 

with those quantitating 23 nt peak sRNAs after RNAi StL targeting of a panel of 10 chromosomal genes. 

For this group, 1.5-34% of 23 nt sRNAs mapped to the RNAi-targeted gene, compared to less than 0.02% 

basally. Thus, the StL-bearing IR vectors generate a high but variable level of sRNAs for all genes tested, 

with the LUC reporter being at the low end and LRV1 at the high end. This may reflect the fact that while 
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the LRV1 target is typically eliminated by RNAi (Fig. 3 and below), chromosomal RNAi targets 

continuously transcribe mRNAs. In other organisms, studies have shown that the presence of a cognate 

target facilitates the turnover of sRNAs; thus, the absence of LRV1 target may lead to higher levels of 

siRNAs (48, 49). Future studies may address the factors contributing to the differences in sRNA levels 

amongst genes and to the very high steady-state levels of LRV1-directed 23 nt sRNAs seen here. 

Complete virus elimination following RNAi of LRV1 

RNAi-mediated LRV1 knockdown would be most useful as a tool if it resulted in a complete 

elimination of LRV1. To achieve a sensitivity beyond that of flow cytometry (~20 fold) or western 

blotting (~100 fold), we validated a sensitive quantitative RT-PCR assay (qRT-PCR) for LRV1, using strain- 

and LRV1-specific primers to amplify a region located outside the ‘stem’ regions (Table S4; Fig. 2B). Since 

the melting temperatures of PCR amplicons are sequence- and length-dependent, comparison of 

dissociation (melt) curves facilitated discrimination between specific and non-specific amplification. 

Because LRV1 copy number was estimated to be ~100/cell (50), a cutoff for classification as 

LRV1-negative was set at 104-fold below WT. Analysis of Lbr qPCR data by the ΔΔCt method (51) showed 

that most LRV1 StL transfectants had LRV1 RNA levels more than 105-fold lower than WT (Figs. 5A, 

S5A,B). Raw Ct values for LRV1 StL lines with LRV1-specific primers were indistinguishable from mock 

cDNA preparations, and ΔCt values were indistinguishable from those of negative controls. Melt curves 

show that products seen at Ct arose from non-specific amplification (Figs. 5A, S5A,B; white bars). As 

expected for control GFP65 StL lines, LRV1 RNA levels were similar to those in WT (Figs. 5A, S5A,B; black 

bars).  

Similar results were obtained with RNAi of LRV1 in Lgy M4147, with most transfectants showing 

reductions below the 104-fold cutoff (Fig. 5B). However, low levels of LRV1 remained in two lines where 

the RDRP was targeted, approximately 300- to 500-fold less than the parent line (Fig. 5B, black bars); 

here melt curve analysis suggested these products were LRV1-specific. Alternate primers targeting other 
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regions across the virus gave similar results, suggesting the presence of intact LRV1. We hypothesized 

that this was due to heterogeneity in viral load, with most but not all cells lacking LRV1. In support of 

this, we generated and showed that all clonal lines arising from one of the “weakly positive” lines were 

negative for LRV1 by flow cytometry and satisfied the 104-fold cutoff by qPCR (Fig. S5C). The occasionally 

incomplete LRV1 elimination is consistent with our prior observation that RNAi was somewhat less 

efficient in Lgy than in Lbr (30). Nonetheless, even for “weakly positive” Lgy transfectants, RNAi was 

sufficiently efficient for the ready isolation of LRV1-negative lines (Fig. 3, top; 5B; S3).  

LRV1 knockdowns induce less cytokine production in in vitro macrophage infection assays 

Previous reports showed that LRV1+ Lgy stimulated the TLR3-dependent release of higher levels 

of cytokines from bone marrow-derived macrophages (BMDMs) than LRV1-negative strains (7). The 

availability of defined RNAi-derived LRV1-negative lines now allowed tests of this in Lbr for the first time 

as well as confirmation of prior results obtained with a single isogenic LRV1- Lgy. Briefly, BMDMs were 

infected in vitro with LRV1 StL and GFP65 StL Lbr and Lgy transfectants, as well as positive and negative 

control lines, and the levels of two cytokines known to be induced by LRV1 (TNF-α and IL-6) (7, 10) were 

measured. 

Capsid StL and RDRP StL LRV1-negative lines of both Lbr and Lgy induced significantly lower 

levels of cytokine production than did the LRV1-positive lines (both parental and GFP65 STL) (Fig. 6, Fig. 

S5). Additionally, when macrophages from TLR3-deficient mice were infected with Lbr LEM2700, the 

LRV1-positive parasites no longer elicited higher levels of cytokine release (Fig. S5). Of note, all Lgy LRV1 

StL lines induced background levels of cytokine release, including the two lines that retained low levels 

of LRV1 (Fig. 5B & 6B, Fig. S5), consistent with the observation that high levels of LRV1 were necessary 

for cytokine stimulation (7, 10). 
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Discussion 

In this study we have characterized the endogenous RNAi response in Leishmania bearing the 

dsRNA virus LRV1, and used these insights to generate virus-negative lines that facilitate the study of the 

role of LRV1 in parasite biology and host-parasite interactions.  

