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STATISTICAL ANALYSIS OF PSEUDORANDOM BINARY 
SEQUENCES GENERATED BY USING TENT MAP  

Azeem ILYAS1, Adriana VLAD2, Adrian LUCA3 

The paper presents a detailed analysis of two types of pseudorandom binary 
sequence generators obtained by using tent map. The test is performed using a NIST 
statistical test suite which is widely used for testing the randomness of any random 
number generator. The binary sequences under investigation are obtained either by 
considering all the successive iterations of the tent map and choosing a threshold 
equal to the tent map parameter or by applying a  periodical sampling on the tent 
map values and by choosing a threshold equal to 0.5. Additionally, the paper comes 
up with a new discussion concerning the elements of the secret key for both of the 
generators. Based upon the results presented in the paper, both generators can be 
used for designing a new cipher where the pseudorandom binary sequence is the 
main ingredient of the cipher. 
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1. Introduction 

Producing cryptographically secure Pseudo Random Number Generators 
(PRNGs) is a well known debate for the last 50 years. A special interest is paid in 
the literature for the construction of pseudorandom binary sequences generators 
based on chaotic systems, [1]-[4]. The features of the chaotic map such as 
sensitivity to initial condition and/or control parameter, the stationarity and the 
ergodicity, all of them make chaotic maps a worthy choice of achieving the 
Shannon’s concept of good practical secrecy systems. If pseudorandom binary 
sequences are generated for cryptographic purposes, usually a simple inspection 
in not enough, it is always better to put the binary sequences under some of the 
known rigorous statistical test suites before using them. The most common tests 
suites used in the literature to analyze the random number generators are NIST, 
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[5] and DIEHARD, [6]. The both test suites are considered the most stringent test 
among others.  

The aim of this paper is to perform an in-depth analysis of two 
pseudorandom binary generators (PRBG) constructed starting from the tent map, 
[3]. In [3], the quality of the two PRBG was theoretically proved and authors have 
performed a statistical evaluation by using probability tests of m-grams (letter, 
bigram, trigram probabilities). This time, NIST statistical test suites are the 
primary tools for an analysis of the proposed PRBG.   

The paper is formulated in two parts. Section 2 summarizes the method for 
generating the pseudorandom binary sequences. Additionally, Section 2 provides 
a discussion concerning the length of the binary sequences and assists in defining 
the secret key elements from cryptographical point of view. Section 3 presents a 
detailed analysis of PRBG using NIST test suite.  

2. An overview of the pseudorandom binary generators  

The tent map used to generate pseudorandom binary sequences in [3] is 
given by the following equation: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤<
−

−

≤≤
==+

1,
1

1

0,
)(1

kxa
a
kx

akx
a
kx

kxfkx  (1) 

where )1;0(∈a  is the tent map parameter. The tent map defined in (1) has uniform 
invariant density in ]1;0[  interval. Binary sequences are obtained from the real 
values kx  of tent map (1) by a comparison with a c threshold as in Fig. 1 and 
relation (2). The ]1;0[  range of the tent map is divided into two subintervals 
associated to two discrete values 0 and 1. The c threshold is chosen either 0.5 or 
equal to the tent map parameter , depending on the generator type proposed in [3]: 

A generator. A practical fair coin generator starting from successive iterations of 
the tent map (c threshold is chosen equal to the tent map parameter a); 

B generator. A fair coin generator based on the statistical independence sampling 
distance of the tent map (c threshold is chosen equal to 0.5).  
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c=0.4995 

 
Fig. 1 Generation of binary sequences using the c threshold. Illustration for two 
trajectories indicated  by  x0 = 0.2457 and  x0 =  0.3728,  c = a  = 0.4995 
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In what follows, the two methods mentioned above for generating the binary 
sequences from the tent are presented.  
 
