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Abstract

Phylogenetic profiling is a computational method to predict genes involved in the same bio-

logical process by identifying protein families which tend to be jointly lost or retained across

the tree of life. Phylogenetic profiling has customarily been more widely used with prokary-

otes than eukaryotes, because the method is thought to require many diverse genomes.

There are now many eukaryotic genomes available, but these are considerably larger, and

typical phylogenetic profiling methods require at least quadratic time as a function of the

number of genes. We introduce a fast, scalable phylogenetic profiling approach entitled

HogProf, which leverages hierarchical orthologous groups for the construction of large pro-

files and locality-sensitive hashing for efficient retrieval of similar profiles. We show that the

approach outperforms Enhanced Phylogenetic Tree, a phylogeny-based method, and use

the tool to reconstruct networks and query for interactors of the kinetochore complex as well

as conserved proteins involved in sexual reproduction: Hap2, Spo11 and Gex1. HogProf

enables large-scale phylogenetic profiling across the three domains of life, and will be useful

to predict biological pathways among the hundreds of thousands of eukaryotic species that

will become available in the coming few years. HogProf is available at https://github.com/

DessimozLab/HogProf.

Author summary

Genes that are involved in the same biological process tend to co-evolve. This property is

exploited by the technique of phylogenetic profiling, which identifies co-evolving (and

therefore likely functionally related) genes through patterns of correlated gene retention

and loss in evolution and across species. However, conventional methods to computing

and clustering these correlated genes do not scale with increasing numbers of genomes.

HogProf is a novel phylogenetic profiling tool built on probabilistic data structures. It

allows the user to construct searchable databases containing the evolutionary history of
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hundreds of thousands of protein families. Such fast detection of coevolution takes advan-

tage of the rapidly increasing amount of genomic data publicly available, and can uncover

unknown biological networks and guide in-vivo research and experimentation. We have

applied our tool to describe the biological networks underpinning sexual reproduction in

eukaryotes.

Introduction

The NCBI Sequence Read Archive (SRA) contains 1.6x1016 nucleotide bases of data and the

quantity of sequenced organisms keeps growing exponentially. To make sense of all of this

new genomic information, annotation pipelines need to overcome speed and accuracy barri-

ers. Even in a well-studied model organism such as Arabidopsis thaliana, nearly a quarter of all

genes are not annotated with an informative gene ontology term [1,2]. One way to infer the

function of a gene product is to analyse the biological network it is involved in. Using guilt by

association strategies it is possible to infer function based on physical or regulatory interactors.

Unfortunately, biological network inference is mostly limited to model organisms and genome

scale data is only available through the use of noisy high-throughput experiments.

To ascribe biological functions to these new sequences, most of which originate from non-

model organisms, computational methods are essential [reviewed in 3]. Among the computa-

tional function prediction techniques that leverage the existing body of experimental data, one

important but still underutilised approach in eukaryotes is phylogenetic profiling [4]: positively

correlated patterns of gene gains and losses across the tree of life are suggestive of genes

involved in the same biological pathways.

Phylogenetic profiling has been more commonly performed on prokaryotic genomes than

on eukaryotic ones. Perhaps due to the relative paucity of eukaryotic genomes in the 2000s,

earlier benchmarking studies observed poorer performance in retrieving known interactions

with eukaryotes than with Prokaryotes [5–7]. The situation today is considerably different; the

GOLD database [8] tracks over 6000 eukaryotic genomes. Multiple successful applications of

phylogenetic profiling in eukaryotes have been published in recent years. For example, they

have been used to infer small RNA pathway genes [9], the kinetochore network [10], ciliary

genes [11], or homologous recombination repair genes [12].

Large-scale phylogenetic profiling with complex eukaryotic genomes is computationally

challenging since most state-of-the-art phylogenetic profiling methods typically scale at least

quadratically with the number of gene families and linearly with the number of genomes. As a

result, most mainstream phylogenomic databases, such as Ensembl [13], EggNOG [14],

OrthoDB [15], or OMA [16] do not provide phylogenetic profiles. One available resource is

STRING [17], a protein interaction focused database which integrates multiple channels of evi-

dence to support each interaction. The links between profiles STRING offers are obtained

using SVD-phy [18] which represents profiles as bit-score distances between all proteins pres-

ent in a given proteome and their closest homologues in all of the genomes included in the

analysis. Dimensionality reduction is applied to the matrix to remove signals coming from the

species tree and the profiles are clustered to infer interactions. In STRING, this is implemented

with their set of 2031 organisms for which profile distance matrices are precalculated and

incorporated into their network inference pipeline. Although this approach captures informa-

tion on the distribution of extant distances, it does not reconstitute the evolutionary history of

protein families and may lack information relative to duplication and loss events. Further-

more, as we show in the Methods section, the truncated Singular Value Decomposition

approach does not scale well beyond a few genomes at a time.
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To construct profiles representing groups of homologues, some pipelines resort to all-vs-all

sequence similarity searches to derive orthologous groups and only count binary presence or

absence of a member of each group in a limited number of genomes [19,20] or forgo this step

altogether and ignore the evolutionary history of each protein family, relying instead on co-

occurrence in extant genomes [21]. Other tree-based methods infer the underlying evolution-

ary history from the presence of extant homologues [22].

