
Transcriptome-wide sites of collided ribosomes reveal
principles of translational pausing
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Summary

Translation initiation is considered overall rate-limiting for protein biosynthe-

sis, whereas the impact of non-uniform ribosomal elongation rates is largely

unknown. Using a modified ribosome profiling protocol based on footprints

from two closely packed ribosomes (disomes), we have mapped ribosomal col-

lisions transcriptome-wide in mouse liver. We uncover that the stacking of an

elongating onto a paused ribosome occurs frequently and scales with translation

rate, trapping ∼10% of translating ribosomes in the disome state. A distinct

class of pause sites, independent of translation rate, is indicative of determin-

istic pausing signals. Pause sites are associated with specific amino acids, pep-

tide motifs, and with structural features of the nascent polypeptide, suggestive

of programmed pausing as a widespread mechanism associated with protein

folding. Evolutionary conservation at disome sites and experiments indicate

functional relevance of translational pausing. Collectively, our disome profiling

approach allows novel, unexpected insights into gene regulation occurring at the

step of translation elongation.
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Introduction

The translation of messenger RNA (mRNA) to protein is a central step in

gene expression. Our knowledge of this process has exploded over the past

decade due to the emergence of ribosome profiling (Ingolia et al., 2009), a tech-

nique based on the high-throughput sequencing of the ∼30 nt mRNA footprints5

that are buried inside the translating ribosome and thus protected from the

nuclease treatment that is used to digest the mRNA regions that are not oc-

cupied by ribosomes. A plethora of studies have built on the quantitative,

transcriptome-wide and nucleotide-resolved information that ribosome profiling

provides to gain insight into a variety of aspects of protein biosynthesis (see10

Ingolia et al. (2019) for a recent review). This includes, among others, the an-

notation of translated mRNA regions, the study of differential translation across

various biological and experimental paradigms, the characterization of interme-

diate states of the translating ribosome, the subcellular compartmentalization

of protein biosynthesis, or functional differences in translational capacity within15

a heterogeneous cellular ribosome population.

Most available ribosome profiling data is consistent with the longstanding

notion that of the four distinct phases defining translation, i.e. initiation, elon-

gation, termination and ribosome recycling, it is the first step – the commitment

of the ribosome to initiate – that is rate-limiting for the overall process in eu-20

karoytes (Hinnebusch, 2014). It is thus assumed that the quantity of elongating

ribosome footprints (i.e., the species mainly captured by conventional ribosome

profiling methodology) is proportional to initiation rate and to overall protein

biosynthesis. Elongating ribosome footprints typically distribute in a distinctly

non-uniform fashion across a given protein coding sequence (CDS), which has25

been attributed to variations in ribosome decoding speed and dwell times (Ingo-

lia et al., 2011). Integrating footprint reads across the entire CDS is thought to

correct for local variation in footprint density and to allow for accurate estimates

of relative translation efficiencies per gene (TEs, calculated as CDS-mapping

footprint reads normalized to RNA abundance) in a transcriptome-wide fashion.30
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Nevertheless, a possible influence of local footprint variation on overall transla-

tion speed of an mRNA has been suggested early on (Dana and Tuller, 2012)

and, in general, how to interpret apparent local differences in footprint densi-

ties is not fully resolved. Of note, it remains an intrinsic limit of the technique

that it delivers static snap-shots of ribosome occupancy rather than dynamic35

data of the translation process. Therefore, and somewhat paradoxically, in the

two extreme, hypothetical scenarios of one transcript whose elongating ribo-

somes are translationally paused (resulting in low or no protein biosynthesis),

and of another transcript that shows strong, productive flux of elongating ribo-

somes (resulting in high protein biosynthesis), the actual footprint snap-shots40

that would be seen in ribosome profiling may actually be indistinguishable. To

discern such cases, a dedicated genome-wide method for the direct detection

of ribosomal pausing would be crucial; in yeast, specific footprint size classes

associated with stalled ribosomes have been described (Guydosh and Green,

2014).45

Historically, early evidence for paused elongation – leading to the subsequent

stacking of upstream elongating ribosomes onto the paused one – has come

from in vitro translation reactions (Wolin and Walter, 1988). For a limited

number of prominent cases, pausing has since then been shown to be function-

ally important for proper protein localization to membranes (Yanagitani et al.,50

2011; Mariappan et al., 2010), to serve as a mechanism for start codon selection

(Ivanov et al., 2018), and to regulate the extent of productive full-length pro-

tein biosynthesis (Yordanova et al., 2018). It is tempting to extrapolate from

such individual examples to general roles for elongation pausing that cells could

employ to control protein biosynthesis post-initiation. At the other end of the55

spectrum, hard elongation stalls caused by various obstacles to processive trans-

lation (including defective mRNAs or specific amino acid motifs in the nascent

peptide) require resolution by the ribosome-associated quality control pathway

(RQC), and the mechanisms through which such terminally stalled ribosomes

are sensed and handled is a highly active field of current research (reviewed in60

Joazeiro (2019)).
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An early ribosome profiling study in mouse embryonic stem cells (mESCs)

already addressed the question of how to extract potential pause sites from foot-

print data (Ingolia et al., 2011), which resulted in the identification of thousands

of alleged pauses in the body of genes as well as an enrichment at termination65

codons. In combination with quantitative modelling approaches, subsequent

studies have identified parameters that can impinge on local translation speed

and pausing (reviewed in Schuller and Green (2018)). Among these are, no-

tably, specific amino acids (Charneski and Hurst, 2013), codon pairs (Gamble

et al., 2016), tRNA availability (Darnell et al., 2018; Guydosh and Green, 2014),70

RNA secondary structures (Zhang et al., 2017; Pop et al., 2014), or the folding

(Doring et al., 2017) and exit tunnel interactions (Dao Duc and Song, 2018;

Charneski and Hurst, 2013) of the nascent peptide. However, to what extent

translational pausing occurs in vivo in a mammalian system, which character-

istics these pause sites have, and whether they are functionally relevant is still75

poorly understood.

Here, we have applied a modified ribosome profiling strategy to a mammalian

organ, mouse liver, in order to directly reveal in a transcriptome-wide fashion

the sites where two ribosomes collide. The characteristics associated with these

∼60 nt ”disome footprints” are consistent with the expectations for collision80

events of an upstream elongating ribosome onto a downstream, paused ribo-

some. Through the use of synthetic footprint spike-ins, we estimated the quan-

titative relationship between disome and monosome footprints. Deep analysis

of the disome sites allowed identifying features predictive of ribosome pausing,

including sequence features of the mRNA and structural features of the nascent85

polypeptide. Finally, we address the question of the functional relevance of

pausing events via the analysis of evolutionary conservation and through an

experimental approach.
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Results

Disome footprint sequencing allows transcriptome-wide mapping of ribosomal90

collisions

A critical step in ribosome profiling is the quantitative, nuclease-mediated

conversion of polysomes to individual monosomes, from which protected mRNA

footprints of ∼30 nt can be purified and converted to sequenceable libraries.

During the setup of this technique from mouse liver polysomal extracts for a pre-95

vious study (Janich et al., 2015), we used northern blots to monitor the efficiency

of RNase I-mediated footprint generation. Radioactively labelled short oligonu-

cleotide probes antisense to the protein coding sequences (CDS) of the highly

abundant Albumin (Alb) and Major urinary protein 7 (Mup7) mRNAs indeed

showed the expected ∼30 nt monosome footprints (Figure 1A, B). Moreover,100

several of the probes also detected distinct higher-order bands whose estimated

sizes were compatible with those expected for multiples of monosome footprints

(i.e. ∼60 nt, ∼90 nt etc.). These additional bands were particularly prominent

for the probes designed to anneal to the transcripts just downstream of where

the signal peptide (SP) was encoded (see monosome footprint and two higher-105

order bands for probe Alb71−101 in Figure 1A; see monosome footprint and >5

higher-order bands for probe Mup758−81 in Figure 1B). We initially interpreted

the presence of these bands as an indication of suboptimal conditions during

nuclease treatment, leading to an incomplete collapse of polysomes to mono-

somes. We hence tested other nuclease digestion conditions. However, neither110

changes in temperature or detergent concentrations during extract preparation

and nuclease treatment (Supplemental Figure S1A), nor higher RNase I activity

(Supplemental Figure S1B), nor a different nuclease altogether, micrococcal nu-

clease (Supplemental Figure S1C), were able to collapse the higher-order bands

quantitatively to the size of the monosome footprint. We thus speculated that115

the higher-order footprints reflected a distinct, relatively stable state of trans-

lating ribosomes, possibly resulting from two (disome), three (trisome) or, in the

case of the bands seen for Mup758−81, even higher numbers of ribosomes whose

5



dense stacking rendered the mRNA inaccessible to nucleases. This scenario was

reminiscent of the ribosomal pausing and stacking described in the 1980s for in120

vitro translated preprolactin mRNA (Wolin and Walter, 1988). Here, a major

translation stall site at codon 75 (a GGC glycine codon), which led to the queu-

ing up of subsequent incoming ribosomes, was related to the recruitment of the

signal recognition particle (SRP) to the signal peptide.

We wished to determine whether our higher-order footprints reflected a sim-125

ilar phenomenon and whether they would allow us to detect ribosomal pause

and collision sites transcriptome-wide and in vivo. We thus selected a subset

of samples from our previously collected mouse liver time series (Janich et al.,

2015), corresponding to three timepoints at the beginning of the daily light

(Zeitgeber Times ZT0 and ZT2) and dark phases (ZT12), and subjected them130

to ribosome profiling for both the ∼30 nt monosome footprints and the ∼60 nt

alleged disome footprints; we also determined RNA abundances from the same

samples by RNA-seq (Figure 1C). Libraries were sequenced sufficiently deeply

to obtain >108 cDNA-mapping reads per footprint species (Figure 1D, Supple-

mental Figure S2A and Supplemental Table S1). Monosome footprints showed135

the expected length and mapping features, i.e. the majority was 29-30 nt in size

(Figure 1E) and they were enriched on CDS and depleted from untranslated

regions (UTRs) (Supplemental Figure S2B). This depletion was considerably

stronger for 3′ UTRs than for 5′ UTRs, which was expected given that 5′ UTRs

are known to harbour significant translational activity on upstream open reading140

frames (uORFs). Disome footprint lengths showed a broader distribution with

two distinct populations at 59-60 nt and 62-63 nt (Figure 1E) that resembled the

bimodal pattern that has been seen in yeast as well (Guydosh and Green, 2014).

The mapping to transcript regions was similar to that of monosome footprints,

albeit with a more pronounced depletion from 5′ UTRs (Supplemental Figure145

S2B). As the median uORF length in mice is <40 nt (Johnstone et al., 2016),

it is likely that many uORFs are simply too short to accommodate two trans-

lating ribosomes simultaneously. Reduced levels in 5′ UTR disome footprints

were thus fully compatible with the hypothesis that they reflected ribosomal
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collisions.150

We next analyzed frame preference and distribution along the CDS for the

two footprint species. To this end, we mapped the predicted position of the

ribosomal aminacyl-tRNA acceptor site (A-site) codon of each monosome foot-

print (i.e. nucleotides 15-17 for 29-30 nt footprints, see Janich et al. (2015)) onto

the meta-transcriptome (N=5456 genes). Transcriptome-wide, we observed the155

characteristic 3-nt periodicity of ribosome footprints across coding sequences,

starting at the +1 codon relative to the initiation site (note that initiating ri-

bosomes carry the first tRNA already in their P-site, and the A-site is thus

placed over the +1 codon) and ending at the termination codon (Figure 1F).