A practical fair coin generator starting from successive iterations of the tent 
map 

The tent map is iterated (starting from an initial condition randomly chosen) and 
all successive kx  values in (1) are considered; the kx  values are transformed into 
binary values with the c  threshold equal to the tent map parameter. As already 
proved in [3], if the threshold is chosen equal to the tent map parameter (i.e. 

ac = ), then the binary sequences coming from successive kx  values of the tent 
map are i.i.d (data coming out from independently and identically distributed 
random variables), having probabilities a=0P  and a−= 1P1 . In order to have 
binary sequences that comply to the fair coin model, the threshold and the tent 
map parameter has to be chosen as )1(5.0 δ−== ac , [3]. The δ  value is 
evaluated using the type II statistical error probability, (3), for the hypothesis that 
the probability of each of the binary symbol is 0.5.    

Note. In (3), 2/αz  is 2/α -point value of the standard gaussian law for a 
significance level α  (for example, if 05.0=α , then 96.12/ =αz ).   
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Comments concerning the length of the binary sequences and choice of tent map 
parameter. 
In [3], the maximum deviation considered for the balanced case was 001.0=δ , 
meaning ]5005.0;4995.0[∈a  with 5.0≠a , for the sequences of length 

53665≤N . In this case, type II statistical error probability defined in (3) is 
94.0>β . That means, the binary sequences of a length 53665≤N  coming out 

from the successive values of the tent map with ]5005.0;4995.0[∈a  comply with 
the fair coin model (i.e. if a probability test is performed, the test will accept in 
about 95% cases that binary sequences comply with the throwing of the fair coin).     

This generator is relying on type II statistical error but type II statistical error 
depends upon two parameters, N and δ . In order to be sure that the binary 
sequences always obey the fair coin model, δ  needs to be reevaluated for every 
length N (for example, if a binary sequence is having length 610≤N , it results 

0001.0=δ  and the tent map parameter ]50005.0;49995.0[∈a ).  
 
A fair coin generator based on the statistical independence sampling distance of 
the tent map 
  
We iterated the tent map (starting from a randomly chosen initial condition and a 
fixed tent map parameter chosen in ]6.0;4.0[ ) and we preserved only the kx  
values extracted by a periodical sampling of (1) with a distance 15=d  iterations; 
then, the extracted kx  values are transformed into binary values by choosing a  
threshold 5.0=c . Note that the value of the sampling distance enables to have 
statistical independence between the extracted values of the tent map, [7]. 
 
Note. We can have i.i.d. data which comply with the fair coin model for any value 
of the tent map parameter by choosing a threshold 5.0=c  and using a periodical 
sampling of the tent map values (the sampling distance value which ensures 
statistical independence depends on the tent map parameter). For example, a 
sampling distance value of 30 iterations ensures the statistical independence for a 
large range of values of the tent map parameter, [7].  
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Comments concerning cryptographic features of the two type generators. 
 
For type A generator, the interval for the control parameter is practically known, 
so one cannot consider to put the control parameter as an element of the secret-
key, resulting only to have the initial condition as a secret key. If the tent map is 
realized on a finite precision system and taking into account the double precision 
of floating point presentation, the effective key size of the type A generator 
approximately can be thought of 53 bits (bearing in mind that we considered only 
the mantissa part). Although the key size looks good from practical point of view, 
it is also a known fact that if ac =  the cryptanalyst can easily get back the initial 
condition, [8]. Thus, type A key-generator is good only from the binary sequence 
generation point of view, as binary sequences are generated from successive 
values of the tent map, but from the security point of view it should be used only 
as a part of mixing transformation in some cipher scheme. 

For type B generator, we can select any value for the tent map parameter, 
so tent map parameter can be put as part of the secret key alongside with the 
initial condition. Again, considering the mantissa part of 64-bit floating point 
representation, we can think of the key size about 106 bits, which is well 
according to the today standards. Type B generator is good from the key-space 
point of view and the way the binary sequences are obtained ensures that the 
method resists the parameter estimation techniques, but it lacks the computational 
efficiency (generation of binary sequences) compared to type A generator. It is 
because of the fact that for the generation of each single bit, tent map has to be 
iterated with a specific sampling distance (distance value depending on the tent 
map parameter).  

 
It is usually recommended to perform an analysis using NIST statistical 

tests or DIEHARD. The basic purpose of these statistical test suites is to detect the 
non-random behavior which looks random on the initial inspection. For the 
purpose of this study we have considered NIST for analyzing the two above 
mentioned generators.    