Here, we introduce a scalable approach which combines the efficient generation of phylog-

eny-aware profiles from hierarchical orthologous groups with ultrafast retrieval of similar pro-

files using locality sensitive hashing.

Most phylogenetic profiling methods consist of two steps: creating a profile for each homol-

ogous or orthologous group, and comparing profiles. When they were first implemented, pro-

files were constructed as binary vectors of presence and absence across species [4]. Since then,

variants have been proposed, which take continuous values [10]—such as alignment scores

with the gene of a reference species [12]—or which count the number of paralogs present in

each species. Yet other variants convey the number of events on branches of the species tree

[7].

In our pipeline, we leveraged the already existing OMA orthology inference algorithm to

provide the input data to create our profiles. The OMA database describes the orthology rela-

tionships among all protein coding genes of currently 2288 cellular organisms (1674 bacteria,

152 archaea, and 462 eukaryotes). Within eukaryotes, OMA includes 188 animals, 135 fungi,

57 plants, and 82 protists and has been benchmarked and integrated with other proteomic and

genomic resources [16]. One core object of this database is the Hierarchical Orthologous

Group (HOG) [23]. Each HOG contains all of the descendants of a single ancestor gene. When

a gene is duplicated during its evolution, the paralogous genes and the descendants of the

orthologue are contained in separate subhogs which describe their lineage back to their single

ancestor gene (hence the hierarchical descriptor).

We captured the evolutionary history of each HOG in enhanced phylogenies and encoded

them in probabilistic data structures (Fig 1). These are used to compile searchable databases to

allow for the retrieval of coevolving HOGs with similar evolutionary histories and compare the

similarity of two HOGs. The two major components of the pipeline that are responsible for

constructing the enhanced phylogenies and calculating probabilistic data structures to repre-

sent them are pyHam [24] and Datasketch [25], respectively. The combination of these two

tools now allows for the main innovation of our pipeline: the efficient exploration and cluster-

ing of profiles to study known and novel biological networks.

Currently, existing profiling pipelines are limited with respect to the computational power

required to cluster profiles using their respective distance metrics. Due to this bottleneck, pro-

filing efforts are typically focused on reconstructing pathways with known interactors using

existing annotations and evidence rather than being used as an exploratory tool to search for

new interactors and reconstituting completely unknown networks.

The tool we have developed leverages the properties of MinHash signatures to allow for the

selection of clade subsets and for clade weightings in the construction of profiles and make it

possible to build profiles with the complete set of genomes contained in OMA. We show that

the method outperforms other phylogeny-based methods [19,26,27], and illustrate its useful-

ness by retrieving biologically relevant results for several genes of interest. Because the method

is unaffected by the number of genomes included and scales logarithmically with the number

of hierarchical orthologous groups added, it will efficiently perform with the exponentially

growing number of genomes as they become available.

The code used to generate the results in this manuscript are available at https://github.com/

DessimozLab/HogProf.
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Results

In the following sections we first compare our profiling distance metric against other profile

distances in order to characterize the Jaccard hash estimation’s precision and recall character-

istics. Following this quantification, we show our pipeline’s capacity in reconstituting a well

Fig 1. Diagram summarizing the different steps of the pipeline to generate the LSH Forest and hash signatures for each HOG.

The labelled phylogenetic trees generated by pyHam are converted into phylogenetic profiles and used to generate a weighted

MinHash signature with Datasketch. The hash signatures are inserted into the LSH Forest and stored in an HDF5 file.

https://doi.org/10.1371/journal.pcbi.1007553.g001
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known interaction network as well as augmenting it with more putative interactors using its

search functionality. Finally, to illustrate a typical use case of our tool, we explore a poorly

characterized network.

Accuracy of predicted phylogenetic profiles in an empirical benchmark

We compared the performance of our profiling metric to existing profile distances using

benchmarking data available in Ta et al. [19]. In that benchmark, the true positive protein-pro-

tein interactions (PPIs) were constructed using data available from CORUM [28] and the

MIPS [29] databases for the human and yeast interaction datasets. True negatives were con-

structed by mixing proteins known to be involved in different complexes. The dataset is bal-

anced with 50% positive and 50% negative samples. Using their Uniprot identifiers, these

interaction pairs were mapped to their respective HOGs and their profiles were compared

using the hash-based Jaccard score estimate. The comparison below shows HogProf alongside

other profiling distance metrics that are considerably more computationally intensive, includ-

ing the Enhanced Phylogenetic Tree (EPT) metric shown in Ta et al. [19]. Yet, our approach

outperformed these previous methods, yielding the highest Area Under the Curve for both

yeast and human datasets (Fig 2, Table 1).