Moreover, the profile showed previously reported features, including elevated160

ribosome density at the start and at the +5 codon (which has been interpreted

to reflect a pause occurring between initiation and elongation commitment, see

Han et al. (2014)), and an underrepresentation of stop codon footprints (which is

a known consequence of the elongation inhibitor cycloheximide that was added

during polysomal extract preparation, see Ingolia et al. (2011)).165

The equivalent analysis for the disome footprints showed transcriptome-wide

3-nt periodicity as well, albeit with two noteworthy peculiarities. First, at the

3′ end of the CDS, disome coverage ended 10 codons upstream of monosome

coverage, precisely at the position expected when the leading ribosome of two

stacked ribosomes would occupy the termination codon. Second, at the 5′ end,170

disome occurrence was low at and immediately after the initiation site, highest

on the +5 codon, and then overall rather uniform (though showing some 5′-to-3′

decrease) over the remainder of the CDS. Aligning the disome footprints rela-

tive to the predicted A-site of the leading, rather than the stacked ribosome,

gave fully compatible results (Supplemental Figure S3A). Taken together, these175

findings were consistent with the hypothesis that the ∼60 nt higher-order bands

indeed represented footprints originating from translated mRNA that was pro-

tected by two adjacent, and possibly collided, ribosomes. Moreover, it would

appear that transcriptome-wide these alleged collision events could occur at

most CDS positions, although the likelihood of stacking onto a downstream ri-180

7



bosome would seem reduced for the first few codons, possibly due to sterical

constraints to initiation (Guydosh and Green, 2014).

Disome occurrence is locally favored by signal peptides, and globally by high

translation efficiency

The SRP-dependent ribosome pausing and stacking described for prepro-185

lactin mRNA (Wolin and Walter, 1988) suggested that transcripts encoding

signal peptide-containing proteins (termed SP transcripts in the following) could

serve as a positive control to validate that our approach was indeed capturing

similar events. We thus assessed footprint densities along the CDS for SP tran-

scripts (N=713) vs. non-SP transcripts (N=4743). SP transcripts showed a190

striking build-up of disome footprints towards the 5′ end of the CDS that ex-

tended virtually to the position (∼75 amino acids) Wolin & Walter had described

for preprolactin mRNA, whereas downstream of this region disome read den-

sities were reduced (Figure 2A-B and Supplemental Figure S3B). Importantly,

these features were specific to disomes, as they were absent from monosome195

footprint data (Figure 2C-D). We concluded that the profiling of disome foot-

prints was able to capture the same translational pausing and stacking events

that had been previously described (Wolin and Walter, 1988).

We next analyzed monosome and disome footprints per gene. Of note, many

transcripts that were detectable at the monosome footprint and RNA-seq levels200

also showed sufficient coverage in the disome data, allowing for robust quantifi-

cation of both footprint species across a large portion of the expressed genome

(N=8626 genes). We first computed for each gene individually the ratio of

CDS-mapping footprint to RNA-seq reads. For monosome footprints, this ra-

tio is frequently referred to as ”ribosome density” and considered to reflect a205

transcript’s relative translational efficiency (TE). In an analogous fashion, for

the disome footprints this density would correspond to a measure for the extent

of ribosomal pausing and stacking. When comparing disome and monosome

footprint densities per gene, we made two main observations. First, disome

densities were positively correlated with translation efficiencies (Figure 2E). SP210
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transcripts showed this correlation as well; however, they were globally shifted

to lower disome footprint levels, indicating that the high disome occurrence up

to codon ∼75 was outweighed by the reduction seen over the remainder of the

CDS (Figure 2B). Second, the steepness of the fit in the double-log plot in Fig-

ure 2E was significantly greater than 1, indicating an exponential relationship215

between disome and monosome densitites. Conceivably, increased ribosomal

flux on mRNAs was thus associated with an even higher relative increase in

ribosomal collisions. We next assessed whether this relationship between di-

some and monosome footprint levels was not only observable across different

transcripts, but also for a given transcript at different translation efficiencies.220

To this end, we analyzed mRNAs encoding for ribosomal proteins (RPs), which

show prominent, feeding-dependent daily rhythms in TE (Sinturel et al., 2017).

Using the two timepoints from our datasets that corresponded to states of low

(ZT2) and high (ZT12) RP mRNA translation (Janich et al., 2015), our analyses

revealed that the increase in disome density on RP transcripts was significantly225

greater than the ∼2-fold increase in monosome TE between the two timepoints

(Supplemental Figure S3C). This outcome is consistent with the exponential

relationship between disome and monosome footprints detected transcriptome-

wide.

These findings suggested that – at least in part – disome footprints were230

a consequence of ribosomal crowding that could in principle occur during any

translation event, but that was favoured under high ribosomal traffic. In such

a case, one might hypothesize that the positions on the CDS where ribosomes

collided could have a sizable stochastic component; in addition, local differences

in ribosomal dwell times – which are associated with amino acid/codon usage235

and the size of the amino acid-loaded tRNA pool (Gobet et al., 2019) – would be

expected to bias the collision sites as well. In contrast, however, the observation

that signal peptides appeared to act as general triggers for ribosome stalling

and queuing, as well as differences in disome levels across transcripts that were

not simply attributable to TE differences (Supplemental Figure S3D), suggested240

that beyond the alleged ”stochastic” sites, more specific, ”deterministic” signals
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and stall sites may exist, too.

In order to gain a sense of whether these different scenarios and distinct

classes of disome sites (i.e. stochastic vs. deterministic) truly existed, we first

inspected various transcript examples. To begin with, we noted that individ-245

ual SP transcripts indeed exhibited the expected disome patterns. As shown for

the case of Adhesion G protein-coupled receptor G3 (Adgrg3) – whose annotated

signal peptide spans amino acids (aa) 1-18 – disome footprint coverage was ele-

vated in the region up to codon ∼75 and was lower and appeared more randomly

distributed over the remainder of the transcript (Figure 2F). Similarly, Trans-250

ferrin receptor (Tfrc), which contains an SRP-dependent signal anchor (SA)

sequence at aa 68-88 (Zerial et al., 1986), showed elevated disome levels extend-

ing until codon ∼145 (Figure 2G), indicating a direct relationship between the

positions of disome buildup and of the signal sequence/SRP interaction. We

next examined individual transcripts lacking signal sequences for the presence255

of the alleged stochastic and deterministic sites. For example, the transcripts

coding for two subunits of the 19S regulatory particle of the proteasome, Psmd4

(Figure 2H) and Psmd5 (Figure 2I), showed distinct patterns of disome distribu-

tion that were consistent with our expectations for stochastic and determinitic

sites, respectively. Psmd4 thus showed disome coverage at numerous positions260

along the CDS. By contrast, a specific, dominant site was apparent for Psmd5.

Many other transcripts showed such patterns with distinct dominant sites as

well, e.g. Aldehyde dehydrogenase 1a1 (Aldh1a1) (Figure 2L), Pyruvate kinase

liver and red blood cell (Pklr) (Figure 2N) and Eukaryotic translation initiation

factor 5A (Eif5a) (Figure 2P). Dispersed disome patterns similar to Psmd4, as265

well as mixed cases combining broad coverage with specific dominant sites were

frequent, too, e.g Aldolase A (AldoA) (Figure 2K), Acyl-Coenzyme A oxidase

3 (Acox3) (Figure 2M) and Eukaryotic translation initiation factor 2A (Eif2a)

(Figure 2O). Furthermore, we made the empirical observation that in some cases

there was not (e.g. Aldh1a1 ) and in others there was (e.g. Pklr) a correspon-270

dence between the sites of strong disome and monosome accumulation. Indeed,

both scenarios – correlation and anti-correlation – between strong disome and
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monosome sites appear plausible: On the one hand, extended ribosomal dwell

times should lead to the capture of more monosome footprints from slow codons

– and since these positions would also represent sites of likely ribosomal colli-275

sions, they would be enriched in the disome data as well. On the other hand,

however, for sites where collisions are very frequent – to the extent that stacked

ribosomes become the rule – one may expect to see an effective loss of these

positions in the monosome footprint data.

An important consequence of elongating ribosomes getting trapped in dis-280

omes is that conventional (i.e., monosome footprint-based) ribosome profiling

datasets will inevitably underestimate the number of translating ribosomes per

transcript, in particular for high TE mRNAs. We wished to quantify this ef-

fect. This was, however, not possible from our existing monosome and disome

footprint datasets because they originated from independent libraries (Figure285

1C). Consequently, we had no means of normalizing the disome and monosome

data between each other and of aligning them in a way that would have allowed

us to determine the quantitative relationship between the two footprint species

in the original sample (i.e., global quantitative differences between monosome

and disome reads could not be discriminated from technical differences such as290

unequal sequencing depths). We therefore sequenced new libraries from liver

samples to which, early in the protocol, we had added defined quantities of syn-

thetic 30mer and 60mer RNA spike-ins (Supplemental Figure S4A-B), which

subsequently allowed for a quantitative realignment of monosome and disome

footprint data. This approach revealed that for transcripts with high transla-295

tion efficiency, typically ∼10% of translating ribosomes were trapped in disomes

(Figure 2Q). This percentage decreased with decreasing transcript TE and was

generally reduced for SP-transcripts, as expected.

In summary, we concluded that disome formation was a common phenomenon

and observable across most of the transcriptome. The association with signal300

peptides and with high translational flux supported the notion that disome

footprints were indeed indicative of ribosomal collisions between a downstream,

slow decoding event and an upstream ribosome that stacked onto the stalled
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ribosome.

Disome sites are associated with specific amino acids and codons305

We next investigated whether disome sites were associated with mRNA se-

quence features, in particular with specific codons or amino acids. To this end,

we adapted a method developed for the analysis of monosome-based footprint

data, termed Ribo-seq Unit Step Transformation (RUST), which calculates ob-

served/expected ratios for a given feature at each codon position within a win-310

dow that encompasses the footprint and surrounding upstream and downstream

regions (O′Connor et al., 2016). RUST-based enrichment analyses in O′Connor

et al. showed that ribosome footprints had the highest information content (rel-

ative entropy, expressed as Kullback−Leibler divergence) on the codons placed

within the ribosome decoding center. Moreover, the sequence composition at the315

5′ and 3′ termini of the mRNA fragments showed pronounced non-randomness

as well, which was, however, not specific to footprints but found in RNA-seq

data as well. It was thus concluded that the main contributing factors to foot-

print frequency at a given mRNA location were, first, the identity of the codons

in the A- and P-sites and, second, the sequence-specificity of the enzymes used320

for library construction (O′Connor et al., 2016).

To be able to apply the RUST pipeline for the disome footprints, we first

needed to investigate the origins of their bimodal length distribution (Figure 1E)

and determine which footprint nucleotides likely corresponded to the ribosomal

E-, P- and A-sites. To this end, enrichment analyses for codons, conducted indi-325

vidually for the different size classes of disome footprints (Supplemental Figure

S5A), resulted in profiles that resembled the previously described RUST-based

enrichment profiles for monosome data (O′Connor et al., 2016). Increased infor-

mation content was thus apparent at the footprint 5′ and 3′ boundaries, indica-

tive of the aforementioned biases from library construction. Moreover, codon330

selectivity was consistently seen in the footprint region that would be occupied

by the leading ribosome’s decoding center, ∼15 nt upstream of the footprint 3′

end. Notably, no specificity was visible for the region occupied by the upstream
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ribosome. These findings were consistent with the idea of the leading ribosome

defining the pause site (with preference for specific codons) and the upstream335

ribosome colliding in a sequence-independent fashion. Importantly, the com-

parison of the enrichment plots from the different footprint lengths allowed us

to propose a likely interpretation for the observed length heterogeneity. The

two major populations of 59-60 nt and 62-63 nt thus appeared to correspond

to ribosome collisions in which the upstream ribosome stacked onto the stalled340

ribosome in two distinct states that differed by one codon (Supplemental Fig-

ure S5B). Conceivably, the 1 nt variation (i.e., 59 nt vs. 60 nt and 62 nt vs.

63 nt) corresponded to differences in trimming at the footprint 3′ end. Using

this model, we aligned the main populations from the range of disome footprint

lengths (i.e., 58-60 nt and 62-63 nt, representing together about two-thirds of345

all disome footprints) according to the predicted A-site of the paused, leading

ribosome (see STAR Methods) and used these A-site-corrected footprints for

the RUST pipeline.

Enrichment analysis showed marked selectivity for amino acids in the de-

coding center (P- and A-site) of the disome’s leading ribosome (Figure 3A,350

left panel). The magnitude of amino acid preference was considerably greater

than that seen for the monosome footprints (Figure 3A, middle panel), whereas

RNA-seq data lacked selectivity beyond the effects attributable to library gen-

eration enzymology, as expected (Figure 3A, right panel). Specific amino acids

stood out as preferred ribosome stall sites, irrespective of codon usage. The355

most striking associations were, notably, the prominent overrepresentation of

aspartic acid (D) in both the P- and A-sites (Figure 3B), the enrichment of

isoleucine (I) in the A-site and its depletion from the P-site (Figure 3C), and

the enrichment of glycine (G) in the P-site (Figure 3D) of stalled ribosomes.