3. Analysis by means of NIST test suite 

NIST 800-22 was issued by the National Institute of Standards and 
Technology (NIST) (an agency of the U.S. Department of Commerce) in 2001 
and has been revised in  2008, namely, NIST SP800-22 rev. 1a,  [5].  The revised 
test suite contains 15 statistical tests based on hypothesis testing; each test tries to 
detect anomalies if present in the random sequences. A hypothesis test is a formal 
procedure used in the statistics to accept or reject an assumption. In NIST test 
suite, this assumption refers to the idea that if a particular test is passed, we 
consider that the sequence under investigation is random. For each test, a relevant 
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randomness statistic is chosen and used to determine the acceptance or rejection 
of the null hypothesis. Under an assumption of randomness, such a statistic has a 
distribution of possible values. A theoretical reference distribution of this statistic 
under the null hypothesis is determined by mathematical methods and 
corresponding probability value (p-value) is computed, which summarizes the 
strength of the evidence against the null hypothesis. For each test a p-value is 
calculated with a specified significance level α.  A  p-value less than α would 
mean that the sequence is non-random and if a p-value is greater than α, the 
sequence is accepted as random (when 01.0=α , we accept the random binary 
sequences with a confidence level of 99%), [5]. 

To gain confidence that the binary sequences have all the characteristics 
required from a PRNG from cryptographical point of view,  an investigation is 
made on 1000=m  sequences where the length of each binary sequence is 

610=N (in other words we disposed of 1000 independent binary sequences of 
length 610=N ). NIST SP800-22 rev. 1a, [5], provides a guideline involved in the 
statistical testing to make a decision on the empirical calculated results of each 
test. We here present the steps in brief, for more detail one is referred to [5]. 

Step1. Construct m-binary sequences from the random number generator  
Step2. Execute the statistical test suite to get the p-values for each of the 15 tests.  
Step3. Examine the p-values: an output file will be generated by the test suite with 
relevant intermediate values, such as test statistics, and p-values for each 
statistical test. Based on these p-values, a conclusion regarding the quality of the 
sequences can be made.  
Step4. Assessment based upon the p-values either test passes or fails: For each 
statistical test, a set of p-values (corresponding to the set of sequences) is 
produced. For a fixed significance level α , a certain percentage of p-values are 
expected to indicate failure (i.e. if 01.0=α  then about 1% of the sequences are 
expected to fail). For each statistical test, the proportion of sequences that pass is 
computed and analyzed.  

To generate the samples for type A generator, parameter values are chosen 
randomly in ]50005.0;49995.0[  and for type B generator the tent map parameter 
values are randomly chosen in the interval ]6.0;4.0[  and a periodical sampling 

15=d  is applied to get the binary sequences. For both generators, the 1000=m  
sequences are generated starting from initial conditions randomly chosen in )1;0(  
interval. 

To assess the p-values for each of the test present in test suite, NIST has 
adopted two approaches which are mentioned next in detail. 
 

i) Passing ratio of each test 
To determine the passing ration of each test, the significance level for each 

test is set to 0.01 meaning that 99% test samples should pass the test. We 
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considered a significance level of 1% . By estimation theory and resuming 1000 
times each test,  the range of acceptable proportions for each of the individual 
tests can be determined by using the confidence interval defined as 

mppp /)ˆ1(ˆ3ˆ −± , where 99.001.011ˆ =−=−= αp  and 1000=m . The 

acceptance region in our case will be 1000/)99.01(99.0399.0 −± , namely 
][ 0.9994 0.9806; .  

Table 1 presents results for 13 tests from the NIST suite for each of the two 
generators under discussion; if the passing ratio belongs to the acceptance region, 
the decision is SUCCES (the test is passed).  