Recovery of a canonical network: the kinetochore network

To further validate our profiling approach on a known biological network, we used our pipe-

line to replicate previous work shown in van Hooff et al. [10]. Their analysis focuses on the

Fig 2. ROC curves for all profiling methods. a. Yeast protein-protein interactions. Our method (MinHash Jaccard HogProf), performs best overall, but when high

precision is required, Enhanced phylogenetic Tree [19] is still slightly more accurate. b. Human protein-protein interactions. Jaccard Hash HogProf performs better than

all metrics overall but again, when high precision is required, EPT score is still slightly more accurate. Binary Pearson refers to a distance using binary vectors and Pearson

correlation described in [26]. Occurence Euclidean and Occurence Pearson refer to the occurence profiles with Euclidean distance and Pearson correlation as described in

[27].

https://doi.org/10.1371/journal.pcbi.1007553.g002
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evolutionary dynamics of the kinetochore complex, a microtubule organizing structure that

was present in the last eukaryotic common ancestor (LECA) and has undergone many modifi-

cations throughout evolution in each eukaryotic clade where it is found. Its modular organiza-

tion has allowed for clade-specific additions or deletions of modules to the core complex

which remains relatively stable. This modular organisation and clade-specific emergence of

certain parts of the complex make it an ideal target for phylogenetic profiling analysis.

We show that our MinHash signature comparisons are also capable of recovering the kinet-

ochore complex organisation. After considering just the HOGs for the families used in van

Hooff et al. [10], we augmented their set of profiles using LSH Forest [30] to retrieve interac-

tors that may also be involved in the kinetochore (and the also included anaphase promoting

complex (APC)) networks which have not been catalogued by these authors. Using the Gene

Ontology (GO) terms [31] of all proteins returned in our searches for novel interactors, we

were able to identify proteins with specific functions we would expect to be related to our net-

work of interest.

In their work, van Hooff et al. [10] used pairwise Pearson correlation coefficients between

the presence and absence vectors of the various kinetochore components to recompose the

organisation of the complex. Their profiles were constructed using the proteomes of a manu-

ally selected set of 90 organisms with manually curated profiles corresponding to each compo-

nent of the complex. After establishing a distance kernel, they clustered the profiles and were

able to recover known sub-components of the complex using just evolutionary information.

Using our hash-based Jaccard distance metric in an all-vs-all comparison between the HOGs

corresponding to each of these protein families, we were also able to recover the main modules

of the kinetochore complex with a similar organisation to the one defined by van Hooff et al.

The color clustering in Fig 3 corresponds to their original manual definition of these different

subcomplex modules. We observe that the distance matrices generated by each profiling

approach are correlated (with Spearman correlation of 0.268 (p< 1e-100) and Pearson corre-

lation of 0.364 (p< 1e-100)) and are recovering similar evolutionary signals despite their con-

struction using different methods.

The All-vs-All comparison of the profiles revealed several well defined clusters in both stud-

ies including the Dam-Dad-Spc19 and CenP subcomplexes. Unlike the Van Hootf et al.

approach, HogProf profiles were constructed alongside all other HOGs in OMA and were not

curated before being compared. With only the initial information of which proteins were in

the complex, we mapped them to their corresponding OMA HOGs and, with this example,

demonstrated the ability to reconstruct any network of interest or construct putative networks

using the search functionality of our pipeline with minimal computing time. It should be

noted that the quality of the OMA HOGs used to construct the enhanced phylogenies and

hash signatures directly influences our ability to recover complex organisation.

To illustrate the utility of the search functionality of our tool, we used the profiles known to

be associated with the kinetochore complex to search for other interactors. All HOGs corre-

sponding to the protein families used to analyse the kinetochore evolutionary dynamics in van

Table 1. AUC values for Profiling distance metrics.

Metric AUC Yeast AUC Human

Jaccard Hash 0.6634 0.6155

EPT 0.6104 0.5875

BIN PS 0.5840 0.5463

OCC ED 0.5829 0.5268

OCC PS 0.6028 0.5714

https://doi.org/10.1371/journal.pcbi.1007553.t001
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Hooff et al. [10] were used as queries against an LSH Forest containing all HOGs in OMA. By

performing an all-vs-all comparison of the minhash signatures of the queries and returned

results, a Jaccard distance matrix was generated showing potential functional modules associ-

ated with each known component of the kinetochore and APC complexes.