Leishmania LRV1 and the endogenous RNAi pathway  

We identified two populations of sRNA in Lbr and Lgy. The less abundant 33 nt sRNAs mapped 

primarily to genes encoding structural RNAs (Table S2), as seen in other organisms including 

trypanosomatids (41-44). In contrast, the more abundant 23 nt sRNA fraction exhibited properties 

similar to authentic, AGO1-bound Lbr siRNAs (39), including size, the presence of 3’ untemplated bases 

at the same frequency (~20%), and mapping primarily to transposable elements and repetitive 

sequences (Fig 1; Tables S1 & S2). Only 23 nt sRNA reads mapped to the LRV1 dsRNA genome (Fig. 1A), 

and these also bore 3’ nucleotide extensions at the same frequency, again consistent with an origin via 

the RNAi pathway (Table S1). Importantly, the levels of 23 nt sRNAs mapping to LRV1 constituted a 

substantial fraction of total aligned 23nt sRNAs (Fig 1B, Table S1), comparable to those targeting an 

efficiently-silenced LUC reporter gene (30, 39). Thus, LRV1 can persist in the face of RNAi pressure that 

gives rise to sRNA levels comparable to that which efficiently silences a chromosomal target gene. 

In other organisms, sRNA/siRNA levels provide a gauge of RNAi pathway recognition and 

targeting of viruses: when RNAi controls virus replication, as in plants, fungi, and insects (26, 32, 33), 

high levels of siRNAs accompany viral infections, leading to eradication of the virus.  In mammals, 

quantitatively fewer siRNAs are present, which do not effectively control virus levels, at least in adult 

somatic tissues (34, 36, 37). In contrast, high levels of siRNA-like 23 nt sRNAs in Leishmania suggest an 

attack on LRV1 by the RNAi pathway, but the virus persists. While many viruses encode trans-acting 

RNAi suppressors mediating their survival (52), this seems unlikely for LRV1. There is no obvious coding 

potential for this in the compact LRV1 genome, our studies here suggest there is no strong cis-acting 
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inhibitory activity, and we showed previously that a luciferase reporter was equally silenced in the 

LRV1+ and LRV1-negative Lgy studied here (30). This suggests a third model where LRV1 is targeted 

strongly by the RNAi pathway, but the RNAi-mediated degradation is ‘balanced’ by virus replication or 

other factors. We are currently working to identify which component(s) of the RNAi machinery mediate 

this balance. While the slicer activity of Argonaute is perhaps the most likely agent, previous studies 

examining the role of RNAi in control of viruses frequently raise the possibility of Dicer-mediated control 

as well (53-55).  It is likely that the sequestration of the LRV1 dsRNA genome within the capsid may also 

contribute by limiting the exposure of the LRV1 dsRNA to the RNAi machinery and other degradative 

pathways.  In yeast, SKI genes act to prevent deleterious effects of L-A viruses towards its fungal host 

through alterations in mRNA degradation and/or surveillance (27), and homologous genes for several of 

these are evident in the Leishmania genome. 

In other organisms, persistent viruses can also be maintained in the face of an active RNAi 

pathway, but at considerably reduced levels (26, 56). Over evolutionary time, this strong pressure likely 

accounts for the inverse relationship in fungi between virus levels and the activity and/or presence of 

the RNAi pathway, especially when associated with a selective advantage for viral retention, as seen 

with the yeast killer factors which are dependent on the L-A virus (26, 57). Similarly, in Leishmania we 

had originally proposed that RNAi pressure would be sufficiently strong as to in some cases provide a 

driving force for loss of RNAi, in order to maintain LRV1-dependent increases in pathogenicity (30). 

Given the greater ability of LRV1 to survive in the presence of an active RNAi pathway, our data suggest 

that the magnitude of this effect may be considerably less than envisioned. However, even small 

pressure could prove a significant force towards down-regulating pathways impacting on LRV1 levels 

during evolution. 

RNAi as a tool for generating LRV1-negative lines for biology 
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Following the predictions of the ‘balance’ hypothesis, we aimed to increase activity against LRV1 

through the increased synthesis of siRNAs targeting LRV1. This proved quite successful; the fraction of 

23 nt sRNAs targeting LRV1 rose dramatically in lines expressing StL constructs targeting LRV1 (Figs. 1B & 

4A). Correspondingly, the fraction of 23 nt sRNAs mapping to the Leishmania genome dropped 

proportionately, most of which again mapped to TEs and repeats (Fig. 4A). Importantly, LRV1 levels were 

dramatically reduced for all LRV1 StL transfectants, and in most cases the virus eliminated, as judged by 

protein and RNA methods (Figs. 3, 5, S3, S5). Targeting of either the capsid or RDRP gene eliminated 

LRV1, as was expected given that both are encoded by the same RNA (Fig. 2A). Only in Lgy were some 

transfectants found that retained low levels of LRV1, which could reflect less RNAi activity in this 

species, as was seen with reporter genes (30). However, most transfectants had completely lost LRV1.  