 
Table 1 

Proportions of the sequences passing against each test 

 type A generator type B generator 

Test Name Passing Ratio Decision Passing Ratio  Decision 

Frequency(Mono) Test 0.991 SUCCESS 0.992 SUCCESS 
Frequency test within a block 0.993 SUCCESS 0.987 SUCCESS 
Cumulative Sums (Forward) 0.992 SUCCESS 0.993 SUCCESS 
Cumulative Sums  (Reverse) 0.989 SUCCESS 0.991 SUCCESS 
Runs Test 0.987 SUCCESS 0.989 SUCCESS 
Test for the longest runs of 1’s  0.988 SUCCESS 0.99 SUCCESS 
Rank Test 0.994 SUCCESS 0.992 SUCCESS 
FFT 0.994 SUCCESS 0.989 SUCCESS 
Non-overlapping Template1 0.99 SUCCESS 0.989 SUCCESS 
Overlapping Template 0.991 SUCCESS 0.983 SUCCESS 
Universal  0.99 SUCCESS 0.992 SUCCESS 
Approximate Entropy 0.987 SUCCESS 0.997 SUCCESS 
Serial Test  0.983 SUCCESS 0.994 SUCCESS 
Linear Complexity 0.988 SUCCESS 0.991 SUCCESS 

1the result is presented only for template 000000001 from all other templates (template length is 9). 
 

 ii) p-values uniformity of each test  

It is generally suggested examining the uniformity of  p-values for each of 
the individual tests using χ2  test. The χ2  test value is defined in (4) where: Fi is 
the number of  p-values in the i class (the p-values are put into 10 classes between 
0 and 1, thus the degree of freedom in this case for χ 2  test is 9);  m  is number of 
samples (here 1000=m ).  
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The significance level is again set to 01.0=α .  Table 2 presents the results 
for each test for both A and B generators. If the χ 2  test value (4) is less 
than 72.33 , the test is assumed as SUCCESS, otherwise FAILURE (33.72 is the 

2/α -point value of the χ 2  law of 9 degrees of freedom).  
Table 2 

p-values uniformity of each test 
 type A generator type B generator 

Test Name Test value  Decision Test value Decision 

Frequency(Mono) Test 4.64 SUCCESS 8.96 SUCCESS 

Frequency test  within a block 14.42 SUCCESS 14.34 SUCCESS 

Cumulative Sums 6.58 SUCCESS 15.28 SUCCESS 

Cumulative Sums 9.64 SUCCESS 2.48 SUCCESS 

Runs Test 4.92 SUCCESS 4.02 SUCCESS 

The longest runs of 1’s  9.04 SUCCESS 10.28 SUCCESS 

Rank Test 3.32 SUCCESS 10.18 SUCCESS 

FFT 8.96 SUCCESS 10.66 SUCCESS 

Non-overlapping Template1 13.16 SUCCESS 11.96 SUCCESS 

Overlapping Template 5.26 SUCCESS 18.06 SUCCESS 

Universal  7.74 SUCCESS 14.1 SUCCESS 

Approximate Entropy 9.82 SUCCESS 11.92 SUCCESS 

Serial 11.3 SUCCESS 11.32 SUCCESS 

Linear Complexity 9.16 SUCCESS 8.52 SUCCESS 
1the result is presented only for template 000000001 from all other templates (template length is 9) 

 
 
Note. The experimental study included other two tests from NIST suite, namely 
Random Excursion Test and Random Excursion Variant Test, Table 3; both tests 
have considered only 633 and 634 sequences out of 1000 samples under 
investigations. It is due to the fact that the probability of stopping the test is 38%. 
Although for both generators the two tests were passing, these tests were not 
included in Table 1 and Table 2, to keep the symmetry concerning the number of 
binary sequences under investigations. 
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Table 3 
Detailed results concerning  

the Random Excursion and Random Excursion Variant tests 
  type A generator type B  generator 
  χ2  test 

value 
Passing 

ratio 
χ2  test 
value 

Passing 
ratio 

 
 
 
Random Excursion 

-4 16.5893 0.9921  18.6498   0.987382 
-3 14.5039 0.9842  21.9306   0.988959 
-2 7.7109 0.9921   7.1987   0.993691 
-1 12.1975 0.9826  10.4795   0.987382 
1 9.1643 0.9889  13.5710   0.984227 
2 7.9953 0.9952   5.7476   0.976341 
3 3.3507 0.9873   9.7539   0.985804 
4 4.0774 0.9826  12.7192   0.981073 

