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Résumé large public 
 
Exploiter les cellules iNKT avec une protéine CD1d recombinante pour l’immunothérapie du 
cancer 
 
Les thérapies du cancer, comme la radiothérapie et la chimiothérapie, sont couramment 
utilisées mais ont de nombreux effets secondaires. Ces thérapies invasives pour le patient 
nécessitent d’être améliorées et de nombreuses avancées ont été faites afin d’adapter et de 
personnaliser le traitement du cancer. L’immunothérapie a pour but de renforcer le système 
immunitaire du patient et de le rediriger de manière spécifique contre la tumeur. Dans notre 
projet, nous activons les lymphocytes Invariant Natural Killer T (iNKT) afin de mettre en 
place une immunothérapie innovatrice contre le cancer. Les cellules iNKT sont une unique 
sous-population de lymphocytes T qui ont la particularité de réunir les propriétés de 
l’immunité innée ainsi qu’adaptative. En effet, les cellules iNKT expriment à leur surface des 
molécules présentes aussi sur les cellules tueuses NK, caractéristique de l’immunité innée, 
ainsi qu’un récepteur de cellules T (TCR) qui représente l’immunité adaptative. Les cellules 
iNKT reconnaissent avec leur TCR des antigènes présentés par la molécule CD1d. Les 
antigènes sont des protéines, des polysaccharides ou des lipides reconnus par les cellules du 
système immunitaire ou les anticorps pour engendrer une réponse immunitaire. Dans le cas 
des cellules iNKT, l’alpha-galactosylceramide (αGC) est un antigène lipidique fréquemment 
utilisé dans les études cliniques comme puissant activateur. Après l’activation des cellules 
iNKT avec l’αGC, celles-ci produisent abondamment et rapidement des cytokines. Ces 
cytokines sont des molécules agissant comme des signaux activateurs d’autres cellules du 
système immunitaire telles que les cellules NK et les lymphocytes T. Cependant, les cellules 
iNKT deviennent anergiques après un seul traitement avec l’αGC c’est à dire qu’elles ne 
peuvent plus être réactivées, ce qui limite leur utilisation dans l’immunothérapie du cancer. 
Dans notre groupe, Stirnemann et al ont publié une molécule recombinante innovante, 
composée de la molécule CD1d soluble et chargée avec le ligand αGC (αGC/sCD1d). Cette 
protéine est capable d’activer les cellules iNKT tout en évitant l’anergie.  
Dans le système immunitaire, les anticorps sont indispensables pour combattre une infection 
bactérienne ou virale. En effet, les anticorps ont la capacité de reconnaître et lier 
spécifiquement un antigène et permettent l’élimination de la cellule qui exprime cet antigène. 
Dans le domaine de l’immunothérapie, les anticorps sont utilisés afin de cibler des antigènes 
présentés seulement par la tumeur. Ce procédé permet de réduire efficacement les effets 
secondaires lors du traitement du cancer. Nous avons donc fusionné la protéine recombinante 
αGC/CD1d à un fragment d’anticorps qui reconnaît un antigène spécifique des cellules 
tumorales. Dans une étude préclinique, nous avons démontré que la protéine αGC/sCD1d 
avec un fragment d’anticorps dirigé contre la tumeur engendre une meilleure activation des 
cellules iNKT et entraîne un effet anti-tumeur prolongé. Cet effet anti-tumeur est augmenté 
comparé à une protéine αGC/CD1d qui ne cible pas la tumeur. Nous avons aussi montré que 
l’activation des cellules iNKT avec la protéine αGC/sCD1d-anti-tumeur améliore l’effet anti-
tumoral d’un vaccin pour le cancer. Lors d’expériences in vitro, la protéine αGC/sCD1d-anti-
tumeur permet aussi d’activer les cellules humaines iNKT et ainsi tuer spécifiquement les 
cellules tumorales humaines.  
La protéine αGC/sCD1d-anti-tumeur représente une alternative thérapeutique prometteuse 
dans l’immunothérapie du cancer. 



 



Résumé  
 
Les cellules Invariant Natural Killer T (iNKT), dont les effets anti-tumoraux ont été 
démontrés, sont de puissants activateurs des cellules Natural Killer (NK), des cellules 
dendritiques (DC) et des lymphocytes T. Cependant, une seule injection du ligand de haute 
affinité alpha-galactosylceramide (αGC) n'induit une forte activation des cellules iNKT que 
durant une courte période. Celle-ci est alors suivie d'une longue phase d’anergie, limitant ainsi 
leur utilisation pour la thérapie. Comme alternative prometteuse, nous avons montré que des 
injections répétées d’αGC chargé sur une protéine recombinante de CD1d soluble 
(αGC/sCD1d) chez la souris entraînent une activation prolongée des cellules iNKT, associée à 
une production continue de cytokine. De plus, le maintien de la réactivité des cellules iNKT 
permet de prolonger l’activité anti-tumorale lorsque la protéine αGC/sCD1d est fusionnée à 
un fragment d’anticorps (scFv) dirigé contre la tumeur. L’inhibition de la croissance tumorale 
n'est optimale que lorsque les souris sont traitées avec la protéine αGC/sCD1d-scFv ciblant la 
tumeur, la protéine αGC/sCD1d-scFv non-appropriée étant moins efficace. 
Dans le système humain, les protéines recombinantes αGC/sCD1d-anti-HER2 et anti-CEA 
sont capables d’activer et de faire proliférer des cellules iNKT à partir de PBMCs issues de 
donneurs sains. De plus, la protéine αGC/sCD1d-scFv a la capacité d’activer directement des 
clones iNKT humains en l'absence de cellules présentatrices d’antigènes (CPA), 
contrairement au ligand αGC libre. Mais surtout, la lyse des cellules tumorales par les iNKT 
humaines n'est obtenue que lorsqu’elles sont incubées avec la protéine αGC/sCD1d-scFv anti-
tumeur. En outre, la redirection de la cytotoxicité des cellules iNKT vers la tumeur est 
supérieure à celle obtenue avec une stimulation par des CPA chargées avec l’αGC.  
Afin d'augmenter les effets anti-tumoraux, nous avons exploité la capacité des cellules iNKT 
à activer l’immunité adaptive. Pour ce faire, nous avons combiné l'immunothérapie 
NKT/CD1d avec un vaccin anti-tumoral composé d’un peptide OVA. Des effets synergiques 
ont été obtenus lorsque les traitements avec la protéine αGC/sCD1d-anti-HER2 étaient 
associés avec le CpG ODN comme adjuvant pour la vaccination avec le peptide OVA. Ces 
effets ont été observés à travers l'activation de nombreux lymphocytes T CD8+ spécifique de 
la tumeur, ainsi que par la forte expansion des cellules NK. Les réponses, innée et adaptive, 
élevées après le traitement avec la protéine αGC/sCD1d-anti-HER2 combinée au vaccin 
OVA/CpG ODN étaient associées à un fort ralentissement de la croissance des tumeurs B16-
OVA-HER2. Cet effet anti-tumoral corrèle avec l’enrichissement des lymphocytes T CD8+ 
spécifiques observé à la tumeur. 
Afin d’étendre l’application des protéines αGC/sCD1d et d'améliorer leur efficacité, nous 
avons développé des fusions CD1d alternatives. Premièrement, une protéine αGC/sCD1d 
dimérique, qui permet d’augmenter l’avidité de la molécule CD1d pour les cellules iNKT. 
Dans un deuxième temps, nous avons fusionné la protéine αGC/sCD1d avec un scFv dirigé 
contre le récepteur 3 du facteur de croissance pour l’endothélium vasculaire (VEGFR-3), afin 
de cibler l’environnement de la tumeur. 
Dans l’ensemble, ces résultats démontrent que la thérapie médiée par la protéine 
recombinante αGC/sCD1d-scFv est une approche prometteuse pour rediriger l’immunité 
innée et adaptive vers le site tumoral. 



 



Summary 
 
Invariant Natural Killer T cells (iNKT) are potent activators of Natural Killer (NK), dendritic 
cells (DC) and T lymphocytes, and their anti-tumor activities have been well demonstrated. 
However, a single injection of the high affinity CD1d ligand alpha-galactosylceramide (αGC) 
leads to a strong but short-lived iNKT cell activation followed by a phase of long-term 
anergy, limiting the therapeutic use of this ligand. As a promising alternative, we have 
demonstrated that when αGC is loaded on recombinant soluble CD1d molecules 
(αGC/sCD1d), repeated injections in mice led to the sustained iNKT cell activation associated 
with continued cytokine secretion. Importantly, the retained reactivity of iNKT cell led to 
prolonged antitumor activity when the αGC/sCD1d was fused to an anti-tumor scFv 
fragments. Optimal inhibition of tumor growth was obtained only when mice were treated 
with the tumor-targeted αGC/CD1d-scFv fusion, whereas the irrelevant αGC/CD1d-scFv 
fusion was less efficient.  
When tested in a human system, the recombinant αGC/sCD1d-anti-HER2 and –anti-CEA 
fusion proteins were able to expand iNKT cells from PBMCs of healthy donors. Furthermore, 
the αGC/sCD1d-scFv fusion had the capacity to directly activate human iNKT cells clones 
without the presence of antigen-presenting cells (APCs), in contrast to the free αGC ligand. 
Most importantly, tumor cell killing by human iNKT cells was obtained only when co-
incubated with the tumor targeted sCD1d-antitumor scFv, and their direct tumor cytotoxicity 
was superior to the bystander killing obtained with αGC-loaded APCs stimulation. 
To further enhance the anti-tumor effects, we exploited the ability of iNKT cells to 
transactivate the adaptive immunity, by combining the NKT/CD1d immunotherapy with a 
peptide cancer vaccine. Interestingly, synergistic effects were obtained when the αGC/sCD1d-
anti-HER2 fusion treatment was combined with CpG ODN as adjuvant for the OVA peptide 
vaccine, as seen by higher numbers of activated antigen-specific CD8 T cells and NK cells, as 
compared to each regimen alone. The increased innate and adaptive immune responses upon 
combined tumor targeted sCD1d-scFv treatment and OVA/CpG vaccine were associated with 
a strong delay in B16-OVA-HER2 melanoma tumor growth, which correlated with an 
enrichment of antigen-specific CD8 cells at the tumor site.  
In order to extend the application of the CD1d fusion, we designed alternative CD1d fusion 
proteins. First, a dimeric αGC/sCD1d-Fc fusion, which permits to augment the avidity of the 
CD1d for iNKT cells and second, an αGC/sCD1d fused to an anti vascular endothelial growth 
factor receptor-3 (VEGFR-3) scFv, in order to target tumor stroma environment. 
Altogether, these results demonstrate that the iNKT-mediated immunotherapy via 
recombinant αGC/sCD1d-scFv fusion is a promising approach to redirect the innate and 
adaptive antitumor immune response to the tumor site. 
 



 



Abbreviations 

Ab Antibody 
ACT Adoptive cell transfer 
ADCC Antibody-dependent cellular cytotoxicity 
Ag Antigen 
αGC α-galactosylceramide 
AML Acute myeloid leukemia 
APC Antigen-presenting cell 
ArgI Arginase-I 
β2m Beta 2-microglobuline 
BiTE Bispecific T cell Engager 
BTLA B and T lymphocyte attenuator 
CAR Chimeric antigen receptor 
CBA Cytometric Bead Array 
CD Cluster of differentiation 
CDC Complement-dependent cytotoxicity 
CEA Carcino-embryonic antigen 
CLL Chronic lymphocytic leukemia 
CMV Cytomegalovirus 
CNS Central nervous system 
CpG ODN Oligodeoxynucleotide-containing CpG motif 
CTL Cytotoxic T lymphocyte 
CTLA-4 Cytotoxic T-lymphocyte antigen-4 
DC Dendritic cell 
DMEM Dulbecco’s modified eagle medium 
DN Double negative 
DP Double positive 
dsDNA Double-strand DNA 
EAE Experimental autoimmune encephalomyelitis 
EBV Epstein-Barr Virus 
EGFR Epidermal growth factor receptor 
Fab Fragment antigen binding 
FACS Fluorescence activated cell sorter 
FAP Fibroblast activation protein 
Fc Crystallizable fragment 
FcR Fc receptor 
FSC Fetal calf serum 
FDA US Food and drug administration 
FOXP3 Forkhead box P3 
FR Folate receptor 
GITR Glycocorticoid-induced TNFR-related protein 
GM-CSF Granulocyte-macrophage colony-stimulating factor 
HEK Human embryonic kidney cells 
HER2 Human epidermal growth factor receptor-2 
HLA Human leukocyte antigen 
HPV Human papillomavirus 
HVEM Herpes virus entry mediator 
IBD Inflammatory bowel disease 
IFN Interferon 



Ig Immunoglobulin 
iGb3 Isoglobotrihexosylceramide 
IL Interleukin 
i.m. Intramuscularly 
iNOS Inducible nitric oxide synthase 
IP-10 IFNg-inducible protein 
i.v. Intravenously 
KO Knock-out 
LAG3 Lymphocyte activation gene-3 
LCMV Lymphocytic choriomeningitis virus 
LN Lymph node 
LPS Lypopolysaccharide 
Mab Monoclonal antibody 
MAGE Melanoma-associated gene 
MAIT Mucosal-associated invariant T 
MCA Methylcholanthrene 
MDSC Myeloid-derived suppressor cells 
MHC Major histocompatibility complex 
MIP-1b Macrophage inflammatory protein 
MOG Myelin oligodendrocyte glycoprotein 
MR-1 MHC-class I-related molecule 
MUC-1 Mucin-1 
NHL Non-Hodgkin lymphoma 
NK Natural Killer 
NKG2D NK group 2D 
NKT Natural Killer T 
NO Nitric oxide 
NSCLC Non-small cell lung carcinoma 
OVA Ovalbumin 
PAMP Pathogen-associated molecular patterns 
PBL Peripheral blood leukocytes 
PBMC Peripheral blood mononuclear cell 
PC Phosphatidylcholine 
PD-1 Programmed cell death-1 
PD-L Programmed cell death ligand 
PE Phycoerythrin 
scFv Single chain fragment variable 
TAA  Tumor associated antigen 
TAM Tumor-associated macrophage 
TCR T cell receptor 
Teff Effector T cell 
TGF Transforming growth factor 
TIL Tumor-infiltrating lymphocyte 
TIM-3 T cell immunoglobulin mucin domain containing molecule-3 
TLR Toll-like receptors 
TNF Tumor necrosis factor  
TRAIL TNF-related apoptosis-inducing ligand 
TRAMP Transgenic adenocarcinoma of the mouse prostate 
Treg Regulatory T cell 
TRP-2 Tyrosine-related protein 



 TSA Tumor specific antigen 
PR Partial response 
RAE-1 Retinoic acid early transcript-1 
Rag2 Recombination-activating gene-2 
RNA Ribonucleic acid 
ROS Reactive oxygen species 
s.c. Subcutaneously 
S.E.M Standard error of the mean 
VEGF Vascular endothelial growth factor 
VEGFR VEGF receptor 
WT Wild-type 
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Part I: Cancer Immunity 

 

1. Cancer immunosurveillance 

 

In the 1880s Campbell De Morgan argued that cancer has a focal origin and can be dispersed 

in the body through lymphatic vessels. De Morgan also reported the fact that cancer 

occasionally spontaneously regresses (1). These observations provide evidence that host’s 

defense can react against cancer. In 1909, Paul Ehrlich was the first scientist to declare that 

the immune system can recognize and prevent tumor formation. The idea of Ehrlich had to 

wait until 1950’s when Medawar demonstrated the role of cellular components of the immune 

system in mediating allograft rejection (as reviewed by (2)). The development of syngeneic 

mouse strains and their immunization against tumor transplant gave rise to the discovery of 

tumor-specific antigens, distinct from alloantigens (3). Altogether, these discoveries have 

built the hypothesis of “cancer immunosurveillance” proposed by Burnet and Thomas. They 

postulated that lymphocytes have the role of detecting and eliminating constant arising newly 

transformed cells (4).  

 

2. Tumor antigens 

 

Coming with the concept of immunosurveillance, the discovery of tumor antigens was a 

significant step in the knowledge of cancer biology and brought an important input in the 

large field of cancer immunotherapy. Tumor antigens can be divided in two groups based on 

their pattern of expression: tumor-specific antigens (TSA) and tumor-associated antigens 

(TAA). TSAs consist of antigens expressed exclusively on tumor cells, arising from mutations 

that result in novel and abnormal protein production. TAAs are normal proteins, which are 
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also found in healthy cells, but they are ectopically expressed or overexpressed in tumor cells. 

These antigens are mostly tissue-specific antigens, lineage differentiation antigens or 

developmental antigens that are no longer expressed by normal cells in the adult stage or only 

weakly and in restricted sites.   

The epidermal growth factor receptor (EGFR) family is expressed in some normal tissues and 

has a function in proliferation and differentiation of cells. The EGFR member 2, or HER2, 

which is expressed during fetal development, was found to be overexpressed in many human 

cancers, especially in 30% of breast cancer and ovarian cancer, and is a marker of bad 

prognosis. Herceptin is a humanized monoclonal antibody (mAb), targeting the antigen 

HER2, and is currently used to treat breast cancer patients. Herceptin treatment has 

demonstrated significant clinical benefits, mostly in combination with chemotherapies (5). 

HER2 forms heterodimer with EGFR-1 receptor, which is also a prognostic factor in 

epithelial cancers (6, 7). Another TAA is the carcino-embryonic antigen (CEA) involved in 

cell adhesion, which is also normally expressed during fetal development. CEA is a 

glycoprotein overexpressed in several human tumors and its detection in the serum serves as 

tumor marker in colorectal carcinoma (8). 

In 1991, the first human tumor antigen recognized by lymphocytes T of patient was identified 

on human melanoma tumor cells and called melanoma-associated antigen-1 (MAGE-1). 

MAGE-1 was recognized by several CTL derived from tumor patients, and restricted by 

human leukocyte antigen (HLA)-A1 (9). Subsequently, several other antigens of the MAGE 

family as well as the NY-ESO-1 were identified by the reactivity of lymphocytes from 

patients. Interestingly, these antigens were expressed only by tumor cells and by testicular 

cells thus there were given the name of cancer testis antigens. 
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Today, numerous tumor antigens have been discovered and are now classified in five different 

categories. Some of them are being tested as target for cancer immunotherapy (10, 11) (table 

1). 

 

Table 1: Examples of human cancer antigens classified into 5 groups 

Category Examples of tumor antigens 

Mutated antigens p53, ras, BCR-ABL 

Overexpressed antigens EGFR, HER2 

Cancer-testis (CT) antigens MAGE, NY-ESO-1 

Differentiation antigens Tyrosinase, Melan-A, gp100, CEA 

Viral antigens HPV E6-E7, EBV proteins 

 

3. Cancer immunoediting  

 

The immune system has the capacity to eliminate nascent tumor cells based on the appearance 

of tumor antigens or molecules induced by stress. This process is defined as tumor immune 

surveillance. Unfortunately, cancers can arise from these transformed cells even with the 

presence of a competent immune surveillance. These observations led to the concept of 

immunoediting. This concept is divided into three phases, named the 3Es of cancer 

immunoediting: elimination, equilibrium and escape (figure 1). 
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Figure 1: The three phases of the cancer immunoediting: Elimination, Equilibrium and 
Escape. Tumor cells arise from normal cells after an oncogenic transformation caused by 
different processes (carcinogen, virus…). These transformed cells express TAA or danger 
signals that initiate the cancer immunoediting process. First, during the elimination phase, 
innate and adaptive immune cells recognize and eliminate tumor cells leading to the 
protection of the host. However, if the elimination process is not complete, tumor cells enter 
the equilibrium phase where the immune pressure leads to the selection of resistant tumor 
variants. Finally, these newly variants develop escape mechanisms to evade the immune 
system and become prolific. Adapted from (12). 
 

 

3.1. Elimination 

 

The elimination process is described as the cancer immunosurveillance. Immunodeficient 

mice have been useful to determine the role of immune cells in destroying tumors. For 

instance, lymphocyte-deficient mice, which have a defect in the recombination-activating 

gene 2 (Rag2), were shown to develop spontaneous sarcomas more rapidly and more 
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frequently compared with WT mice when treated with the chemical carcinogen 

methylcholanthrene (MCA) (13). These observations underline the essential role of adaptive 

immune cells for the protection against cancer development. The innate part of the immune 

system is also effective against tumor apparition as shown by the enhanced cancer 

susceptibility of RAE1 transgenic mice, which lack functional natural killer (NK) cells, and of 

Jα18-/- mice, that are deficient in natural killer T (NKT) cells (14). At the molecular level, NK 

cells play a role in cutaneous tumor immunosurveillance through their activating receptor 

NKG2D (15). There is also evidence demonstrating that immunological components of 

lymphocytes, as interferon (IFN)-γ and perforin, are involved in the prevention of tumor and 

metastasis development (16) (14). Various immune gene-targeted KO mouse models were 

used to assess the role of other lymphocytes and immune effector pathways including tumor 

necrosis factor (TNF)- related apoptosis-inducing ligand (TRAIL), interleukin (IL)-12 and 

type I IFN in the control of tumor emergence (12). Altogether, these results highlight the 

complexity and the synergy between all components of the immune system in eliminating 

tumors. 

 

3.2. Equilibrium 

 

With such evidence of tumor immunosurveillance, the question concerning the eventual 

apparearance of tumors is asked. The equilibrium phase is an immune latent period following 

incomplete tumor destruction, which precedes tumor escape. During this phase, an inhibitory 

activity of the immune cells on tumor cells has been demonstrated, leading to the selection of 

resistant tumor variants. Through escape mechanisms, tumors become less immunogenic and 

are better adapted to survive in immunocompetent hosts. In parallel, lymphocytes are 

overwhelmed and cannot prevent appearance of new tumorigenic cells. The paradox of 

immunoselection of tumor variants has been well described. To reveal the influence of the 
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adaptive immune system in the immunogenicity of tumors, MCA-induced tumors originated 

from Rag2-/- or WT mice were transplanted in either Rag2-/- or in WT hosts. When grafted 

into Rag2-/-, both Rag2-/- and WT-derived sarcomas developed with the same progression. In 

contrast when transplanted into immunocompetent hosts, 40% of Rag2-/- tumors were rejected 

around 8-9 days after graft, while all WT-derived tumors grew (13). This observation clearly 

indicated that WT derived sarcomas went through an immunoediting process. The innate 

system is also implicated in the immune pressure exerted on tumors during the equilibrium 

phase. A recent study has demonstrated that NK cells producing IFNγ promoted the 

immunogenicity of MCA-induced tumors through the attraction of tumor-associated 

macrophages (TAM). Even in Rag2-/- mice, tumors were edited by Th1-phenotype TAM also 

called M1 macrophages, which expressed high level of major histocompatibility complex 

(MHC)-class II and produced TNFα. (17). Overall, these observations show that tumors 

derived from immunocompetent mice are poorly immunogenic indicating that the adaptive 

immune system shapes the resistant phenotype of tumors, with an additional contribution of 

innate immunity.  

 

3.3. Cancer escape  

 

At some point of the equilibrium stage, tumor variants evade the immune pressure and 

become more aggressive. Several mechanisms were described to explain how tumors evade or 

counteract the immune system. First, immunosuppressive tumor environment is organized by 

the appearance of regulatory immune cells together with suppressive factors released by 

tumors themselves. Second tumor cells have the capacity to down-regulate MHC-class I 

molecules or to present an altered phenotype of MHC-class I and by consequence failing to 

correctly present antigens (reviewed in (18)). T cell-based therapies exert a pressure leading 

to the selection of immune-resistant tumor variants, as does the natural immune response. 
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Indeed, patients who relapsed after undergoing cancer immunotherapy, provided evidence 

that tumors can lose the expression of the targeted antigens. In a clinical study of a cancer 

vaccine against melanoma, one patient who was described positive for gp100 and TRP-2 

antigens, displayed tumor variants with a total loss of HLA-class I or the disappearance of 

melanoma antigens at the end of the therapy process (19). The presence of 

immunosuppressive cytokines, the impact of immune-regulatory cells, such as regulatory T 

cells (Treg) and myeloid-derived suppressor cells (MDSC), and the inhibitory receptors 

expressed by T cells play together to dampen the immune system. 

 

Regulatory T cells 

Treg cells are well known to have a role in the maintenance of peripheral tolerance. Their 

regulatory effects are essential to prevent autoimmune disorders and moderate inflammation 

(20). Treg cells are described as T lymphocytes expressing CD4 and CD25 as well as the 

transcription factor forkhead box P3 (FOXP3) that is needed for their development and for the 

expression of multiple genes involved in the regulatory functions. Natural Treg develop in the 

thymus and express a diverse TCR repertoire specific for self-antigens, but some suppressive 

T cells, also called Treg, are induced or converted in the periphery, from antigen-specific 

effector T cells, depending on the microenvironment (21). Suppression mechanisms used by 

Treg to regulate the immune system are classified in three distinct groups: the production of 

inhibitory cytokines, metabolic disruption and the targeting of dendritic cells (DC) (22). Treg 

cells have been studied in different situations of chronic inflammation such as inflammatory 

bowel disease (IBD) or experimental autoimmune encephalomyelitis (EAE). In those 

pathological situations, their protective activity was shown to be mediated by the production 

of IL-10 and transforming growth factor (TGF)-β (23). Normally assigned to NK and CTL, 

cytolitic activities are also found in Treg. Several studies have shown that Treg can suppress 
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effector T cells by killing, through granzyme B and perforin pathways. As Treg express a 

high level of IL-2 receptor α chain CD25, it has been demonstrated that they can induce IL-2 

deprivation by consuming this cytokine that in turn leads to a poor survival of effector T cells 

(24). An indirect suppressive function on T cells is also attributed to Treg. Indeed, Treg also 

express the co-inhibitory molecule cytotoxic T-lymphocyte antigen 4 (CTLA-4), which 

interacts with DC through CD80 and CD86, to modulate their maturation and their functions. 

