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Abstract 

 

Background: Single nucleotide polymorphisms (SNPs) in immune genes have been associated 

with susceptibility to invasive mold infection (IMI) among hematopoietic stem cell (HSCT) but not 

solid organ transplant (SOT) recipients. 

Methods: 24 SNPs from systematically selected genes were genotyped among 1101 SOT 

recipients (715 kidneys, 190 liver, 102 lungs, 79 hearts, 15 other) from the Swiss Transplant 

Cohort Study. Association between SNPs and the endpoint were assessed by log-rank test and 

Cox regression models. Cytokine production upon Aspergillus stimulation was measured by 

ELISA in PBMCs from healthy volunteers and correlated with relevant genotypes. 

Results: Mold colonization (N=45) and proven/probable IMI (N=26) were associated with 

polymorphisms in interleukin-1 beta (IL1B, rs16944; log-rank test, recessive mode, colonization 

P=0.001 and IMI P=0.00005), interleukin-1 receptor antagonist (IL1RN, rs419598; P=0.01 and 

P=0.02) and β-defensin-1 (DEFB1, rs1800972; P=0.001 and P=0.0002, respectively). The 

associations with IL1B and DEFB1 remained significant in a multivariate regression model (IL1B 

rs16944 P=0.002; DEFB1 rs1800972 P=0.01). Presence of two copies of the rare allele of 

rs16944 or rs419598 was associated with reduced Aspergillus-induced IL-1β and TNFα 

secretion by PBMCs. 

Conclusions: Functional polymorphisms in IL1B and DEFB1 influence susceptibility to mold 

infection in SOT recipients. This observation may contribute to individual risk stratification. 
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Introduction 

 

Over 100’000 solid organ transplants (SOT) are performed worldwide each year [1]. Despite 

recent improvements in the management of SOT recipients, infectious complications after 

transplantation remain a challenging issue [2]. In particular invasive aspergillosis can occur in up 

to 3% of SOT recipients and is associated with a mortality rates ranging 20-76% [3, 4]. Risk 

factors for the development of invasive aspergillosis include the type and level of 

immunosuppression, use of renal replacement therapy, older age, and CMV disease [3, 5]. 

However, not all patients with these risk factors develop invasive mold infections (IMI), while 

some patients without these risk factors do, making it difficult to predict the risk to develop IMI at 

the individual level. 

 

Over the last decade, a series of studies have identified common genetic polymorphisms that 

are associated with the development of invasive aspergillosis among hematopoietic stem cell 

transplant recipients and other onco-hematological patients [6, 7]. The identification of specific 

genetic variants may improve individual risk stratification and allow the development of 

personalized management strategies, as well as to use prophylaxis or specific surveillance in 

individuals at high risk to develop invasive aspergillosis [6]. To date, no studies examined the 

role of such genetic polymorphisms on the susceptibility to fungal infections among SOT 

recipients. We explored for the first time the role of host genetics in susceptibility to IMI in a 

nationwide cohort of 1101 SOT recipients. 

 at Fachbereichsbibliothek on N
ovem

ber 17, 2014
http://jid.oxfordjournals.org/

D
ow

nloaded from
 

http://jid.oxfordjournals.org/


5 

 

Materials and Methods 

 

Patients and study design. The STCS is a large, nationwide, well documented prospective 

cohort including all SOT recipients followed at six Swiss University transplant centers (Basel, 

Bern, Geneva, Lausanne, St Gallen and Zurich) since May 2008 [8]. Patient data were 

systematically collected at enrollment, at six months and every 12 months after transplant on 

standardized case report forms.  

Infectious complications were systematically evaluated by an infectious disease specialist based 

on clinical, histological, radiological and mycological evidence and reported on a separate case 

report form. Charts from patients reported to have fungal colonization or IMI were revised by an 

independent investigator (TL) [9]. Proven or probable IMI, was defined based on standardized 

EORTC/MSG guidelines definitions [10] and adapted ISHLT guidelines definitions unique for 

lung transplant recipients such as anastomotic bronchial infections or tracheobronchitis [11]. 

Colonization was defined by microscopic or culture detection of a mold from a specimen of a 

non-sterile site, including sputum, bronchoalveolar lavage, bronchial brush, sinus aspirate 

samples or urine in the absence of clinical signs/symptoms for infection. Patients who were 

diagnosed with mold colonization and/or IMI before transplant, and/or had received previous 

organ transplantation, were excluded. CMV infection was classified as asymptomatic replication, 

viral syndrome or probable and proven disease as previously reported [12]. 

 

Ethics statement.  All patients provided a written informed consent for participation to the STCS 

(including genetic analyses). The protocol was approved by the independent ethics Committees 

of each Swiss participating center (University Hospital of Lausanne (CHUV); University Hospitals 
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of Geneva (HUG); University Hospital Zürich (USZ); Cantonal Hospital St. Gallen (KSSG); 

Inselspital, Bern University Hospital; Clinica Luganese, Lugano; University Hospital of Basel). 