Viral infection has been reported for Giardiavirus (58), and stable viral transfer for several fungal 

Totiviruses (59). However, de novo infection and stable viral transfer have been unsuccessful with Lgy 

(29), and reverse genetic systems have yet to be reported for any Totivirus. Therefore, the ability to 

reproducibly mediate viral cure by RNAi is of great value for biological studies of LRV1. Previous work 

used an LRV1-negative Lgy which was obtained following transfection with an episomal Leishmania 

vector expressing resistance to hygromycin B, followed by a long period of growth under selection (12); 

however, this method seems to have been successful only once. Neither have we succeeded with 

several ‘stress-related’ treatments that have proven effective in curing mycoviruses, such as yeast L-A 

(60). Our studies establish RNAi as a viable strategy for cure of LRV1 and perhaps other viruses in RNAi-

competent Leishmania species.  

LRV1+ but not LRV1-negative Lgy induce a ‘hyperinflammatory’ cytokine response in infections 

of BMDMs in vitro, which is TLR3-dependent (6, 7). Infectivity tests of mouse BMDMs in vitro showed 

that RNAi-generated LRV1-negative Lgy lines likewise failed to induce a substantial cytokine response, as 

shown for two cytokines (TNF-α and IL-6) known to be diagnostic for an LRV1-driven innate immune 
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response. Interestingly, this occurred with RNAi-derived lines where LRV1 loss was substantial but 

incomplete (RDRP StL c3 & 4; 500- and 300-fold below parental levels, respectively; Fig 5B, 6B, S7), 

consistent with data from natural Lgy showing low LRV1 levels (7). Thus, a partial reduction in LRV1 

levels is sufficient to ameliorate LRV1-dependent virulence, which may facilitate future efforts targeting 

LRV1 in human disease. Importantly, the continued presence of the integrated StL constructs appeared 

to have no ‘off target’ effect in the BMDM infections, despite the high levels of transgene-derived 23 nt 

sRNAs present in these lines; the LRV1 StL “cured” lines induced the release of cytokines at a level 

similar to that of StL-negative, LRV1-negative controls (Fig. 4), and control GFP65 StL lines that 

maintained LRV1 induced the release of cytokines at a level similar to the StL-negative, LRV1+ parent 

(Fig. 3, 5, 6). Future studies will assess whether this also pertains to other cell types or host infections. 

LRV1-dependent virulence in Leishmania braziliensis 

Previous studies of LRV1-dependent virulence focused primarily on Lgy; however, in humans, 

Lbr is associated with the larger share of MCL (14, 15). Our studies extend the generality of LRV1-

dependent virulence to Lbr, as LRV1+ Lbr likewise induce strong TLR3-dependent cytokine responses. 

These findings are especially important in light of published work on the association of LRV1 with MCL, 

with mixed results depending on the geographic region and methods used (6, 16-19). Our data show 

that in in vitro infections, LRV1 contributes strongly to the pro-inflammatory phenotype associated with 

elevated pathogenicity, as seen in Lgy. This suggests that in human infections it may be informative to 

seek for correlations between LRV1 and the severity of CL in Lbr infections in future studies. Indeed, 

recent studies show that LRV1 in Lbr clinical isolates correlates with drug treatment failure (16), as was 

also seen in Lgy (20). Thus, while other parasite or host factors may play a significant role in the 

development of MCL (21, 22), current data now bolstered by our studies of isogenic LRV1+/negative 

lines support a role for LRV1 in severity of human leishmaniasis caused by Lbr.  
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Methods 

Parasites and in vitro culture 

Lbr LEM2700 (MHOM/BO/90/AN), LEM2780 (MHOM/BO/90/CS) and LEM3874 (MHOM/BO/99/IMT252 

n°3) were from Patrick Bastien (Université de Montpellier), Lbr M2903 (MHOM/BR/75/M2903) was from 

Diane McMahon Pratt (Yale School of Public Health), and Lgy M4147 (MHOM/BR/78/M4147) and its 

derivative Lgy M4147/HYG was from Jean Patterson (Southwest Foundation for Biomedical Research, 

San Antonio, Texas). Prior to introduction of StL constructs, parasites were transfected with the linear 

SSU-targeting SwaI fragment from B6367 pIR2SAT-LUC(B) (30), and clonal lines were derived, validated, 

and used. The luciferase-expressing clone of Lbr LEM2780 contained only LRV1-LbrLEM2780(b). 