Treg also contribute to render DC tolerogenic or to attract regulatory macrophages, which in 

turn damped the activities of effector T cells (reviewed by (22)) (figure 2). 

 

 

Figure 2: Mechanisms of suppression by regulatory T cells. 

 

Among their primary role in the maintenance of peripheral tolerance, Treg were also found to 

suppress antitumor activities and to be a major obstacle in the success of cancer 

immunotherapy. As Treg are supposed to be specific for self-antigens, it is expected to find 

TAA specific Treg in the tumor environment. For instance, a study identified Treg specific for 

Melan-A antigen in the peripheral blood and in tumor-infiltrated lymph nodes of melanoma 

patients (25). Interestingly, the frequency of TAA-specific Treg was largely reduced after 

immunotherapy based on Melan-A peptide vaccination (25). Altogether the potential sources 

of Treg in the tumor result from the trafficking of thymus-derived Treg, the expansion of Treg 
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in the tumor and the differentiation or the conversion of effector T cells, induced by different 

factors in the tumor like IL-10, TGFβ or vascular endothelial growth factor (VEGF).  

To prevent the immunosuppressive activity of Treg within the tumor, immunotherapies 

targeting Treg were developed. Briefly, monoclonal antibodies targeting CD25, the 

glucocorticoid-induced TNFR-related protein (GITR) and CTLA-4, defined as markers of 

Treg, showed an efficient reduction of tumor burden in mouse and human, and represent 

promising adjuvant cancer therapies. Low-dose of the alkylating agent cyclophosphamide, 

currently used as a chemotherapy agent, was reported to induce a depletion of Treg cells, but 

these observations remain to be confirmed and understood. The combination of 

immunotherapy in parallel with the depletion of Treg is under investigation and is an 

attractive choice in the treatment of cancer patients (reviewed by (26)). 

 

Myeloid-derived suppressor cells  

MDSC are a suppressive subset of myeloid cells also involved in tumor escape. A large 

variety of myeloid precursors give rise to MDSCs, including myeloid progenitor cells, 

immature macrophages, immature granulocytes and immature DC. In mice, MDSCs are 

characterized by CD11b and Gr1 markers, while in humans their phenotypes are LIN-HLA-

DR-CD33+ or CD11b+CD14-CD33+. MDSC have been shown to strongly expand in tumor-

bearing mice both in peripheral organs and tumor tissue, and increased MDSCs frequencies 

were shown in the blood of cancer patients (27). Among the CD11b+Gr1+ MDSCs, two 

major subsets have been described in several mouse tumor models: the granulocytic 

Ly6G+Ly6Clow MDSC and the monocytic Ly6G-Ly6Chigh MDSC, which might use different 

suppressive mechanisms to impair effector T cell responses (28). MDSCs produce high 

quantities of the two enzymes; inducible nitric oxide synthase (iNOS) and arginase I (ArgI), 

which both degrade L-arginine and generate nitric oxide (NO) and urea respectively, leading 
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to the direct suppression of T cell responses (figure 3). Reactive oxygen species (ROS) and 

the oxidant product peroxynitrite are also important mediators used by MDSCs for their 

suppressive activities (figure 3)(29).  

 

 

 

Figure 3: Mechanisms of MDSC-induced suppression of T cell functions and inhibition 
of MDSC functions. 
 

In addition to enzymatic activities directly impairing T cell functions, MDSCs also promote 

the expansion of other immunosuppressive cell populations such as Treg (reviewed by (30)). 

To target MDSC and promote a better tumor immune response, several approaches were 

tested. The first one is to differentiate MDSC into mature myeloid cells that do not display 

suppressive functions. The best characterized compound for this purpose is retinoic acid, 

derived from vitamin A, which has been shown to decrease the number of MDSC in tumor-

bearing mice and in patients with cancer (31, 32). Retinoic acid increased significantly the 

production of glutathione, a potent antioxidant, within the cells and thus reduced the level of 

ROS, which in turn led to the differentiation of MDSC (33). The blocking of VEGF, a major 

factor in the promotion of MDSCs, by using the anti-VEGF antibody (avastin), also led to a 

decrease of MDSC in the peripheral blood of cancer patients (34). Another approach is the 

inhibition of the function of MDSC. Inhibitors of ArgI, iNOS and ROS are being developed 

T cell MDSC 
NO -  urea 
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to reduce the immunosuppressive effects of MDSC and ameliorate the antitumor immune 

response. Finally, a direct depletion of MDSC has been observed in mice after the 

administration of the chemotherapy gemcitabine (reviewed by (30)). Altogether, these results 

suggest an important potential of targeting MDSC to enhance immunotherapeutic effects. 

 

Inhibitory receptors   

During the immune response, a balance between co-stimulatory and co-inhibitory receptors 

expressed on T cells regulates the quality of the response. A broad diversity of co-inhibitory 

receptors was described, which negatively regulate T cell responses to protect from 

autoimmune diseases. Among the CD28/B7 family, belonging to the immunoglobulin (Ig) 

superfamily, programmed cell death-1 (PD-1) and CTLA-4 receptors are the two negative 

immune regulators commonly studied and used in the cancer immunotherapy setting (figure 

4). Additional co-inhibitory receptors are also known to negatively regulate T cells. T cell 

immunoglobulin mucin domain containing molecule-3 (TIM3) receptor binds to galectin 9, 

expressed on many types of cancer, to inhibit T cells functions (35). The B and T lymphocyte 

attenuator (BTLA) also induces negative signaling in T cells by interacting with the herpes 

virus entry mediator (HVEM) (36). 
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Figure 4: T cell stimulation and inhibition. a) T cell activation needs a “signal 1” induced 
by the TCR/Ag-MHC-I interaction and the costimulatory “signal 2” formed by the binding of 
CD28 on B7 ligands. b) Co-inhibitory molecules PD-1 and CTL-4 are upregulated after T cell 
activation and bind to their respective ligands PD-L1 and B7 to negatively modulate T cell 
activation (adapted from (37)). 
 

In cancer, the ligands for inhibitory receptors, which dampen T cell functions, are often 

overexpressed in tumor tissue and then used as an escape mechanism (38). This control used 

by tumor leads to the appearance of unresponsive T cells, which can no longer mount an 

antitumor response. The non-responsive T cells are characterized by a prolonged upregulation 

of co-inhibitory receptors as well as defect in proliferation and in the production of cytokines, 

but these features can be reversed by using blocking antibodies directed against these co-

inhibitory receptors.  

PD-1 receptor limits T cell effector function by binding to PD-1 ligand 1 (PD-L1) and PD-L2 

during an inflammatory response. The expression of PD-1 is upregulated when T cells 

become activated and acts mainly through the phosphatase SHP2 (39). In the tumor 

microenvironment, the increased expression of PD-1 in tumor-infiltrating lymphocytes (TIL) 

was shown to correlate with impaired cytokine production that reflected an anergic state of T 

cells compared to T cells in normal tissues (40). Similarly, the expression of PD-L1 by tumor 

cells could be used as a prognostic factor for melanoma (41).  
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CTLA-4 is expressed by activated T cells and negatively regulates the amplitude of T cell 

activation. CTLA-4 binds the same ligands as the co-stimulatory receptor CD28: CD80 and 

CD86 that are up-regulated on mature antigen presenting cells (APC). CTLA-4 exhibits a 

higher affinity for its ligands than CD28 and acts as a competitor of CD28, during the 

contraction phase of the T cell response. The binding of CTLA-4 to its ligands activates the 

SHP-2 and PP2A pathways that will stop the TCR activation. Moreover, CTLA-4 is highly 

expressed on Tregs and plays an important role in their immunosuppressive activity (reviewed 

by (39)).  

The targeting of co-inhibitory receptors is a promising approach for cancer immunotherapy 

that is being studied further by targeting several different co-inhibitory receptors at once or by 

using it in combination with other immunotherapies.  
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Part II: Cancer immunotherapies 

 

1. Objectives of immunotherapy 

 

Over the past decade, immunotherapy is still in progress for the treatment of cancer and 

revealed promising successes. Compared to conventional cancer treatments like 

chemotherapy, radiation or surgery that are invasive for the patient, immunotherapy aims to 

be specific for the cancer and to limit the side effects. The principle of the immunotherapy is 

to activate or modulate the immune system in order to redirect it to the tumor site. Different 

strategies have been developed and belong to the large field of cancer immunotherapy: 

monoclonal antibodies, immune adjuvants, cancer vaccines or adoptive transfer of immune 

cells. The discovery of new tumor antigens has permitted a large variety of cancers to be 

targeted and extended the therapeutic approaches.  

 

2. Tumor vaccines 

 

The discovery of TAA has lead to the development of specific tumor vaccines that can prime 

the immune system against cancer. Prophylactic cancer vaccines are well established 

experimentally and they are efficient in protecting from tumor challenge in MCA-treated 

animals or from tumor onset in genetically modified animals, which otherwise spontaneously 

develop tumors (42). In the human, vaccination of young girls against virus-induced tumors, 

such as human papillomavirus (HPV), is currently in clinical use and efficiently protects 

women from the development of cervical cancers (43). Preliminary therapeutic benefits were 

also reported with a HPV vaccine (44). However, the development of therapeutic vaccines 

against non-virally induced cancers remains more challenging, as the immune system has to 
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overcome the tolerance to self-antigens and the immunosuppression induced by the tumor. 

Nevertheless, the use of tumor-specific antigens as vaccines, in the form of peptide or 

recombinant proteins mixed with a potent adjuvant, is efficient to elicit anti-tumor T cell 

responses (45). To enhance anti-tumor effects it is necessary to find the right formulation. 

This implies the combination of the appropriate tumor antigen with a potent adjuvant and to 

determine the best route of vaccination for each vaccine. In particular, vaccination of non-

small cell lung carcinoma (NSCLC) patients with a recombinant MAGE-A3 protein mixed in 

a saponin-based adjuvant improved the disease-free survival (46). Detailed analysis in these 

patients revealed a high-titer of anti-MAGE-A3 antibodies as well as a potent CD4+ and 

CD8+ MAGE-A3-specific response. These vaccinated patients have been boosted with 

MAGE-A3 plus adjuvant and the authors concluded that this vaccine was efficient to mount 

long-term B and T cell memory responses. Melanoma, ovarian and breast cancer patients 

receiving a vaccination with recombinant protein NY-ESO-1, combined with CpG ODN and 

montanide, developed a rapid CD4+ T cell response and later, a fraction of these patients 

showed a specific CD8+ T cell response (47). Active immunization of patients with HER2 

overexpressing tumors using HER2/neu peptides elicited a robust CD4+ and CD8+ T cell 

response (48). This acquired immunity specific for HER2 persisted during a long period in 

patients, most likely due to the activation of helper specific CD4+ T cells. Taken together, 

these vaccine strategies underlined the efficacy to promote and enrich the T cell response 

against cancers. Continuous efforts are ongoing to test TAA-derived peptide based vaccines 

in cancer patients. In the context of melanoma, these studies use peptides derived from 

melanocyte differentiation antigens such as gp100, Melan-A or different members of the 

MAGE family as well as NY-ESO-1, in combination with standard adjuvants and 

immunostimulants (45) (49). Peptides from HER2, CEA or mucin-1 (MUC1) are being tested 
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for ovarian and breast cancers. In general, there are no toxicities observed after the 

administration of the vaccines (50). 

Another way to elicit antitumor immune responses is the administration of DC as a vaccine. 

This strategy aims to induce antigen-specific T cell responses by transplanting autologous DC 

previously pulsed in vitro with the peptide or the protein of interest (51). Because DCs are 

important to stimulate adaptive responses, their administration in patients permits to extend 

and amplify CD8+ T cell responses. The activation of DC before autologous transfer is an 

important step to improve antigen presentation, migratory capacity and the up-regulation of 

co-stimulatory molecules that help to confer potent adaptive immunity. Numerous clinical 

trials with DC vaccines have been directed in cancer patients, especially in melanoma, but 

few clinical responses were observed, largely attributed to the advanced stage of the cancer 

(51, 52). However, in 2010, a DC-based vaccine, leading to a prolonged median survival in 

castration-resistant prostate cancer patients, was approved by the FDA. The Sipuleucel-T 

immunotherapy (Provenge®) consists of an autologous PBMCs transfer, previously activated 

ex vivo with a recombinant prostate antigen fused to GM-CSF (53).  

Alternative strategies consist in the use of genetically modified autologous tumor cells that 

secrete granulocyte-macrophage colony-stimulating factor (GM-CSF) as a vaccine. One 

example is the study showing that irradiated autologous melanoma cells secreting GM-SCF 

enhanced anti-tumor immunity in melanoma patients (54). Named GVAX, this whole-tumor 

vaccine is also applied in clinical trials for the treatment of prostate cancer (55). This 

approach gives the advantage of presenting multiple tumor antigens specific for each patient 

together with a DC stimulation, but like DC vaccine, it is a personalized approach difficult to 

adapt to standardized cancer treatment.  

The results obtained with cancer vaccines are encouraging even if poor clinical benefits are 

yet observed in cancer patients. The combination of this strategy with adoptive transfer of 
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immune cells or with blockade of immunosuppressive pathways might result in a more 

effective adaptive anti-tumor response.  

 

3. Adoptive cell transfer  

 

The in vitro expansion of T cells led to the development of adoptive cell transfer (ACT). 

Briefly, autologous T cells are expanded ex vivo, activated or genetically modified in vitro 

and re-infused in lympho-depleted patients. The ACT immunotherapy was improved by the 

re-infusion of expanded tumor-infiltrating lymphocytes (TILs), with increased specificity 

against the tumor. The aim is to generate TIL cultures from excised tumor biopsies and obtain 

a large number of highly tumor reactive T cells (56). A study reported that treatment with 

autologous TILs plus IL-2 led to durable complete responses in 22% of patients with 

metastatic melanoma. Moreover, 56% of these patients had an objective clinical response 

(57). Unfortunately, the accumulation of TILs is peculiar to melanoma tumors that is much 

less observed in other solid tumors, with high variability among individuals. One limitation is 

that TILs often display an exhausted phenotype acquired in the immunosuppressive tumor 

microenvironment, characterized by the up-regulation of co-inhibitory receptors and the 

deficient production of IFNγ (58). This lack of naturally occurring TIL populations and their 

weak antitumor reactivity prompted the development of genetically engineered T cells to 

express tumor-specific TCRs or chimeric antigen receptors (CAR). Briefly, autologous T cells 

are transduced with a selected high affinity TCR using a retrovirus, expanded in vitro and re-

infused in cancer patients (figure 5).  
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Figure 5: Schematic steps of adoptive cell therapy from (59). 

 

The TCR candidates can be selected either from the natural repertoire or after mutagenesis of 

their antigen recognition domain in order to increase the affinity of T cells (60). A clinical 

trial was performed in patients with metastatic melanoma or metastatic synovial cell sarcoma. 

Patients were treated with the transfer of autologous T cells engineered to express NY-ESO-

1-specific TCR (61). Results showed objective clinical responses in 50% of patients and two 

complete regressions among melanoma patients. One month after cell transfer in patients, 

NY-ESO-1 specific and tumor-specific IFNγ positive responses were still observed in 

peripheral blood mononuclear cells (PBMCs). Another similar study demonstrated the potent 

anti-tumor effects of ACT in patients with metastatic colorectal cancer (62). In this case, high 
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affinity TCR directed against human CEA were generated in HLA transgenic mice and the 

selected TCR were transduced in peripheral blood leukocytes (PBLs) from patients. In the 

three patients treated, tumor regressions were observed but transient inflammatory colitis was 

induced in all patients, which limit the use of anti-CEA T cell transfer.  

As an alternative, chimeric antigen receptors (CAR), containing the antigen recognition 

domain of an antibody can be transduced by retrovirus into T cells from patients. CARs are 

composed of a single-chain variable fragment (scFv) of an antibody, fused to an intracellular 

domain that activates T cells (figure 6). CAR engineered T cells can be directed to the tumor 

via the antigen specificity of the scFv and activated by the intracellular motif of the CD3ζ 

chain domain. Since this approach is not MHC restricted, a single CAR can be used in all 

patients.  

 

Figure 6: Structure of chimeric antigen receptors (CARs). First-generation CARs are 
typically composed of an scFv fragment specific to a TAA, fused to an inert transmembrane 
domain of the CD8 linked to a cytoplasmic signaling domain of the CD3 ζ chain. Second-
generation CARs include a co-stimulatory signaling domain such as CD28, 4-1BB or OX40, 
while third-generation CARs contain tandem cytoplasmic signaling domains from 2 co-
stimulatory receptors (from (63)). 
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A clinical study in a patient who had chronic lymphocytic leukemia (CLL) showed a 

complete remission after an anti-CD19 CAR-transduced T cell transfer (64). The CAR was 

constructed to specifically target CD19 on B cells and to drive the CD3ζ chain activating 

signaling into T cells. The 4-1BB signaling domain was also included in the construction to 

enhance the anti-tumor activities of re-engineered T cells. CAR19 T cells were able to expand 

in vivo and remained detectable six months after the transfer. The use of CAR-modified T 

cells can be extended to other tumor targets such as the folate receptor alpha (FRα) in ovarian 

cancer patients (65). Experimental results show that a CAR anti-VEGFR-2 targeting the 

vasculature could inhibit the growth of vascularized syngeneic tumor in mice (66). Recently, 

the same group reported an enhanced efficacy of the CAR system by co-transducing T cells 

with an anti-VEGFR-2 CAR and the IL-12 gene with strong anti-tumor effects in different 

mouse tumor models (67).  

ACT represents a highly personalized and promising therapy to treat cancers. This 

immunotherapy can be adapted to each patient and each tumor depending of the choice of 

tumor antigens. Moreover, the extension of CAR targeting tumor stroma antigens might be a 

good alternative to treat several types of cancer (67). Altogether, the recent data have shown 

the feasibility and the efficacy of the transfer of anti-tumor T cells as a new form of cancer 

immunotherapy but this technology is still limited by the cost.  

 

4. Antibody-based therapy: 

 

4.1. Monoclonal antibodies targeting tumor 
 

Today, a large collection of monoclonal antibodies (mAbs) has become standard 

pharmaceuticals for treating a wide variety of cancers. Thanks to new technologies, it is now 

possible to obtain chimeric, humanized or fully human mAbs (68). These technologies have 
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permitted enhanced efficacy of antibody-mediated immunotherapy due to reduced 

immunogenicity, increased effector functions and prolonged half-life. Based on the tolerance 

of the human immune system to antibodies and their targeting properties, nine pharmaceutical 

mAbs targeting five TAA and a growth factor (VEGF) have been approved by the US Food 

and Drug Administration (FDA) in anti-cancer therapy (table 2). 

A representative example is the Trastuzumab antibody (Herceptin) targeting the HER2 

antigen, which is overexpressed in several tumors including breast and ovarian cancers. It was 

approved by the FDA in 1998 for the treatment of invasive breast cancers which are positive 

for HER2 expression. Used in combination with chemotherapy in the treatment of breast 

cancer, trastuzumab induced a complete and partial response rate of 50% compared to 32% 

with the chemotherapy alone (5). Moreover, patients who received the combination had a 

median survival increased by five months compared to the chemotherapy alone.  

Suggested mechanisms of Ab induced antitumor effects are the interaction between the Ab 

and its antigen, that interfaces with intracellular signaling of the targeted protein, the 

activation of complement-dependent cytotoxicity (CDC) and antibody-dependent cellular 

cytotoxicity (ADCC). The last two mechanisms are induced by the crystallizable fragment 

(Fc) part of the Ab. In ADCC the Fc fragment reacts with Fc receptors (FcR) leading to the 

activation of effectors cells such as NK cells, monocytes and probably neutrophils. This 

property plays an important role in mAb antitumor activity. Moreover, different FcR 

polymorphisms, in patients treated with traztuzumab, strongly influence the clinical response 

by enhancing the ADCC activity (69). Naked mAbs are those without any material attached to 

them, whereas conjugated mAbs are those joined to a chemotherapy drug, radioactive isotope 

or toxin (table 2). The targeting of CEA antigen using Iodine131-labeled antibodies was also 

extensively investigated for colon cancer therapy and for specific tumor localization (70). The 

binding between the Ab and tumor-associated antigen targets the drug or toxin to tumor cells.  
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Table 2: Monoclonal therapeutic antibodies approved by FDA in oncology classed according 
to the year of approval. 
 
Generic name  
(Trade name) 

Type Target Indication Year of 
approval 

Panitumumab 
(Vectibix) 

Human IgG2 EGFR Colorectal cancer 2006 

Bevacizumab 
(Avastin) 

Humanized IgG1 VEGF Colorectal cancer 2004 

Cetuximab 
(Erbitux) 

Chimeric IgG1 EGFR Colorectal cancer 2004 

Alemtuzumab 
(Campath1H) 

Humanized IgG1 CD52 CLL  2001 

Trastuzumab  
(Herceptin) 

Humanized IgG1 HER2 Breast cancer 1998 

Rituximab 
(Rituxan) 

Chimeric IgG1 CD20 NHL 1997 

Tositumomab-I131  
(Bexxar) 

Murine IgG2a CD20 NHL 2003 

Ibritumomab tiuxetan 
(Zevalin) 

Murine IgG1 CD20 NHL 2002 

Gemtuzumab ozogamicin  
(Mylotarg) 

Humanized IgG4 CD33 AML 2000 

 

 

Ab-mediated immunotherapies are restricted to the availability of surface antigens mainly 

expressed on tumor cells and poorly by healthy tissue. New strategies have been developed to 

enhance the CDC or ADCC activities or to lengthen their half-life and thus ameliorate 

antitumor effects (71). The combination of mAbs with radiotherapy, chemotherapy or other 

immunotherapy reveals promising results and are rarely given as single therapy.  

 

Different antibody (Ab) formats result from enzymatic digestion or from molecular biology 

modifications, retaining or not effector functions (figure 7). The main structure used in fusion 

proteins is the scFv, for instance in the development of CARs. The scFv is composed of the 
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variable domains of the heavy and the light chains of mAb linked by a peptide spacer, and 

represents the smallest structure (25 kDa) with antigen recognition. If the Ab serves in 

diagnostics, a protein with a low molecular weight, such as the scFv or the diabody, will be 

favorable due to its rapid pharmacokinetics. In contrast, the intact antibody gives advantage in 

the therapeutic setting with the presence of Fc-mediated effector functions.  

 

 

Figure 7: Representative examples of antibody structures. The constant or the variable 
domains of the Ig are combined or used alone to create a vast range of antibody constructs. 
Thus, this strategy leads to antibody fragments revealing different molecular weights from 12 
to 150 kDa and valencies, which confer specific biological properties (adapted from (71)). 
 

4.2. Immune-modulating antibodies 

 

Recently, a novel class of mAbs that modulates the immune response is under development. 

The majority of these mAbs aim to block the negative function induced by co-inhibitory 

receptors (see chapter 3.3) and thus should restore the anti-tumor activity of immune cells 

(figure 8).  
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In 2010, the first immune-modulating Ab was approved by the FDA for the treatment of 

metastatic melanoma. It is named ipilimumab and is directed against the co-inhibitory 

receptor CTLA-4. Allison and colleagues were the first to demonstrate experimentally and 

then clinically the potent anti-tumor effects induced by the blockade of CTLA-4. In mice 

grafted subcutaneously with tumor, treatment with anti-CTLA-4 resulted in tumor rejection 

and protection against a re-challenge (72). Later, this group and others demonstrated that the 

blockade of CTLA-4 influences Treg cell and effector T cell outcomes leading to impressive 

and synergistic anti-tumor effects (73). Nevertheless, anti-CTLA-4 treatment alone had a low 

impact in the poorly immunogenic B16 melanoma model. This weak effect was enhanced 

when anti-CTLA-4 was combined with a GM-CSF-expressing tumor vaccine. This 

therapeutic combination allowed the eradication of established B16 tumors and correlated 

with a better tumor-specific CD8 T cell response. In this study, a depigmentation of mice was 

observed, associated with auto-reactive T cells. This phenomenon indicated an autoimmune 

disease, vitiligo, often observed in melanoma patients who positively respond to cancer 

therapy (74). The encouraging pre-clinical studies gave rise to the development of 

ipilimumab. In a clinical trial, fourteen melanoma patients were administered with anti-

CTLA-4 and gp100 peptides but only two complete responses were observed. Importantly, 

nine of these patients showed toxicity associated with autoimmune disorders (75). However, a 

phase III trial in advanced melanoma patients treated with ipilimumab, combined or not with 

gp100 peptide vaccine, demonstrated a significant improvement of the survival (3.5 months 

survival benefit) compared to vaccine alone (76). The potential of anti-CTLA-4 antibody in 

cancer treatment is now well demonstrated and its use in combination with conventional 

therapy or with cancer vaccines is promising. The autoimmune toxicities observed after anti-

CTLA-4 treatment highlight the important role of this co-inhibitor receptor to maintain 
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peripheral tolerance. The adverse events can be controlled and reversed by specific drugs, 

however careful monitoring is required.   

The second promising mAb designed to manipulate the immune response is directed against 

the co-inhibitory receptor PD-1. PD-1 is highly expressed on TILs, reflecting an anergic or 

exhausted state, and the PD-1 ligand, PD-L1 is up-regulated also on cells from different 

human tumors. These observations provided a robust rationale for blocking PD-1 in the 

context of cancer therapy. Similar to ipilimumab, the anti-PD-1 mAb exerts a blocking effect 

on the receptor and prevents the inhibition of T cell functions. The anti-PD-1 in combination 

with the GM-CSF-secreting tumor cell vaccine improved the survival of B16 melanoma and 

CT26 colon carcinoma-bearing mice. The anti-tumor immune response induced by the tumor 

cell-based vaccine was enhanced by the blocking of PD-1 (77).  