For functional work fresh venous blood was collected from healthy volunteers who provided a 

written informed consent. The protocol was approved by the local ethics Committee (Radboud 

University Nijmegen Medical Center, The Netherlands). 

 

Peripheral blood mononuclear cells (PBMCs) isolation and in vitro stimulation assays. 

PBMCs were isolated using Ficoll®-Paque Plus (GE healthcare, Zeist, The Netherlands) density 

gradient centrifugation method as described previously [13]. Cells were subsequently stimulated 

with 1x107/ml live or heat-inactivated Aspergillus fumigatus conidia for 24 hours or 7 days, 

respectively. Afterwards concentrations of the cytokines TNFα, IL-1β, IL-1Ra, IL-17, IL-22 (R&D 

systems, Minneapolis MN, USA) and IFNγ (Sanquin, Amsterdam, the Netherlands) were 

measured in cell supernatants by ELISA according to the manufacturer’s protocol. 

 

Genotyping. A total of 24 SNPs in 21 genes were selected from the literature (Table 2) by 

performing a PubMed search until June 2012 using the keywords: candidemia, candidiasis, 

aspergillosis, SNP and/or previous reviews on fungal immunogenetics [6, 7]. Blood samples 

were obtained from all SOT recipients at the time of transplantation. Genomic DNAs was 

extracted from patients or healthy volunteer EDTA blood using the Gentra Puregene Blood Kit 

(Qiagen). Genotyping was performed using a customized GoldenGate Genotyping Assay on 

Veracode® platform (Illumina®, San Diego, CA, USA), unless otherwise indicated. Results were 

analyzed on a BeadXpress® Reader according to standard protocols and quality controls. 

Additional SNPs were genotyped using Competitive Allele-Specific PCR (KASP™) system (LGC 

Genomics, Herts, UK). For functional studies genotyping of the IL1B rs16944 and IL1RN 

rs419598 variants was performed using pre-designed SNP assays on the ABI-Prism StepOne 

thermocycler (Applied Biosystems®). 
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Statistical analysis. Statistical analyses were performed in Stata13® (StataCorp LP, College 

Station, Texas, USA), unless otherwise indicated. The cumulative incidence of mold colonization 

and IMI by genetic variants at 36 months after the first transplantation was assessed by the log-

rank test, with censoring at the date of the last follow-up or death. Associated variants were 

selected based on the log-rank test and were further tested by uni- and multivariate Cox models. 

In order to estimate the independent contribution of each polymorphism to the endpoints, 

demographic and clinical factors previously associated with mold colonization and/or IMI (as 

described elsewhere [9], [5]), were entered into multivariate stepwise regression models (P<0.2) 

together with relevant genetic polymorphisms. Haplotypes were inferred using PHASE 2.1 

(University of Washington, Seattle, WA, USA). Power calculation for Cox proportional hazard 

regression was done using an R implementation of the power and sample size calculation for 

survival analysis of epidemiological studies (powerSurvEpi R package 0.0.6) [14]. The effect of 

presence of SNPs on the Aspergillus-induced cytokine levels was determined by the Mann-

Whitney U test. The data are presented as mean ± standard error of the mean (SEM) and were 

analysed using Graphpad Prism v5.0 (San Diego, CA, USA). 

 

Results 

 

Cohort Study 

 

The study included 1101 Caucasian patients who received solid organ transplantation (670 

kidneys, 190 liver, 102 lungs, 79 hearts, 15 islets/pancreas and 45 combined organs) between 

May 2008 and December 2011 (Table 1). Mold colonization and IMI were diagnosed in 45 

(4.1%) and 26 (2.4%) patients, respectively. Most IMI occurred >3 months after transplantation 

(N=17, 75%). The most frequent causative organism of IMI was Aspergillus spp. (N=21, 81%); 
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only five IMIs were due to other fungi, including Fusarium spp. (N=2), Altenaria spp. (N=1), 

Zygomycetes spp. (N=1) and mixed pathogens (Zygomycetes and Fusarium spp., N=1). Factors 

significantly associated with IMI were identified and described elsewhere [9] and included in the 

multivariate analysis. 

 

Genetic risk factors for mold colonization and IMI in SOT patients 

 

The minor allele frequency of the 24 SNPs are shown in Table 2. Three SNPs that deviated from 

Hardy-Weinberg equilibrium were excluded from the analyses. The power to detect mold 

colonization and IMI was calculated for each SNP (Table 4). 

 

To assess the risk of fungal disease according to the different SNPs, we estimated the 

cumulative incidence of colonization and infection during the first 36 months after transplantation 

(Table 2). Mold colonization and IMI were both associated with SNPs in three different genes, 

including IL1B (rs16944 TT versus CT or CC; log-rank test P=0.001 and P=0.00005), β-defensin 

1 (DEFB1, rs1800972 CC versus GG or CG, P=0.001 and P=0.0002) and the interleukin-1 

receptor antagonist (IL1RN, rs419598 CC versus CT or TT, P=0.01 and P=0.02, respectively, 

Figure 1). In addition, we observed a significant association between a SNP in surfactant-

associated protein 2 and mold colonization (SFTPA2, rs17886395 GG versus CC or CG, log-

rank test P=0.004) but not infection (P=0.5). However, this association was due to a small 

number of individuals (Figure S4). 

