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1 School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, 2 Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland,

3 Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America, 4 Department of

Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America, 5 Department of Biology and

Biochemistry, University of Fribourg, Fribourg, Switzerland, 6 Center for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen,

Denmark, 7 Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America, 8 Department of Biochemistry and

Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America

Abstract

The challenge of distinguishing genetic drift from selection remains a central focus of population genetics. Time-sampled
data may provide a powerful tool for distinguishing these processes, and we here propose approximate Bayesian, maximum
likelihood, and analytical methods for the inference of demography and selection from time course data. Utilizing these
novel statistical and computational tools, we evaluate whole-genome datasets of an influenza A H1N1 strain in the presence
and absence of oseltamivir (an inhibitor of neuraminidase) collected at thirteen time points. Results reveal a striking
consistency amongst the three estimation procedures developed, showing strongly increased selection pressure in the
presence of drug treatment. Importantly, these approaches re-identify the known oseltamivir resistance site, successfully
validating the approaches used. Enticingly, a number of previously unknown variants have also been identified as being
positively selected. Results are interpreted in the light of Fisher’s Geometric Model, allowing for a quantification of the
increased distance to optimum exerted by the presence of drug, and theoretical predictions regarding the distribution of
beneficial fitness effects of contending mutations are empirically tested. Further, given the fit to expectations of the
Geometric Model, results suggest the ability to predict certain aspects of viral evolution in response to changing host
environments and novel selective pressures.
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Introduction

Influenza A virus (IAV) is an important human pathogen,

resulting in approximately 36,000 deaths annually in the United

States [1] and eliciting constant concerns regarding the spread of

new pandemic strains [2–4]. IAV is an eight segment RNA virus

that can rapidly evolve owing to a high mutation rate [5], genomic

reassortment [6], and stochastic migration of virus from isolated

human populations [7] or animal reservoirs [8]. The most

common therapies for IAV infections include neuraminidase

inhibitors, including the widely used oseltamivir. Oseltamivir was

initially designed based on structural information [9], and has

been shown to be a competitive inhibitor of the neuramindase

active site [10]. Due to the mechanism of action of oseltamivir, it

was widely believed that the evolution of drug resistance would

decrease fitness of the virus and therefore, be unlikely to be of

importance in a clinical setting [11]. However, oseltamivir

resistance has been shown to evolve quickly in human hosts

[12,13] and pandemic H1N1 IAV isolates developed resistance to

the drug [14]. The most common resistance mutation of H1N1

strains is the H275Y mutation (N2 numbering) which is located

near the neuraminidase active site and attenuates oseltamivir

binding [10]. The recent rise of oseltamivir resistance in clinical

isolates is likely due to the presence of compensatory mutations in

the neuraminidase (NA) and hemagglutinin (HA) genes that

increase the fitness of the H275Y resistance mutant [15–17].

Here, we describe the analysis of IAV populations during the

evolution of drug resistance during in vitro growth. This system

offers an ideal platform to study the relative effects of genetic drift

and selection in evolution, as a target of selection, specifically the
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H275Y mutation, is known prior to analysis. Further, in vitro

growth platforms allow for the control and knowledge of

demographic parameters, particularly the severity of population

bottlenecks – thus allowing insight into the expected role of genetic

drift. Lastly, the high mutation rate and short generation time of

IAV allows for adaptation to occur on experimentally tractable

time scales.

This experimental set-up allows for an additional benefit –

namely, time-sampled whole-genome data. This added temporal

dimension provides an important component in the puzzle of

disentangling selection and demography – as it becomes possible

to utilize analytical results describing the change in frequency [18]

and sojourn time [19] of beneficial mutations. Thus, time-sampled

data allow the trajectory of any individual allele to be used to

better identify the action of natural selection, rather than simply

the patterns of genomic variation as utilized by standard single

time-point site-frequency spectrum based statistics [20].

Utilizing this experimental approach and the above reasoning,

we have tested and developed novel statistical tests of selection for

time-sampled population data. We infer effective population size

(Ne) in this platform, and develop novel analytical-, maximum

likelihood-, and approximate Bayesian -based approaches to

determine the contributions of genetic drift and selection in this

biological system. Finally, based on this population genetic

inference, we demonstrate that IAV development of drug

resistance follows the expectations of Fisher’s Geometric Model,

offering a novel approach to predicting viral evolution in response

to changing host environments and novel selective pressures.

Results and Discussion

Influenza A/Brisbane/59/2007 (H1N1) was initially serially

amplified on Madin-Darby canine kidney (MDCK) cells for three

passages. The samples were then passaged either in the absence of

drug, or in the presence of increasing concentrations of

oseltamivir, a neuraminidase inhibitor (Figure 1). At the end of

each passage, samples were collected for whole genome high

throughput population sequencing providing a high depth of

coverage. In addition, biological replicates of the entire experi-

ment were performed and analyzed. We first focus on one of the

two experiments in the following results, and then use the replicate

as a point of comparison. The genetic diversity calculated as the

average expected heterozygosity [21] in each passage was very

low, stable throughout the entire experiment, and slightly lower

during oseltamivir treatment (6.261024 vs. 4.561024, see Figure

S1). The frequency spectra indicated that most single nucleotide

polymorphisms (SNPs) were segregating at low frequency and the

shape was comparable at P4 and P12 (Figure S2). The number of

new mutations accumulated within each passage was limited and

very rarely reached high frequencies, in particular in the presence of

oseltamivir, suggesting that the viral populations were under severe

purifying selection. As a consequence, nearly all observed SNPs

were biallelic: over all passages and nucleotides, the frequency of the

third allele was 0.02% on average, with a 99% quantile of 0.1%. For

this reason, we considered all SNPs as biallelic in our subsequent

analyses. Finally, we observed 4 and 7 newly arising mutations

reaching a frequency of more than 50% during our experiment in

the absence and presence of oseltamivir, respectively.

Expected impact of drift and ascertainment
The effective population size Ne determines how efficiently

natural selection acts on a population [18]. A beneficial mutation

Figure 1. Experimental set-up. IAV was adapted from chicken egg
to MDCK cells (passages 1–3) and then serially passaged in MDCK cells
in the presence (red) or absence (white) of escalating concentrations of
oseltamivir (passages 4–12) in replicate experiments.
doi:10.1371/journal.pgen.1004185.g001

Author Summary

In recent years, considerable attention has been given to
the evolution of drug resistance in the influenza A H1N1
strain. As a major annual cause of morbidity and mortality,
combined with the rapid global spread of drug resistance,
influenza remains as one of the most important global
health concerns. Our work here focuses on a novel multi-
faceted population-genetic approach utilizing unique
whole-genome multi-time point experimental datasets in
both the presence and absence of drug treatment. In
addition, we present novel theoretical results and two
newly developed and widely applicable statistical meth-
odologies for utilizing time-sampled data – with a focus on
distinguishing the relative contribution of genetic drift
from that of positive and purifying selection. Results
illustrate the available mutational paths to drug resistance,
and offer important insights in to the mode and tempo of
adaptation in a viral population.
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has a greater chance to be successful in large populations

compared to small populations, where allele frequency changes

are mainly impacted by genetic drift. Therefore, the fate of a

beneficial allele is determined by both the effective population size

Ne and the selection coefficient s. For this reason, observing an

allele increasing in frequency cannot be considered as a direct

evidence of natural selection. Neutral and deleterious mutations

may also increase in frequency, but simply with a lower probability

[19]. The problem of distinguishing drift from selection is

exacerbated in genome-wide studies, as these low probability

events are more likely to occur among the large number of sites

considered. Figure 2 illustrates this point, simulating a Wright-

Fisher haploid model with selection intensities matching those

inferred in the data set. We plot eight randomly drawn trajectories

starting from a single mutant and conditioned on reaching at least

a frequency of 10% in one of the passages (for Ne = 100 (Figures 2A

and 2B) or Ne = 1000 (Figures 2C and 2D), and s = 0 (Figures 2A

and 2C) or s = 0.1 (Figures 2B and 2D)). In the absence of

selection, in populations of low effective size (Ne = 100), the relative

frequency of mutants reaching a frequency of 10% or higher is

elevated (5.6% of the simulations) compared to Ne = 1000 (0.7% of

the simulations). With selection (s = 0.1), these values are nearly

unchanged if the population is small (6% vs. 5.6% for Ne = 100), as

low frequency mutants are mostly affected by drift in this scenario.