Fig 3. Recovery of kinetochore and APC complexes. After mapping each of the protein families presented in Van Hooff et al. [10] to their corresponding HOG, a

distance matrix was constructed by comparing the Jaccard hash distance between profiles using HogProf. Name colors in the rows and columns of the matrix

correspond to the kinetochore and APC subcomplex components as defined manually using literature sources [10].

https://doi.org/10.1371/journal.pcbi.1007553.g003
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To verify that the results returned by our search were not spurious, we performed GO

enrichment analysis of the returned HOGs that were not part of the original set of queries but

appeared to be coevolving closely with known kinetochore components. Given the incomplete

nature of GO annotations [“open world assumption”, 32], many of these proteins may actually

be involved in the kinetochore interaction network but this biological function could be still

undiscovered. However, even with this limitation, salient annotations relevant to the kineto-

chore network were returned in the search results (Table 2 and S1 Data). The identifiers of all

protein sequences contained in the HOGs returned by the search results were compiled and

the GO enrichment of each cluster shown in Fig 4 was calculated using the OMA annotation

corpus as a background. The enrichment results were manually parsed and salient annotations

related to HOGs were selected to be reviewed further in the associated literature to check for

the association of the search result with the query HOG (Table 2).

For instance, our search identified TACC3, which is known to be part of a structural stabi-

lizer of kinetochore microtubules tension although it does not directly interact with the kineto-

chore complex [36]. ESCO2, a cohesin N-acetyltransferase needed for proper chromosome

segregation during meiosis also plays a role in kinetochore-microtubule attachments regula-

tion during meiosis [35]. While these results are certainly promising, many of the unannotated

proteins returned by our search likely contain more regulatory, metabolic and physical inter-

actors which may prove to be interesting experimental targets.

Search for a novel network

Typical research use cases for profiling often involve uncharacterized protein families acting

within poorly studied neworks. In this section we present search results for three HOGs known to

be involved in the processes of meiosis, syngamy and karyogamy. Despite the ubiquitous nature

of sex and its probable presence in LECA [37], the protein networks involved in each part of these

processes have limited experimental data available, even in model organisms. Some key protein

families involved in each step are known to have evolutionary patterns indicating an ancestral

sequence in the LECA with subsequent modifications and losses [37]. The three following sections

detail the returned results of the phylogenetic profiling pipeline with the Hap2, Gex1 and Spo11

families which all share this evolutionary pattern and are known to be critical for the process of

gamete fusion, nuclear fusion and meiotic recombination, respectively. The proteins contained in

the top 100 HOGs returned by the LSH Forest were analyzed for GO enrichment using all OMA

annotations as a background. Due to the presence of biases in the GO annotation corpus [38] we

have also chosen to show the number of proteins annotated with each biological process selected

from the enrichment out of the total number of annotated proteins.

Query with Hap2

The Hap2 protein family has been shown to catalyze gamete membrane fusion in many

eukaryotic clades and shares structural homology with viral and somatic membrane fusion

Table 2. Manually curated biologically relevant search results for interactors coevolving with van Hooff et al.’s
kinetochore and APC selected protein families [10]. Protein families returned within clusters containing query

HOGs are listed with their pertinent annotation and literature. This is a non-exhaustive summary of some selected

results. The full enrichment results are available as S1 Data.

Cluster Result GO Term Citation

APC1 CFAP157 GO:0035082 axoneme assembly [33]

APC12 C2CD3 GO:0061511 centriole elongation [34]

CenpQ ESCO2 GO:0007059 chromosome segregation [35]

KNL1 TACC3 GO:0007091 metaphase/anaphase transition of mitotic cell cycle [36]

https://doi.org/10.1371/journal.pcbi.1007553.t002
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Fig 4. Putative novel components of the kinetochore and APC complexes. The profiles associated with all HOGs mapping to known kinetochore components shown in

Fig 3 were used to search the LSH Forest and retrieve the top 10 closest coevolving HOGs resulting in a list of 871 HOGs including the queries from the original

complexes. The Jaccard distance matrix is shown between the hash signatures of all query and result HOGs. UPGMA clustering was applied to the distance matrix rows

and columns. Labelled rows and columns correspond to profiles from the starting kinetochore dataset [10]. A cutoff hierarchical clustering distance of 1.3 was manually

chosen (blue lines) to limit the maximum cluster size to less than 50 HOGs. This cutoff resulted in a total of 142 clusters of HOGs used for GO enrichment to identify

functional modules. The coloring of the protein family names to the right and below the matrix is identical to the complex related coloring shown in Fig 3.

https://doi.org/10.1371/journal.pcbi.1007553.g004
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proteins [39–42]. A subset of the GO enrichment of the search results for the top 100 coevolv-

ing HOGs are shown below in Table 3.