Parasites were grown in fresh Schneider’s Insect Medium supplemented with 10% heat-inactivated fetal 

bovine serum, 100 μM adenine, 10 μg/mL hemin, 2 μg/mL biopterin, 2 mM L-glutamine, 500 units/ml 

penicillin and 50 ug/mL streptomycin, and selective drugs as indicated below. 

RNAi Stem-loop Constructs 

Regions of interest from LRV1 were screened using the RNAit target selection tool to ensure that there 

was no homologous sequence in the parasite genome (61), amplified from cDNA by PCR using KlenTaq-

LA polymerase, and cloned into the pCR8/GW/TOPO cloning vector (Thermo Fisher Scientific, Waltham, 

Massachusetts) using the protocol recommended by the manufacturer and a 20 min ligation. The ‘stem’ 

segments and PCR primer sequences can be found in Table S3. The ‘stems’ were transferred from the 

pCR8/GW/TOPO donor vector to the pIR2HYG-GW(A) (B6365) destination vector (which contains 

sequence from the parasite rRNA locus to enable integration into the genome and inverted LR 

recombinase sites for the generation of inverted repeat through Gateway© technology) using LR 

Clonase II (Thermo Fisher) in an overnight reaction at room temperature. Reactions were terminated by 

incubating with proteinase K for 1 hour at 37°C. Constructs were verified by restriction digest. 
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Transfections 

Stable transfections were performed as previously described (30, 62). Clonal lines were obtained by 

plating on semisolid media with 50 µg/mL hygromycin B. After colonies formed, cells were grown to 

stationary phase in 1 mL media and passaged thereafter in 10 mL media with 30 µg/mL hygromycin B.  

RNA preparation and quantitative real-time PCR (qPCR) 

Total RNA was prepared from log-phase cells dissolved in Trizol reagent (Thermo Fisher) at 3 x 108 

cells/mL using the Direct-zol kit (Zymo Research, Irvine, California) and eluted in 50 µL of nuclease-free 

water. The RNA was DNAseI-treated (Thermo Fisher) in a 200 µL reaction using the provided buffer and 

20 Units of enzyme for 1 hour at 37 °C, purified using the RNA Clean & Concentrator - 25 kit (Zymo 

Research), and eluted in 50 µL of nuclease-free water. Reverse transcription was performed using the 

Superscript III first-strand synthesis kit (Thermo Fisher) according to the manufacturer instructions in a 

20 µL reaction containing 0.25 ug purified RNA. Control reactions contained the same amount of RNA 

but lacked reverse transcriptase enzyme. For qRT-PCR, primers were designed to amplify ~100 bp 

regions of the LRV1 genome that lie outside the stem regions (Table S4). qPCR reactions were performed 

with cDNA templates in 20 µL total reaction volume using the Power SYBR Green Master Mix (Thermo 

Fisher), 5 µL of ten-fold diluted cDNA, and final primer concentrations of 0.2 µM. Reactions were run on 

the ABI PRISM 7000 Sequence Detection System (Applied Biosystems, Thermo Fisher). PCR amplification 

conditions were as follows: 50 °C for 2 min and 95 °C for 10 sec followed by 40 cycles of 95 °C for 15 sec 

and 60 °C for 1 min. PCR products were confirmed to be specific by melt curve analysis. All experiments 

were performed in triplicate. Amplification of KMP-11 was used as an internal control to normalize 

parallel reactions. 

Small RNA (sRNA) sequencing 
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sRNA libraries were generated from total RNA as described (39); briefly, a primer (5'-

rApppATCTCGTATGCCGTCTTCTGCTTG/ddC for all samples except Lgy M4147, which used primer 

rApppTGGAATTCTCGGGTGCCAAGG/ddC) was ligated first to the 3’ end using truncated mutant T4 RNA 

Ligase (New England Biolabs), and then a second riboprimer (5'-GUUCAGAGUUCUACAGUCCGACGAUC) 

to the 5’ end with T4 RNA Ligase. cDNA was generated using reverse transcriptase and primer 5'-

CAAGCAGAAGACGGCATACGA, and then PCR was performed with this in conjunction with primer 5'-

AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGA. Products corresponding to inserts of 10-

50 nt were purified, and taken for sequencing with Illumina HiSeq2500 technology. Sequences have 

been deposited in the NCBI Short Read Archive (accession SRP082553). 

Bioinformatic analysis of sRNAs 

The 5′ and 3′ adapter sequences were removed from the sRNA reads, those less than 15 nt 

removed, and the trimmed reads were mapped to homologous LRV1 or Leishmania genomes (Lbr 

M2904 (63) or a draft Lgy M4147 genome (Bioproject PRJEB82; accession CALQ01000001 – 

CALQ01004013)) using Novoalign software http://www.novocraft.com; parameters were set as  

-F ILMFQ; -H; -g 40; -x 6; -R 5; -r; and -e 1000). A random strategy was employed to align reads mapping 

to multiple regions and hard clipping of low coverage bases at 3’ end was performed. sRNA abundance 

was assessed directly, or after ‘collapsing’ to remove duplicate reads using algorithms within the fastx 

toolkit (http://hannonlab.cshl.edu/fastx_toolkit/index.html ). To annotate transposable or repeated 

elements, we used RepeatMasker ( http://www.repeatmasker.org) to identify known elements and/or 

BLAST to identify regions corresponding to Leishmania specific elements (SLACS, TAS, and TATE (63)) . 