However, values increase dramatically as the effective population

size increases (4.1% vs. 0.7% with Ne = 1000). Finally, the

simulated advantageous mutations follow almost deterministic

trajectories in large populations (Figure 2D) while drift is still

affecting them strongly when Ne = 100 (Figure 2B), eventually

leading to the loss of the mutant.

Figure 2. Simulated Wright-Fisher trajectories illustrating the impact of effective population size, selection strength, and
ascertainment. We simulated a Wright-Fisher haploid model with selection matching our data set (same number of generations (i.e., 13 per
passage), and selection beginning at passage 4). We plot eight randomly drawn trajectories starting from a single mutant and conditioned on
reaching at least a frequency of 10% in one of the time points. We used an effective population size of Ne = 100 in A and B, or Ne = 1000 in C and D.
The relative fitness of the new mutation was set to 1+s, with s = 0 in A and C, or s = 0.1 in B and D. The fraction of simulations reaching our 10% allele
frequency condition is given above each panel in parentheses.
doi:10.1371/journal.pgen.1004185.g002

Population Genetics of Drug Resistance

PLOS Genetics | www.plosgenetics.org 3 February 2014 | Volume 10 | Issue 2 | e1004185



Estimating Ne and selection
Several methods have been proposed to estimate the effective

population size (Ne) from time-sampled data assuming neutrality.

Moment-based methods [22–25] have the advantage of being

computationally efficient as compared to likelihood-based methods

and thus can accommodate large genomic data [26–29], and can

provide similar accuracy when using appropriate estimators [30].

Likelihood methods have the advantage of being able to also take

into account the effects of selection, and a handful of methods have

recently been proposed to estimate both Ne and selection

coefficients [18] from time-sampled data [31–33]. However, being

based on diffusion approximation [34], they assume large effective

population sizes and low selection coefficients. Goldringer and

Bataillon [35] proposed to use a moment-based estimator of Ne to

reject neutrality based on Wright-Fisher simulations, but currently

there is no available method able to co-estimate Ne and s in this

context. In particular one would like to use the information shared

by all loci to estimate Ne, and to estimate s at each locus. Here we

use Fs9, an unbiased estimator of Ne proposed by Jorde and Ryman

[30] and extend the idea proposed by Goldringer and Bataillon

[35] to also estimate s using an Approximate Bayesian Compu-

tation (ABC) approach [36] (see Materials and Methods). Our

method does not rely on diffusion approximation, is appropriate

for small effective population sizes and large selection coefficients,

and is computationally efficient to scale with our genomic data.

For both experiments with and without oseltamivir, we

respectively estimated Ne to be 226 (99% highest posterior density

(HPD) interval: [210;257]) and 176 (99% HPD interval:

[117;256]). These low effective population sizes are in line with

the values estimated from natural populations in IAV and other

viruses [37–39]. They can partially be attributed to the severe

bottlenecks introduced at each passage, followed by exponential

population growth. For comparison, we also calculated the

expected effective population sizes as the harmonic mean of

census sizes at each generation [40]. We used the estimated census

population sizes measured at the beginning of each passage

(Table 1) and assumed an exponential population growth to 106

virions during each of the 13 generations. We obtained values of

696 and 737 in experiments with and without oseltamivir,

respectively. As expected, this illustrates the strong influence of

the bottlenecks despite the very large population sizes assumed

(106) at the end of each passage. However, the bottlenecks alone

cannot explain the even lower effective population sizes estimated

from the full genomic data, though the large variance in burst size

(i.e. the number of virions produced per infected cell) [41,42] is

also of relevance [40].

We then obtained posterior distributions of s for all contending

mutations (i.e., mutations that were not lost by drift and are

segregating in the population in at least one time point). Neutrality

was rejected when the posterior density interval of s excluded zero

(i.e., P(sv0Dx)v0:01), defining Bayesian ‘p-values’ [43]. These p-

values are plotted for all sites in the genome in Figure 3A and 3C.

Note that there are fewer sites in the presence of oseltamivir (82 vs.

405, see Figure 3C and 3A) as fewer time points match the criteria

defining contending mutations. We plot the trajectories corre-

sponding to the significant sites in the absence and presence of

drug respectively in Figure 3B and 3D. Despite the reduced data

size, more sites are found to be under selection in the presence of

oseltamivir (8, representing almost 10% of the sites considered;

versus 4, representing less than 1% of the sites in the absence of

drug), and having larger selection coefficients (0.15 on average vs.

0.08). In addition, an HA mutation (HA 1395 encoding a D112N

mutation in HA2) was positively selected in both the absence and

presence of drug, suggesting that it likely represents a tissue culture

adaptation. However, the mutation was nonetheless more strongly

beneficial in the presence of drug (s = 0.22 vs. s = 0.12, see

Figure 3B and 3D).

The known H275Y resistance mutation [10] located on the NA

protein at position 823 in the RNA sequence goes rapidly to

fixation in the presence of oseltamivir (Figure 3D) with a point

estimate of s = 0.15. The corresponding posterior distribution is

represented in Figure 4 along with the ABC correlation plot. The

separate correlation between s and the two statistics Fsd9i and Fsi9i

is also shown in Figure S3. In the presence of drug, NA and HA

are the two segments containing the mutations with the highest

selection coefficients (0.20 on average, compared to 0.11 for the

other segments). This finding is in accordance with recent results

showing that mutations in HA compensate for the deleterious

effect (low growth capacity) of H275Y [17]. We extracted from the

NCBI Influenza Virus Resource database [44] the recent changes

in allele frequency of the 12 candidate sites under selection in

natural populations of H1N1 (Figure S4). Two out of 12

candidates increased rapidly in frequency in the past five years.

As previously reported [14], H275Y started to increase in

frequency in the 2007/2008 influenza season and almost reached

fixation in 2009/2010 (90.1%). A synonymous mutation in

segment NS at position 820 (F116) also increased very rapidly in

frequency in 2005/2006 (92.6%), decreasing again to less than

12% in the following years to finally reach fixation in 2009/2010.

We randomly simulated 1000 pseudo-observed data sets to cross

validate our ABC approach with parameters inspired by the drug-

treated experiment. We used the same number of loci with

selection coefficients s taken from the obtained posterior mean,

Ne = 176, a sample size of 1000 and initial allele frequencies of 1/

Ne. For each simulated replicate, we estimated Ne and s using our

proposed ABC approach (see Materials and Methods). This

simulation represents a ‘‘worst-case’’ scenario, as the impact of

genetic drift is strong and allele frequencies are skewed. Despite

this, we found that the accuracy is generally very good (Figure S5A

and B). We note that as the trajectories start from a single mutant,

it is difficult to distinguish negative selection from neutrality, both

generally leading to a rapid loss of the mutant and to a wide

posterior for s with a mean around zero. The same phenomenon is

also observed for beneficial mutations, but at a lower frequency.

The problem vanishes when the initial allele frequency is

increased, or in larger populations (data not shown).

Table 1. Bottleneck sizes at each passage.