We next transformed the full amino acid analysis (Supplemental Figure S6)360

to a position weight matrix representing the ensemble of positive and negative

amino acid associations with disome sites (Figure 3E). The specific enrichment

of acidic (D, E) and the depletion of certain basic amino acids (K, H) within the

decoding center of the leading ribosome suggested that amino acid charge may

13



be a relevant factor for ribosomal pausing. Of note, the observed amino acid365

signature showed resemblance with ribosomal dwell times that were recently es-

timated through modelling of conventional mouse liver ribosome profiling data

(Gobet et al., 2019). In keeping, the analysis of amino acid associations in our

monosome data showed a similar, though in magnitude much reduced, pattern

of amino acid enrichment and depletion as the disomes (Supplemental Figures370

S6 and S7A). Finally, we noticed that for certain amino acids, association with

disome sites was dependent on codon usage. For example, P-site Asparagin (N)

was strongly associated with pause sites only when encoded by AAT, but not by

AAC (Figure 3F); Lysine (K) was depleted at P-sites irrespective of the codon,

but the association of A-site Lys was highly dependent on codon usage, showing375

either depletion (AAA) or enrichment (AAG) (Figure 3G).

We next investigated the association of pause sites with specific amino acid

combinations. Strong selectivity with regard to the 400 possible dipeptide mo-

tifs was apparent in the P- and A-sites of the leading ribosome (Figure 3H, left

panel). This effect was much weaker and absent for monosome and RNA data,380

respectively (Figure 3H, middle and right panels). In the disome data, the en-

richment was highest, and independent of codon usage, for dipeptides consisting

of the most enriched single amino acids, i.e. Gly-Ile (GI), Asp-Ile (DI) and Gly-

Asp (GD) (Figure 3I-L). By contrast, the pausing of ribosomes at several other

dipeptides was strongly dependent on codon usage. In particular the presence of385

a Lys (K) or Gly (G) in the A-site of the leading ribosome was associated with

codon selectivity (Figure 3M). For instance, the Asp-Lys (DK) dipeptide was

highly associated with disomes when encoded by GATAAG (Figure 3N; blue

trace); notably, with transcriptome-wide 910 cases of disome peaks observed on

the 2030 existing GATAAG positions (i.e. 44.8%), it was the 8th most disome-390

prone dicodon out of the total 3721 (i.e., 61 x 61) possible dicodon combinations

(Supplemental Table S2; Figure 3P). By contrast, when encoded by GACAAA

(Figure 3N; black trace), disomes were observable on no more than 7.8% of sites

(272 out of 3529), ranking this dicodon at position 1419. The Gly-Gly (GG)

dipeptide represented a similar case (Figure 3O); of the 16 dicodon combina-395
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tions, GGAGGA (blue trace) was most strongly enriched (698/2407, i.e. 29.0%

of sites showed disome peaks; rank 64), whereas GGCGGC (black trace) showed

depletion from disome sites (92/1738, i.e. 5.3% of sites showed disome peaks;

rank 2304).

In summary, the preference for codons, amino acids and amino acid com-400

binations at the predicted P- and A-sites of the leading ribosome suggest that

specific sequence signatures are an important contributor to the locations of col-

lision events. Moreover, ribosome pausing that depends on codon usage opens

the possibility to modulate the kinetics of translation elongation independently

of amino acid sequence.405

Disome sites are related to structural features on the polypeptide

It was unlikely that the two factors associated with ribosomal collisions re-

vealed above – i.e. high ribosomal flux (Figure 2) and specific amino acids/codons

(Figure 3) – would suffice to provide the specificity required to discriminate

between the disome sites that were actually observable (e.g. the alleged ”de-410

terministic sites” in Figure 2I, L, N, P), as compared to other positions on the

mRNA that were devoid of disome footprints despite similar codon composi-

tion. We therefore expected that additional features of the transcript and of

the polypeptide would be critical in specifying ribosomal collision sites as well.

Our above findings indicated that the signal peptide represented one such ele-415

ment promoting stalling and stacking; in this context, it was interesting to note

that even for SP-related stalling, the actual sites on which disomes were observ-

able were in accordance with the generic characteristics of disome occurrence

described above. Thus, disome density on SP-transcripts was also dependent on

TE (Figure 2Q) and the amino acid preference of disome sites at SP sequences420

(Supplemental Figure S7B) closely resembled that identified transcriptome-wide

(Figure 3E).

In order to identify other protein traits associated with ribosomal stalling, we

first assessed the relationship between disome sites and the electrostatic charge

of the nascent polypeptide. These analyses revealed, first, a strong association of425
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negatively charged amino acids with the decoding center of the stalled ribosome

(Figure 4A, left panel). This was an expected outcome given the enrichment

of Asp and Glu in the P- and A-sites (Figure 3E). Second, there was a broad

stretch of positive charge on the nascent polypeptide that extended >20 codons

upstream of the sequence actually occupied by the stalled and stacked ribosomes430

(Figure 4A, left panel). This marked charge association was specific to disome

footprints; in monosome footprint and RNA data it was only weakly detectable

and absent, respectively (Figure 4A, middle and right panels). These observa-

tions suggested that there was an interplay between the nascent polypeptide and

the speed at which codons that were located substantially further downstream435

were translated (Figure 4B). This idea is fully consistent with previous work

that has suggested that electrostatic interactions between a positively charged

nascent peptide and the negatively charged lining of the exit tunnel are a major

factor promoting local slowdown of elongating ribosomes (Charneski and Hurst,

2013).440

We next explored the relationship between disome sites and the structure

of the translated polypeptide. Using genome-wide peptide secondary structure

predictions with the three categories, structured (i.e. α-helix or β-sheet), un-

structured and unknown, we calculated position-specific observed-to-expected

ratios. These analyses revealed that the decoding center of the downstream445

ribosome was enriched for codons predicted to lie in unstructured parts of the

polypeptide, whereas structured amino acids were depleted (Figure 4C, left

panel). Upstream and downstream of the stalled ribosome this pattern was

inverted, with an increase in structured and a decrease in unstructured amino

acids. The identical analysis on monosome footprints yielded associations that450

were, although qualitatively similar to those seen for disomes, severely blunted

in their effect size (Figure 4C, middle panel). Moreover, these associations were

absent from the RNA data (Figure 4C, right panel). These findings indicated

a high degree of specificity for disome sites and, taken together, they were fully

consistent with a model according to which there was a preference for pausing455

during the translation of unstructured polypeptide stretches that were preceded
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and followed by structured regions (Figure 4D). We investigated this hypoth-

esis more explicitly by retrieving the transcript regions encoding ”structured-

unstructured-structured” (s-u-s) polypeptide configurations transcriptome-wide

(N=9312). After re-scaling to allow for the global alignment of structured and460

unstructured areas, we assessed the relative disome distributions across the s-u-

s-encoding regions. These analyses revealed that disomes were enriched within

the 5′ portion of the unstructured region, just downstream of the s-u boundary

(Figure 4E, left panel). By comparing with distributions obtained from ran-

domizations of the disome peak positions within the same dataset, we could465

conclude that the observed disome enrichment was significantly higher than ex-

pected by chance. As before, a weak and no effect, respectively, were detectable

in monosome footprint and RNA data (Figure 4E, middle and right panels).

Finally, the position-specific analysis (i.e. without re-scaling) at the s-u bound-

ary indicated that disome sites were particularly enriched at the second codon470

downstream of the s-u transition (Supplemental Figure S8A, right panel). As

an additional control for the specificity of these associations, we also analyzed

the inverse configuration, u-s-u (Supplemental Figure S8D) and conducted all

analyses on monosome footprint (Supplemental Figure S8B, E) and RNA data

(Supplemental Figure S8C, F) as well. Taken together, the analyses estab-475

lished that the most prominent enrichment was that of disome sites within the

unstructured area of the s-u-s configuration, frequently directly after the s-u

boundary. Visual inspection of individual examples of where disome-associated

amino acids mapped within known protein structures confirmed this notion, as

shown for PSMA5, ALDH1A1, GAPDH, and EIF5A (Figure 4F-I).480

In summary, we concluded that there was a direct link between the oc-

currence and positions of ribosomal pause sites and structural features of the

nascent polypeptide. Translational pausing was thus more likely to occur while

decoding negatively charged amino acids that were downstream of extended

positively charged regions of the polypeptide, and within unstructured areas485

downstream of structured regions.
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Evolutionary conservation at disome sites suggests functional significance of

pausing events

The above analyses did not allow distinguishing whether the observed ribo-

somal pauses were functionally important – for example to ensure independent490

folding of individual protein domains, undisturbed from downstream nascent

polypeptide stretches – or whether they rather represented an epiphenomenon

of such processes. For example, the biosynthesis of proteins and their folding

could slow down translation and thus, as a downstream effect, lead to ribosome

pausing and collisions, without being of functional relevance for the preced-495

ing folding event itself. We reasoned that in the case of a functional role, the

codons on which pausing occurred would show higher evolutionary conservation

than expected. Our first approach to this analysis consisted in using PhyloP

scores (with categories highly conserved, conserved, neutral) and calculating

their observed-over-expected ratios at disome sites, analogous to the above en-500

richment analyses. Indeed, highly conserved codons were enriched at the P- and

A-sites of the donwstream ribosome (Figure 5A). Conceivably, however, several

confounding factors likely affected this analysis, in particular the selectivity of

disome sites for specific amino acids (Figure 3E) and the association with un-

structured protein regions (Figure 4C). Moreover, we observed that especially505

for mRNAs with high translation efficiency, transcripts that were overall more

highly conserved showed increased disome levels, whereas less conserved tran-

scripts had a tendency to be disome-poor (Figure 5B). To disentangle these

multiple, confounding biases, we thus used a different approach to analyze evo-

lutionary conservation. We first selected the most prominent deterministic sites510

– i.e. pausing events that were not merely attributable to high ribosomal traffic

– in order to enrich for potential functionally relevant cases (Supplemental Table

S3). We then compared the PhyloP scores of these high-disome deterministic

sites (top 5650 peaks from 1185 genes) with the scores of matched control sites

that were derived from the same set of transcripts and had a similar overall515

codon composition (Figure 5C). An increase in conservation at the P- and A-

site codons, as compared to up- and downstream codons, was clearly evident.
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However, this effect was also present, and only slightly lower, at the control sites.

This suggested that the enrichment seen in Figure 5A was to considerable extent

caused by the intrinsic bias at the P- and A-sites for specific codons/amino acids520

that were per se conserved. We therefore used linear regression analysis to de-

termine what contribution the disome site made to overall conservation. Using

conservation as the response and three explanatory variables (transcript con-

servation, codon conservation, presence of a disome peak, adjusted R2 = 0.22,

F (3, 3012510) = 2.84e + 05, p < 2e−16), our approach uncovered that the in-525

fluence of the disome site on overall conservation was tangible and statistically

significant (B=0.106, β = 0.048, p < 2e−16), though small relative to that of

general transcript and codon conservation (Supplemental Table S4). In conclu-

sion, this analysis revealed a distinct signature of codon conservation associated

specifically with disome peaks. Although the overall contribution of disome oc-530

cupancy to conservation was low when assessed over many genes (N=6007 in

the regression model), it is conceivable that it makes an important contribution

for individual genes or groups of genes.

We further analyzed whether the genes carrying the most prominent de-

terministic sites showed any specific enrichment that would indicate whether535

particular processes, pathways or co-translational events were especially prone

to pausing. First, we searched whether structural data was available for the

proteins with high disome sites. Out of the first ∼50 genes in the list (Supple-

mental Table S3), about 20-25 structures (murine protein or orthologous protein

from another mammal) were available. Mapping the disome site amino acids540

onto the structures revealed that in most cases, these were located in unstruc-

tured regions, and very often directly at the structured-unstructured boundary

(Supplemental Figure S9; Figure 4F-I).