The annotations were collected in .bed file format for further use. Coverage was calculated by counting 

the number of reads that align to each strand of the LRV1 genome. 

LRV1 sequences  

http://www.novocraft.com/
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From the sRNA sequences we assembled whole or partial LRV1 contigs, which were confirmed and 

completed by PCR amplification and sequencing. The sequences for LRV1-LbrLEM2700, LRV1-

LbrLEM2780(a) and (b), LRV1-LbrLEM3874, and a revision of the LRV1-LgyM4147 (formerly LRV1-4; (64)) 

genome sequences were deposited in GenBank (accession numbers KX808483-KX808487). 

LRV1 capsid flow cytometry.  

 The development and optimization of this protocol will be described elsewhere (F.M. Kuhlmann et al. in 

preparation). Briefly, 1 x 107 cells were fixed at room temperature (RT) using 2% paraformaldehyde 

(Thermo Fisher) in PBS for 2 min, and then then incubated in blocking/permeabilization buffer (BPB) 

(10% normal goat serum(Vector Laboratories) and 0.2% Triton X-100 in PBS) for 30 min, at RT. Anti-Lgy 

LRV1 capsid antibody (45) was added (1:20,000 dilution) and incubated at RT for 1 hr. After two washes 

with PBS, cells were resuspended in 200 μl BPB with Alexa488-labeled goat-anti-rabbit antibody 

(Thermo Fisher) (1:2,000 dilution) and incubated 1 hr at RT. After two additional washes with PBS, cells 

were subjected to flow cytometry and the data analyzed using CellQuest© software (BD Bioscience). 

Western blot, macrophage infections and cytokine assays. 

After an initial wash with PBS, 5x107 parasites were resuspended in 100 µL of 1x PBS. 1x107 cells (20 µL) 

were lysed with 7 µL of 4x Laemmli’s gel sample buffer. After heating for 5 min at 95 °C, cell lysates were 

loaded and separated on a 10% polyacrylamide denaturing gel, transferred to a nitrocellulose 

membrane and visualized by Ponceau Red staining. The membrane was blocked for 1h in 5% powdered 

milk diluted in TBS + 0.05% Tween20, incubated overnight at 4 °C with the g018d53 anti-capsid 

polyclonal antibody (1:5000 in 1% milk TBS-Tween20), washed 4x 15 min at RT, incubated for 1h with an 

anti-rabbit IgG antibody coupled to peroxidase (Promega) (1:2500 in 1% milk TBS-Tween20), washed 

again 4x and finally revealed by ECL chemiluminescence (Amersham). Infections of BL6 mouse BMDM 

and cytokine assays were performed as previously described (7, 10). 



21 
 

Statement identifying institutional and/or licensing committee approving animal experiments.  

Animal handling and experimental procedures were undertaken with strict adherence to ethical 

guidelines relevant in both host countries. These are set out by the SFVO and under inspection by the 

Department of Security and Environment of the State of Vaud, Switzerland. Experiments were carried 

out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory 

Animals of the United States National Institutes of Health. Animal studies were approved by the Animal 

Studies Committee at Washington University (protocol #20090086) in accordance with the Office of 

Laboratory Animal Welfare's guidelines and the Association for Assessment and Accreditation of 

Laboratory Animal Care International. 
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Figure Legends 

Figure 1: Properties of Lbr siRNAs and sRNAs from Lbr and Lgy.  

A) Distributions of read lengths of siRNAs or sRNAs mapping to Leishmania genomes or LRV1s. Shown 

are 1) AGO1-bound siRNAs (black, solid) or sRNAs (black, dashed) from WT Lbr M2903 mapping to the 

Lbr genome, 2) Lgy M4147 sRNAs mapped to the Lg genome (blue, solid) or LRV1-LgyM4147 (blue, 

dashed), and 3) Lbr LEM2780 sRNAs mapped to the Lbr genome (green, solid) or LRV1-LbrLEM2780 

(green, dashed). B) Percentage of 23 nt sRNA reads (20-26nt) mapping to transposable elements (TEs, 

white), rRNA (red), tRNAs (black), genomic repeat regions (yellow), LRV1 (purple), and other Leishmania 

genomic regions (other, gray).  

Figure 2: RNAi constructs for LRV1 elimination. 