Passage 1 2 3 4 5 6 7 8 9 10 11 12

Without oseltamivir 48 43 2575 255 85500 8600 27750 4725 37 92 2102 31

With oseltamivir 48 43 2575 255 49250 8600 7300 4800 19 75 2075 42

Population size estimated at the beginning of each passage in the absence or presence of oseltamivir (see Figure 1).
doi:10.1371/journal.pgen.1004185.t001
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Finally, we evaluated whether our model based on constant

effective population size is robust to the series of bottlenecks and

population expansions induced at each passage in the experiment

(see Table 1). Ewens [45] showed that in a population with a size

changing cyclically over time, the probability of fixation of an

allele is approximately the same as in a population of constant size

with Ne = N*, where N* is the harmonic mean of the population

sizes at each generation, which is also the effective population size

of the fluctuating population. To evaluate this finding in the

context of our estimation procedure, we simulated 1000 additional

data sets with varying population sizes. In order to match the drug-

treated experiment, 9 passages of 13 generations each were

simulated, with exponential population growth from N = 23 to

N = 106 (see Figure 1). The founding population size (N = 23) was

chosen as it results in a harmonic mean of Ne = 176 for the 13

generations (i.e., the empirically estimated value from the

experiment). Here again, this corresponds to a ‘‘worst-case’’

scenario where the bottleneck at each passage is extremely strong

(see Table 1 for the true data) and population expansion very

rapid. We found that our ABC procedure based on a constant

effective population size indeed accurately estimates Ne and s

(Figure S5C and D) - with Ne being slightly downwardly biased

(estimated to 167 on average), and large selection coefficients are

very slightly upwardly biased.

Effect of genetic linkage
Linkage between selected and neutral sites can confound

inference when estimating genome wide selection coefficients.

Further, the frequency of homologous recombination in the IAV

genome is still debated [46]. If absent, we expect to observe strong

effects of genetic hitchhiking [47], where linked sites should

increase in frequency together with selected sites due to physical

linkage. However, the very low genetic diversity in our populations

limits this phenomenon, and we identified at most two selected

sites within the same segment. We also note that the initial allele

frequencies of the sites under selection are very low in all cases

Figure 3. Evidence of positive selection in the H1N1 genome in the absence and presence of oseltamivir. We plot the Bayesian P-values
for each SNP in log scale in the absence and presence of oseltamivir in A and C, respectively. The horizontal red lines are genome-wide significance
thresholds of P = 0.01. The eight segments are separately color-coded, a scheme which is maintained in all panels. Significant nonsynonymous
mutations are represented with triangles. We plot the minor allele frequency trajectories of all significant SNPs over the experiment in the absence
and presence of oseltamivir in B and D, respectively. The vertical dotted red line indicates the time of the oseltamivir addition (see Figure 1).
Trajectories are represented in dashed lines if a second SNP was significant within a given segment. For each significant SNP, the name of the
segment, the position of the SNP, the nucleotide increasing in frequency, and the estimated selection coefficients with our Ne-based ABC method are
indicated in the top left corner of B and D. In E, we represent the 3D structure of the proteins corresponding to the segments coding for membrane
proteins (for those with a resolved structure). We indicate the amino acid residues corresponding to the significant mutations with arrows. The SNP
locations highlighted on the structures are as follows: HA2 D112N (nonsynonymous), NA G193G (synonymous), H275Y (nonsynonymous), and M1
A41V (nonsynonymous). Although the M segment encodes both the M1 and M2 protein, the significant SNP is only positioned in the coding region
of M1. The significant SNP in the NS segment (F116) is synonymous and only positioned in the region coding for the NS2 protein. HA is represented
as a trimer, with the significant residue being highlighted (red) in each monomer, though one residue is slightly obscured due to being buried in the
protein complex. NA and M1 are represented as monomers, and NA is shown with a bound molecule of oseltamivir.
doi:10.1371/journal.pgen.1004185.g003
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(Table 2) and below our detection threshold (0.17%) in 11 out of

the 12 cases. This suggests that selection is primarily acting on de

novo mutations rather than on standing variation in our

experiment.

Only two trajectories in each experiment were identified as

having a poor fit to the assumed Wright-Fisher model, and are

shown in Figure S6. Figure S7 also shows the ABC correlation and

posterior plots for one of these cases, where one can see the

inability of the model to generate simulations similar to the

observed data. Clonal interference (i.e., the competition of

simultaneously segregating beneficial mutations) has recently been

proposed to play an important role in influenza evolution [48] and

could explain such patterns, in which, in the absence of

recombination, an initially steep trajectory becomes halted or

even reversed by the appearance of another more beneficial

mutation (as in Figure S6A). However, given the small effective

population sizes in this experiment, it is not surprising that we do

not observe more such trajectories, as the probability that multiple

contending beneficial mutations are present at a given point is

small [49]. Integrating the potential of clonal interference into the

methodology developed here will be the subject of future study.

Replicated experiment
The experiment was replicated starting at passage 4 (Figure 1),

and analyzed with our Ne-based ABC method. We plot the

Bayesian p-values for all sites in the genome in Figure S8A and

S8C and the trajectories corresponding to the significant selected

sites, in the absence and presence of drug, in Figure S8B and S8D,

respectively. More details are given on selected sites in Table S1.

Consistent with the first experiment, more sites are identified as

being under selection in the presence of oseltamivir (6 vs. 2). The

H275Y resistance mutation appears only at passage 9 and also

increases very rapidly in frequency in the presence of oseltamivir

(Figure S8D) with an even higher selection coefficient s = 0.27.

Interestingly, like in the first experiment, one nonsynonymous HA

mutation (position 1211, encoding a N50K mutation in HA2) is

under strong selection in both the absence and presence of

oseltamivir, and is located only 184 base pairs from the one

identified in the first experiment (position 1395, encoding a

D112N mutation in HA2). Similarly, a nonsynonymous mutation

in segment M at position 92 (encoding an E23Q mutation of the

M1 protein) is also under selection (s = 0.06), where in the first

experiment, one was identified at position 147 (encoding an A41V

mutation of the M1 protein, s = 0.08).

Likelihood and coalescent based estimation
As a matter of comparison, for each significant trajectory

identified using our Ne-based ABC method, we applied a diffusion

approximation likelihood-based method [32] which we here

extend to a haploid model. For the H275Y mutation, the two-

dimensional likelihood surface for c = Ne
.s and the age of the

mutation (t0) is shown in Figure 5. The selection coefficients

obtained are mostly consistent between the two methods and are

given in Table 2. They tend to be different when the trajectories

have an unexpected behavior under the Wright-Fisher model, like

the synonymous PB1 mutation at position 33 (K11), also identified

as having a poor fit to our model. In this case the behavior of the

two methods is hard to interpret. Likelihood-based methods in

general should be more accurate than ABC methods, which

reduce the whole data in to a few summary statistics. However, as

stated previously, the diffusion approximation made to calculate

the likelihood in this method is not appropriate for high selection

coefficients and low effective population sizes (i.e., it is appropriate

for Nes,1). As expected, this method tends to over-estimate s

compared to our ABC method when s is large. Indeed, in this

approximation, drift is a slow process and very large allele

frequencies changes as we observe can only be explained by

excessively large values of s. Additionally, there is currently no

available likelihood method that can integrate the information

shared by all sites to infer Ne, and estimating Ne from a single site is

particularly inefficient [32]. For this reason, and to have a fair

comparison, we did not attempt to estimate Ne here, but fixed it to

Figure 4. Ne-based Approximate Bayesian Computation for the H275Y resistance mutation in the presence of oseltamivir. For 10’000
simulated trajectories (out of the 100’000 simulations performed), we plot in A the values of the statistics Fsi9 and Fsd9 with colors corresponding to
the selection coefficients s, as well as the values calculated for the real trajectory of the H275Y oseltamivir resistance mutation in black. We indicate
the region corresponding to the best 1% retained simulations with a dashed line, and plot the corresponding two-dimensional posterior distribution
for s and Ne in B.
doi:10.1371/journal.pgen.1004185.g004
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the value estimated above via the ABC approach. Finally, we note

that this class of method is computationally intensive and cannot

practically be applied to whole-genome datasets.

In addition, we have developed a new coalescent-based method

that explicitly models the known demography of our experimental

populations for comparison (Table 1). This approach has the

additional advantage of incorporating the genetic diversity linked

to the beneficial mutation into the estimation procedure, allowing

us to estimate the mutation rate and refine estimates of s. Figure 6

shows the combination of selection coefficient (s = 0.12) and

mutation rate (m<1027) with the highest likelihood for the H275Y

mutation. Interestingly, the estimation obtained with these

simulations accounting for the true demography is consistent with

our Ne-based ABC method, which gives a posterior mean for the

selection coefficient of s = 0.15 (Table 2 and Figure 4).

