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Abstract 
A major challenge for cells lies in their ability to detect, respond and adapt to changing 
environments that may threaten their survival. Among the numerous evolutionary 
strategies, cell-to-cell heterogeneity allows the emergence of different phenotypes within 
a population. This variability in cellular behaviors can be essential for a small fraction of 
cells to adapt and survive in various environments. Analyses at the single-cell level have 
allowed to highlight the great variability that is present between cells within an isogenic 
population. Numerous molecular mechanisms have been uncovered, allowing to 
understand the emergence and the role of cellular heterogeneity. These attempts at 
identifying the source of cellular noise have also provided clues for strategies needed to 
control heterogeneity. In this review, the different factors leading to cell heterogeneity are 
presented, ranging from intracellular processes to environmental constraints. In addition, 
some recent strategies developed to modulate cell-to-cell variability are discussed.  
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Highlights 
- Single-cell analyses provide insights into the variability between cells. 
- Isogenic cells can differ due to intracellular and/or extracellular factors. 
- Bet-hedging strategies can provide some explanation for phenotypic diversity. 
- Feedback control strategies can be set in place to decrease population heterogeneity. 
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1. Introduction 
Although originating from a single founder cell, the billions of cells that can constitute a 
multicellular eukaryote are all different. Via division and differentiation, every cell in the 
organism becomes unique with an identity defined by its location, shape and protein 
content which together govern its function. In contrast to this marked diversity, liquid 
cultures of unicellular microorganisms appear more uniform. However, even in this highly 
simplified context, every cell will be different, despite having an identical genetic 
background and sharing the same liquid environment. This difference is associated to a 
unique combination of shape, cell cycle stage, epigenetic marks and protein content. 
To achieve essential tasks ranging from gene expression to cellular division, cells rely on 
precise molecular machines formed by multimeric protein complexes. Their function 
requires the presence of each member to accomplish its vital task1. If the level of one 
element of the complex varies significantly, it might hinder the function of the whole 
complex. Therefore, the proper function of the cell depends on its ability to regulate 
precisely the expression level of key proteins. 
However, cellular adaptation and evolution can benefit from some form of heterogeneity 
and diversity in a population. For instance, cells expressing a higher level of stress 
response proteins might survive an environmental perturbation better than others2,3. One 
drawback is that the high expression of these protecting proteins can be associated with 
a fitness cost under normal growth conditions. In order to strike the correct balance 
between the two conflicting requirements: fast growth versus stress survival, one strategy 
is to generate variability in gene expression such that both low- and high-expressing cells 
are present in the population. Heterogeneity is an adaptive trait in a similar way as protein 
expression level. As a proof of this, housekeeping proteins are expressed with low noise, 
while stress response proteins display a larger expression noise4. 
Unicellular fungi display complex lifestyles, where cell-to-cell differences will inevitably 
play an important role5–8. As a model eukaryote, S. cerevisiae has been extensively used 
to gain a better understanding of the different sources of heterogeneity in biology. The 
single-cell measurements performed in budding yeast have largely contributed to the 
characterization of cellular noise in biological responses. In the last decades, dynamic 
microscopy measurements have allowed to follow the fate of individual cells during many 
diverse processes9–13. More recently, single-cell mRNA sequencing datasets have 
provided a new approach to investigate these questions14–17. This review presents 
different mechanisms that contribute to the generation of heterogeneity in a population of 
cells via the transcriptional machinery, the signaling network and the environment. In the 
last part, experimental strategies set in place to control or modulate cellular heterogeneity 
will be presented. 

2. Intracellular noise 
Protein expression is a major source of heterogeneity in all cellular systems. Cells rely on 
one or two copies of a gene to produce the entire pool of a protein, therefore this low 
copy-number entails a stochastic transcriptional process which will have repercussions 
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at the protein level. Evidence of such stochasticity in gene expression has been first 
demonstrated in E. coli 18.The quantification of two fluorescent reporters expressed from 
identical promoters showed that some part of the noise was arising from difference 
between cells (extrinsic) while another noise component was modulating the expression 
of one reporter relative to the other in the same cell (intrinsic) (Figure 1). These studies 
have been extended to eukaryotic models such as S. cerevisiae to understand the 
underlying molecular mechanisms responsible for intrinsic and extrinsic noise10,11,19. 