Functional enrichment analysis (using the top-200 genes; Supplemental Ta-

ble S3) identified a very strong bias towards transcripts encoding proteins that545

were annotated as ”co-factor and co-enzyme binding”, that were involved in

”oxidation-reduction processes”, and that localized to mitochondria (Figure

5D; Supplemental Table S5). It is tempting to speculate that the integration
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and/or covalent attachment of co-factors (a common feature of oxidoreductases)

onto polypeptides is coordinated co-translationally and dependent on transla-550

tional pausing. Moreover, there is evidence for co-translational protein localiza-

tion/import to mitochondria (reviewed in Lesnik et al. (2015)). The enrichment

of deterministic disome peaks among transcripts encoding mitochondrially lo-

cated proteins may reflect a specific feature of the kinetics of translation for this

group of genes. Finally, visual inspection indicated that at least 7 transcripts555

encoding proteins that are known to contain the rare amino acid selenocysteine

displayed a strong disome peak (Glutathione peroxidase 4, Gpx4; Methionine-R-

sulfoxide reductase B1, Msrb1; Selenoproteins F, K, P, S, and T ; Supplemental

Table S3). Interestingly, selenocysteine decoding is known to be particularly

slow (Stoytcheva et al., 2006; Howard et al., 2013).560

Disome codon usage affects steady-state protein abundance

We speculated that in cases where proteins assemble into large multiprotein

complexes, poorly coordinated translation kinetics may affect the abundance of

the proteins due to changes to the efficiency at which proteins are incorporated

into the complex. Excess unincorporated protein may be subject to degradation,565

mislocalization, aggregation or similar, which all may impact the steady-state

protein level. In the list of prominent deterministic sites (Supplemental Ta-

ble S3) we noted that several transcripts encoding ribosomal proteins showed

strong, discreet disome peaks. We selected two of them – Rps5 and Rpl35a

(Figure 6A-B) – to assess whether a change in codon usage at the disome site570

would influence the proteins’ steady-state accumulation. To this end, we cloned

the cDNAs in-frame with firefly luciferase in a lentiviral vector that allows in-

ternal normalization to renilla luciferase (Figure 6C). For Rps5, change of codon

usage at the Asp-Ile disome site from its natural GATATT (Rps5-wt), a codon

usage that is particularly highly disome-prone (46.6% of sites show disomes575

transcriptome-wide; Supplemental Table S2), to the mutant version GATATC

(Rps5-mut2), that is transcriptome-wide disome-poorer (26.4% of sites have di-

somes) led to a significant change in steady-state protein output, although both
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constructs encoded for precisely the same protein at the amino acid level.

Other variants of Rps5 did not show an effect, although some of the codon580

usages, such as that in mut1 and mut3, are also transcriptome-wide disome-

poorer. Moreover, codon usage did not affect reporter levels for an analogous

Rpl35a reporter (data not shown), indicating that identifying functionally im-

portant disomes sites and testing for such function will be one of the future

challenges.585

In summary, however, it is encouraging that even in this simple assay that

does not even test directly for changes to protein function, codon usage at a

disome site affected gene expression output for an example we tested, Rps5. We

anticipate that in the future, more sophisticated assays that directly probe for

functionality of the translated protein – for example enzyme assays, or genetic590

experiments that test the ability of disome site variants to rescue the loss-

of-function of the endogenous gene – will allow identifying many functionally

important cases of translational pausing.

Discussion

It has long been known that elongating ribosomes can pause in response to595

obstacles that they encounter, and most pauses are assumed to occur in a tran-

sitory fashion and to be resolved in a productive manner (Schuller and Green,

2018). For certain cases, there is good evidence that the translational pause is

even an integral, possibly obligatory part of the mechanism of nascent polypep-

tide synthesis, as exemplified by the pausing seen on signal peptide-encoding600

transcripts that require targeting to the secretory pathway (Wolin and Walter,

1988). Finally, in certain cases, pauses can be unresolvable and terminal, thus

triggering a dedicated ribosome rescue program (Joazeiro, 2019). While a num-

ber of previous studies have attempted to infer pausing from monosome footprint

intensities, there is clear benefit in tracking stalled ribosomes using more direct605

evidence, such as specific footprint size variants (Guydosh and Green, 2014).

Ribosome collisions are intrinsically linked to pausing, and the characteristics
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of the disome footprints that we analyzed in this study indicate that they truly

represent a steady-state snapshot of the translational pausing and collision sta-

tus in mouse liver in vivo. A striking finding from our analyses using spike-based610

quantifications of disome vs. monosome signals is the sheer quantity of trans-

lating ribosomes that are trapped in the disome state. For a typical, highly

translated mRNA, we estimate that ∼10% of elongating ribosomes are affected

by this phenomenon (Figure 2Q). While we consider many of these collisions

to be rather an epiphenomenon of high ribosomal flux (i.e.”stochastic”, though615

more likely to occur on certain codons/amino acids than on others) than an

indication that they fulfill a downstream biological function or trigger a spe-

cific cellular response, the loss of monosome footprints into disomes (and even

into higher order buildups, see e.g. trisome footprints in Figure 1A-B) poses

challenges to the interpretation of existing ribosome profiling data. Simple620

monosome footprint-based quantifications very likely underestimate translation

rates, especially for highly translated transcripts.

Which stalling events is our disome profiling method capturing, and which

ones are missed? In yeast, stalls at truncated 3′ ends of mRNAs have recently

been shown to lead to a class of small monosome footprints of ∼21 nt and, when625

an additional incoming ribosome stacks onto this stalled ribosome, of ∼48 nt

(Guydosh and Green, 2014). Similar short footprints also occur in human cells

(Wu et al., 2019), and a study in Hela cells has suggested that both transient

and hard stalls trigger an endonucleolytic cleavage that leads to short footprint

species as well (Ibrahim et al., 2018). It is thus likely that such short footprints630

represent the more harmful pauses that provoke specific clearance pathways.

The abundant ∼60 nt footprints we describe here are distinct from the above

not only in size, but likely also in the translational state that they reflect. They

match the size reported to occur on SRP-related pausing in vitro (Wolin and

Walter, 1988). Moreover, footprints of this size were also noted in the above635

yeast study (Guydosh and Green, 2014). Although the authors did not further

pursue this footprint species in greater detail, it is interesting to note that

they reported a similar bimodal size distribution and a depletion from the first
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codons post-initiation, just as seen in our liver data as well (Figure 1E-F). Taken

together, the association with signal peptides, the high steady-state abundance,640

and the absence of signs of mRNA cleavage at the stall site, all suggest that

our disome method captures in particular the class of ”benign” collisions from

resolvable stalling events, including possible programmed cases.

Liver disome footprints show distinct sequence characteristics which are

largely governed by the P- and A-site amino acids of the downstream ribosome645

(Figure 3E). There is little specificity at the E-site, which is notable because

previous work that estimated pause sites from monosome footprints identified

pausing signatures with a strong E-site bias for proline (e.g. Ingolia et al. (2011);

Zhang et al. (2017); Pop et al. (2014). Due to their particular chemistry, prolines

(especially in a poly-proline context) are well-known for their difficult peptide650

bond formation and they are slow decoding, leading to translational stalls that

can be resolved through the activity of eIF5A (Gutierrez et al., 2013). Structural

studies have suggested direct interactions of eIF5A with a vacant E-site that has

lost its empty tRNA before peptide bond formation has occurred between the

growing polypepide at the P-site and the incoming charged tRNA at the A-site655

(Melnikov et al., 2016; Schmidt et al., 2015). Apart from a minor signal in the

A-site codon (Figure 3E; Supplemental Figure S6), we do not see any prolines

associated with liver disome sites at all, which may be attributable to high ac-

tivity of eIF5A in this organ. We have noted that based on monosome footprint

RPKMs, eIF5A is indeed synthesized at very high levels that even exceed, for660

example, those of the essential elongation factor eEF2 (data not shown). More-

over, it is curious that eIF5A is itself among the 200 genes with the strongest

disome peaks, occurring on a conserved Gly-Ile position (Figures 2P and 4I;

Supplemental Table S3). It is tempting to speculate that translational pausing

on eIF5A mRNA may be part of a mechanism designed to autoregulate its own665

biosynthesis.

Beyond the lack of proline, the specific amino acid and dipeptide motifs that

we find enriched at the paused ribosomes (Figure 3; Supplemental Table S2)

show some resemblance as well as distinct differences to previous observations.
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For example, Asp and Glu have been associated with presumed pause sites (In-670

golia et al., 2011; Ibrahim et al., 2018), and Asp codons also figure among those

whose footprint signal increases strongest (apart from Pro) in cells deficient of

eIF5A (Pelechano and Alepuz, 2017; Schuller et al., 2017). The striking associ-

ation of pause sites with isoleucine is an unexpected outcome of our study, as

to our knowledge this amino acid is not typically reported among the top-listed675

associations with paused ribosomes. For GI, DI, and a subset of NI dicodons

– and certain non-isoleucine dicodons as well – transcriptome-wide 35-50% of

such sites carry a strong disome footprint (Supplemental Table S2). These find-

ings suggests that on top of the simple three-letter codon table, a six-letter code

contributes to regulating the kinetics of translation by organizing the biosynthe-680

sis of nascent polypeptides into segments separated by intermittent stop sites.

Our analysis identified thousands such sites transcriptome-wide (Supplemen-

tal Table S3) which, as an ensemble, likely reflect an array of different protein

biosynthetic phenomena whose common denominator is local ribosome slow-

down. Importantly, even on the global set, an association of disome sites with685

structural features of the nascent polypeptide is evident (Figure 4). Conceiv-

ably, this indicates that one of the major reasons for pausing could lie in the

coordination of translation with the folding, assembly or structural modification

of the nascent polypeptide. Interestingly, there is compelling recent evidence

from yeast that many multiprotein complexes assemble in a co-translational690

fashion (Shiber et al., 2018) and that the association of the individual subunits

involves translational pausing (identified from high monosome footprint peaks)

during the biosynthesis of the nascent polypeptides (Panasenko et al., 2019).

Notably, the showcase example identified in the latter study are two proteins

of the yeast proteasome regulatory particle, Rpt1 and Rpt2, whose ribosomal695

pausing leads to association of the translating ribosomes into heavy particles

(”assemblysomes”) in which the nascent peptides assemble into the multipro-

tein complex. Intriguingly, we find that also in mouse liver, a set of proteasomal

protein mRNAs carries high disome peaks, e.g. Psmd5 (Figure 2I) and more

than 10 other proteasome subunits (Supplemental Table S3).700
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In conclusion, we are confident that the disome profiling methodology that

we present here is an important complementary technique to the already avail-

able ribosome profiling repertoire. Importantly, although the technique, just like

conventional ribosome profiling, delivers a ’snapshot’ of the translation status,

the cellular disome state provides specific, new information on the kinetics of705

translation. It will be exciting to collect and analyze such data across different

experimental setups in order to evaluate to what extent translational pausing

represents an obligatory, potentially regulated event that contributes to physio-

logical gene expression output. Through such datasets, and already through the

extensive data we have collected and analyzed in the framework of this study,710

important questions are likely to become experimentally accessible, such as on

the assembly of multiprotein complexes, on the co-translational attachment of

protein co-factors, on the mechanics of biosynthesis of transmembrane proteins,

or on the coupling of translation and RNA decay.
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Main Figure Titles and Legends

Figure 1. Sequencing of disome footprints identifies transcriptome-

wide ribosomal collisions

(A and B) Northern blot analysis of RNase I-treated mouse liver extracts

probed with radioactively labelled short oligonucleotides antisense to different735

regions of Albumin (Alb) mRNA (A) and Major urinary protein 7 (Mup7)

mRNA (B). Expected footprint sizes for monosomes, disomes and trisomes are

shown to the left of blots. Positions of probes (nt) relative to the CDS start site

of their respective transcripts are shown above each lane and also depicted as

blue boxes below the black bars representing CDS regions (top). Red boxes at740

the 5′ end indicate the coding region for signal peptide (SP) on each transcript.

(C) Graphical representation of experimental setup for sequencing of 60 nt

disome footprints.