 
 
 
 
 
 
 
 
Random Excursion 
Variant  

-9  8.2164 0.988942  9.5962  0.998423 
-8  8.6272 0.990521  8.2713  0.981073 
-7   5.4992   0.992101   9.8801   0.981073 
-6   9.0063   0.995261   6.3155   0.984227 
-5  10.0490   0.993681  16.2208   0.992114 
-4   5.2780   0.996840  13.8233   0.995268 
-3  8.2164 0.987362  9.1861  0.993691 
-2 17.6951 0.985782 15.5268  0.993691 
-1  19.1485   0.990521  13.9495   0.993691 
1  16.4629   0.993681  17.1356   0.993691 
2   3.6667   0.992101  11.2050   1.000000 
3   8.0585   0.995261  12.1830   0.996845 
4  4.7725 0.993681  6.7571  0.993691 
5  8.2164 0.993681 12.0883  0.996845 
6   5.9731   0.988942  16.4732   0.995268 
7  15.3886   0.993681  13.3502   0.995268 
8   4.0458   0.993681  17.1356   0.996845 
9   9.3223   0.987362   7.1356   0.993691 

4. Conclusions 

The proposed pseudorandom binary sequences based on tent map are 
obtained in such a way that they comply with the fair coin model (if certain 
conditions are met for both of the generators). In this paper, we have rigorously 
tested the generated binary sequences using the NIST suite to be sure that they 
have all the specific properties which can be anticipated from a random sequence. 
The results of statistical testing are in concordance with the theoretical support 
provided.   

The paper also brings into discussion and provides enough details 
concerning the key elements of the secret key for both generators. For type A 
generator, both tent map parameter and initial condition cannot be considered as 
elements in the secret key. On the other hand, the type B generator can have tent 
map parameter as well as the initial condition as part of the secret key. However, 
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for applications in cryptography, the suggestion is to use binary sequences (either 
from type A or from type B) only in product ciphers to avoid the chosen text 
attack.   

R E F E R E N C E S 

[1] Li, S., Mou, X., Cai, Y., “Pseudo-Random Bit Generator Based on Couple Chaotic Systems and 
its application in Stream-Ciphers Cryptography”. Lecture Notes in Computer Science 
(Progress in Cryptology – INDOCRYPT 2001), vol. 2247, 2001, pp. 316–329. 

[2] V. Patidar, K.K. Sud, N.K. Pareek, “A Pseudo Random Bit Generator Based on Chaotic 
Logistic Map and its Statistical Testing”, Informatica, vol. 33, 2009, pp. 441–452. 

[3] A. Luca, A. Ilyas, A. Vlad, “Generating Random Binary Sequences Using Tent Map”. Proc. 
IEEE Int. Symposium on Signals, Circuits and Systems (ISSCS), Iasi, Romania, June 30-
July 1, 2011, pp. 81-84. 

[4] A. Kanso, N. Smaoui, “Logistic Chaotic Maps for Binary Numbers Generations”. Chaos, 
Solitons and Fractals, vol. 40, Issue 5, June 2009, pp. 2557-2568. 

[5] Runkin et al, “A Statistical test suite for random and pseudo random number generators for 
cryptographic applications”, NIST special publication 800-22, Rev. 1a, 2010. 

[6] G. Marsaglia, DIEHARD: a battery of tests of randomness, 1997. 
           http://stst.fsu.edu/geo/diehard.html 
[7] A.  Luca, A. Vlad, B. Badea, M. Frunzete, “A Study on Statistical Independence in the Tent 

Map”, in Proc. IEEE Int. Symposium on Signals, Circuits and Systems (ISSCS), Iasi, 
Romania, July 9-10, 2009, pp. 481-484. 

[8] D. Arroyo, Framework for the Analysis and Design of Encryption Strategies based on Discrete-
Time Chaotic Dynamical Systems, Ph.D. thesis, Universidad Politécnica de Madrid,Escuela 
Técnica Superior de Ingenieros Agrónomos, Spain, 2009.   

 