Random binding of elements acting specifically on one DNA locus such as transcription 
factors and chromatin remodelers together with stochastic mRNA production contribute 
to the intrinsic noise19. 
2.1. Transcriptional bursting 
In an attempt to monitor the dynamics of transcription in living cells, technologies such as 
the MS2 or PP7 systems have been developed20,21. Derived from bacteriophages, these 
coat proteins bind specific RNA hairpin loops. The addition of a fluorescent protein to the 
coat protein and the insertion of multiple stem loops on the RNA of interest allows to 
monitor the dynamics of mRNA production. These dynamic measurements along with 
RNA FISH experiments have demonstrated that genes can be transcribed in bursts21,22. 
Groups of polymerases are simultaneously transcribing a locus, generating a burst in the 
mRNA production. These collective transcription events are followed by pauses of 
irregular duration. While stress responsive genes have long been recognized as being 
produced in burst, it is nowadays established that housekeeping genes are subject to a 
similar type of regulation21. This behavior will produce fluctuations in the mRNA levels, 
which can be amplified by the translation machinery.  Interestingly, it has been shown 
that in higher eukaryotes, export of the mRNA through the nuclear pore might act as a 
temporal filter that dampens the fluctuations generated during transcription23. While this 
process has not been identified in yeast, this might be a universal mechanism present in 
all eukaryotes to reduce the noise in the protein expression process. 
2.2. Transcription factors abundance 
Transcriptional bursts can find some explanation from the fact that promoter activation is 
regulated by the transient binding of transcription factors or other DNA associating 
proteins to cis-regulatory elements24. The low copy number of transcription factors and 
other transcriptional regulators can limit the efficiency of the transcription process. In 
bacteria, the small cell size is associated with a low protein number. In E. coli, quantitative 
analysis of the proteome has found that half of the genes are expressed at 10 copies per 
cell or lower25. The limited number of some these key components has been linked to 
stochastic switches in gene expression and can enhance population heterogeneity26. 
While protein abundance in budding yeast is roughly 100-fold larger than in E. coli, 
transcription factors are clearly expressed at lower levels than the average protein with 
roughly 10% of the transcription factors being present at around 100 copies per cell27. For 
instance, the stress responsive transcription factor Msn2 is present at 125 copies per 
cell27. Nonetheless, this transcription factor is responsible for the expression of more than 
150 genes upon hyper-osmotic, heat or oxidative stresses28,29. Moreover, the promoters 
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of these genes typically bear multiple consensus binding sites30–32. This low copy number 
of transcription factors relative to the number of inducible genes and putative binding sites 
will contribute to the heterogeneity in the induction of stress response genes. 
Interestingly, Msn4, the paralog of Msn2, recognizes the same DNA binding site. 
However, it is not expressed under log-phase conditions27,33 and becomes induced upon 
stress in an Msn2-dependent manner. The noisy induction of Msn4 will further increase 
the heterogeneity in the population33. 
2.3. Chromatin state of the locus 
In addition to the low abundance of transcription factors, in eukaryotes, the chromatin 
state of a DNA locus also contributes to the stochasticity of gene expression. The 
presence of nucleosomes on a promoter creates a compacted DNA region thereby 
preventing transcription factors from accessing their binding sites34. A switch from the 
close to the open chromatin state induced by chromatin remodelers can temporarily 
modulate the level of gene expression11,31 . Constitutively expressed genes have a 
permissive chromatin state35 which contributes to their low noise expression4. 
In contrast, stress-response genes are typically repressed under favorable growth 
conditions. Their activation requires an important chromatin remodeling for the 
transcription machinery to access the promoter and induce gene expression. One well-
studied example is the hyper-osmotic stress response pathway controlled by the mitogen-
activated protein kinase (MAPK) Hog1. The mechanisms required to open the chromatin 
and induce gene expression have been extensively studied36,37. While the activity of the 
MAPK is uniform within the population, the stochastic activation of the promoter controlled 
by the slow chromatin  remodeling step induces a strong noise in gene expression11,38. 
As a large fraction of these stress-induced promoters are activated in a stochastic fashion, 
this will generate a large phenotypic diversity following a hyper-osmotic stress. Other 
stress-response pathways have been shown to display a similar noise11. 