One particular family of interest which was returned in our search results is already charac-

terized in angiosperms: LFR or leaf and flower related [43]. This protein family is required for

the development of reproductive structures in flowers and serves as a master regulator of the

expression of many reproduction related genes, but its role in lower eukaryotes remains unde-

scribed despite its broad evolutionary conservation.

Query with Gex1

The nuclear fusion protein Gex1 is present in many of the same clades as Hap2, with a similar

spotty pattern of absence across eukaryotes and a phylogeny indicating a vertical descent from

LECA [44]. A subset of the GO enrichment of the search results for the top 100 coevolving

HOGs are shown below in Table 4.

Gex1 has been shown to be involved in gamete development and embryogenesis [45] and

therefore GO terms 0022619 and 0009553 are applied to this protein. Thus proteins that Hog-

Prof identified as co-evolving with Gex1 and sharing these GO terms can be considered poten-

tial Gex1 interactors.

One search result of particular interest is a protein family which goes by the lyrical name of

parting dancers (PTD). PTD belongs to a family that has been characterized in Arabidopsis
thaliana and budding and fission yeast, and is known to be required in reciprocal homologous

recombination during meiosis [46]. Our search shows that Gex1 co-evolved closely with PTD,

a protein known to be involved in preparing genetic material for its eventual merger with

another cell’s nucleus.

Query with Spo11

The Spo11 helicase is involved in meiosis by catalyzing DNA double stranded breaks (DSBs)

triggering homologous recombination. Spo11 is highly conserved throughout eukaryotes and

Table 3. Manually curated biologically relevant enriched GO terms from returned results. The query sequence Hap2 is UniProt entry F4JP36 with OMA identifier

ARATH26614 belonging to OMA HOG:0406399. The full enrichment results are available in the S2 Data.

Term Biological process P-value N-proteins

GO:0006338 chromatin remodeling 9.72e-54 61/3426

GO:0048653 anther development 1.69e-35 17/3426

GO:0009793 embryo development ending in seed dormancy 2.88e-13 15/3426

GO:0051301 cell division 6.88e-16 5/3426

https://doi.org/10.1371/journal.pcbi.1007553.t003

Table 4. Manually curated biologically relevant enriched GO terms from returned results. The query sequence

Gex1 is UniProt identifier Q681K7 with OMA identifier ARATH38809 belonging to OMA HOG:0416115. The full

enrichment results are available as S3 Data.

GO Term P-value N-Proteins

GO:0042753 positive regulation of circadian rhythm 2.12e-285 113/2685

GO:0048364 root development 7.81e-125 70/2685

GO:0051726 regulation of cell cycle 1.22e-92 99/2685

GO:0000712 resolution of meiotic recombination intermediates 1.65e-47 26/2685

GO:0007140 male meiotic nuclear division 1.19e-39 26/2685

GO:0009553 embryo sac development 1.43e-28 17/2685

GO:0022619 generative cell differentiation 3.59e-18 5/2685

https://doi.org/10.1371/journal.pcbi.1007553.t004
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homologues are present in almost all clades [47]. A subset of the GO enrichment of the search

results for the top 100 coevolving HOGs are shown below in Table 5.

It is encouraging to find that Spo11, the trigger of meiotic DSBs, has co-evolved with other

families involved in the inverse process of repairing the DSBs and finishing the process of

recombination (Table 5). Other identified HOGs contain annotations such as gamete genera-

tion and reproduction also focusing on processes that result in cellular commitment to a gam-

ete cell fate through meiosis. Proliferating cell nuclear antigen or PCNA [48] was also retrieved

by our search. This ubiquitous protein family is an auxiliary scaffold protein to the DNA poly-

merase and recruits other interactors to the polymerase complex to repair damaged DNA,

making it an interesting candidate for a potential physical interactor with Spo11.

A broader search for the reproductive network

A more in-depth treatment of the evolutionary conservation of gamete cell fate commitment

and mating is available in previous publications [37,44,49–53]. Using these sources, a list of

broadly conserved protein families known to be involved in sexual reproduction were com-

piled (S4 Data) to be used as HOG queries to the LSH Forest to retrieve the top 10 closest

coevolving HOGs. The hash signatures of the queries and results were compiled and used in

an all-vs-all comparison to generate a Jaccard distance matrix.

The all-vs-all comparison of the Jaccard distances between these returned HOGs reveals

clusters of putative interactors co-evolving closely with specific parts of the sexual reproduc-

tion network (Fig 5). Manual analysis of GO enrichment results revealed several sexual repro-

duction-related proteins which are summarized in Table 6. In addition to annotated protein

sequences and HOGs, many unannotated, coevolving HOGs were found.