 

To determine whether the SNPs were independent risk factors for the mold colonization and IMI, 

we used multivariate Cox stepwise regression models, after adjustment for all relevant 

covariates (Table 3). The final model for colonization still included IL1B rs16944 (HR=2.52, CI 

1.18-5.36, P=0.02), DEFB1 rs1800972 (HR=6.11, CI 2.28-16.4, P=0.0003) and IL1RN rs419598 
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(HR=3.35, CI 1.31-8.58, P=0.01). The final model for IMI still included IL1B rs16944 (HR=4.29, 

CI 1.71-10.8, P=0.002), DEFB1 rs1800972 (HR=4.73, CI 1.46-15.3, P=0.01), but not IL1RN 

rs419598. Associations were stronger when the SNPs were combined together (for IL1B 

rs16944 and DEFB1 rs1800972, HR=4.94; CI 2.06-11.8; P=0.003; for IL1B rs16944 and IL1RN 

rs419598 HR=4.64, CI 1.92-11.2, P=0.0006; Figure S1). In order to account for a possible 

confounding role of antifungal prophylaxis, the analyses were repeated after removal of patients 

who received an anti-mold prophylaxis. The associations between the SNPs in IL1B, DEFB1 and 

IL1RN were still significant (not shown). 

 

IL1B rs16944 and IL1RN rs419598 risk haplotype for mold colonization and IMI. 

 

IL1B and IL1RN genes are located within a ~400 kb region on chromosome 2q13-21, we 

therefore analyzed whether haplotypic combinations of IL1B rs16944 and IL1RN rs419598 SNPs 

further influenced mold colonization and IMI (Figure 2). Carriage of the rs16944-rs419598 C-T 

haplotype was associated with a decreased risk of both mold colonization and IMI (C-T 

haplotype vs. all other, HR=0.34, CI 0.18-0.63, P=0.0007 and HR=0.21, CI 0.10-0.45, 

P=0.00008, respectively). Reversely, carriage of the T-C haplotype was associated with an 

increased risk for both phenotypes (T-C haplotype vs. all other, HR=1.83, CI 1.02-3.29, P=0.04 

and HR=2.09, CI 0.97-4.50, P=0.06, respectively). 

 

Effect of IL1B rs16944 and IL1RN rs419598 polymorphisms on Aspergillus-induced 

cytokine release. 

 

In order to determine whether the SNPs associated with IMI and colonization had measurable 

biological effects, we analyzed the production of different cytokines that are involved in 

antifungal host defense, including IL-1β, IL-1 receptor antagonist (IL-1Ra), TNFα, IL-17, IL-22 
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and IFNγ in PBMCs from 73 healthy volunteers, after stimulation with live or heat-inactivated A. 

fumigatus conidia, respectively (Figure 3). PBMCs from volunteers carrying the IL1B rs16944 

TT genotype produced lower amounts of IL-1β (P=0.01), TNFα (P=0.03) and IL-22 (P=0.03) 

after stimulation with A. fumigatus, compared to PBMCs from volunteers carrying the TC and CC 

genotypes. However, the production of IL-1Ra, IL-17 and IFNγ was not significantly influenced 

by IL1B rs16944. PBMCs from volunteers carrying the IL1RN rs419598 CC genotype produced 

lower amounts of IL-1β (P=0.03) and TNFα (P=0.04) after stimulation with A. fumigatus, 

compared to PBMCs from volunteers carrying the TC and TT genotypes. However, the 

production of IL-1Ra itself as well as IL-22, IL-17 and IFNγ was not influenced by IL1RN 

rs419598. 

 

Discussion 

 

While a number of investigators have reported associations between genetic polymorphisms and 

susceptibility to invasive aspergillosis among onco-hematological patients [6, 7], the role of such 

polymorphisms has not been studied among SOT recipients. We report for the first time an 

association between polymorphisms in IL1B, its antagonist IL1RN, and DEFB1, on susceptibility 

to IMI in this population. 

 

The IL1B gene encodes for the cytokine IL-1β that is essential in host defense against 

Aspergillus infection [15]. IL-1β is a potent pro-inflammatory cytokine that recruits neutrophils to 

the lungs during infection, which are crucial for clearing Aspergillus [16]. Resting Aspergillus 

conidia in the respiratory epithelium are detected by alveolar macrophages and/or dendritic cells 

(DCs). These cells express a wide variety of pattern recognition receptors (PRRs, [17]) that 

detect molecular patterns from the fungal cell wall (e.g. o-linked mannan, galactomannan and β-

(1-3)-glucan) [7]. Whereas macrophages produce TNFα and IL-1β upon recognizing Aspergillus 

 at Fachbereichsbibliothek on N
ovem

ber 17, 2014
http://jid.oxfordjournals.org/

D
ow

nloaded from
 

http://jid.oxfordjournals.org/


11 

resulting in the recruitment of neutrophils and monocytes, activated DCs will migrate to lymph 

nodes to induce protective T-helper cell activity. IL-1β induces TH17 responses that are 

characterized by the production of IL-17, leading to an increased recruitment of neutrophils. 