Interestingly, not all the repressed genes are induced with a large noise. In the mating 
pathway, genes are induced with high fidelity10. As an example, two copies of the FIG1 
promoter in the same cell will be induced to the same level despite their requirement for 
chromatin remodeling39. It is intriguing to note that, while the HOG and the mating 
pathway are both MAPK signaling cascades, they display this striking difference in 
transcription outcome. One possible reason for this difference in expression noise 
between the hyper-osmotic stress and the mating responses could be the large difference 
in the dynamics of the process. While stress responses are transient, the mating response 
which can be associated to a cell-fate decision process leads to a sustained MAPK activity 
over multiple hours. As a consequence, the timing for gene induction is very different in 
the two pathways (2-5 min after stress40 vs. 5 min to 1 hour for mating genes39). Owing 
to the rapid and transient induction of the stress response genes, the slow stochastic 
activation of the promoter has a more profound impact on the final outcome of gene 
expression. 
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2.4. Coding versus non-coding transcripts 
In addition to the production of coding transcripts, there is a large quantity of non-coding 
RNAs (ncRNA) that are transcribed by the cell41. Given the magnitude and variety of 
ncRNAs expressed, their functions remain to a large extent elusive. However, these 
molecules have been shown to have a direct influence on the expression of neighboring 
genes. It has been shown using genome-wide transcripts analysis that the presence of 
anti-sense transcripts on coding genes can be associated with a larger noise in 
expression42. One model explaining this phenomenon is that the active production of an 
anti-sense transcript over the transcription start site (TSS) of a gene represses the sense 
transcription in a toggle-switch manner.  
Such a toggle-switch between two ncRNA has been uncovered in the regulation of the 
flocculin Flo11. Two long non-coding RNAs have been discovered on the particularly long 
FLO11 promoter: a sense transcript ICR1 3 kB upstream from the FLO11 start site and 
an anti-sense transcript PWR1, which starts 2.3 kB from the FLO11 start site43. When 
ICR1 is transcribed, the transcription factor Flo8 cannot bind to the FLO11 promoter 
thereby inhibiting FLO11 gene expression. However, the PWR1 lncRNA can block the 
production of the ICR1 transcript, thereby allowing the FLO11 gene to be expressed44. 
This toggle-switch mechanism generates a bimodal distribution of Flo11 expression in a 
population of log-phase growing cells where a fraction of the cells expresses the flocculin 
while the other does not. The switch between the two states is controlled in part by the 
histone deacetylase complex Rpd3L. The daughter specific repressor ASH1 recruits the 
chromatin remodeler Rpd3L to the FLO11 promoter to block ICR1 transcription and favor 
FLO11 induction45–47. This allows the production of Flo11 and the activation of 
filamentation in the daughter cells, while the mother continues to grow vegetatively. 
Overall, a combination of multiple stochastic processes can result in the noisy activation 
of a gene. Some of these processes are highly dynamic such as the transcriptional bursts 
or the translocation of transcription factors. Other processes like epigenetic mechanisms 
can be maintained over multiple generations, ultimately contributing to the development 
of different cellular states within the population. 

3. Cell-to-cell variability 
In addition to the intrinsic noise generated at each locus by the elements required to set 
in place the transcriptional machinery, cells have to cope with extrinsic noise. When 
looking at a population of log-phase growing cells, some of this diversity is apparent as 
cells have different sizes or are in different stages of the cell cycle (Figure 2A). When 
following the growth of cells over a long time, one can notice that mother and daughter 
cells spend different amounts of time from one division to the next48,49. Furthermore, 
prolonged observation of micro-colonies shows that they grow at different rates3. 
At the molecular level, noise is associated to stochastic variation in the synthesis of 
mRNA. Then, the overall protein level in a cell will strongly depend on its expression 
capacity which is associated to the number of ribosomes10. A glimpse into the variability 
in protein content can be obtained using fluorescent protein tags (Figure 2B). 