 

Figure 8: Blocking antibodies against PD-1 or CTLA-4 
negative pathways demonstrate potent effects to restore T cell 
functions (37). 
 

 

 

 

 

Another example of anti-PD-1 blockade combined with a cancer vaccine demonstrated a 

synergic effect of the two types of immunotherapy (78). In this study, recombinant 

lentivectors served as a support to efficiently present Trp2 antigen and prime a tumor-specific 

CD8+ T cell response. When associated with anti-PD-1 and anti-PD-L1 Ab therapy, the 

tumor growth in mice was slowed (78). Clinical trials are ongoing to confirm the efficacy of 

blocking PD-1 in cancer therapy. So far, anti-PD-1 treatment has led to anti-tumor benefits in 

patients with NSCLC, melanoma and renal-cell cancer, and minor immune-related toxicities 
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were observed (79). Interestingly, a correlation between the PD-L1 expression on tumor and 

the objective response was demonstrated; indeed in patients with PD-L1 negative tumors, no 

clinical response was seen (79).  

Altogether, the strategies aiming to modulate CTLA-4 and PD-1 immune checkpoints 

promoted the targeting of other inhibitory molecules known to dampen the anti-tumor effects. 

Thus, the blocking of BTLA, TIM3, CTLA-4 or LAG3 is being studied and also showed an 

enhancement of T cell functions in mice (figure 9).  

 

 

Figure 9: Antibody blockade of the PD-1 pathway. Anti-PD-1 and anti-PD-L1 antibodies 
reverse exhaustion and seem to selectively expand a subset of PD-1int exhausted T cells (green 
and yellow cells), whereas PD-1hi exhausted T cells (red cells) respond poorly (top). Many 
strategies have combined blockade of the PD-1 pathway with antibody blockade (α-) of other 
inhibitory receptors or of negative regulatory cytokines (such as IL-10) or therapeutic 
vaccination. Such strategies might augment the population expansion and/or survival of PD-
1int exhausted CD8+ T cells already recovered by blockade of the PD-1 pathway or could lead 
to additional recovery of cells in the PD-1hi subset of exhausted CD8+ T cells (bottom). Tim3, 
inhibitory molecule; IL-10R, receptor for IL-10 (80). 
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Based on the demonstration of synergistic effects of two co-inhibitory receptors in the 

suppression of T cell responses, several studies are focused on the combined treatment with a 

pair of immune modulating Abs. The combined targeting of PD-1 and TIM-3 with Abs 

showed synergistic anti-tumor effects on CT26 tumor model in mice (81). Synergistic 

blockade of PD-1, CTLA-4 and PD-L1 co-inhibitory molecules coupled with B16-Flt3 (Fvax) 

vaccination improved the survival of B16 melanoma-tumor bearing mice (82). The 

simultaneous blockade also resulted in favorable Teff/Treg and Teff/MDSC ratios within the 

tumor (82).  

Finally agonist mAb targeting stimulatory receptors have also been shown to reverse the 

tumor immune suppression. As an example, an Ab targeting the tumor necrosis factor (TNF) 

receptor family member CD40 induced potent anti-tumor effects both in mice and humans 

with pancreatic adenocarcinoma (83). 

 

4.3. Bispecific antibodies 

 

In addition to native Abs, which target one antigen, bi-specific antibodies have recently been 

engineered to target concomitantly a tumor antigen and an effector function (84). 

TriomAbs antibodies, which display a trifunctionnal design, represent an association of two 

subclasses of immunoglobulin: a mouse IgG2a and a rat IgG2b. TriomAbs have a double 

specificity, one for a TAA and the second for the CD3 complex on T cells (figure 10). The 

particular design of these complexes permits to specifically target tumor and attract both 

innate and adaptive immune cells to the tumor. Indeed, the Fc part will mediate the attraction 

of NK cells and macrophages while the anti-CD3 Ab will recruit and activate T cells.  
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Figure 10: TriomAb bi-specific complex. TriomAbs are composed by IgG2a and a IgG2b 
parts that confer them three specificities. First, their Fc fragment is able to activate 
macrophage and NK cells by binding to the Fc receptor and promote ADCC and CDC. 
Second, triomAbs attract and activate T cells by targeting the CD3 and finally this complex 
target the tumor via the anti-TAA Ab part. 
 

For example, Ertumaxomab (Rexomum) is a triomAb able to target the HER2 tumor antigen 

and the CD3 complex (85). Intraperitoneal administration of ertumaxomab in patients with 

malignant ascites resulted in complete elimination of tumor cells, without any severe adverse 

event. In addition, an in vitro study showed the best efficiency of triomAb to kill tumor cells 

compared to the anti-HER2 Ab (trastuzumab), particularly against tumors with a low HER2 

expression (86).  

Ab designers provided smaller complexes, made by the genetic fusion of two scFv, which 

encountered more success in clinical trials. BiTEs, bispecific T cell Engagers, are composed 

of an anti-CD3 scFv fused to an anti-TAA scFv with a short peptide linker. The first BiTE 

developed was blinatumomab, an anti-human CD3 x anti human CD19, which is being 

applied as a treatment in lymphoma and leukemia. A report in NHL patients demonstrated the 

successful anti-tumor effects induced by blinatumomab treatment in all patients (87). Partial 
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and complete tumor regressions were reached at a very low dose of blinatumomab (from 

0.0005 to 0.06mg/m2 per day), underlying the strong potential of BiTEs in cancer therapy. 

The second BiTE construct, approved for clinical trials, is Catumaxomab, which target 

EpCAM expressed on the majority of epithelial cells (88). 

In addition to conventional antibodies, bispecific Abs have the advantage, via the anti-CD3 

part, to activate cytotoxic T cells at the tumor site. Combination of several factors exploiting 

multiple anti-tumor effects reveals a promising use of bispecific Abs in numerous cancers.  

 

At a preclinical level, the group of Jean-Pierre Mach at UNIL has focused on the fusion of 

anti-TAA Ab fragment to MHC or MHC-like molecules recognized by adaptive or innate 

effector cells. Promising results obtained with an anti-TAA Fab-MHC/gp33 peptide 

conjugates that were able to redirect antiviral T cell response to tumor cells by the Fab 

targeting. In mice infected with lymphocytic choriomeningitis virus (LCMV), the murine 

colon carcinoma (MC)-38-CEA+ growth was inhibited by systemic injection of the anti-CEA 

Fab x H-2Db/gp33 conjugates. The manipulation of the antiviral response was also extended 

to the influenza virus response (89) and could be applied in the clinic by redirecting against 

the tumor the cytotoxic T lymphocyte (CTL) response against endemic virus, such as 

cytomegalovirus (CMV) and Epstein-Barr virus (EBV), often present in cancer patients. The 

potent activation of CTL by these anti-TAA-MHC/peptide conjugates is mediated 

predominantly by the oligomerization of MHC/peptide complexes on the surface of tumor 

cells (90). 

 

To redirect NK effector cells against tumor, a bifunctional conjugate was constructed with an 

anti-HER2 or CEA scFv and the murine NKG2D ligand H60, linked together with an Fc part. 
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The fusion protein specifically bound to tumor cells and induced their lysis via effector NK 

cells activated by the ligand H60 (91).  

More recently, a fully recombinant bifunctionnal fusion protein, composed of an scFv anti-

HER2 and the MHC-like CD1d molecule loaded with alpha-galactosylceramide (αGC) was 

synthetized. This bifunctional protein had the property to attract invariant natural killer T 

(iNKT) to the tumor and showed potent anti-tumor effects in vivo (92). The iNKT cells, 

which are at the junction between innate and adaptive immunity will be described in the part 

III. 

 

In this PhD study, our strategy of cancer immunotherapy was inspired from these promising 

results obtained with bifunctional recombinant proteins that combine different and important 

functions to eradicate cancers.  
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Part III: CD1d-restricted invariant NKT cells 

 

1. Non-conventional T cells 

 

In the 1980s, several groups studied and defined a new subset of αβ-TCR positive cells in 

mice, expressing the NK-cell marker NK1.1 and lacking the expression of CD8 co-

stimulatory molecule. In 1995, Taniguchi was one of the first scientists to report the 

expression of an invariant Vα14+ TCR in the NK1.1+ T cell population, which is refer today 

under the name of natural killer T (NKT) cells (figure 11) (93). TCR of NKT is restricted by 

the MHC-related molecule CD1d, which is presenting various glycolipids instead of peptide 

antigens. Other T lymphocytes sharing NKT cell characteristics have also been described. 

Mucosal-associated invariant T cells (MAIT) express the Vα19-Jα33 TCR α-chain and are 

found in gut mucosa. These NKT-like cells are restricted to the MHC class I-related-l 

molecule (MR1) and possess a mature phenotype (reviewed by (94)). Recently, microbial 

derivatives of vitamin B have been identified as MAIT antigens, presented by the MR1 (95).  

Among non-conventional T cells, a population of T cells expressing γδ TCRs also display 

innate-like features. γδ T cells recognize non-peptide antigens, such as microbial 

phosphoantigens, presented by MHC molecules or MHC-related molecules. Their innate 

phenotype also permits their activation by stress-induced NK ligands and/or pathogen-

associated molecular patterns (PAMPs). Another important characteristic of γδ T cells is their 

specific location in epithelial tissues, such as skin and mucosae (96). 

To summarize, a broad variety of non-conventional T cells exists in all species, bringing the 

capacity to respond differentially against several kinds of disease. 
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2. CD1d-restricted T cells 

 

Different subsets of CD1d-restricted T cells have been identified, expressing invariant or 

variable TCR and the NK1.1 molecule. However all subsets are referenced under the name of 

NKT even though they probably display different functions (97, 98).  

 

2.1. Invariant NKT or type I NKT cells 

 

Among T lymphocytes, type I NKT cells or invariant NKT (iNKT) cells are a unique 

subpopulation of cells that express a semi-invariant αβ TCR and NK cell markers (figure 11). 

In mice, the TCR is composed by the Vα14-Jα18 chain associated with a semi-invariant Vβ 

chain restricted to Vβ7, 8 or 11. In human, the αβ chain is determined by the homologue 

Vα24-Jα18 and Vβ11. iNKT cells are reactive to glycolipid antigens presented by the MHC 

class-I-like molecule CD1d, especially the synthetic ligand α-galactosylceramide (αGC). 

iNKT cells are well characterized and defined by their immunoregulatory properties (figure 

14), indeed, they rapidly produce a broad range of cytokines such as IFNγ, IL-4 and TNFα. 

They have a phenotype of conventional effector memory T cells with expression of surface 

markers such as CD44 and CD69 and a low expression of CD62L (reviewed by (99)). In 

contrast to T cells, iNKT cells do not need pre-activation by an antigen to reach an effector 

state. Preformed cytokine and lytic granule-encoding mRNAs are stocked in the cytoplasm of 

iNKT cells leading to rapid effector responses after TCR engagement (100). Moreover, 

activation of iNKT cells does not require co-stimulatory signals (101).  
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Figure 11: Invariant NKT cells definition among non-conventional T cells. iNKT cell is a 
T lymphocyte defined with a semi-invariant αβ TCR, restricted to lipid/CD1d, and NK cell. 
 

2.2. Subsets of iNKT cells 

 

iNKT cells differ in their expression of CD4 and CD8 molecules in different species. In mice, 

iNKT cells express CD4 or are double negative (DN) (97). At this time, no CD8 expression 

has been found in mouse CD1d-restricted iNKT cells, probably resulting from an intrathymic 

selection (102). These two subgroups exist in different proportions depending of the tissue. 

The functional difference between CD4+ and DN iNKT remains unclear. However, it appears 

that CD4+ iNKT cells have a tendency to induce Th2 response while DN iNKT cells have 

more Th1-like functions. A study has shown that the CD4+ fraction seems to produce more 

IL-4 after CD3-antibody stimulation in vitro (103), although this characteristic was not 

observed in vivo after αGC stimulation (104).  

In contrast, human iNKT cells can express CD8 and are divided among CD4+, CD8+ and DN 

subsets. Different functions have also been observed in human Vα24+ iNKT cells according 

to the expression of CD4 (105). In PBMCs, CD4+ iNKT subset produced higher levels of IL-

2, IL4 and IL-13, while DN and CD4+ were able to produce IFNγ and TNFα. iNKT cells 
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could also be separated depending on their pattern of chemokine receptors, NK cell receptors, 

or by their killing capacity. In the invariant NKT cell fraction, a small population was 

observed both in the thymus and in the periphery of mice that does not express the NK1.1 

marker. In vitro activation of these NK1.1 negative iNKT cells led to higher production of IL-

4 and lower levels of IFNγ than the NK1.1+ subset (106). In the thymus and in the periphery, 

NK1.1 negative Vα14-Jα18+ cells are characterized as precursors that give rise to the well-

known populations of iNKT (107). A recent study, conducted by the Immunological Genome 

Project, has demonstrated that iNKT cells shared a similar transcriptional program with NK 

cells, as well as memory CD8 T cells and innate immune γδ T cells. In addition, at the final 

maturation stage of iNKT cells in the thymus, a large proportion of activating and inhibitory 

NK-cell receptors were found to be upregulated, showing the innate side of iNKT. However, 

a unique set of genes was found in iNKT cells underling their particular functions in the 

immune system (108). 

 

2.3. Type II NKT 

 

In addition to the conventional iNKT cells, named type I iNKT, non Vα14-Jα18 but CD1d-

restricted NKT cells have been identified in mice. A diverse TCR repertoire can be expressed 

by this population of cells and importantly these TCRs are not reactive to αGC and they 

cannot be identified by αGC-CD1d tetramers (97). Also described as type II NKT cells, they 

display distinct properties from their type I counterparts (figure 11). In general, type II NKT 

cells are specific for antigens that are not agonists for the type I NKT (109). A study in mice 

showed, that they had immunosuppressive functions and protected mice from autoimmune 

diseases. Non Vα14 CD1d-restricted NKT cells were enriched in the central nervous system 

(CNS) of mice during EAE and treatment with sulfatide, a sulphated glycolipid, prevented the 

disease by inhibition of Th1 and Th2 cytokines produced by myelin oligodendrocyte 
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glycoprotein (MOG)-reactive T cells (110). At this moment, sulphatide is the most well-

known lipid antigen that activates type II NKT cells. It is found in neuronal tissue and has 

been described in the EAE mouse model. To study the two major types of NKT cells 

specifically, mouse models were developed possessing different characteristics. The CD1d-

deficient mouse is depleted of the two type, I and II, NKT cell subsets. In contrast, Jα18-/- 

mice lack only the type I iNKT cell part (111, 112). Type II NKT cells have been reviewed by 

Berzofsky and Terabe, demonstrating their important role in suppressing cancer 

immunosurveillance. They can also regulate the protective function of type I iNKT cells. The 

regulatory effect of the type II NKT cells is mediated in part by the production of IL-13, 

which induces TGFβ expression by CD11b+Gr1+ myeloid cells (113). 

 

2.4. Other CD1d-restricted NKT cells 

 

Recently, a new subset of CD1d-restricted cells was discovered. Uldrich and colleagues 

described αGC-reactive NKT cells that express a canonical Vα10-Jα50 TCR α-chain. This 

subset was found in Jα18-/- mice and displayed similar characteristics to the invariant Vα14-

NKT cells, like the production of IFNγ and IL-4 under stimulation with αGC. However, the 

Vα10 NKT cells showed a preference for glucose- and glucuronic acid-containing glycolipids 

such as α-GlcCer and produced more IL-4 and IL-13 in response to αGlcA-DAG ligand 

compare to type I iNKT cells (114). 

 

3. The lipid-presenting molecule CD1d 

 

CD1d molecule belongs to the large CD1 family encoded by five non-polymorphic genes 

located on chromosome 1: CD1a, CD1b, CD1c, CD1d and CD1e. In mice and rats, only the 

CD1d genes are expressed (115). The CD1 genes display a similar sequence structure to 
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MHC class I genes and encode for proteins with significant homology to MHC-I and MHC-II 

proteins (116, 117). The three-dimensional structure of the mouse CD1d, established by X-ray 

crystallography, revealed that CD1d proteins are composed by α1 and α2 domains supported 

by an Ig-like α3 domain. The three α domains are associated with the β2-microglobulin to 

confer an efficient folding very similar to the MHC-I molecule (118). However, the CD1d 

ligand binding groove displays a deeper cavity, in contrast to MHC-I, mainly formed by 

hydrophobic amino acids leading to the presentation of hydrophobic ligands such as lipids 

(reviewed by (119)). CD1d proteins are expressed on hematopoietic cells both in humans and 

mice and at high levels on thymocytes (120). The majority of APC including DC, 

macrophages and B cells also constitutively express the CD1d molecules (121). While MHC 

molecules present peptidic antigens to conventional T cells, CD1d molecules present lipidic 

antigens to NKT cells. 

 

4. CD1d ligands  

 

Due to the specific hydrophobic binding pocket of CD1d, it is now well established that CD1d 

presents lipids or glycolipids to NKT cells. The field of NKT ligands largely remains to be 

explored, however, chemical approaches led to the isolation of several ligands from different 

origins (self ligands or bacterial ligands). The diverse structure of these lipids influences the 

binding to the CD1d and modulates the activation of NKT cells (98, 122). 

 

4.1. Self-ligands 

 

As NKT cells exert a low level of autoreactivity, it becomes evident that NKT cells could 

recognize self-antigen presented in the context of CD1d. They can be activated in vitro by 

CD1d-presenting cells without additional exogenous lipid (123, 124). Natural lipids are also 
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required for the CD1d-dependent positive selection of NKT cells in the thymus (125). The 

discovery of natural self-lipids presented by CD1d has to be extended but potential candidates 

include phospholipid antigens or glycosphingolipid antigens. Belonging to phospholipid 

antigens, phosphatidylcholine (PC) and sphingomyelin were identified by mass spectrometry 

to be major CD1d-associated ligands extracted from cells (126). Lysosomal 

glycosphingolipids also appeared as natural ligands for mouse and human NKT cells. The 

best studied is the isoglobotrihexosylceramide (iGb3), this glycolipid weakly activates CD1d-

restricted cells in vitro. Furthermore, mice lacking the enzyme to process iGb3 have a defect 

in NKT cell development, suggesting that iGb3 lipid is an important biological ligand 

required to select NKT cells in the thymus (127). However, these conclusions are 

controversial since another study demonstrated that mice deficient for the iGb3 synthase 

showed a normal development of NKT cells (128). 

 

4.2. Microbial glycolipids 

 

Several findings support the idea that NKT cells could be activated by a broad range of 

antigens specific to microbes. Microbe-associated glycolipids include both ceramide-based 

lipids and diacyglycerol antigens. The discovery of glycolipids present in Sphingomonas 

bacteria that activate NKT cells provides evidence of a specific role of NKT cells in 

antimicrobial immunity (129). A diacylglycerol antigen derived from the pathogenic bacteria 

Borrelia burgdorferi, which causes Lyme disease, activates mouse and human iNKT cells. 

Moreover, iNKT cells were able to bind CD1d tetramers loaded with B. burgdorferi 

glycolipid-2 (BbGL-II). The iNKT cell activation by the bacteria was TLR-independent, 

proven by the activation in Myd88-/- mice, and resulted from the triggering of iNKT TCR by 

specific lipids (130). iNKT cells are also involved in the recognition of glycolipids from the 

highly pathogenic gram-positive bacteria; S.pneumoniae and group B Streptococcus. iNKT 
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cells were activated in vivo after administration of the bacteria and were needed for the 

pathogen clearance, which was dependent on CD1d (131). Altogether, iNKT cells play an 

important role in the protection against diverse pathogens.  

 

4.3. α-galactosylceramide (αGC) 

 

αGC was first identified as a potent immune activator in extracts of the marine sponge Agelas 

mauritianus. KRN7000 is the synthetic form of αGC, slightly modified, and it is a powerful 

tool to identify and activate the type I population of mouse and human iNKT cells (132). 

Structurally, αGC is composed of a galactose combined with a ceramide base in an α-

configuration (an 18-carbon phytosphingosine and a 26-carbon acyl chain) (figure 12). 

 
Figure 12: Structure of the synthetic αGC ligand (KRN7000) (adapted from (122)) 

 

Until now, αGC is the best ligand known to induce a strong activation of iNKT cells. Several 

studies have exploited the capacity of iNKT cells to rapidly produce Th1 and Th2 cytokines 

after αGC stimulation (133, 134). Particularly, mice bearing lung nodules after i.v. B16 

melanoma inoculation showed a better survival after in vivo activation of iNKT cells by αGC 

(133). Different analogs of αGC are currently being tested to polarize the iNKT cell activation 

and elicit either Th1 or the Th2 responses. Modifications of the basic lipid chain of αGC 

results in a profound change in the type of cytokine produced (135). For example, the C20:2 
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αGC derived from αGC and containing a di-unsaturated C20 fatty acid was shown to induce a 

Th2 cytokine biased response by human and mouse iNKT cells (136).  

 

5. Control of iNKT cell responses by ligands 

 

iNKT cells are able to generate different responses and direct the outcome of an immune 

response, from protective immunity to immune tolerance. Depending on the structure of the 

glycolipid antigen, iNKT cells preferentially produce Th1 or Th2 cytokines. Several studies 

addressed the mechanisms of the iNKT cell control and three points have been highlighted. 

The first one involves the TCR affinity as a critical factor. Indeed, the binding affinity of the 

invariant TCR to the CD1d molecule and thus the iNKT cell activation is strongly influenced 

by the headgroup and length of the lipid chain. The increase in the length of the 

phytosphingosine improved the binding affinity of the iNKT TCR (137). The second factor 

influencing the outcome of iNKT cell response is the presentation of antigens by different 

types of APCs. It has been shown that αGC needs to be taken-up by APC and requires 

intracellular loading onto CD1d before it can be presented at the surface (138). However, 

Th2-biasing analogs are reportedly loaded rapidly and directly onto CD1d molecules 

expressed on the cell surface, without intracellular processing (135). Lipid raft localization is 

also demonstrated to be essential in shaping iNKT cell responses. CD1d molecules loaded 

with αGC were found in the lipid raft fraction of the plasma membrane. In contrast to the 

Th2-type antigens such as αGC C20:0 or αGC C10:0, which are mostly located outside of the 

lipid raft domains (135) (figure 13). 

The previous observation raises the possibility that Th2-type antigens can be presented by 

non-professional APCs such as B cells. A study has shown that presentation of αGC by B 

cells induced more IL-4 cytokine production and no IFNγ production. This B cell presentation 
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also dampened DC-mediated activation of iNKT cells (139). Recently, cd1d1fl/fl mice have 

been exploited to give more information about the cytokine bias between Th1 and Th2 

ligands. Specific ablation of CD1d from DC and macrophages completely abrogated the Th1 

cytokine production after αGC injection. In contrast, processing of Th2 ligands, such as αGC 

acC8, are independent of DC and macrophages and explaining why they failed to induce IL-

12 production by DCs which in turn enhances the Th2 response, leaning towards the IL-4 

balance (140). 

 

 

 
Figure 13: Mechanism of loading of Th1 or Th2 variants of αGC. Th1 ligand is 
intracellularly loaded onto CD1d and processed at the surface by endosome. In contrast, Th2 
ligands are directly loaded onto surface CD1d molecules (141). 
 

6. iNKT cell development 

 

Similar to CD8+ and CD4+ T cells, iNKT cells develop in the thymus. Nude mice, which lack 

a thymus and thymectomized mice do not possess any iNKT cells. NKT cells derive from 

conventional T cells precursors, the double positive (DP) thymocytes, and thus diverge at the 

time of TCR expression (142, 143). The canonical TCRα expression on iNKT cells is the 

result of the random rearrangement of the Vα14 and the Jα18 gene segments. This 

recombination event might be favored by the close position of the two segments in the TCRα 

locus. The Vα14-Jα18 recombination occurs only within a 24-48 hour period before birth and 



 45 

explains the delayed appearance of iNKT cells in the thymus (144). Moreover, the low 

frequency of iNKT cells in the thymus also supports the idea of a random expression of the 

invariant TCR Vα14-Jα18 (145). 

CD1d is expressed by both epithelial cells and DP thymocytes in the thymus, but studies have 

shown that iNKT cells are positively selected at the DP stage by CD1d-expressing DP cells 

themselves (146). As mentioned above, self-lipids, such as lysosomal glycosphingolipids, 

might be candidate self-antigens for selecting iNKT cells in the thymus, as reviewed in (143). 

During DP-DP interactions, the SLAM-associated proteins are involved in the expansion and 

the differentiation of iNKT cells. This signal also contributes to the innate-phenotype 

acquired by iNKT cells in the thymus (147, 148). Once selected, iNKT cell precursors follow 

different stages of maturation leading to the upregulation of CD24, CD44 and DX5. The last 

maturation step is the acquisition of the NK1.1 marker that begins in the thymus but largely 

occurs in the periphery (143). 

 

7. Functional role of NKT cells 

 

Within the immune system, iNKT cells connect innate and adaptive immune responses. iNKT 

cells have mostly immunoregulatory functions, through their rapid production of a broad 

range of cytokines and chemokines, and they also exert a potent direct killing activity trough 

perforin, granzyme B and FasL pathways (figure 14). These characteristics allow iNKT cells 

to influence many other cells of the immune system such as NK cells, DC and B cells as well 

as conventional CD4 and CD8 T cells (figure 14) (149, 150). It is well established that 

cytotoxicity associated with the activation of iNKT cells is predominantly mediated by the 

activation of NK cells and their high cytotoxic effects (151). In addition, through DC 

maturation, activated iNKT cells promote CD8+ CTL cells and can enhance antigen-specific 
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CD8+ T cells against malaria (152) (153). Furthermore, iNKT cells interact with B cells and 

have a role of adjuvant in antibody production. Used as an adjuvant, αGC ligand protected 

mice from influenza by inducing a higher antibody response and enhancing memory B cell 

frequencies (154). Briefly, iNKT cells also have the capacity to counteract the 

immunosuppressive effects of IL-10-producing neutrophils and tumor-associated 

macrophages by direct or indirect interactions with these immune cells, leading to better anti-

tumor responses (155) (156). Altogether these findings demonstrate the high potential of 

CD1d-restricted iNKT cells to balance the immune response and fight efficiently against a 

broad variety of infectious and malignant diseases. 