It is noteworthy that the three methods here developed and

applied to this data are complementary, and thus have been used

jointly. Our Ne-based ABC approach is computationally efficient,

can be applied to large genomic datasets, and does not rely on

diffusion approximation. It provides both estimates of Ne using

information from the whole genome, and posterior distributions

for s at each individual site. Using these results, it is next interesting

to utilize the likelihood-based method, as it can be more accurate

for small s (or in cases where Ne is large), as it uses the full data

rather than summary statistics. Additionally, it can estimate the

age of the beneficial allele, which can be of interest in some cases.

Being more computationally intensive, one can apply it on the

candidate sites identified by the Ne-ABC method, and even take

advantage of the estimated Ne that it provides. Finally, our new

coalescent method is a promising first attempt to estimate s not

only using a single allele frequency trajectory, but the whole

sequence linked to it. It is also computationally very intensive and

can be used on top candidate sites to refine the posterior

distributions obtained from the Ne-based ABC method.

Fisher’s Geometric Model and distance from optimum
Further utilizing these estimated per-site Ne-based selection

coefficients, and in order to contextualize these results, we utilize

the framework of Fisher’s Geometric Model (FGM). The FGM

[50] predicts that environmental challenges increase the distance

between the current phenotype and the phenotypic optimum,

thereby allowing for more and stronger beneficial mutations.

Here, the oseltamivir environment represents a novel (and

challenging) environment, which is expected to result in a shift of

the optimum away from the location of the current population.

This is reflected both in a higher maximum beneficial selection

coefficient (0.288 vs. 0.117) and in a higher mean beneficial

selection coefficient (0.026, bootstrap bias-corrected and acceler-

ated [51] 95% confidence interval (CI): [0.017; 0.039] vs. 0.016,

95% CI [0.015; 0.017]), obtained from the point estimates

obtained using the Ne-based ABC approach - indicating that the

optimum may be indeed further away from the current phenotype

in the drug as compared with the no-drug environment.

In order to study the distribution of fitness effects (DFE)

observed, and to quantify the distance to the phenotypic optimum

in each environment, we chose three different biologically relevant

distributions to be fitted to the data. Since we were particularly

interested in the distance to the phenotypic optimum, we used the

displaced-gamma distribution proposed by Martin and Lenor-

mand [52], which results in an approximately beta-shaped DFE of

beneficial mutations [53], and allows for a direct estimate of the

distance to the optimum under the FGM. Secondly, we used a

half-normal distribution, which is predicted from the FGM, when

the optimum is (infinitely) far away. Third, we used the generalized
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Pareto distribution (GPD). Given that beneficial mutations are so

rare that they represent the tail of the full DFE, the GPD allows for

the estimation of the most likely extreme value domain [54]. In

other words, the resulting estimate of the shape parameter k yields

information on whether the DFE is bounded (i.e., the full DFE

belongs to the Weibull domain), whether its tail is exponential-like

(Gumbel domain), or whether the tail is heavier than exponential

(Frechet domain). In terms of the underlying biology, this is a very

important question: for example, a bounded DFE would indicate

that mutations cannot exceed a certain effect size, whereas, on the

contrary, a heavy-tailed DFE would suggest that mutational effect

sizes are highly unpredictable. Supporting arguments have been

made for an exponential tail being the most biologically reasonable

[55], and related studies have suggested an exponential distributions

of fitness effects (e.g., [56,57]). However, there also exists empirical

evidence for bounded tails of the beneficial DFE (e.g., [58,59]).

Of note, our data consist not of the full distribution of newly

arising beneficial mutations, but of the fraction of those beneficials

that survive drift and are segregating in the population for at least

a short time (so-called ‘‘contending beneficial mutations’’ [60,61]).

Barrett et al. [60] pointed out that this distribution arises as the full

distribution of new mutations weighted by the (approximate)

probability 1-exp(-2s) that a mutation with selection coefficient s

survives drift. The resulting probability densities for the three

tested distributions are noted in the Materials and Methods.

We fitted all three resulting contending distributions to the data

by numerically maximizing the log likelihood using a weighted

bootstrap approach [62]. All results are reported in Table 3 and

Figures 7 and 8.

In the absence of oseltamivir, the half-normal distribution yields

the highest median log likelihood (cf. Table 3, and Figure S9A),

but the bootstrap estimates show a large variance (also owing to

the lower flexibility afforded by the single parameter). Hence, the

outcome is sensitive to potential measurement error, or sampling

bias. In fact, the 95% confidence intervals of the bootstrap

estimates of both the GPD and the beta distribution lie within that

of the half-normal, indicating that they both may represent equally

good summaries of the true distribution. In the presence of

oseltamivir, the GPD clearly provides the best fit, with both the

half-normal and the scaled beta distribution reaching generally

lower log likelihoods (cf. Figure S9B).

The generally good fit of the GPD provides support for the

assumption that the beneficial portion of the DFE represents a tail

distribution. If this condition is met, the GPD is expected to be the

most flexible among the three tested distributions, because it can

account for all possible tail shapes. Because we observe only the

contending distributions in the present study, the tail of the

distribution becomes even more important, and it must be noted

that the tails of both the beta scaled and the half-normal

distributions studied here are both contained within the GPD.

After establishing that the GPD yielded a good fit to the

observed data, we interpreted the estimated shape parameter k
that determines the extreme value domain of the underlying DFE

(cf. Figure 8). In the absence of oseltamivir, we observe

k = 20.0532 (95% CI: 20.0786, 20.0075), indicating that the

full DFE belongs to the Weibull domain of attraction (Figure 8A).

Hence, it has a right-truncated tail, and we estimated the

maximum possible mutational effect as d = 0.17 (95% CI: 0.12,

0.76). We can compare this result with the estimate of the distance

to the optimum obtained from the scaled beta distribution. With

s0 = 0.18 (95% CI: 0.12, 1), this estimate agrees nicely with that

from the GPD. In terms of the underlying biology, this indicates

that there is remaining potential for adaptation also in the absence

of oseltamivir, but that the maximum possible effect size does not

Figure 5. Log-likelihood contours for the H275Y resistance mutation in the presence of oseltamivir. We plot the two-dimensional
likelihood surface for the selection parameter c = Ne

.s (x-axis) and the allele age t0 (y-axis) in generations, with generation zero representing the end
of the experiment. Horizontal black lines represent sampling times. The colors indicate the value of the log-likelihood, with red being the highest and
blue being the lowest. The maximum likelihood is shown as a black dot, and the log likelihood was lowered from its peak by X 2

2:5%/2 = 2.996, to
construct a 95% confidence (likelihood) region for the parameters (dashed black line).
doi:10.1371/journal.pgen.1004185.g005
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differ greatly from the observed maximum selection coefficient

(s = 0.117).

The pattern looks very different in the presence of oseltamivir.

Here, the estimated shape parameter is k = 0.24 (95% CI: 0.14,

0.38), clearly indicating a heavy-tailed DFE that belongs to the

Frechet domain of attraction (Figure 8B). Supporting this finding,

it was not possible to obtain any reasonable estimates of the

distance to the optimum under the scaled beta distribution. This

support for a heavy-tailed distribution is also consistent with recent

results examining the DFE in populations of yeast that have been

subjected to extreme environmental conditions [63].

This finding suggests that the potential for adaptation in the

drug environment is indeed much higher than the highest

observed selection coefficient, and that mutational effect sizes will

be difficult to predict under strong adaptive challenges. In

particular, upon a longer run of the experiment (e.g., over the

course of time in natural populations) even stronger beneficial

mutations than those identified in the present experiment could be

expected (however, it is noteworthy that the H275Y mutation

appears to be re-identified across multiple different experiments, as

discussed below). In comparison, there is only little potential for

adaptation in the no-drug environment. However, the optimum is

still far as compared with other examples from the literature [64],

which could indicate ongoing adaptation to the MDCK cells. We

note that we do not explicitly model experimental errors in our

analyses, as this would require several replicated experiments

[54,56]. However, the heavy tail of the DFE in the presence of

oseltamivir (Figure 7B) may indeed be influenced by such factors,

and this result should thus be interpreted with caution.