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Independently of their mean expression in the population, some proteins will display a 
normal distribution of expression levels, while other proteins have clearly deviated from 
this standard distribution and are substantially more heterogeneous (Figure 2C). In 
addition, the set of proteins expressed within a cell can vary. For instance, the cell cycle 
regulated genes (roughly 10% of the transcripts) vary according to the cell cycle 
stage50,51. In parallel, specific pools of genes can be co-regulated. This has been 
suggested to be linked to the differential activation of the growth-promoting pathways 
TOR and PKA and the stress-response transcription factor Msn2 between individual 
cells52. Single-cell mRNA sequencing measurements allow to study this co-regulation 
with unprecedented resolution42. 
3.1. Variations in metabolic activity 
Alongside proteins, the metabolites within the cells can also fluctuate. Cell growth and 
division are affected by environmental conditions and specifically the level and the quality 
of nutrients available. This variability may affect the activity of the metabolic pathways 
resulting in a variation in gene expression between cells. In continuous cultures with 
limited nutrients, the whole population of cells alternates between respiratory and 
fermentative phases known as the Yeast Metabolic Cycles53. Linked to these oscillations 
are major changes in the expression profiles of the cells54. In batch cultures, where 
nutrients are plentiful, similar oscillations are present in individual cells. However, they 
occur in an asynchronous fashion in the population and are partially synchronized with 
the cell cycle55,56.  
Switching the quality of the carbon source can lead to striking differences in cellular 
adaptation and result into strong heterogeneity. The GAL regulatory network has been 
the subject of intense studies57. As an example, shifting cells grown in glucose into a 
mixture with higher concentration of galactose relative to glucose, leads to a rapid switch 
on the expression of the GAL genes in a fraction of the population, while in other cells the 
induction is delayed by multiple hours58.  
Additionally, complex memory phenomena can be observed when alternating sugar 
sources59. Cells pre-grown in galactose and exposed to glucose for a few hours will 
resume division faster than cells which were not exposed to galactose previously. 
Interestingly, this memory is a combination of epigenetic modifications at the GAL1 locus 
providing a short-term memory and expression of proteins during the galactose pre-
exposure conferred a long-term memory 60,61. A comparison of the galactose/glucose or 
maltose/glucose shifts demonstrated that it is a slow decrease in the capacity of the cell 
to activate respiration that can best explain this memory16,62. The single-cell experiments 
performed in these studies also highlight the large diversity in growth resumption 
accompanying this memory effect. Overall, the metabolic state of the cell will determine 
when a cell grows and divides, but also its capacity to respond to extracellular stimuli and 
stresses63,64.  
3.2. Cell cycle state 
As mentioned above, the cell cycle stage is a major parameter that differentiates 
individual cells. Single-cell sequencing data demonstrate the clustering of the gene 
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expression pattern of individual cells as function of their position in the cycle14,15,17. These 
differences can lead to various abilities to respond to extracellular cues. One well-
documented example is the response to mating pheromone. Cells in G1 will strongly 
activate the MAPKs Fus3 and Kss1, unlike the S-phase cells which cannot respond to the 
pheromone stimulus65,66. Thus, the inherent variability existing in the population is further 
exacerbated by the extracellular input which generates an asynchronous activation of the 
mating program in the population.  
Importantly, not all perturbations lead to this increased variability between cells in different 
cell cycle stages. When stressed by an increase in osmolarity in the medium, all the cells 
respond to the stimulus by activating the MAPK Hog1 which blocks transiently the cell 
cycle and the stress response take precedent over the cell cycle progression during the 
time needed for the adaptation67–69. Therefore, irrespective of their cell cycle stage, all 
the cells activate the HOG cascade and adapt in a synchronous fashion.   
These two examples of how MAPK pathways interact with the cell cycle represent well 
two scenarios related to biological noise. On one side, cell-to-cell variability is inherent to 
the biological function and the cell has implemented a robust system to cope with this 
variability. Interestingly, the mechanisms set in place to allow Hog1 to block the cell cycle 
progression differ for each cell cycle stage67,68. On the other side, a pre-existing variability 
between the cell is enhanced by an external stimulus and further increases the 
heterogeneity in the population. In the example of the mating pathway, this variability is 
detrimental to the desired outcome as cells should not mate with two copies of their 
chromosomes. Thus, safeguards are set in place to restrict the pheromone signaling to 
the desired cell cycle stage. 