 

 

 
Figure 14: Immune functions of iNKT cells. NKT cells are able to produce a large variety 
of cytokines that in turn transactivate other immune cells including NK cells, conventional T 
cells, B cells and DCs. They also express a broad diversity of chemokine receptors, most of 
which are Th1-associated chemokine receptors. 
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8. NKT cells in pathological conditions  

 

8.1. iNKT as effectors of tumor immunity  

 

Numerous reports have demonstrated that iNKT cells contribute to anti-tumor immunity and 

represent promising therapeutic targets. In various tumor models iNKT cells have been 

recognized to play a role in tumor immunosurveillance as their absence predisposes to cancer 

onset. Decreased survival in an iNKT-deficient background was shown in MCA-induced 

fibrosarcomas and transgene induced adenocarcinomas such as the mouse prostate (TRAMP) 

cancer model. Here iNKT cell deficiency is associated with more frequent and bigger tumors 

than the WT background (14, 157). In MCA-induced tumors, protection by iNKT cells 

against tumor development is in part mediated by their IFNγ production and by the activation 

of NK cells and CD8 T cells (158). Recently, the role of iNKT cells in preventing MCA-

induced tumors has been questionned because there is no clear evidence about the activation 

of iNKT cells in this model (159). Nevertheless, iNKT cells are able to directly recognize 

CD1d-expressing tumor cells and render them sensitive to lysis without addition of αGC 

(160). Expression of CD1d by tumors increases the number of circulating iNKT cells and 

iNKT tumor infiltration are associated with a better prognosis in humans (161, 162). In 

addition, evidence that iNKT cells activated by a strong agonist can lead to anti-tumor effects 

are numerous (163, 164). As mentioned previously, this effect results from the presentation of 

the strong ligand by DC and it is mainly mediated by NK cells rather than direct cytotoxic 

effects of iNKT cells. To summarize, antitumor activities of iNKT cells result either from a 

direct activation of the innate cells by CD1d+ tumor cells or by APCs. Activation is followed 

by a direct killing by cytotoxic iNKT cells and/or by an indirect killing mediated by NK cells 

or by controlling the suppressive activities of TAMs (reviewed by (165)) (figure 15).  
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Figure 15: Antitumor activities of iNKT cells. a) Tumor cells expressing CD1d can present 
agonist glycolipid to iNKT cells and be killed by direct lysis or indirectly by NK cells, which 
have been activated by iNKT. b) APCs can activate iNKT cells via glycolipid/CD1d 
presentation, resulting in activation of cytotoxic NK cells, which in turn will kill the tumor. c) 
Tumor-associated macrophages can be directly or indirectly killed by iNKT cells, which 
limits the angiogenesis process (adapted from (165)). 
 

8.2. Regulatory functions of NKT cells 

 

In addition to antitumor activity through NK cells or direct cytotoxicity, some reports have 

described the opposite effects. These studies demonstrated that NKT cells might have a 

suppressor role in antitumor immunity (figure 16). In patients with hepatocellular carcinoma 

or bearing metastases from melanoma and colon carcinoma, CD4+ NKT cells were found to 

be enriched within the tumor compared to the DN or CD8+ subsets.  They produced high 

levels of Th2 cytokines and demonstrated a weak lysis capacity against CD1d-expressing 

cells (166). In a murine T-cell lymphoma model, CD1d-deficient mice or Jα18-/- mice 

exhibited a better survival than the WT mice (167). In general, the immunosuppressive effects 

of NKT cells are attributed to type II NKT cells but without specific tools to identify them, 

the exact mechanisms are unknown. 
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Figure 16: iNKT cell functions against cancer. iNKT cells exert two different roles in 
cancer: they can have anti-tumor effects (left) or immunosuppressive effects (right).  Pro-
inflammatory functions of iNKT cells result from their activation by agonist ligands, such as 
αGC loaded on CD1d-expressing DC. Through the release of cytokines, they can transactivate 
other immune effector cells like NK, CD8+ and CD4+ T cells or directly kill tumor cells by 
their own lytic properties. On the other hand, NKT cells (mostly type II) can inhibit CTL 
activity by producing IL-13. They also trigger the acquisition of a tolerogenic phenotype by 
DCs (adapted from (168)).  
 

9. iNKT cells in cancer treatment 

 

Based on pre-clinical studies, several phase I/II clinical trials of cancer immunotherapy were 

initiated using iNKT cells as effector cells. Three strategies have been tested: the injection of 

the ligand αGC as a free ligand, the infusion of autologous αGC-loaded DC and the infusion 

of autologous iNKT cells expanded in vitro with glycolipids (reviewed by (168)). All these 

treatments were well tolerated with no severe toxicities but the clinical outcome was poor, 

even though an activation of iNKT and NK cells was often observed (table 3). The most 

antitumor functions regulatory functions 
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important limitation of using iNKT cells is their low number in the majority of cancer patients 

and, in some cases, their failure to proliferate after ligand stimulation (169). To overcome this 

problem, the option of adoptive transfer of ex vivo expanded iNKT cells into patients is 

promising and opens new ways to iNKT cell-based immunotherapies. 

 
Table 3: Summary of phase I-II studies of iNKT cell-based immunotherapy. Adapted from 
(168) 
 
Tumor Treatment Summary of results Ref. 
Solid 
tumors 

αGC i.v  
(50-4800µg/m2) 

- no dose limiting toxicities 
- increased serum levels of GM-CSF 

and TNFα  
- biological effects depend on NKT cell 

numbers 
- no clinical responses 

(170) 

Non-small 
cell lung 
cancer 

i.v. infusion (2x) of in 
vitro expanded autologous  
iNKT with αGC and IL-2 
(1x107 or 5x107 NKT/m2) 

- no major toxicities 
- expansion of iNKT cells in blood 
- increase in IFNγ-producing cells  
- no clinical responses 

(171) 

Non-small 
cell lung 
cancer 

i.v. infusion of in vitro 
expanded autologous  DC 
loaded with αGC 
dose escalation: 5x107, 
2.5x108 or 1x109 
APCs/m2) 

- no major toxicities 
- expansion of iNKT cells in blood 
- increase in IFNγ-producing iNKT cells  
- no clinical responses 

(172) 

Head and 
neck cancer 

infusion into the nasal 
submucosal of in vitro 
expanded autologous 
APCs loaded with αGC 
(2x 1x108 APCs) 

- no major toxicities 
- expansion of iNKT cells in blood 
- increase in IFNγ-producing cells  
- only one PR 

(173) 

Non-small 
cell lung 
cancer 

i.v. infusion of αGC-
pulsed autologous 
PBMCs cultured in 
IL2/GM-CSF (4 
injections, 1x109 

PBMCs/m2) 

- no major toxicities 
- expansion of iNKT cells in blood 
- better survival in patient with IFNγ-

producing cells after αGC stimulation  
- no clinical responses 

(174) 

Metastatic 
cancer 

Autologous αGC-pulsed 
monocyte-derived DCs 
(1x106 DC) 

- no severe toxicities 
- activation of iNKT cells, increase in 

NK and T cell activation and 
cytotoxicity 

- increased serum levels of IFNγ and IL-
12 

 

(175) 
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Myeloma, 
anal cancer 
and renal 
cell cancer 

Autologous αGC-pulsed 
mature DC 

- no severe toxicities 
- sustained expansion of iNKT cells in 

blood and tumor 
- increased serum levels of IL-12, IP-10 

and MIP-1b 
- increased in memory CMV-specific 

CD8 T cells 

(176) 

Advanced 
lung cancer 

i.v. infusion of autologous 
αGC-pulsed APC (1x109 

APCs/m2) 

- no severe toxicities 
- expansion and activation of iNKT cells 

in blood 
- strong infiltration and activation of 

NKT cells into the tumor after 
treatment 

(177) 

Head and 
neck cancer 

Intra arterial infusion of 
expanded autologous 
NKT cells (5x107) + 
infusion in intranasal 
submucosa of αGC-
pulsed APCs (1x109) 

- one grade 3 adverse event 
- NKT and NK cells responses in blood 

(NKT expansion and IFNγ production) 
- 3 PR but relapses, 4 SD and 1 PD 

(178) 

Myeloma i.v. infusion of autologous 
αGC-pulsed DC (1x107 

DC) + lenalidomide orally 
for 21 days (10mg/day)  

- one grade 3 adverse event 
- activation of iNKT and NK cells 
- increase in monocytes and 

eosinophiles 
- reduction in tumor-associated 

monoclonal Ig 

(179) 

 

 

10. Future in iNKT cell immunotherapy 

 

Other strategies are currently being tested to improve immunotherapy using iNKT cells. A 

recent clinical study investigated the combination of αGC-loaded DC with the conventional 

chemotherapy lenalidomide and they showed evidence that these treatments synergized to 

enhance immune effects (179). Taking into consideration the numerous functions of iNKT 

cells, the use of a modified glycolipid, which polarizes iNKT cells toward a Th1 cytokine 

profile, is a promising approach. Glycolipids as vaccine adjuvants also showed powerful 

properties in enhancing specific CD8 T cells and the overall protective immune response 

(150). In two mouse models of ovarian cancer, treatment with αGC combined with a tumor-
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cell based vaccine significantly enhanced the protective and the therapeutic antitumor effects 

(180). These effects were dependent on T cells and NK cells as demonstrated by the absence 

of anti-tumor response when CD4, CD8 or NK1.1+ cells were depleted, and by the 

augmentation of tumor-specific CD8+ T cells producing IFNγ in response to the αGC vaccine 

(180). Interestingly, the use of CD1d-expressing tumor cells as a vector to present αGC 

demonstrated encouraging results (181). These authors have shown that B16 melanoma and 

EL-4 thymoma cells transfected with CD1d were able to activate NKT and NK cells in vitro 

and in vivo, independently of the CD40, CD80 and CD86 co-stimulatory molecules. 

Moreover, i.v. vaccination with live αGC-loaded B16-CD1d tumor cells protected mice from 

the development of B16 lung metastasis. Similarly, in a glioma model, the vaccination with 

irradiated tumor cells pulsed with αGC also resulted in potent therapeutic effects through 

iNKT activation and a CD4 T cell-mediated response (182). 

Therefore, exploiting the antitumor functions of iNKT cells in cancer immunotherapy 

displays great potential. However, the regulatory activities of NKT cells still need to be 

understood. 

 

11. iNKT cell anergy 

 

The phenomenon of iNKT cell anergy has greatly limited the therapeutic use of these 

lymphocytes. Upon in vivo stimulation with the superagonist αGC, iNKT cells produce large 

amounts of cytokines within only a few hours and reach a maximum expansion after 2-3 days. 

Following this period, iNKT cells enter a state of unresponsiveness that precludes re-

stimulation (183). Indeed, after a second challenge of mice with αGC, iNKT cells failed to 

produce cytokines and were inefficient to protect mice from B16 lung metastasis (183). The 

mechanism of this long-term anergy remains unclear despite several studies. To understand 
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the mechanism of iNKT cell anergy, studies focused on markers characteristic of the 

exhaustion of conventional T cells. As a first candidate, PD-1 has been suspected to be 

involved in the negative regulation of CD8+ T cells, and it was also proposed that PD-1 and 

PD-L1 pathways play a role in the anergy of iNKT cells (184). The authors observed an 

upregulation of PD-1 and PD-L1 upon αGC stimulation that correlated with the anergy of 

iNKT cells. Moreover, in vitro and in vivo blocking of PD-1 and PD-L1 with antibodies 

restored the IFNγ and IL-4 production, and the proliferation of iNKT cells as well as their 

protective effects against B16 lung metastasis. A second group confirmed the implication of 

the PD-1/PD-L1 co-stimulatory pathway by showing that iNKT cells in PD-1 KO mice did 

not become unresponsiveness when treated with αGC (185). In these studies, combined NKT 

therapy and PD-L1 blockade led to better antitumor effects in a melanoma model. 

Furthermore in a more recent study, tumor-bearing mice treated with PD-L1-/-DC loaded with 

αGC showed a better tumor inhibition as compared with mice injected with WT DC loaded 

with αGC (186). However, the inhibitory effect of PD-1 seems to be reversed by CD28 co-

stimulatory receptor engagement on iNKT cells, which probably changes the balance between 

positive and negative signals (187). The role of PD-1 in the anergy of iNKT cells was further 

contradicted by other results, which argued that a strong TCR signal plus co-stimulation is 

responsible for the induction of the unresponsiveness (188). They confirmed the PD-1 up-

regulation, but not the reversal effect of the PD-1 blockade on the iNKT cell anergy. In 

addition, injection of a high dose of αGC in PD-1-deficient mice resulted in the anergic state 

of iNKT cells, demonstrating that PD-1 up-regulation was not sufficient. This last report was 

in contradiction with the results published by Parekh et al. (185). To explain the difference, 

the authors argued that the dose of ligand might influence the duration of the 

unresponsiveness. They showed the importance of co-stimulatory signals for inducing anergy. 
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For instance, the stimulation of iNKT cells with anti-CD3 did not render them unresponsive 

but concomittant anti-CD28 stimulation induced anergy of iNKT cells (188).  

Intracellular mediators such as the E3 ubiquitin-protein ligase Cbl-b has also been shown to 

play a role in the induction of iNKT cell anergy (189). Accumulation of Cbl-b was observed 

in αGC-treated iNKT cells correlating with their reduced function. Interestingly, IFNγ 

production, but not IL-4, was restored in Cbl-b-deficient iNKT cells stimulated with αGC, 

and this was associated with the ability of αGC-pretreated iNKT cells to prevent B16 lung 

nodules (189). Cbl-b plays an important role in the NF-kB pathway; the authors demonstrated 

that CARMA1, a critical regulator in NF-kB activation, is a target of Cbl-b. CARMA1 was 

degraded during the anergic state of iNKT cells, preventing further stimulation and IFNγ 

production.  

As mentioned before, different αGC analogs have been exploited for their ability to 

differentially regulate the activation of iNKT cells. The Th2-biasing derivative αGC C20:2 

stimulated iNKT cells more rapidly and resulted in a profound defect in producing cytokines 

already 48h after in vivo injection of the ligand, whereas αGC induced anergy after 72h. 

However, further kinetic analyses demonstrated that iNKT cells recovered more rapidly from 

anergy when stimulated by the analog C20:2 and interestingly, they expressed PD-1 and PD-

L1 during a shorter period compared to the long-lasting expression on αGC-treated iNKT 

cells (190). 

 

In summary, iNKT cells display important properties that could be helpful for cancer 

immunotherapy. In addition, Stirneman et al. in our group have developed a recombinant 

CD1d protein loaded with the αGC and fused to an anti-TAA scFv, which demonstrated 

potent anti-tumor effects. Moreover, this approach avoided the anergic state of iNKT induced 
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when αGC is injected as free ligand. The manipulation of iNKT cells in the treatment of 

cancer patients is promising (92).  
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The general aim of the project is to develop a cancer immunotherapy based on the sustained 

activation of iNKT cells with the αGC ligand loaded on a recombinant CD1d protein. 

Moreover, the CD1d protein is fused to an scFv anti-TAA in order to redirect the adaptive 

response and the NKT-mediated anti-tumor effects to the tumor site. 

 

Rational 

 

Why use iNKT as effector cells? 

Stirnemann et al and others have highlighted the potent effects of iNKT cells on the immune 

system and against cancer. 

- iNKT cells rapidly produce cytokines as IFNγ, TNFα, IL-4, and IL-2 upon TCR 

triggering by high affinity ligand αGC presented on the CD1d molecule 

- iNKT cell activation leads to the maturation of DC, which upregulates MHC-I and II 

molecules, as well as the co-stimulatory molecules CD80, CD86, CD40. 

- iNKT cells activate the highly cytotoxic NK cells. 

- iNKT cells promote the adaptive immune response  

iNKT cells display cytotoxic effects by the upregulation of FasL and the production of 

granzyme B and perforin. 

 

Stirnemann et al have developed a recombinant CD1d-anti-HER2 fusion protein loaded with 

the αGC ligand (αGC/CD1d-anti-HER2), which has the properties to bind tumor cells 

expressing HER2 antigen and to activate iNKT cells by triggering the invariant TCR. They 

have shown potent anti-tumor effects in a B16 lung metastasis model and on subcutaneous 

tumors in mice. Importantly, recombinant αGC/CD1d-anti-HER2 fusion promote the 

sustained activation of iNKT cells after several injections, as compared to the anergic state 
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induced after one injection of free αGC. The re-activation of iNKT cells with αGC/CD1d-

anti-HER2 and the specific targeting to the tumor permitted the design of a promising cancer 

immunotherapy (92).  

 

Aims of the thesis 

 

Chapter 1- The tumor targeting with an αGC/CD1d-anti-tumor scFv fusion redirects NKT-

mediated cytotoxicity. 

Based on the promising results obtained by Stirnemman et al, we developed αGC/CD1d 

fusion directed against the CEA antigen to extend tumor targeting to other types of tumors. 

We investigated the potency of the αGC/sCD1d-anti-CEA fusion; 

- Its therapeutic anti-tumor effects in pre-clinical models. 

- Its comparison with the irrelevant αGC/sCD1d-anti-HER2 fusion to further assess the 

advantages to target tumors via a specific scFv.  

- The ability of both αGC/CD1d-anti-TAA fusions to activate human iNKT cells. 

- The need to target iNKT cells to the tumor via the specific αGC/CD1d-anti-TAA 

fusion to promote the killing of human tumor cells.  

 

Chapter 2- Combination of the αGC/sCD1d-scFv fusion with cancer vaccines. 

iNKT cells are potent activators of adaptive immunity and evidence of an adjuvant property 

of iNKT cells in cancer vaccine have been demonstrated.  

In this part of the study we investigated in a pre-clinical model: 

- The ability of the αGC/sCD1d-anti-HER2 fusion to act as an adjuvant in the priming 

of OVA-specific CD8 T cells. 
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- The combination of the αGC/sCD1d-anti-HER2 fusion with CpG ODN as adjuvant for 

the cancer vaccine. 

- The antitumor effects promoted with the combination of αGC/sCD1d-anti-HER2 

fusion treatments with a cancer vaccine.  

- The specific redirection of the innate and the adaptive responses to the tumor site 

within tumor-targeted αGC/sCD1d-anti-HER2 fusion treatments after OVA/CpG 

vaccination. 

 

Chapter 3- Alternatives to recombinant CD1d fusion. 

In order to extend the tumor targeting by the recombinant CD1d, we have designed two 

alternative CD1d fusion proteins.  

- First, we fused the CD1d to the Fc domain of an IgG1 to obtain a dimeric protein with 

enhanced cytotoxic effects and better avidity for iNKT cells.  

- Secondly, we took advantage of an scFv directed against the protein VEGFR-3 present 

in the tumor stroma to enlarge the iNKT targeting to several tumors. 
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CHAPTER 1 

 

 

CD1d-antibody fusion proteins target iNKT cells to the tumor and trigger 

long-term therapeutic responses. 

 

In a pre-clinical model, we assessed the need to activate iNKT cells at the tumor site to obtain 

the better anti-tumor response by comparing treatments with the tumor-targeted αGC/sCD1d-

anti-CEA or with the irrelevant αGC/sCD1d-anti-HER2 fusion proteins. The tumor specificity 

of the αGC/sCD1d-scFv was required to obtain an optimal reactivity of iNKT cells, regarding 

the cytokine release and more importantly the tumor inhibition. In human settings, the 

αGC/sCD1d-scFv fusion was able to expand iNKT cells from healthy donor PBMCs and 

activate iNKT cell clones without the presence of APCs, in contrast to free αGC. Moreover, 

in vitro experiments also gave evidences that the human tumor cell killing was dependent of 

the tumor targeting of iNKT cells via the anti-TAA αGC/sCD1d-scFv.  

 

This work has been published in the journal cancer immunology immunotherapy in November 

2012. 
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Abstract Despite the well-established antitumor activity

of CD1d-restricted invariant natural killer T lymphocytes

(iNKT), their use for cancer therapy has remained chal-

lenging. This appears to be due to their strong but short-

lived activation followed by long-term anergy after a single

administration of the CD1d agonist ligand alpha-galacto-

sylceramide (aGC). As a promising alternative, we obtained

sustained mouse iNKT cell responses associated with pro-

longed antitumor effects through repeated administrations

of tumor-targeted recombinant sCD1d-antitumor scFv

fusion proteins loaded with aGC. Here, we demonstrate that

CD1d fusion proteins bound to tumor cells via the antibody

fragment specific for a tumor-associated antigen, efficiently

activate human iNKT cell lines leading to potent tumor

cell lysis. The importance of CD1d tumor targeting was

confirmed in tumor-bearing mice in which only the specific

tumor-targeted CD1d fusion protein resulted in tumor

inhibition of well-established aggressive tumor grafts. The

therapeutic efficacy correlated with the repeated activation

of iNKT and natural killer cells marked by their release of

TH1 cytokines, despite the up-regulation of the co-inhibi-

tory receptor PD-1. Our results demonstrate the superiority

of providing the superagonist aGC loaded on recombinant

CD1d proteins and support the use of aGC/sCD1d-antitu-

mor fusion proteins to secure a sustained human and mouse

iNKT cell activation, while targeting their cytotoxic activity

and cytokine release to the tumor site.

Keywords Cancer immunotherapy � iNKT cells � CD1d �
Tumor targeting � Fusion protein

Introduction

Human Va24-invariant natural killer T lymphocytes (iNKT),

and their murine counterparts Va14-iNKT cells, represent a

particular sublineage of T lymphocytes activated by self- and

microbial-derived glycolipids in the context of the mono-

morphic MHC-related molecule CD1d. Their importance in

the transactivation of innate and adaptive immune responses

has been extensively described [1, 2], as well as their pro-

tective or pathological role in various conditions [3]. In par-

ticular, their antitumor activity has been well documented in a

number of mouse tumor models [4–6], and several clinical

observations also indicate their protective role against cancer

progression. Furthermore, low numbers and impaired pro-

liferative capacity of iNKT cells were reported in cancer

patients compared to normal donors [7, 8], which in some

studies were correlated with poor clinical outcome [9, 10].

These preclinical and clinical observations have prompted
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testing of iNKT cell-directed therapies, mainly through their

strong activation by the synthetic glycosphingolipid CD1d

ligand, alpha-galactosylceramide (aGC) [11–13]. Phase I

clinical trials involving the autologous transfer of aGC-

pulsed monocyte-derived dendritic cells (moDC) were

conducted in patients with different types of cancer [4, 11,

13–16]. No severe adverse effects were seen and the transient

expansion and activation of iNKT cells, obtained in non-

small-cell lung cancer (NSCLC) and head and neck squa-

mous cell cancer (HNSCC) patients, correlated with some

clinical benefit. Unfortunately, however, iNKT cell-mediated

tumor immunotherapy has been limited by the short-lived

cytokine response of iNKT cells to aGC stimulation, fol-

lowed by a long-term anergy [4, 17, 18]. Recently, we have

instead showed that sustained mouse iNKT cell responses

could be induced by repeated stimulations with recombinant

aGC-loaded sCD1d fusion proteins [19]. This prolonged

responsiveness of iNKT cells resulted in potent antitumor

activity when CD1d was targeted to the tumor site by its

fusion to an anti-HER2 antitumor antibody fragment [19]. In

the present study, recombinant CD1d proteins are shown to

expand and activate human iNKT cells without the need of

antigen-presenting cells (APCs). Importantly, we show that

human iNKT cells exhibit a potent direct cytotoxicity only

against cancer cells coated with the specific sCD1d-antitumor

scFv fusion protein. The importance of CD1d tumor targeting

to promote sustained activation of iNKT cells and prolonged

tumor inhibition is further characterized in mice in thera-

peutic settings.

Materials and methods

Mice and human samples

Female mice C57BL/6J (B6) 6–8 weeks old (Harlan, Zeist,

Holland) were maintained in specific pathogen-free con-

ditions. All animal experiments were conducted according

to institutional guidelines and under an authorization

delivered by the Swiss veterinary department. Fresh human

PBMC were obtained from healthy donor blood, isolated

by density centrifugation using Lymphoprep (Axis-Shield

PoC AS, Norway).

Tumor cell lines and human iNKT cell lines and clones

The murine colon carcinoma MC-38 cell line transfected with

human CEA (MC38-CEA) was a kind gift from J. Primus

[20]. The human cell lines KATO III (gastric carcinoma) and

SK-BR-3 (breast carcinoma) were obtained from the ATCC.

The human B lymphoma cell line C1R stably transfected with

human CD1d was used as APC. Alternatively, moDCs were

generated as described by Shao et al. [21]. Human iNKT cell

lines were established starting with fresh PBMC from healthy

donors cultured with aGC (100 ng/ml) or aGC/sCD1d pro-

teins (40 lg/ml) in RPMI medium with 8 % human serum,

recombinant IL-2 (20 U/ml) and IL-7 (10 ng/ml). Human

iNKT cell clones had been previously generated by limiting

dilution after sorting from peripheral blood lymphocytes

(PBLs) of healthy donors by anti-CD3, anti-Va24, and anti-

Vb11 mAbs staining [22].