(D) Bar-plots of percentages of reads from monosome and disome libraries

that were mapped to different sequence types: rRNA (gray), tRNA (golden),745

genomic (green) and cDNA (teal for monosomes and brick red for disomes).

Percentages of unmapped reads are shown in blue.

(E) Histogram of insert size (nt) for reads that mapped to cDNA sequences

(monosomes: teal, disomes: brick red). A single mode for monosomes (29-30 nt)

and two modes for disomes (59-60 and 62-63 nt) are labeled above histograms.750

(F) Density distribution of disome reads within 120 nt from the start or

120 nt from the stop codons reveals a 3-nt periodicity of disome footprints

within coding sequences. The meta-transcript analysis quantified the mean of

per-transcript normalized number of reads (monosomes: teal, disomes: brick

red) at each nucleotide based on the A-site prediction (small red boxes) as 15755

nt downstream of the 5′ ends of the footprints. Only transcripts from single

protein isoform genes with totalRNA-RPKM > 5 and CDS >400 nt (N = 5456)

were used (described in STAR Methods). Positions on footprints, corresponding

to the predicted E-, P-, and A-sites of ribosomes that presumably protected the

corresponding footprints, were shown in graphical depictions. The start and stop760
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codons were highlighted with small green boxes on a representative transcript

(at the bottom).

Figure 2. Occurrence of disomes is associated locally with signal

peptides, and globally with high volumes of translation

(A and C) Density distribution of disome footprints identify signal peptide765

(SP)-related pausing events. Meta-transcript analysis (see Figure 1F) quantified

the mean normalized footprint densities of disomes (A) and monosomes (C)

within 400 nt from the start or -400 nt from the stop codons of transcripts

confirmed or predicted to code for SP (red, N = 713) or not (blue, N = 4743).

(B and D) Violin-plots showing the probability densities of length normal-770

ized proportions of footprints within the first 75 codons and the rest of CDS

from transcripts with a signal peptide (red, N = 713) or without one (blue, N

= 4743) for disomes (B) and monosomes (D).

(E) Scatter-plot illustrating the relationship between per-gene normalized

densities of disome and monosome footprints. The subset of all genes included775

in the analysis (N = 8626; black and red dots together) that code a signal

peptide (SP) (N = 1119) are denoted by red dots. Kernel density estimates are

plotted on the margins (monosome on x-, disome on y-axis) for datasets of all

genes (black) and SP coding genes (red) (without an axis of ordinates). Deming

regression (errors-in-variables model to account for errors in both monosome780

and disome footprint estimates) lines are shown for all genes (black) and the SP

coding subset (red). Regression slopes and their 95% confidence intervals (CI)

are given in the top-left legends. Dashed gray line indicates the 1-to-1 slope.

(F - P) Distribution of normalized counts of monosome and disome foot-

prints (per nt) along transcripts of representative genes reveals presence of785

stochastic and deterministic sites. Upward y-axis of the bar-plots show the nor-

malized read counts for disomes (brick red), while downward axis was used for

monosomes (teal) and totalRNA (pink, pile-up). Transcript coordinates (nt) are

shown on x-axis; the regions corresponding to respective CDS are shaded in gray.

If present, the signal peptide coding regions are indicated with small red boxes790
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along the x-axis. Plots are shown for Adhesion G protein-coupled receptor G3

(Adgrg3), Transferrin receptor (Tfrc), Proteasome 26S Subunit, Non-ATPase

4 (Psmd4) and 5 (Psmd5), Aldehyde dehydrogenase 1a1 (Aldh1a1), Pyruvate

kinase liver and red blood cell (Pklr) and Eukaryotic translation initiation factor

5A (Eif5a) in (F - P), respectively.795

(Q) Box-plots illustrating the estimated amounts of ribosomes that were

retained in disomes as a percentage of all translating ribosomes for different

groups of genes in mouse liver samples. Box-and-whiskers were drawn for all

genes, detectably expressed in spike-in experiment (All, gray, N = 7375), sub-

sets that codes for SP (SP, red, N = 892) and not (no SP, blue, N = 6483) and800

stratified into 8 groups based on the octiles of the translation efficiency (TE) cal-

culated using all genes which had the following right-closed interval boundaries

(-5.41, -1.23, -0.77, -0.47, -0.23, -0.04, 0.17, 0.47, 3.17), depicted as increasing

TE below the x-axis. Width of each box is proportional to the number of data

points it represents.805

Figure 3. Disome sites show specific enrichment of amino acids and

codons

(A) Position-specific enrichment analysis of proximal sequences reveals se-

lectivity for amino acids in the decoding center of pausing ribosomes. Normal-

ized ratios of observed-to-expected occurrences (y-axis, log-scaled) of nucleotide810

triplets, grouped by the amino acid they code (color codes in the right inset),

are plotted for each codon position relative to the estimated A-site (0 at x-axis)

of the leading ribosome of disomes (left), or of the individual ribosome in the

case of monosomes (middle). For total RNA (right), position 0 denotes the mid-

point of the reads. Ratios above and below 1 suggest enrichment and depletion,815

respectively. The vertical gray bars indicate the likely positions of the 5′ and

3′ ends of the read inserts for different library types. In addition to the A-site,

positions corresponding to P-sites are also marked by vertical dashed lines.

(B - D) Position-specific enrichment plots of sequences coding for represen-

tative amino acids at and around pause sites identified by disomes. Similar to820
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(A), however, the triplets were not combined by the amino acids, instead shown

individually (color codes in the right inset) for aspartic acid (Asp), isoleucine

(Ile) and glycine (Gly), respectively, in (B - D).

(E) Position weight matrix of sequence triplets grouped by amino acids illus-

trates enrichment and depletion specific amino acids within the decoding center825

of the leading ribosome of the disomes. Position-specific weighted log2-likelihood

scores were calculated from the observed-to-expected ratios (A). Enrichments

and depletions were represented with positive and negative scores, respectively.

Height of each single-letter amino acid character is determined by its absolute

score. At each codon position, the order of letters was sorted by the absolute830

scores of the corresponding amino acids, decreasing towards the 0-line. Amino

acid letters are colored by their hydrophobicity and charges (color codes at

bottom). The disome pair and the their footprint are depicted graphically at

the top. The gray zones at the extremities of the footprint denote the likely

positions/regions of the 5′ and 3′ ends of the read inserts.835

(F and G) Similar to (B - D), for asparagin (Asn) (F) and lysine (Lys)

(G).

(H) Position-specific enrichment plots of sequences coding for dipeptides.

Similar to (A), however, instead of triplets and single amino acids, 6mers coding

for a pair of amino acids (dipeptides) were used to calculate the observed-to-840

expected ratios for all possible dipeptides. Color code is not given due to vast

number of dipeptides.

(I - L) Similar to (B - D), however, enrichment of individual 6mers are

shown for representative dipeptides: Gly-Ile (I), Asp-Ile (K) and Gly-Asp (L).

(M) Enrichment and codon selectivity of all amino acid combinations cor-845

responding to the predicted P- and A-sites of the leading ribosome. Identities

of the amino acids at the P- and A-site are resolved vertically and horizontally,

respectively. The area of disks represents enrichment of disome sites at the

dipeptide signature. The color of disks represents the codon selectivity for a

dipeptide signature, calculated as the difference between the max. and min.850

enrichment ratios (log) of all 6mers coding for that dipeptide.
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(N and O) Similar to (I - L), for Asp-Lys (N) and Gly-Gly (O).

(P) Codon selectivity at certain dipeptides. Disome occupancy for all di-

codon combinations (3721) were plotted in descending order. Occupancies were

calculated as the raw percentage of sites observed with a disome to all present855

sites for a given 6mer (dicodon) across the studied transcriptome. Annotated

are two pairs of 6mers coding for Asp-Lys or Gly-Gly to illustrate the rather

large differences in their disome occupancies (blue vs black fonts for high vs.

low occupancy, respectively) as inferred in (N and O).

Figure 4. Disome site positions are related to the charge and sec-860

ondary structure of the nascent polypeptide

(A) Position-specific enrichment analysis of proximal sequences reveals as-

sociation of positive charges in the nascent polypeptide with pausing ribosomes.

Average charge of 3 consecutive amino acids were stratified into 5 charge groups

(interval boundaries and color codes on the left). Normalized ratios of observed-865

to-expected occurrences (y-axis, log-scaled) of charge groups were plotted at the

center position of the tripeptide relative to the estimated A-site (0 at x-axis)

of the leading ribosome of disomes (left panel), or of the individual ribosome

in the case of monosomes (middle). For total RNA (right), position 0 denotes

the midpoint of the reads. The vertical gray bars indicate the likely positions870

of the 5′ and 3′ ends of the read inserts for different library types. Positions

corresponding to P- and A-sites are also marked by vertical dashed lines.

(B) Graphical representation of the electrostatic interactions between the

leading ribosome and the nascent peptide chain. Associations of negatively

charged residues (blue) with the P-A sites and a stretch of positively charged875

residues (red) with the exit tunnel are depicted. Corresponding codons on the

mRNA (series of filled rectangles at the bottom) are colored similarly based on

the charge of the amino acids they code for.

(C) Association between disome sites and the structure of the translated

polypeptide. Based on the UniProt database, each position of translated pep-880

tides was labeled according to their structural information: ’structured’ for
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α-helix or β-sheet, ’unstructured’ and ’unknown’; β-turns were excluded. Nor-

malized ratios of observed-to-expected occurrences (y-axis, log-scaled) of struc-

tural categories were plotted relative to the estimated A-site (0 at x-axis) of the

leading ribosome of disomes (left), or of the individual ribosome in the case of885

monosomes (middle). See (A) for other elements.

(D) Graphical model depicting a preference for pausing during the trans-

lation of unstructured polypeptide stretches (orange) that were preceded and

followed by structured regions (purple).

(E) Enrichment of disome sites within the unstructured stretches of polypep-890

tides that are preceded and followed by structured regions. Structured (min. 3

aa, up to 30th position) - unstructured (min. 6, max. 30 aa) - structured (min.

3 aa, up to 30th position) regions were identified transcriptome-wide. Positions

across regions were scaled to the length of the unstructured region and centered

to its start, such that the start and the end of the unstructured region would895

correspond to 0 and 1, respectively (x-axis). Kernel density estimates (thick

black lines) were calculated for peaks across normalized positions weighted with

their normalized counts, estimated at the A-site of the leading ribosome for di-

somes (left, N = 9312), A-site of the monosomes (center, N = 21140) or center

of total RNA reads (right, N = 24632). Confidence intervals for the kernel den-900

sities, which were calculated by randomly shuffling (N = 10000) peaks within

each transcript, are shown by gray shaded regions: darkest at the center, 50%

(median) to outward, 25%, 12.5%, 5%, 2.5% and 1%.

(F - I) Three-dimensional structure of four individual proteins with dis-

ome site amino acids highlighted. PSMA5, structure for the H. sapiens ho-905

mologue (PDB ID: 5VFT); ALDH1A1, structure for the H. sapiens homologue

(4WJ9); GAPDH, structure for the H. sapiens homologue (4WNC), correspond-

ing residues at position 65-66; murine EIF5A (5DLQ). The strongest disome site

of each transcript is highlighted in red.

Figure 5. Evolutionary conservation at disome sites910

(A) Association of evolutionary highly conserved codons with the P- and A-
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sites of disome sites revealed by position-specific enrichment analysis of proximal

sequences. Along coding regions, PhyloP conservation scores were grouped into

three categories: neutral - blue, [-3, 3), conserved - orange, [3, 5) and highly

conserved [5, ). Normalized ratios of observed-to-expected occurrences (y-axis,915

log-scaled) of conservation categories were plotted relative to the estimated A-

site (0 at x-axis) of the leading ribosome of disomes (left), or of the individual

ribosome in the case of monosomes (middle). For total RNA (right), position 0

denotes the midpoint of the reads. See Figure 4A for other elements.

(B) Box-and-whiskers illustrating the estimated percentages of ribosomes920

that were pertained in disomes for groups of transcripts with different overall

evolutionary conservation. Groups included all detectably expressed genes (All,

gray, N = 7375), which were stratified into 4 groups (N = 2270 or 2271 for

each) (color code at the top) based on the quartiles of average PhyloP scores

with following right-closed boundaries: -0.585, 2.327, 3.356, 4.239, 6.437. x-axis925

is same as in Figure 2Q. Width of each box is proportional to the number of

data points it represents.