Biological implications
Lastly, we attempted to interpret these results in light of the

known biology of influenza (Figure 3E). The NA mutation H275Y

is a well-characterized oseltamivir-resistance mutation and has

been shown to alter the hydrophobic pocket of the NA active site,

thereby reducing affinity for drug [10,65–69]. Thus, re-identifica-

tion of this substitution aids to validate the results. Further, A41V

(encoded by a C147T SNP) and E23Q (encoded by a G92C SNP)

substitutions of the M1 protein were identified in the first and

second experiments, respectively. The location of these mutations

(helices 3 and 2) are not overlapping with regions important for

RNA or membrane binding, which facilitate virion assembly and

maintenance of virion integrity. In addition, the location of either

residue does not appear to be important for forming extended

sheets of M1 protein, as proposed previously [66]. Therefore, the

role of these mutations in viral fitness in the presence of oseltamivir

may be related to additional roles of the M1 protein. An intriguing

possibility is that interactions between M1 and the NA cytoplasmic

tail important during virion budding [70–72] are altered by the

H275Y mutation and are compensated for by additional

mutations in the N-terminal region of M1 [73]. Two adaptive

substitutions were also observed in the HA2 peptide during growth

in the presence and absence of oseltamivir, with the D112N

(encoded by a G1395A SNP) and N50K (encoded by a C1211A

SNP) substitutions observed in the first and second replicates,

respectively. Interestingly, the trajectories of the substitutions in

the presence of drug appear to be strongly correlated with the rise

of the H275Y mutation (see Figures 3 and S7). The combined

results from the two replicates in the presence and absence of

oseltamivir show that these loci are positively selected during tissue

culture adaptation, and may epistatically interact with the H275Y

allele. The D112N mutation has been well characterized in other

influenza strains and is conserved across all HA serotypes. This

substitution has been shown to cause a rise in the pH of the HA

conformational change and HA-induced endosome and viral

membrane fusion [68,74], a process critical for IAV infectivity

Figure 6. Coalescent-based maximum likelihood surface for the H275Y resistance mutation in the presence of oseltamivir. Two-
dimensional likelihood surface for the selection coefficient (s) (y-axis) and the mutation rate m (x-axis). The graph is colored according to the value of
the log-likelihood (displayed in the embedded legend), where green indicates the highest probability and yellow the lowest.
doi:10.1371/journal.pgen.1004185.g006
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[75]. Further, the D50K mutation is located in a region known as

the HR1 heptad repeat, interrupting the repeat pattern with a polar-

to-charged residue substitution. The HR1 repeat regions form coiled

coils that undergo conformational changes in low pH conditions and

likewise promote endosomal membrane fusion during IAV infection

[76]. Alterations of endosomal membrane fusion mediated by

mutations in HA2 are a known mechanism for tissue culture

adaptation [77,78], but interactions with a drug resistance allele has

not been described previously. In total, while the results are not

sufficient to confirm this hypothesis, the combined results from

replicate 1 and replicate 2 suggest that epistatic interactions between

M1 and NA, and possibly HA2, may be important during the

selection of drug resistance in IAV populations.

Conclusions
As a major annual cause of morbidity and mortality, influenza

virus infections remain one of the most important global health

concerns. Foremost amongst the challenges in treating this virus

has been its ability to adaptively respond to drug treatment, with

oseltamivir resistance spreading globally during the 2007–2008

and 2008–2009 influenza seasons. In order to evaluate the viral

adaptive response to oseltamivir, we have here developed a multi-

faceted population genetics approach based upon an unparalleled

dataset consisting of whole-genome multi-time point experimental

data both in the presence and absence of treatment. Utilizing

novel approximate Bayesian, likelihood-based, and analytical

results, we identify a handful of known and unknown positively

selected variants, and quantify the distance from phenotypic

optimum imposed by oseltamivir. These results not only confirm a

number of theoretical expectations arising from Fisher’s Geomet-

ric Model and its extensions, but also clearly illustrate the ease by

which resistance may be evolved against neuraminidase inhibitors.

We finally note that the robust methodologies developed here can

be widely applied to time-sampled data from not only experimen-

tal but also natural populations (Figure S4), allowing for the

utilization of a temporal dimension that is highly informative for

identifying the recent action of positive selection.

Materials and Methods

Data generation and bioinformatics
Influenza A virus A/Brisbane/59/2007 (H1N1) from chicken

egg allantoic fluid (NIH Biodefense and Emerging Infectious

Research Resources Repository NIAID, NIH; NR-12282; lot

58550257) was serially passaged in Madin-Darby canine kidney

(MDCK) cells (Figure 1). This strain has the following genome

size: segment 1 (PB2) 2314 nucleotides (nts), segment 2 (PB1)

2302 nts, segment 3 (PA) 2203 nts, segment 4 (HA) 1776 nts,

segment 5 (NP) 1497 nts, segment 6 (NA) 1427 nts, segment 7

(M1/2) 1006 nts, segment 8 (NS1/2) 870 nts. MDCK cells were

maintained in Eagle’s minimal essential medium (MEM) with 10%

fetal bovine serum (Hyclone) and 2 mM penicillin/streptomycin.

Viral infections were performed in influenza virus growth medium

as described [79] and lasted for 72 hours. Virus was continually

passaged on cells to prevent any freeze-thaw cycles and the

amount of virus to initiate a passage and the virus at the end of

each passage were subsequently empirically determined via plaque

assays using standard techniques. These values were used to

determine the bottleneck size (Table 1), MOIs (Table S2),

magnitude of population expansion, and number of doublings

associated with each passage. The number of doublings was used

to determine the number of generations per passage – averaging to

13 generations per passage throughout the experiment, in both the

no drug and drug-treated populations.

For passages indicated in Figure 1, oseltamivir was added at

increasing concentrations and two independent experimental

trajectories were performed. The initial concentration of oselta-

mivir was equal to the ED50, the concentration of drug that

reduced viral plaque numbers to 50% of a no drug control. The

initial ED50 was 0.1 uM (Table S2), indicating that the starting

virus was very sensitive to oseltamivir. The next passage was

performed in the presence of 46ED50. Subsequent passages were

performed by doubling the concentration of oseltamivir if 50%

cytopathic effect (CPE) was observed (i.e., the cytopathic effect in

the cells from the previous passage). If 50% CPE was not observed,

the dose of oseltamivir was reduced to a concentration that lead to

the observation of 50% CPE. Oseltamivir carboxylate

(RO0640802-002; lot 91ST1126/1) was obtained from Roche

(F. Hoffmann-La Roche Ltd, Basel, Switzerland). Concentration

of oseltamivir at each passage can be found in Table S2.

Cell-free virus was obtained at each passage by spinning down

supernatant 72 hour post-infection, and subjected to whole

genome pooled population sequencing. Viral RNA was purified

using the RNeasy 96 Kit (Qiagen, Gaithersburg, MD). Super-

Script III First-Strand Synthesis Supermix (Life Technologies,

Grand Island, NY) and primers that bind the 39 end of all IAV

segments were used for reverse transcription. The cDNA was then

amplified in a single multiplex reaction to amplify all segments of

the genome with near equal efficiency, using primers that have

been described previously. The amplified product was sheared to a

size range of 300–600 base pairs with Fragmentase from New

England Biolabs (Ipswitch, MA) using the procedure recom-

mended by the supplier. DNA was then end repaired, A-tailed,

and ligated to Illumina-compatible adapters containing 6-mer

barcode sequences. The products were size selected by using

0.86 AMPure XP beads (Agencourt, Beverly, MA), collecting

Table 3. Maximum likelihood estimates of the distribution of fitness effects.