Additionally, the activated T-helper cells induce IL-22 responses that will stimulate production of 

defensins by epithelial cells [7, 13]. Thus, IL-1β is a key player in the induction of protective 

innate and adaptive anti-Aspergillus host defense. 

 

Because of its potent inflammatory capacity, IL-1β responses need to be tightly controlled. This 

is underlined by the observation that patients with a mutation in IL-1Ra have severe 

inflammation of the skin and bones due to uncontrolled neutrophil influx and increased TH17 

responses [18]. Moreover IL-1Ra knockout mice were shown to be fully protected from 

developing invasive aspergillosis [19]. Importantly galactosaminogalactan, an anti-inflammatory 

cell wall component of A. fumigatus, was able to induce IL-1Ra in vivo and consequently 

suppress the IL-1β pathway leading to increased susceptibility to invasive aspergillosis [19]. IL-

1β binds to the IL-1 receptor and this results in the recruitment of a second receptor (IL-1RacP) 

[20] that activates signaling transduction pathways thereby exerting potent inflammatory 

activities. IL-1Ra also binds to the IL-1 receptor, but prevents recruitment of the second receptor 

and thus does not activate signal transduction pathways [20]. Therefore, the bioactivity of IL-1β 

is controlled by IL-1Ra [21]. 

 

The polymorphisms associated with mold colonization and IMI in this study are located within the 

IL-1 cluster, located in chromosome 2, encompassing both IL1B and IL1RN. We found that the 

minor alleles of rs16944 and rs1143627 within IL1B were associated with an increased risk of 

mold colonization and IMI in SOT. Consistent with our observation, the minor allele of rs16944 

tended to be associated with an increased risk of invasive pulmonary aspergillosis in a case-

control study of 110 neutropenic patients with hematological malignancies [22]. The minor alleles 
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of these SNPs were also associated with susceptibility to different bacterial and viral infections. 

Two studies showed an association between rs16944 and/or rs1143627 and mortality due to 

meningococcal disease [23]. Studies among Chinese patients also showed an association 

between both SNPs and susceptibility to sepsis after major trauma [24] and H1N1 pandemic 

influenza A virus [25].  

 

It has been previously shown that rs16944 located at position -511 corresponding to a putative 

AP-2 binding site and rs1143627 located at position -31 within TATA box, are functional 

polymorphisms that could be responsible for alteration of promoter activity and thus being able 

to modulate expression and secretion of IL-1β in vitro [26]. In our study, PBMCs from individuals 

carrying two copies of rare allele of IL1B rs16944 had diminished IL-1β release upon Aspergillus 

stimulation. In line with our data, human monocytes from individuals carrying minor allele of 

rs1143627 had moderated transcriptional activity of IL1B promoter in response to 

lipopolysaccharide (LPS) [26]. Moreover carriers of minor alleles of rs16944 or rs1143627 had 

significantly lower IL-1β levels in LPS-induced PBMCs [27]. However, other studies have 

reported that the minor allele of rs16944 was correlated with increased transcriptional activity of 

the promoter in vitro upon LPS stimulation and high IL-1β secretion [28, 29]. There is no clear 

explanation for these discrepant observations, but they may be due, at least in part, to the use of 

different cells or tissues and/or stimuli, stimulating concentrations or durations, or failure to 

account for other, so far unknown, regulating factors. We found that the IL1B rs16944 

polymorphism was not only associated with less IL-1β production, but also reduced TNF 

production in response to Aspergillus. TNF is another essential cytokine in antifungal host 

defense, and anti-TNF treatment has previously been associated with invasive aspergillosis [24, 

30]. 
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The IL1RN rs419598 SNP, which is in strong linkage disequilibrium with the IL1RN VNTR, has 

also been associated with mold colonization and IMI [31]. Consistent with this finding, the minor 

allele of rs419598 was previously associated with severity of meningococcal disease and genital 

human papillomavirus (HPV) clearance [23, 32]. To our knowledge, the functional role of 

rs419598 has not been explored so far. In the present study, the minor allele of rs419598 did not 

influence IL-1Ra production in PBMCs from volunteers stimulated with A. fumigatus. However, 

rs419598 carriers had significantly lower levels of IL-1β and TNF. This is consistent with a 

previous study, in which the VNTR*2 was associated with decreased IL-1β in the gastric mucosa 

as well as in PBMCs stimulated with LPS [28, 33]. Altogether, these data suggest that IL1RN 

participates to the regulation of Aspergillus-mediated cytokines production, and that IL1RN 

polymorphism may reduce the ability to clear the pathogen. 