(C) Box-and-whiskers of PhyloP scores around deterministic disome sites.

PhyloP scores were plotted at 20 codon positions (x-axis) surrounding prominent

high-disome sites (N = 5650, brick red). The position of the leading ribosome930

of the disome, together with the E-, P- and A-sites were shown on top in a

graphical representation. For control sites (pink), from the same pool of tran-

scripts (N = 1185), random stretches of 20 aa were selected (N = 5909) such

that 6mer frequencies corresponding to the PA positions would be very similar

to that of high-disome sites used but without containing strong disome peaks.935

Significance in median disome-site PhyloP score difference between codon posi-

tions was tested with Dunn’s method (FDR adjusted p-value ≤ α/2, α = 0.05).

Number of significant differences (out of 19 comparisons at each codon position)

were given below the box-and-whiskers. At the P-codon (*), disome site PhyloP

scores were significantly higher than they were in any other position, except the940

A-codon. At the A-codon ((∗)), they were significantly higher than they were in

8 other positions.
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(D) Functional enrichment analysis of top 200 genes containing most promi-

nent deterministic sites. Five terms with the highest -log10(padj) values (hori-

zontal bars) are shown from each Gene Ontology (GO) group: GO molecular945

function, GO cellular component, GO biological process.

Figure 6. Testing functional importance of disome sites on ribosomal

proteins

(A) Upper: Transcript plot for Rps5 showing the distribution of normalized

disome peaks along the transcript coordinates. Shaded area highlights the CDS950

and the prominent disome peak at positions 32-33, corresponding to Asp-Ile

(DI), is shown with a red arrow. Lower: Same for Rpl35a with disome peak at

positions 44-45 (Gly-Lys) highlighted. See Figure 2F for further details.

(B) Three-dimensional protein structures of human RPS5 (PDB ID: 5VYC)

and RPL35A (PDBe ID: 5t2c). The position of the conserved disome site amino955

acids are highlighted in red.

(C) Upper: Schematic of the lentiviral reporter used to probe for the effect

of synonymous disome site mutations on steady-state protein abundance. Rps5

cDNA is fused in-frame to firefly luciferase and transcribed by a bidirectional

promoter that also drives the control gene, Renilla luciferase. Lower: Effect960

of synonymous disome site mutations (mut1-mut5) on Firefly/Renilla ratios,

expressed relative to the wild-type reporter which was internally set to 100% in

each experiment (N=2-10). Mut2 vs. wild-type: p=0.008, Student’s t-test.
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Supplemental Figure Titles and Legends

Figure S1. High-order ribosome protected fragments are highly re-965

producible under various assay conditions

(A) Northern blot similar to that shown in Figure 1A (probe Mup758−81),

but from experiments in which extract preparation and RNase I digestion was

preformed at different temperatures and with harsher detergent conditions, as

indicated.970

(B) Similar to (A), but under conditions in which the concentration of RNase

I was varied, as indicated. Probes Mup758−81 (left panel) and Alb71−101 (right

panel) were used to detect possible changes in disome footprints across condi-

tions.

(C) Similar to (A) and (B), but using a different nuclease, micrococcal975

nuclease (MNase). Probes Alb71−101 (left panel), Mup758−81 (middle panel) and

Mup7298−320 (right panel) were used to detect variations in disome footprints

across conditions. Note that although MNase produced somewhat different

patterns than RNase I, disome footprints were still readily detectable.

Figure S2. Mapping characteristics of disome reads980

(A) Pie-charts of percentages of reads from monosome, disome and total

RNA libraries that were mapped to different sequence types (rRNA, human

rRNA, mt-tRNA, tRNA, mouse cDNA and mouse genome) or were unmmaped.

Color codes are given in top right legend.

(B) Read distribution within 5′ UTRs, CDS, and 3 UTRs for monosome985

(teal), disome (brick red), and total RNA (pink) data compared with the dis-

tribution expected by chance, which is determined by the feature sizes (gray; N

= 7413). Note the enrichment of disomes reads within CDS and the depletion

from UTRs, similar to that of monosome reads.

Figure S3. Signal peptide and translational efficiency explain some990

portion of the observed disome sites
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(A) Density distribution of disome reads within 120 nt from the start or 120

nt from the stop codons reveals a 3-nt periodicity of disome footprints within

coding sequences. Similar to Figure 1F, except for disomes, the meta-transcript

analysis is aligned relative to the predicted A-site of the leading, rather than995

the stacked ribosome.

(B) Density distribution of disome footprints identify the translational paus-

ing due to signal peptide (SP) recognition. Similar to Figure 2A, except, the

meta-transcript analysis is aligned relative to the predicted A-site of the leading,

rather than the stacked ribosome.1000

(C) Time dependent changes in translation efficiencies of ribosomal proteins

result in changes in occurrence of disomes. Kernel density estimates of the

difference in relative disome densities (log(disome density/monosome density))

between ZT12 and ZT2 were found to be significantly different for ribosomal

proteins (RP, N = 57, dashed green line) and others (N = 8558, black line) by1005

the two-sample Kolmogorov-Smirnov test (K-S test, D = 0.1911, p = 0.032). RP

genes were identified to have increased translation efficiencies at ZT12 compared

to ZT2 (Janich et al., 2015).

(D) Difference in translational efficiencies explains only a small portion of

the variation in relative disome densities among transcripts. Relative disome1010

density (log(average normalized disome counts / average normalized monosome

counts)) for all transcripts in the dataset (N = 8626) was regressed (black line)

on the translational efficiency (TE, log(average normalized monosome counts

/ average normalized total RNA counts)). Statistics on the coefficient and the

regression are given in upper part of the scatter-plot. TE explained significantly1015

a small (2.7%) portion of the variance. Dashed line markes the b = 0 line.

Figure S4. Experimental setup for spike-ins

(A) Graphical representation of experimental setup for sequencing of mono-

some and disome footprints spiked with pre-synthesized 30 and 60 nt RNA

oligonucleotides.1020

(B) Northen blots of spike-in oligonucleotide mixes to assess the apparent
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ratio of the 60 nt oligos to 30 nt oligos. Same radioactively 5′ labelled DNA

oligo could hybridize to both 30 nt and 60 nt RNA oligos, however, two probe

molecules could hybridize to a single 60 nt oligo at the same time, therefore

expected signal ratios were aorund 2.1025

Figure S5. Empirical identification of the offsets for estimation of the

A-sites of the leading ribosome of the disome pair

(A) Position-specific information content for different size classes (55 - 64 nt)

of disome footprints combined with their frame (5′ position relative to the main

CDS’s open reading frame - 0, 1 or 2) revealed the optimal offsets for estimating1030

the A-site of the leading ribosome. Position-specific information content was

calculated using the Kullback-Leibler divergence scores of observed-to-expected

ratios of codon analysis (similar to Figure 3A but without any A-site estimation

- only using the 5’ ends of the footprints) as described elsewhere (O′Connor

et al., 2016). For each size group, the KL plots were drawn separately for three1035

frame offsets (color code at the top of the figure). For combinations of footprint

size and frame, where information content could be resolved at nucleotide level

within the expected region of the decoding center (2 - 3 peaks in KL), offsets

from the footprint’s 5′ end were calculated to the most probable position of

the A-sites (colored rectangles). Frequencies of each size group are given at the1040

right side in million reads. For each plot, 5′ and 3′ ends of the footprints were

marked with vertical dashed lines and the region occupied by the footprint was

shaded in a gray tone.

(B) Graphical model illustrating the different configurations of disomes evi-

denced by the two major populations of 59-60 nt and 62-63 nt footprints. Based1045

on (A), the difference between these two size groups is whether the ribosomes

were collided completely (top), or a small gap of a single codon was left between

the two (bottom).

Figure S6. Enrichment of amino acids and codons at disome sites.

Identical to the analysis in main Figure 3A-D, but for the complete set of1050

amino acids, and for disome, monosome and RNA data. See figure legend for
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Figure 3A for details.

Figure S7. Position weight matrix for disomes, monosomes and RNA

data, and specifically on the signal peptide.

(A) Position weight matrix of sequence triplets grouped by amino acids1055

illustrates enrichment and depletion specific amino acids within the decoding

center of the leading ribosome of the disomes. At the top of the panel, the

same data as in main Figure 3E (disomes) is shown. Middle and lower parts

of the panel depict the identical analysis for monosome and RNA-seq data,

respectively. See figure legends to Figure 3E for details. Of note, the figure1060

shows that monosome footprints had a similar, though in magnitude massively

reduced preference for amino acids compared to the disomes. No specificity was

found in total RNA, as expected.

(B) As in panel (A) and in Figure 3E, but the position weight matrix was

calculated only from the disomes that were found over codons 8-75 of signal1065

peptide-containing transcripts, i.e. over the positions where the disomes related

to SRP recruitment are located. Interestingly, even in this area the global

pattern of amino acids at which disomes were preferentially found, corresponded

to the pattern seen transcriptome-wide.

Figure S8. Analysis of disome sites at and around junctions between1070

structured and unstructured regions

(A - C) On the left, same plots in Figure 4E were redrawn to facilitate

comparison. Data from Figure 4E were analyzed within a +/- 30 codon window

around positions that corresponded to junctions between structural regions, such

as structured-to-unstructured junction (left plots) or unstructured-to-structured1075

(right plots). All junction regions were aligned, such that first codon at the

junction was labeled as 0 on the x-axis (codon positions). Average densities (y-

axis) of disome (A), monosome (B) footprints or total RNA reads (C) at each

position within the window were plotted (red dots). Data from randomized

peaks (N = 10000) were shown with box-and-whiskers at each codon position.1080
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(D - F) Same as (A - C), but the structural configuration was reversed as

a control: unstructured - structured - unstructured. In these kind of regions, a

decrease in the middle structured section was observed, consistent with Figure

4E and (A - C). Analsis was performed for disome (D), monosome footprints

(E) and total RNA reads (F).1085

Figure S9. Examples of disome sites in in transcripts/proteins from

the list of deterministic sites

Each panel is comprised of two parts: the three-dimensional structure of

the protein (from mouse or, if not available, a related mammalian species, with

the disome site amino acids highlighted in red and with a shaded circle) and1090

transcript plots showing the distribution of disome (brown), monosome (green)

and total RNA (pink) signals along the transcript. Shaded areas correspond to

the CDS (for UTRs, only the boundaries were plotted). The protein structures

have been generated using the following data (PDB ID in parenthesis):

(A) Homologue of Ctsd from H. sapiens (1LYW).1095

(B) Homologue of Dynlrb1 from H. sapiens (6F1Z), corresponding residues

at positions 93-94.

(C) Homologues of Fh1 from H. sapiens (5UPP), corresponding residues at

positions 58-59.

(D) Fth1 structure from M. musculus (6S61).1100

(E) Homologue of Gpd1 from H. sapiens (6E8Y).

(F) Homologue of Mrps17 from S. scrofa (5AJ3).

(G) Mrsb1 structure from M. musculus (2KV1).

(H) Homologue of Nars from H. sapiens (5XIX), corresponding residues at

positions 476-477.1105

(I) Homologue of Ndufb6 from B. taurus (5LDW).

(K) Homologue of Nqo2 from H. sapiens (1ZX1).

(L) Homologue of Pah from R. norvegicus (1PHZ).

(M) Rdx structure from M. musculus (3X23).

(N) Homologue of Sub1 from H. sapiens (4USG).1110
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(O) Sult1d1 structure from M. musculus (2ZPT).

(P) Homologue of Tdo2 from H. sapiens (4PW8).

(Q) Homologue of Tkt from H. sapiens (4KXU).

40



STAR Methods

Lead contact and materials availability1115

Further information and requests for resources and reagents should be directed

to and will be fulfilled by the Lead Contact, David Gatfield (david.gatfield@unil.ch).