With oseltamivir Without oseltamivir

Distribution k1 Log(L) (95% CI)2 s0 (95% CI)3 Log(L) (95% CI) s0 (95% CI)

GPD 2 180.0 [154.7,199.1] ‘ 1343.3 [1301.5,1374.0] 0.17 [0.12,0.76]

Beta 2 158.8 [122.1,190.0] ‘ 1343.4 [1301.4,1374.1] 0.18 [0.12,1]

Half-normal 1 110.5 [69.3,154.7] ‘ 1375.6 [1274.4,1429.7] ‘

Theoretical distributions of fitness effects fitted to the data.
1Number of parameters.
2Maximized value of the log-likelihood function with 95% confidence intervals.
3Maximum possible effect-size.
doi:10.1371/journal.pgen.1004185.t003
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supernatant and treating with 1.66beads, and eluting DNA with

ddH20. After size selection, DNA was amplified with Illumina PE

PCR primers, quantified and combined into libraries for

sequencing on the HiSeq2000 platform. All sequences used in

this study were generated from 100 base pair reads. All sequence

data is publicly available for download at http://bib.umassmed.

edu/influenza/.

In addition to viral samples, an RNA error control was

generated from a cloned influenza A/Brisbane/59/2007 (H1N1)

NA gene segment. The cloned segment was used as a template in a

T7 transcription reaction to make a pool of control RNA, which

was processed and sequenced in parallel with the viral samples.

Sequence data from the RNA control showed that 95% of erroneous

SNP calls could be eliminated by excluding low frequency (,0.17%)

SNPs. Sequence reads were aligned to Influenza A/Brisbane/59/

2007 reference genome (Genbank accessions CY030232, CY031391,

CY058484–CY058486, CY058488–CY058489, CY058491) using

the BLAST alignment algorithm.

Reads were filtered to eliminate those with Phred quality score

,20 across the read, and the minimum length of the mappable

read .20 nucleotides. The coverage was high with a median over

all passages of 56667 (Table S3 and Figure S10), with 90% of

Figure 7. Distribution of fitness effects. Observed histograms of fitness effects of contending beneficial mutations and the best fit of a
contending generalized Pareto distribution (solid lines) in the absence (A) or presence (B) of oseltamivir. The heavy tail of the DFE in the presence of
the drug is clearly visible.
doi:10.1371/journal.pgen.1004185.g007

Figure 8. Likelihood surfaces for the contending generalized Pareto distribution. Likelihood surfaces of the fit of a contending generalized
Pareto distribution in the absence (A) or presence (B) of oseltamivir. The shape parameter k (on the x-axis) determines the domain of attraction. The
maximum likelihood estimate (indicated by a black dot) lies in the Weibull domain (k,0) in the absence of the drug, indicating a bounded
distribution of fitness effects, whereas it lies in the Frechet domain (k.0) in the presence of the drug, indicating an underlying heavy-tailed
distribution of fitness effects. Black lines represent 25 (A) and 5 (B) orders of log likelihood, respectively. The gray area represents inaccessible
parameter space, because the lower bound of the estimated DFE cannot be lower than the maximum observed selection coefficient. We also show
the distribution of the shape parameter k for the GPD distribution (C).
doi:10.1371/journal.pgen.1004185.g008
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reads mapping. We excluded all sites having coverage lower than

100 and we randomly down-sampled all sites having a coverage

higher than 1’000, to 1’000 in order to estimate allele frequencies

from allele counts. As we almost only observed biallelic SNPs (see

results), for each site we kept only the two alleles having the highest

frequencies over all passages, and called the minor allele as the one

having the lowest frequency at passage 0. In all subsequent

analyses concerning the effect of oseltamivir, we omitted the first

three passages of pre-drug treatment.

Ne-based ABC estimation
The observed data x consists of allele frequency trajectories

measured at L loci: xi(i~1, . . . ,L). We have one parameter Ne

shared by all loci in the genome, and L locus-specific selection

coefficients si(i~1, . . . ,L) that we would like to infer. In a Bayesian

setting, we want to estimate the joint posterior distribution

P(Ne,sDX )!P(X Ds,Ne)P(Ne)P(s)

The likelihood P(X Ds,Ne) can be calculated numerically in some

cases but it relies on approximation and is computationally very

intensive (see below). For this reason, we propose a likelihood-free

approach based on Approximate Bayesian Computation (ABC)

[36,80]. This class of methods is based on Monte Carlo simulations,

which are compared to observed data using summary statistics. In

our model, locus-specific summary statistics capable of estimating s

per locus are needed, as are statistics utilizing information from all

loci jointly in order to infer Ne. However, the standard ABC

algorithm is not usable in such cases, as the probability of obtaining

one simulation with a good match to the observed data for all L loci

simultaneously rapidly tends to 0 as L increases. Recently, Bazin et al.

[80] proposed a new algorithm to overcome this difficulty where the

problem is split in to two steps (Algorithm 2), and we adapt their

general solution to our problem here.

First we note that we can decompose the posterior as

P(Ne,sDX )~P(NeDX )P(sDNe,X )

Using conditional independence (see Appendix in [80]), the joint

density has the factorization

P(Ne,s,X )~ P
L

i~1
P(Xi Dsi,Ne)P(si)

" #
P(Ne)

and the marginal density is

P(Ne,X )~ P
i~1

L

P(Xi DNe)

" #
P(Ne)

where

P(Xi DNe)~

ð
s

P(Xi Dsi,Ne)P(si)ds

Dividing these two densities we have

P(sDNe,X )~
P(Ne,s,X )

P(Ne,X )

~P
i~1

L
P(Xi Dsi,Ne)P(si)

P(Xi DNe)

~P
i~1

L

P(si DNe,Xi)

Finally the joint posterior can be factorized as

P(Ne,sDX )~P(NeDX ) P
L

i~1
P(si DNe,Xi)

and if focused on a particular locus i, we find

P(Ne,si DX )~P(NeDX )P(si DNe,Xi)

This justifies the need for both locus-specific summary statistics

U(Xi) and summary statistics that are a function of all loci together

T(X )~T(X1, . . . ,XL), and we approximate the posterior as

P(Ne,si DX )&P(NeDT(X ))P(si DNe,U(Xi))

The general algorithm to sample from this posterior adapted

from Algorithm 2 in Bazin et al. [80] can be written as:

Step 1. Obtain an approximation of the density

P(NeDx)&P(NeDT(x))

Step 2. For locus i = 1 to i = L

For k = 1 to k = N iterations:

i. Sample N�e from P(NeDT(x))&P(NeDx) generated in step 1.

ii. Sample s�k,i from the prior distribution P(s).

iii. Simulate data Xk,i (at locus i only) from P(Xk,i DN�e ,s�k,i).

iv. Compute U(Xk,i).

Condition on U(Xi)&U(xi) using ABC to obtain a sample of

observation (N��e ,s��i ) from an approximation to P(si DNe,xi)P(NeDx).

As noted by Bazin et al. [80], if we write the data as x~(xi,x{i)
(where the subscript 2i indicates all data except that from locus i),

x{i is only used once (in the first step) but the second step re-uses

the data xi a second time. The algorithm samples from the correct

posterior distribution only if we use x{i instead of the full data x in

the first step. Otherwise it involves an approximation, which is

valid if we assume that

P(NeDx{i)&P(NeDx{i,xi)~P(NeDx)

The rationale behind this approximation is that when the number

of loci L is large, any given locus i provides a negligible

contribution to the information about Ne (see below).

We now give the details of the two steps of this algorithm. In the

original algorithm [80], the first step is also achieved using ABC.