 

DEFB1 encodes human β-defensin 1, a member of the defensins family. Defensins are encoded 

by polymorphic gene cluster located within a 450-kb region on chromosome 8p23 [34]. They 

exert antimicrobial activity against a broad spectrum of pathogens; they also exert a chemotactic 

activity on immune cell and are able to induce cytokine production [35, 36]. β-defensin 1 is 

constitutively expressed in lung epithelial cells and was shown to exert antimicrobial properties 

against C. albicans [37]. To our knowledge, the antimicrobial properties of this β-defensin 

against other fungal pathogens have not been investigated so far. 

 

The minor allele of rs1800972 SNP in DEFB1 was associated with an increased risk of mold 

colonization and IMI in SOT. In line with our findings, the same allele was previously associated 

with higher oral Candida carriage among diabetic and non-diabetic patients [38]. The rs1800972 

SNP is located at position -44 of 5′ untranslated region of DEFB1 and was predicted to alter a 

putative transcription factor binding site to this region of the gene [39, 40]. The minor allele of 

rs1800972 has been previously associated with lower β-defensin 1 expression in the skin with 
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increased nasal carriage of Staphylococcus aureus [41]. This allele may also decrease the 

expression of β-defensin 1 in the respiratory epithelium, with reduced ability to clear 

opportunistic pathogens such as mold under certain immunosuppressive conditions. 

Interestingly, the cytokine IL-22 is a potent inducer of defensins produced by epithelial cells [42, 

43]. The IL1B rs16944 SNP was associated with a significant reduction in Aspergillus-induced 

IL-22 production in human PBMCs. Therefore, it can be proposed that this SNP may increase 

susceptibility not only because of the low production of essential innate cytokine such as IL-1β 

and TNFα, but also because of a reduced induction of IL-22 that might result in defective 

induction of defensins. 

 

SFTPA2 encodes pulmonary surfactant-associated protein 2 (SP-A2), a member of collagen 

containing soluble CLRs (collectins). The SP-A2 was shown to play an important role in host 

response to Aspergillus, by its ability to bind A. fumigatus conidia and thus enhance 

phagocytosis by neutrophils and macrophages [44]. Polymorphisms in collagen region of 

SFTPA2 (G1649C and/or A1660G) have been associated with chronic cavitary pulmonary 

aspergillosis [45] and allergic bronchopulmonary aspergillosis in asthmatic patients [46]. Here 

we detected association between G1649C polymorphism and mold colonization but not invasive 

mold infection in SOT recipients. The lack of association with infection may be due to insufficient 

statistical power due to the relatively small SNPs allele frequency and sample size as detailed in 

Table 4. 

 

By using a list of 24 polymorphisms from 21 genes previously associated with susceptibility to 

fungal infections, we showed that SNPs from three genes (IL1B, IL1RN and DEFB1) were 

associated with mold colonization or IMI in Caucasian SOT recipients. Mold colonization may 

have been underestimated, as bronchoscopy is not routinely performed, especially in non 

thoracic SOT recipients. Yet, the polymorphisms associated with colonization were also 
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associated with IMI, suggesting that these polymorphisms influence both phenotypes, with a 

continuum from colonization to invasive infection. We were not able to detect an association with 

polymorphisms in other genes, such as TLR4 or CLEC7A (encoding Dectin-1), that were 

previously reported to be associated with invasive aspergillosis by several investigators [6, 7]. 

This may be due to several reasons, such as the inclusion of different study populations, fungal 

pathogens and/or less invasive forms of infections. Importantly, the number of patients with mold 

colonization and/or IMI was small, leading to a limited statistical power, especially for infrequent 

SNPs, as detailed in Table 4. Larger studies and studies in patient from non-Caucasian 

ethnicities will be needed to replicate such associations. 

 

We report an association between polymorphisms in three genes and mold colonization and IMI 

in a nationwide cohort of SOT recipients. Theses associations were found to be independent 

from previously known risk factors, such as the recipient age, cytomegalovirus co-infection [3]. 

The genes were formerly described as important components of immune defenses against 

fungal pathogens, and the associated polymorphisms were all shown to be functionally relevant. 

Altogether, these findings may contribute to a better understanding of the pathogenesis of IMI in 

SOT recipients and help in individual risk stratification in the future. 
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Figure legend 

 

Figure 1 

Cumulative incidence of mold colonization (N=45) and invasive mold infection (N=26) 

according to IL1B rs16944 (panel A, and B, respectively), β-defensin 1 rs1800972 (DEFB1, 

panel C and D, respectively) and interleukin-1 receptor antagonist rs419598 (IL1RN, panel 

E, and F, respectively) polymorphisms in solid organ transplant recipients. Patients who 

were colonized or infected with mold before engraftment were excluded from the analyses. P 

values were calculated by log-rank test, recessive mode (patients homozygous for the rate 

alleles are compared to the other). For IL1B rs16944 and DEFB1 rs1800972 SNPs P values 

remained significant after correction for multiple testing (21 tests; colonization for both 

polymorphisms P=0.02; infection P=0.001, and P=0.004, respectively). 