Experimental model and subject details

Extracts from 12-week-old male C57BL/6 mice were the same as reported previ-1120

ously (Janich et al., 2015), with experiments approved by the Veterinary Office

of the Canon Vaud (authorization VD2376 to DG). NIH3T3 and HEK293FT

cells were same cell lines as described in Janich et al. (2015). Culture conditions:

DMEM; 10% FCS, 1% penicillin/streptomycin, all from Invitrogen; 37◦C; 5%

CO2).1125

Experimental methods details

Northern blot

The northern blot protocol has been described in Gatfield et al. (2009). Radioac-

tively labelled oligonucleotides: Alb1−22 ggagaaaggttacccacttcat, Alb71−101 c

gatgggcgatctcactcttgtgtgcttctc, Alb131−165 gagatactgggaaaaggcaatcaggactag1130

g, Alb1099−1120 gatcagcaggcatggtgtcatgc, Alb1805−1827 ttaggctaaggcgtctttgc

atc, Mup71−21 cagcagcagcagcatcttcat, Mup758−81 gttccttcccgtagaactagcttc,

Mup7298−320 gtattgaatccatcatacgtcac, Mup7563−584 tcattctcgggcctggaggcag,

Mup7688−708 tcagtgagacaggatggaatg. Please note that the lower part of the

northern blot panels shown in Supplemental Figure S1B was also used in our1135

previous publication (Janich et al., 2016).

Library generation (monosome footprints, disome footprints, RNA)

The initial libraries used in this study (without spike-ins) for monosome foot-

prints and RNA corresponded to the time points ZT0, 2 and 12 from our pre-

vious study (Janich et al., 2015). Per timepoint, two biological replicates were1140
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used (total 6 independent samples); every sample was the pool of liver lysate

from two mice. Disome footprints were cut from the same gel as the mono-

some footprints of the initial study. For the spike-in experiments, independent

libraries from frozen mouse liver lysates were prepared. For the general library

preparation protocol, ribosome-protected mRNA fragments were generated from1145

the lysates by RNase I digestion as previously described (Janich et al., 2015);

micrococcal nuclease (Supplemental Figure S1C) was from New England Bio-

labs. For the excision of footprints from 15% urea-polyacrylamide gels, single

strand RNA oligonucleotides of 26 nt and 34 nt (for monosome footprints) and

of 52 nt and 69 nt (for disome footprints) served as size markers for excision1150

of footprints. After fragment purification with miRNeasy RNA Extraction kit

(217004 Qiagen), 5 µg fragmented RNA was used for ribosomal RNA removal

using Ribo-Zero Gold rRNA Removal Kit (MRZG12324 Illumina) according to

Illuminas protocol for TruSeq Ribo Profile (RPHMR12126 Illumina). 2 µl of

RNA spike-in mix, containing three synthetic 30 nt RNA oligonucleotides (se-1155

quences: AAUACCACCCCCAUGAACGCUGCACACACG, AACUACCGAC

UCAUCCCAUCUUGCCAGUAC, CUAAUACUUACGAACCAGACGAAUC

CCUUG) and three 60 nt length oligos (sequences AAUACCACCCCCAUGAA

CGCUGCACACACGAAUACCACCCCCAUGAACGCUGCACACACG, AA

CUACCGACUCAUCCCAUCUUGCCAGUACAACUACCGACUCAUCCCA1160

UCUUGCCAGUAC, CUAAUACUUACGAACCAGACGAAUCCCUUGCUA

AUACUUACGAACCAGACGAAUCCCUUG), at 0.016 fmol/µl, were added to

the purified, rRNA-depleted RNA samples. Sequencing libraries were generated

according to Illuminas TruSeq Ribo-Profile protocol with minor modifications.

Monosomes and disomes were treated as independent libraries. cDNA fragments1165

were separated on a 10% urea-polyacrylamide gel and gel slices between 70-80

nt for monosomes and 97-114 nt for disomes were excised. The PCR-amplified

libraries were size selected on an 8% native polyacrylamide gel. Monosome li-

braries were at ∼150 bp and disome libraries at ∼180 bp. Parallel RNA-seq

libraries were prepared essentially following the Illumina protocol; briefly, after1170

total RNA extraction using miRNeasy RNA Extraction kit (Qiagen), ribosomal

42



RNA was depleted using Ribo-Zero Gold rRNA (Illumina), and sequencing li-

braries generated from the heat-fragmented RNA as described (Janich et al.,

2015). Of note, 3 µl of the same RNA spike mix as above were added to the to-

tal RNA after heat fragmentation (during the ice incubationstep). All libraries1175

were sequenced in-house on Illumina HiSeq 2500.

Cloning, lentiviral production, luciferase assays

For the generation of the Rps5 dual luciferase (Firefly/Renilla) reporter plas-

mid, Rps5 CDS (without stop codon) was PCR-ampified from mouse cDNA

using oligos Rps5CDS-F, aaaggatccgccaccATGACTGAGTGGGAAGCAGCC1180

ACACCAG and Rps5CDS-R, tttggatccactagtGCGGTTAGACTTGGCCACA

CGCTCCAGT, digested with BamHI and cloned upstream and inframe of lu-

ciferase into BamHI-opened dual luciferase vector prLV1 (Du et al., 2014); this

vector is suitable for lentiviral production), and validated by sequencing. Dis-

ome site mutants were generated by site-directed mutagenesis with the primers:1185

Rps5mut1-up, GATGACGTGCAGATCAACgacataTCTCTGCAGGATTAC

ATTG; Rps5mut1-low CAATGTAATCCTGCAGAGAtatgtcGTTGATCTGC

ACGTCATC; Rps5mut2-up, GATGACGTGCAGATCAACgacatcTCTCTGC

AGGATTACATTG; Rps5mut2-low CAATGTAATCCTGCAGAGAgatgtcG

TTGATCTGCACGTCATC; Rps5mut3-up, GATGACGTGCAGATCAACga1190

cattTCTCTGCAGGATTACATTG; Rps5mut3-low CAATGTAATCCTGCA

GAGAaatgtcGTTGATCTGCACGTCATC; Rps5mut4-up, GATGACGTGC

AGATCAACgatataTCTCTGCAGGATTACATTG; Rps5mut4-low CAATGT

AATCCTGCAGAGAtatatcGTTGATCTGCACGTCATC; Rps5mut5-up, GA

TGACGTGCAGATCAACgatatcTCTCTGCAGGATTACATTG; Rps5mut5-1195

low CAATGTAATCCTGCAGAGAgatatcGTTGATCTGCACGTCATC. All

mutants were verified by sequencing.

Plasmids were used to produce lentiviral particles in HEK293FT cells with

envelope pMD2.G and packaging psPAX2 plasmids, and viral transduction of

NIH3T3 cells, were performed following published protocols (Salmon and Trono,1200

2007). 1-2 weeks after lentiviral transduction, cells were lysed in passive lysis

43



buffer and luciferase activities were quantified using DualGlo luciferase assay

system and a GloMax 96 Microplateluminometer (all from Promega). Fire-

fly/Renilla luciferase (FL/RL) of the Rps5 wt plasmid were internally set to

100% in each experiment, and mutant FL/RL ratios expressed relative to wt.1205

Computational methods details

Preprocessing of Sequencing Reads

Initial quality assessment of the sequencing reads was conducted based on Il-

lumina pipeline’s (v1.82) preliminary quality values such as the percentage of

clusters passed filtering (%PF clusters) and the mean quality score (PF clus-1210

ters). Adapter sequences were removed with the cutadapt utility (Martin,

2011) and following arguments: -a AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC

--match-read-wildcards. Trimmed read sequences were filtered by their size

using an in-house Python script to conform the following inclusive ranges:

[45,70] for disome footprints, [26,35] for monosome footprints, and [21,70] for to-1215

tal RNA reads. Finally, the reads were filtered for quality using the fastq_quality_filter

tool from the FASTX-toolkit (http://hannonlab.cshl.edu/fastx toolkit/) with

the following arguments: -Q33 -q 30 -p 80.

Mapping of Footprints to Mouse Genome

A similar sequential mapping strategy was adapted as described in Janich et al.1220

(2015). The preprocessed insert sequences were mapped sequentially to follow-

ing databases: mouse rRNA, human rRNA, mt-tRNA, mouse tRNA, mouse

cDNA from Ensembl mouse database release 91 Flicek et al. (2013) and, finally,

mouse genomic sequences (Genome Reference Consortium GRCm38.p2). With

the exception of the final mapping against genomic sequences, bowtie version1225

2.3.0 Langmead and Salzberg (2012) was used with the following parameters:

-p 2 -L 15 -k 20 --no-unal

After each alignment, unmapped reads were used in the succeeding mapping.

For each sequence, only valid alignments with maximum alignment scores were
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kept. For further analysis, only alignments against mouse cDNA were used,1230

unless specifically stated otherwise.

In parallel to the sequential mapping strategy, preprocessed total RNA se-

quences were also directly aligned against the mouse genome (GRCm38.p2).

Alignments against genome sequence databases were performed using the STAR

mapper version 2.5.3a (Dobin et al., 2012) with the following parameters:1235

--runThreadN 6 --genomeDir=mouse/star/Mmusculus.GRCm38.91

--readFilesCommand zcat --genomeLoad LoadAndKeep

--outSAMtype BAM SortedByCoordinate Unsorted

--alignSJDBoverhangMin 1 --alignIntronMax 1000000

--outFilterType BySJout --alignSJoverhangMin 81240

--limitBAMsortRAM 15000000000

The output of this alignment was then processed with StringTie version 1.3.3b

(Pertea et al., 2015) to estimate the number of fragments per kilobase of exon

per million fragments mapped (FPKM) for each transcript (Ensembl mouse

database release 91), with the following parameters:1245

-p 8 -G Mmusculus.GRCm38.91.gtf -A gene_abund.tab

-C cov_refs.gtf -B -e

The outputs were parsed with an in-house Python script to identify transcripts

which had an FPKM >0.2 and an isoform abundance fraction >0.05 in at least

2 samples. A database of expressed transcripts (Ngenes = 19508, Ntranscripts =1250

24927) was used in further analysis. Among those, genes that were estimated to

have a single expressed isoform were annotated as single transcript genes

(N = 9711). For genes with multiple transcript isoforms, the transcipt, whose

exons were inclusive of all others, was used whenever possible (N = 548).

Quantification of mRNA and Footprint Abundances1255

Abundance of total RNA reads and monosome or disome footprints was esti-

mated per locus as described in Janich et al. (2015). Separate counts were ob-

tained for whole gene, UTRs and CDS. Only reads that were mapped uniquely
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to a single gene and only to transcripts that were identified to be expressed (see

Mapping of Footprints to Mouse Genome) were used. Exclusively for the analy-1260

sis of ribosomal proteins (Figure S3C), this criterion was slightly relaxed to also

include multireads that were mapping to a single protein coding locus. Tran-

scripts which did not have at least 10 counts in at least one third of the samples

were excluded. For all further analysis, reads that mapped to CDS regions were

used, unless stated otherwise. A total of 8626 loci had above threshold read1265

counts within the CDS for all read types: total RNA, monosome and disome.

Read counts of total RNA and footprints were normalized with upper quan-

tile method of R package edgeR v3.16.5 Robinson et al. (2010). For increased

comparability between datasets, RPKM values were calculated as the number

of reads per 1000 bases per geometric mean of normalized read counts per mil-1270

lion. Genes that had an average total RNA RPKM >5 were designated as

robustly expressed. Combined with the single transcript genes (see Mapping

of Footprints to Mouse Genome), robustly expressed single transcript genes (N

= 6007) were used for analyses where inclusion of genes with multiple expressed

isoforms was not possible (e.g meta-transcript analysis). Normalized footprint1275

densities were calculated as the log2-ratio of footprint-RPKM to total RNA-

RPKM per gene, for disomes and monosomes. For the latter, this quantity is

also called translational efficiency (TE). In mouse liver, TEs were shown to be

stable over time-points around the day (Janich et al. (2015); disome densities

were similarly stable between the samples (ZT0, ZT2, and ZT12) and therefore1280

treated as replicates, unless stated otherwise.