3.3. Bet-hedging strategies 
The cell cycle state is one example of a cell-to-cell variability that can bias the response 
of a cell to an incoming stimulus. Other more subtle differences, present in a population 
of cells, can allow them to respond differently to a change in growth medium or to a stress. 
Whether these differences are due to a random process or are part of an evolved strategy 
to better survive in fluctuating conditions remains under debate.  
Single-cell sequencing data in budding yeast have shown that in addition to cell cycle 
genes, metabolic genes are enriched among transcripts that are highly variable within a 
population15. One tentative explanation for this variability is the capacity of the cells that 
express some of these genes to adapt more rapidly in case of changes in nutrients. As 
an example, GAL3 has been identified to be heterogeneously expressed in the 
population. While 80% of a population of cells growing in glucose displays no expression 
of this gene, 1.5% of the population possesses more than 10 mRNA transcripts of GAL3. 
These high GAL3 expressing cells were shown to adapt more rapidly when transferred 
from glucose into a galactose medium15. The uncorrelated expression of these metabolic 
genes can be rationalized as a bet-hedging strategy of the population which prepares 
sub-populations of cells for a change in nutrient availability. 
Stress-response genes were also shown to be expressed in a highly variable fashion 
within a population of log-phase growing cells4. It is well appreciated that induction of 



 8 

stress response genes by a mild stress prepares the cell for surviving a severe stress70. 
Single-cell mRNA sequencing has shown that a small fraction of a population of 
unstressed cells display a higher expression of stress proteins14. The expression of these 
stress response genes can provide a protection against heat, oxidative or antibiotic 
stresses2,3. Tsl1 or Hsp12 tagged with a fluorescent protein have been used to identify 
and sort 0.1% of the high-expressing cells in the population (Figure 3). These cells display 
a better resistance to various stresses, whereas, under normal growth conditions, they 
proliferate more slowly. This phenotype (slow or no growth, expression of stress response 
genes and stress survival capacity) is reminiscent of the persistence state in bacteria71,72. 
While in bacteria, persistence represents a phenotypic switch73,74, in yeast, there is a 
continuum of states from the bulk of the population that is fast-growing and expresses 
protection genes at low levels and the slow-dividing cells with high levels of stress 
response genes. Given this graded distribution, it is more difficult to characterize a 
persister state in yeast. Nonetheless, this heterogeneity in the population which provides 
a fitness advantage to a sub population of cells can be considered as a bet-hedging 
strategy for stress survival. 
3.4. Influence of cellular age  
In a log phase culture, the vast majority of cells are young, either being newborn or having 
undergone a few divisions. However, some older cells can be present and display an aberrant 
shape with a large vacuole75. These cells accumulate damaged proteins, reactive oxygen 
species and DNA damage76–78 which makes them react differently from their younger 
siblings to growth cues. 
In budding yeast, replicative aging, defined as the number of daughter cells generated by 
a mother cell has been extensively studied79,80. One major challenge when investigating 
replicative aging in yeast is the ability to separate daughter cells from their mother. 
Different strategies have been established, among them, biotinylation has served as a 
method to separate daughters from biotinylated mother cells81. More recently, microfluidic 
systems have been engineered to trap mother cells and flush away their daughters, 
allowing  to record biological changes over generations at the single-cell level75,82. Using 
these techniques, it was observed that the transcriptomic and proteomic profiles are 
perturbed during cell aging. Glucose uptake decreases resulting in a reduction of growth 
rate83. Transcription silencing is lost, resulting among other phenotypes in sterility81. 
Additionally, the ability to adapt and survive to fluctuating environments is decreasing with 
age84.   
3.5. Diversity of prions 
Another form of cell-to-cell variability that is under appreciated is the presence of prions. 
These molecular aggregates that form an epigenetic memory can confer specific 
properties to the cells that harbor them85. While it has been initially thought that only a 
limited number of proteins can form these aggregates, a recent overexpression screen 
has revealed that at least 50 proteins can maintain some form of epigenetic memory that 
last over hundred generation86. Because the presence of these aggregates can have an 
important impact on the cellular growth in specific conditions, prions have also been 
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considered as participating in a bet-hedging strategy of the cells. Stochastic switching to 
the prion state can happen with frequencies varying from 10-4 to 10-7and clearing of the 
prion probably happens with similar frequencies85. Moreover, environmental stimuli can 
also induce these transitions into and out of the prion state87. With the larger than 
expected number of proteins that can contribute to these epigenetic memories and the 
switching rate which are much higher than genetic mutations, already a few milliliters of 
culture are likely to harbor individual cells in a different prionic state. 