Reagents and antibodies

The aGC analog KRN7000 (Alexis Biochemicals Corp) was

dissolved in PBS-0.5 % Tween-20. Cytokine levels were

measured either individually by ELISA (ELISA ready-set-

go, eBiosciences), or as multiple cytokine measurements

using BD Cytometric Bead Array kit TH1/TH2/TH17 (CBA,

BD Biosciences). All fluorochrome-labeled antibodies were

purchased from Becton–Dickinson (BD Biosciences) or

eBiosciences. The humanized mAbs anti-HER2 Herceptin

(Trastuzumab) was from Roche Ltd and anti-CEA (X4) from

Ciba-Geigy [23]. Cells were analyzed with a FACSCalibur,

FACSCanto or LSRII (BD Biosciences) and the acquired data

were processed using FlowJo software (Tree Star Inc.).

Recombinant CD1d fusion proteins

Genetic fusion of mouse b2 microglobulin (b2 m) with the

soluble part of mouse CD1d (sCD1d) has been described

previously [19]. In the original pEAK8-b2m-sCD1d-anti-

HER2-6xHIS construct, the anti-HER2 scFv located between

the Gly-Ser spacer and the 6xHIS was replaced by the anti-

CEA scFv MFE23 (kindly provided by R.H. Begent [24]).

Recombinant CD1d fusion proteins produced by transient

transfection of the human cell line HEK293-EBNA (Cellular

Biotechnology Laboratory, EPFL, Switzerland) were puri-

fied and loaded with aGC as previously reported [19] (Fig.

S1). The CD1d tetramer was developed by engineering a

BirA consensus sequence at the C-terminus of the soluble

mouse CD1d protein. The CD1d monomer was biotinylated

by the BirA enzyme (Avidity, Denver, CO), and after loading

with aGC, it was tetramerized on streptavidin-PE (Invitro-

gen) using a molar ratio of 4:1.

In vitro proliferation

Human iNKT cells were labeled with 1 lM CFSE for

6 min at 37 �C and washed three times. Labeled iNKT

cells were incubated in a 12-well plate at 1 9 106 cells/ml

in RPMI with 8 % HS, 30 U/ml IL-2, and 10 ng/ml IL-7 at

37 �C. iNKT cells were stimulated with either 8 9 105

irradiated aGC-loaded C1R-CD1d, plastic-coated sCD1d

fusion proteins (40 lg), or 200 ng/ml aGC. The dilution of

CFSE was analyzed by flow cytometry.
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iNKT cell cytotoxicity

For chromium release experiments, iNKT clones, CD4? or

double negative (DN), were thawed the day before and kept

overnight in RPMI 8 %HS supplemented with recombinant

IL-2 (150 U/ml) and IL-7 (10 ng/ml). On the day of the

experiment, target cells were labeled with 51Cr for 1 h at

37 �C and washed three times in medium before incubation

(103 cells per well) in 96 V-bottom well plates either

with effector cells at an E:T ratio of 10:1 and different

concentration of CD1d-recombinant molecules, or in the

presence of different E:T ratios and a fixed concentration of

CD1d-recombinant molecules (10 lg/ml). Supernatants

were collected after 4 h of incubation at 37 �C, and

released radioactivity was measured in a c-counter. For

Annexin V analysis, 2 9 105 NKT cells were incubated

with 1 9 104 tumor cells in the presence of either aGC/

sCD1d-antitumor scFv at 10 lg/ml in RPMI 8 % human

serum or 5 9 104 aGC/C1R-CD1d cells or 5 9 104 aGC/

moDCs for 4 h at 37 �C. After incubation, tumor cells and

APCs were analyzed using Annexin V kit (BD Pharmin-

gen) and CD1d-tetramer-positive iNKT cells were stained

for CD107a and intracellular content of IFNc and TNFa.

Antitumor therapy

Mice were grafted s.c. in the right flank with 7 9 105

MC38-CEA cells. When all tumors were palpable, mice

were treated i.v. with 200 ll of either PBS alone, equi-

molar amounts of aGC (0.4 lg), aGC/sCD1d (25 lg), or

aGC/CD1d-antitumor scFv fusion proteins (40 lg). Sys-

temic treatment was repeated at 3- to 4-day intervals. Mean

tumor volume measured every 2 days was calculated using

the following formula: (length 9 width 9 thickness)/2.

Statistical analysis

Results are expressed as mean ± SEM. Statistical signifi-

cance between the groups was determined with student’s t test

or one-way -ANOVA test with Bonferroni correction

(GraphPad Prism, GraphPad software). Tumor progression

statistics were calculated with two-way ANOVA test with

Bonferroni correction (GraphPad Prism, GraphPad software).

Results

Human iNKT cells efficiently proliferate

in the presence of aGC-loaded CD1d protein

To validate the usefulness of soluble recombinant CD1d

proteins for clinical immunotherapy, we investigated the

reactivity of human iNKT cells to mouse aGC/sCD1d or

aGC/sCD1d-antitumor scFv proteins. Irrespectively of

whether fused or not to an antitumor scFv fragment, all

sCD1d fusion proteins in solution were able to expand

iNKT cell lines from freshly isolated human PBMC. The

kinetics of expansion was similar to that observed fol-

lowing exposure to free aGC (Fig. 1a), with approximately

40 % iNKT cells on day 7 and 60 % on day 14 of culture.

All iNKT cell lines, whether expanded with free aGC or

aGC-loaded sCD1d fusion proteins, retained the same

subset composition, with a majority of DN and a minority

of CD8? iNKT cells (Fig. 1b). Importantly, recombinant

aGC/sCD1d proteins could directly expand pure iNKT cell

populations, as seen by CFSE dilution (Fig. 1c) and

increased numbers of iNKT cells over 5 days of culture

(data not shown), whereas the addition of irradiated APCs

was required for free aGC to induce iNKT cell prolifera-

tion. These data indicate that aGC-loaded recombinant

CD1d proteins directly trigger the semi-invariant TCR of

human iNKT cells, and thus represent a promising tool for

rapid and potent expansion of human iNKT cells from

patients for subsequent adoptive cell transfer.

Soluble CD1d proteins directly activate human iNKT

cell clones without requirement for APCs

As suggested by the expansion of human iNKT cells, aGC-

loaded sCD1d proteins did not require the presence of

APCs and were sufficient to activate human iNKT cell

clones to release IFNc after 18-h incubation (Fig. 2a). In

contrast, aGC as a free drug was unable to activate iNKT

cell clones in the absence of APCs (Fig. 2a) and required

the presence of CD1d-expressing cells such as the human

lymphoma C1R transfected with CD1d (Fig. 2b). These

data fully established that the activation of human iNKT

cells by soluble CD1d proteins did not result from the

transfer of aGC to endogenously expressed CD1d, but

rather from the direct TCR triggering by the soluble fusion

proteins. As shown for iNKT cell proliferation, plastic-

coated sCD1d proteins were even more efficient than sol-

uble proteins in inducing iNKT cell clones to release a

panel of cytokines such as IFNc, TNFa, IL-2, and IL-4

(Fig. 2b). Still, when compared to aGC loaded on C1R-

CD1d APCs, sCD1d proteins remained about threefold

weaker in activating iNKT cells, likely resulting from the

lack of adhesion mechanisms and molecular aggregation

provided by cell–cell interaction.

Human iNKT cells efficiently kill tumor cells only

when coated with the sCD1d-antitumor fusion protein

In view of the rare expression of CD1d on tumor cells, the

direct cytotoxicity of iNKT cells against tumors has been

disregarded, and instead, the immediate antitumor activity
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of iNKT cells was shown to be largely mediated by the

transactivation of natural killer cells [5, 19, 25]. However,

direct cytotoxicity of human iNKT cells has been well

demonstrated, especially against CD1d-expressing leuke-

mia in vitro and in vivo [26, 27]. Here, we show that the

killing capacity of human iNKT cells can be extended

Fig. 1 Expansion of human iNKT cell lines by aGC/sCD1d proteins.

a PBMCs from healthy donors were stimulated with medium alone,

aGC (100 ng/ml) or aGC/sCD1d protein (10 lg/ml). Frequency of

iNKT cells in total PBMC was assessed as CD1d-tetramer?CD3? at

day 0, 7, and 14 of culture. Results are shown as mean ± SEM of four

donors. b Distribution of human iNKT cell subsets ex vivo and after

14 days of culture as described in a. Dots represent percentages of

CD4, CD8, and DN iNKT cells in total CD1d-tetramer?CD3? from

normal individuals or expanded cell lines, and bars show mean ±

SEM. c CFSE-labeled iNKT cells were incubated for 5 days with the

different stimuli, and CFSE dilution was analyzed by FACS on gated

CD1d-tetramer?CD3? cells. Left panel illustrates CFSE fluorescence

in iNKT cells on day 5 of culture. Right panel shows the kinetic of

CFSE dilution as the fold increase of CFSElow iNKT cells. Results

shown are representative of three independent experiments
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against CD1d-negative tumor cells by their coating with

aGC/CD1d-antitumor scFv fusion proteins. Two human

tumor cell lines were selected based on their expression of

HER2 and/or CEA (Fig. 3a). The pancreatic tumor cell line

KATO III expresses both HER2 and CEA, as shown by the

binding of the specific antibodies, as well as of the corre-

sponding sCD1d-anti-HER2 and the newly developed

sCD1d-anti-CEA fusion proteins (Fig. S1). In contrast, the

breast cancer cell line SKBR-3 highly expresses HER2 but

is negative for CEA, which provided the possibility of

evaluating targeted versus untargeted iNKT cell-mediated

cytotoxicity. After 4-h incubation with iNKT cells, tumor

cells were killed only when coated with the relevant

sCD1d-scFv fusion proteins. Indeed, KATO III tumor cells

Fig. 2 Human iNKT cells are directly activated by recombinant

aGC/sCD1d proteins. a iNKT cell clones (105) were incubated for

18 h with aGC (100 ng/ml) or aGC/sCD1d proteins in solution

(10 lg/ml). Graph shows the level of IFNc in the supernatant as

the mean ± SEM of three different human iNKT cell clones.

***P \ 0.001. b Activation of iNKT cells by aGC/sCD1d proteins

or aGC-pulsed APCs. Human iNKT cell clones (105) were incubated

with no stimulus, with plastic-coated aGC/sCD1d proteins (10 lg) or

with the B-cell lymphoma cell line C1R-CD1d (5 9 104) pulsed or

not with aGC. After 24 h, cytokines were measured in supernatants

by CBA. *P \ 0.01**P \ 0.005, ***P \ 0.001, ****P \ 0.0001
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Fig. 3 Human iNKT cells efficiently kill tumor cells only when

coated with the aGC/sCD1d-antitumor fusion protein. a Expression of

HER2 and CEA by KATO III and SKBR3 human tumor cells

revealed either by the anti-HER2 (Herceptin) and anti-CEA (X4)

mAbs (upper panels), or by the binding of sCD1d-anti-CEA and

sCD1d–anti-HER2 fusion proteins, revealed by FITC-labeled anti-

CD1d (lower panels). b 51Cr release assay after 4-h incubation of

iNKT cell clones with the tumor cell lines described in a. Graph

curves show percent killing of KATO III (left panel) and SKBR-3

cells (right panel) with decreasing effector-to-target ratio (E/T) with

2 9 103 target tumor cells and 10 lg/ml of sCD1d fusion proteins.

c Panels show percent killing of KATO III (left) and SKBR-3 cells

(right) with decreasing concentrations of sCD1d fusion proteins at an

E/T ratio of 10/1. Results shown are representative of three

independent experiments
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co-expressing HER2 and CEA were killed in the presence

of either of the two aGC/sCD1d-antitumor proteins

(Fig. 3b, left panel), with 40 and 60 % of tumor cells killed

at an E/T ratio of 30/1 and 10 lg/ml of aGC/sCD1d-anti-

HER2 and aGC/sCD1d-anti-CEA fusion proteins, respec-

tively. In contrast, the SKBR-3 tumor cells expressing only

HER2 were exclusively killed when incubated with the

aGC/sCD1d-anti-HER2 protein (Fig. 3b, right panel), with

80 % of cells eliminated, while co-incubation with the

aGC/sCD1d-anti-CEA protein resulted in only background
51Cr release similar to medium alone. At an E/T ratio of

10/1 (Fig. 3c), 20 % targeted killing of KATO III (left

panel) and 50 % killing of SKBR-3 (right panel) tumor

cells was still obtained with 1 lg/ml (13 nM) of HER2 and/

or CEA-targeted CD1d fusion proteins, demonstrating the

sensitivity of this approach. All iNKT cell clones tested in

cytotoxic assays were CD4? or DN and showed similar

capacity of tumor-targeted cell killing.

Activated iNKT cells exhibit poor bystander

cytotoxicity and selectively kill CD1d-positive target

cells

In addition to 51Cr release experiments, the killing of

SKBR3 tumor cells was evidenced by their Annexin V?

7-AAD- profile, while the state of iNKT cell activation

was evaluated by CD107a expression, and secretion of

TNFa and IFNc (Fig. 4). After 4-h incubation with human

iNKT cells, an average of 60 % of SKBR3 tumor cells was

apoptotic when incubated with the tumor-targeted aGC/

sCD1d-anti-HER2 fusion protein, while there was a similar

background of tumor cell death with the untargeted aGC/

sCD1d-anti-CEA or with unstimulated iNKT cells

(Fig. 4a). Interestingly, when instead of recombinant CD1d

proteins, iNKT cells and SKBR-3 tumor cells were co-

incubated with aGC-pulsed C1R-CD1d cells or moDCs,

less than 20 % of SKBR3 cells became Annexin V positive

(Fig. 4a), although the percentages of CD107a, IFNc and

TNFa-positive iNKT cells (Fig. 4b, c) were similar after

incubation with the tumor-targeted aGC/sCD1d-anti-HER2

protein or with aGC/C1R-CD1d cells. The iNKT cell

activation was slightly weaker in the presence of aGC/

moDCs (Fig. 4b, c), likely resulting from their hundred

times lower CD1d expression than the C1R-CD1d trans-

fectant. In addition, the state of activation of iNKT cells

incubated with the aGC/sCD1d-anti-CEA did not differ

from unstimulated iNKT cells (Fig. S2). In conclusion, the

similar percentages of activated iNKT cells stimulated by

aGC-pulsed APCs or by tumor-targeted aGC/sCD1d-anti-

HER2 protein did not correlate with a similar killing of

SKBR3 tumor cells, but rather with the concomitant

elimination of the aGC/APCs, as shown by, respectively,

26 and 36 % of Annexin V? aGC/C1R-CD1d and aGC/

moDCs (Fig. 4a). Altogether, these data further confirmed

the requirement of CD1d on the surface of the target cell

for efficient killing, whether naturally expressed on the

surface or bound via its fusion to an antitumor scFv frag-

ment. The activation of iNKT cells by tumor-targeted

CD1d molecules was also evidenced by their cytokine

content (Fig. 4c). Indeed, in the presence of SKBR3 tumor

cells coated with aGC/sCD1d-anti-HER2, about half of

iNKT cells was positive for TNFa and IFNc, while no

intracellular cytokines were detected in the presence of the

irrelevant aGC/sCD1d-anti-CEA fusion protein. Alto-

gether, these results support the relevance of sCD1d-anti-

tumor fusion proteins for cancer therapy, as seen by the

strong activation of human iNKT cells, revealed by direct

tumor cytotoxicity and cytokine release.

In vivo targeting of aGC-loaded CD1d proteins

to the tumor site is required for prolonged iNKT

cell-mediated tumor inhibition

The importance of targeting aGC/sCD1d fusion proteins to

the tumor was further investigated in C57BL/6 mice graf-

ted with the MC38 colon carcinoma cell line stably trans-

fected with human CEA (MC38-CEA). Mice with

established tumors ([100 mm3) were treated either with

aGC/sCD1d-anti-CEA fusion protein (Fig. S1), aGC alone,

untargeted aGC/sCD1d or aGC/sCD1d-anti-HER2 fusion

proteins. After a total of six injections given over 3 weeks,

all mice treated with aGC/sCD1d-anti-CEA protein

retained small tumors barely exceeding 200 mm3, and

hence 60 % smaller than in untreated animals (700 mm3)

(Fig. 5a). In marked contrast, aGC alone and untargeted

sCD1d were unable to inhibit tumor growth. The require-

ment of tumor-targeted CD1d treatment to achieve a

therapeutic effect was best demonstrated in the mice trea-

ted with the irrelevant aGC/sCD1d-anti-HER2 fusion

protein, as all animals had fast tumor growth. The pro-

longed reactivity of iNKT cells was tested in the spleen by

the detection of ex vivo IFNc production 1 h after the sixth

injection. After repeated injections of aGC, only few iNKT

cells still produced IFNc, confirming the induction of

anergy upon repetitive stimulations (Fig. 5b) [18, 19].

Similarly, no significant IFNc was detected after untar-

geted aGC/sCD1d and irrelevant aGC/sCD1d-anti-HER2

treatments, though in this case likely resulting from a weak

activation of iNKT cells rather than anergy. In contrast,

15 % of spleen iNKT cells isolated from mice treated with

tumor-targeted aGC/sCD1d-anti-CEA were positive for

IFNc, which correlated with the fact that antitumor activity

was exclusively obtained in this group. Although tumor-

infiltrating iNKT cells were too few to be functionally

analyzed, the prolonged reactivity of iNKT cells only in the

spleens of mice treated with tumor-targeted fusion protein
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suggested that these cells had been repeatedly activated at

the tumor site. In view of previous studies that attributed

aGC-induced iNKT cell anergy to the up-regulation of the

co-inhibitory receptor programmed death-1 (PD-1) [28,

29], we tested its expression level on spleen iNKT cells

(Fig. 5c). Strikingly, PD-1 expression was up-regulated not

only on the vast majority of iNKT cells after six injections

of aGC alone, but also after repeated injections of

recombinant aGC/sCD1d proteins, including iNKT cells

activated by the tumor-targeted aGC/sCD1d-anti-CEA

Fig. 4 Activated iNKT cells kill aGC/sCD1d-loaded tumor cells as

well as CD1d-positive APCs. a Apoptosis of SKBR3 tumor cells or

APCs after 4-h incubation with iNKT cell clones, in the presence of

aGC/sCD1d-CEA, aGC/sCD1d-HER2, aGC-pulsed C1R-CD1d cells,

or aGC-pulsed moDCs. Results are shown as percentages of Annexin

V? 7AAD- cells gated on HER2? SKBR-3 cells, CD20? C1R-CD1d,

or CD11c? moDCs, after subtracting the respective backgrounds

obtained with unstimulated iNKT cells. **P \ 0.005. b Cytotoxic

activity of iNKT cells in the same experiment described in a was

determined by assessing CD107a expression on the CD3?CD1d-

tetramer? effector cells. ***P \ 0.001. c The activation state

of iNKT cells was also evaluated by ICS for IFNc and TNFa.

The unstimulated group consists of the pooled data of iNKT

cells incubated with unpulsed C1R-CD1d cells or moDCs.

****P \ 0.0001 between all groups
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protein (Fig. 5b). Therefore, increased PD-1 expression did

not correlate with the state of unresponsiveness of iNKT

cells. At this point, it is interesting to mention that the

majority of human iNKT cells were found positive for PD-

1 expression when analyzed ex vivo in normal donor

PBMCs (Fig. S3), likely resulting from previous in vivo

stimulations. These observations suggest that PD-1 up-

regulation on mouse and human iNKT cells is rather a

marker of activation and is not in itself sufficient to

mediate iNKT cell anergy.

The prolonged reactivity of iNKT and NK cells

to repeated stimulations is optimized by tumor bound

CD1d proteins

The requirement for CD1d tumor targeting to provide

sustained reactivity of iNKT despite PD-1 up-regulation

was further characterized. As already reported [18, 19], a

single injection of aGC induced a fast and potent activation

of iNKT cells, as revealed by the presence of 40 % splenic

iNKT cells producing IFNc (Fig. 6a). However, after three

injections of aGC and despite similar numbers of iNKT

cells (data not shown), only 12 % of iNKT cells still pro-

duced IFNc (Fig. 6a), confirming the induction of anergy

upon repetitive stimulations [18, 19]. In contrast, 25 % of

iNKT cells from MC-38-CEA tumor-bearing mice treated

with aGC/sCD1d-anti-CEA fusion protein still produced

IFNc (Fig. 6a), while only 9 % iNKT cells were IFNc? in

mice treated with the irrelevant aGC/sCD1d-anti-HER2

fusion protein. Importantly, after three treatments, per-

centages of IFNc-producing cells were similar whether

gated on total or on PD-1? iNKT cells (Fig. 6a), con-

firming that PD-1 up-regulation was not sufficient to block

the restimulation of iNKT cells. In view of their fast

transactivation by iNKT cells, NK cells were tested in the

same groups of mice (Fig. 6b). After three injections of

aGC, spleen NK cells also failed to produce IFNc, as a

consequence of iNKT cell anergy. In contrast, in mice

treated with either aGC/sCD1d-anti-CEA or aGC/sCD1d-

anti-HER2 fusion proteins, NK cells remained reactive, as

seen by increased IFNc production. The repeated activation

of NK cells upon treatment with the irrelevant fusion

protein aGC/sCD1d-anti-HER2 indicated that sustained

systemic activation of iNKT cells had occurred, although to

a weaker extent than with the tumor-targeted treatment.

Serum cytokines measured 1 h after the third injection also

reflected the prolonged reactivity of iNKT cells to tumor-

targeted recombinant CD1d proteins (Fig. 6c), as shown by

significant serum levels of IFNc and IL-4 in mice treated

Fig. 5 In vivo antitumor activity of aGC/sCD1d-anti-CEA fusion

protein. a Mice were grafted s.c. with 7 9 105 MC38-CEA tumor

cells. I.v. injections of PBS (untreated), or equimolar amounts of

aGC, aGC-loaded sCD1d, aGC/sCD1d-anti-HER2, and aGC/sCD1d-

anti-CEA were started 6 days later when all tumors were well

established and were repeated for a total of 5 injections as specified.

Tumors were measured every 2 days and the graph represents the

kinetic of tumor growth (mm3) as the mean of 7 mice per group.

***P \ 0.001 versus untreated group. b Ex vivo IFNc production by

spleen iNKT cells at the end of the antitumor experiment (day 22).

Splenocytes were isolated 1 h after the sixth injection of each

treatment and iNKT cells were stained with CD1d-tetramer-PE and

anti-CD3-FITC, and intracellularly with anti-IFNc-APC. Results are

expressed as the mean percentage of IFNc-producing iNKT of three

mice per group. ***P \ 0.001 versus all groups. c The same samples

as in b were analyzed for the expression of the co-inhibitory receptor

PD-1 on spleen iNKT cells. The graph represents the percentage of

PD-1 positive iNKT cells from three mice per group. **P \ 0.005,

***P \ 0.001, ****P \ 0.0001 versus untreated group

c
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with aGC/sCD1d-anti-CEA protein, while barely any

cytokines could be measured after three injections of aGC/

sCD1d-anti-HER2 protein. Regarding aGC as a free drug,

a single injection induced a fast release of IFNc and IL-4,

but almost no cytokine production was detected after three

injections, confirming the induction of iNKT cell anergy.

Most importantly, in the absence of MC38-CEA tumor

grafts, repeated treatments with aGC/sCD1d-anti-CEA

fusion protein did not lead to significant release of cyto-

kines, which did not differ from mice treated with the

irrelevant aGC/sCD1d-anti-HER2 protein (Fig. 6d). Alto-

gether, these results demonstrate the importance of tar-

geting CD1d to the tumor site to favor a strong and

prolonged reactivity of iNKT cells.

Fig. 6 Sustained activation of iNKT and NK cells upon repeated

injections of tumor-targeted aGC/sCD1d-anti-CEA. Mice bearing

MC38-CEA tumors were treated three times, following the same

protocol as in the tumor therapy experiments (Fig. 5), and splenocytes

were analyzed 1 h after the third injection. As a positive control for

IFNc production, a naı̈ve mouse was injected only once with aGC.

a Percentage of IFNc-producing cells gated on total (black bars) or

PD-1? (empty bars) iNKT cells. b Percentage of IFNc-producing NK

cells as gated on CD3-NK1.1?. c Cytokines were measured by CBA

in the sera of mice taken 1 h after the third treatments, as described in

a. Graphs show the concentration of IFNc (left panel) and IL-4 (right
panel). d Serum levels of IFNc and IL-4 were compared between

mice-bearing or not MC38-CEA tumors, and treated with targeted or

non-targeted aGC/sCD1d fusion proteins administered as in a. All

data are shown as the mean ± SEM of 3 mice per group, *P \ 0.01,

**P \ 0.005, ***P \ 0.001, ****P \ 0.0001
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Discussion

The present study demonstrates the therapeutic efficacy of

recombinant sCD1d-antitumor scFv fusion proteins via the

sustained activation of murine and human cytolytic iNKT

cells. The attractiveness of this strategy resides in two main

beneficial characteristics. First, recombinant CD1d proteins

have the capacity to keep iNKT cells reactive through

multiple stimulations, in contrast to their unresponsiveness

after repeated challenge by aGC-loaded APCs. Second, the

targeting of CD1d molecules to cancer cells by their fusion

to an antitumor scFv fragment efficiently redirects acti-

vated iNKT cells to the tumor site, promoting a local innate

immune response, including direct lysis of targeted tumors

by iNKT cells, release of large amounts of cytokines and

transactivation of NK cells, altogether leading to prolonged

antitumor effects.

So far, the therapeutic use of iNKT cells has been lim-

ited by their short-lived cytokine response to aGC stimu-

lation, followed by a long-term anergy [4, 17, 18]. Several

mechanisms have been proposed for the induction of iNKT

cell unresponsiveness, and the controversial results suggest

that multiple factors are likely involved. At first, the fast

and long-term up-regulation of PD-1 upon activation of

iNKT cells was proposed as the main mechanism since

their anergic state could be prevented or reverted by PD-1/

PD-L1 blockade and did not occur in PD-1 KO mice [[28],

[29]]. However, the exclusive role of PD-1 in the control of

iNKT cell anergy was not confirmed in all systems [30],

and the involvement of co-stimulation through CD28 or co-

inhibitory receptors such as BTLA was suggested [30–32].