Particularly for biological processes as complex and evolutionarily diverse as sexual repro-

duction, GO annotations are, unsurprisingly, incomplete. Fortunately, our profiling approach

is successful in identifying protein families with similar evolutionary patterns that have already

been characterised and are directly relevant to sexual reproduction (Table 6). By considering

the uncharacterized or poorly characterized families at the sequence and structure level, we

may be able to predict their functions and reconstitute their local interactome. Our ultimate

goal is to guide in vivo experiments to test and characterize these targets within the broader

context of eukaryotic sexual reproduction.

This example related to the ancestral sexual reproduction network illustrates the utility of

the LSH Forest search functionality and OMA resources in exploratory characterization of

poorly described networks. The interactions presented above (Table 6) only represent our lim-

ited effort to manually review literature to highlight potentially credible interactions detected

by our pipeline. Again, as was the case with our kinetochore and APC related searches, several

interactions might not appear obvious on their face. For example, SPC72 and MID2 are both

involved in meiotic processes but localized to different parts of the cell (centriole and plasma

Table 5. Manually curated biologically relevant enriched GO terms from returned results. The query sequence

Spo11-1 is UniProt identifier Q9M4A2 with OMA identifier ARATH19148 belonging to OMA HOG:0605395.

GO Term P-value N-Proteins

GO:0000737 DNA catabolic process, endonucleolytic 0.00e+00 415/20562

GO:0043137 DNA replication, removal of RNA primer 0.00e+00 353/20562

GO:0006275 regulation of DNA replication 0.00e+00 552/20562

GO:0006302 double-strand break repair 8.11e-242 285/20562

GO:0007292 female gamete generation 2.71e-184 136/20562

GO:0022414 reproductive process 1.66e-93 127/20562

https://doi.org/10.1371/journal.pcbi.1007553.t005
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Fig 5. HogProf’s reproductive network. A list of proteins known to be involved in sexual reproduction was compiled and mapped to OMA HOGs. These queries were

used to search for the 20 closest coevolving HOGs in an LSH forest containing all HOGs in OMA. A Jaccard kernel was generated by performing an All vs All comparison

of the Hash signatures of search results and queries. UPGMA clustering was performed on the rows and columns of the kernel. A cutoff distance of .995 (blue lines) was

manually chosen to limit cluster sizes to less than 50 HOGs. This generated a total of 215 clusters of HOGs. Names for queries are shown with Saccharomyces cerevisiae
gene names (apart from Hap2 which is not present in fungi).

https://doi.org/10.1371/journal.pcbi.1007553.g005
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membrane, respectively). However, it has been shown that microtubule organization and

membrane integrity sensing pathways do show interaction during gamete maturation [60].

Discussion

We introduced a scalable system for phylogenetic profiling from hierarchical orthologous

groups. The ROC and AUC values shown using an empirical benchmark (Results section)

indicate that the MinHash Jaccard score estimate between profiles has slightly better perfor-

mance than previous tree and vector based metrics, while also being much faster to compute.

This is remarkable in that one typically expects a trade-off between speed and accuracy, which

does not appear to be the case here. We hypothesise that the error introduced by the MinHash

approximation is compensated by the inclusion of an unprecedented amount of genomes and

taxonomic nodes in the labelled phylogenies used to construct the profiles.

Furthermore, while our MinHash-derived Jaccard estimates are able to capture some of the

differences between interacting and non-interacting HOGs, their unique strength lies in the

fast recovery of the top k closest profiles within an LSH Forest. Once these profiles are recov-

ered, the inference of submodules or network structure can be refined using other, potentially

more compute intensive methods, on this much smaller subset of data.

We have shown that HogProf is able to reconstitute the modular organisation of the kineto-

chore, as well as increase the list of protein families interacting within the network with several

known interactors of the kinetochore and the APC. As for the other HOGs returned in these

searches, our results suggest that some are yet unknown interactors involved in aspects of the

cell cycle or ciliary dynamics. Likewise, our attempt at retrieving candidate members of the

sexual reproduction network recapitulated many known interactions, while also suggesting

new ones.

The current paradigm for exploring interaction or participation in different biological path-

ways across protein families relies heavily on data integration strategies that take into account

heterogenous high-throughput experiments and knowledge found in the literature. Many

times, these datasets only describe the networks in question in one organism at a time. Fur-

thermore, signaling, metabolic and physical interaction networks are all covered by different

types of experiments and data produced by these systems is located in heterogeneous data-

bases. By contrast, phylogenetic profiles can potentially uncover all three types of networks

from sequencing data alone. This was highlighted in our work during retrieval of potential

interactors within the sexual reproduction and kinetochore networks with the retrieval of LFR

and CFAP157, respectively. CFAP157, a cilia and flagella associated protein might be involved

in recruitment/regulation of APC-Cdc20 or ciliary kinases (e.g Nek1), both known to mediate

APC regulation of ciliary dynamics ([61]). In both cases, a regulatory action within the net-

work was the biological process which involved both the query and retrieved HOGs, not a

physical interaction. The advances put forward by our new methodology and the property of

Table 6. Manually curated biologically relevant putative interactors from sexual reproduction search results. Pro-

tein families within clusters containing query HOGs are listed with their pertinent annotation and literature. GO

enrichment results of clusters containing one or more queries were analyzed manually. Full enrichment results are

available as S5 Data.