A) Schematic of an RNAi “stem-loop” (StL) construct. Each construct includes an inverted repeated 

sequence containing 800-1200 bp of the target gene (gene of interest, GOI) and a hygromycin drug 

resistance marker (HYGR). The construct is flanked with sequence of the small subunit ribosomal RNA 

gene, which allows it to integrate into this locus, where it is transcribed at high levels. Splice acceptor 

(SA) signals within the construct allow for polyadenylylation and processing.  

B) Schematic showing LRV1 genome organization and regions targeted for RNAi StL constructions (thick 

bars) from Lbr LEM2700, LEM2780, and LEM3874, and Lgy M4147 targeted by RNAi (white, capsid; gray, 

RDRP). The locations of qPCR amplicons for quantification of LRV1 levels are shown (thin black bars).  

Figure 3: Loss of LRV1 induced by RNAi  

Anti-capsid flow cytometry analysis of LRV1-knockdown lines in Lgy M4147 and Lbr LEM2780 (top and 

bottom panels respectively). LRV1 capsid protein levels are unchanged in GFP65 StL lines, while LRV1 StL 

lines have undetectable capsid protein. Red, parent lines; purple, GFP65 StLs (off target control); green, 

LRV1-negative controls; light blue, Capsid StL; dark blue, RDRP StL. 
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Figure 4. Overexpression of LRV1-mapping 23 nt sRNAs in LRV1 StL transfectants. 

A) Genomic mapping of 23 nt sRNA reads from sRNA sequencing of parental or capsid StL Lgy M4147

(left) or capsid-RDRP StL Lbr LEM3874 (right) mapping to transposable elements (TEs, white), rRNA (red), 

tRNAs (black), genomic repeat regions (yellow), LRV1 (purple), and other Leishmania genomic regions 

(other, gray). B) LRV1 mapping of 23 nt sRNA reads from LRV1StL lines described in panel A (Lgy M4147, 

top; Lbr LEM3874, bottom). Light gray trace indicates parental read distributions; dark gray trace 

indicates LRV1 StL read distributions. The dark box indicates the region targeted by the StL stems. 

Figure 5: The LRV1 genome is completely lost in most LRV1-StL transfectants 

qPCR analysis of LRV1 RNA levels in LRV1 StL transfectant clones of Lbr LEM2700 (A) and Lgy M4147 (B), 

along with positive and negative controls (+ and – respectively) and control GFP65 StL transfectants. 

White bars denote a non-specific qPCR product, while black bars denote an LRV1-specific amplicons 

(melt curve analysis). Dashed line indicates cutoff for designating a clone as LRV1-negative. Error bars 

are the standard deviation of three technical replicates for each line. 

Figure 6. LRV1 elimination results in decreased release of cytokines from infected macrophages. 

TNF-α or IL-6 levels were quantified 24h after infection of macrophages with Lbr LEM2780 (A) or Lg 

M4147 (B) parent, GFP65 knockdown control, or LRV1-StL transfectants. In both studies the LRV1- 

control was Lgy M4147. For A, results are averages of two-three technical replicates for two clones of 

each line. For B, results are the averages of two technical replicates for three to six clones of each line. 

NS, not significant; ** p < 0.01; *** p < 0.0001 by t-test. 
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Supplementary Information 

Supplemental Table Legends 

Table S1:  23 nt siRNA analysis to Leishmania genome and LRV1. For Lbr, Lbr M2904 reference genome 

was used, and for Lgy, a M4147 draft genome (BioProject PRJEB168, accession numbers 

HG800646-HG802771) was used. References for viral genomes are sequences reported in this 

work. 

Table S2:  Distributions of reads mapped to Lbr and Lgy genomes for Ago1-bound siRNAs, 23 nt (20-26 

nt) and 33 nt (30-36 nt ) sRNAs. 

Table S3:  Primer sequences used to amplify regions of LRV1 for cloning into stem-loop constructs. 

Table S4:  Primer sequences used to measure LRV1 RNA levels by qPCR. 

Supplemental Figure Legends 

Supplemental Figure 1: Properties of Lbr siRNAs and 23 nt sRNAs from Lbr and Lgy. 

This figure shows mapping of the indicated small RNAs after ‘collapsing’ the data to remove duplicate 

reads. Shown are the percentages of 23 nt sRNA reads (20-26nt) mapping to transposable elements 

(TEs, white), rRNA (red), tRNAs (black), genomic repeat regions (yellow), LRV1 (purple), and other 

Leishmania genomic regions (other, gray). A) As in Figure 1B, mappings in WT parent lines. B) As in 

Figure 4A, comparing parental lines with capsid StL Lgy M4147 (left) or capsid-RDRP StL Lbr LEM3874 

(right). 

Supplemental Figure S2: Mapping of 23nt sRNA reads (20-26 nt) from the respective parasite lines to 

LRV1-LbrLEM2700 (A), LRV1-LbrLEM2780(b) (B), LRV1-LbrLEM3874 (C), and LRV1-LgyM4147 (D). Reads 

mapping to the positive strand, (light gray); negative strand, (dark gray). 