In this respect, our present results also demonstrated the

strong and long-term up-regulation of PD-1 upon activation

of murine iNKT cells, which however did not correlate

with the state of anergy. Indeed, iNKT cells remained

reactive to multiple injections of recombinant CD1d fusion

proteins despite similar up-regulation of PD-1 as was found

on anergic iNKT cells after treatment with aGC as a free

drug. Clinical trials in cancer patients have preferred the

autologous transfer of aGC-pulsed DC, which showed

prolonged iNKT cell activation, as compared to the gly-

colipid alone [4, 11, 13, 14, 33]. However, a maximum of

two subsequent rounds of iNKT cell stimulations were seen

despite three to four autologous transfers of aGC-pulsed

DC in some studies, suggesting that iNKT cells became

progressively unresponsive to further challenge. Unfortu-

nately, in vitro experiments with human iNKT cells do not

allow monitoring the induction of anergy by aGC, likely

due to the presence of IL-2 required for the maintenance of

human and mouse iNKT cells in vitro. Indeed, IL-2 has

been shown to prevent or revert the state of anergy of

murine iNKT cells both in vivo and in vitro [18, 34].

However, it is interesting to note that around 70 % of

human iNKT cells were already expressing PD-1 when

tested ex vivo on total PBMC from healthy donors, prob-

ably resulting from previous in vivo antigen stimulations.

Since it is unlikely that the large majority of iNKT cells

present in normal donors are anergic, the expression of PD-

1 on activated human and mouse iNKT cells is probably

not sufficient to mediate iNKT cell unresponsiveness. So

far, the exact mechanism that mediates the aGC-induced

anergy of iNKT cells or, conversely, their prolonged

reactivity to recombinant aGC/CD1d fusion proteins

remains unclear.

Importantly, our data demonstrated a direct activation of

human iNKT cells by recombinant soluble CD1d proteins

in the absence of any APC, which excluded the possibility

of loss of aGC from the recombinant CD1d proteins and its

loading onto endogenous CD1d expressed by APCs. In this

regard, the capacity of a monomeric CD1d molecule to

activate iNKT cells seems to be unique to this antigen-

presenting molecule, as soluble MHC Class I and Class II

monomers were shown to be unable to activate antigen-

specific T cells, in contrast to dimeric and multimeric

forms [35, 36]. The question remains whether the iNKT

cell activation by monomeric aGC/sCD1d proteins is

peculiar to the strong agonist aGC and whether it would

not occur with a more physiological CD1d ligand. Never-

theless, activation of human iNKT cells by soluble aGC/

CD1d proteins remained significantly less efficient than

plastic-coated or tumor bound CD1d fusion proteins and

aGC-pulsed APCs, which likely resulted from the lack of

molecular CD1d aggregation in the absence of plastic or

cell surface, as well as from the absence of co-stimulation.

In support of this, systemic treatments of mice with un-

targeted aGC/sCD1d or irrelevant aGC/sCD1d-scFv fusion

proteins led to a two to threefold weaker release of cyto-

kines, as compared to treatment with the tumor-targeted

aGC/sCD1d-scFv protein. Rather than a drawback, the

lower potency of soluble monomeric CD1d molecules will

be rather favorable in limiting a potentially detrimental

systemic activation of iNKT cells, while promoting their

sustained activation when targeted at the tumor site.

The second attractive characteristic of our immuno-

therapy strategy is the targeting of recombinant CD1d

fusion proteins to tumors by fusion of the extracellular part

of CD1d to an antibody scFv fragment specific for a tumor

antigen. Indeed, the present data show both in vitro with

human iNKT cell clones and in vivo in a therapeutic mouse

tumor model that the strongest tumor inhibition is obtained

with tumor-targeted recombinant sCD1d-antitumor scFv

fusion protein as compared to an irrelevant sCD1d fusion

protein. This finding fits with the prerequisite of CD1d

expression by tumors to promote efficient iNKT cell-

mediated killing, which has been previously reported in

humans in the context of CD1d-expressing lymphomas
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[26, 37, 38], and in mice with tumor models transfected

with CD1d [39, 40]. In this context, our strategy using

CD1d-antitumor scFv fusion proteins opens the possibility

to target CD1d-negative tumors and render them suscep-

tible to iNKT cell attack. The effectiveness of this

approach was best demonstrated by the direct cytotoxicity

of human iNKT cell clones against tumor cells when

coated with the aGC/sCD1d-scFv fusion protein specific

for the tumor antigen expressed on their surface, while the

untargeted aGC/sCD1d-scFv was unable to induce antitu-

mor cytotoxic activity. More importantly, although iNKT

cells were strongly activated by aGC-pulsed APCs, such as

C1R-CD1d or moDCs, as seen by CD107a expression and

cytokine release, they rather killed the APCs and to a lesser

extent the tumor cells, indicating that bystander killing by

iNKT cells was inferior to the CD1d-mediated cytotoxicity.

These observations suggest that the strategy of iNKT cell

activation by autologous transfer of aGC-pulsed DCs, as

tested so far in clinical trials, may direct the intrinsic

cytotoxic activity of iNKT cells preferentially against the

transferred DCs and not against tumors. Because of the

relatively low numbers of peripheral iNKT cells in humans,

this aspect was probably not a major issue, and these

protocols of DC transfer have instead successfully induced

the immunomodulatory functions of iNKT cells, such as

the transactivation of NK and T cells. However, our results

in mice demonstrated that the stronger iNKT cell activation

by tumor-targeted sCD1d treatment also led to higher NK

cell activation, which are known to greatly participate in

tumor inhibition [19]. Therefore, the targeting of CD1d

molecules to the tumor site not only triggers iNKT-medi-

ated tumor lysis, but also favors local innate and adaptive

antitumor responses, as suggested by the accumulation of

iNKT, NK, and T cells at the tumor site [19]. The impor-

tance of tumor targeting and local activation of iNKT cells

was underlined by recent clinical trials in which aGC-

pulsed DC and/or ex vivo expanded iNKT cells were

delivered in the vicinity of the tumor [15, 33]. The best

clinical results were obtained in HNSCC patients in whom

aGC-pulsed DCs were administered via the nasal submu-

cosa and iNKT cells via the tumor-feeding arteries [15, 41].

In addition to the local delivery of iNKT cells, this

encouraging clinical benefit also demonstrated the need to

increase the numbers of iNKT cells by autologous transfer

of in vitro expanded iNKT cell lines, since the frequency of

iNKT cells is often very low or even undetectable in

advanced cancer patients [8, 42]. To this aim, recombinant

sCD1d-antitumor fusion proteins appear as promising

tools: first, in vitro to expand large numbers of human

iNKT cells for adoptive transfer, and second, in vivo to

redirect these transferred iNKT cells to the tumor site.

Finally, the efficient tumor targeting of CD1d molecules

requires the over-expression of a tumor antigen for which a

high-affinity antibody scFv has been developed. So far, we

have used two of the highest affinity existing scFv frag-

ments specific for the HER2 and CEA, which are often

over-expressed, respectively, in breast cancers and gastric

cancers. As alternatives to tumor-associated markers,

antigens over-expressed in the tumor stroma and/or neo-

vessels would be additional good candidates for the tar-

geting of CD1d molecules to the tumor site.

In conclusion, the present results propose and support

monomeric CD1d-scFv antitumor fusion proteins as a potent

tool to effectively harness iNKT cells against cancer.
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CHAPTER 2 

 

 

Advantages of NKT activation mediated by αGC/CD1d-anti-HER2 fusion 

to improve cancer vaccine and redirect the adaptive immune response to 

the tumor. 

Introduction 

 

The identification of TAA epitopes recognized by T cells led to the development of specific 

therapeutic vaccine (191). The aim of such strategy is to elicit a potent adaptive immune 

response that can mediate the killing of tumor. The attractive feature of this strategy is the 

specificity driven by the utilization of antigen restricted to the tumor, which limits undesirable 

side effects. Protein and peptide-based vaccine represents an efficient system to induce 

specific T cells. They can be easily processed by APCs and loaded on MHC-class-I or II to 

prime CD8 and CD4 T cells. However, peptides and recombinant proteins as such are poorly 

immunogenic and therefore need to be administered in combination with an adjuvant to 

activate the immune system machinery. Adjuvants play two roles in the vaccination strategy. 

First, they favor the duration of the antigen exposition to the immune system that in turn 

strengthens the priming of CD8 and CD4 T cells. Second, adjuvants can trigger the 

maturation of DC that ameliorates the migration to lymph nodes to initiate a robust T cell 

response. Today, a limited number of adjuvants is approved for human vaccine, including 

aluminum salts (Alum) and Incomplete Freund’s adjuvant (IFA) that create a depot that 

prolongs the antigen presentation. However, another class of adjuvant is developed which acts 

as immunostimulants that ameliorate vaccine activities. So far, mostly Monophosphoryl lipid-
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A (MPL), constituted by an active part of bacterial cell wall constituent, is used as adjuvant in 

human cancer vaccine and elicits effective immune responses (192). But there are many other 

immunostimulants including pathogen-associated molecular patterns (PAMPs) that are sensed 

by Toll-like receptors (TLRs), and several components belonging to the PAMP family are 

currently tested in clinical trials with vaccine (193). Toll-like receptors have an important role 

in the innate immune system and are expressed by macrophages, DC, and monocytes. They 

are able to recognize conserved pathogen features (figure 1), which are not found in the host, 

such as DNA motifs of CpG oligodeoxynucleotides (CpG ODN), double-strand DNA 

(dsDNA) or LPS (194).  

 

Figure 1: Schematic representation of Toll-like receptors. TLRs are divided in two classes, 
cell-surface receptors that recognize bacterial cell wall components, and endosomal receptors 
that recognize bacterial and viral nucleic acids (adapted from (195)) 
 

For example, the receptor TLR9 is expressed by B cells and DC and is localized in the 

endosomal-compartment of the cells where it interacts with pathogen-derived products gained 

after phagocytosis. TLR9 detects the unmethylated CpG motif specific of bacterial DNA and 

its activation results in the maturation of DC (196). The innate immune response following 

the differentiation and the activation of DCs is characterized by a strong production of Th1-
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like cytokines, including IL-6, TNFα, IFNγ and IL-12, and the activation of NK cells and T 

cells (197). CpG ODN is a potent stimulus for pDC subset, which can produce high amounts 

of the pro-inflammatory cytokine IL-12 and type I IFN (198). Taken together, TLR9 

activation boosts vaccine effects and supports immune responses against cancers (199). 

An alternative strategy to the activation of DC by pathogens-derived molecules is the 

activation of iNKT cells, which are potent modulators of the adaptive response through the 

maturation of DCs. This approach renders these cells attractive as vaccine adjuvant. Different 

cancer vaccines using the iNKT ligand αGC showed potent effects to enhance CD8 T cell 

priming and therefore anti-tumor immunity (200) (150). Indeed, a potent cross talk between 

iNKT cells and DCs happens after aGC stimulation, and mediates the full maturation of DCs. 

This link requires principally the CD40L-CD40 interaction, which triggers IL-12 production 

that in turn enhances the NK and NKT cell responses (figure 2)(201) (202). 

 

Figure 2: Activation of iNKT cells with αGC links the innate and the adaptive immunity 
via DC maturation (203). 
 

There is also evidence that the combination of TLR9 ligand together with the activation of 

iNKT cells results in an enhanced maturation of DC as well as their immunostimulatory 

functions (204). In this study, we investigated the property of the recombinant αGC/CD1d-
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anti-TAA fusion to activate iNKT cells and to act as an adjuvant for cancer vaccine. As a 

model, we used the peptide-based vaccine of the chicken ovalbumin (OVA) antigen peptide 

SIINFEKL. The transgenic mouse model OT-I served as a source of OVA-specific CD8 T 

cells to be adoptively transferred in WT mice together with iNKT cells purified from the 

Vα14Jα18 TCR transgenic mice (205). In this study, the peptide vaccine formulated with 

CpG-ODN adjuvant, combined with the recombinant αGC/CD1d-anti-HER2 therapy, 

enhanced the priming of antigen-specific CD8 T cells. The tumor targeted iNKT cells directed 

by the αGC/CD1d-anti-HER2 fusion also resulted in an improved enrichment of antigen-

specific CD8 T cells and NK cells into the tumor, which led to better tumor inhibition.  
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Results 

CD8 T cells priming is effective with the aGC/CD1d-anti-HER2 fusion as adjuvant 

 

The microbial stimuli CpG-ODN is well characterized as a potent adjuvant in cancer vaccine 

by increasing the CD8 T cell responses (206). The CpG-ODN also promoted antibody 

production as well as the activation of Th-1 helper CD4 T cells that therefore led to a better 

CD8 T cell responses (47). First, we examined the ability of recombinant αGC-loaded CD1d-

anti-HER2 fusion (αGC/CD1d-anti-HER2) to promote the priming of specific CD8 T cells 

when it is co-administrated with the OVA peptide and compare it with CpG ODN and αGC as 

adjuvant. For this purpose, iNKT cells from Vα14Jα18 TCR transgenic mice and OVA-

specific CD8 T cells were transferred into mice bearing B16-OVA-HER2 tumor. Six days 

after the tumor graft, mice were vaccinated i.m. with PBS or the OVA peptide in combination 

of either CpG-ODN (OVA-CpG), the free ligand αGC (OVA-αGC) or the αGC/CD1d-anti-

HER2 fusion (OVA-αGC/CD1d-anti-HER2) (figure 1A). Seven days after the vaccine, at the 

peak of the response, we analyzed in the periphery the priming of OVA-specific CD8 T cells 

measured by using MHC class-I/SIINKFEL tetramers. The data showed that the αGC/CD1d-

anti-HER2 fusion was as efficient as the CpG-ODN and the ligand αGC alone to induce the 

expansion of OVA-specific CD8 T cells in the blood (figure 1B). The profound 

downregulation of the lymphoid-homing molecule CD62L, occurring during effector T cell 

differentiation, indicated that OVA-specific CD8 T cells were activated by all different 

vaccinations (figure 1C). Likewise, the adjuvant effect of the αGC/CD1d-anti-HER2 fusion 

was observed in the spleen of vaccinated mice, resulting in 2% of effector MHC-I/OVA 

tetramer positive cells among CD8 T cells, that was similar to the percentage obtained with 

CpG-ODN or free αGC as adjuvant (figure 1D, E).  
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Figure 1: The αGC/sCD1d-anti-HER2 fusion is a potent adjuvant to prime OVA-specific 
CD8 T cells. Recipient CD45.1 mice were grafted s.c. with 500 000 B16-OVA-HER2 tumor 
cells. Five days later, splenocytes from T414 and OT-I transgenic mice containing 
respectively 500 000 NKT and 100 000 OVA-specific CD8 T cells were co-transferred. One 
day later, mice were immunised i.m. with OVA peptide alone or in combination with different 
stimulation and treated systemically every 2-4 days with the αGC/CD1d-anti-HER2 fusion 
(fusHER2). Mice were sacrificed at day 13 and lymphocytes from blood and spleen were 
analyzed by flow cytometry. A. Experimental protocol (upper panel) and description of the 
different treatment combinations (lower panel). B. Frequency of H-2Kb/OVA-specific CD8 T 
cells among total CD8 lymphocytes in the blood on day 13. C. Mean of fluorescence of 
CD62L on the H-2Kb/OVA-specific CD8 T cell population in the blood. D. Frequency of H-
2Kb/OVA-specific CD8 T cells among total CD8 cells in the spleen. E. Mean of fluorescence 
of CD62L on the H-2Kb/OVA-specific CD8 T cell population in the spleen. Bar graphs show 
frequencies or mean of fluorescence, as mean +/- SEM of groups of 3 mice. 
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The combination of αGC/CD1d-anti-HER2 fusion with CpG-ODN rapidly activates the innate 

and the adaptive immune responses. 

 

In view of the ability to CpG-ODN and the αGC/CD1d-anti-HER2 fusion proteins to induce 

potent priming of antigen-specific CD8 T cells, we investigated their combined effects on 

lymphocytes activation and DC maturation. Total splenocytes from Vα14Jα18 transgenic 

mouse were cultured for 6h in presence of either αGC/CD1d-anti-HER2 fusion proteins, 

CpG-ODN or the combination of the two stimuli and the expression of the early activation 

antigen CD69 was analyzed on the surface of iNKT, CD3 and NK cells (figure 2). While 

CpG ODN stimulation was unable to directly activate iNKT cells, αGC/CD1d-anti-HER2 

fusion proteins induced rapid up-regulation of CD69 on their surface (figure 2A). 

Furthermore, a strong synergistic effect was observed upon the combination of CpG-ODN 

and αGC/CD1d-anti-HER2 fusion resulting in an enhanced expression of CD69 on iNKT 

cells (figure 2A). While iNKT cells were not stimulated by CpG-ODN, T lymphocytes and 

NK cells were activated by TLR9 ligand-mediated activation of DC and macrophages (figure 

2B, C). We noticed that the αGC/CD1d-anti-HER2 fusion-mediated activation of iNKT cells 

was more efficient to promote CD8 T lymphocytes and NK cells activation compared to CpG-

ODN alone, as showed by the higher expression of CD69 (figure 2B, C). As observed on 

iNKT cells, the effects of each stimulation acted together to induce the better activation of T 

lymphocytes (figure 2B) and NK cells (figure 2C).  

For each stimulation, we observed an up-regulation of CD86, a marker of DC maturation, on 

CD11c+ DCs compared to non-stimulated condition (figure 2D), however, no synergistic 

effect was induced with the combination of CpG-ODN and αGC/CD1d-anti-HER2 fusion. 

But interestingly, the production of the pro-inflammatory cytokine IL-12 was two-fold 

enhanced with the combined stimulus CpG-ODN and αGC/CD1d-anti-HER2 fusion 

compared to the CpG-ODN alone (figure 2E). These results demonstrated that iNKT cell 
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activation, together with the TLR9 ligand, represents a promising approach to reach a 

maximal activation of immune cells.  

 

Figure 2: The combination of αGC/CD1d-anti-HER2 fusion with CpG ODN rapidly 
activates immune cells. 200 000 splenocytes from T414 mouse (Vα14Jα18 transgenic 
mouse) were cultured in complete DMEM for 6 or 24 hours in presence either of plate-coated 
αGC/CD1d-anti-HER2 fusion (40µg/ml), CpG-ODN (5µg/ml) or the combination of the two 
stimuli. Cells were recovered at 6h and analyzed by flow cytometry. A. Mean of fluorescence 
of CD69 on CD1d tetramer+ NKT cell population. B. Mean of fluorescence of CD69 on 
CD3+ T cell population. C. Mean of fluorescence of CD69 on NK1.1+ NK cell population. 
D. Dot plot representative of the surface expression of CD86 on CD11c+ cells. E. 
Supernatants were recovered at 24h and IL-12 level (pg/ml) was analyzed using CBA assay. 
Bar graphs show mean of fluorescence or cytokine concentration, as mean of triplicates +/- 
SEM.  
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Sustained activation of iNKT cells combined with a vaccine enhances the priming of antigen-

specific CD8 T cells. 

 

Recipient mice bearing B16-OVA-HER2 tumor were injected i.v. with iNKT and OT-I cells 

and then vaccinated i.m. with the OVA peptide in presence of either PBS, CpG-ODN alone or 

CpG-ODN combined with αGC/CD1d-anti-HER2 fusion proteins (OVA-CpG+αGC/CD1d-

anti-HER2), before i.v. treatments with the αGC/CD1d-anti-HER2 fusion (figure 3A). We 

hypothesized that the innate signal through TLR9 and iNKT cell-mediated cytokines would 

act synergistically in the modulation of DC maturation and promotion of the adaptive T cell 

immune responses. At two time points, day 3 and day 7 after the vaccination, we assessed the 

proliferation of transferred antigen-specific CD8 T cells. As expected, the peptide OVA 

without adjuvant failed to prime OVA-specific CD8 T cells and the αGC/CD1d-anti-HER2 

fusion treatment without the OVA peptide did not stimulate OVA-specific CD8 T cells 

(figure 3B). In contrast, we observed a potent priming of OVA-specific CD8 T cells 3 days 

after vaccination with OVA-CpG or with OVA-CpG+αGC/CD1d-anti-HER2 fusion (figure 

3B, C), which at this early time point, were not yet fully activated as seen by high CD62L 

expression (figure 3D). Moreover, 7 days after the vaccination, OVA-specific CD8 T cells 

still proliferated (figure 3E) and exhibited a fully effector phenotype demonstrated by the 

downregulation of the CD62L (figure 3F).  
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Figure 3: Vaccination of mice with OVA/CpG combined or not with the αGC/CD1d-
anti-HER2 fusions leads to the priming of H-2Kb/OVA-specific CD8 T cells. Schedule of 
the experimental was the same as in figure 1. Mice were bled at day 10 and day 14 after the 
tumor graft, and lymphocytes were analyzed by flow cytometry. A. Description of the 
different treatment combinations B. Dot plot representative of one mouse per group showing 
the H-2Kb/OVA tetramer positive CD45.2+ CD8 T cells in the blood at day 10. C. Frequency 
of H-2Kb/OVA-specific CD8 T cells among total CD8 cells in the same time point. D. Mean 
of fluorescence of CD62L on the H-2Kb/OVA-specific CD8 T cell population E. Frequency 
of H-2Kb/OVA-specific CD8 T cells among total CD8 cells in the blood at day 14. F. Mean 
of fluorescence of CD62L on the H-2Kb/OVA-specific CD8 T cell population in the blood at 
day 14. Bar graphs show frequencies or mean of fluorescence, as mean +/- SEM of groups of 
5 mice. 
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Sustained activation of iNKT cells combined with a vaccine leads to the expansion of NK 

cells. 

 

In parallel, we tested the frequency of iNKT and NK cells in the blood following the different 

vaccination protocols. The percentage of iNKT observed at day 3 and day 7 after treatment 

did not change, except a weak decrease with the vaccination alone at day 3 and an increased 

percentage of iNKT cells after CpG-ODN and αGC/CD1d-anti-HER2 fusion treatment at day 

7 (figure 4A, B). Moreover and as expected, the activation of iNKT cells with the 

αGC/CD1d-anti-HER2 fusion led to the transactivation of NK cells, which were required for 

anti-tumor effects (92). Indeed, the percentage of NK cells in the blood increased 

significantly, exclusively in the two groups of mice treated with the αGC/CD1d-anti-HER2 

fusion alone or with CpG-ODN (figure 4C), and rapidly reached 10% of total lymphocytes, 3 

days after the vaccine. Interestingly, the expansion of NK cells remained stable at day 7 only 

in the group with the combination of the OVA-CpG vaccine and the αGC/CD1d-anti-HER2 

fusion treatment (figure 4D). These data indicated that the CpG-ODN adjuvant effects 

synergized with the activation of iNKT cells leading to a better activation of the NK cells.  
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Figure 4: Administration of OVA-CpG vaccine combined with the αGC/CD1d-anti-
HER2 fusion induces the proliferation of NK cells. NKT and NK cells from the mice 
described in figure 3 were analyzed by flow cytometry. A. Frequency of NKT cells 
(CD1dtetramer+CD3+) in the blood at day 10. B. Same as in A at day 14. C. Frequency of 
NK cells (NK1.1+CD3-) in the blood at day 10. D. Same as in C at day 14. Bar graphs show 
frequencies as mean +/- SEM of groups of 5 mice. 
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fusion was also revealed by the large amount of Th1 cytokines released in the blood as seen 

20h after vaccination (figure 5). As expected, triggering iNKT cells with the αGC/CD1d-anti-
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Furthermore, in correlation with the strong proliferation of NK cells (figure 4), IL-6 and 

TNFα productions were two fold increased after the combination treatment compared to each 

separated treatment (figure 5B, C).  

 

 
Figure 5: αGC/CD1d-anti-HER2 fusion 
combined with CpG-ODN induces 
strong Th1 cytokine production early 
after immunisation. Sera from mice 
described in figure 3 were collected 20 
hours after the first immunisation and 
cytokines were measured using a 
Th1/Th2/Th17 CBA assay. A. Serum IFNγ 
level B. Serum IL-6 level C. Serum TNFα 
level. Bar graphs show cytokine level in 
pg/ml as mean +/- SEM for 3 samples per 
group.  
 

 

 

 

 

 

 

 

 

Synergistic effects of OVA-CpG vaccine and αGC/CD1d-anti-HER2 fusion treatment is 

confirmed in the spleen. 

 

At day 7 after vaccination, we observed a proliferation of OVA-specific CD8 T cells in the 

spleens of mice vaccinated with OVA-CpG, and their frequency was further enhanced when 
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enhanced when the vaccination was combined to the activation of iNKT cells (figure 6 B). 

Indeed, the frequency as well as the absolute cell number of OVA-specific CD8 T cells were 

two fold increased in the combination group compared to the vaccine alone (figure 6B, C). In 

all vaccinated groups, CD8 T cells displayed an effector phenotype as seen by the down-

modulation of CD62L (figure 6D).  

 

Figure 6: Vaccination of mice with OVA/CpG combined with the αGC/CD1d-anti-
HER2 fusion efficiently primes H-2Kb/OVA-specific CD8 T cells in the spleen. Schedule 
of the experimental was the same as in figure 1 A. Table describing the different treatment 
combinations. B. Frequency of H-2Kb/OVA-specific CD8 T cells among total CD8 cells in 
the spleen on day 13. C. Absolute cell number of H-2Kb/OVA-specific CD8 T cells in the 
spleen. D. Mean of fluorescence of CD62L into the H-2Kb/OVA-specific CD8 T cell 
population. Bar graphs show results as mean +/- SEM of groups of 3 mice. 
 