In our case, we take advantage of having an existing moment-

based estimator of Ne available. This also allows us to avoid the

assumption of independence between loci by using a Bayesian

block bootstrap approach (see below). We define T(X ) as a single

statistic given by Jorde and Ryman Fs9 unbiased estimator of Ne

[30]. For all sites, we calculated Fs9 between consecutive pairs of

time points when the minor allele frequency has reached at least

2% in one observation [30] as:

Fs~
(x{y)2

z(1{z)
and Fs0~

1

t

Fs 1{1= 2~nnð Þ½ �{2=~nn

1zFs=4ð Þ 1{1= ny

� �� �
where x and y are the minor allele frequencies at the two time

points separated by t generations, z~(xzy)=2, and ~nn is the
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harmonic mean of the sample size nx and ny at the two time

points. We keep only the sites where we could obtain at least two

values of Fs9 in order to average them over time, and thus obtain

an estimator for each site of the genome used in step 2 below.

Note that in the experiment involving oseltamivir, as only

passages 3 to 12 were considered, a small number of sites

matched this criterion. We also averaged Fs9 values over sites in

order to obtain a genome-wide estimator as in [30]. All Fs9 values

were converted to Ne assuming t = 13 generations per passage and

Ne = 1/Fs9.

A segment-based Bayesian block bootstrap approach [81,82]

was used to obtain a distribution for P(NeDT(X )), as we cannot

assume the independence of sites owing to linkage disequilibrium.

More specifically, as multiple virus infections in cells can lead to

segment reassortment [6], we grouped sites by segment in order to

obtain an estimator for each segment, and randomly resampled

segments with replacement 10’000 times using a Dirichlet prior

[81]. We also checked that the approximation P(NeDx{i)&
P(NeDx) is valid in our case by repeating step 1 for each segment,

where all sites in the considered segment are excluded in order to

account for linkage. We found that the posteriors are very similar

to that obtained using the full data (Figure S11). Ne was only

slightly increased when we excluded the segments carrying the

highest number of beneficial mutations in the presence of

oseltamivir (respectively estimated to Ne = 195 and Ne = 199 when

we excluded HA and NA, compared to Ne = 176 when considering

all segments).

The second step of our method uses the effective size estimated

in the first step as a prior distribution to estimate selection

coefficients (s) at each site in the genome using an ABC approach

[36,80]. For each site, 100’000 time-sampled trajectories were

simulated using a Wright-Fisher haploid model with selection [18]

with three conditions: (i) the trajectories started at the same minor

allele frequency observed at this site [35], (ii) the trajectories match

the same criteria used on the real data to calculate Fs9, and (iii) the

samples are simulated as a binomial sampling using the per-site

sample sizes. For each trajectory, we randomly sample Ne from the

10’000 posterior samples obtained in the first step. The relative

fitness of the beneficial allele was set to 1+s, and we used a uniform

prior for s between 20.1 and 0.5, as we always consider the minor

allele. In the presence of selection, allele frequency trajectories are

expected to be directional, whereas drift introduces random

variance. Being a measure of variance, Fs9 does not incorporate

information about the direction of allele frequency changes. To

integrate this into our estimation procedure, we decomposed Fs9 at

a given site in to two statistics: Fsd9 and Fsi9 calculated respectively

between pairs of time points, where the allele considered is

decreasing and increasing in frequency, such that Fs9 = Fsd9+Fsi9.

Using notations of our algorithm presented above, this means that

at each locus i we take U(Xi)~(Fsd 0i,Fsi0i). We retained the best

1% of the 100’000 simulations based on the Euclidian distance

between observed and simulated Fsd9 and Fsi9 statistics in order to

obtain posterior distributions and means for s using a rejection

ABC algorithm [36].

We selected candidate trajectories based on the posterior

distribution obtained for s at each site: we define Bayesian ‘p-

values’ for s as P(sv0Dx) and consider a trajectory to be

‘significant at level p’ if it’s equal-tailed 100(12p)% posterior

interval excludes zero [43]. We also performed a cross-validation

procedure for the ABC method: we randomly simulated 1000

pseudo-observed data sets with parameters inspired by the drug-

treated experiment, with both fixed and varying Ne (see Results).

For each simulated replicated, we estimated Ne and s using our

proposed ABC approach.

We finally identified trajectories for which the Wright-Fisher

model has a poor fit based on the Euclidian distance between our

simulations and the data. Using the cross-validation procedure, we

obtained the null distribution of this distance under the true

model, and used the 99% quantile of the distribution as a

threshold to detect trajectories in our data not fitting the model.

Likelihood-based estimation
The outlier trajectories were selected with the Ne-based ABC

method when the probability of being beneficial was larger than

99%, and used in a likelihood-based method [32] for comparison.

The time-serial method of Malaspinas et al. [32] is an extension of

Bollback et al. [31] to infer the selection coefficient, the effective

population size, and additionally the allele age from temporal allele

frequency data. A Hidden Markov Model (HMM) is used to model

the allele frequency trajectory and an approximate transition density

is applied to compute the likelihood. Here, the method is modified to

fit a haploid model. The diffusion process approximating the Wright-

Fisher haploid model with selection is defined by [34,83]:

L~
1

2
a(y)

d2

dy2
zb(y)

d

dy

a(y)~y(1{y)

b(y)~cy(1{y)

where y is the density of allele frequency at time t in units of Ne

generations and c = Ne?s.

The state space of the HMM are the population allele frequencies

denoted by zi = i/Ne for i~ 0 . . . Nef g. The diffusion process

defining the transition probabilities is approximated with a one-

step process, which only allows the transition to occur between

adjacent states (zi to zi21, zi and zi+1). The infinitesimal generator Q

for the one-step process is a tridiagonal (Ne+1)6(Ne+1) matrix:

Q~

0 0 0 � � � 0

d1 g1 b1

0 P P P
..
.

di gi bi

..

.
P P P 0

dNe{1 gNe{1 bNe{1

0 � � � 0 0 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

where bi denotes the rate of jumping from zi to zi+1, di the rate of

jumping from zi to zi21, and gi = bi+di such that 1-gi is the rate of

staying in state zi.

When the approximation of the one-step process is applied, the

solution for the system can be obtained as:

bi~
({1zzi) zi (1zc (zi{zi{1))

(zi{ziz1) ({zi{1zziz1)
and

di~
({1zzi) zi (1zc (zi{ziz1))

(zi{zi{1) (zi{1{ziz1)

The effective population size Ne was set at 176 in the presence of

oseltamivir and at 226 in the absence of drug as inferred by the Ne-
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based ABC method (see Results). For each candidate trajectory,

the maximum likelihood of c and allele age t0 was obtained using

the Nelder-Mead optimization algorithm [84], where the search

range of c was set to (0,80). For the allele age t0, the time point of

the first appearance of the derived allele was set to be the upper

bound of the search range.

Coalescent-based estimation
We generated allele frequency trajectories for the beneficial

allele under a range of selection coefficients s between 0 and 0.5

with 0.005 increments, performing 10’000 simulations for each

value. These frequency trajectories were produced using a Wright-

Fisher haploid model with selection as described above. For

replicate 1 of the drug-treated H1N1 strain, we calculated the

population size at each generation using the estimated census

population sizes measured at the beginning of each passage

(Table 1). Further, we assume exponential population growth for

13 generations during each passage, reaching a final population of

106 virions. We accepted those trajectories presenting a difference

between the derived allele frequency of observed and simulated

data lower than e = 0.10 at all time points (from passage 3 to

passage 12).

The accepted trajectories were used to run the simulation

software msms [85] under a demographic model resembling the

experimental data (twelve consecutive passages with selection

starting at passage 4) (Figure 1 and Table 1). msms is a coalescent

simulation program that incorporates time-sampled data [86] and

conditional coalescent on frequency trajectories. msms was used to

obtain the tree length starting at passage 3 (drug free) and finishing

at the end of the experiment (passage 12). We used a search range

for the mutation rate m between 1029 and 1022 and computed the

probability of observing the total number of segregating sites

present in the whole genome of H1N1 for replicate 1 (9666

segregating sites) given the total tree length multiplied by the

mutation rate using binomial sampling. Finally, we computed the

probability of observing the real data given the simulated by

integrating over all possible genealogies G:

p(DDh,m)~

ð
p(DDh,m,G)p(GDh,m)dG

~

ð
p(DDm,G)p(GDh)dG

^
ð

p(S, f Dm,G)p(GDh)dG

~

ð
p(SDf ,m,g)p(f Dm,h)p(GDh)dG

&
1

N

X
i

p(SDm,g)I( fi{fj jve)

where D refers to the total number of segregating sites (S) and the

derived allele frequency of the beneficial allele (f). h represents the

demographic model and m the mutation rate. fi and f respectively

represent the frequency of the simulated and observed beneficial

allele, and I the indicator function.