Cluster Result GO Term Citation

REC8 NSE4 GO:0030915 Smc5-Smc6 complex [54]

SPC72 MID2 GO:0000767 cell morphogenesis involved in conjugation [55]

SPO71 LES2 GO:0031011 Ino80 complex [56,57]

SHC1, SPO16 POG1 GO:0000321 re-entry into mitotic cell cycle after pheromone arrest [58,59]

https://doi.org/10.1371/journal.pcbi.1007553.t006
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retrieving entire networks and not just physical interactions opens the possibility of perform-

ing comparative profiling on an unprecedented scale and lays the groundwork for integrative

modeling of the interplay between PPI, regulation and metabolic networks in a more holistic

way.

Further work remains to be done on tuning the profile construction with the appropriate

weights at each taxonomic level, as well as constructing profiles for subfamiles arising from

duplications which may undergo neofunctionalization, a theme which has been previously

explored in phylogenetic profiling efforts relying on far fewer genomes [62]. Downstream pro-

cessing of the explicit representation of the data, as opposed to the hash signature, can also be

designed using more computationally intensive methods to detect interactions on smaller sub-

sets of profiles after using the LSH as a first search.

The phylogenetic profiling pipeline presented in this work will be integrated into OMA

web-based services. Meanwhile, it is already available on Github as a standalone package

(https://github.com/DessimozLab/HogProf).

Methods

The following section details the creation of phylogenetic profiles using OMA data, their trans-

formation into MinHash based probabilistic data structures and the tools and libraries used in

the implementation.

Profile construction

To generate large-scale gene phylogenies labelled with speciation, duplication and loss events

(a.k.a. enhanced phylogenies or tree profiles) for each HOG in OMA, we processed input data

in OrthoXML format [63] with pyHam [24], using the NCBI taxonomic tree [64] pruned to

contain only the genomes represented in OMA [16]. Tree profiles contain a species tree anno-

tated at each taxonomic level with information on when the last common ancestor gene

appeared, where losses and duplications occurred and the copy number of the gene at each tax-

onomic level. More information on the pyHam inference of evolutionary events can be found

in [24]. pyHam can also be used to infer enhanced phylogenies for other datasets available in

OrthoXML format such as ENSEMBL [13] or with data generated from phylogenetic trees such

as those found in PANTHER [65] through the use of the function etree2orthoxml() in

the tree analysis package ETE3 [66].

The enhanced phylogeny trees for each HOG are parsed to create a vector representation of

the presence or absence of a homologue at each extant and ancestral node as well as the dupli-

cation or loss events on the branch leading to that node. Each profile vector contains 9345 col-

umns (corresponding to the 3115 nodes of the taxonomy used and the 3 categories of

presence, loss and duplication).

To encode profile vectors as weighted MinHash signatures [67] we used the Datasketch

library [25]. In this formulation, the Jaccard score between multisets representing profiles can

be more heavily influenced by nodes with a higher weight. The final MinHash signatures used

were built with 256 hashing functions.

After transforming HOG profile vectors to their corresponding weighted MinHashes using

the datasketch library, an estimation of the Jaccard distance between profiles can be obtained

by calculating the Hamming distance between their hash signatures [68]. The speed of com-

parison and lower bound for accuracy of the estimation of the Jaccard score is set by the num-

ber of hashing functions. The comparison of hash signatures has O(N) time complexity where

N is the number of hash functions used to generate the MinHash signature. Due to this prop-

erty, an arbitrary number of elements can be encoded in this signature without slowing down

PLOS COMPUTATIONAL BIOLOGY Scalable phylogenetic profiling uncovers likely eukaryotic sexual reproduction genes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007553 July 22, 2020 14 / 21

https://github.com/DessimozLab/HogProf
https://doi.org/10.1371/journal.pcbi.1007553


comparisons. In our use case, this enables the use of an arbitrarily large number of taxa for

which we can consider evolutionary events. Additionally, hardware implementations of hash

functions allow the calculation of hash signatures at rates of giga hashes per second and allow

for extremely fast implementation of this step, placing the bottleneck of the pipeline at the cal-

culation of enhanced phylogenies.