%
O

TI
 in

 C
D8

0.0

0.5

1.0

1.5

2.0

OVA 

CpG CpG/fus - -
CD1d-anti-HER2

treatment
- -+ +

adjuvant
- - ++

i.m

i.v

**
**

*

m
ea

n 
of

 fl
uo

re
sc

en
ce

 o
f C

D6
2L

0

500

1000

1500

OVA 

CpG CpG/fus - -
CD1d-anti-HER2

treatment
- -+ +

adjuvant
- - ++

i.m

i.v

B C

D

0.0

5.0×104

1.0×105

1.5×105

2.0×105
nu

m
be

r o
f O

TI

OVA 

CpG CpG/fus - -
CD1d-anti-HER2

treatment
- -+ +

adjuvant
- - ++

i.m

i.v

*
*

Groups''
(3'mice)'

Vaccine'i.m.' Treatments'i.v.'

1" #' #'

2" #' 40μg"αGC/CD1d#an1#HER2"

3" 10μg"OVA"pep1de""
+"50μg"CpG"

#'

4"
10μg"OVA"pep1de""
+"50μg"CpG"adjuvant""
+"40μg"αGC/CD1d#an1#HER2"

40μg"αGC/CD1d#an1#HER2"
"

A



 95 

In all groups receiving i.v. treatments with the αGC/CD1d-anti-HER2 fusion, expansion of 

iNKT cells was enhanced as shown by their increased percentage and absolute cell number 

(figure 7A, B). Moreover, as observed in the blood, the population of NK cells was highly 

augmented in mice treated with the combined treatment, as seen in both the frequency and 

absolute cell number (figure 7C, D). Altogether, these results confirmed the synergistic 

effects on innate and adaptive immune cells between OVA-CpG vaccination and the 

activation of iNKT cells with the αGC/CD1d-anti-HER2 fusion. 

 

 

 
Figure 7: The combination of OVA-CpG vaccine with activation of iNKT cells enhances 
the proliferation of innate NK cells. NKT and NK cells were analyzed on day 13 in the 
spleen of the same mice as in figure 6. A. Frequency of NKT cells (CD1dtetramer+CD3+). B. 
Absolute cell number of NKT cells. C. Frequency of NK cells (NK1.1+CD3-). D. Absolute 
cell number of NK cells. Bar graphs show result as mean +/- SEM of groups of 3 mice. 
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OVA-specific CD8 effector T cells are specifically redirected to the tumor following injection 

of tumor-targeted αGC/CD1d-anti-HER2 fusion. 

 

At day 7 after the vaccination, during the peak of the adaptive immune response (data not 

shown), we isolated tumor-infiltrating lymphocytes (TILs) and analyzed by flow cytometry 

the proportion of OVA-specific CD8 T cells at the tumor site (figure 8 A). The highest 

percentage of OVA-specific CD8 T cells (45% of CD8 T cells) was achieved in response to 

the combined therapy (figure 8A, B) as compared to vaccine alone. Spontaneous tumor 

infiltration also occurred in the vaccine OVA-CpG group certainly resulting from the 

activated phenotype of specific CD8 T cells attracted by OVA antigen presentation by the 

tumor. The mean number of antigen-specific CD8 T cells per milligram (mg) of tumor in the 

combined group was increased 2-fold as compare to vaccine alone (figure 8C).  
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Figure 8: Treatment of mice with the tumor-specific αGC/CD1d-anti-HER2 fusion 
redirects primed OVA-specific CD8 T cells at the tumor site. Mice treated as described in 
figure 6 were sacrificed at day 13, and the percentage of H-2Kb/OVA-specific CD8 T cells 
was determined in the tumor tissue by flow cytometry. A. Dot plot representative of one 
mouse per group showing the accumulation of H-2Kb/OVA-specific CD8 (tetramer H-
2Kb/OVA+ CD45.2+). B. Frequency of H-2Kb/OVA-specific CD8 among total CD8 T cells 
in tumors. C. Absolute cell number of H-2Kb/OVA-specific CD8 T cells per milligram of 
tumor. Bar graphs show results as mean +/- SEM of groups of 3 mice. 
 

We also observed a discrete tendency of NKT cells to be enriched into the tumor after the 

αGC/CD1d-anti-HER2 treatment with or without the OVA-CpG vaccine (figure 9A, B). 

However, when we analyzed NK cells, we found that the specific activation of iNKT cells at 

the tumor site by the αGC/CD1d-anti-HER2 treatment markedly increased the percentage and 

the absolute cell number of NK per mg of tumor, independently of the combination with the 

OVA-CpG vaccine (figure 9C, D). In contrast the vaccine OVA-CpG alone did not lead to 

the activation and proliferation of NK cells and their attraction to the tumor site (figure 9C).  
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The overall better tumor infiltration lymphocytes indicated the specific role of the 

αGC/CD1d-anti-HER2 fusion to redirect the iNKT cell response to the tumor site to induce 

the tumor targeting of CD8 and NK effector cells.  

 

 

Figure 9: Activation of iNKT cells by the tumor-specific αGC/CD1d-anti-HER2 fusion 
attracts innate immune cells at the tumor site. Mice treated as described in figure 6 were 
sacrificed at day 13 and the percentage of NKT and NK cells was determined in the tumor 
tissue by flow cytometry. A. Frequency of NKT cells (CD1dtetramer+CD3+). B. Absolute 
cell number of NKT cells per milligram of tumor. C. Frequency of NK cells (NK1.1+CD3-). 
D. Absolute cell number of NK cells per milligram of tumor.  Bar graphs show result as mean 
+/- SEM of groups of 3 mice.  
 

 

 

A B

DC

0

5

10

15

20

25

%
NK

OVA 

CpG CpG/fus - -
CD1d-anti-HER2

treatment
- -+ +

adjuvant
- - ++

i.m

i.v

*** **
*
****

%
NK

T

0

1

2

3

OVA 

CpG CpG/fus - -
CD1d-anti-HER2

treatment
- -+ +

adjuvant
- - ++

i.m

i.v

0

1000

2000

3000

4000

nu
m

be
r o

f N
K/

m
g 

of
 tu

m
or

OVA 

CpG CpG/fus - -
CD1d-anti-HER2

treatment
- -+ +

adjuvant
- - ++

i.m

i.v

**

nu
m

be
r o

f N
KT

/m
g 

of
 tu

m
or

0

500

1000

1500

OVA 

CpG CpG/fus - -
CD1d-anti-HER2

treatment
- -+ +

adjuvant
- - ++

i.m

i.v



 99 

 

The tumor-targeted αGC/CD1d-anti-HER2 fusion treatment synergizes with the tumor 

vaccine to reduce tumor growth. 

 

The cross talk between activated iNKT cell and DC results in a large production of the IL-12 

pro-inflammatory cytokine by the latter cells (203). This IL-12 production is further enhanced 

in the presence of bacterial activation and triggers a stronger production of IFNγ by iNKT 

cells (207). We expected that the increased activation of iNKT cells and their capacity to 

release Th1 cytokines could lead to potent anti-tumor effects upon OVA-CpG+αGC/CD1d-

anti-HER2 treatment. To verify this hypothesis, recipient mice were grafted s.c. with B16-

OVA-HER2 tumor cells and treatments were initiated when all tumors were palpable. 

Treatment regimens included either with PBS, the OVA peptide alone, the peptide plus OVA-

CpG, the αGC/CD1d-anti-HER2 fusion alone or the combination OVA-CpG and αGC/CD1d-

anti-HER2 fusion (figure 10A). Untreated mice or those vaccinated with the OVA peptide 

without adjuvant, all had fast tumor growth (figure 10B), while the addition of the 

immunostimulant CpG-ODN to the OVA peptide resulted in a delayed tumor progression 

(figure 10B), which correlated with a weak infiltration of OVA-specific CD8 T cells into the 

tumor. The αGC/CD1d-anti-HER2 fusion alone had a weak anti-tumor effect on this 

aggressive melanoma model (figure 10B). However, the tumor growth was best inhibited in 

mice, which received the combined treatment (figure 10B). The long-term protection was 

increased when compared to the vaccination alone and fusion alone. These strongest effects 

against the B16 melanoma model likely resulted from the synergistic action of innate and 

adaptive immune responses redirected to the tumor site. Indeed, the tumor-targeted iNKT 

cells activation promoted the antitumor cytotoxicity both by NK cells and by the enhancement 

of the adaptive immune response induced by the OVA tumor vaccine. 
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We have previously reported that the tumor targeting of the recombinant αGC/CD1d-

antitumor fusion protein was essential to obtain an optimized activation of iNKT cells and 

resulting in better anti-tumor effects (208). Now, to confirm the importance of the targeting, 

we performed an anti-tumor experiment, where mice-bearing B16-OVA-HER2 were 

vaccinated with OVA-CpG and treated i.v. either with the tumor-specific αGC/CD1d-anti-

HER2 fusion or the irrelevant αGC/CD1d-anti-CEA fusion protein. Synergistic antitumor 

effects between the CTL induction and the systemic iNKT cells activation were observed for 

the two CD1d-scFv fusion proteins (figure 10C). However, the inhibition of tumor growth 

was more efficient in mice treated with the tumor-targeted αGC/CD1d-anti-HER2 fusion as 

compared to the irrelevant αGC/CD1d-anti-CEA fusion protein (figure 10C). Altogether, 

these results demonstrated the advantage of the activation of iNKT cells by a tumor-targeted 

αGC/CD1d-anti-TAA fusion in combination with vaccination based on TLR9 ligand for an 

optimal tumor immunotherapy.  
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Figure 10: The combination of OVA-CpG vaccine with the tumor-targeted αGC/CD1d-
anti-HER2 fusion lead to enhanced anti-tumor effects. Mice were treated following the 
protocol experiment described in figure 1 A. Experimental schedule. B. Kinetic of tumor 
growth shown as mean tumor sizes +/- SEM. C. Kinetic of tumor growth comparing the 
OVA-CpG vaccine combined with i.v. injections of the tumor-targeted αGC/sCD1d-anti-
HER2 or the irrelevant αGC/sCD1d-anti-CEA fusion proteins. Graph represents tumor 
growth kinetic as the mean tumor sizes +/- SEM. For all graphs, tumors were measured every 
two days and the values represent the mean of 5 mice per group.  
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Discussion 

 

The characterization of increasing numbers of tumor-associated antigen opens the way for 

their use as antigenic component in preventive and therapeutic cancer vaccines. Protein and 

peptide-based vaccines have demonstrated clinically relevant effects, and the improvement of 

their immunogenicity is under extensive investigation through the use of adequate adjuvants. 

In the present study, we reported that the activation of iNKT cells via the recombinant αGC-

loaded CD1d protein improved antigen-specific CD8 T cell responses when co-administrated 

with the OVA peptide. The capacity of iNKT cells to act as a potent adjuvant was already 

described by using the iNKT-cell ligand αGC as a free drug or loaded on DCs (200, 209). The 

activation of iNKT cells led to the enhancement of specific CD8 and CD4 T cell responses 

when αGC ligand was co-injected with the antigen (209). The increased vaccine efficacy is 

likely resulting from the cross talk between iNKT cells and DC including the CD40L-CD40 

interaction, as well as IFNγ and IL-12 secreted respectively by activated iNKT cells and DCs 

(202). On the other hand, TLR ligands are known to activate the innate immune system and to 

greatly promote the activation and maturation of DCs (210) (211), which has made them as 

adjuvants of choice in many vaccine settings (193). Using the same model antigen, we have 

demonstrated that iNKT cells activation was as efficient as the TLR9 ligand CpG-ODN to 

prime specific CD8 T cell responses when co-administrated with the OVA peptide. 

Importantly, the combination of αGC/CD1d-anti-HER2 fusion with the CpG-ODN led to 

synergistic activation of iNKT cells, T lymphocytes and NK cells. This combination induced 

a better in vivo priming of specific-CD8 T cells than the vaccine alone. These results 

correlated with a more efficient DC maturation, observed with the upregulation of 

costimulatory molecules and the enhanced IL-12 production after stimulation with 

αGC/CD1d-anti-HER2 fusion and CpG-ODN. The efficacy of the combined iNKT cell 
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activation and cancer vaccine was seen by enhanced production of Th1 cytokines in the serum 

of mice, coming rapidly after the co-injection of the OVA-CpG vaccine and the αGC/CD1d-

anti-HER2 fusion. The high production of IFNγ, IL-6 and TNFα upon the combined treatment 

resulted in effective innate immune response and DC maturation that lead to a strong priming 

of CTLs. In all, these results provided evidence that the TLR9-mediated priming of CD8 T 

cells response was potentiated by iNKT cells activation. 

In addition to the choice of adjuvant, the route of vaccination is also a major parameter in the 

design of a vaccine. Previous report has shown that oral injection of antigen together with 

αGC is efficient to elicit CD8 T cell responses (150). However, this activation required an 

important dose of protein as well as a significant quantity of the glycolipid αGC (150). In 

addition, oral vaccine may result in a mechanism of mucosal tolerance and, in the rapid 

degradation of soluble forms of antigenic proteins (212). In contrast, the subcutaneous 

vaccination promotes an optimal uptake of the antigen by skin resident DCs, which migrate to 

the lymph node and engage strong CD8 T cell responses. However, iNKT cells poorly traffic 

to the skin and lymph nodes and i.v. injection of αGC-loaded-DCs was preferred to the 

subcutaneous route (213). Importantly, when OVA-CpG vaccine was administrated s.c. and 

αGC/CD1d-anti-HER2 fusion by i.v. injection, no synergic effects were observed regarding 

either the CD8 T cell priming in the blood or the anti-tumor effects (data not shown). These 

results likely suggested that synergistic effects required interaction between activated iNKT 

cells and the DC at the vaccination site. Therefore, we decided to choose the muscle as site of 

injection. Most of human vaccine demonstrated good efficacy when injected i.m. and a recent 

study in mouse has characterized conventional and monocyte-derived DCs in the muscle with 

a strong migratory capacity into the draining lymph node (LN) (214). In contrast to DCs, little 

is known about the activation of iNKT by this route. However, when OVA peptide and 

αGC/CD1d-anti-HER2 fusion were co-injected i.m., a good expansion and activation of 
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OVA-specific CD8 T cells and NK cells were observed, indicating that their iNKT-mediated 

transactivation had occurred. Most importantly the i.m. co-administration of OVA-CpG 

vaccine and αGC/CD1d-anti-HER2 fusion led to the enhanced priming of OVA-specific CD8 

T cells and expansion of NK cells. We hypothesized that the strong vascularization of the 

muscle allows an efficient systemic activation of iNKT cells and their cross talk with both 

muscle and splenic DCs.  

The well-described iNKT-mediated transactivation of NK cells was confirmed in the chapter 

1, as well as in the present study following repeated treatments of the αGC/CD1d-anti-HER2 

fusion. In the other hand, activation of DCs via TLR signaling induces their production of IL-

12, which also largely activate NK cells (210) (215). Indeed, the present data demonstrated 

that OVA-CpG also activated NK cells in addition to the priming of CD8 T cells. Moreover, a 

strong synergistic effect on the expansion of NK cells occurred between iNKT cell activation 

by αGC/CD1d-anti-HER2 fusion and CpG-ODN signaling. The enhanced expansion of NK 

cells likely resulted by the cross talk between NKT cells and DCs. The expansion of iNKT 

cells after in vivo stimulation with the αGC/CD1d-anti-HER2 fusion remained marginal and 

their adjuvant activity rather resides in their potent immunostimulatory functions rather than 

in their own proliferation.  

Overstimulation of iNKT cells with one injection of free αGC ligand is known to induce an 

anergic state that impedes their restimulation and their use in cancer therapeutic (183). 

However, DCs or whole cancer cells loaded with the αGC injected in vivo were shown as 

good alternatives to activate iNKT cells and therefore transactivate NK cells in a more 

sustained manner (175). As an example, whole cancer cells loaded with αGC were an 

efficient system to vaccine against glioma (182). Tumor cells presented antigens and the CD8 

priming was boosted by the activation of iNKT cells (182). However, this procedure involves 

an expansive personalized medicine and αGC-loaded DCs as cancer therapeutic mainly 
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promoted clinical responses when administrated in the vicinity of the tumor  (174, 216) (217). 

Unlike free αGC, the recombinant αGC/CD1d-scFv fusion circumvents the anergy of iNKT 

cells observed after one αGC injection, and their sustained activation by repeated injections of 

the αGC/CD1d antitumor fusion leads to significant anti-tumor effects (92). Therefore, 

αGC/CD1d-scFv fusion represents a better alternative to αGC-loaded DCs to promote 

activation of iNKT cells in vaccine settings. Indeed, we observed that activation of iNKT cells 

with the αGC/CD1d-anti-HER2 fusion redirected efficiently the innate and adaptive immune 

responses to the tumor site. In particular, when the OVA-CpG vaccine was combined with the 

specific αGC/CD1d-anti-HER2 fusion, the percentage and numbers of OVA-specific CD8 T 

cells infiltrated into the tumor was two fold increased compared to the vaccine alone. As 

expected, treatments of tumor-bearing mice with the tumor-targeted αGC/CD1d-anti-HER2 

fusion also attracted NK cells to the tumor, which was not observed with the vaccine OVA-

CpG alone. Like in periphery, increased numbers of iNKT cells was hardly seen at the tumor 

site, likely resulting from their weak proliferation and also from their progressive TCR 

downregulation making them difficult to track. 

To evaluate the therapeutic effects of the OVA-CpG vaccine combined with the sustained 

iNKT cells activation, we proceeded to a tumor inhibition experiment. In order to test the 

combined immunisation in therapeutic settings, mice were grafted with the melanoma model 

B16F10, transfected with the OVA protein and the HER2 antigen. The melanoma tumor B16 

is an aggressive tumor model, which is poorly immunogenic (218) and hence difficult to 

eradicate. At the peak of the OVA-specific CD8 T cells response, a delay in tumor growth 

was observed in mice vaccinated with OVA-CpG likely resulting from the OVA antigen 

presentation by the tumor. Overall, the anti-tumor effects correlated with the increased 

infiltration of OVA-specific CD8 T cells at the tumor site compared to untreated group. 
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Consistent with the higher frequencies of NK and OVA-specific CD8 T cells infiltrated at the 

tumor, the combined treatment group exhibited the best anti-tumor effects.  

We have shown in the Chapter 1 the need to activate iNKT cells at the tumor site via the 

recombinant αGC/CD1d protein fused to the specific anti-TAA scFv in order to obtain the 

best anti-tumor effects. In addition, the reactivity of iNKT cells, as seen by their cytokine 

production, was optimal when activated with the tumor specific αGC/CD1d-scFv fusion in 

tumor-bearing mice. In the present study, the anti-tumor effects of the OVA-CpG vaccine 

against B16-OVA-HER2 tumors were best ameliorated when combined to the tumor-specific 

αGC/CD1d-anti-HER2 fusion as opposed to the combination with the irrelevant αGC/CD1d-

anti-CEA fusion. These results underline the need to re-direct the overall immune response to 

the tumor site in order to develop an efficient cancer therapy.  

 

Altogether, our study demonstrates that αGC/CD1d-anti-TAA fusion protein may improve 

therapeutic cancer vaccine strategies as adjuvant during the T cell priming and also as 

therapeutic agent to redirect immune responses to the tumor. Moreover, the synergic effects 

of CpG-ODN and iNKT cell activation may be useful to reinforce the innate immune 

response against the tumor. 
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Materials and Methods 

 

Mice 

All mice were maintained in specific pathogen-free conditions. C57BL/6J (B6), CD45.1 

congenic B6-SJ ptp-rca mice were obtained from Harlan laboratories (The Netherlands) and 

maintained in our animal house. TCR-transgenic OT-I mice were maintained in our animal 

house (219). The Vα14Jα18 (T414) transgenic mice were kindly provided by A.Bendelac 

(University of Chicago, Chicago, USA) (205) and maintained in our animal house. All animal 

experiments were conducted according to institutional guidelines and under an authorization 

delivered by the Swiss veterinary department. 

 

Cell line 

The melanoma cell line B16-OVA was obtained from B.Huard (University medical center, 

Geneva, Switzerland) (220) and stably transfected using infection with a retroviral pLPCX 

containing the human HER2 antigen (kind gift from Y.Yarden, The Weizman Institute of 

Science, Israel). B16-OVA-HER2 cells were maintained in complete DMEM medium 

supplemented with 1mg/ml G418 and 1µg/ml puromycin. Expression of HER2 was 

monitored by FACS using the humanized mAb anti-HER2 Herceptin (Trastuzumab, Roche 

Ltd).  

 

Reagents  

The αGC analog KRN7000 (Alexis Biochemicals Corp) was dissolved in PBS-0.5% 

Tween-20. Peptide of OVA (OVA257-264, H-2Kb restricted; amino acid sequence 

SIINFEKL) was synthetized in house at the Protein and Peptide Chemistry Facility 

(PPCF) of the UNIL (Lausanne Switzerland), resuspended in 10%DMSO at 1mg/ml and 



 108 

stored at -80°C. The TLR9 ligand CpG-ODN 1826 was purchased from Coley 

Pharmaceuticals (Wellesley, MA). Cytokines levels were measured by fluorescence-based 

multiplex assay using BD Cytometric Bead Array kit TH1/TH2/TH17 (CBA, BD 

Biosciences).  

 

Flow cytometry 

The CD1d tetramer was developed with engineering a BirA consensus sequence at the C-

terminus of the soluble mouse CD1d protein. The CD1d monomer was biotinylated by the 

BirA enzyme (Avidity, Denver, CO), and after loading with αGC, it was tetramerized on 

streptavidin-PE (Invitrogen) using a molar ratio of 4:1. The MHC-class-I/SIINFEKL 

tetramer was purchased from TCmetrix company (Lausanne, Switzerland).  

Cells were stained first with the MHC-class-I/SIINFEKL tetramer at RT for 30 min, then 

CD1d tetramer was added for additional 30 min on ice. Surface staining antibodies were 

added without wash and incubated for 20 min on ice. Cells were washed once with PBS 

2%FCS and resuspend in 200µl of PBS 2%FCS for acquisition. 

All fluorochrome-labeled antibodies were purchased from Becton Dickinson (BD 

Biosciences) or eBiosciences. Flow cytometric analyses were performed with a 

FACSCalibur, FACSCanto or LSRII cytometer (BD Biosciences) and the acquired data 

were processed using FlowJo software (Tree Star Inc.). 

 

Recombinant CD1d fusion proteins 

Genetic fusion of mouse β2-microglobulin (β2m) with the soluble part of mouse CD1d 

(sCD1d) and the anti-HER2 or the anti-CEA scFv has been described previously (92) 

(208). Recombinant CD1d fusion proteins produced by transient transfection of the human 

cell line HEK293-EBNA (Cellular Biotechnology Laboratory, EPFL, Switzerland) were 
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affinity purified on the Sartobind His-Tag membrane adsorbers for exchange 

chromatography  (Sartorius AG, Germany) and loaded with αGC as previously reported 

(92).  

 

In vitro experiments 

Cell suspensions from spleens of the indicated mouse strains were incubated in cDMEM for 

6h or 24h with the following stimulations: cDMEM alone, 1µg/ml OVA323-339 peptide alone, 

OVA in combination either with 5µg/ml CpG-ODN, 40µg/ml of coated αGC/CD1d-anti-

HER2 fusion proteins or OVA+CpG-ODN+coated αGC/CD1d-anti-HER2 fusion proteins 

Supernatants were recovered at indicated time-points and frozen to perform cytokine 

measurements using CBA assay and cells were analyzed by flow cytometry. 

 

Adoptive cell transfers 

OVA-specific CD8+ and NKT cells (CD45.2) were isolated from spleens of OT-I and Va14-

Ja18 mice, respectively. Single cell suspensions were obtained by disrupting the lymphoid 

tissue and the frequency of transgenic T cells was determined by flow cytometry. Cells were 

labeled with Vα2 and Vβ5.1/5.2 antibodies for OT-I cells and CD1d tetramers and CD3 

antibody for NKT cells. Naive B6-SJ ptp-rca (CD45.1) recipient mice received an i.v. transfer 

of 1x105 OT-I cells and 5x105 NKT in 200 µl DMEM, as indicated.  

 

In vivo therapy  

CD45.1 congenic mice were grafted s.c. in the right flank with 5x105 B16-OVA-HER2 

cells. Five days after the graft, a mix of 5x105 NKT cells and 1x105 OT-I CD8 T cells 

were transferred into the mice. One day after the transfer, mice were vaccinated intra-

muscularly (i.m.) with 50µl of either PBS, OVA peptide (10µg), OVA peptide (10µg) and 
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CpG-ODN (50µg) alone or in combination with αGC/CD1d-scFv fusion protein (40 µg). 

Vaccination was immediately followed by i.v. treatments with 200µl of either PBS alone 

or αGC/CD1d-antitumor scFv fusion proteins (40µg). Systemic treatment with the 

αGC/CD1d-antitumor scFv fusion proteins (40µg) was repeated at 2 to 4-day intervals. 

Mean tumor volume, monitored every two days, was calculated using the following 

formula (length x width x thickness)/2. 

 

Preparation of PBMC 

Mice were bled from the lateral tail vein. Erythrocytes were removed from PBMCs by 10 min 

incubation at 37°C with red blood cell lysis solution (Qiagen) and PBMCs were washed in 

PBS 2%FCS buffer. Leukocytes from blood were directly stained with antibodies for the flow 

cytometry assay. 

 

Preparation of splenocyte suspension 

Spleens were disrupted through a 70µm filter using a 1ml syringe plunger and cells were 

washed twice with PBS 2%FCS buffer. Splenocytes were incubated for 5 min at RT in red 

blood cell lysis solution (Qiagen), washed with PBS 2%FCS buffer and stained with 

antibodies for the flow cytometry assay.  