 

Figure 2 

Cumulative incidence of mold colonization (Panel A and B) and invasive mold infection 

(Panel C and D) according to rs16944-rs419598 C-T (Panel A and C) or T-C (Panel B and 

D) haplotype of IL1B and IL1RN polymorphisms in solid organ transplant recipients. P 

values were calculated by the log-rank test by using the dominant mode of inheritance (patients 

carrying one or two copies of each haplotype are compared to the other). Patients who were 

colonized or infected with mold before engraftment were excluded from the analyses. 

 

Figure 3  

Levels of Aspergillus-induced TNFα, IL-1β, IL-1Ra, IL-17, IL-22, IFNγ release by human 

peripheral blood mononuclear cells depending on presence or absence of two copies of 

IL1B rs16944 (A) or IL1RN rs419598 (B) SNPs. Peripheral blood mononuclear cells (PBMCs) 
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from 73 healthy volunteers with different IL1B rs16944 or IL1RN rs419598 genotypes were 

stimulated either with live A. fumigatus conidia for 24 hours (for TNFα, IL-1β, IL-1Ra) or heat 

inactivated A. fumigatus conidia for 7 days (for IL-17, IL-22, IFNγ). The cytokine levels were 

measured in cell culture supernatants and given in pg/ml. The effect of SNPs on cytokine levels 

were calculated by Mann-Whitney U test. The data are presented as mean ± standard error of 

the mean (SEM). 
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Table 1. Demographic characteristic of the solid organ transplant recipients (N=1101) 

1 Data were missing in 104 patients. 
2  Data were missing in 5 patients. 
3 Including kidney-pancreas N=24, kidney-liver N=10, kidney-kidney N=5, kidney-islets N=3, kidney-kidney-

pancreas N=2, kidney-lung N=1 transplants. 
4 Data were missing in 2 patients. 
5 Reported at any time of follow-up. 
6  Data were missing in 32 patients. 
7  Data were missing in 47 patients. 
8  Reported at month 12. 
 
Abbreviations: AZA: azathiopirine; IMI: invasive mold infection; MMF: mycophenolate mofetil 

Variable  N (%) 

Recipient age (median years; iqr)  54 (19) 

Donor age (median years; iqr) 1  53 (22) 

Recipient sex M/F  730 / 371 (66 / 34 ) 

Donor sex M/F 2  573 / 523 (52 / 48) 

Caucasian ethnicity  1101 (100) 

Duration of cold ischemia (median; iqr)  5.6 (7.3) 

Transplanted organ  

Kidney  670 (61) 

Liver  190 (17) 

Lung  102 (9) 

Heart  79 (7) 

Pancreas and islets  15 (1) 

Mixed 3  45 (4) 

Donor type 4  

Deceased  801 (73) 

Living related/unrelated  299 (27) 

Rejection type 5  

Acute cellular rejection  342 (31) 

Acute humoral rejection  35 (3) 

CMV infection/disease  279/61 

CMV serostatus (N=1186) 6  

D+ R+  350 (33) 

D-  R+  256 (24) 

D-  R-  245 (24) 

D+ R-  218 (20) 

Induction therapy 7  

Basiliximab (BAS)  641 (61) 

Anti-thymocyte globulin +/- BAS  188 (18) 

None  225 (21) 

Maintenance regiment 8  

Calcineurin inhibitors  817 (92) 

Corticosteroids  910 (83) 

MMF  721 (81) 

AZA  31 (3) 

mTOR inhibitors  54 (6) 

Anti IMI prophylaxis (weeks 1-4)  74 (7) 
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Table 2. Association of genetic polymorphism with mold colonization or invasive mold infection in solid organ 
transplant recipients (N=1101). 

1 Three SNPs that deviated from Hardy-Weinberg equilibrium (TLR1 rs5743618, IL4 rs2243250 and CARD9 rs10870077) were 
excluded from the analyses. 

2 Five patients who were colonized with mold before transplant, among whom two also developed IMI before transplant, were 
removed from the analyses. 

3 P value was assessed by log-rank test, recessive mode (patients homozygous for the rare alleles are compared to the other). 
4 Significant after Bonferroni correction for multiple testing (21 tests; P=0.02). 
5 Significant after Bonferroni correction for multiple testing (21 tests; P=0.004). 
6 Significant after Bonferroni correction for multiple testing (21 tests; P=0.001). 
 
Abbreviations: CARD9: caspase recruitment domain-9; CI: confidence interval; CLEC7A: C-type lectin domain 7; CXCL10: CXC-
chemokine ligand-10; CD209: CD209 molecule; DEFB1: β-defensin 1; HR: hazard ratio; IL: interleukin; IL1RN: interleukin-1 receptor 
antagonist; ; IL23R: interleukin 23 receptor; IMI: invasive mold infection; MBL: mannose banding lectin; MASP2: mannan-binding lectin 
serine peptidase 2; MAF: minor allele frequency; PLG: plasminogen; SFTPA2: surfactant protein A2; TLR: toll-like receptor; TNF: tumor 
necrosis factor. 