Spike-in Normalization and Global Quantification of Ribosomes Re-

tained in Disomes

Random 30 and 60 nt long RNA oligonucleotide sequences were designed follow-

ing these criteria: (i) have a GC % similar to that of mouse liver translatome1285

(mean was 52.05, 5% and 95% were 42.2 and 62.6, respectively), (ii) should

be void of potential hairpin structures and self-dimerization (using ViennaRNA

package 2.3.5, Lorenz et al. (2011)), (iii) should not be highly similar to mouse or
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Drosophila transcriptome and genome, (iv) should not contain certain sequences

at the extremities which we were identified as highly biased in our analyses (GG,1290

GC, CC, CG, CA, GA, TG, AC), (v) should not contain stop codons and (vi)

60mers were designed as 2 x 30mer repeats. Out of 35 possible candidates, 3

sets with different GC% were selected: 43, 50 and 56. Spike reads were mapped

and processed similarly to all other reads. To avoid counting degradation prod-

ucts of the 60mers as 30mers, we devised a two-step counting algorithm. First,1295

spike read distributions were inspected on total RNA reads to assess possible

degradation and define proper size limits. The GC56 spike was eliminated from

further analysis due to fragmentation; for others [24,31] and [45,60] inclusive

size filters were used for 30- and 60mers, respectively. In addition to the size

filtering, the presence/absence of the junction of the 2 x 30mer repeats were1300

identified for all spike reads. 30mers were included if they did not have a junc-

tion, and 60mers only if they did. Spike counts were first normalized for library

size with upper-quantile method and spike-in normalization factors were cal-

culated as 60mer / 30mer ratios per sample to correct the experimental biases

between the disome and monosome counts. The spike-in normalization factors1305

were nearly identical for triplicate biological replicates (mean = 2.495, SD =

0.028). The spike-normalized counts of disomes and monosomes were then used

to estimate the percentage of ribosomes that were identified within disomes to

the whole, taking into account that each disome represented two ribosomes.

Observed-to-Expected Ratios For Proximal Sequence Features1310

Calculation of observed-to-expected ratios for sequence features proximal to

footprint sites was performed as described in O′Connor et al. (2016) with mod-

ifications. Briefly, the

Calculation of observed-to-expected ratios for sequence features proximal

to footprint sites was performed following the principles of Ribo-seq Unit Step1315

Transformation method (O′Connor et al., 2016). First, a Heaviside step func-

tion was applied to individual features (codon, amino acid, 6mer, dipeptide,

charge, secondary structure, PhyloP conservation categories) along each CDS,

47



such that a feature at a position was given a score of 1 or 0 depending on

whether the footprint density at that position exceeded the average of the cor-1320

responding CDS. A margin of 30 nt were excluded from each end of the CDS.

Then, a typically 50-codon wide window (80-codon wide for certain analysis

such as charge in Figure 4A), was moved along the CDS regions at 3 nt steps,

except for analyses that required single nt resolution. Window positions were

labeled relative to RUST scores, 0-position marking the score. The scores were1325

either not offset (5’) or A-site offset (see Estimation of A-site Positions). At

each iteration, position specific occurrence of features was counted and associ-

ated with if there was a RUST score in that window. Present, observed and

expected values of each feature at each window position were calculated as sums

over all windows. When necessary, Kullback-Leibler divergence scores were cal-1330

culated using the observed-to-expected ratios of all features (O′Connor et al.,

2016). Enrichment was calculated as the observed-to-present ratio normalized

to expected. All analyses were performed with in-house Python (creation of

data matrices) and R software (visualization and statistical analysis). Features

that were based on (discrete) sequence information (nucleotide or amino acid1335

sequence) were created simply using the letters of such sequences in different

word sizes (such as CCT or proline for single; CCTCCA or proline-proline for

two-word). Other discrete data, such as secondary structure, were also analyzed

similarly. Features that were based on continuous numeric data, were first strat-

ified into discrete levels. For example, PhyloP conservation scores were grouped1340

into three categories: neutral [-3, 3), conserved [3, 5) and highly conserved [5,

). Visualization of complex RUST ratios was facilitated using log2 transformed

position specific enrichment matrices with the ggseqlogo package for R (Wagih,

2017) and converting them sequence logos.

Estimation of A-site Positions1345

The A-sites of the monosomes (RPF) were calculated identically as described in

Janich et al. (2015). For disomes, for initial analyses we used a similar approach

to estimate the A-site of the upstream ribosome in the disome pair as 15 nt from
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the 5’ end of the footprints. This approach was suitable for exploratory analyses

(e.g meta-transcript analysis) for facilitating the comparability to monosome1350

results. In other analyses, we used an empirical method to estimate the A-site

of the leading (downstream) ribosome within the disome pair. In order to infer

the optimum offsets for different lengths of footprints, we first split the disome

footprints by their size, from 55 to 64 nt. Wihtin each size group, footprints

were further split into 3 classes based on their open reading frame relative1355

to that of the main CDS. For each group, position-specific (relative to their

5’ ends at nucleotide resolution) information content matrices were calculated

using the Kullback-Leibler divergence scores (O′Connor et al., 2016) of observed-

to-expected ratios of codon analysis (see Calculation of Expected-to-observed

Ratios For Proximal Sequence Features). For combinations of footprint size and1360

open reading frame, where the position of PA sites could be identified as highest

information positions (with 2 peaks 3 nt apart from each other) around 40 -

50 nt downstream of the 5’ ends of the footprints, exact offsets were calculated

as the distance of the deduced A-site from the 5’ end. Following offsets for 58,

59, 60, 62 and 63 nt long disome footprints on different open reading frames1365

were used, respectively: [45, 44, 43], [45, 44, 46], [45, 44, 46], [48, 47, 46], [48,

47, 49]. Total RNA reads were offset with different methods to be consistent

with the dataset they were being compared to: by their center (general), +15

(when compared to monosomes, also selecting a similar size range of 26-35 nt)

or disome offsetting (selecting a size range of 58-63).1370

Meta-transcript Analysis

Meta-transcript analyses were performed on robustly expressed single transcript

genes that had a CDS region larger than 400 nt (N = 5456). Firstly, footprint

positions were determined with appropriate A-site estimation (see Estimation of

A-site Positions), then footprint counts were normalized to the total number of1375

footprints per transcript. Mean normalized footprint densities were plotted for

the first or last 400 nt of CDS plus a small region from the adjacent UTRs. For

analysis of signal peptide (SP) genes, transcripts were annotated as SP or no-SP
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based on the Signalp protein feature from Ensembl Database v91. To calculate

the probability densities of length normalized proportions of footprints within1380

the first 75 codons and the rest of CDS, for each transcript, footprints within

each portion were counted separately and normalized to library size as usual

and in addition to the size of their respective counting region. Then length-

normalized counts per region (first 75 codons vs rest of CDS) were expressed

as a proportion to their sums, so that when footprints have similar densities1385

between the two regions, normalized proportions would be around 0.5. The

analysis was repeated for SP and no-SP genes using either disome or monosome

footprints.

Analysis of Footprint Densities in Relation to Peptide Secondary

Structures1390

An in-house Python script was used to extract annotated secondary structures of

peptides (UniProt Database (UniProtConsortium, 2018) release-2018 06) map-

ping them to the corresponding codon positions along CDS. This informa-

tion is either used for analysis of observed-to-expected ratios (see Observed-

to-Expected Ratios For Proximal Sequence Features), or studying the distribu-1395

tion of footprint (disome or monosome) densities across regions with pre-defined

structural compositions such as structured-unstructured-structured (s-u-s). To

this end, we have extracted coordinates of regions that included a stretch of

structured (min. 3 aa, up to 30th position), followed by an unstructured stretch

(6 to 30 aa), and finally concluded with a structured stretch (min. 3 aa, up1400

to 30th position) or the reverse of this configuration (u-s-u) with similar size

restrictions. Positions of normalized footprint peaks (normalized to transcript’s

mean footprint count) across regions were scaled to the length of the middle

portion (unstructured portion in the case of s-u-s) and centered to its start,

such that the start and the end of the middle region would correspond to 01405

and 1, respectively. Distribution of footprint densities across such regions was

analyzed by kernel density estimates which were weighted with normalized foot-

print peak densities. Significance of density probability functions were evaluated
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with randomized sampling. For each transcript, keeping the structures identi-

cal, peaks were randomly shuffled (N = 10000) and confidence intervals for the1410

kernel densities were calculated. Total RNA reads were similarly analyzed as a

control.

Analysis of Evolutionary Conservation at Disome Sites

Evolutionary conservation of sites were evaluated using the PhyloP scores (Pol-

lard et al., 2010), that were computed from alignments of 59 vertebrate genomes1415

to the mouse genome (phyloP60way) and were retrievable from the Conservation

tracks in the UCSC Genome Browser (Haeussler et al., 2018). When required,

the PhyloP scores were stratified in 5 levels : highly accelerated [, -5), acceler-

ated [-5, -3), neutral [-3, 3), conserved [3, 5), highly conserved [5, ), of which

the presence of the first two were negligible within CDS regions. As a control1420

to disome sites, we have devised a random sampling algorithm that would pick

random two-codon positions (6mer) (i) at frequencies that were similar to that

these 6mers were observed with disome peaks (Figure 3M, P, Supplemental Ta-

ble S2), (ii) without containing a disome site (disome footprint density ¡ mean

transcript disome footprint density) and (iii) from the same pool of transcripts1425

that the disome peaks in question were identified from. These criteria ensured to

have a control pool that was similar in codon-bias and transcript level conserva-

tion to that of the disome set. Test for median difference between PhyloP scores

at different codon positions was performed by Dunn’s test using the dunn.test

R package controlling for false discovery rate. For regression analysis of con-1430

servation scores, a 6-codon wide window (to correspond to -1, E-, P-, A-, +1,

+2 sites, Table S4) was used to collect position-specific conservation scores, and

presence or absence of a disome peak (peak density > mean transcript density)

at the the corresponding A position of the window iterating over the robustly

expressed single transcripts (N = 6007). From resulting dataset, a linear model1435

was used for each position to explain the PhyloP scores at that position with

three explanatory variables: mean transcript PhyloP score, mean codon PhyloP

score and presence/absence of a disome peak at the A site. Effect sizes were
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evaluated with Cohen’s f2 using the sjstats R package.

Mapping of Disome Amino Acids onto Protein Three-dimensional1440

Structures

Structure models for target proteins were downloaded from the Protein Data

Bank (PDB, http://www.rcsb.org/ ) or Protein Data Bank Europe (PDBe,

www.ebi.ac.uk/pdbe/ ). Image rendering was performed with PyMol (DeLano,

2002). For proteins where no murine structure was available, data from other1445

related mammals (mostly from H. sapiens) was used instead. The identification

of the residues with high disome signal in the non-mouse protein was perform

by manual comparison of the two protein sequences (the original for mouse and

the target from the other mammal).

Functional Enrichment Analysis of Genes with Prominent Disome1450

Peaks

Deterministic disome peaks were defined as prominent peaks that were not nec-

essarily a result of high levels translational activity. To identify such peaks,

library size normalized disome peaks (normalized peak count > 5) along each

transcript were normalized to the mean monosome count of that transcripts.1455

To avoid very noisy peaks, transcripts that had a mean monosome count fewer

than 5 were excluded. For each transcript up to 5 peaks that had the highest

monosome-normalized scores were collected. Finally, peaks were sorted in de-

scending order of the normalized scores (Supplemental Table S4). Top 200 genes

(identified by their Ensembl IDs) from this list were subsequently submitted to1460

functional enrichment analysis using the g:GOSt tool of web-based g:Profiler

software and database platform (Raudvere et al., 2019). Statistically signif-

icantly enriched terms within three Gene Ontology (GO) groups - molecular

function, cellular component and biological process - were identified (Supple-

mental Table S5). False discovery was controlled by the default method, g:SCS,1465

to an experiment-wide threshold of a=0.05. As a background, list of all genes

identified to have above threshold levels of total RNA, monosome and disome

reads in the current study was used (N = 8626).
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Data Access

The raw sequencing data and processed quantification data from this study have1470

been submitted to the NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/).

Supplemental Table Titles

Supplemental Table S1: Sequencing and mapping information.

Supplemental Table S2: Amino acid enrichment at disome site (by dicodon).

Supplemental Table S3: Transcripts with prominent (’deterministic’) disome1475

peaks.

Supplemental Table S4: Modelling of conservation on disome sites.

Supplemental Table S5 Enrichment analyses for top-200 genes from Supple-

mentary Table S3.
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