 

TIL extraction 

At day 7 after the vaccination, tumors were harvested and digested for 40 min at 37°C, 

according to the Tumor dissociation kit protocol (MACS Miltenyi Biotec, Germany). Tumors 

were crushed on 100µm cell strainers and washed twice with PBS 2%FCS. Single cell 

suspensions were enriched for CD45+ cells using the autoMACS system (Miltenyi Biotec, 

Germany). Briefly, cells from maximum 500mg of tumor tissue were labeled with anti-CD45 
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microbeads (Miltenyi Biotec), as per the manufacturer’s protocol, and purified using the 

POSSEL program on the AutoMACS. The positive fraction was recovered for TILs analysis 

by flow cytometry. 

 

Statistical analysis  

Results are expressed as mean ± SEM. Statistical significance between the groups was 

determined with the one-way-ANOVA test with Bonferroni correction (GraphPad Prism, 

GraphPad software). Tumor progression statistics were calculated with the two-way-ANOVA 

test with Bonferroni correction (GraphPad Prism, GraphPad software). Significant differences 

are indicated by * (P<0.05), ** (P<0.01), *** (P<0.001), **** (P<0.0001). 
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CHAPTER 3 

 

 

Alternative recombinant αGC/sCD1d fusion proteins 

 

In order to extend the application of αGC/sCD1d-scFv fusion protein, alternative CD1d 

fusions were constructed in our laboratory. The following chapter is divided into two parts 

and aims to present two different approaches of αGC/sCD1d fusion proteins. First, we 

investigated the targeting of the tumor stroma environment via the targeting of vascular 

endothelial growth factor receptor-3 (VEGFR-3) and second, we developed a dimeric 

αGC/sCD1d fusion to augment the avidity for iNKT cells. 

 

1-Tumor neo-vasculature targeting by αGC/sCD1d-anti-VEGFR-3 fusion 

 

One alternative, to extend the targeting strategy to several different tumors, is to fuse the 

sCD1d protein to an scFv directed against tumor stromal antigens. Indeed, the tumor is not 

only constituted of tumor cells but also of stroma cells, which are composed of fibroblasts, 

endothelial cells or tumor-associated macrophages (TAMs). These cells are assisting tumor 

development by secreting growth factors, which promote proliferation of neoplastic cells, 

angiogenesis and lymphangiogenesis. The tumor stroma is a source of induced or over-

expressed proteins that could be potential targets for immunotherapy (221). Instead of TAAs, 

which characterize specific tumors, a large number of stromal antigens are expressed in a 

wide variety of tumors. As an example, the fibroblast activation protein (FAP) appears as a 

target structure expressed by activated fibroblasts in a large number of epithelial cancers 

(222). Transferred CD8 T cells transduced with the CAR F19, which is composed of the anti-
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FAP scFv fragment F19, is under investigation in a phase I trial for patients with malignant 

pleural mesothelioma (223). This study is based on the potent capacity of the sibrotuzumab, 

the humanized version of F19 antibody, to accumulate specifically in FAP-positive hepatic 

metastasis of colorectal cancer patients (224) (225). 

The targeting of such antigens would allow to treat multiple cancers and extend the number of 

patients that could benefit from the treatment. We hypothesized that the use of αGC/sCD1d-

fusion targeting stromal antigens could redirect immune effector functions to the tumor 

stromal microenvironment, resulting in local cytotoxicity and consequently in the deprivation 

of tumor nutriment.  

To this aim, we obtained an anti-VEGFR-3 scFv that has the capacity to cross-react on human 

and mouse VEGFR-3 (kind gift from professor K. Ballmer-Hofer, Paul Scherrer Institute, 

Villigen-PSI, Switzerland) (226). VEGFR-3 is an important receptor expressed on endothelial 

cells of lymphatic vessels that surround tumors and is activated by the ligand VEGF-C (227). 

Inactivation of the VEGFR-3 by administration of blocking antibodies in mice resulted in an 

inhibition of metastasis and a reduction of lymphatic vasculature in the primary tumors (228). 

The inhibition or normalization of tumor vasculature already showed clinical efficiency with 

the humanized antibody directed against the VEGF ligand (Bevacizumab, Avastin; 

Genentech). It was approved for use in colorectal, breast and lung cancer patients (229). 

Zehnder-Fjallman and colleagues demonstrated that the scFv anti-VEGFR-3 accumulated into 

VEGFR-3-transfected tumors (226). Altogether, these studies argued that VEGFR-3 is a 

potent target for cancer immunotherapy. 

 

The αGC/sCD1d-anti-VEGFR-3 fusion was constructed by replacing the scFv anti-CEA of 

the previous fusion construct with the scFv anti-VEGFR-3 in the plasmid pEAK8 containing 

the β2 microglobulin and the sCD1d protein (figure 1). The production in HEK293 EBNA 
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cells and the purification of the αGC/sCD1d-anti-VEGFR-3 fusion were done as described in 

Stirnemann et al (92). 

 

 

Figure 1: Design of the genetic fusion of mouse β2 microglobulin with the sCD1d and the 
scFv anti-VEGFR-3. 
 

We investigated the VEGFR-3 expression on the tumor environment of B16 melanoma 

(figure 2A) and Tyr:Nras melanoma (figure 2B) by immunofluorescence staining. Tumor 

sections were stained with the αGC/sCD1d-anti-VEGFR-3 fusion and the CD31, as a marker 

of endothelial cells to assess their co-localization.  

Figure 2A: Staining of B16 grafted tumor by anti-CD31 antibody visualized in red, sCD1d-
anti-VEGFR-3 fusion protein visualized in green and the overlap in orange, 20x. 

 

Figure 2B: Staining of Tyr:Nras transgenic tumor by anti-CD31 antibody visualized in red, 
sCD1d-anti-VEGFR-3 fusion protein visualized in green and the overlap in orange, 20x 
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The binding to VEGFR-3 on tumor sections by the αGC/sCD1d-anti-VEGFR-3 fusion was 

only reached after incubation with 70 to 150µg/ml of the fusion, representing a large quantity 

of protein. The poor VEGFR-3 visualization by immuno-staining suggested that the scFv anti-

VEGFR-3 has a weak avidity. Moreover, the expression of VEGFR-3 in our tumor section 

was weak. Indeed, Zehnder-Fjallman and colleagues have demonstrated a specific tumor 

accumulation on VEGFR-3 transfected variants of tumor, which certainly do not reflect the 

natural expression of the receptor in WT tumors (226). With regard to VEGFR3, the two 

requirement of high avidity scFv and high expression of VEGFR-3 were not fulfilled, likely 

explaining the weak antitumor effects obtained.  

As it is important for the design of an antibody in cancer immunotherapy, the high affinity of 

the scFv and the high expression of the targeted protein favor anti-tumor effects (230). For 

example, the high affinity antibody Herceptin, directed against the HER2 antigen, showed 

clinical benefits only in patients who displayed an overexpression of HER2 (5).  

 

Another option would be to target components of the extracellular matrix domain such as 

fibronectin and tenascin-C splice variants, which are reported to be expressed specifically in 

the neo-vasculatures of aggressive tumors, such as melanoma, with a high level of expression 

(231). A fusion protein, composed of an anti-ED-B domain of fibronectin scFv, used to the 

delivery of a coagulation-inducing protein tissue factor (TF), mediated eradication of solid 

tumors in mice (232). Antibody-mediated targeting of tumor vasculature showed several 

advantages; such as a better diffusion of the antibody within tumors and consequently 

enhanced tumor toxicity. Thus far, the targeting of tumor microenvironment represents a 

promising alternative strategy to the targeting of TAAs (225, 231).  
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2-The dimeric αGC/CD1d-Fc fusion 

 

The goal was to increase the activation of iNKT cells by creating a dimeric αGC/sCD1d 

complex and hence augment the half-life and the avidity of the protein for the NKT invariant 

TCR. We know that untargeted αGC/sCD1d protein is able to promote a systemic activation 

of iNKT cells after several injections, but fails to have antitumor effects against aggressive 

tumors, like in B16 melanoma model (92). Based on the hypothesis that this lack of antitumor 

effect might be due to a shorter half-life of αGC/sCD1d in addition to the absence of tumor 

targeting, we developed a dimeric molecule composed of the αGC/sCD1d fused to the Fc 

fragment from mouse IgG1 (figure 3). 

 

 

Figure 3: Design of the genetic fusion of mouse β2 microglobulin with the sCD1d and the 
mouse Fc domain of IgG1. 
 

As expected, the monomeric molecule of sCD1d-Fc readily dimerizes on the Fc part in 

solution. Because the Fc domain has the property to prolong the half-life of the recombinant 

protein in vivo, this strategy was thus proposed to lead to a better activation of iNKT cells and 

a stronger tumor protection.  

A preliminary experiment was done on s.c. grafted B16-F10 melanoma model. As soon as 

tumors were palpable, mice were treated i.v. with either 40µg of αGC/sCD1d-Fc or 25µg of 

αGC/sCD1d or no treatment. As usually, i.v. injections were repeated every 3 or 4 days. 

Whereas monomeric sCD1d had poor antitumor effect, treatment with αGC/sCD1d-Fc 

Fc!

Fc domain of mIgG1 
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linker 

β2m α1 α2 α3 
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protein led to a more potent retardation of tumor growth comparable to that obtained with 

αGC/sCD1d-antitumor scFv fusion (figure 4). 

 
Figure 4: Kinetic of B16-
F10 tumor growth.  
Mice were treated at day 7 
after tumor graft with 
αGC/sCD1d-Fc (red line) or 
αGC/sCD1d (blue line) or 
PBS (dark line). Graph 
represents tumor kinetic as 
the mean of tumor volume 
of 5 mice per group +/- 
SEM.  

 

This result suggested that due to the increased avidity and/or stability of αGC/sCD1d-Fc 

dimer, systemic activation of iNKT cells could result in antitumor effect, despite the absence 

of tumor targeting. This approach may allow the treatment of tumors for which no tumor 

antigen is known or no scFv available.  

The Fc domain has the advantage the property of dimerization, however, since the 

recombinant αGC/sCD1d fusion binds to the TCR of iNKT cells, we cannot exclude the 

possibility that effector cells such as NK, activated by the Fc domain, may exert their 

cytotoxicity directly against iNKT cells and dampen the effects of the CD1d fusion. In the 

same time, Fc-mediated effector effects could provoke toxicity against normal Fc receptor 

bearing cells. Indeed, after treatments with the αGC/CD1d-Fc fusion, we have often observed 

a rapid death of mice. To prevent these toxic effects, we have mutated the Fc residue Asn174 

(Ala) that is critical for the FcγRIII/CD16 binding, which permits to suppress the ADCC 

(233). Further experiments are needed to evaluate the toxicity of the αGC/sCD1d-Fc dimer, 

and compare it to the αGC/sCD1d-mutated-Fc dimer.  
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Other possibilities were developed to extend the half-life of therapeutic proteins, especially 

those with a small molecular mass, rapidly cleared from circulation. It includes the 

conjugation of polyethylene glycol chains, the addition of N-glycosylation sites and the fusion 

to the albumin protein or albumin-binding domain, which generate more neonatal FcR 

recycling process (234). These extended derivatives led to a better distribution of bispecific 

single-chain diabody in the tumor and therefore its cytotoxicity (234). Such alternatives could 

be employed to prolong the half-life of our recombinant αGC/sCD1d and it should result in 

the enhanced activity of iNKT cells and thus to better anti-tumor effects. 

 

In conclusion, the increase of affinity of the targeting scFv, the choice of the targeting of 

stromal cells from tumors and the addition of Fc dimerization, as well as the increase of 

circulating half-life of the recombinant CD1d protein are promising aspects, which might 

improve the antitumor benefits induced by the αGC/sCD1d-scFv fusion. 

 

 

 

 
 

 

 
 

 
 

  



 120 

  



 121 

 

 

 

 

 

 

 

GENERAL DISCUSSION AND PERSPECTIVES 



 122 

  



 123 

 

The major goal of my PhD project was to develop a cancer immunotherapy based on the 

activation of iNKT cells by recombinant CD1d fusion protein loaded with glycolipid ligand 

αGC. First, we assessed the antitumor efficacy of CD1d tumor targeting by its fusion to an 

antitumor scFv antibody fragment. Second, we evaluated the combination of this therapy to a 

cancer vaccine, and finally, we investigated alternatives of CD1d fusion proteins.  

 

In Chapter 1, we demonstrated the potential of targeting recombinant CD1d-antitumor scFv 

fusion proteins in a tumor mouse model, as well as in human settings. Our strategy offers two 

main potent features, which are attractive in harnessing iNKT cells against cancer (92). First, 

the recombinant αGC/sCD1d-scFv fusion has the capacity to activate iNKT cells without 

inducing anergy (92). Indeed, when the αGC is injected as a free ligand, iNKT cells rapidly 

encounter an anergic state that prevents them to be restimulated later (183). Several studies 

reported that the anergy of iNKT cells was due to an overstimulation and resulted from up-

regulation of the co-inhibitor receptor PD-1 (185). In our experiments, iNKT cells activated 

by the αGC/CD1d-scFv fusion showed similar up-regulation of the PD-1 receptor, but they 

still produced IFNγ upon repeated injections, suggesting that PD-1 is not sufficient to mediate 

the iNKT cell anergy. Similarly, we showed that human iNKT cells were fully activated by 

αGC/CD1d-scFv fusion, despite high expression of PD-1. Indeed, before in vitro activation, 

human iNKT cells from PBMCs of healthy donors already expressed PD-1 receptor, which 

was likely due to previous in vivo activations. Recently, the involvement of PD-1 in T cell 

anergy and exhaustion has been tempered and is now rather described as an activation marker, 

which is expressed on effector memory CD8 T cells of healthy donors, and does not correlate 

with the exhausted phenotype (235). One reason for the sustained reactivity of iNKT cells to 

our αGC/CD1d-scFv fusion could result from the direct triggering of the iNKT invariant TCR 
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without the need of APC, which may avoid the interaction between co-inhibitory receptors 

such as PD-1 and their respective ligands expressed on the majority of APCs. We also have 

observed that recombinant αGC/CD1d-scFv fusion induced much faster high IFNγ and TNFα 

cytokine production after treatment than free αGC ligand. This last observation implies a 

mechanistic difference in the activation of iNKT cells depending on whether it occurs via 

endogenous CD1d presented by APC or via the recombinant αGC/CD1d-scFv fusion. For 

instance, it was shown that free αGC requires intracellular processing to be loaded on CD1d 

before being exported to the surface of APC (135), which certainly takes more time than the 

direct triggering of the αGC/CD1d-scFv fusion to activate iNKT cells. We thus propose that 

the direct triggering of the invariant TCR by the αGC/CD1d-scFv fusion in the absence of co-

stimulatory molecule provided by APCs, does not impact on the amplitude of the activation or 

duration of the invariant TCR signaling, but likely prevents the negative feedback exerted by 

APCs.  

 

The second advantage of the αGC/CD1d-scFv fusion resides in the tumor targeting via its 

anti-TAA scFv, which allows redirecting the immune response to the tumor. We have shown 

that the specific tumor targeting of the CD1d fusion, as compared to the non-targeted CD1d 

fusion, resulted in a higher reactivity of iNKT cells upon several stimulations, as shown by 

the increased cytokine production associated with better anti-tumor effects in mice (208). This 

observation was also confirmed by in vitro experiments with human iNKT cells in which only 

the tumor-targeted CD1d fusion redirected the killing to tumor cells. For instance, the KATO 

III tumor cell line that expressed both HER2 and CEA antigens, was efficiently killed by 

iNKT cells upon incubation with both αGC/CD1d-anti-HER2 and -CEA fusions. In this 

context, human iNKT cells were highly activated and cytotoxic, likely due to the aggregation 
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of the recombinant αGC/CD1d-anti-tumor scFv fusion on the surface of tumor cells, which 

potentiated the iNKT cell stimulation. 

So far, the clinical benefits of several strategies based on iNKT cell-mediated immunotherapy 

have remained modest (170, 177). The first clinical trial relied on the direct injection of the 

αGC as a free ligand, which showed a correlation between the production of Th1 cytokines 

and the iNKT cell number, without however clinical response (170). The discovery of the 

anergy-induced by free αGC injection promoted the strategy of autologous transfer of αGC-

loaded DCs. Administration of αGC-loaded DCs in cancer patients resulted in prolonged 

activation of iNKT cells, and thus potent transactivation of NK cells, which produced IFNγ. 

However, these outcomes were made only after two successive iNKT stimulations, which 

suggested a gradual induction of the anergic state (172, 174). Our approach consisting in the 

repeated administration of recombinant αGC/CD1d-scFv treatments would permit to bypass 

the anergic state of iNKT cells and avoid individualized heavy and onerous cell-mediated 

therapy. Altogether, the sustained iNKT cell activation associated with the potent 

transactivation of other immune cells at the tumor site, should lead to an enhanced clinical 

response.  

 

An alternative to CD1d tumor targeting is to enhance iNKT cell activation by the construction 

of a dimeric recombinant CD1d, which would display a better avidity for the invariant TCR. 

However, the association of two CD1d molecules by its fusion to an Fc domain may also lead 

to systemic toxicity resulting by Fc-mediated effector functions. Mutating the amino acid 

residue required for FcR binding should prevent the Fc-mediated ADCC while retaining the 

avidity of the dimeric CD1d and the improved circulating half-life provided by the Fc 

domain. The dimeric CD1d-Fc protein does not have the property to target the tumor but 
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could be tested against various tumors for which there are no surface antigen and/or high 

avidity scFv available.  

Another attractive option is to target the CD1d molecule via its fusion to an scFv with high 

affinity for antigens over-expressed in the tumor stroma or neo-vessels. However, our attempt 

to target CD1d to VEGFR-3 as a marker of tumor neo-vessels and neo-lymphatics was 

unsuccessful, likely because of the too low affinity of the anti-VEGFR-3 scFv used and by the 

weak VEGFR-3 expression. Over-expressed stromal proteins belonging to the extracellular 

matrix such as tenascin C or fibronectin spliced variants, would be good candidates (231). 

 

Additional aspects are envisaged to improve the efficacy and stability of the recombinant 

αGC/CD1d-scFv fusion proteins, in particular the use of different αGC analogs and the cross-

linking of the glycolipid ligand to the recombinant CD1d-scFv protein. 

The development of glycolipid analogs with discrete modifications of the glycosyl head group 

and/or the lipid tail were shown to polarize iNKT cells towards a Th1 or a Th2 cytokine 

profile (122, 135, 136). In this respect, we want to assess if Th1 or Th2-biased αGC analogs 

loaded on recombinant CD1d-scFv fusion could improve the anti-tumor effects obtained after 

repeated treatments with αGC/CD1d-scFv fusion proteins, Preliminary results with the DB03-

4 αGC analog, provided by Professor S. Porcelli (Albert Einstein College of Medicine, New 

York), showed a better Th-1 cytokine profile when loaded on the recombinant CD1d-scFv 

fusion as compare to the conventional αGC used so far. Several studies investigated the 

mechanisms regarding the iNKT cell response to different ligands (141, 236). One important 

finding was that high affinity glycolipids for CD1d promoted a prolonged interaction with the 

invariant TCR and therefore skewed the cytokine pattern towards TH1 profile (237). In 

contrast to MHC molecules, the CD1d displays some degree of flexibility and can fit the 

pocket to galactose-modified glycolipids that results in superior Th-1 and sustained iNKT cell 
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responses (237). We hypothesize that the αGC analog could also result in a profound change 

of the binding stability when loaded on the recombinant CD1d protein, and therefore modify 

the interaction with the invariant TCR resulting in the sustained activation of iNKT cells.  

 

A second important aspect is the stability of our recombinant CD1d-scFv fusions that depends 

on its correct loading with the glycolipid ligand especially when injected in vivo. Indeed, a 

loss of αGC from the fusion protein would on one hand induce its unfolding and degradation, 

and on the other hand, the free ligand would get presented by CD1d-expressing cells resulting 

in iNKT cell anergy. In this context, Professor S. Porcelli and his colleagues at the Albert 

Einstein College in New York, have developed an αGC analog containing a chemical 

modification that permits the ultra-violet cross linking of the ligand inside the CD1d pocket. 

This strategy allows stabilizing the interaction between the recombinant CD1d fusion and the 

ligand, which should optimize the sustained activation of iNKT cells. Indeed, our preliminary 

results are showing an enhanced Th-1 cytokine release and a better sustained activation in 

mice treated with the cross-linked αGC/CD1d-scFv compared to the loaded αGC/CD1d-scFv 

fusion protein.  

 

The second chapter of this PhD thesis focused on the combination of the αGC/CD1d-anti-

TAA fusion therapy with therapeutic cancer vaccine in order to possibly gain synergic anti-

tumor protection.  

Many factors contribute to the escape and the growth of tumor (12), which support the 

rationale for combined immunotherapies in order to simultaneously attack the tumor from 

different sides. As an example, the use of immune-modulating doses of chemotherapy, like 

cyclophosphamide or doxorubicin, which is commonly used as single treatment in several 

cancers, have demonstrated a potent amelioration of vaccine responses and is now often used 
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in combination with antibody-mediated therapies (238) (239). Recently, it was shown that the 

chemotherapeutic drug lenalidomide (LEN) synergized with αGC-loaded DC infusion to 

enhance clinical tumor regressions (240). In addition, numerous studies investigated the 

combination of NKT-based therapy with other treatments such as radiation and CTLA-4 

blockade, immune-modulating antibodies or Treg depletion (241-243). All of these 

combination strategies considerably enhanced therapeutic cancer treatment. But so far, it 

remains unclear whether we could obtain synergic anti-tumor effects by using a NKT-based 

therapy together with a cancer vaccine. Here, we have demonstrated the advantage of 

combining our NKT-therapy, based on the sustained iNKT cell activation, and a simultaneous 

cancer vaccine, as shown by increased antitumor effects against B16 aggressive tumor grafts. 

In concordance with results showing the potent capacity of activated iNKT cells to promote 

the adaptive immunity (203), we have shown that the recombinant αGC/CD1d-scFv fusion 

was efficient to act as a vaccine adjuvant. Importantly, the major advantage of our fusion to 

activate iNKT cells is driven through the specific TAA targeting, which permits to redirect 

both innate and adaptive immune responses at the tumor site. Indeed, after the efficient 

priming of antigen-specific CD8 T cells induced by the OVA peptide vaccine formulated with 

the TLR ligand CpG-ODN and the recombinant αGC/CD1d-scFv fusion, TILs were enriched 

in antigen-specific CD8 T cells. Previous studies reported an enhanced antitumor effects by 

using αGC-loaded DC or αGC-loaded tumor cells as vaccine adjuvants, but did not show 

enrichment of antigen-specific CD8 T cells in the tumor (150, 182). In contrast, in our 

settings, almost 50% of tumor infiltrated CD8 T cells were antigen specific, already 7 days 

after the vaccination. These findings correlated well with the strongest anti-tumor effects 

obtained with the combined therapy. 

Our combination strategy also included a TLR agonist, which was shown to be a great 

modulator of the DC maturation (193). Previous report showed that co-injection of αGC 
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together with TLR ligands, such as Poly I:C, CpG-ODN or flagellin, resulted in enhanced 

maturation of splenic DC and therefore increased their immunomodulatory effects by 

inducing a highly Th-1-biased immune response (204). We also found an increased 

production of IFNγ, IL-6 and TNFα in the serum of mice after combination of αGC/CD1d-

scFv fusion and OVA-CpG vaccine. Moreover, we observed a strong proliferation of NK 

cells that was likely mediated by pro-inflammatory cytokines released after NKT activation 

and matured DC.  

Altogether, our present strategy underlies the importance to promote innate and adaptive 

responses to obtain a synergic and efficient anti-tumor response. In addition, the tumor 

targeting allows the immunotherapy to be more efficient with no adverse toxicity effects. 

Further experiments are required to evaluate the respective role of either NK cells or antigen-

specific CD8 T cells on anti-tumor effects. 

 

Tumor cells have evolved to evade the immune surveillance by multiple mechanisms. In this 

context, it will be interesting to evaluate whether the sustained activation of iNKT cell by 

αGC/CD1d-anti-TAA fusion and the subsequent highly inflammatory environment helps to 

overcome the immunosuppressive environment at the tumor site. For instance, several studies 

have demonstrated that the depletion of immunosuppressive Treg cells, elicited a better tumor 

protection when combined with a NKT-based therapy (182, 243).  

Promising data were also generated by treating cancer patients with an immune checkpoint 

blockade antibody against PD-1 (244). Moreover, anti-PD-1/PD-L1 antibody therapy was 

shown to be efficient to enhance iNKT cell activity and consequently anti-tumor effects 

resulting from iNKT cell stimulation (185). After αGC/CD1d-anti-TAA fusion treatment, we 

observed an up-regulation of PD-1 on iNKT cells, likely resulted from activation. Treatments 

with anti-PD-1 and anti-PD-L1 antibodies could act simultaneously with αGC/CD1d-anti-
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TAA fusion to enhance the sustained activation and also prevent a possible exhaustion of 

CD8 T cells infiltrated into the tumor. In addition, the strong increase of PD-L1 on tumor 

cells, upon CD1d therapy, would support the use of combined NKT activation with an anti-

PD-L1 antibody treatment.  

Encouraging studies were made by adoptively transferring autologous CD8 T cells, which 

display antitumor properties and particularly the transfer of expanded autologous TILs (245). 

On the other hand, best clinical responses were obtained in recent clinical trials involving the 

autologous transfer of in vitro expanded iNKT cells from cancer patients (171). 

Administration of activated iNKT cells resulted in enhanced IFNγ production and one recent 

study showed good clinical responses in HNSCC patients (217).  

 

To conclude, we have demonstrated that αGC/CD1d-anti-TAA fusion is a promising 

approach for cancer treatment. The tumor targeting of CD1d molecules offers the advantage 

of redirecting the innate and the adaptive immune responses to the tumor site, which should 

increase efficacy and clinical benefits. Furthermore, this NKT therapy could be associated 

with other immunotherapeutic approaches to obtain synergic anti-tumor effects. 
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