     Mold colonization (N=45) 2  IMI (N=26) 2 

Gene (nt|aa change) 1 Rs number MAF HWE  log-rank test P value 3  log-rank test P value 3

IL1B (-511 C/T) rs16944 0.33 0.160  0.001 4  0.00005 6

DEFB1 (-44 C/G) rs1800972 0.18 1.000  0.001 4  0.0002 5

IL1RN (2018T/C) rs419598 0.25 0.320  0.01  0.02 

TLR9 (-1237 C/T) rs5743836 0.13 0.060  0.2  0.04 

INFG (874 T/A) rs2069705 0.33 0.086  0.05  0.06 

PLG (D472N) rs4252125 0.30 0.340  0.4  0.1 

CD209 (-139 A/G) rs2287886 0.36 0.610  0.2  0.2 

IL10 (-1082 A/G) rs1800896 0.44 0.220  0.8  0.2 

TLR6 (S249P) rs5743810 0.35 0.180  0.1  0.4 

TNF (-308 G/A) rs1800629 0.14 0.010  0.2  0.4 

SFTPA2 (A91P) rs17886395 0.14 0.900  0.004  0.5 

CXCL10 (1642G/C) rs3921 0.41 0.280  0.6  0.5 

MBL (G54D) rs1800450 0.15 0.099  0.8  0.4 

IL10 (-819 C/T) rs1800871 0.27 0.820  0.8  0.6 

TLR1 (R80T) rs5743611 0.07 0.500  0.6  0.7 

TLR4 (D299G) rs4986790 0.05 0.540  0.8  0.8 

IL1A (-889 C/T) rs1800587 0.29 0.620  0.6  0.8 

MASP2 (D105G) rs72550870 0.02 0.150  0.8  0.8 

CLEC7A (Y238X) rs16910526 0.08 0.340  0.7  0.8

TLR3 (L412F) rs3775291 0.29 1.000  0.9  0.9

IL23R (R381Q) rs11209026 0.07 0.811  0.7  0.7 

 at Fachbereichsbibliothek on N
ovem

ber 17, 2014
http://jid.oxfordjournals.org/

D
ow

nloaded from
 

http://jid.oxfordjournals.org/


Table 3. Independent factors associated with mold colonization and invasive mold infections in solid organ 
transplant recipients. 

Variable  

Mold colonization (N=42) 1  IMI (N=25) 1 

HR (95%CI) Cox P value 2  HR (95%CI) Cox P value 2 

IL1B rs16944 (TT vs CC/CT) 3 2.52 (1.18-5.36) 0.02  4.29 (1.71-10.8) 0.002 5 

DEFB1 rs1800972 (CC vs GG/GC) 3 6.11 (2.28-16.4) 0.0003 4  4.73 (1.46-15.3) 0.01 

IL1RN rs419598 (CC vs TT/TC) 3 3.35 (1.31-8.58) 0.01  2.50 (0.75-8.29) 0.1 

Lung or heart transplantation 11.5 (5.83-22.6) <0.0001  3.12 (1.21-8.03) 0.02 

MMF 0.32 (0.16-0.63) 0.001  0.14 (0.06-0.33) <0.0001 

Tacrolimus 0.52 (0.27-1.03) 0.06  0.45 (0.19-1.09) 0.1 

Corticosteroids - -  3.03 (0.67-13.7) 0.1 

Acute/chronic rejection - -  2.35 (0.94-5.83) 0.07 

CMV infection/disease 1.83 (0.89-3.72) 0.1  2.68 (1.11-6.50) 0.03 

Recipient age (per year)  1.04 (1.01-1.06) 0.008  1.06 (1.02-1.10) 0.004 

1 The total number of patient in the multivariate analysis (N=1047) was slightly lower than in univariate analysis (N=1101) due to 
missing covariates. Five patients who were colonized with mold before transplant, among whom two also developed IMI before 
transplant, were removed from the analyses. 

2 Multivariate analysis assessed by stepwise regression variable selection. The variables included in the initial model were recipient 
age and sex, CMV infection or disease, mycophenolate mofetil, tacrolimus and corticosteroid treatment, acute/chronic rejection, 
and type of transplanted organ. 

3 Genetic associations are for recessive mode (patients homozygous for the rare alleles are compared to the other). 
4 Significant after Bonferroni correction for multiple testing (N=21, P=0.006). 
5 Significant after Bonferroni correction for multiple testing (N=21, P=0.04). 

 
Abbreviations: CI: confidence interval; CMV: cytomegalovirus; HR: hazard ratio; DEFB1: β-defensin 1; IL: interleukin; IL1RN: 
interleukin-1 receptor antagonist; IMI: invasive mold infection; MMF: mycophenolate mofetil 
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Table 4. Power to detect association of genetic polymorphism with mold colonization or invasive mold infection in solid organ transplant recipients. 