The attributes of a cell are constantly evolving. Metabolic waves and progression in the 
cell cycle can modify the characteristics of the cell within a few minutes. These 
asynchronous changes represent a large fraction of the diversity in the population. Other 
characteristics, like the presence of prions, are much more stable and directly transferred 
to all the progeny of a cell. Between the fast metabolic oscillations and the long-lasting 
prionic state, the expression capacity and the palette of expressed proteins are fluctuating 
slowly. The transmission of these cellular features to daughter cells remains to be better 
understood. 

4. Influence of the environment 
Beyond the variability that exists or can emerge between individual cells, the surroundings 
of the cells can be a source of heterogeneity within a population. In the planktonic state, 
cells are surrounded by a well-mixed medium and the entire population will experience 
the same nutrient concentrations and will be subjected to nutrient exhaustion 
synchronously. However, in the lab as well as in the wild, yeast cells spend much of their 
time on surfaces in close proximity to neighboring cells where nutrients access may be 
spatially constrained.  
One simple example of this environmental variability is a mating mixture where MATa and 
MATa cells are mixed together on an agarose pad to monitor the mating process (Figure 
4A). Depending on the distribution of potential mating partner in their vicinity, some cells 
will successfully mate to form a diploid or abandon the mating response early on. In 
addition, even two mating partners which are in close proximity can fail to mate if their 
cell cycles are not well coordinated. Therefore, on top of the cell-to-cell variability that 
exists in the population, the interaction with neighboring cells can add an additional level 
of heterogeneity. 
4.1. Yeast colonies 
Cells within a colony are the progeny of a single founder cell and share the same genetic 
material. However, the emergence of heterogeneous sub-populations with distinct 
metabolic states may occur as an inherent consequence of access to resources. Such 
heterogeneity in a colony is then maintained thanks to different metabolic strategies 
adopted by cells. In a vertical slice of a colony, two types of cells have been described. 
Cells from the lower part of the colony experience a higher concentration of nutriment and 
are mostly relying on respiratory metabolism, while in the upper part, cells are 
fermenting88. Also, the emergence and maintenance of these sub-populations in the 
colony are modulated by the environment. Indeed, under limited glucose conditions, small 
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patches of cells perform gluconeogenesis and release metabolites in the extracellular 
environment. Another fraction of the population feeds on these secreted nutrients, 
resulting in metabolic and phenotypic diversity89.The capabilities of cells to specialize in 
nutriment production and profit from shared resources within a colony has been 
demonstrated by the work of Campbell et al.90. Starting from a prototrophic founder cell, 
which harbors multiple plasmids compensating for deficiencies in the histidine, leucine, 
methionine and uracil synthesis present in the genome, a colony will develop. However, 
as the colony grows and cells divide, the plasmids are lost exposing the metabolic 
deficiencies of the cells. Thanks to a specialization of the cells which will produce and 
secrete some metabolites required by other cells, the colony can sustain its growth. This 
highlights how the differentiation and the exchange of nutriments among cells of the same 
colony is important for its expansion. 
Common yeast lab strains such as S288c or W303 form smooth round colonies while, 
wild yeast strains form structured colonies91. Interestingly, these structures may arise 
from the variegated expression of the flocculin FLO1143,44, which plays an important role 
in this process by aggregating neighboring cells together. Because of the bi-stable 
expression of FLO11, some cells will form tight clusters which will contribute to the three-
dimensional structure of the colony92. An additional capacity of wild yeast strain compared 
to lab strains is their ability to filament. This differentiation will allow cells to invade into 
the agar or to form pseudohyphae that extend outside of the colony (Figure 4B and C). 
The directed division of these elongated cells will allow them to reach new sources of 
nutrients. Cells will undertake this transition based on their surroundings. They will probe 
the availability of nutrients and maybe also the presence of other cells via a quorum 
sensing mechanism7,93. Thus, only cells at the periphery of the colony commit to this new 
filamentation cell fate, which differentiates them from the rest of the colony. 