The weighted MinHash objects for each HOG’s enhanced phylogeny were compiled into a

searchable data structure referred to as a Locality Sensitive Hashing Forest (LSH Forest) [30]

and their signatures were stored in an HDF5 file. The LSH Forest can be queried with a hash

signature to retrieve the K neighbors with the highest Jaccard similarity to the query hash. The

K closest hashes are retrieved from a B-Tree data structure [69]. This branching tree data

structure allows for the querying and dynamic insertion and deletion of elements in the LSH

Forest data structure built upon it with logarithmic time complexity.

The scaling properties of the MinHash data structures when compared to pairwise distance

calculations and hierarchical clustering are shown below in Fig 6.

Computational resources, data and libraries

Our dataset contains approximately 600,000 HOGs computed from the 2,167 genomes in

OMA (June 2018 release) The main computational bottleneck in our pipeline is the calculation

of the labelled gene trees for each HOG using pyHam. Even with this computation, compiled

LSH forest objects containing the hash signatures of all HOGs’ gene trees can be compiled in

Fig 6. To illustrate the advantageous scaling properties of MinHash data structures, synthetic profiles of length

100 were generated in the form of binary vectors (0 and 1 equiprobable). Profiles were then clustered using an

explicit calculation of the Jaccard distance, reduced to a lower dimensionality (5 dimensions) with truncated SVD,

normalized and explicitly clustered using Euclidean distance as in SVD-Phy [18] or transformed into MinHash

signatures and inserted into an LSH Forest object as in our method. Orders of magnitude showing typical use cases for

profiling pipelines are shown on the x-axis. Curves were fitted to each set of timepoints to empirically determine the

time complexity of each approach.

https://doi.org/10.1371/journal.pcbi.1007553.g006
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under 3 hours (with 10 CPUs but this can scale easily to more cores) with only 2.5 GB of RAM

and queried extremely efficiently (an average of 0.01 seconds over 1000 queries against a data-

base containing profiles for all HOGs in OMA on an Intel(R) Xeon(R) CPU E5530 @ 2.40

GHz and 2 GB of RAM to load the LSH database object into memory). This performance

makes it possible to provide online search functionality, which we aim to release in an upcom-

ing web-based version of the OMA browser. Meanwhile, the compiled profile database can be

used for analysis on typical workstations (note that memory and CPU requirements will

depend on the number of hash functions implemented in the construction of profiles and the

filtering of the initial dataset to clades of interest to the user).

All gene ontology (GO) annotations (encompassing molecular functions, cellular locations,

and biological processes) for HOGs contained in OMA were analyzed with GOATOOLS [70].

To calculate the enrichment of annotations, the results returned by the LSH Forest annotations

for all protein sequences contained in the HOGs returned by the search were collected and the

entire OMA annotation corpus was used as background.

HDF5 files were compiled with H5PY (ver. 2.9.0). Pandas (ver. 0.24.0) was used for data

manipulation. Labelled phylogenies were manipulated with ETE3 [66]. Datasketch (ver. 1.0.0)

was used to compile weighted MinHashes and LSH Forest data structures. Plots were gener-

ated using matplotlib (ver. 3.0.2). PyHam (ver 1.1.6) was used to calculate labelled phylogenies

for the HOGs in OMA.

Time complexity analysis in Fig 6 was done with the scikit-learn implementation of trun-

cated SVD [71] and scipy [72] distance functions.

Pearson and Spearman correlation comparison of distance matrices

Distance matrices between all pairs of profiles in the kinetochore and APC complex protein

families defined in [10] were compared using the Spearman and Pearson statistical analysis

functions from the the SciPy python package to verify the monotonicity of the scores between

families.

Supporting information

S1 Data. Contains the results of GO enrichment analysis done on the results of our search

for kinetochore interactors. After searching with the HOGs corresponding to each of the

kinetochore components, the returned HOGs were clustered according to their jaccard simi-

larity. Using a hierarchical clustering and a manually defined cutoff the results were separated

into discrete clusters. Each cluster was analyzed using goatools for GO enrichment. Enrich-

ment results for clusters containing a query gene were recorded in this CSV file.

(CSV)

S2 Data. Contains the goatools output for the GO enrichment analysis of the top 100 clos-

est coevolving HOGs returned by a query with Hap2.

(CSV)

S3 Data. Contains the goatools output for the GO enrichment analysis of the top 100 clos-

est coevolving HOGs returned by a query with Gex1.

(CSV)

S4 Data. Contains a manually selected set of highly conserved protein families involved in

sexual reproduction.

(CSV)
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S5 Data. Contains the results of GO enrichment analysis done on the results of our search

for sexual reproduction network interactors. After searching with the HOGs corresponding

to each of the manually curated list of conserved sexual reporduction network components,

the returned HOGs were clustered according to their jaccard similarity. Using a hierarchical

clustering and a manually defined cutoff the results were separated into discrete clusters. Each

cluster was analyzed using goatools for GO enrichment. Enrichment results for clusters con-

taining a query were recorded in this csv file.

(CSV)
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