Supplemental Figure S3: Capsid protein is lost in Lgy M4147 capsid StL transfectants.  

Three GFP65 StL control clones and six Capsid StL clones were evaluated. Top panel: Western blot 

analysis was performed using g018d53 anti-capsid polyclonal antibody (35). The arrow marks the 

location of the capsid protein band. Bottom panel: Ponceau S stain of protein gel.   

Supplemental Figure S4:  qPCR analysis of LRV1 RNA levels in LRV1 StL clones of L. braziliensis strain 

LEM2780 (A), L. braziliensis strain LEM3874 (B), and re-cloned L. guyanensis M4147 RDRP StL c3 (C). 

White bars denote a non-specific product; black bars denote an LRV1-specific product (melt curve 

analysis). Dashed line indicates cutoff for designating a clone as LRV1-negative. Error bars are the 

standard deviation of three technical replicates for each line. 

Supplemental Figure S5: Infection of macrophages by Lbr LEM2700 (A) and Lgy M4147 (B).  

TNF-α or IL-6 levels were quantified 24h after infection of macrophages with Lbr (A) or Lgy (B) parasites. 

NI, not infected; LRV1+ or LRV1-, infected with Lgy M4147 LRV1+ or LRV1-negative cells; GFP65 StL 

transfectants; and RDRP StL or capsid StL transfectants. A) Results are the averages of two technical 

replicates of two clones per line. Dark gray bars, experiment performed using WT macrophages; light 

gray bars, experiment performed using TLR3 knockout macrophages. B) Results are the averages of two 

technical replicates for each representative clone indicated. Lines found to be LRV1+ by qPCR are 

denoted by black bars; white bars are lines found to be LRV1-negative by qPCR. 



 

Table S1: Summary of sRNA reads and mapping 
A.  Total Reads. 

Sample Total reads (raw) 
Total Trimmed Reads aligned to the Leish. genomes + viruses (Percent total) 

Aligned  33 nt peak reads to Leishmania (% alignable reads) 

Aligned 23 nt peak reads to Leishmania (% alignable reads) 

Aligned 23 nt peak reads to LRV1 (% alignable reads) 

Percent with 3’ extension (Leishmania) 
Percent with 3’ extension (LRV1) 

Genome-mapping reads 3' extension base A-T-C-G (%) 
Lbr M2903a 29,391,347 19,447,509  (66.2%) 1,827,623 (9.40 %) 15,147,603 (77.9 %) n/a 21 n/a 43-41-8-8 
Lbr LEM2700 40,384,483 29,473,443  (73.0%) 8,055,506 (27.3%) 15,540,670 (52.7%) 59,287 (0.20%) 19 20 43-41-7.9-8.1 
Lbr LEM2780b 48,615,815 34,959,518 (71.9%) 5,121,894 (14.7%) 25,361,713 (72.5%) 326,021 (0.93%) 20 20 43-40-7.8-8.2 
Lbr LEM3874 36,543,649 25,591,362 (70.0%) 4,052,707 (15.8%) 16,756,188 (65.5%) 347,022 (1.36%) 19 19 44-41-6.6-7.4 
Lgy M4147 55,220,664  37,159,548  (67.3%) 1,261,927 (3.40 %) 25,489,186 (68.6 %) 660,143 (1.78%) 15 13 32-33-19-15 

B. Collapsed Reads 

Sample Total reads (raw) 
Total Trimmed Reads aligned to the Leish. genomes + viruses 

Aligned  33 nt peak reads to Leishmania (% alignable reads) 

Aligned 23 nt peak reads to Leishmania (% alignable reads) 

Aligned 23 nt peak reads to LRV1 (% 23 nt reads) 

Percent with 3’ extension (Leishmania) 
Percent with 3’ extension (LRV1) 

Genome-mapping reads 3' extension base A-T-C-G (%) 
Lbr M2903a 2,327,188 1,038,131 (44.6%) 68,895 (6.64%) 776,204 (74.8 %) n/a 37 n/a 35-35-15-15 
Lbr LEM2700 2,948,017 1,206,587 (40.9%) 127,998 (10.6%) 758,664 (62.9 %) 18,642 (1.54%) 35 36 34-34-16-16 
Lbr LEM2780b 3,439,169 1,777,142 (51.7%) 150,229 (8.45%) 1,050,094 (59.1 %) 61,753 (3.47%) 33 34 34-34-16-16 
Lbr LEM3874 2,379,761 1,224,741 (51.5%) 105,696 (8.63%) 632,961 (51.7%) 48,287 (3.94%) 31 32 35-35-15-15 
Lgy M4147 1,437,673 752,464 (52.3%) 152,059 (20.2%) 358,039 (47.6%) 43,099 (5.73%) 22 22 30-28-22-20 

a Lbr M2903 SSU:IR2-LUCSR.   b The sum of reads mapping to LRV1-LbrLEM2780(a) and (b) are shown, which map quantitatively to similar levels. 