For simplicity, most biochemical experiments are typically performed in liquid cultures, 
where all cell share a common environment. On solid medium, an additional level of 
complexity is present. Access to nutriment is limiting, which will lead to the diversification 
of the yeast population. In addition, cell-cell contacts can influence the fate of the cell by 
promoting mating or filamentation. 

5. Controlling heterogeneity 
Heterogeneity is an integral part of any biological system. However, to understand 
fundamental biological processes or to reliably use cells for bioproduction, it could be 
desirable to decrease or control cellular noise. Multiple studies have been undertaken to 
understand how the promoter architecture of a gene controls the level and the noise of 
the expression output. In the core sequence, the absence of a strong TATA motif favors 
a less bursty expression19,94. In the upstream activating sequence, nucleosome 
disfavoring sequences leads to lower noise while strong or multiple transcription factor 
binding sites increase transcription noise95,96. 
While optimizing the promoter sequence of a gene can limit the noise in the mRNA 
production, the protein levels will remain subject to the extrinsic noise component of the 
cell and primarily its expression capacity. Interestingly, some single gene deletions were 
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shown to display a smaller variability in growth rates than wild-type cells suggesting a 
lower cell-to-cell heterogeneity3. While the mechanism underlying this behavior remains 
to be identified, these mutants can offer a potential solution to reduce the extrinsic noise 
component in a population. One extrinsic factor that can be controlled precisely in budding 
yeast is the cell cycle progression, either by blocking cells in a specific cell cycle stage or 
by inhibiting the activity of the Cyclin dependent kinase Cdc2810. Alternatively, cell cycle 
stage markers can be used to synchronize a posteriori single-cell measurements using 
bioinformatic analysis97 
5.1. Feedback control 
Instead of designing a biological specimen with reduced noise, an alternative strategy is 
to define a control strategy to ensure that the cell behaves in a predetermined manner 
(Figure 5). With either opto-genetic systems or microfluidic flow chambers, the stimulus 
applied to the cells can be adjusted in a continuous manner. The real-time quantification 
of the protein output allows to determine the level of the stimulus needed to reach a 
predefined set point98,99. This strategy can be used to set precisely the expression level 
of the whole population. However, due to the noisy nature of gene expression, individual 
cells will express at various levels and the variability will persist within the population. In 
order to circumvent this problem, one strategy put forward is to apply the control at the 
individual cell level. Using digital micro-mirror, it becomes possible to specifically activate 
by light individual cells in the field of view of a microscope. Therefore, the stimulus can 
be tailored precisely to compensate for the propensity of each cell to express more or 
less proteins100.  
Although this approach is very powerful, its capabilities remain limited because the 
number of cells that can be controlled simultaneously cannot be increased readily. An 
alternative technique that has been demonstrated to reduce noise in gene expression is 
regulation based on pulsatile activation. It has been shown that using the frequency of 
light pulses to control the activity of an opto-genetic promoter instead of tuning the 
intensity of the light allows to decouple the expression level from the expression noise101. 
This approach is interesting for two main reasons. First, while it has been demonstrated 
with light pulses, the system could be expanded to other types of activation methods, for 
instance flow channels. Second, it has been demonstrated that many endogenous 
transcription factors are displaying pulsatile activity102–104. One potential reason for this 
natural behavior could be to decrease the noise in endogenous protein expression. 
5.2. Microfluidic devices 
In parallel to these methods which aim at controlling the cellular output, microfluidic 
devices have gained in importance by providing new ways to control the extracellular 
environment of the cell. Constantly refreshing the medium allows to keep cells dividing 
until they age75,78,82 or to acutely perturb the environment with highly controlled temporal 
stimuli105–107. Moreover, one attractive application of microfluidic devices is the ability to 
mimic with well-controlled conditions some complex natural environment encountered by 
the cells. One example is the development of gradient chambers to study polarity site 
selection and mating projection orientation108–110. While in mating mixtures, it is difficult to 
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predict the concentration of the extracellular pheromones, in microfluidic chips, cells can 
be subjected to specific and reproducible conditions. Another example is the development 
of devices to study the yeast colony architecture, by engineering chambers where 
nutrients diffuse into a layer of cells111. These microfluidic devices thus provide the 
opportunity to simplify the natural environment thereby providing deeper insight into the 
interaction of the cells with their surroundings. 