 

1 Three SNPs that deviated from Hardy-Weinberg equilibrium (TLR1 rs5743618, IL4 rs2243250 and CARD9 rs10870077) were excluded from the analyses. 
2 P value was assessed by Cox regression, recessive mode (patients homozygous for the rare alleles are compared to the other). 
3 P value for the additive mode was 0.01, HR=1.91, CI 1.15-3.17. 
4 In almost complete linkage disequilibrium (LD=0.99) with the IL1B -31T/C rs1143627. 

 
Abbreviations: CARD9: caspase recruitment domain-9; CI: confidence interval; CLEC7A: C-type lectin domain 7; CXCL10: CXC-chemokine ligand-10; CD209: CD209 molecule; 
DEFB1: β-defensin 1; HR: hazard ratio; IL: interleukin; IL1RN: interleukin-1 receptor antagonist; ; IL23R: interleukin 23 receptor; IMI: invasive mold infection; MBL: mannose banding 
lectin; MASP2: mannan-binding lectin serine peptidase 2; MAF: minor allele frequency; PLG: plasminogen; SFTPA2: surfactant protein A2; TLR: toll-like receptor; TNF: tumor 
necrosis factor.  

     Colonization (Frequency 4.1%)  IMI (Frequency 2.4%) 

     Power to detect colonization  Observed values  Power to detect IMI  Observed values 

Gene (nt|aa change) 1 rs number MAF HWE  HR=3 HR=4 HR=5  HR Cox P 2  HR=3 HR=4 HR=5  HR Cox P 2

IL10 (-1082 A/G) rs1800896 0.44 0.220  0.62 0.90 0.98  0.89 0.8  0.29 0.57 0.77  0.34 0.1 

CXCL10 (1642G/C) rs3921 0.41 0.280  0.61 0.89 0.98  0.79 0.6  0.28 0.55 0.76  0.67 0.5 

CD209 (-139 A/G) rs2287886 0.36 0.610  0.58 0.87 0.97  0.50 0.2  0.26 0.52 0.72  0.28 0.2 

TLR6 (S249P) rs5743810 0.35 0.180  0.57 0.86 0.97  1.78 0.1  0.25 0.51 0.71  1.47 0.4 

IL1B (-511 C/T) 4 rs16944 0.33 0.160  0.55 0.85 0.96  2.98 0.002  0.24 0.49 0.70  4.67 0.0002 

INFG (874 T/A) rs2069705 0.33 0.086  0.55 0.85 0.96  0.17 0.08  0.24 0.49 0.70  0.00 1.0 

PLG (D472N) rs4252125 0.30 0.340  0.51 0.82 0.95  1.45 0.4  0.22 0.46 0.66  2.24 0.1 

IL1A (-889 C/T) rs1800587 0.29 0.620  0.50 0.81 0.94  1.24 0.6  0.21 0.45 0.65  0.81 0.8 

TLR3 (L412F) rs3775291 0.29 1.000  0.50 0.81 0.94  1.10 0.8  0.21 0·45 0.65  0.94 0.9

IL10 (-819 C/T) rs1800871 0.27 0.820  0.47 0.78 0.93  1.02 1.0  0.20 0.42 0.62  0.56 0.6 

IL1RN (2018T/C) rs419598 0.25 0.320  0.44 0.75 0.91  2.84 0.02 0.18 0.39 0.58  3.36 0.03

DEFB1 (-44 C/G) rs1800972 0.18 1.000  0.30 0.59 0.79  4.08 0.003  0.12 0.27 0.42  5.91 0.001 

MBL (G54D) rs1800450 0.15 0.099  0.24 0.49 0.70  0.80 0.8  0.09 0.21 0.34  0.00 1.0

SFTPA2 (A91P) rs17886395 0.14 0.900  0.22 0.45 0.66  4.79 0.009 3 0.08 0.19 0.31  0.00 1.0

TNF (-308 G/A) rs1800629 0.14 0.010  0.22 0.45 0.66  0.00 1.0  0.08 0.19 0.31  0.00 1.0

TLR9 (-1237 C/T) rs5743836 0.13 0.060  0.19 0.41 0.61  2.27 0.3  0.07 0.17 0.28  4.13 0.054 

CLEC7A (Y238X) rs16910526 0.08 0.340  0.09 0.21 0.34  0.00 1.0  0.03 0.08 0.13  0.00 1.0

TLR1 (R80T) rs5743611 0.07 0.500  0.07 0.17 0.28  0.00 1.0  0.03 0.06 0.11  0.00 1.0

IL23R (R381Q) rs11209026 0.07 0.811  0.07 0.17 0.28  0.00 1.0  0.03 0.06 0.11  0.00 1.0

TLR4 (D299G) rs4986790 0.05 0.540  0.04 0.09 0.16  0.00 1.0  0.02 0.04 0.06  0.00 1.0

MASP2 (D105G) rs72550870 0.02 0.150  0.01 0.02 0.03  0.00 1.0  0.005 0.009 0.01  0.00 1.0
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