 

 
Table S2. Genomic mapping of 23 and 33 nt ‘peak’ sRNA fractions from Lbr and Lgy. 
      
 Lbr M2903 Lgy M4147 
 AGO1-bound siRNAs 

23 nt  (20-26 nt) sRNAs 
33 nt  (30-36 nt)  sRNAs 

23 nt  (20-26 nt)  sRNAs 
33 nt  (30-36 nt)  sRNAs 

 Alignable reads  20,029,304  
19,447,509  

1,827,623  
37,159,548  

1,261,927 
 Percent mapping to:      

 Transposable elements 
     

SLACS   33.9 26.9 1.2 59.8 0.25 TATE   45.1 53.1 5.2 10.7 0.32  Repeats      
Misc.   5.8 5.0 7.7 1.1 2.4 TAR   4.7 4.2 0.08 4.0 0.38 TAS   4.2 5.1 20.3 4.8 6.5 CIR   5.1 4.6 0.09 0.0 0.0  Structural RNAs      

tRNAs   0.12 0.75 32.1 9.9 75.4 rRNAs    0.42 0.47 29.4 5.5 14.6 
       
Transposable elements, repeats and structural RNAs were classified as defined in the Methods and by Atayede et al (26) 
 



 

Table S3: Primer sequences used to amplify regions of LRV1 for cloning into stem-loop (StL) constructs. 
Parasite strain Target Construct ID Name Stem length Sequence - is the border or the oligo? Some look like one some the other 

Lbr LEM2700 

Capsid B6910  pIR2HYG-LRV1_LbrLEM2700_CapsidStL(A) 943 bp 5’-CGCTAGTCTAGAATACTACAGCAAACATGTTTCG 
  5’-CGCTAGTCTAGACAAGGTGTCTGTTGGGTTCGAT 

RDRP 
B6908  pIR2HYG-LRV1_LbrLEM2700_RDRPStL(A) 1143 bp 

5’-CGCTAGTCTAGAATGTGCTTCAAACTTGAAGATG 
  5’-CGCTAGTCTAGATAGCAGCAATCTAACGACCTGC 

Lbr LEM2780 

Capsid 
B7061  pIR2HYG-LRV1_LbrLEM2780_CapsidStL(A) 835 bp 

5’-CCAGCTTGGGATCAATTTGCGG 
  5’-GGACATCTCCATCAGCCGATGA 

RDRP 
B7062  pIR2HYG-LRV1_LbrLEM2780_RDRPStL(A) 794 bp 

5’-GTGAGGATGAGTTGCGCGCTGC 
  5’-ATTGCTAAGTAGACTGTTTGCG 

Lbr LEM3874 Capsid / RDRP 
B7268  pIR2HYG-LRV1_LbrLEM3874_StL(A) 1000 bp 

5’-GGCTAGTCTAGA GTCGTGCGATCTATTCCATCCT 
  5’-GGCTAGTCTAGATTAGTGCTTATGTTAGGATCAG 

Lgy M4147 

Capsid 
B7066  pIR2HYG-LRV1_LgyM4147_CapsidStL(A) 926 bp 

5’-CTTCTCCTTTACGTGCCAGC 
  5’-GCGCATTGTTGTCCACTCAA 

RDRP 
B7063  pIR2HYG-LRV1_LgyM4147_RDRPStL(A) 829 bp 

5’-CTTGCTAGGTCGTGGGGTGA 
  5’-ACCAACATGCATAGACGTGG 

 



 

 
Table S4: Primer sequences used in measurement of LRV1 RNA levels by qRT-PCR. 

 

 
 
 
 

KMP-11 F 5’-GCCTGGATGAGGAGTTCAACA 
R 5’-GTGCTCCTTCATCTCGGG 

L. braziliensis LEM2700 F 5’-CATCCTGCTGAGTTGACTTCATAC 
R 5’-GTCACACCTTGTGATGACATTGC 

L. braziliensis LEM2780 F 5’-GTCATTACGAGGTGTGATGGAAT 
R 5’-GGTAACGCGCCATCACACAGT 

L. braziliensis LEM3874 F 5’-GAATATGCTCTCCGACCGGTTG 
R 5’-AATTCTCGCAGCCACCCCACAG 

L. guyanensis M4147 Set 1 F 5’-CTGACTGGACGGGGGGTAAT 
Set 1 R 5’-CAAAACACTCCCTTACGC 
Set 2 F 5’-CACGCTAGATGAGTACATCTGG 
Set 2 R 5’-GTAGTTGCGGAATCTGACG 
Set 3 F 5’-GGTAATATCACGCAGTGTAAGC 
Set 3 R 5’-GACACCACCTCTAAGACACG 
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