Estimation of the shape of the distribution of fitness
effect

Mathematica 9.0 was used to fit the distributions using numerical

maximization of the log-likelihoods of the data under the given

distribution. The probability density functions resulting from

weighting the original distribution with the fixation probability of a

beneficial mutation, 1-e22s, and subsequent normalization were

performed as follows:

Contending half-normal distribution:

f (s)~
2se{{x2s2

p (1{e{2x)

p(1{e
p

s2 )Erfc(

ffiffiffi
p
p

s
)

where Erfc(x) is the complementary error function, for x§0:
Scaled beta distribution:

f (s)~
x(m{x)b{1

Beta(2,b)mbz1
for 0ƒxƒm

where Beta(a,b) is the Euler beta function.

Contending generalized Pareto distribution:

f (s)~

(1z
kx

t
){

kz1
k (1{e{2x)

Ð{t
k

0

(1z
kx

t
){

kz1
k (1{e{2x)

for 0ƒxƒ{
t

k
, if kv0,

2t{1

2t2
e{2tz1

t x(1{e2x) for x§0, if k~0,

(1z
kx

t
){

kz1
k (1{e{2x)Ð?

0

(1z
kx

t
){

kz1
k (1{e{2x)

for x§0, if kw0

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

In order to evaluate the confidence in the estimated parameters,

a weighted likelihood bootstrap was performed as described by

Newton and Raftery [62]. 1000 weighted likelihoods were

obtained according to Equation 1 therein, with weights being

randomly drawn from a uniform Dirichlet distribution. For the

scaled beta distribution, the boundary parameter s0 was limited to

values smaller or equal to 1 to ensure successful maximization, and

if the estimated MLE yielded s0 = 1, we concluded that no distance

to the optimum could be obtained – in fact, in all tested cases in

the presence of oseltamivir the likelihood appeared to increase

monotonically as s0 approached infinity (results not shown).

Structural analysis
Residues that mutated during the course of the experiments

were highlighted on the structures of HA, NA and M1. The

structure for HA of Influenza A/Brisbane/59/2007 has been

generated via molecular modeling [87] and was used in this study.

Closely related NA (PDB 3CL0) and M1 (PDB 1EA3) structures

were also used. Images were generated in PyMol.

Supporting Information

Figure S1 Genetic diversity of H1N1 throughout the experi-

ment. The genetic diversity measured as the average expected

heterozygosity in passages 4 to 12 of our experiment in the absence

(dotted line) or presence (dashed line) of oseltamivir.

(PDF)

Figure S2 Site frequency spectra (SFS) of H1N1 populations

during the experiment. The SFS at passages 4 (A and B) and 12 (C

and D) is shown in the absence (A and C) and presence (C and D)

of oseltamivir.

(PDF)

Figure S3 ABC correlation plot. The correlation between the

simulated selection coefficients s and the two statistics (Fs9i (A) and
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Fs9d (B)) used in our ABC method. Note that Figure 4A is showing

the same correlation using colors.

(PDF)

Figure S4 Frequency of identified beneficial mutations in

natural populations. The allele frequency in natural populations

from the NCBI Influenza Virus Resource database for the

significant mutations identified to be under selection - plotted

between years 2004 and 2010.

(PDF)

Figure S5 Cross validation of our Ne-based ABC method. The

true vs. the estimated values of Ne (A and C) and s (B and D) for the

1000 simulated data used to validate our ABC procedure. We used

similar parameters to our real data: sample size = 1000, Ne = 176

and initial allele frequencies of 1/Ne. We simulated a population of

constant size (A and B) or experiencing recurrent bottleneck

(N = 23) followed by exponential growth (up to N = 106) mimicking

our experiment (C and D). Error bars in B and D represent the

10% and 90% quantiles over the 1000 replicates. The red dot in A

and C and the red line in B and D indicate the true value.

(PDF)

Figure S6 SNPs with poor fit to the Wright-Fisher model. The

minor allele frequency trajectories of all SNPs identified as not

fitting the Wright-Fisher model in the absence and presence of

oseltamivir respectively in A and B. The horizontal dotted red line

indicates the start of oseltamivir treatment (see Figure 1).

Trajectories are represented in dashed lines if a second SNP was

significant within the same segment. For each SNP, the name of

the segment, the position of the SNP, the nucleotide increasing in

frequency, and the estimated selection coefficients with our Ne-

based ABC method are indicated in the top left corner of A and B.

(PDF)

Figure S7 Ne-based Approximate Bayesian Computation for

SNP PB1 33 (K11). For 10’000 simulated trajectories (out

of the 100’000 simulations performed), we plot in A the values

of the statistics Fs9i and Fs9d with colors corresponding to the

selection coefficients s, as well as the values calculated for the real

trajectory of the poor fitting PB1 33 (K11) mutation (see Figure S5)

in black. We indicate the region corresponding to the best 1%

retained simulations with a dashed line, and we plot the corres-

ponding two-dimensional posterior distribution for s and Ne in B.

We clearly see in A the inability of the model to generate

simulations near the observed data, with the black dot being

outside the retained regions defined by the dashed lines.

(PDF)

Figure S8 Evidence of positive selection in the H1N1 genome in

the absence and presence of oseltamivir for replicated data. We

plot the Bayesian P-values of each SNP in log scale in the absence

and presence of oseltamivir in A and C, respectively. The

horizontal red lines are genome-wide significance thresholds of

P = 0.01. The eight segments are separately color-coded, a scheme

which is maintained in all panels and in Figure 3. Significant

nonsynonymous mutations are represented with triangles. We plot

the minor allele frequency trajectories of all significant SNPs over

the replicated experiment in the absence and presence of

oseltamivir respectively in B and D. The horizontal dotted red

line indicates the start of oseltamivir treatment (see Figure 1). All

colors and line styles match those in Figure 1. Trajectories are

represented as dashed lines when a second SNP was significant in

a segment, and dotted lines for a third SNP. For each significant

SNP, the name of the segment, the position of the SNP, the

nucleotide increasing in frequency, and the estimated selection

coefficients with our Ne-based ABC method are indicated in the

top left corner of B and D.

(PDF)

Figure S9 Maximum likelihood for the DFE fit. The boxplots

show the distribution of the maximum log-likelihoods obtained

from 1000 samples of a weighted likelihood bootstrap in the

absence and presence of oseltamivir in A and B, respectively.

(PDF)

Figure S10 Genome wide sequence coverage data for samples

used in this study. The coverage in log scale for our four

experiments at passages 0, 6 and 12 (see Figure 1).

(PDF)

Figure S11 Estimated Ne when excluding segments. The posterior

distribution obtained for Ne using step 1 of our ABC algorithm when

excluding each segment one by one in the absence (A) and presence

(B) of oseltamivir. Segment colors match those in Figure 3 and S8.

(PDF)

Table S1 Estimated selection coefficients for the replicate

experiment. Comparison of Ne-ABC and Malaspinas et al. [32]

estimates of s for the significant trajectories under selection for the

replicate experiment. Bold indicates nonsynonymous mutations.

We indicate the nucleotide corresponding to the minor allele, with

its initial frequency at the beginning of the experiment in the

absence of oseltamivir, or at passage 4 when drug treatment began

(see Figure 1). For the Ne-ABC method, we give the 99% highest

posterior density intervals (HPDIs) in brackets.

(PDF)

Table S2 Viral passaging and drug concentration data for

samples used in this study.

(PDF)

Table S3 Genome wide sequence coverage data for samples

used in this study.

(PDF)
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