6. Conclusion 
Multiple progresses have been made in the last two decades in the understanding of 
cellular heterogeneity thanks to the development of novel techniques. Fluorescent 
proteins and live-cell microscopy have enabled to monitor the emergence of noise within 
a population. More recently developed in yeast, single-cell sequencing is promising to 
open a new dimension in the observation of the variability among cells. Although 
challenging, the combination of these two techniques can provide important biological 
insights by connecting dynamic information obtained by microscopy with the genome-
level information from the sequencing data112,113. 
An important challenge for the coming years is to identify the purpose of noise in a given 
biological context. In this review, a few examples were presented where the heterogeneity 
observed seems to possess a specific function and thus might be an adaptive behavior. 
However, in many situations, processes are designated as stochastic or random due to a 
lack of understanding of the underlying mechanism that generates this behavior. Even 
when the mechanism at the source of the heterogeneity is identified, the biological 
purpose of this noisy behavior remains enigmatic. Therefore, beyond the characterization 
of noise in biological systems, the objective is to uncover hidden biological behaviors, 
which are often masked by static or population averaged measurements.   
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Figure legends  
Figure 1. Contribution of intrinsic and extrinsic noise to cellular heterogeneity.  
A. and B. Characterization and analysis of intrinsic and extrinsic noise in cells carrying a 
red and a green expression reporter under identical promoters. Diverse sources of 
intrinsic noise (A) responsible for a differential expression of the red versus the green 
reporter. Sources of extrinsic noise (B) resulting in a correlated expression of the two 
reporters. C. Correlation between the fluorescent signal from the two reporters in absence 
of noise (left), in presence of extrinsic noise only (middle) or with both intrinsic and 
extrinsic noise (right).  
 
Figure 2. Visualization of cell-to-cell variability.  
A. A bright field image illustrates differences in size or cell cycle stage observed in a 
population of log-phase growing cells. B. Visualization of the variability in the expression 
of a stress response protein (Hsp104 tagged with YFP) within this population of 
vegetatively growing cells. C. Histograms of the fluorescence intensity of Hog1-YFP, 
Hsp104-YFP and Car1-YFP. Despite their large differences in expression levels, Hog1 
and Car1 display a normal distribution, unlike Hsp104 which displays a more 
heterogenous expression pattern.  
 
Figure 3. Scheme of the bet-hedging strategy for stress response proteins.  
This scheme represents an illustration of the bet-hedging strategy as demonstrated by 
Levy et al. 20123 and Yaakov et al. 20172. The properties of three sub-populations sorted 
from the distribution of expression of a stress response protein. The growth rate of the 
high-expressing cells is lower compared to the bulk of the population. However, this 
fraction of the population displays a higher resistance to stress.  
 
Figure 4. Heterogeneity arising from the environment.  
A. MATa (blue) and MATa (red) cells mixed on an agarose pad to monitor mating over 
time. The probability of the mating will be strongly influenced by the proximity of a cell of 
opposing mating type. Fusion events are marked by a star (*). Even cells that are touching 
each other can fail to fuse if their cell cycle is not in synchrony. B. Image of two colonies 
of S1278b cells grown on low ammonium medium for three days. This medium promotes 
the switch from vegetative growth (VG in the colony center) to pseudohyphal growth. The 
phenotype is represented by a few individual cells escaping the colony to forage for 
nutrients (FG, indicated by arrows).  C. Colonies of S1278b cells after five days on low 
ammonium medium. The colony formed by vegetatively growing cells (VG) is surrounded 
by numerous filaments of pseudohyphal cells (FG). 
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Figure 5. Scheme of feedback control in cell induction experiment.  
An experimental set-up where the sample can be stimulated in a dynamic manner either 
by light control of by a fluidic system allows to set in place a feedback control strategy. 
After sample induction (1), the image of the cells is acquired (2). The image is segmented 
to identify individual cells (3) and the behavior of each cell is monitored (4). Based on 
these new set of measurements, a new stimulus is predicted (5) and the stimulus level is 
modified accordingly (6).   
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